Sample records for operational river forecasting

  1. An Operational Short-Term Forecasting System for Regional Hydropower Management

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Labuhn, K. A.; Calappi, T. J.; MacNeil, A.

    2017-12-01

    The Niagara River is the natural outlet of Lake Erie and drains four of the five Great lakes. The river is used to move commerce and is home to both sport fishing and tourism industries. It also provides nearly 5 million kilowatts of hydropower for approximately 3.9 million homes. Due to a complex international treaty and the necessity of balancing water needs for an extensive tourism industry, the power entities operating on the river require detailed and accurate short-term river flow forecasts to maximize power output. A new forecast system is being evaluated that takes advantage of several previously independent components including the NOAA Lake Erie operational Forecast System (LEOFS), a previously developed HEC-RAS model, input from the New York Power Authority(NYPA) and Ontario Power Generation (OPG) and lateral flow forecasts for some of the tributaries provided by the NOAA Northeast River Forecast Center (NERFC). The Corps of Engineers updated the HEC-RAS model of the upper Niagara River to use the output forcing from LEOFS and a planned Grass Island Pool elevation provided by the power entities. The entire system has been integrated at the NERFC; it will be run multiple times per day with results provided to the Niagara River Control Center operators. The new model helps improve discharge forecasts by better accounting for dynamic conditions on Lake Erie. LEOFS captures seiche events on the lake that are often several meters of displacement from still water level. These seiche events translate into flow spikes that HEC-RAS routes downstream. Knowledge of the peak arrival time helps improve operational decisions at the Grass Island Pool. This poster will compare and contrast results from the existing operational flow forecast and the new integrated LEOFS/HEC-RAS forecast. This additional model will supply the Niagara River Control Center operators with multiple forecasts of flow to help improve forecasting under a wider variety of conditions.

  2. GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale

    NASA Astrophysics Data System (ADS)

    Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter

    2017-04-01

    Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal outlook while providing useful information to users and partners. We demonstrate the first version of an operational GloFAS seasonal outlook, outlining the model set-up and presenting a first look at the seasonal forecasts that will be displayed in the GloFAS interface, and discuss the initial results of the forecast evaluation.

  3. Interactive Forecasting with the National Weather Service River Forecast System

    NASA Technical Reports Server (NTRS)

    Smith, George F.; Page, Donna

    1993-01-01

    The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.

  4. Short-term ensemble streamflow forecasting using operationally-produced single-valued streamflow forecasts - A Hydrologic Model Output Statistics (HMOS) approach

    NASA Astrophysics Data System (ADS)

    Regonda, Satish Kumar; Seo, Dong-Jun; Lawrence, Bill; Brown, James D.; Demargne, Julie

    2013-08-01

    We present a statistical procedure for generating short-term ensemble streamflow forecasts from single-valued, or deterministic, streamflow forecasts produced operationally by the U.S. National Weather Service (NWS) River Forecast Centers (RFCs). The resulting ensemble streamflow forecast provides an estimate of the predictive uncertainty associated with the single-valued forecast to support risk-based decision making by the forecasters and by the users of the forecast products, such as emergency managers. Forced by single-valued quantitative precipitation and temperature forecasts (QPF, QTF), the single-valued streamflow forecasts are produced at a 6-h time step nominally out to 5 days into the future. The single-valued streamflow forecasts reflect various run-time modifications, or "manual data assimilation", applied by the human forecasters in an attempt to reduce error from various sources in the end-to-end forecast process. The proposed procedure generates ensemble traces of streamflow from a parsimonious approximation of the conditional multivariate probability distribution of future streamflow given the single-valued streamflow forecast, QPF, and the most recent streamflow observation. For parameter estimation and evaluation, we used a multiyear archive of the single-valued river stage forecast produced operationally by the NWS Arkansas-Red River Basin River Forecast Center (ABRFC) in Tulsa, Oklahoma. As a by-product of parameter estimation, the procedure provides a categorical assessment of the effective lead time of the operational hydrologic forecasts for different QPF and forecast flow conditions. To evaluate the procedure, we carried out hindcasting experiments in dependent and cross-validation modes. The results indicate that the short-term streamflow ensemble hindcasts generated from the procedure are generally reliable within the effective lead time of the single-valued forecasts and well capture the skill of the single-valued forecasts. For smaller basins, however, the effective lead time is significantly reduced by short basin memory and reduced skill in the single-valued QPF.

  5. The Value of Humans in the Operational River Forecasting Enterprise

    NASA Astrophysics Data System (ADS)

    Pagano, T. C.

    2012-04-01

    The extent of human control over operational river forecasts, such as by adjusting model inputs and outputs, varies from nearly completely automated systems to those where forecasts are generated after discussion among a group of experts. Historical and realtime data availability, the complexity of hydrologic processes, forecast user needs, and forecasting institution support/resource availability (e.g. computing power, money for model maintenance) influence the character and effectiveness of operational forecasting systems. Automated data quality algorithms, if used at all, are typically very basic (e.g. checks for impossible values); substantial human effort is devoted to cleaning up forcing data using subjective methods. Similarly, although it is an active research topic, nearly all operational forecasting systems struggle to make quantitative use of Numerical Weather Prediction model-based precipitation forecasts, instead relying on the assessment of meteorologists. Conversely, while there is a strong tradition in meteorology of making raw model outputs available to forecast users via the Internet, this is rarely done in hydrology; Operational river forecasters express concerns about exposing users to raw guidance, due to the potential for misinterpretation and misuse. However, this limits the ability of users to build their confidence in operational products through their own value-added analyses. Forecasting agencies also struggle with provenance (i.e. documenting the production process and archiving the pieces that went into creating a forecast) although this is necessary for quantifying the benefits of human involvement in forecasting and diagnosing weak links in the forecasting chain. In hydrology, the space between model outputs and final operational products is nearly unstudied by the academic community, although some studies exist in other fields such as meteorology.

  6. Evaluation of Ensemble Water Supply and Demands Forecasts for Water Management in the Klamath River Basin

    NASA Astrophysics Data System (ADS)

    Broman, D.; Gangopadhyay, S.; McGuire, M.; Wood, A.; Leady, Z.; Tansey, M. K.; Nelson, K.; Dahm, K.

    2017-12-01

    The Upper Klamath River Basin in south central Oregon and north central California is home to the Klamath Irrigation Project, which is operated by the Bureau of Reclamation and provides water to around 200,000 acres of agricultural lands. The project is managed in consideration of not only water deliveries to irrigators, but also wildlife refuge water demands, biological opinion requirements for Endangered Species Act (ESA) listed fish, and Tribal Trust responsibilities. Climate change has the potential to impact water management in terms of volume and timing of water and the ability to meet multiple objectives. Current operations use a spreadsheet-based decision support tool, with water supply forecasts from the National Resources Conservation Service (NRCS) and California-Nevada River Forecast Center (CNRFC). This tool is currently limited in its ability to incorporate in ensemble forecasts, which offer the potential for improved operations by quantifying forecast uncertainty. To address these limitations, this study has worked to develop a RiverWare based water resource systems model, flexible enough to use across multiple decision time-scales, from short-term operations out to long-range planning. Systems model development has been accompanied by operational system development to handle data management and multiple modeling components. Using a set of ensemble hindcasts, this study seeks to answer several questions: A) Do a new set of ensemble streamflow forecasts have additional skill beyond what?, and allow for improved decision making under changing conditions? B) Do net irrigation water requirement forecasts developed in this project to quantify agricultural demands and reservoir evaporation forecasts provide additional benefits to decision making beyond water supply forecasts? C) What benefit do ensemble forecasts have in the context of water management decisions?

  7. NWS Operational Requirements for Ensemble-Based Hydrologic Forecasts

    NASA Astrophysics Data System (ADS)

    Hartman, R. K.

    2008-12-01

    Ensemble-based hydrologic forecasts have been developed and issued by National Weather Service (NWS) staff at River Forecast Centers (RFCs) for many years. Used principally for long-range water supply forecasts, only the uncertainty associated with weather and climate have been traditionally considered. As technology and societal expectations of resource managers increase, the use and desire for risk-based decision support tools has also increased. These tools require forecast information that includes reliable uncertainty estimates across all time and space domains. The development of reliable uncertainty estimates associated with hydrologic forecasts is being actively pursued within the United States and internationally. This presentation will describe the challenges, components, and requirements for operational hydrologic ensemble-based forecasts from the perspective of a NOAA/NWS River Forecast Center.

  8. Improving River Flow Predictions from the NOAA NCRFC Forecasting Model by Incorporating Satellite Observations

    NASA Astrophysics Data System (ADS)

    Tuttle, S. E.; Jacobs, J. M.; Restrepo, P. J.; Deweese, M. M.; Connelly, B.; Buan, S.

    2016-12-01

    The NOAA National Weather Service North Central River Forecast Center (NCRFC) is responsible for issuing river flow forecasts for parts of the Upper Mississippi, Great Lakes, and Hudson Bay drainages, including the Red River of the North basin (RRB). The NCRFC uses an operational hydrologic modeling infrastructure called the Community Hydrologic Prediction System (CHPS) for its operational forecasts, which currently links the SNOW-17 snow accumulation and ablation model, to the Sacramento-Soil Moisture Accounting (SAC-SMA) rainfall-runoff model, to a number of hydrologic and hydraulic flow routing models. The operational model is lumped and requires only area-averaged precipitation and air temperature as inputs. NCRFC forecasters use observational data of hydrological state variables as a source of supplemental information during forecasting, and can use professional judgment to modify the model states in real time. In a few recent years (e.g. 2009, 2013), the RRB exhibited unexpected anomalous hydrologic behavior, resulting in overestimation of peak flood discharge by up to 70% and highlighting the need for observations with high temporal and spatial coverage. Unfortunately, observations of hydrological states (e.g. soil moisture, snow water equivalent (SWE)) are relatively scarce in the RRB. Satellite remote sensing can fill this need. We use Minnesota's Buffalo River watershed within the RRB as a test case and update the operational CHPS model using modifications based on satellite observations, including AMSR-E SWE and SMOS soil moisture estimates. We evaluate the added forecasting skill of the satellite-enhanced model compared to measured streamflow using hindcasts from 2010-2013.

  9. Supporting inland waterway transport on German waterways by operational forecasting services - water-levels, discharges, river ice

    NASA Astrophysics Data System (ADS)

    Meißner, Dennis; Klein, Bastian; Ionita, Monica; Hemri, Stephan; Rademacher, Silke

    2017-04-01

    Inland waterway transport (IWT) is an important commercial sector significantly vulnerable to hydrological impacts. River ice and floods limit the availability of the waterway network and may cause considerable damages to waterway infrastructure. Low flows significantly affect IWT's operation efficiency usually several months a year due to the close correlation of (low) water levels / water depths and (high) transport costs. Therefore "navigation-related" hydrological forecasts focussing on the specific requirements of water-bound transport (relevant forecast locations, target parameters, skill characteristics etc.) play a major role in order to mitigate IWT's vulnerability to hydro-meteorological impacts. In light of continuing transport growth within the European Union, hydrological forecasts for the waterways are essential to stimulate the use of the free capacity IWT still offers more consequently. An overview of the current operational and pre-operational forecasting systems for the German waterways predicting water levels, discharges and river ice thickness on various time-scales will be presented. While short-term (deterministic) forecasts have a long tradition in navigation-related forecasting, (probabilistic) forecasting services offering extended lead-times are not yet well-established and are still subject to current research and development activities (e.g. within the EU-projects EUPORIAS and IMPREX). The focus is on improving technical aspects as well as on exploring adequate ways of disseminating and communicating probabilistic forecast information. For the German stretch of the River Rhine, one of the most frequented inland waterways worldwide, the existing deterministic forecast scheme has been extended by ensemble forecasts combined with statistical post-processing modules applying EMOS (Ensemble Model Output Statistics) and ECC (Ensemble Copula Coupling) in order to generate water level predictions up to 10 days and to estimate its predictive uncertainty properly. Additionally for the key locations at the international waterways Rhine, Elbe and Danube three competing forecast approaches are currently tested in a pre-operational set-up in order to generate monthly to seasonal (up to 3 months) forecasts: (1) the well-known Ensemble Streamflow Prediction approach (ensemble based on historical meteorology), (2) coupling hydrological models with post-processed outputs from ECMWF's general circulation model (System 4), and (3) a purely statistical approach based on the stable relationship (teleconnection) of global or regional oceanic, climate and hydrological data with river flows. The current results, still pre-operational, reveal the existence of a valuable predictability of water levels and streamflow also at monthly up to seasonal time-scales along the larger rivers used as waterways in Germany. Last but not least insight into the technical set-up of the aforementioned forecasting systems operated at the Federal Institute of Hydrology, which are based on a Delft-FEWS application, will be given focussing on the step-wise extension of the former system by integrating new components in order to meet the growing needs of the customers and to improve and extend the forecast portfolio for waterway users.

  10. Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.

    2013-12-01

    The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that satellite-based flow estimates are a useful source of dynamical surface water information in data-scarce regions and that they could be used for model calibration and data assimilation purposes in near-time hydrologic forecast applications (Hirpa et al. 2013). More recent efforts during this year's monsoon season are optimally combining these different independent sources of river forecast information along with archived flood inundation imagery of the Dartmouth Flood Observatory to improve the visualization and overall skill of the ongoing CFAB ensemble weather forecast-based flood forecasting system within the unique context of the ongoing flood forecasting efforts for Bangladesh.

  11. Towards Optimal Operation of the Reservoir System in Upper Yellow River: Incorporating Long- and Short-term Operations and Using Rolling Updated Hydrologic Forecast Information

    NASA Astrophysics Data System (ADS)

    Si, Y.; Li, X.; Li, T.; Huang, Y.; Yin, D.

    2016-12-01

    The cascade reservoirs in Upper Yellow River (UYR), one of the largest hydropower bases in China, play a vital role in peak load and frequency regulation for Northwest China Power Grid. The joint operation of this system has been put forward for years whereas has not come into effect due to management difficulties and inflow uncertainties, and thus there is still considerable improvement room for hydropower production. This study presents a decision support framework incorporating long- and short-term operation of the reservoir system. For long-term operation, we maximize hydropower production of the reservoir system using historical hydrological data of multiple years, and derive operating rule curves for storage reservoirs. For short-term operation, we develop a program consisting of three modules, namely hydrologic forecast module, reservoir operation module and coordination module. The coordination module is responsible for calling the hydrologic forecast module to acquire predicted inflow within a short-term horizon, and transferring the information to the reservoir operation module to generate optimal release decision. With the hydrologic forecast information updated, the rolling short-term optimization is iterated until the end of operation period, where the long-term operating curves serve as the ending storage target. As an application, the Digital Yellow River Integrated Model (referred to as "DYRIM", which is specially designed for runoff-sediment simulation in the Yellow River basin by Tsinghua University) is used in the hydrologic forecast module, and the successive linear programming (SLP) in the reservoir operation module. The application in the reservoir system of UYR demonstrates that the framework can effectively support real-time decision making, and ensure both computational accuracy and speed. Furthermore, it is worth noting that the general framework can be extended to any other reservoir system with any or combination of hydrological model(s) to forecast and any solver to optimize the operation of reservoir system.

  12. Verification of Advances in a Coupled Snow-runoff Modeling Framework for Operational Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.

    2011-12-01

    The National Oceanic and Atmospheric Administration's (NOAA's) River Forecast Centers (RFCs) issue hydrologic forecasts related to flood events, reservoir operations for water supply, streamflow regulation, and recreation on the nation's streams and rivers. The RFCs use the National Weather Service River Forecast System (NWSRFS) for streamflow forecasting which relies on a coupled snow model (i.e. SNOW17) and rainfall-runoff model (i.e. SAC-SMA) in snow-dominated regions of the US. Errors arise in various steps of the forecasting system from input data, model structure, model parameters, and initial states. The goal of the current study is to undertake verification of potential improvements in the SNOW17-SAC-SMA modeling framework developed for operational streamflow forecasts. We undertake verification for a range of parameters sets (i.e. RFC, DREAM (Differential Evolution Adaptive Metropolis)) as well as a data assimilation (DA) framework developed for the coupled models. Verification is also undertaken for various initial conditions to observe the influence of variability in initial conditions on the forecast. The study basin is the North Fork America River Basin (NFARB) located on the western side of the Sierra Nevada Mountains in northern California. Hindcasts are verified using both deterministic (i.e. Nash Sutcliffe efficiency, root mean square error, and joint distribution) and probabilistic (i.e. reliability diagram, discrimination diagram, containing ratio, and Quantile plots) statistics. Our presentation includes comparison of the performance of different optimized parameters and the DA framework as well as assessment of the impact associated with the initial conditions used for streamflow forecasts for the NFARB.

  13. St. Lawrence River Freeze-Up Forecast Procedure.

    ERIC Educational Resources Information Center

    Assel, R. A.

    A standard operating procedure (SOP) is presented for calculating the date of freeze-up on the St. Lawrence River at Massena, N.Y. The SOP is based on two empirical temperature decline equations developed for Kingston, Ontario, and Massena, N.Y., respectively. Input data needed to forecast freeze-up consist of the forecast December flow rate and…

  14. A study of application of remote sensing to river forecasting. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A project is described whose goal was to define, implement and evaluate a pilot demonstration test to show the practicability of applying remotely sensed data to operational river forecasting in gaged or previously ungaged watersheds. A secondary objective was to provide NASA with documentation describing the computer programs that comprise the streamflow forecasting simulation model used. A computer-based simulation model was adapted to a streamflow forecasting application and implemented in an IBM System/360 Model 44 computer, operating in a dedicated mode, with operator interactive control through a Model 2250 keyboard/graphic CRT terminal. The test site whose hydrologic behavior was simulated is a small basin (365 square kilometers) designated Town Creek near Geraldine, Alabama.

  15. Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Erofeeva, S.; Kurapov, A. L.; Pasmans, I.

    2016-02-01

    Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).

  16. Applications of Experimental Suomi-NPP VIIRS Flood Inundation Maps in Operational Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Deweese, M. M.

    2017-12-01

    Flooding is the most costly natural disaster across the globe. In 2016 flooding caused more fatalities than any other natural disaster in the United States. The U.S. National Weather Service (NWS) is mandated to forecast rivers for the protection of life and property and the enhancement of the national economy. Since 2014, the NWS North Central River Forecast Center has utilized experimental near real time flood mapping products from the JPSS Suomi-NPP VIIRS satellite. These products have been demonstrated to provide reliable and high value information for forecasters in ice jam and snowmelt flooding in data sparse regions of the northern plains. In addition, they have proved valuable in rainfall induced flooding within the upper Mississippi River basin. Aerial photography and ground observations have validated the accuracy of the products. Examples are provided from numerous flooding events to demonstrate the operational application of this satellite derived information as a remotely sensed observational data source and it's utility in real time flood forecasting.

  17. Discharge data assimilation in a distributed hydrologic model for flood forecasting purposes

    NASA Astrophysics Data System (ADS)

    Ercolani, G.; Castelli, F.

    2017-12-01

    Flood early warning systems benefit from accurate river flow forecasts, and data assimilation may improve their reliability. However, the actual enhancement that can be obtained in the operational practice should be investigated in detail and quantified. In this work we assess the benefits that the simultaneous assimilation of discharge observations at multiple locations can bring to flow forecasting through a distributed hydrologic model. The distributed model, MOBIDIC, is part of the operational flood forecasting chain of Tuscany Region in Central Italy. The assimilation system adopts a mixed variational-Monte Carlo approach to update efficiently initial river flow, soil moisture, and a parameter related to runoff production. The evaluation of the system is based on numerous hindcast experiments of real events. The events are characterized by significant rainfall that resulted in both high and relatively low flow in the river network. The area of study is the main basin of Tuscany Region, i.e. Arno river basin, which extends over about 8300 km2 and whose mean annual precipitation is around 800 mm. Arno's mainstream, with its nearly 240 km length, passes through major Tuscan cities, as Florence and Pisa, that are vulnerable to floods (e.g. flood of November 1966). The assimilation tests follow the usage of the model in the forecasting chain, employing the operational resolution in both space and time (500 m and 15 minutes respectively) and releasing new flow forecasts every 6 hours. The assimilation strategy is evaluated in respect to open loop simulations, i.e. runs that do not exploit discharge observations through data assimilation. We compare hydrographs in their entirety, as well as classical performance indexes, as error on peak flow and Nash-Sutcliffe efficiency. The dependence of performances on lead time and location is assessed. Results indicate that the operational forecasting chain can benefit from the developed assimilation system, although with a significant variability due to the specific characteristics of any single event, and with downstream locations more sensitive to observations than upstream sites.

  18. Towards guided data assimilation for operational hydrologic forecasting in the US Tennessee River basin

    NASA Astrophysics Data System (ADS)

    Weerts, A.; Wood, A. W.; Clark, M. P.; Carney, S.; Day, G. N.; Lemans, M.; Sumihar, J.; Newman, A. J.

    2014-12-01

    In the US, the forecasting approach used by the NWS River Forecast Centers and other regional organizations such as the Bonneville Power Administration (BPA) or Tennessee Valley Authority (TVA) has traditionally involved manual model input and state modifications made by forecasters in real-time. This process is time consuming and requires expert knowledge and experience. The benefits of automated data assimilation (DA) as a strategy for avoiding manual modification approaches have been demonstrated in research studies (eg. Seo et al., 2009). This study explores the usage of various ensemble DA algorithms within the operational platform used by TVA. The final goal is to identify a DA algorithm that will guide the manual modification process used by TVA forecasters and realize considerable time gains (without loss of quality or even enhance the quality) within the forecast process. We evaluate the usability of various popular algorithms for DA that have been applied on a limited basis for operational hydrology. To this end, Delft-FEWS was wrapped (via piwebservice) in OpenDA to enable execution of FEWS workflows (and the chained models within these workflows, including SACSMA, UNITHG and LAGK) in a DA framework. Within OpenDA, several filter methods are available. We considered 4 algorithms: particle filter (RRF), Ensemble Kalman Filter and Asynchronous Ensemble Kalman and Particle filter. Retrospective simulation results for one location and algorithm (AEnKF) are illustrated in Figure 1. The initial results are promising. We will present verification results for these methods (and possible more) for a variety of sub basins in the Tennessee River basin. Finally, we will offer recommendations for guided DA based on our results. References Seo, D.-J., L. Cajina, R. Corby and T. Howieson, 2009: Automatic State Updating for Operational Streamflow Forecasting via Variational Data Assimilation, 367, Journal of Hydrology, 255-275. Figure 1. Retrospectively simulated streamflow for the headwater basin above Powell River at Jonesville (red is observed flow, blue is simulated flow without DA, black is simulated flow with DA)

  19. Statistical and Hydrological evaluation of precipitation forecasts from IMD MME and ECMWF numerical weather forecasts for Indian River basins

    NASA Astrophysics Data System (ADS)

    Mohite, A. R.; Beria, H.; Behera, A. K.; Chatterjee, C.; Singh, R.

    2016-12-01

    Flood forecasting using hydrological models is an important and cost-effective non-structural flood management measure. For forecasting at short lead times, empirical models using real-time precipitation estimates have proven to be reliable. However, their skill depreciates with increasing lead time. Coupling a hydrologic model with real-time rainfall forecasts issued from numerical weather prediction (NWP) systems could increase the lead time substantially. In this study, we compared 1-5 days precipitation forecasts from India Meteorological Department (IMD) Multi-Model Ensemble (MME) with European Center for Medium Weather forecast (ECMWF) NWP forecasts for over 86 major river basins in India. We then evaluated the hydrologic utility of these forecasts over Basantpur catchment (approx. 59,000 km2) of the Mahanadi River basin. Coupled MIKE 11 RR (NAM) and MIKE 11 hydrodynamic (HD) models were used for the development of flood forecast system (FFS). RR model was calibrated using IMD station rainfall data. Cross-sections extracted from SRTM 30 were used as input to the MIKE 11 HD model. IMD started issuing operational MME forecasts from the year 2008, and hence, both the statistical and hydrologic evaluation were carried out from 2008-2014. The performance of FFS was evaluated using both the NWP datasets separately for the year 2011, which was a large flood year in Mahanadi River basin. We will present figures and metrics for statistical (threshold based statistics, skill in terms of correlation and bias) and hydrologic (Nash Sutcliffe efficiency, mean and peak error statistics) evaluation. The statistical evaluation will be at pan-India scale for all the major river basins and the hydrologic evaluation will be for the Basantpur catchment of the Mahanadi River basin.

  20. Assessment of a new seasonal to inter-annual operational Great Lakes water supply, water levels, and connecting channel flow forecasting system

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Fry, L. M.; Hunter, T.; Pei, L.; Smith, J.; Lucier, H.; Mueller, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) has recently operationalized a suite of ensemble forecasts of Net Basin Supply (NBS), water levels, and connecting channel flows that was developed through a collaboration among USACE, NOAA's Great Lakes Environmental Research Laboratory, Ontario Power Generation (OPG), New York Power Authority (NYPA), and the Niagara River Control Center (NRCC). These forecasts are meant to provide reliable projections of potential extremes in daily discharge in the Niagara and St. Lawrence Rivers over a long time horizon (5 years). The suite of forecasts includes eight configurations that vary by (a) NBS model configuration, (b) meteorological forcings, and (c) incorporation of seasonal climate projections through the use of weighting. Forecasts are updated on a weekly basis, and represent the first operational forecasts of Great Lakes water levels and flows that span daily to inter-annual horizons and employ realistic regulation logic and lake-to-lake routing. We will present results from a hindcast assessment conducted during the transition from research to operation, as well as early indications of success rates determined through operational verification of forecasts. Assessment will include an exploration of the relative skill of various forecast configurations at different time horizons and the potential for application to hydropower decision making and Great Lakes water management.

  1. Real-time Ensemble Flow Forecasts for a 2017 Mock Operation Test Trial of Forecast Informed Reservoir Operations for Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Mendoza, J.; Jasperse, J.; Hartman, R. K.; Whitin, B.; Kalansky, J.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates 15-day ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to conduct a mock operation test trial of the EFO alternative for 2017. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The operational trial utilized real-time ESPs prepared by the CNRFC and observed flow information to simulate hydrologic conditions in Lake Mendocino and a 50-mile downstream reach of the Russian River to the City of Healdsburg. Results of the EFO trial demonstrate a 6% increase in reservoir storage at the end of trial period (May 10) relative to observed conditions. Additionally, model results show no increase in flows above flood stage for points downstream of Lake Mendocino. Results of this investigation and other studies demonstrate that the EFO alternative may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  2. An operational real-time flood forecasting system in Southern Italy

    NASA Astrophysics Data System (ADS)

    Ortiz, Enrique; Coccia, Gabriele; Todini, Ezio

    2015-04-01

    A real-time flood forecasting system has been operating since year 2012 as a non-structural measure for mitigating the flood risk in Campania Region (Southern Italy), within the Sele river basin (3.240 km2). The Sele Flood Forecasting System (SFFS) has been built within the FEWS (Flood Early Warning System) platform developed by Deltares and it assimilates the numerical weather predictions of the COSMO LAM family: the deterministic COSMO-LAMI I2, the deterministic COSMO-LAMI I7 and the ensemble numerical weather predictions COSMO-LEPS (16 members). Sele FFS is composed by a cascade of three main models. The first model is a fully continuous physically based distributed hydrological model, named TOPKAPI-eXtended (Idrologia&Ambiente s.r.l., Naples, Italy), simulating the dominant processes controlling the soil water dynamics, runoff generation and discharge with a spatial resolution of 250 m. The second module is a set of Neural-Networks (ANN) built for forecasting the river stages at a set of monitored cross-sections. The third component is a Model Conditional Processor (MCP), which provides the predictive uncertainty (i.e., the probability of occurrence of a future flood event) within the framework of a multi-temporal forecast, according to the most recent advancements on this topic (Coccia and Todini, HESS, 2011). The MCP provides information about the probability of exceedance of a maximum river stage within the forecast lead time, by means of a discrete time function representing the variation of cumulative probability of exceeding a river stage during the forecast lead time and the distribution of the time occurrence of the flood peak, starting from one or more model forecasts. This work shows the Sele FFS performance after two years of operation, evidencing the added-values that can provide to a flood early warning and emergency management system.

  3. First Assessment of Itaipu Dam Ensemble Inflow Forecasting System

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Machado Vieira Lisboa, Auder; Gomes Villa Trinidad, Giovanni; Rógenes Monteiro Pontes, Paulo; Collischonn, Walter; Tucci, Carlos; Costa Buarque, Diogo

    2017-04-01

    Inflow forecasting for Hydropower Plants (HPP) Dams is one of the prominent uses for hydrological forecasts. A very important HPP in terms of energy generation for South America is the Itaipu Dam, located in the Paraná River, between Brazil and Paraguay countries, with a drainage area of 820.000km2. In this work, we present the development of an ensemble forecasting system for Itaipu, operational since November 2015. The system is based in the MGB-IPH hydrological model, includes hydrodynamics simulations of the main river, and is run every day morning forced by seven different rainfall forecasts: (i) CPTEC-ETA 15km; (ii) CPTEC-BRAMS 5km; (iii) SIMEPAR WRF Ferrier; (iv) SIMEPAR WRF Lin; (v) SIMEPAR WRF Morrison; (vi) SIMEPAR WRF WDM6; (vii) SIMEPAR MEDIAN. The last one (vii) corresponds to the median value of SIMEPAR WRF model versions (iii to vi) rainfall forecasts. Besides the developed system, the "traditional" method for inflow forecasting generation for the Itaipu Dam is also run every day. This traditional method consists in the approximation of the future inflow based on the discharge tendency of upstream telemetric gauges. Nowadays, after all the forecasts are run, the hydrology team of Itaipu develop a consensus forecast, based on all obtained results, which is the one used for the Itaipu HPP Dam operation. After one year of operation a first evaluation of the Ensemble Forecasting System was conducted. Results show that the system performs satisfactory for rising flows up to five days lead time. However, some false alarms were also issued by most ensemble members in some cases. And not in all cases the system performed better than the traditional method, especially during hydrograph recessions. In terms of meteorological forecasts, some members usage are being discontinued. In terms of the hydrodynamics representation, it seems that a better information of rivers cross section could improve hydrographs recession curves forecasts. Those opportunities for improvements are currently being addressed in the system next update.

  4. Real-time short-term forecast of water inflow into Bureyskaya reservoir

    NASA Astrophysics Data System (ADS)

    Motovilov, Yury

    2017-04-01

    During several recent years, a methodology for operational optimization in hydrosystems including forecasts of the hydrological situation has been developed on example of Burea reservoir. The forecasts accuracy improvement of the water inflow into the reservoir during planning of water and energy regime was one of the main goals for implemented research. Burea river is the second left largest Amur tributary after Zeya river with its 70.7 thousand square kilometers watershed and 723 km-long river course. A variety of natural conditions - from plains in the southern part to northern mountainous areas determine a significant spatio-temporal variability in runoff generation patterns and river regime. Bureyskaya hydropower plant (HPP) with watershed area 65.2 thousand square kilometers is a key station in the Russian Far Eastern energy system providing its reliable operation. With a spacious reservoir, Bureyskaya HPP makes a significant contribution to the protection of the Amur region from catastrophic floods. A physically-based distributed model of runoff generation based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform has been developed for the Burea River basin. The model describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface, ground and river flow. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The model setup for Bureya river basin included watershed and river network schematization with GIS module by DEM analysis, meteorological time-series preparation, model calibration and validation against historical observations. The results showed good model performance as compared to observed inflow data into the Bureya reservoir and high diagnostic potential of data-modeling system of the runoff formation. With the use of this system the following flowchart for short-range forecasting inflow into Bureyskoe reservoir and forecast correction technique using continuously updated hydrometeorological data has been developed: 1 - Daily renewal of weather observations and forecasts database via the Internet; 2 - Daily runoff calculation from the beginning of the current year to current date is conducted; 3 - Short-range (up to 7 days) forecast is generated based on weather forecast. The idea underlying the model assimilation of newly obtained hydro meteorological information to adjust short-range hydrological forecasts lies in the assumption of the forecast errors inertia. Then the difference between calculated and observed streamflow at the forecast release date is "scattered" with specific weights to calculated streamflow for the forecast lead time. During 2016 this forecasts method of the inflow into the Bureyskaya reservoir up to 7 days is tested in online mode. Satisfactory evaluated short-range inflow forecast success rate is obtained. Tests of developed method have shown strong sensitivity to the results of short-term precipitation forecasts.

  5. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  6. Forecast Informed Reservoir Operations: Bringing Science and Decision-Makers Together to Explore Use of Hydrometeorological Forecasts to Support Future Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Ralph, F. M.; Jasperse, J.

    2017-12-01

    Forecast Informed Reservoir Operations (FIRO) is a proposed strategy that is exploring inorporation of improved hydrometeorological forecasts of land-falling atmospheric rivers on the U.S. West Coast into reservoir operations. The first testbed for this strategy is Lake Mendocino, which is located in the East Fork of the 1485 mi2 Russian River Watershed in northern California. This project is guided by the Lake Mendocino FIRO Steering Committee (SC). The SC is an ad hoc committee that consists of water managers and scientists from several federal, state, and local agencies, and universities who have teamed to evaluate whether current or improved technology and scientific understanding can be utilized to improve water supply reliability, enhance flood mitigation and support recovery of listed salmon for the Russian River of northern California. In 2015, the SC created a detailed work plan, which included a Preliminary Viability Assessment, which has now been completed. The SC developed a vision that operational efficiency would be improved by using forecasts to inform decisions about releasing or storing water. FIRO would use available reservoir storage in an efficient manner by (1) better forecasting inflow (or lack of inflow) with enhanced technology, and (2) adapting operation in real time to meet the need for storage, rather than making storage available just in case it is needed. The envisioned FIRO strategy has the potential to simultaneously improve water supply reliability, flood protection, and ecosystem outcomes through a more efficient use of existing infrastructure while requiring minimal capital improvements in the physical structure of the dam. This presentation will provide an overview of the creation of the FIRO SC and how it operates, and describes the lessons learned through this partnership. Results in the FIRO Preliminary Viability Assessment will be summarized and next steps described.

  7. A hybrid spatiotemporal drought forecasting model for operational use

    NASA Astrophysics Data System (ADS)

    Vasiliades, L.; Loukas, A.

    2010-09-01

    Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.

  8. Ensemble Bayesian forecasting system Part I: Theory and algorithms

    NASA Astrophysics Data System (ADS)

    Herr, Henry D.; Krzysztofowicz, Roman

    2015-05-01

    The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of predictand, possesses a Bayesian coherence property, constitutes a random sample of the predictand, and has an acceptable sampling error-which makes it suitable for rational decision making under uncertainty.

  9. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.

    2016-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  10. The Rise of Complexity in Flood Forecasting: Opportunities, Challenges and Tradeoffs

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Clark, M. P.; Nijssen, B.

    2017-12-01

    Operational flood forecasting is currently undergoing a major transformation. Most national flood forecasting services have relied for decades on lumped, highly calibrated conceptual hydrological models running on local office computing resources, providing deterministic streamflow predictions at gauged river locations that are important to stakeholders and emergency managers. A variety of recent technological advances now make it possible to run complex, high-to-hyper-resolution models for operational hydrologic prediction over large domains, and the US National Weather Service is now attempting to use hyper-resolution models to create new forecast services and products. Yet other `increased-complexity' forecasting strategies also exist that pursue different tradeoffs between model complexity (i.e., spatial resolution, physics) and streamflow forecast system objectives. There is currently a pressing need for a greater understanding in the hydrology community of the opportunities, challenges and tradeoffs associated with these different forecasting approaches, and for a greater participation by the hydrology community in evaluating, guiding and implementing these approaches. Intermediate-resolution forecast systems, for instance, use distributed land surface model (LSM) physics but retain the agility to deploy ensemble methods (including hydrologic data assimilation and hindcast-based post-processing). Fully coupled numerical weather prediction (NWP) systems, another example, use still coarser LSMs to produce ensemble streamflow predictions either at the model scale or after sub-grid scale runoff routing. Based on the direct experience of the authors and colleagues in research and operational forecasting, this presentation describes examples of different streamflow forecast paradigms, from the traditional to the recent hyper-resolution, to illustrate the range of choices facing forecast system developers. We also discuss the degree to which the strengths and weaknesses of each strategy map onto the requirements for different types of forecasting services (e.g., flash flooding, river flooding, seasonal water supply prediction).

  11. Development and Use of the Hydrologic Ensemble Forecast System by the National Weather Service to Support the New York City Water Supply

    NASA Astrophysics Data System (ADS)

    Shedd, R.; Reed, S. M.; Porter, J. H.

    2015-12-01

    The National Weather Service (NWS) has been working for several years on the development of the Hydrologic Ensemble Forecast System (HEFS). The objective of HEFS is to provide ensemble river forecasts incorporating the best precipitation and temperature forcings at any specific time horizon. For the current implementation, this includes the Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFSv2). One of the core partners that has been working with the NWS since the beginning of the development phase of HEFS is the New York City Department of Environmental Protection (NYCDEP) which is responsible for the complex water supply system for New York City. The water supply system involves a network of reservoirs in both the Delaware and Hudson River basins. At the same time that the NWS was developing HEFS, NYCDEP was working on enhancing the operations of their water supply reservoirs through the development of a new Operations Support Tool (OST). OST is designed to guide reservoir system operations to ensure an adequate supply of high-quality drinking water for the city, as well as to meet secondary objectives for reaches downstream of the reservoirs assuming the primary water supply goals can be met. These secondary objectives include fisheries and ecosystem support, enhanced peak flow attenuation beyond that provided natively by the reservoirs, salt front management, and water supply for other cities. Since January 2014, the NWS Northeast and Middle Atlantic River Forecast Centers have provided daily one year forecasts from HEFS to NYCDEP. OST ingests these forecasts, couples them with near-real-time environmental and reservoir system data, and drives models of the water supply system. The input of ensemble forecasts results in an ensemble of model output, from which information on the range and likelihood of possible future system states can be extracted. This type of probabilistic information provides system managers with additional information not available from deterministic forecasts and allows managers to better assess risk, and provides greater context for decision-making than has been available in the past. HEFS has allowed NYCDEP water supply managers to make better decisions on reservoir operations than they likely would have in the past, using only deterministic forecasts.

  12. Advanced inflow forecasting for a hydropower plant in an Alpine hydropower regulated catchment - coupling of operational and hydrological forecasts

    NASA Astrophysics Data System (ADS)

    Tilg, Anna-Maria; Schöber, Johannes; Huttenlau, Matthias; Messner, Jakob; Achleitner, Stefan

    2017-04-01

    Hydropower is a renewable energy source which can help to stabilize fluctuations in the volatile energy market. Especially pumped-storage infrastructures in the European Alps play an important role within the European energy grid system. Today, the runoff of rivers in the Alps is often influenced by cascades of hydropower infrastructures where the operational procedures are triggered by energy market demands, water deliveries and flood control aspects rather than by hydro-meteorological variables. An example for such a highly hydropower regulated river is the catchment of the river Inn in the Eastern European Alps, originating in the Engadin (Switzerland). A new hydropower plant is going to be built as transboundary project at the boarder of Switzerland and Austria using the water of the Inn River. For the operation, a runoff forecast to the plant is required. The challenge in this case is that a high proportion of runoff is turbine water from an upstream situated hydropower cascade. The newly developed physically based hydrological forecasting system is mainly capable to cover natural hydrological runoff processes caused by storms and snow melt but can model only a small degree of human impact. These discontinuous parts of the runoff downstream of the pumped storage are described by means of an additional statistical model which has been developed. The main goal of the statistical model is to forecast the turbine water up to five days in advance. The lead time of the data driven model exceeds the lead time of the used energy production forecast. Additionally, the amount of turbine water is linked to the need of electricity production and the electricity price. It has been shown that especially the parameters day-ahead prognosis of the energy production and turbine inflow of the previous week are good predictors and are therefore used as input parameters for the model. As the data is restricted due to technical conditions, so-called Tobit models have been used to develop a linear regression for the runoff forecast. Although the day-ahead prognosis cannot always be kept, the regression model delivers, especially during office hours, very reasonable results. In the remaining hours the error between measurement and the forecast increases. Overall, the inflow forecast can be substantially improved by the implementation of the developed regression in the hydrological modelling system.

  13. Seasonal forecasting for water resource management: the example of CNR Genissiat dam on the Rhone River in France

    NASA Astrophysics Data System (ADS)

    Dommanget, Etienne; Bellier, Joseph; Ben Daoud, Aurélien; Graff, Benjamin

    2014-05-01

    Compagnie Nationale du Rhône (CNR) has been granted the concession to operate the Rhone River from the Swiss border to the Mediterranean Sea since 1933 and carries out three interdependent missions: navigation, irrigation and hydropower production. Nowadays, CNR generates one quarter of France's hydropower electricity. The convergence of public and private interests around optimizing the management of water resources throughout the French Rhone valley led CNR to develop hydrological models dedicated to discharge seasonal forecasting. Indeed, seasonal forecasting is a major issue for CNR and water resource management, in order to optimize long-term investments of the produced electricity, plan dam maintenance operations and anticipate low water period. Seasonal forecasting models have been developed on the Genissiat dam. With an installed capacity of 420MW, Genissiat dam is the first of the 19 CNR's hydropower plants. Discharge forecasting at Genissiat dam is strategic since its inflows contributes to 20% of the total Rhone average discharge and consequently to 40% of the total Rhone hydropower production. Forecasts are based on hydrological statistical models. Discharge on the main Rhone River tributaries upstream Genissiat dam are forecasted from 1 to 6 months ahead thanks to multiple linear regressions. Inputs data of these regressions are identified depending on river hydrological regimes and periods of the year. For the melting season, from spring to summer, snow water equivalent (SWE) data are of major importance. SWE data are calculated from Crocus model (Météo France) and SLF's model (Switzerland). CNR hydro-meteorological forecasters assessed meteorological trends regarding precipitations for the next coming months. These trends are used to generate stochastically precipitation scenarios in order to complement regression data set. This probabilistic approach build a decision-making supports for CNR's water resource management team and provides them with seasonal forecasts and their confidence interval. After a presentation of CNR methodology, results for the years 2011 and 2013 will illustrate CNR's seasonal forecasting models ability. These years are of particular interest regarding water resource management seeing that they are, respectively, unusually dry and snowy. Model performances will be assessed in comparison with historical climatology thanks to CRPS skill score.

  14. Enhancing Community Based Early Warning Systems in Nepal with Flood Forecasting Using Local and Global Models

    NASA Astrophysics Data System (ADS)

    Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab

    2017-04-01

    Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53% probability of exceeding the Medium Level Alert in two days. Rainfall stations upstream of the West Rapti catchment recorded heavy rainfall on 26 July, and localized forecasts from the probabilistic model at 8 am suggested that the water level would cross a pre-determined warning level in the next 3 hours. The Flood Forecasting Section at DHM issued a flood advisory, and disseminated SMS flood alerts to more than 13,000 at-risk people residing along the floodplains. Water levels crossed the danger threshold (5.4 meters) at 11 am, peaking at 8.15 meters at 10 pm. Extension of the warning lead time from probabilistic forecasts was significant in minimising the risk to lives and livelihoods as communities gained extra time to prepare, evacuate and respond. Likewise, longer timescale forecasts from GLoFAS could be potentially linked with no-regret early actions leading to improved preparedness and emergency response. These forecasting tools have contributed to enhance the effectiveness and efficiency of existing community based systems, increasing the lead time for response. Nevertheless, extensive work is required on appropriate ways to interpret and disseminate probabilistic forecasts having longer (2-14 days) and shorter (3-5 hours) time horizon for operational deployment as there are numerous uncertainties associated with predictions.

  15. Model based hydropower gate operation for mitigation of CSO impacts by means of river base flow increase.

    PubMed

    Achleitner, S; De Toffol, S; Engelhard, C; Rauch, W

    2005-01-01

    In river stretches being subjected to flow regulation, usually for the purpose of energy production (e.g. Hydropower) or flood protection (river barrage), a special measure can be taken against the effect of combined sewer overflows (CSOs). The basic idea is the temporal increase of the river base flow (during storm weather) as an in-stream measure for mitigation of CSO spilling. The focus is the mitigation of the negative effect of acute pollution of substances. The measure developed can be seen as an application of the classic real time control (RTC) concept onto the river system. Upstream gate operation is to be based on real time monitoring and forecasting of precipitation. The main objective is the development of a model based predictive control system for the gate operation, by modelling of the overall wastewater system (incl. the receiving water). The main emphasis is put on the operational strategy and the appropriate short-term forecast of spilling events. The potential of the measure is tested for the application of the operational strategy and its ecological and economic feasibility. The implementation of such an in-stream measure into the hydropower's operational scheme is unique. Advantages are (a) the additional in-stream dilution of acute pollutants entering the receiving water and (b) the resulting minimization of the required CSO storage volume.

  16. Practical Application of Modern Forecasting and Decision Tools at an Operational River Management Agency

    NASA Astrophysics Data System (ADS)

    Jawdy, C. M.; Carney, S.; Barber, N. M.; Balk, B. C.; Miller, G. A.

    2017-12-01

    The Tennessee Valley Authority (TVA) recently completed a complete overhaul of our River Forecast System (RFS). This modernization effort encompassed: uplift or addition of 89 data feeds calibration of a 140 subbasin rainfall-runoff model calibration of over 650 miles of hydraulic routings implementation of a decision optimization routine for 29 reservoirs implementation of hydrothermal forecast models for five river-cooled thermal plants creation of decision-friendly displays creation of a user-friendly wiki creation of a robust reporting system This talk will walk attendees through how a 24x7 river and grid management agency made decisions around how to operationalize the latest technologies in hydrology, hydraulics, decision science and information technology. The tradeoffs inherent in such an endeavor will be discussed so that research-oriented attendees can understand how best to align their research if they desire adoption within industry. More industry-oriented attendees can learn about the mechanics of how to succeed at such a large and complex project. Following the description of the modernization project, I can discuss TVA's plans for future growth of the system. We plan to add the following capabilities in the coming years: forecast verification tools to communicate floodplain risk tools to choose the best possible model forcings ensemble inflow modelling a river policy that allows for more reasonable tradeoff of benefits river decisions based on ensembles The iterative staging of such improvements is highly fraught with technical, political and operational risks. I will discuss how TVA's is using what we learned in the RFS modernization effort to grow further into delivering on the promise of these additional technologies.

  17. The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems

    NASA Astrophysics Data System (ADS)

    Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.

    2010-09-01

    Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Because of the specific characteristics of each catchment, varying data availability and end-user demands, the design of the best flood forecasting system may differ from catchment to catchment. However, despite the differences in concept and data needs, there is one underlying issue that spans across all systems. There has been an growing awareness and acceptance that uncertainty is a fundamental issue of flood forecasting and needs to be dealt with at the different spatial and temporal scales as well as the different stages of the flood generating processes. Today, operational flood forecasting centres change increasingly from single deterministic forecasts to probabilistic forecasts with various representations of the different contributions of uncertainty. The move towards these so-called Hydrological Ensemble Prediction Systems (HEPS) in flood forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather forecasting (Buizza et al., 2005) and paralleling the move towards ensemble forecasting in other related disciplines such as climate change predictions. The use of HEPS has been internationally fostered by initiatives such as "The Hydrologic Ensemble Prediction Experiment" (HEPEX), created with the aim to investigate how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes. The advantages of quantifying the different contributions of uncertainty as well as the overall uncertainty to obtain reliable and useful flood forecasts also for extreme events, has become evident. However, despite the demonstrated advantages, worldwide the incorporation of HEPS in operational flood forecasting is still limited. The applicability of HEPS for smaller river basins was tested in MAP D-Phase, an acronym for "Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region" which was launched in 2005 as a Forecast Demonstration Project of World Weather Research Programme of WMO, and entered a pre-operational and still active testing phase in 2007. In Europe, a comparatively high number of EPS driven systems for medium-large rivers exist. National flood forecasting centres of Sweden, Finland and the Netherlands, have already implemented HEPS in their operational forecasting chain, while in other countries including France, Germany, Czech Republic and Hungary, hybrids or experimental chains have been installed. As an example of HEPS, the European Flood Alert System (EFAS) is being presented. EFAS provides medium-range probabilistic flood forecasting information for large trans-national river basins. It incorporates multiple sets of weather forecast including different types of EPS and deterministic forecasts from different providers. EFAS products are evaluated and visualised as exceedance of critical levels only - both in forms of maps and time series. Different sources of uncertainty and its impact on the flood forecasting performance for every grid cell has been tested offline but not yet incorporated operationally into the forecasting chain for computational reasons. However, at stations where real-time discharges are available, a hydrological uncertainty processor is being applied to estimate the total predictive uncertainty from the hydrological and input uncertainties. Research on long-term EFAS results has shown the need for complementing statistical analysis with case studies for which examples will be shown.

  18. Integrated Forecast-Decision Systems For River Basin Planning and Management

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.

    2005-12-01

    A central application of climatology, meteorology, and hydrology is the generation of reliable forecasts for water resources management. In principle, effective use of forecasts could improve water resources management by providing extra protection against floods, mitigating the adverse effects of droughts, generating more hydropower, facilitating recreational activities, and minimizing the impacts of extreme events on the environment and the ecosystems. In practice, however, realization of these benefits depends on three requisite elements. First is the skill and reliability of forecasts. Second is the existence of decision support methods/systems with the ability to properly utilize forecast information. And third is the capacity of the institutional infrastructure to incorporate the information provided by the decision support systems into the decision making processes. This presentation discusses several decision support systems (DSS) using ensemble forecasting that have been developed by the Georgia Water Resources Institute for river basin management. These DSS are currently operational in Africa, Europe, and the US and address integrated water resources and energy planning and management in river basins with multiple water uses, multiple relevant temporal and spatial scales, and multiple decision makers. The article discusses the methods used and advocates that the design, development, and implementation of effective forecast-decision support systems must bring together disciplines, people, and institutions necessary to address today's complex water resources challenges.

  19. Rainfall forecast in the Upper Mahaweli basin in Sri Lanka using RegCM model

    NASA Astrophysics Data System (ADS)

    Muhammadh, K. M.; Mafas, M. M. M.; Weerakoon, S. B.

    2017-04-01

    The Upper Mahaweli basin is the upper most sub basin of 788 km2 in size above Polgolla barrage in the Mahaweli River, the longest river in Sri Lanka which starts from the central hills of the island and drains to the sea at the North-east coast. Rainfall forecast in the Upper Mahaweli basin is important for issuing flood warning in the river downstream of the reservoirs, landslide warning in the settlements in hilly areas. Anticipatory water management in the basin including reservoir operations, barrage gate operation for releasing water for irrigation and flood control also require reliable rainfall and runoff prediction in the sub basin. In this study, the Regional Climate Model (RegCM V4.4.5.11) is calibrated for the basin to dynamically downscale reanalysis weather data of Global Climate Model (GCM) to forecast the rainfall in the basin. Observed rainfalls at gauging stations within the basin were used for model calibration and validation. The observed rainfall data was analysed using ARC GIS and the output of RegCM was analysed using GrADS tool. The output of the model and the observed precipitation were obtained on grids of size 0.1 degrees and the accuracy of the predictions were analysed using RMSE and Mean Model Absolute Error percentage (MAME %). The predictions by the calibrated RegCM model for the basin is shown to be satisfactory. The model is a useful tool for rainfall forecast in the Upper Mahaweli River basin.

  20. Comparison of Conventional and ANN Models for River Flow Forecasting

    NASA Astrophysics Data System (ADS)

    Jain, A.; Ganti, R.

    2011-12-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  1. Corps Water Management System (CWMS) Decision Support Modeling and Integration Use in the June 2007 Texas Floods

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Luna, M.

    2007-12-01

    The U.S. Army Corps of Engineers Corps Water Management System (CWMS) is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. CWMS uses an Oracle database and Sun Solaris workstations for data processes, storage and the execution of models, with a client application (the Control and Visualization Interface, or CAVI) that can run on a Windows PC. CWMS was used by the Lower Colorado River Authority (LCRA) to make hydrologic forecasts of flows on the Lower Colorado River and operate reservoirs during the June 2007 event in Texas. The LCRA receives real-time observed gridded spatial rainfall data from OneRain, Inc. that which is a result of adjusting NexRad rainfall data with precipitation gages. This data is used, along with future precipitation estimates, for hydrologic forecasting by the rainfall-runoff modeling program HEC-HMS. Forecasted flows from HEC-HMS and combined with observed flows and reservoir information to simulate LCRA's reservoir operations and help engineers make release decisions based on the results. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for the computed flow. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. What was described as an "extraordinary cluster of thunderstorms" that stalled over Burnet and Llano counties in Texas on June 27, 2007, dropped 17 to 19 inches of rainfall over a 6-hour period. The storm was classified over a 500-year event and the resulting flow over some of the smaller tributaries as a 100-year or better. CWMS was used by LCRA for flood forecasting and reservoir operations. The models accurately forecasting the flows and allowed engineers to determine that only four floodgates needed to be opened for Mansfield dam, in the Chain of Highland lakes. CWMS also forecasted the peak of the flood well before it happened. Smaller rain storms continued for a period of weeks and CWMS was used throughout the event calculating lake levels, closing of gates along with a hydro-generation schedule.

  2. Development of Water Quality Forecasting Models Based on the SOM-ANN on TMDL Unit Watershed in Nakdong River

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.

    2013-12-01

    It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more serious before occurring.

  3. An Ensemble-Based Forecasting Framework to Optimize Reservoir Releases

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Saleh, F.

    2017-12-01

    Increasing frequency of extreme precipitation events are stressing the need to manage water resources on shorter timescales. Short-term management of water resources becomes proactive when inflow forecasts are available and this information can be effectively used in the control strategy. This work investigates the utility of short term hydrological ensemble forecasts for operational decision making during extreme weather events. An advanced automated hydrologic prediction framework integrating a regional scale hydrologic model, GIS datasets and the meteorological ensemble predictions from the European Center for Medium Range Weather Forecasting (ECMWF) was coupled to an implicit multi-objective dynamic programming model to optimize releases from a water supply reservoir. The proposed methodology was evaluated by retrospectively forecasting the inflows to the Oradell reservoir in the Hackensack River basin in New Jersey during the extreme hydrologic event, Hurricane Irene. Additionally, the flexibility of the forecasting framework was investigated by forecasting the inflows from a moderate rainfall event to provide important perspectives on using the framework to assist reservoir operations during moderate events. The proposed forecasting framework seeks to provide a flexible, assistive tool to alleviate the complexity of operational decision-making.

  4. Providing peak river flow statistics and forecasting in the Niger River basin

    NASA Astrophysics Data System (ADS)

    Andersson, Jafet C. M.; Ali, Abdou; Arheimer, Berit; Gustafsson, David; Minoungou, Bernard

    2017-08-01

    Flooding is a growing concern in West Africa. Improved quantification of discharge extremes and associated uncertainties is needed to improve infrastructure design, and operational forecasting is needed to provide timely warnings. In this study, we use discharge observations, a hydrological model (Niger-HYPE) and extreme value analysis to estimate peak river flow statistics (e.g. the discharge magnitude with a 100-year return period) across the Niger River basin. To test the model's capacity of predicting peak flows, we compared 30-year maximum discharge and peak flow statistics derived from the model vs. derived from nine observation stations. The results indicate that the model simulates peak discharge reasonably well (on average + 20%). However, the peak flow statistics have a large uncertainty range, which ought to be considered in infrastructure design. We then applied the methodology to derive basin-wide maps of peak flow statistics and their associated uncertainty. The results indicate that the method is applicable across the hydrologically active part of the river basin, and that the uncertainty varies substantially depending on location. Subsequently, we used the most recent bias-corrected climate projections to analyze potential changes in peak flow statistics in a changed climate. The results are generally ambiguous, with consistent changes only in very few areas. To test the forecasting capacity, we ran Niger-HYPE with a combination of meteorological data sets for the 2008 high-flow season and compared with observations. The results indicate reasonable forecasting capacity (on average 17% deviation), but additional years should also be evaluated. We finish by presenting a strategy and pilot project which will develop an operational flood monitoring and forecasting system based in-situ data, earth observations, modelling, and extreme statistics. In this way we aim to build capacity to ultimately improve resilience toward floods, protecting lives and infrastructure in the region.

  5. The use of snowcovered area in runoff forecasts

    NASA Technical Reports Server (NTRS)

    Rango, A.; Hannaford, J. F.; Hall, R. L.; Rosenzweig, M.; Brown, A. J.

    1977-01-01

    Long-term snowcovered area data from aircraft and satellite observations have proven useful in reducing seasonal runoff forecast error on the Kern river watershed. Similar use of snowcovered area on the Kings river watershed produced results that were about equivalent to methods based solely on conventional data. Snowcovered area will be most effective in reducing forecast procedural error on watersheds with: (1) a substantial amount of area within a limited elevation range; (2) an erratic precipitation and/or snowpack accumulation pattern not strongly related to elevation; and (3) poor coverage by precipitation stations or snow courses restricting adequate indexing of water supply conditions. When satellite data acquisition and delivery problems are resolved, the derived snowcover information should provide a means for enhancing operational streamflow forecasts for areas that depend primarily on snowmelt for their water supply.

  6. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage

    NASA Astrophysics Data System (ADS)

    Turnbull, S. J.

    2017-12-01

    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.

  7. Processing of next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data for the DuPage County streamflow simulation system

    USGS Publications Warehouse

    Bera, Maitreyee; Ortel, Terry W.

    2018-01-12

    The U.S. Geological Survey, in cooperation with DuPage County Stormwater Management Department, is testing a near real-time streamflow simulation system that assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek and West Branch DuPage River drainage basins in DuPage County, Illinois. As part of this effort, the U.S. Geological Survey maintains a database of hourly meteorological and hydrologic data for use in this near real-time streamflow simulation system. Among these data are next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data, which are retrieved from the North Central River Forecasting Center of the National Weather Service. The DuPage County streamflow simulation system uses these quantitative precipitation forecast data to create streamflow predictions for the two simulated drainage basins. This report discusses in detail how these data are processed for inclusion in the Watershed Data Management files used in the streamflow simulation system for the Salt Creek and West Branch DuPage River drainage basins.

  8. Operational planning using Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)

    NASA Astrophysics Data System (ADS)

    O'Connor, Alison; Kirtman, Benjamin; Harrison, Scott; Gorman, Joe

    2016-05-01

    The US Navy faces several limitations when planning operations in regard to forecasting environmental conditions. Currently, mission analysis and planning tools rely heavily on short-term (less than a week) forecasts or long-term statistical climate products. However, newly available data in the form of weather forecast ensembles provides dynamical and statistical extended-range predictions that can produce more accurate predictions if ensemble members can be combined correctly. Charles River Analytics is designing the Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS), which performs data fusion over extended-range multi-model ensembles, such as the North American Multi-Model Ensemble (NMME), to produce a unified forecast for several weeks to several seasons in the future. We evaluated thirty years of forecasts using machine learning to select predictions for an all-encompassing and superior forecast that can be used to inform the Navy's decision planning process.

  9. Water Management Applications of Advanced Precipitation Products

    NASA Astrophysics Data System (ADS)

    Johnson, L. E.; Braswell, G.; Delaney, C.

    2012-12-01

    Advanced precipitation sensors and numerical models track storms as they occur and forecast the likelihood of heavy rain for time frames ranging from 1 to 8 hours, 1 day, and extended outlooks out to 3 to 7 days. Forecast skill decreases at the extended time frames but the outlooks have been shown to provide "situational awareness" which aids in preparation for flood mitigation and water supply operations. In California the California-Nevada River Forecast Centers and local Weather Forecast Offices provide precipitation products that are widely used to support water management and flood response activities of various kinds. The Hydrometeorology Testbed (HMT) program is being conducted to help advance the science of precipitation tracking and forecasting in support of the NWS. HMT high-resolution products have found applications for other non-federal water management activities as well. This presentation will describe water management applications of HMT advanced precipitation products, and characterization of benefits expected to accrue. Two case examples will be highlighted, 1) reservoir operations for flood control and water supply, and 2) urban stormwater management. Application of advanced precipitation products in support of reservoir operations is a focus of the Sonoma County Water Agency. Examples include: a) interfacing the high-resolution QPE products with a distributed hydrologic model for the Russian-Napa watersheds, b) providing early warning of in-coming storms for flood preparedness and water supply storage operations. For the stormwater case, San Francisco wastewater engineers are developing a plan to deploy high resolution gap-filling radars looking off shore to obtain longer lead times on approaching storms. A 4 to 8 hour lead time would provide opportunity to optimize stormwater capture and treatment operations, and minimize combined sewer overflows into the Bay.ussian River distributed hydrologic model.

  10. Decision Support on the Sediments Flushing of Aimorés Dam Using Medium-Range Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Schwanenberg, Dirk; Collischonn, Walter; Assis dos Reis, Alberto; Alvarado Montero, Rodolfo; Alencar Siqueira, Vinicius

    2015-04-01

    In the present study we investigate the use of medium-range streamflow forecasts in the Doce River basin (Brazil), at the reservoir of Aimorés Hydro Power Plant (HPP). During daily operations this reservoir acts as a "trap" to the sediments that originate from the upstream basin of the Doce River. This motivates a cleaning process called "pass through" to periodically remove the sediments from the reservoir. The "pass through" or "sediments flushing" process consists of a decrease of the reservoir's water level to a certain flushing level when a determined reservoir inflow threshold is forecasted. Then, the water in the approaching inflow is used to flush the sediments from the reservoir through the spillway and to recover the original reservoir storage. To be triggered, the sediments flushing operation requires an inflow larger than 3000m³/s in a forecast horizon of 7 days. This lead-time of 7 days is far beyond the basin's concentration time (around 2 days), meaning that the forecasts for the pass through procedure highly depends on Numerical Weather Predictions (NWP) models that generate Quantitative Precipitation Forecasts (QPF). This dependency creates an environment with a high amount of uncertainty to the operator. To support the decision making at Aimorés HPP we developed a fully operational hydrological forecasting system to the basin. The system is capable of generating ensemble streamflow forecasts scenarios when driven by QPF data from meteorological Ensemble Prediction Systems (EPS). This approach allows accounting for uncertainties in the NWP at a decision making level. This system is starting to be used operationally by CEMIG and is the one shown in the present study, including a hindcasting analysis to assess the performance of the system for the specific flushing problem. The QPF data used in the hindcasting study was derived from the TIGGE (THORPEX Interactive Grand Global Ensemble) database. Among all EPS available on TIGGE, three were selected: ECMWF, GEFS, and CPTEC. As a deterministic reference forecast, we adopt the high resolution ECMWF forecast for comparison. The experiment consisted on running retrospective forecasts for a full five-year period. To verify the proposed objectives of the study, we use different metrics to evaluate the forecast: ROC Curves, Exceedance Diagrams, Forecast Convergence Score (FCS). Metrics results enabled to understand the benefits of the hydrological ensemble prediction system as a decision making tool for the HPP operation. The ROC scores indicate that the use of the lower percentiles of the ensemble scenarios issues for a true alarm rate around 0,5 to 0,8 (depending on the model and on the percentile), for the lead time of seven days. While the false alarm rate is between 0 and 0,3. Those rates were better than the ones resulting from the deterministic reference forecast. Exceedance diagrams and forecast convergence scores indicate that the ensemble scenarios provide an early signal about the threshold crossing. Furthermore, the ensemble forecasts are more consistent between two subsequent forecasts in comparison to the deterministic forecast. The assessments results also give more credibility to CEMIG in the realization and communication of flushing operation with the stakeholders involved.

  11. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California: A Framework for Objectively Leveraging Weather and Climate Forecasts in a Decision Support Environment

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Whitin, B.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC. The ESP hindcast was developed using Global Ensemble Forecast System version 10 precipitation reforecasts processed with the Hydrologic Ensemble Forecast System to generate daily reforecasts of 61 flow ensemble members for a 15-day forecast horizon. Model simulation results demonstrate that the EFO alternative may improve water supply reliability for Lake Mendocino yet not increase flood risk for downstream areas. The developed operations framework can directly leverage improved skill in the second week of the forecast and is extendable into the S2S time domain given the demonstration of improved skill through a reliable reforecast of adequate historical duration and consistent with operationally available numerical weather predictions.

  12. Value of Adaptive Drought Forecasting and Management for the ACF River Basin in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.; Kistenmacher, M.

    2016-12-01

    In recent times, severe droughts in the southeast U.S. occur every 6 to 10 years and last for up to 4 years. During such drought episodes, the ACF River Basin supplies decline by up to 50 % of their normal levels, and water stresses increase rather markedly, exacerbating stakeholder anxiety and conflicts. As part of the ACF Stakeholder planning process, GWRI has developed new tools and carried out comprehensive assessments to provide quantitative answers to several important questions related to drought prediction and management: (i) Can dry and wet climatic periods be reliably anticipated with sufficiently long lead times? What drought indices can support reliable, skillful, and long-lead forecasts? (ii) What management objectives can seasonal climate forecasts benefit? How should benefits/impacts be shared? (iii) What operational adjustments are likely to mitigate stakeholder impacts or increase benefits consistent with stakeholder expectations? Regarding drought prediction, a large number of indices were defined and tested at different basin locations and lag times. These included local/cumulative unimpaired flows (UIFs) at 10 river nodes; Mean Areal Precipitation (MAP); Standard Precipitation Index (SPI); Palmer Drought Severity Index; Palmer Modified Drought Index; Palmer Z-Index; Palmer Hydrologic Drought Severity Index; and Soil Moisture—GWRI watershed model. Our findings show that all ACF sub-basins exhibit good forecast skill throughout the year and with sufficient lead time. Index variables with high explanatory value include: previous UIFs, soil moisture states (generated by the GWRI watershed model), and PDSI. Regarding drought management, assessments with coupled forecast-management schemes demonstrate that the use of adaptive forecast-management procedures improves reservoir operations and meets basin demands more reliably. Such improvements can support better management of lake levels, higher environmental and navigation flows, higher dependable power generation hours, and better management of consumptive uses without adverse impacts on other stakeholder interests. However, realizing these improvements requires (1) usage of adaptive reservoir management procedures (incorporating forecasts), and (2) stakeholder agreement on equitable benefit sharing.

  13. Flood monitoring for ungauged rivers: the power of combining space-based monitoring and global forecasting models

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Netgeka, Victor; Raynaud, Damien; Thielen, Jutta

    2013-04-01

    Flood warning systems typically rely on forecasts from national meteorological services and in-situ observations from hydrological gauging stations. This capacity is not equally developed in flood-prone developing countries. Low-cost satellite monitoring systems and global flood forecasting systems can be an alternative source of information for national flood authorities. The Global Flood Awareness System (GloFAS) has been develop jointly with the European Centre for Medium-Range Weather Forecast (ECMWF) and the Joint Research Centre, and it is running quasi operational now since June 2011. The system couples state-of-the art weather forecasts with a hydrological model driven at a continental scale. The system provides downstream countries with information on upstream river conditions as well as continental and global overviews. In its test phase, this global forecast system provides probabilities for large transnational river flooding at the global scale up to 30 days in advance. It has shown its real-life potential for the first time during the flood in Southeast Asia in 2011, and more recently during the floods in Australia in March 2012, India (Assam, September-October 2012) and Chad Floods (August-October 2012).The Joint Research Centre is working on further research and development, rigorous testing and adaptations of the system to create an operational tool for decision makers, including national and regional water authorities, water resource managers, hydropower companies, civil protection and first line responders, and international humanitarian aid organizations. Currently efforts are being made to link GloFAS to the Global Flood Detection System (GFDS). GFDS is a Space-based river gauging and flood monitoring system using passive microwave remote sensing which was developed by a collaboration between the JRC and Dartmouth Flood Observatory. GFDS provides flood alerts based on daily water surface change measurements from space. Alerts are shown on a world map, with detailed reports for individual gauging sites. A comparison of discharge estimates from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS) with observations for representative climatic zones is presented. Both systems have demonstrated strong potential in forecasting and detecting recent catastrophic floods. The usefulness of their combined information on global scale for decision makers at different levels is discussed. Combining space-based monitoring and global forecasting models is an innovative approach and has significant benefits for international river commissions as well as international aid organisations. This is in line with the objectives of the Hyogo and the Post-2015 Framework that aim at the development of systems which involve trans-boundary collaboration, space-based earth observation, flood forecasting and early warning.

  14. Satellite Altimetry based River Forecasting of Transboundary Flow

    NASA Astrophysics Data System (ADS)

    Hossain, F.; Siddique-E-Akbor, A.; Lee, H.; Shum, C.; Biancamaria, S.

    2012-12-01

    Forecasting of this transboundary flow in downstream nations however remains notoriously difficult due to the lack of basin-wide in-situ hydrologic measurements or its real-time sharing among nations. In addition, human regulation of upstream flow through diversion projects and dams, make hydrologic models less effective for forecasting on their own. Using the Ganges-Brahmaputra (GB) basin as an example, this study assesses the feasibility of using JASON-2 satellite altimetry for forecasting such transboundary flow at locations further inside the downstream nation of Bangladesh by propagating forecasts derived from upstream (Indian) locations through a hydrodynamic river model. The 5-day forecast of river levels at upstream boundary points inside Bangladesh are used to initialize daily simulation of the hydrodynamic river model and yield the 5-day forecast river level further downstream inside Bangladesh. The forecast river levels are then compared with the 5-day-later "now cast" simulation by the river model based on in-situ river level at the upstream boundary points in Bangladesh. Future directions for satellite-based forecasting of flow are also briefly overviewed.round tracks or virtual stations of JASON-2 (J2) altimeter over the GB basin shown in yellow lines. The locations where the track crosses a river and used for deriving forecasting rating curves is shown with a circle and station number (magenta- Brahmaputra basin; blue - Ganges basin). Circles without a station number represent the broader view of sampling by JASON-2 if all the ground tracks on main stem rivers and neighboring tributaries of Ganges and Brahmaputra are considered.

  15. Operational Hydrologic Forecasts in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Shrestha, K. Y.; Curry, J. A.; Webster, P. J.; Toma, V. E.; Jelinek, M.

    2013-12-01

    The Columbia River Basin (CRB) covers an area of ~670,000 km2 and stretches across parts of seven U.S. states and one Canadian province. The basin is subject to a variable climate, and moisture stored in snowpack during the winter is typically released in spring and early summer. These releases contribute to rapid increases in flow. A number of impoundments have been constructed on the Columbia River main stem and its tributaries for the purposes of flood control, navigation, irrigation, recreation, and hydropower. Storage reservoirs allow water managers to adjust natural flow patterns to benefit water and energy demands. In the past decade, the complexity of water resource management issues in the basin has amplified the importance of streamflow forecasting. Medium-range (1-10 day) numerical weather forecasts of precipitation and temperature can be used to drive hydrological models. In this work, probabilistic meteorological variables from the European Center for Medium Range Weather Forecasting (ECMWF) are used to force the Variable Infiltration Capacity (VIC) model. Soil textures were obtained from FAO data; vegetation types / land cover information from UMD land cover data; stream networks from USGS HYDRO1k; and elevations from CGIAR version 4 SRTM data. The surface energy balance in 0.25° (~25 km) cells is closed through an iterative process operating at a 6 hour timestep. Output fluxes from a number of cells in the basin are combined through one-dimensional flow routing predicated on assumptions of linearity and time invariance. These combinations lead to daily mean streamflow estimates at key locations throughout the basin. This framework is suitable for ingesting daily numerical weather prediction data, and was calibrated using USGS mean daily streamflow data at the Dalles Dam (TDA). Operational streamflow forecasts in the CRB have been active since October 2012. These are 'naturalized' or unregulated forecasts. In 2013, increases of ~2600 m3/s (~48% of average discharge for water years 1879-2012) or greater were observed at TDA during the following periods: 29 March to 12 April, 5 May to 11 May, and 19 June to 29 June. Precipitation and temperature forecasts during these periods are shown along with changes in the model simulated snowpack. We evaluate the performance of the ensemble mean 10 days in advance of each of these three events, and comment on how the distribution of ensemble members affected forecast confidence in each situation.

  16. Transforming Atmospheric and Remotely-Sensed Information to Hydrologic Predictability in South Asia

    NASA Astrophysics Data System (ADS)

    Hopson, T. M.; Riddle, E. E.; Broman, D.; Brakenridge, G. R.; Birkett, C. M.; Kettner, A.; Sampson, K. M.; Boehnert, J.; Priya, S.; Collins, D. C.; Rostkier-Edelstein, D.; Young, W.; Singh, D.; Islam, A. S.

    2017-12-01

    South Asia is a flashpoint for natural disasters with profound societal impacts for the region and globally. Although close to 40% of the world's population depends on the Greater Himalaya's great rivers, $20 Billion of GDP is affected by river floods each year. The frequent occurrence of floods, combined with large and rapidly growing populations with high levels of poverty, make South Asia highly susceptible to humanitarian disasters. The challenges of mitigating such devastating disasters are exacerbated by the limited availability of real-time rain and stream gauge measuring stations and transboundary data sharing, and by constrained institutional commitments to overcome these challenges. To overcome such limitations, India and the World Bank have committed resources to the National Hydrology Project III, with the development objective to improve the extent, quality, and accessibility of water resources information and to strengthen the capacity of targeted water resources management institutions in India. The availability and application of remote sensing products and weather forecasts from ensemble prediction systems (EPS) have transformed river forecasting capability over the last decade, and is of interest to India. In this talk, we review the potential predictability of river flow contributed by some of the freely-available remotely-sensed and weather forecasting products within the framework of the physics of water migration through a watershed. Our specific geographical context is the Ganges, Brahmaputra, and Meghna river basin and a newly-available set of stream gauge measurements located over the region. We focus on satellite rainfall estimation, river height and width estimation, and EPS weather forecasts. For the later, we utilize the THORPEX-TIGGE dataset of global forecasts, and discuss how atmospheric predictability, as measured by an EPS, is transformed into hydrometeorological predictability. We provide an overview of the strengths and weaknesses of each of these data sets to the river flow prediction problem, generalizing their utility across spatial- and temporal-scales, and highlight the benefits of joint utilization and multi-modeling to minimize uncertainty and enhance operational robustness.

  17. Collaborative Initiative toward Developing River Forecasting in South America

    NASA Astrophysics Data System (ADS)

    Cabrera, R.

    2015-12-01

    In the United States, river floods have been discussed as early as 1884. Following a disastrous flooding in 1903, Congress passed legislation and river and flood services became a separate division within the U.S. Weather Bureau. The first River Forecast Center started in 1946 and today the whole country is served by thirteen River Forecast Centers. News from Latin American and Caribbean Countries often report of devastating flooding. However, river forecast services are not fully developed yet. This presentation suggests the utilization of a multinational collaborative approach toward the development of river forecasts in order to mitigate flooding in South America. The benefit of an international strategy resides in the strength created by a team of professionals with different capabilities and expertise.

  18. New River Inlet DRI: Observations and Modeling of Flow and Material Exchange & Field and Numerical Study of the Columbia River Mouth

    DTIC Science & Technology

    2013-09-30

    analyze the MCR drifter, in situ mini-catamaran, pressure, and USGS tripod observations; • describe the tidal chocking behavior at New River Inlet (NRI...i.e. waves , wind and potentially stratification) APPROACH Our approach is to collect field observations to evaluate the sensitivity of Delft3D at...forecast model using the predicted tides, wind, wave and river discharge conditions to optimize spatial coverage and drifter retrieval operations. On

  19. Forecasting skills of the ensemble hydro-meteorological system for the Po river floods

    NASA Astrophysics Data System (ADS)

    Ricciardi, Giuseppe; Montani, Andrea; Paccagnella, Tiziana; Pecora, Silvano; Tonelli, Fabrizio

    2013-04-01

    The Po basin is the largest and most economically important river-basin in Italy. Extreme hydrological events, including floods, flash floods and droughts, are expected to become more severe in the next future due to climate change, and related ground effects are linked both with environmental and social resilience. A Warning Operational Center (WOC) for hydrological event management was created in Emilia Romagna region. In the last years, the WOC faced challenges in legislation, organization, technology and economics, achieving improvements in forecasting skill and information dissemination. Since 2005, an operational forecasting and modelling system for flood modelling and forecasting has been implemented, aimed at supporting and coordinating flood control and emergency management on the whole Po basin. This system, referred to as FEWSPo, has also taken care of environmental aspects of flood forecast. The FEWSPo system has reached a very high level of complexity, due to the combination of three different hydrological-hydraulic chains (HEC-HMS/RAS - MIKE11 NAM/HD, Topkapi/Sobek), with several meteorological inputs (forecasted - COSMOI2, COSMOI7, COSMO-LEPS among others - and observed). In this hydrological and meteorological ensemble the management of the relative predictive uncertainties, which have to be established and communicated to decision makers, is a debated scientific and social challenge. Real time activities face professional, modelling and technological aspects but are also strongly interrelated with organization and human aspects. The authors will report a case study using the operational flood forecast hydro-meteorological ensemble, provided by the MIKE11 chain fed by COSMO_LEPS EQPF. The basic aim of the proposed approach is to analyse limits and opportunities of the long term forecast (with a lead time ranging from 3 to 5 days), for the implementation of low cost actions, also looking for a well informed decision making and the improvement of flood preparedness and crisis management for basins greater than 1.000 km2.

  20. An Integrated Ensemble-Based Operational Framework to Predict Urban Flooding: A Case Study of Hurricane Sandy in the Passaic and Hackensack River Basins

    NASA Astrophysics Data System (ADS)

    Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.

    2016-12-01

    Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus improving the assessment of risks as when compared to a deterministic forecast. The work offers perspectives for short-term flood forecasts, flood mitigation strategies and best management practices for climate change scenarios.

  1. Operational flood forecasting: further lessons learned form a recent inundation in Tuscany, Italy

    NASA Astrophysics Data System (ADS)

    Caparrini, F.; Castelli, F.; di Carlo, E.

    2010-09-01

    After a few years of experimental setup, model refinement and parameters calibration, a distributed flood forecasting system for the Tuscany region was promoted to operational use in early 2008. The hydrologic core of the system, MOBIDIC, is a fully distributed soil moisture accounting model, with sequential assimilation of hydrometric data. The model is forced by the real-time dense hydrometeorological network of the Regional Hydrologic Service as well from the QPF products of a number of different limited area meteorological models (LAMI, WRF+ECMWF, WRF+GFS). Given the relatively short response time of the Tuscany basins, the river flow forecasts based on ground measured precipitation are operationally used mainly as a monitoring tool, while the true usable predictions are necessarily based on the QPF input. The first severe flooding event the system had to face occurred in late December 2009, when a failure of the right levee of the Serchio river caused an extensive inundation (on December 25th). In the days following the levee breaking, intensive monitoring and forecast was needed (another flood peak occurred on the night between December 29th and January 1st 2010) as a support for decisions regarding the management of the increased vulnerability of the area and the planning of emergency reparation works at the river banks. The operational use of the system during such a complex event, when both the meteorological and the hydrological components may be said to have performed well form a strict modeling point of view, brought to attention a number of additional issues about the system as a whole. The main of these issues may be phrased in terms of additional system requirements, namely: the ranking of different QPF products in terms of some likelihood measure; the rapid redefinition of alarm thresholds due to sudden changes in the river flow capacity; the supervised prediction for evaluating the consequences of different management scenarios for reservoirs, regulated floodplains, levees, etc. In order to quantitatively address these issues, a multivariate sensitivity hindcast of the above event is presented here, where variation of model predictions and subsequent likely decision making are measured against QPF accuracy, other possible levees failures, different reservoir releases.

  2. Improvement of Operational Streamflow Prediction with MODIS-derived Fractional Snow Covered Area Observations

    NASA Astrophysics Data System (ADS)

    Bender, S.; Burgess, A.; Goodale, C. E.; Mattmann, C. A.; Miller, W. P.; Painter, T. H.; Rittger, K. E.; Stokes, M.; Werner, K.

    2013-12-01

    Water managers in the western United States depend heavily on the timing and magnitude of snowmelt-driven runoff for municipal supply, irrigation, maintenance of environmental flows, and power generation. The Colorado Basin River Forecast Center (CBRFC) of the National Weather Service issues operational forecasts of snowmelt-driven streamflow for watersheds within the Colorado River Basin (CRB) and eastern Great Basin (EGB), across a wide variety of scales. Therefore, the CBRFC and its stakeholders consider snowpack observations to be highly valuable. Observations of fractional snow covered area (fSCA) from satellite-borne instrumentation can better inform both forecasters and water users with respect to subsequent snowmelt runoff, particularly when combined with observations from ground-based station networks and/or airborne platforms. As part of a multi-year collaborative effort, CBRFC has partnered with the Jet Propulsion Laboratory (JPL) under funding from NASA to incorporate observations of fSCA from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) into the operational CBRFC hydrologic forecasting and modeling process. In the first year of the collaboration, CBRFC and NASA/JPL integrated snow products into the forecasting and decision making processes of the CBRFC and showed preliminary improvement in operational streamflow forecasts. In late 2012, CBRFC and NASA/JPL began retrospective analysis of relationships between the MODIS Snow Covered Area and Grain size (MODSCAG) fSCA and streamflow patterns for several watersheds within the CRB and the EGB. During the 2013 snowmelt runoff season, CBRFC forecasters used MODIS-derived fSCA semi-quantitatively as a binary indicator of the presence or lack of snow. Indication of the presence or lack of snow by MODIS assisted CBRFC forecasters in determining the cause of divergence between modeled and recently observed streamflow. Several examples of improved forecasts from across the CRB and EGB, informed by MODIS-derived fSCA, are described. Our analysis shows the value of MODIS fSCA to CBRFC and to users of CBRFC's streamflow forecasts. The relationships between the MODIS fSCA and the melt season streamflow vary with the magnitude of runoff, which is important to resource managers. The analysis also emphasizes the importance of the invaluable collaboration between an operational forecasting agency (CBRFC) and a research-oriented agency (NASA/JPL) specializing in remote sensing science. The collaboration is expected to continue over the next several years as CBRFC and JPL work to further improve modeling of snowmelt and prediction of snowmelt-driven streamflow in the CRB and EGB.

  3. Forecasting approaches to the Mekong River

    NASA Astrophysics Data System (ADS)

    Plate, E. J.

    2009-04-01

    Hydrologists distinguish between flood forecasts, which are concerned with events of the immediate future, and flood predictions, which are concerned with events that are possible, but whose date of occurrence is not determined. Although in principle both involve the determination of runoff from rainfall, the analytical approaches differ because of different objectives. The differences between the two approaches will be discussed, starting with an analysis of the forecasting process. The Mekong River in south-east Asia is used as an example. Prediction is defined as forecast for a hypothetical event, such as the 100-year flood, which is usually sufficiently specified by its magnitude and its probability of occurrence. It forms the basis for designing flood protection structures and risk management activities. The method for determining these quantities is hydrological modeling combined with extreme value statistics, today usually applied both to rainfall events and to observed river discharges. A rainfall-runoff model converts extreme rainfall events into extreme discharges, which at certain gage points along a river are calibrated against observed discharges. The quality of the model output is assessed against the mean value by means of the Nash-Sutcliffe quality criterion. The result of this procedure is a design hydrograph (or a family of design hydrographs) which are used as inputs into a hydraulic model, which converts the hydrograph into design water levels according to the hydraulic situation of the location. The accuracy of making a prediction in this sense is not particularly high: hydrologists know that the 100-year flood is a statistical quantity which can be estimated only within comparatively wide error bounds, and the hydraulics of a river site, in particular under conditions of heavy sediment loads has many uncertainties. Safety margins, such as additional freeboards are arranged to compensate for the uncertainty of the prediction. Forecasts, on the other hand, have as objective to obtain an accurate hydrograph of the near future. The method by means of which this is done is not as important as the accuracy of the forecast. A mathematical rainfall-runoff model is not necessarily a good forecast model. It has to be very carefully designed, and in many cases statistical models are found to give better results than mathematical models. Forecasters have the advantage of knowing the course of the hydrographs up to the point in time where forecasts have to be made. Therefore, models can be calibrated on line against the hydrograph of the immediate past. To assess the quality of a forecast, the quality criterion should not be based on the mean value, as does the Nash-Sutcliffe criterion, but should be based on the best forecast given the information up to the forecast time. Without any additional information, the best forecast when only the present day value is known is to assume a no-change scenario, i.e. to assume that the present value does not change in the immediate future. For the Mekong there exists a forecasting system which is based on a rainfall-runoff model operated by the Mekong River Commission. This model is found not to be adequate for forecasting for periods longer than one or two days ahead. Improvements are sought through two approaches: a strictly deterministic rainfall-runoff model, and a strictly statistical model based on regression with upstream stations. The two approaches are com-pared, and suggestions are made how to best combine the advantages of both approaches. This requires that due consideration is given to critical hydraulic conditions of the river at and in between the gauging stations. Critical situations occur in two ways: when the river overtops, in which case the rainfall-runoff model is incomplete unless overflow losses are considered, and at the confluence with tributaries. Of particular importance is the role of the large Tonle Sap Lake, which dampens the hydrograph downstream of Phnom Penh. The effect of these components of river hydraulics on forecasting accuracy will be assessed.

  4. Performance and robustness of probabilistic river forecasts computed with quantile regression based on multiple independent variables in the North Central USA

    NASA Astrophysics Data System (ADS)

    Hoss, F.; Fischbeck, P. S.

    2014-10-01

    This study further develops the method of quantile regression (QR) to predict exceedance probabilities of flood stages by post-processing forecasts. Using data from the 82 river gages, for which the National Weather Service's North Central River Forecast Center issues forecasts daily, this is the first QR application to US American river gages. Archived forecasts for lead times up to six days from 2001-2013 were analyzed. Earlier implementations of QR used the forecast itself as the only independent variable (Weerts et al., 2011; López López et al., 2014). This study adds the rise rate of the river stage in the last 24 and 48 h and the forecast error 24 and 48 h ago to the QR model. Including those four variables significantly improved the forecasts, as measured by the Brier Skill Score (BSS). Mainly, the resolution increases, as the original QR implementation already delivered high reliability. Combining the forecast with the other four variables results in much less favorable BSSs. Lastly, the forecast performance does not depend on the size of the training dataset, but on the year, the river gage, lead time and event threshold that are being forecast. We find that each event threshold requires a separate model configuration or at least calibration.

  5. Developing Multi-model Ensemble for Precipitation and Temperature Seasonal Forecasts: Implications for Karkheh River Basin in Iran

    NASA Astrophysics Data System (ADS)

    Najafi, Husain; Massah Bavani, Ali Reza; Wanders, Niko; Wood, Eric; Irannejad, Parviz; Robertson, Andrew

    2017-04-01

    Water resource managers can utilize reliable seasonal forecasts for allocating water between different users within a water year. In the west of Iran where a decline of renewable water resources has been observed, basin-wide water management has been the subject of many inter-provincial conflicts in recent years. The problem is exacerbated when the environmental water requirements is not provided leaving the Hoor-al-Azim marshland in the downstream dry. It has been argued that information on total seasonal rainfall can support the Iranian Ministry of Energy within the water year. This study explores the skill of the North America Multi Model Ensemble for Karkheh River Basin in the of west Iran. NMME seasonal precipitation and temperature forecasts from eight models are evaluated against PERSIANN-CDR and Climate Research Unit (CRU) datasets. Analysis suggests that anomaly correlation for both precipitation and temperature is greater than 0.4 for all individual models. Lead time-dependent seasonal forecasts are improved when a multi-model ensemble is developed for the river basin using stepwise linear regression model. MME R-squared exceeds 0.6 for temperature for almost all initializations suggesting high skill of NMME in Karkheh river basin. The skill of MME for rainfall forecasts is high for 1-month lead time for October, February, March and October initializations. However, for months when the amount of rainfall accounts for a significant proportion of total annual rainfall, the skill of NMME is limited a month in advance. It is proposed that operational regional water companies incorporate NMME seasonal forecasts into water resource planning and management, especially during growing seasons that are essential for agricultural risk management.

  6. The Cumberland River Flood of 2010 and Corps Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Charley, W.; Hanbali, F.; Rohrbach, B.

    2010-12-01

    On Saturday, May 1, 2010, heavy rain began falling in the Cumberland River Valley and continued through the following day. 13.5 inches was measured at Nashville, an unprecedented amount that doubled the previous 2-day record, and exceeded the May monthly total record of 11 inches. Elsewhere in the valley, amounts of over 19 inches were measured. The frequency of this storm was estimated to exceed the one-thousand year event. This historic rainfall brought large scale flooding to the Cumberland-Ohio-Tennessee River Valleys, and caused over 2 billion dollars in damages, despite the numerous flood control projects in the area, including eight U.S. Army Corps of Engineers projects. The vast majority of rainfall occurred in drainage areas that are uncontrolled by Corps flood control projects, which lead to the wide area flooding. However, preliminary analysis indicates that operations of the Corps projects reduced the Cumberland River flood crest in Nashville by approximately five feet. With funding from the American Recovery and Reinvestment Act (ARRA) of 2009, hydrologic, hydraulic and reservoir simulation models have just been completed for the Cumberland-Ohio-Tennessee River Valleys. These models are being implemented in the Corps Water Management System (CWMS), a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. The CWMS modeling component uses observed rainfall and forecasted rainfall to compute forecasts of river flows into and downstream of reservoirs, using HEC-HMS. Simulation of reservoir operations, utilizing either the HEC-ResSim or CADSWES RiverWare program, uses these flow scenarios to provide operational decision information for the engineer. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for these scenarios. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. The economic impacts of the different inundation depths are computed by HEC-FIA. The user-configurable sequence of modeling software allows engineers to evaluate operational decisions for reservoirs and other control structures, and view and compare hydraulic and economic impacts for various “what if?” scenarios. This paper reviews the Cumberland River May 2010 event, the impact of Corps reservoirs and reservoir operations and the expected future benefits and effects of the ARRA funded models and CWMS on future events for this area.

  7. Hydrologic data for water years 1933-97 used in the River and Reservoir Operations Model, Truckee River basin, California and Nevada

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2000-01-01

    Title II of Public Law 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides direction, authority, and a mechanism for resolving conflicts over water rights in the Truckee and Carson River Basins. The Truckee Carson Program of the U.S. Geological Survey, to support implementation of Public Law 101-618, has developed an operations model to simulate lake/reservoir and river operations for the Truckee River Basin including diversion of Truckee River water to the Truckee Canal for transport to the Carson River Basin. Several types of hydrologic data, formatted in a chronological order with a daily time interval called 'time series,' are described in this report. Time series from water years 1933 to 1997 can be used to run the operations model. Auxiliary hydrologic data not currently used by the model are also described. The time series of hydrologic data consist of flow, lake/reservoir elevation and storage, precipitation, evaporation, evapotranspiration, municipal and industrial (M&I) demand, and streamflow and lake/reservoir level forecast data.

  8. Skill of a global seasonal ensemble streamflow forecasting system

    NASA Astrophysics Data System (ADS)

    Candogan Yossef, Naze; Winsemius, Hessel; Weerts, Albrecht; van Beek, Rens; Bierkens, Marc

    2013-04-01

    Forecasting of water availability and scarcity is a prerequisite for managing the risks and opportunities caused by the inter-annual variability of streamflow. Reliable seasonal streamflow forecasts are necessary to prepare for an appropriate response in disaster relief, management of hydropower reservoirs, water supply, agriculture and navigation. Seasonal hydrological forecasting on a global scale could be valuable especially for developing regions of the world, where effective hydrological forecasting systems are scarce. In this study, we investigate the forecasting skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCR-GLOBWB. FEWS-World has been setup within the European Commission 7th Framework Programme project Global Water Scarcity Information Service (GLOWASIS). Skill is assessed in historical simulation mode as well as retroactive forecasting mode. The assessment in historical simulation mode used a meteorological forcing based on observations from the Climate Research Unit of the University of East Anglia and the ERA-40 reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF). We assessed the skill of the global hydrological model PCR-GLOBWB in reproducing past discharge extremes in 20 large rivers of the world. This preliminary assessment concluded that the prospects for seasonal forecasting with PCR-GLOBWB or comparable models are positive. However this assessment did not include actual meteorological forecasts. Thus the meteorological forcing errors were not assessed. Yet, in a forecasting setup, the predictive skill of a hydrological forecasting system is affected by errors due to uncertainty from numerical weather prediction models. For the assessment in retroactive forecasting mode, the model is forced with actual ensemble forecasts from the seasonal forecast archives of ECMWF. Skill is assessed at 78 stations on large river basins across the globe, for all the months of the year and for lead times up to 6 months. The forecasted discharges are compared with observed monthly streamflow records using the ensemble verification measures Brier Skill Score (BSS) and Continuous Ranked Probability Score (CRPS). The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from ECMWF. The results will be disseminated on the internet, and hopefully provide information that is valuable for users in data and model-poor regions of the world.

  9. Balancing Flood Risk and Water Supply in California: Policy Search Combining Short-Term Forecast Ensembles and Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Steinschneider, S.; Nayak, M. A.

    2017-12-01

    Short-term weather forecasts are not codified into the operating policies of federal, multi-purpose reservoirs, despite their potential to improve service provision. This is particularly true for facilities that provide flood protection and water supply, since the potential flood damages are often too severe to accept the risk of inaccurate forecasts. Instead, operators must maintain empty storage capacity to mitigate flood risk, even if the system is currently in drought, as occurred in California from 2012-2016. This study investigates the potential for forecast-informed operating rules to improve water supply efficiency while maintaining flood protection, combining state-of-the-art weather hindcasts with a novel tree-based policy optimization framework. We hypothesize that forecasts need only accurately predict the occurrence of a storm, rather than its intensity, to be effective in regions like California where wintertime, synoptic-scale storms dominate the flood regime. We also investigate the potential for downstream groundwater injection to improve the utility of forecasts. These hypotheses are tested in a case study of Folsom Reservoir on the American River. Because available weather hindcasts are relatively short (10-20 years), we propose a new statistical framework to develop synthetic forecasts to assess the risk associated with inaccurate forecasts. The efficiency of operating policies is tested across a range of scenarios that include varying forecast skill and additional groundwater pumping capacity. Results suggest that the combined use of groundwater storage and short-term weather forecasts can substantially improve the tradeoff between water supply and flood control objectives in large, multi-purpose reservoirs in California.

  10. The flood event of 10-12 November 2013 on the Tiber River basin (central Italy): real-time flood forecasting with uncertainty supporting risk management and decision-making

    NASA Astrophysics Data System (ADS)

    Berni, Nicola; Brocca, Luca; Barbetta, Silvia; Pandolfo, Claudia; Stelluti, Marco; Moramarco, Tommaso

    2014-05-01

    The Italian national hydro-meteorological early warning system is composed by 21 regional offices (Functional Centres, CF). Umbria Region (central Italy) CF provides early warning for floods and landslides, real-time monitoring and decision support systems (DSS) for the Civil Defence Authorities when significant events occur. The alert system is based on hydrometric and rainfall thresholds with detailed procedures for the management of critical events in which different roles of authorities and institutions involved are defined. The real-time flood forecasting system is based also on different hydrological and hydraulic forecasting models. Among these, the MISDc rainfall-runoff model ("Modello Idrologico SemiDistribuito in continuo"; Brocca et al., 2011) and the flood routing model named STAFOM-RCM (STAge Forecasting Model-Rating Curve Model; Barbetta et al., 2014) are continuously operative in real-time providing discharge and stage forecasts, respectively, with lead-times up to 24 hours (when quantitative precipitation forecasts are used) in several gauged river sections in the Upper-Middle Tiber River basin. Models results are published in real-time in the open source CF web platform: www.cfumbria.it. MISDc provides discharge and soil moisture forecasts for different sub-basins while STAFOM-RCM provides stage forecasts at hydrometric sections. Moreover, through STAFOM-RCM the uncertainty of the forecast stage hydrograph is provided in terms of 95% Confidence Interval (CI) assessed by analyzing the statistical properties of model output in terms of lateral. In the period 10th-12th November 2013, a severe flood event occurred in Umbria mainly affecting the north-eastern area and causing significant economic damages, but fortunately no casualties. The territory was interested by intense and persistent rainfall; the hydro-meteorological monitoring network recorded locally rainfall depth over 400 mm in 72 hours. In the most affected area, the recorded rainfall depths correspond approximately to a return period of 200 years. Most rivers in Umbria have been involved, exceeding hydrometric thresholds and causing flooding (e.g. Chiascio river). The flood event was continuously monitored at the Umbria Region CF and the possible evolution predicted and assessed on the basis of the model forecasts. The predictions provided by MISDc and STAFOM-RCM were found useful to support real-time decision-making addressed to flood risk management. Moreover, the quantification of the uncertainty affecting the deterministic forecast stages was found consistent with the level of confidence selected and had practical utility corroborating the need of coupling deterministic forecast and 'uncertainty' when the model output is used to support decisions about flood management. REFERENCES Barbetta, S., Moramarco, T., Brocca, L., Franchini, M., Melone, F. (2014). Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3), 729-743. Brocca, L., Melone, F., Moramarco, T. (2011). Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting. Hydrological Processes, 25 (18), 2801-2813

  11. Alternative configurations of Quantile Regression for estimating predictive uncertainty in water level forecasts for the Upper Severn River: a comparison

    NASA Astrophysics Data System (ADS)

    Lopez, Patricia; Verkade, Jan; Weerts, Albrecht; Solomatine, Dimitri

    2014-05-01

    Hydrological forecasting is subject to many sources of uncertainty, including those originating in initial state, boundary conditions, model structure and model parameters. Although uncertainty can be reduced, it can never be fully eliminated. Statistical post-processing techniques constitute an often used approach to estimate the hydrological predictive uncertainty, where a model of forecast error is built using a historical record of past forecasts and observations. The present study focuses on the use of the Quantile Regression (QR) technique as a hydrological post-processor. It estimates the predictive distribution of water levels using deterministic water level forecasts as predictors. This work aims to thoroughly verify uncertainty estimates using the implementation of QR that was applied in an operational setting in the UK National Flood Forecasting System, and to inter-compare forecast quality and skill in various, differing configurations of QR. These configurations are (i) 'classical' QR, (ii) QR constrained by a requirement that quantiles do not cross, (iii) QR derived on time series that have been transformed into the Normal domain (Normal Quantile Transformation - NQT), and (iv) a piecewise linear derivation of QR models. The QR configurations are applied to fourteen hydrological stations on the Upper Severn River with different catchments characteristics. Results of each QR configuration are conditionally verified for progressively higher flood levels, in terms of commonly used verification metrics and skill scores. These include Brier's probability score (BS), the continuous ranked probability score (CRPS) and corresponding skill scores as well as the Relative Operating Characteristic score (ROCS). Reliability diagrams are also presented and analysed. The results indicate that none of the four Quantile Regression configurations clearly outperforms the others.

  12. Flood forecasting with DDD-application of a parsimonious hydrological model in operational flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Haddeland, Ingjerd

    2014-05-01

    A new parameter-parsimonious rainfall-runoff model, DDD (Distance Distribution Dynamics) has been run operationally at the Norwegian Flood Forecasting Service for approximately a year. DDD has been calibrated for, altogether, 104 catchments throughout Norway, and provide runoff forecasts 8 days ahead on a daily temporal resolution driven by precipitation and temperature from the meteorological forecast models AROME (48 hrs) and EC (192 hrs). The current version of DDD differs from the standard model used for flood forecasting in Norway, the HBV model, in its description of the subsurface and runoff dynamics. In DDD, the capacity of the subsurface water reservoir M, is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than the HBV model. Experiences using DDD show that especially the timing of flood peaks has improved considerably and in a comparison between DDD and HBV, when assessing timeseries of 64 years for 75 catchments, DDD had a higher hit rate and a lower false alarm rate than HBV. For flood peaks higher than the mean annual flood the median hit rate is 0.45 and 0.41 for the DDD and HBV models respectively. Corresponding number for the false alarm rate is 0.62 and 0.75 For floods over the five year return interval, the median hit rate is 0.29 and 0.28 for the DDD and HBV models, respectively with false alarm rates equal to 0.67 and 0.80. During 2014 the Norwegian flood forecasting service will run DDD operationally at a 3h temporal resolution. Running DDD at a 3h resolution will give a better prediction of flood peaks in small catchments, where the averaging over 24 hrs will lead to a underestimation of high events, and we can better describe the progress floods in larger catchments. Also, at a 3h temporal resolution we make better use of the meteorological forecasts that for long have been provided at a very detailed temporal resolution.

  13. Navigating the "Research-to-Operations" Bridge of Death: Collaborative Transition of Remotely-Sensed Snow Data from Research into Operational Water Resources Forecasting

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Bender, S.; Painter, T. H.; Bernard, B.

    2016-12-01

    Water and resource management agencies can benefit from hydrologic forecasts during both flood and drought conditions. Improved predictions of seasonal snowmelt-driven runoff volume and timing can assist operational water managers with decision support and efficient resource management within the spring runoff season. Using operational models and forecasting systems, NOAA's Colorado Basin River Forecast Center (CBRFC) produces hydrologic forecasts for stakeholders and water management groups in the western United States. Collaborative incorporation of research-oriented remote sensing data into CBRFC operational models and systems is one route by which CBRFC forecasts can be improved, ultimately for the benefit of water managers. Successful navigation of research-oriented remote sensing products across the "research-to-operations"/R2O gap (also known as the "valley of death") to operational destinations requires dedicated personnel on both the research and operations sides, working in a highly collaborative environment. Since 2012, the operational CBRFC has collaborated with the research-oriented Jet Propulsion Laboratory (JPL) under funding from NASA to transition remotely-sensed snow data into CBRFC's operational models and forecasting systems. Two specific datasets from JPL, the MODIS Dust Radiative Forcing in Snow (MODDRFS) and the MODIS Snow Covered-Area and Grain size (MODSCAG) products, are used in CBRFC operations as of 2016. Over the past several years, JPL and CBRFC have worked together to analyze patterns in JPL's remote sensing snow datasets from the operational perspective of the CBRFC and to develop techniques to bridge the R2O gap. Retrospective and real-time analyses have yielded valuable insight into the remotely-sensed snow datasets themselves, CBRFC's operational systems, and the collaborative R2O process. Examples of research-oriented JPL snow data, as used in CBRFC operations, are described. A timeline of the collaboration, challenges encountered during the journey across the R2O gap, or "valley of death", and solutions to those challenges are also illustrated.

  14. Statistical prediction of seasonal discharge in Central Asia for water resources management: development of a generic (pre-)operational modeling tool

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Baimaganbetov, Azamat; Kalashnikova, Olga; Gavrilenko, Nadejda; Abdykerimova, Zharkinay; Agalhanova, Marina; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror

    2017-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydromet services, this study aims at the development of a generic tool for deriving statistical forecast models of seasonal river discharge. The generic model is kept as simple as possible in order to be driven by available hydrological and meteorological data, and be applicable for all catchments with their often limited data availability in the region. As snowmelt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature as recorded by climatological stations in the catchments. These data sets are accompanied by snow cover predictors derived from the operational ModSnow tool, which provides cloud free snow cover data for the selected catchments based on MODIS satellite images. In addition to the meteorological data antecedent streamflow is used as a predictor variable. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to 3 or 4 predictors. A user selectable number of best models according to pre-defined performance criteria is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross validation. Based on the cross validation the predictive uncertainty was quantified for every prediction model. According to the official procedures of the hydromet services forecasts of the mean seasonal discharge of the period April to September are derived every month starting from January until June. The application of the model for several catchments in Central Asia - ranging from small to the largest rivers - for the period 2000-2015 provided skillful forecasts for most catchments already in January. The skill of the prediction increased every month, with R2 values often in the range 0.8 - 0.9 in April just before the prediction period. The forecasts further improve in the following months, most likely due to the integration of spring precipitation, which is not included in the predictors before May, or spring discharge, which contains indicative information for the overall seasonal discharge. In summary, the proposed generic automatic forecast model development tool provides robust predictions for seasonal water availability in Central Asia, which will be tested against the official forecasts in the upcoming years, with the vision of eventual operational implementation.

  15. 33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... elevation forecast indicates that this operation will result in a reservoir level exceeding elevation 1562... and reservoir from major damage. (j) Any time that the Bureau of Reclamation determines that operation... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Altus Dam and Reservoir, North...

  16. 33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... elevation forecast indicates that this operation will result in a reservoir level exceeding elevation 1562... and reservoir from major damage. (j) Any time that the Bureau of Reclamation determines that operation... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Altus Dam and Reservoir, North...

  17. MINERVE flood warning and management project. What is computed, what is required and what is visualized?

    NASA Astrophysics Data System (ADS)

    Garcia Hernandez, J.; Boillat, J.-L.; Schleiss, A.

    2010-09-01

    During last decades several flood events caused important inundations in the Upper Rhone River basin in Switzerland. As a response to such disasters, the MINERVE project aims to improve the security by reducing damages in this basin. The main goal of this project is to predict floods in advance in order to obtain a better flow control during flood peaks taking advantage from the multireservoir system of the existing hydropower schemes. The MINERVE system evaluates the hydro-meteorological situation on the watershed and provides hydrological forecasts with a horizon from three to five days. It exploits flow measurements, data from reservoirs and hydropower plants as well as deterministic (COSMO-7 and COSMO-2) and ensemble (COSMO-LEPS) meteorological forecast from MeteoSwiss. The hydrological model is based on a semi-distributed concept, dividing the watershed in 239 sub-catchments, themselves decomposed in elevation bands in order to describe the temperature-driven processes related to snow and glacier melt. The model is completed by rivers and hydraulic works such as water intakes, reservoirs, turbines and pumps. Once the hydrological forecasts are calculated, a report provides the warning level at selected control points according to time, being a support to decision-making for preventive actions. A Notice, Alert or Alarm is then activated depending on the discharge thresholds defined by the Valais Canton. Preventive operation scenarios are then generated based on observed discharge at control points, meteorological forecasts from MeteoSwiss, hydrological forecasts from MINERVE and retention possibilities in the reservoirs. An update of the situation is done every time new data or new forecasts are provided, keeping last observations and last forecasts in the warning report. The forecasts can also be used for the evaluation of priority decisions concerning the management of hydropower plants for security purposes. Considering future inflows and reservoir levels, turbine and bottom outlet preventive operations can be proposed to the hydropower plants operators in order to store water inflows and to stop turbining during the peak flow. Appropriate operations can thus reduce the peak discharges in the Rhone River and its tributaries, limiting or avoiding damages. Results presentation in a clear and understandable way is an important goal of the project and is considered as one of the main focuses. The MINERVE project is developed in partnership by the Swiss Federal Office for Environment (FOEV), Services of Roads and Water courses as well as Water Power and Energy of the Wallis Canton and Service of Water, Land and Sanitation of the Vaud Canton. The Swiss Weather Service (MeteoSwiss) provides the weather forecasts and hydroelectric companies communicate specific information regarding the hydropower plants. Scientific developments are entrusted to two entities of the Ecole Polytechnique Fédérale de Lausanne (EPFL), the Hydraulic Constructions Laboratory (LCH) and the Ecohydrology Laboratory (ECHO), as well as to the Institute of Geomatics and Analysis of Risk (IGAR) of Lausanne University (UNIL).

  18. Eco-morphological Real-time Forecasting tool to predict hydrodynamic, sediment and nutrient dynamic in Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Messina, F.; Meselhe, E. A.; Buckman, L.; Twight, D.

    2017-12-01

    Louisiana coastal zone is one of the most productive and dynamic eco-geomorphic systems in the world. This unique natural environment has been alternated by human activities and natural processes such as sea level rise, subsidence, dredging of canals for oil and gas production, the Mississippi River levees which don't allow the natural river sediment. As a result of these alterations land loss, erosion and flood risk are becoming real issues for Louisiana. Costal authorities have been studying the benefits and effects of several restoration projects, e.g. freshwater and sediment diversions. The protection of communities, wildlife and of the unique environments is a high priority in this region. The Water Institute of the Gulf, together with Deltares, has developed a forecasting and information system for a pilot location in Coastal Louisiana, specifically for Barataria Bay and Breton Sound Basins in the Mississippi River Deltaic Plain. The system provides a 7-day forecast of water level, salinity, and temperature, under atmospheric and coastal forecasted conditions, such as freshwater riverine inflow, rainfall, evaporation, wind, and tide. The system also forecasts nutrient distribution (e.g., Chla and dissolved oxygen) and sediment transport. The Flood Early Warning System FEWS is used as a platform to import multivariate data from several sources, use them to monitor the pilot location and to provide boundary conditions to the model. A hindcast model is applied to compare the model results to the observed data, and to provide the initial condition to the forecast model. This system represents a unique tool which provides valuable information regarding the overall conditions of the basins. It offers the opportunity to adaptively manage existing and planned diversions to meet certain salinity and water level targets or thresholds while maximizing land-building goals. Moreover, water quality predictions provide valuable information on the current ecological conditions of the area. Real time observations and model predictions can be used as guidance to decision makers regarding the operation of control structures in response to forecasted weather or river flood events. Coastal communities can benefit from water level, salinity and water quality forecast to manage their activities.

  19. Evaluation of Flood Forecast and Warning in Elbe river basin - Impact of Forecaster's Strategy

    NASA Astrophysics Data System (ADS)

    Danhelka, Jan; Vlasak, Tomas

    2010-05-01

    Czech Hydrometeorological Institute (CHMI) is responsible for flood forecasting and warning in the Czech Republic. To meet that issue CHMI operates hydrological forecasting systems and publish flow forecast in selected profiles. Flood forecast and warning is an output of system that links observation (flow and atmosphere), data processing, weather forecast (especially NWP's QPF), hydrological modeling and modeled outputs evaluation and interpretation by forecaster. Forecast users are interested in final output without separating uncertainties of separate steps of described process. Therefore an evaluation of final operational forecasts was done for profiles within Elbe river basin produced by AquaLog forecasting system during period 2002 to 2008. Effects of uncertainties of observation, data processing and especially meteorological forecasts were not accounted separately. Forecast of flood levels exceedance (peak over the threshold) during forecasting period was the main criterion as flow increase forecast is of the highest importance. Other evaluation criteria included peak flow and volume difference. In addition Nash-Sutcliffe was computed separately for each time step (1 to 48 h) of forecasting period to identify its change with the lead time. Textual flood warnings are issued for administrative regions to initiate flood protection actions in danger of flood. Flood warning hit rate was evaluated at regions level and national level. Evaluation found significant differences of model forecast skill between forecasting profiles, particularly less skill was evaluated at small headwater basins due to domination of QPF uncertainty in these basins. The average hit rate was 0.34 (miss rate = 0.33, false alarm rate = 0.32). However its explored spatial difference is likely to be influenced also by different fit of parameters sets (due to different basin characteristics) and importantly by different impact of human factor. Results suggest that the practice of interactive model operation, experience and forecasting strategy differs between responsible forecasting offices. Warning is based on model outputs interpretation by hydrologists-forecaster. Warning hit rate reached 0.60 for threshold set to lowest flood stage of which 0.11 was underestimation of flood degree (miss 0.22, false alarm 0.28). Critical success index of model forecast was 0.34, while the same criteria for warning reached 0.55. We assume that the increase accounts not only to change of scale from single forecasting point to region for warning, but partly also to forecaster's added value. There is no official warning strategy preferred in the Czech Republic (f.e. tolerance towards higher false alarm rate). Therefore forecaster decision and personal strategy is of great importance. Results show quite successful warning for 1st flood level exceedance, over-warning for 2nd flood level, but under-warning for 3rd (highest) flood level. That suggests general forecaster's preference of medium level warning (2nd flood level is legally determined to be the start of the flood and flood protection activities). In conclusion human forecaster's experience and analysis skill increases flood warning performance notably. However society preference should be specifically addressed in the warning strategy definition to support forecaster's decision making.

  20. Statistical forecast of seasonal discharge in Central Asia using observational records: development of a generic linear modelling tool for operational water resource management

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Abdykerimova, Zharkinay; Agalhanova, Marina; Baimaganbetov, Azamat; Gavrilenko, Nadejda; Gerlitz, Lars; Kalashnikova, Olga; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror

    2018-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien Shan and Pamir and Altai mountains. During the summer months the snow-melt- and glacier-melt-dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydro-meteorological services, this study aims to develop a generic tool for deriving statistical forecast models of seasonal river discharge based solely on observational records. The generic model structure is kept as simple as possible in order to be driven by meteorological and hydrological data readily available at the hydro-meteorological services, and to be applicable for all catchments in the region. As snow melt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature, satellite-based snow cover data, and antecedent discharge. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to four predictors. A user-selectable number of the best models is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross-validation. Based on the cross-validation the predictive uncertainty was quantified for every prediction model. Forecasts of the mean seasonal discharge of the period April to September are derived every month from January until June. The application of the model for several catchments in Central Asia - ranging from small to the largest rivers (240 to 290 000 km2 catchment area) - for the period 2000-2015 provided skilful forecasts for most catchments already in January, with adjusted R2 values of the best model in the range of 0.6-0.8 for most of the catchments. The skill of the prediction increased every following month, i.e. with reduced lead time, with adjusted R2 values usually in the range 0.8-0.9 for the best and 0.7-0.8 on average for the set of models in April just before the prediction period. The later forecasts in May and June improve further due to the high predictive power of the discharge in the first 2 months of the snow melt period. The improved skill of the set of forecast models with decreasing lead time resulted in narrow predictive uncertainty bands at the beginning of the snow melt period. In summary, the proposed generic automatic forecast model development tool provides robust predictions for seasonal water availability in Central Asia, which will be tested against the official forecasts in the upcoming years, with the vision of operational implementation.

  1. Nationwide validation of ensemble streamflow forecasts from the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Liu, Y.; Ward, J.; Brown, J.; Maestre, A.; Herr, H.; Fresch, M. A.; Wells, E.; Reed, S. M.; Jones, E.

    2017-12-01

    The National Weather Service's (NWS) Office of Water Prediction (OWP) recently launched a nationwide effort to verify streamflow forecasts from the Hydrologic Ensemble Forecast Service (HEFS) for a majority of forecast locations across the 13 River Forecast Centers (RFCs). Known as the HEFS Baseline Validation (BV), the project involves a joint effort between the OWP and the RFCs. It aims to provide a geographically consistent, statistically robust validation, and a benchmark to guide the operational implementation of the HEFS, inform practical applications, such as impact-based decision support services, and to provide an objective framework for evaluating strategic investments in the HEFS. For the BV, HEFS hindcasts are issued once per day on a 12Z cycle for the period of 1985-2015 with a forecast horizon of 30 days. For the first two weeks, the hindcasts are forced with precipitation and temperature ensemble forecasts from the Global Ensemble Forecast System of the National Centers for Environmental Prediction, and by resampled climatology for the remaining period. The HEFS-generated ensemble streamflow hindcasts are verified using the Ensemble Verification System. Skill is assessed relative to streamflow hindcasts generated from NWS' current operational system, namely climatology-based Ensemble Streamflow Prediction. In this presentation, we summarize the results and findings to date.

  2. Operational Impact of Data Collected from the Global Hawk Unmanned Aircraft During SHOUT

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Dunion, J. P.; Sippel, J.; Cucurull, L.; Aksoy, A.; Kren, A.; Christophersen, H.; Black, P.

    2017-12-01

    The primary scientific goal of the Sensing Hazards with Operational Unmanned Technology (SHOUT) Project was to determine the potential utility of observations from high-altitude, long-endurance unmanned aircraft systems such as the Global Hawk (GH) aircraft to improve operational forecasts of high-impact weather events or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. Hurricanes and tropical cyclones are among the most potentially destructive high-impact weather events and pose a major forecasting challenge to NOAA. Major winter storms over the Pacific Ocean, including atmospheric river events, which make landfall and bring strong winds and extreme precipitation to the West Coast and Alaska are also important to forecast accurately because of their societal impact in those parts of the country. In response, the SHOUT project supported three field campaigns with the GH aircraft and dedicated data impact studies exploring the potential for the real-time data from the aircraft to improve the forecasting of both tropical cyclones and landfalling Pacific storms. Dropsonde observations from the GH aircraft were assimilated into the operational Hurricane Weather Research and Forecasting (HWRF) and Global Forecast System (GFS) models. The results from several diverse but complementary studies consistently demonstrated significant positive forecast benefits spanning the regional and global models. Forecast skill improvements within HWRF reached up to about 9% for track and 14% for intensity. Within GFS, track skill improvements for multi-storm averages exceeded 10% and improvements for individual storms reached over 20% depending on forecast lead time. Forecasted precipitation was also improved. Impacts for Pacific winter storms were smaller but still positive. The results are highly encouraging and support the potential for operational utilization of data from a platform like the GH. This presentation summarizes the observations collected and highlights the multiple impact studies completed.

  3. The Experimental Regional Ensemble Forecast System (ExREF): Its Use in NWS Forecast Operations and Preliminary Verification

    NASA Technical Reports Server (NTRS)

    Reynolds, David; Rasch, William; Kozlowski, Daniel; Burks, Jason; Zavodsky, Bradley; Bernardet, Ligia; Jankov, Isidora; Albers, Steve

    2014-01-01

    The Experimental Regional Ensemble Forecast (ExREF) system is a tool for the development and testing of new Numerical Weather Prediction (NWP) methodologies. ExREF is run in near-realtime by the Global Systems Division (GSD) of the NOAA Earth System Research Laboratory (ESRL) and its products are made available through a website, an ftp site, and via the Unidata Local Data Manager (LDM). The ExREF domain covers most of North America and has 9-km horizontal grid spacing. The ensemble has eight members, all employing WRF-ARW. The ensemble uses a variety of initial conditions from LAPS and the Global Forecasting System (GFS) and multiple boundary conditions from the GFS ensemble. Additionally, a diversity of physical parameterizations is used to increase ensemble spread and to account for the uncertainty in forecasting extreme precipitation events. ExREF has been a component of the Hydrometeorology Testbed (HMT) NWP suite in the 2012-2013 and 2013-2014 winters. A smaller domain covering just the West Coast was created to minimize band-width consumption for the NWS. This smaller domain has and is being distributed to the National Weather Service (NWS) Weather Forecast Office and California Nevada River Forecast Center in Sacramento, California, where it is ingested into the Advanced Weather Interactive Processing System (AWIPS I and II) to provide guidance on the forecasting of extreme precipitation events. This paper will review the cooperative effort employed by NOAA ESRL, NASA SPoRT (Short-term Prediction Research and Transition Center), and the NWS to facilitate the ingest and display of ExREF data utilizing the AWIPS I and II D2D and GFE (Graphical Software Editor) software. Within GFE is a very useful verification software package called BoiVer that allows the NWS to utilize the River Forecast Center's 4 km gridded QPE to compare with all operational NWP models 6-hr QPF along with the ExREF mean 6-hr QPF so the forecasters can build confidence in the use of the ExREF in preparing their rainfall forecasts. Preliminary results will be presented.

  4. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  5. Application of artificial neural network model for groundwater level forecasting in a river island with artificial influencing factors

    NASA Astrophysics Data System (ADS)

    Lee, Sanghoon; Yoon, Heesung; Park, Byeong-Hak; Lee, Kang-Kun

    2017-04-01

    Groundwater use has been increased for various purposes like agriculture, industry or drinking water in recent years, the issue related to sustainability on the groundwater use also has been raised. Accordingly, forecasting the groundwater level is of great importance for planning sustainable use of groundwater. In a small island surrounded by the Han River, South Korea, seasonal fluctuation of the groundwater level is characterized by multiple factors such as recharge/discharge event of the Paldang dam, Water Curtain Cultivation (WCC) during the winter season, operation of Groundwater Heat Pump System (GWHP). For a period when the dam operation is only occurred in the study area, a prediction of the groundwater level can be easily achieved by a simple cross-correlation model. However, for a period when the WCC and the GWHP systems are working together, the groundwater level prediction is challenging due to its unpredictable operation of the two systems. This study performed Artificial Neural Network (ANN) model to forecast the groundwater level in the river area reflecting the various predictable/unpredictable factors. For constructing the ANN models, two monitoring wells, YSN1 and YSO8, which are located near the injection and abstraction wells for the GWHP system were selected, respectively. By training with the groundwater level data measured in January 2015 to August 2015, response of groundwater level by each of the surface water level, the WCC and the GWHP system were evaluated. Consequentially, groundwater levels in December 2015 to March 2016 were predicted by ANN models, providing optimal fits in comparison to the observed water levels. This study suggests that the ANN model is a useful tool to forecast the groundwater level in terms of the management of groundwater. Acknowledgement : Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) This research was supported by "BK 21plus project of the Korean Government"

  6. An Overview of the National Weather Service National Water Model

    NASA Astrophysics Data System (ADS)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Feng, X.; Karsten, L. R.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.

    2016-12-01

    The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research (NCAR) and the NWS National Centers for Environmental Prediction (NCEP) recently implemented version 1.0 of the National Water Model (NWM) into operations. This model is an hourly cycling uncoupled analysis and forecast system that provides streamflow for 2.7 million river reaches and other hydrologic information on 1km and 250m grids. It will provide complementary hydrologic guidance at current NWS river forecast locations and significantly expand guidance coverage and type in underserved locations. The core of this system is the NCAR-supported community Weather Research and Forecasting (WRF)-Hydro hydrologic model. It ingests forcing from a variety of sources including Multi-Sensor Multi-Radar (MRMS) radar-gauge observed precipitation data and High Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecast System (GFS) and Climate Forecast System (CFS) forecast data. WRF-Hydro is configured to use the Noah-Multi Parameterization (Noah-MP) Land Surface Model (LSM) to simulate land surface processes. Separate water routing modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250m grid, and Muskingum-Cunge channel routing down National Hydrogaphy Dataset Plus V2 (NHDPlusV2) stream reaches. River analyses and forecasts are provided across a domain encompassing the Continental United States (CONUS) and hydrologically contributing areas, while land surface output is available on a larger domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 58N). The system includes an analysis and assimilation configuration along with three forecast configurations. These include a short-range 15 hour deterministic forecast, a medium-Range 10 day deterministic forecast and a long-range 30 day 16-member ensemble forecast. United Sates Geologic Survey (USGS) streamflow observations are assimilated into the analysis and assimilation configuration, and all four configurations benefit from the inclusion of 1,260 reservoirs. An overview of the National Water Model will be given, along with information on ongoing evaluation activities and plans for future NWM enhancements.

  7. Upper Rio Grande water operations model: A tool for enhanced system management

    Treesearch

    Gail Stockton; D. Michael Roark

    1999-01-01

    The Upper Rio Grande Water Operations Model (URGWOM) under development through a multi-agency effort has demonstrated capability to represent the physical river/reservoir system, to track and account for Rio Grande flows and imported San Juan flows, and to forecast flows at various points in the system. Testing of the Rio Chama portion of the water operations model was...

  8. PAI-OFF: A new proposal for online flood forecasting in flash flood prone catchments

    NASA Astrophysics Data System (ADS)

    Schmitz, G. H.; Cullmann, J.

    2008-10-01

    SummaryThe Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and - optionally, if backwater effects have a significant impact on the flow regime - a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) - portraying the rainfall-runoff process - and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF - essentially consisting of the coupled "hydrologic" PoNN and "hydrodynamic" MLFN - to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km 2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting.

  9. Fusing enhanced radar precipitation, in-situ hydrometeorological measurements and airborne LIDAR snowpack estimates in a hyper-resolution hydrologic model to improve seasonal water supply forecasts

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.

    2015-12-01

    Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases. Correcting the operational NLDAS2 forcing data with the experimental observations led to significant improvements in the seasonal accumulation and ablation of mountain snowpack and ultimately led to marked improvement in model simulated streamflow as compared with streamflow observations.

  10. A national framework for flood forecasting model assessment for use in operations and investment planning over England and Wales

    NASA Astrophysics Data System (ADS)

    Moore, Robert J.; Wells, Steven C.; Cole, Steven J.

    2016-04-01

    It has been common for flood forecasting systems to be commissioned at a catchment or regional level in response to local priorities and hydrological conditions, leading to variety in system design and model choice. As systems mature and efficiencies of national management are sought, there can be a drive towards system rationalisation, gaining an overview of model performance and consideration of simplification through model-type convergence. Flood forecasting model assessments, whilst overseen at a national level, may be commissioned and managed at a catchment and regional level, take a variety of forms and be large in number. This presents a challenge when an integrated national assessment is required to guide operational use of flood forecasts and plan future investment in flood forecasting models and supporting hydrometric monitoring. This contribution reports on how a nationally consistent framework for flood forecasting model performance has been developed to embrace many past, ongoing and future assessments for local river systems by engineering consultants across England & Wales. The outcome is a Performance Summary for every site model assessed which, on a single page, contains relevant catchment information for context, a selection of overlain forecast and observed hydrographs and a set of performance statistics with associated displays of novel condensed form. One display provides performance comparison with other models that may exist for the site. The performance statistics include skill scores for forecasting events (flow/level threshold crossings) of differing severity/rarity, indicating their probability and likely timing, which have real value in an operational setting. The local models assessed can be of any type and span rainfall-runoff (conceptual and transfer function) and flow routing (hydrological and hydrodynamic) forms. Also accommodated by the framework is the national G2G (Grid-to-Grid) distributed hydrological model, providing area-wide coverage across the fluvial rivers of England and Wales, which can be assessed at gauged sites. Thus the performance of the national G2G model forecasts can be directly compared with that from the local models. The Performance Summary for each site model is complemented by a national spatial analysis of model performance stratified by model-type, geographical region and forecast lead-time. The map displays provide an extensive evidence-base that can be interrogated, through a Flood Forecasting Model Performance web portal, to reveal fresh insights into comparative performance across locations, lead-times and models. This work was commissioned by the Environment Agency in partnership with Natural Resources Wales and the Flood Forecasting Centre for England and Wales.

  11. Using snow data assimilation to improve ensemble streamflow forecasting for the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Perrot, D.; Day, G. N.; Lhotak, J.; Quebbeman, J.; Park, G. H.; Carney, S.

    2017-12-01

    Water supply forecasting in the western United States is inextricably linked to snowmelt processes, as approximately 70-85% of total annual runoff comes from water stored in seasonal mountain snowpacks. Snowmelt-generated streamflow is vital to a variety of downstream uses; the Upper Colorado River Basin (UCRB) alone provides water supply for 25 million people, irrigation water for 3.5 million acres, and drives hydropower generation at Lake Powell. April-July water supply forecasts produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC) are critical to basin water management. The primary objective of this project as part of the NASA Water Resources Applied Science Program, is to improve water supply forecasting for the UCRB by assimilating satellite and ground snowpack observations into a distributed hydrologic model at various times during the snow accumulation and melt seasons. To do this, we have built a framework that uses an Ensemble Kalman Filter (EnKF) to update modeled snow water equivalent (SWE) states in the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) with spatially interpolated SNOTEL snow water equivalent (SWE) observations and products from the MODIS Snow Covered-Area and Grain size retrieval algorithm (when available). We have generated April-July water supply reforecasts for a 20-year period (1991-2010) for several headwater catchments in the UCRB using HL-RDHM and snow data assimilation in the Ensemble Streamflow Prediction (ESP) framework. The existing CBRFC ESP reforecasts will provide a baseline for comparison to determine whether the data assimilation process adds skill to the water supply forecasts. Preliminary results from one headwater basin show improved skill in water supply forecasting when HL-RDHM is run with the data assimilation step compared to HL-RDHM run without the data assimilation step, particularly in years when MODSCAG data were available (2000-2010). The final forecasting framework developed during this project will be delivered to CBRFC and run operationally for a set of pilot basins.

  12. Flood forecasting using non-stationarity in a river with tidal influence - a feasibility study

    NASA Astrophysics Data System (ADS)

    Killick, Rebecca; Kretzschmar, Ann; Ilic, Suzi; Tych, Wlodek

    2017-04-01

    Flooding is the most common natural hazard causing damage, disruption and loss of life worldwide. Despite improvements in modelling and forecasting of water levels and flood inundation (Kretzschmar et al., 2014; Hoitink and Jay, 2016), there are still large discrepancies between predictions and observations particularly during storm events when accurate predictions are most important. Many models exist for forecasting river levels (Smith et al., 2013; Leedal et al., 2013) however they commonly assume that the errors in the data are independent, stationary and normally distributed. This is generally not the case especially during storm events suggesting that existing models are not describing the drivers of river level in an appropriate fashion. Further challenges exist in the lower sections of a river influenced by both river and tidal flows and their interaction and there is scope for improvement in prediction. This paper investigates the use of a powerful statistical technique to adaptively forecast river levels by modelling the process as locally stationary. The proposed methodology takes information on both upstream and downstream river levels and incorporates meteorological information (rainfall forecasts) and tidal levels when required to forecast river levels at a specified location. Using this approach, a single model will be capable of predicting water levels in both tidal and non-tidal river reaches. In this pilot project, the methodology of Smith et al. (2013) using harmonic tidal analysis and data based mechanistic modelling is compared with the methodology developed by Killick et al. (2016) utilising data-driven wavelet decomposition to account for the information contained in the upstream and downstream river data to forecast a non-stationary time-series. Preliminary modelling has been carried out using the tidal stretch of the River Lune in North-west England and initial results are presented here. Future work includes expanding the methodology to forecast river levels at a network of locations simultaneously. References Hoitink, A. J. F., and D. A. Jay (2016), Tidal river dynamics: Implications for deltas, Rev. Geophys., 54, 240-272 Killick, R., Knight, M., Nason, G.P., Eckley, I.A. (2016) The Local Partial Autocorrelation Function and its Application to the Forecasting of Locally Stationary Time Series. Submitted Kretzschmar, Ann and Tych, Wlodek and Chappell, Nick A (2014) Reversing hydrology: estimation of sub-hourly rainfall time-series from streamflow. Env. Modell Softw., 60. pp. 290-301 D. Leedal, A. H. Weerts, P. J. Smith, & K. J. Beven. (2013). Application of data-based mechanistic modelling for flood forecasting at multiple locations in the Eden catchment in the National Flood Forecasting System (England and Wales). HESS, 17(1), 177-185. Smith, P., Beven, K., Horsburgh, K., Hardaker, P., & Collier, C. (2013). Data-based mechanistic modelling of tidally affected river reaches for flood warning purposes: An example on the River Dee, UK. , Q.J.R. Meteorol. Soc. 139(671), 340-349.

  13. Ensemble Streamflow Prediction in Korea: Past and Future 5 Years

    NASA Astrophysics Data System (ADS)

    Jeong, D.; Kim, Y.; Lee, J.

    2005-05-01

    The Ensemble Streamflow Prediction (ESP) approach was first introduced in 2000 by the Hydrology Research Group (HRG) at Seoul National University as an alternative probabilistic forecasting technique for improving the 'Water Supply Outlook' That is issued every month by the Ministry of Construction and Transportation in Korea. That study motivated the Korea Water Resources Corporation (KOWACO) to establish their seasonal probabilistic forecasting system for the 5 major river basins using the ESP approach. In cooperation with the HRG, the KOWACO developed monthly optimal multi-reservoir operating systems for the Geum river basin in 2004, which coupled the ESP forecasts with an optimization model using sampling stochastic dynamic programming. The user interfaces for both ESP and SSDP have also been designed for the developed computer systems to become more practical. More projects for developing ESP systems to the other 3 major river basins (i.e. the Nakdong, Han and Seomjin river basins) was also completed by the HRG and KOWACO at the end of December 2004. Therefore, the ESP system has become the most important mid- and long-term streamflow forecast technique in Korea. In addition to the practical aspects, resent research experience on ESP has raised some concerns into ways of improving the accuracy of ESP in Korea. Jeong and Kim (2002) performed an error analysis on its resulting probabilistic forecasts and found that the modeling error is dominant in the dry season, while the meteorological error is dominant in the flood season. To address the first issue, Kim et al. (2004) tested various combinations and/or combining techniques and showed that the ESP probabilistic accuracy could be improved considerably during the dry season when the hydrologic models were combined and/or corrected. In addition, an attempt was also made to improve the ESP accuracy for the flood season using climate forecast information. This ongoing project handles three types of climate forecast information: (1) the Monthly Industrial Meteorology Information Magazine (MIMIM) of the Korea Meteorological Administration (2) the Global Data Assimilation Prediction System (GDAPS), and (3) the US National Centers for Environmental Prediction (NCEP). Each of these forecasts is issued in a unique format: (1) MIMIM is a most-probable-event forecast, (2) GDAPS is a single series of deterministic forecasts, and (3) NCEP is an ensemble of deterministic forecasts. Other minor issues include how long the initial conditions influences the ESP accuracy, and how many ESP scenarios are needed to obtain the best accuracy. This presentation also addresses some future research that is needed for ESP in Korea.

  14. Error discrimination of an operational hydrological forecasting system at a national scale

    NASA Astrophysics Data System (ADS)

    Jordan, F.; Brauchli, T.

    2010-09-01

    The use of operational hydrological forecasting systems is recommended for hydropower production as well as flood management. However, the forecast uncertainties can be important and lead to bad decisions such as false alarms and inappropriate reservoir management of hydropower plants. In order to improve the forecasting systems, it is important to discriminate the different sources of uncertainties. To achieve this task, reanalysis of past predictions can be realized and provide information about the structure of the global uncertainty. In order to discriminate between uncertainty due to the weather numerical model and uncertainty due to the rainfall-runoff model, simulations assuming perfect weather forecast must be realized. This contribution presents the spatial analysis of the weather uncertainties and their influence on the river discharge prediction of a few different river basins where an operational forecasting system exists. The forecast is based on the RS 3.0 system [1], [2], which is also running the open Internet platform www.swissrivers.ch [3]. The uncertainty related to the hydrological model is compared to the uncertainty related to the weather prediction. A comparison between numerous weather prediction models [4] at different lead times is also presented. The results highlight an important improving potential of both forecasting components: the hydrological rainfall-runoff model and the numerical weather prediction models. The hydrological processes must be accurately represented during the model calibration procedure, while weather prediction models suffer from a systematic spatial bias. REFERENCES [1] Garcia, J., Jordan, F., Dubois, J. & Boillat, J.-L. 2007. "Routing System II, Modélisation d'écoulements dans des systèmes hydrauliques", Communication LCH n° 32, Ed. Prof. A. Schleiss, Lausanne [2] Jordan, F. 2007. Modèle de prévision et de gestion des crues - optimisation des opérations des aménagements hydroélectriques à accumulation pour la réduction des débits de crue, thèse de doctorat n° 3711, Ecole Polytechnique Fédérale, Lausanne [3] Keller, R. 2009. "Le débit des rivières au peigne fin", Revue Technique Suisse, N°7/8 2009, Swiss engineering RTS, UTS SA, Lausanne, p. 11 [4] Kaufmann, P., Schubiger, F. & Binder, P. 2003. Precipitation forecasting by a mesoscale numerical weather prediction (NWP) model : eight years of experience, Hydrology and Earth System

  15. The Watershed and River Systems Management Program: Decision Support for Water- and Environmental-Resource Management

    NASA Astrophysics Data System (ADS)

    Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.

    2004-12-01

    Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.

  16. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    NASA Astrophysics Data System (ADS)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  17. Using HPC within an operational forecasting configuration

    NASA Astrophysics Data System (ADS)

    Jagers, H. R. A.; Genseberger, M.; van den Broek, M. A. F. H.

    2012-04-01

    Various natural disasters are caused by high-intensity events, for example: extreme rainfall can in a short time cause major damage in river catchments, storms can cause havoc in coastal areas. To assist emergency response teams in operational decisions, it's important to have reliable information and predictions as soon as possible. This starts before the event by providing early warnings about imminent risks and estimated probabilities of possible scenarios. In the context of various applications worldwide, Deltares has developed an open and highly configurable forecasting and early warning system: Delft-FEWS. Finding the right balance between simulation time (and hence prediction lead time) and simulation accuracy and detail is challenging. Model resolution may be crucial to capture certain critical physical processes. Uncertainty in forcing conditions may require running large ensembles of models; data assimilation techniques may require additional ensembles and repeated simulations. The computational demand is steadily increasing and data streams become bigger. Using HPC resources is a logical step; in different settings Delft-FEWS has been configured to take advantage of distributed computational resources available to improve and accelerate the forecasting process (e.g. Montanari et al, 2006). We will illustrate the system by means of a couple of practical applications including the real-time dynamic forecasting of wind driven waves, flow of water, and wave overtopping at dikes of Lake IJssel and neighboring lakes in the center of The Netherlands. Montanari et al., 2006. Development of an ensemble flood forecasting system for the Po river basin, First MAP D-PHASE Scientific Meeting, 6-8 November 2006, Vienna, Austria.

  18. Comparative Analysis of River Flow Modelling by Using Supervised Learning Technique

    NASA Astrophysics Data System (ADS)

    Ismail, Shuhaida; Mohamad Pandiahi, Siraj; Shabri, Ani; Mustapha, Aida

    2018-04-01

    The goal of this research is to investigate the efficiency of three supervised learning algorithms for forecasting monthly river flow of the Indus River in Pakistan, spread over 550 square miles or 1800 square kilometres. The algorithms include the Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Wavelet Regression (WR). The forecasting models predict the monthly river flow obtained from the three models individually for river flow data and the accuracy of the all models were then compared against each other. The monthly river flow of the said river has been forecasted using these three models. The obtained results were compared and statistically analysed. Then, the results of this analytical comparison showed that LSSVM model is more precise in the monthly river flow forecasting. It was found that LSSVM has he higher r with the value of 0.934 compared to other models. This indicate that LSSVM is more accurate and efficient as compared to the ANN and WR model.

  19. A statistical forecast model using the time-scale decomposition technique to predict rainfall during flood period over the middle and lower reaches of the Yangtze River Valley

    NASA Astrophysics Data System (ADS)

    Hu, Yijia; Zhong, Zhong; Zhu, Yimin; Ha, Yao

    2018-04-01

    In this paper, a statistical forecast model using the time-scale decomposition method is established to do the seasonal prediction of the rainfall during flood period (FPR) over the middle and lower reaches of the Yangtze River Valley (MLYRV). This method decomposites the rainfall over the MLYRV into three time-scale components, namely, the interannual component with the period less than 8 years, the interdecadal component with the period from 8 to 30 years, and the interdecadal component with the period larger than 30 years. Then, the predictors are selected for the three time-scale components of FPR through the correlation analysis. At last, a statistical forecast model is established using the multiple linear regression technique to predict the three time-scale components of the FPR, respectively. The results show that this forecast model can capture the interannual and interdecadal variation of FPR. The hindcast of FPR during 14 years from 2001 to 2014 shows that the FPR can be predicted successfully in 11 out of the 14 years. This forecast model performs better than the model using traditional scheme without time-scale decomposition. Therefore, the statistical forecast model using the time-scale decomposition technique has good skills and application value in the operational prediction of FPR over the MLYRV.

  20. Flood Forecasting in Wales: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    How, Andrew; Williams, Christopher

    2015-04-01

    With steep, fast-responding river catchments, exposed coastal reaches with large tidal ranges and large population densities in some of the most at-risk areas; flood forecasting in Wales presents many varied challenges. Utilising advances in computing power and learning from best practice within the United Kingdom and abroad have seen significant improvements in recent years - however, many challenges still remain. Developments in computing and increased processing power comes with a significant price tag; greater numbers of data sources and ensemble feeds brings a better understanding of uncertainty but the wealth of data needs careful management to ensure a clear message of risk is disseminated; new modelling techniques utilise better and faster computation, but lack the history of record and experience gained from the continued use of more established forecasting models. As a flood forecasting team we work to develop coastal and fluvial forecasting models, set them up for operational use and manage the duty role that runs the models in real time. An overview of our current operational flood forecasting system will be presented, along with a discussion on some of the solutions we have in place to address the challenges we face. These include: • real-time updating of fluvial models • rainfall forecasting verification • ensemble forecast data • longer range forecast data • contingency models • offshore to nearshore wave transformation • calculation of wave overtopping

  1. Accuracy enhancement for forecasting water levels of reservoirs and river streams using a multiple-input-pattern fuzzification approach.

    PubMed

    Valizadeh, Nariman; El-Shafie, Ahmed; Mirzaei, Majid; Galavi, Hadi; Mukhlisin, Muhammad; Jaafar, Othman

    2014-01-01

    Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS) is one of the most accurate models used in water resource management. Because the membership functions (MFs) possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.

  2. Accuracy Enhancement for Forecasting Water Levels of Reservoirs and River Streams Using a Multiple-Input-Pattern Fuzzification Approach

    PubMed Central

    Mirzaei, Majid; Jaafar, Othman

    2014-01-01

    Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS) is one of the most accurate models used in water resource management. Because the membership functions (MFs) possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting. PMID:24790567

  3. Applications systems verification and transfer project. Volume 4: Operational applications of satellite snow cover observations. Colorado Field Test Center

    NASA Technical Reports Server (NTRS)

    Shafer, B. A.; Leaf, C. F.; Danielson, J. A.; Moravec, G. F.

    1981-01-01

    The study was conducted on six watersheds ranging in size from 277 km to 3460 km in the Rio Grande and Arkansas River basins of southwestern Colorado. Six years of satellite data in the period 1973-78 were analyzed and snowcover maps prepared for all available image dates. Seven snowmapping techniques were explored; the photointerpretative method was selected as the most accurate. Three schemes to forecast snowmelt runoff employing satellite snowcover observations were investigated. They included a conceptual hydrologic model, a statistical model, and a graphical method. A reduction of 10% in the current average forecast error is estimated when snowcover data in snowmelt runoff forecasting is shown to be extremely promising. Inability to obtain repetitive coverage due to the 18 day cycle of LANDSAT, the occurrence of cloud cover and slow image delivery are obstacles to the immediate implementation of satellite derived snowcover in operational streamflow forecasting programs.

  4. The Relative Performance of High Resolution Quantitative Precipitation Estimates in the Russian River Basin

    NASA Astrophysics Data System (ADS)

    Bytheway, J. L.; Biswas, S.; Cifelli, R.; Hughes, M.

    2017-12-01

    The Russian River carves a 110 mile path through Mendocino and Sonoma counties in western California, providing water for thousands of residents and acres of agriculture as well as a home for several species of endangered fish. The Russian River basin receives almost all of its precipitation during the October through March wet season, and the systems bringing this precipitation are often impacted by atmospheric river events as well as the complex topography of the region. This study will examine the performance of several high resolution (hourly, < 5km) estimates of precipitation from observational products and forecasts over the 2015-2016 and 2016-2017 wet seasons. Comparisons of event total rainfall as well as hourly rainfall will be performed using 1) rain gauges operated by the National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Division (PSD), 2) products from the Multi-Radar/Multi-Sensor (MRMS) QPE dataset, and 3) quantitative precipitation forecasts from the High Resolution Rapid Refresh (HRRR) model at 1, 3, 6, and 12 hour lead times. Further attention will be given to cases or locations representing large disparities between the estimates.

  5. Hydro-economic assessment of hydrological forecasting systems

    NASA Astrophysics Data System (ADS)

    Boucher, M.-A.; Tremblay, D.; Delorme, L.; Perreault, L.; Anctil, F.

    2012-01-01

    SummaryAn increasing number of publications show that ensemble hydrological forecasts exhibit good performance when compared to observed streamflow. Many studies also conclude that ensemble forecasts lead to a better performance than deterministic ones. This investigation takes one step further by not only comparing ensemble and deterministic forecasts to observed values, but by employing the forecasts in a stochastic decision-making assistance tool for hydroelectricity production, during a flood event on the Gatineau River in Canada. This allows the comparison between different types of forecasts according to their value in terms of energy, spillage and storage in a reservoir. The motivation for this is to adopt the point of view of an end-user, here a hydroelectricity production society. We show that ensemble forecasts exhibit excellent performances when compared to observations and are also satisfying when involved in operation management for electricity production. Further improvement in terms of productivity can be reached through the use of a simple post-processing method.

  6. Post-processing Seasonal Precipitation Forecasts via Integrating Climate Indices and the Analog Approach

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, Y.; Wood, A.; Lee, H. S.; Wu, L.; Schaake, J. C.

    2016-12-01

    Seasonal precipitation forecasts are a primary driver for seasonal streamflow prediction that is critical for a range of water resources applications, such as reservoir operations and drought management. However, it is well known that seasonal precipitation forecasts from climate models are often biased and also too coarse in spatial resolution for hydrologic applications. Therefore, post-processing procedures such as downscaling and bias correction are often needed. In this presentation, we discuss results from a recent study that applies a two-step methodology to downscale and correct the ensemble mean precipitation forecasts from the Climate Forecast System (CFS). First, CFS forecasts are downscaled and bias corrected using monthly reforecast analogs: we identify past precipitation forecasts that are similar to the current forecast, and then use the finer-scale observational analysis fields from the corresponding dates to represent the post-processed ensemble forecasts. Second, we construct the posterior distribution of forecast precipitation from the post-processed ensemble by integrating climate indices: a correlation analysis is performed to identify dominant climate indices for the study region, which are then used to weight the analysis analogs selected in the first step using a Bayesian approach. The methodology is applied to the California Nevada River Forecast Center (CNRFC) and the Middle Atlantic River Forecast Center (MARFC) regions for 1982-2015, using the North American Land Data Assimilation System (NLDAS-2) precipitation as the analysis. The results from cross validation show that the post-processed CFS precipitation forecast are considerably more skillful than the raw CFS with the analog approach only. Integrating climate indices can further improve the skill if the number of ensemble members considered is large enough; however, the improvement is generally limited to the first couple of months when compared against climatology. Impacts of various factors such as ensemble size, lead time, and choice of climate indices will also be discussed.

  7. Application of Jason-2/3 Altimetry for Virtual Gauging and Flood Forecasting in Mekong Basin

    NASA Astrophysics Data System (ADS)

    Lee, H.; Hossain, F.; Okeowo, M. A.; Nguyen, L. D.; Bui, D. D.; Chang, C. H.

    2016-12-01

    Vietnam suffers from both flood and drought during the rainy and dry seasons, respectively, due to its highly varying surface water resources. However, the National Center for Water Resources Planning and Investigation (NAWAPI) states that only 7 surface water monitoring stations have been constructed in Central and Highland Central regions with 100 station planned to be constructed by 2030 throughout Vietnam. For the Mekong Delta (MD), the Mekong River Commission (MRC) provides 7-day river level forecasting, but only at the two gauge stations located near the border between Cambodia and Vietnam (http://ffw.mrcmekong.org/south.htm). In order to help stakeholder agencies monitor upstream processes in the rivers and manage their impacts on the agricultural sector and densely populated delta cities, we, first of all, construct the so-called virtual stations throughout the entire Mekong River using the fully automated river level extraction tool with Jason-2/3 Geophysical Research Record (GDR) data. Then, we discuss the potentials and challenges of river level forecasting using Jason-2/3 Interim GDR (IGDR) data, which has 1 - 2 days of latency, over the Mekong River. Finally, based on our analyses, we propose a forecasting system for the Mekong River by drawing from our experience in operationalizing Jason-2 altimetry for Bangladesh flood forecasting.

  8. The Impact of Corps Flood Control Reservoirs in the June 2008 Upper Mississippi Flood

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Stiman, J. A.

    2008-12-01

    The US Army Corps of Engineers is responsible for a multitude of flood control project on the Mississippi River and its tributaries, including levees that protect land from flooding, and dams to help regulate river flows. The first six months of 2008 were the wettest on record in the upper Mississippi Basin. During the first 2 weeks of June, rainfall over the Midwest ranged from 6 to as much as 16 inches, overwhelming the flood protection system, causing massive flooding and damage. Most severely impacted were the States of Iowa, Illinois, Indiana, Missouri, and Wisconsin. In Iowa, flooding occurred on almost every river in the state. On the Iowa River, record flooding occurred from Marshalltown, Iowa, downstream to its confluence with the Mississippi River. At several locations, flooding exceeded the 500-year event. The flooding affected agriculture, transportation, and infrastructure, including homes, businesses, levees, and other water-control structures. It has been estimated that there was at least 7 billion dollars in damages. While the flooding in Iowa was extraordinary, Corps of Engineers flood control reservoirs helped limit damage and prevent loss of life, even though some reservoirs were filled beyond their design capacity. Coralville Reservoir on the Iowa River, for example, filled to 135% of its design flood storage capacity, with stage a record five feet over the crest of the spillway. In spite of this, the maximum reservoir release was limited to 39,500 cfs, while a peak inflow of 57,000 cfs was observed. CWMS, the Corps Water Management System, is used to help regulate Corps reservoirs, as well as track and evaluate flooding and flooding potential. CWMS is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. The system uses precipitation and flow data, collected in real-time, along with forecasted flow from the National Weather Service to model and optimize reservoir operations and forecast downstream flows and stages, providing communities accurate and timely information to aid their flood-fighting. This involves integrating several simulation modeling programs, including HEC-HMS to forecast flows, HEC-ResSim to model reservoir operations and HEC-RAS to compute forecasted stage hydrographs. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. The effectiveness of this tool and Corps reservoirs are examined.

  9. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River, while ocean tide can also propagate into this region. By considering the influence of Tonle Sap Lake and the Mekong River through multi-variable regression analysis, the forecasting results from Prek Kdam to Chau Doc/Tan Chau reach RMSE from about 0.3 - 0.65 m and correlation coefficient about 0.93- 0.97 with 5-day lead time.

  10. Reduction of the uncertainties in the water level-discharge relation of a 1D hydraulic model in the context of operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Habert, J.; Ricci, S.; Le Pape, E.; Thual, O.; Piacentini, A.; Goutal, N.; Jonville, G.; Rochoux, M.

    2016-01-01

    This paper presents a data-driven hydrodynamic simulator based on the 1-D hydraulic solver dedicated to flood forecasting with lead time of an hour up to 24 h. The goal of the study is to reduce uncertainties in the hydraulic model and thus provide more reliable simulations and forecasts in real time for operational use by the national hydrometeorological flood forecasting center in France. Previous studies have shown that sequential assimilation of water level or discharge data allows to adjust the inflows to the hydraulic network resulting in a significant improvement of the discharge while leaving the water level state imperfect. Two strategies are proposed here to improve the water level-discharge relation in the model. At first, a modeling strategy consists in improving the description of the river bed geometry using topographic and bathymetric measurements. Secondly, an inverse modeling strategy proposes to locally correct friction coefficients in the river bed and the flood plain through the assimilation of in situ water level measurements. This approach is based on an Extended Kalman filter algorithm that sequentially assimilates data to infer the upstream and lateral inflows at first and then the friction coefficients. It provides a time varying correction of the hydrological boundary conditions and hydraulic parameters. The merits of both strategies are demonstrated on the Marne catchment in France for eight validation flood events and the January 2004 flood event is used as an illustrative example throughout the paper. The Nash-Sutcliffe criterion for water level is improved from 0.135 to 0.832 for a 12-h forecast lead time with the data assimilation strategy. These developments have been implemented at the SAMA SPC (local flood forecasting service in the Haute-Marne French department) and used for operational forecast since 2013. They were shown to provide an efficient tool for evaluating flood risk and to improve the flood early warning system. Complementary with the deterministic forecast of the hydraulic state, the estimation of an uncertainty range is given relying on off-line and on-line diagnosis. The possibilities to further extend the control vector while limiting the computational cost and equifinality problem are finally discussed.

  11. Sparse Bayesian learning machine for real-time management of reservoir releases

    NASA Astrophysics Data System (ADS)

    Khalil, Abedalrazq; McKee, Mac; Kemblowski, Mariush; Asefa, Tirusew

    2005-11-01

    Water scarcity and uncertainties in forecasting future water availabilities present serious problems for basin-scale water management. These problems create a need for intelligent prediction models that learn and adapt to their environment in order to provide water managers with decision-relevant information related to the operation of river systems. This manuscript presents examples of state-of-the-art techniques for forecasting that combine excellent generalization properties and sparse representation within a Bayesian paradigm. The techniques are demonstrated as decision tools to enhance real-time water management. A relevance vector machine, which is a probabilistic model, has been used in an online fashion to provide confident forecasts given knowledge of some state and exogenous conditions. In practical applications, online algorithms should recognize changes in the input space and account for drift in system behavior. Support vectors machines lend themselves particularly well to the detection of drift and hence to the initiation of adaptation in response to a recognized shift in system structure. The resulting model will normally have a structure and parameterization that suits the information content of the available data. The utility and practicality of this proposed approach have been demonstrated with an application in a real case study involving real-time operation of a reservoir in a river basin in southern Utah.

  12. The Hydrometeorological Testbed (HMT): Opportunities for Scenario Development in a Framework of Improving Precipitation and Streamflow Science and Prediction

    NASA Astrophysics Data System (ADS)

    Ralph, F. M.; Kingsmill, D.; Restrepo, P.; Nowlis, J.; White, A.

    2006-12-01

    The Hydrometeorology Testbed (HMT) is an effort to accelerate the infusion of new technologies, models, and scientific results from the research community into daily hydrometeorological forecast operations of the National Weather Service (NWS) and its River Forecast Centers (RFCs). HMT is a product of NOAA's CALJET and PACJET projects from 1997-2003 on the West Coast and it has been identified in the NWS Hydrology Science and Technology Implementation Plan (STIP) and NOAA's Programming, Planning, Budgeting and Execution System (PPBES) as a key new R&D approach for improving flood and streamflow forecasts. Preliminary, small scale tests of HMT facilities, led by the NOAA Earth System Research Laboratory, were conducted in California's Coast Range in 2004 (HMT-04) and were moved to the western slopes of the Sierra Nevada for the winters of 2005-2006 and 2006-2007. Unlike typical research field projects, the HMT operates as a demonstration with forecasters and researchers joining forces in the operational setting, to addressing key forecast user needs. The current HMT targets California's flood-vulnerable American River Basin with the first full-scale deployment of this highly instrumented facility. Following the California demonstration, HMT facilities will be sequentially deployed to other regions of the Nation to address additional serious hydrometeorology problems that are unique to those locations. The project will run for a few years in each regional demonstration to determine the new tools most useful for improving precipitation and runoff forecasting methods. These successful tools will remain in place and will be duplicated as the HMT moves to the next region. Through NOAA funding, HMT will provide a foundation level of effort and infrastructure each year in the test region. It is expected that this foundation will be augmented by occasional ramping-up to more intensive operations that include additional participants and specialized instrumentation. The HMT activities in the American River Basin can benefit from the development and analysis of management scenarios that evaluate the impacts HMT can provide through improved predictions of water inflow into the Folsom Reservoir. Management models that explore various water management policies and their relative performance at controlling floods, generating energy, presenting recreational opportunities, maintaining healthy downstream ecosystems, and providing water for agricultural, urban, and industrial uses, would be particularly valuable. Use of conventional inputs to estimate reservoir levels could be compared with improved estimates resulting from HMT.. The difference between the model results will illustrate the value of improved predictability of extreme weather, while also providing insight into the strengths and weaknesses of various water management policies.

  13. A probabilistic drought forecasting framework: A combined dynamical and statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hongxiang; Moradkhani, Hamid; Zarekarizi, Mahkameh

    In order to improve drought forecasting skill, this study develops a probabilistic drought forecasting framework comprised of dynamical and statistical modeling components. The novelty of this study is to seek the use of data assimilation to quantify initial condition uncertainty with the Monte Carlo ensemble members, rather than relying entirely on the hydrologic model or land surface model to generate a single deterministic initial condition, as currently implemented in the operational drought forecasting systems. Next, the initial condition uncertainty is quantified through data assimilation and coupled with a newly developed probabilistic drought forecasting model using a copula function. The initialmore » condition at each forecast start date are sampled from the data assimilation ensembles for forecast initialization. Finally, seasonal drought forecasting products are generated with the updated initial conditions. This study introduces the theory behind the proposed drought forecasting system, with an application in Columbia River Basin, Pacific Northwest, United States. Results from both synthetic and real case studies suggest that the proposed drought forecasting system significantly improves the seasonal drought forecasting skills and can facilitate the state drought preparation and declaration, at least three months before the official state drought declaration.« less

  14. Mitigating the Impacts of Climate Nonstationarity on Seasonal Streamflow Predictability in the U.S. Southwest

    NASA Astrophysics Data System (ADS)

    Lehner, Flavio; Wood, Andrew W.; Llewellyn, Dagmar; Blatchford, Douglas B.; Goodbody, Angus G.; Pappenberger, Florian

    2017-12-01

    Seasonal streamflow predictions provide a critical management tool for water managers in the American Southwest. In recent decades, persistent prediction errors for spring and summer runoff volumes have been observed in a number of watersheds in the American Southwest. While mostly driven by decadal precipitation trends, these errors also relate to the influence of increasing temperature on streamflow in these basins. Here we show that incorporating seasonal temperature forecasts from operational global climate prediction models into streamflow forecasting models adds prediction skill for watersheds in the headwaters of the Colorado and Rio Grande River basins. Current dynamical seasonal temperature forecasts now show sufficient skill to reduce streamflow forecast errors in snowmelt-driven regions. Such predictions can increase the resilience of streamflow forecasting and water management systems in the face of continuing warming as well as decadal-scale temperature variability and thus help to mitigate the impacts of climate nonstationarity on streamflow predictability.

  15. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): assessing the added value of probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Addor, N.; Jaun, S.; Fundel, F.; Zappa, M.

    2012-04-01

    The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This model chain relies on deterministic (COSMO-7) and probabilistic (COSMO-LEPS) atmospheric forecasts, which are used to force a semi-distributed hydrological model (PREVAH) coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework with which we assessed the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added value conveyed by the probability information, a 31-month reforecast was produced for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain is of up to 2 days lead time for the catchment considered. Brier skill scores show that probabilistic hydrological forecasts outperform their deterministic counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. We finally highlight challenges for making decisions on the basis of hydrological predictions, and discuss the need for a tool to be used in addition to forecasts to compare the different mitigation actions possible in the Sihl catchment.

  16. Application of Satellite information (JASON-2) in improvement of Flood Forecasting and Early Warning Service in Bangladesh

    NASA Astrophysics Data System (ADS)

    Hossain, M. A.; Anderson, E. R.; Bhuiyan, M. A.; Hossain, F.; Shah-Newaz, S. M.

    2014-12-01

    Bangladesh is the lowest riparian of the huge system of the Ganges, Brahmaputra and Meghna (GBM) basins, second to that of Amazan, with 1.75 million sq-km catchment area, only 7% is inside Bangladesh. High inflow from GBM associated with the intense rainfall is the source of flood in Bangladesh. Flood Forecasting and Early Warning (FFEW) is the mandate and responsibility of Bangladesh Water Development Board (BWDB) and Flood Forecasting and Warning Center (FFWC) under BWDB has been carrying out this responsibility since 1972 and operational on 7-days a week during monsoon (May to October). FFEW system started with few hours lead time has been upgraded up to to 5-days with reasonable accuracy. At FFWC numerical Hydrodynamic model is used for generating water level (WL) forecast upto 5-days at 54 points on 29 rivers based on real-time observed WL of 83 and rainfall of 56 stations with boundary estimationa on daily basis. Main challenge of this system is the boundary estimation is the limited upstream data of the transboundary rivers, obstacle for increasing lead-time for FFEW. The satellite based upper catchment data may overcome this limitation. Recent NASA-French joint Satellite mission JASON-2 records Water Elevation (WE) and it may be used within 24 hours. Using JASON-2 recorded WE data of 4 and 3 virtual stations on the Ganges and Brahmaputra rivers , respectively (upper catchment), a new methodology has been developed for increasing lead time of forecast. Correlation between the JASON-2 recorded WE on the virtual stations at the upper catchment and WL of 2 dominating boundary stations at model boundary on the Ganges and Brahmaputra has been derived for generating WL forecast at those 2 boundary stations, which used as input in model. FFWC has started experimental 8-days lead-time WL forecast at 09 stations (5 in Brahmaputra and 4 in Ganges) using generated boundary data and regularly updating the results in the website. The trend of the forecasted WL using JASON-2 data is similar to those upto 5-days forecast generated in the existing system. This is a new approach in FFEW in Bangladesh where boundary estimation becomes possible using JASON-2 observed WE data of the Transboundary rivers. There is scope of further development of this system along with increase of lead time. Reference: www.ffwc.gov.bd

  17. Risk Based Reservoir Operations Using Ensemble Streamflow Predictions for Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Mendoza, J.; Whitin, B.; Hartman, R. K.

    2017-12-01

    Ensemble Forecast Operations (EFO) is a risk based approach of reservoir flood operations that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, each member of an ESP is individually modeled to forecast system conditions and calculate risk of reaching critical operational thresholds. Reservoir release decisions are computed which seek to manage forecasted risk to established risk tolerance levels. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC, which approximates flow forecasts for 61 ensemble members for a 15-day horizon. Model simulation results of the EFO alternative demonstrate a 36% increase in median end of water year (September 30) storage levels over existing operations. Additionally, model results show no increase in occurrence of flows above flood stage for points downstream of Lake Mendocino. This investigation demonstrates that the EFO alternative may be a viable approach for managing Lake Mendocino for multiple purposes (water supply, flood mitigation, ecosystems) and warrants further investigation through additional modeling and analysis.

  18. Development of Hydrological Model of Klang River Valley for flood forecasting

    NASA Astrophysics Data System (ADS)

    Mohammad, M.; Andras, B.

    2012-12-01

    This study is to review the impact of climate change and land used on flooding through the Klang River and to compare the changes in the existing river system in Klang River Basin with the Storm water Management and Road Tunnel (SMART) which is now already operating in the city centre of Kuala Lumpur. Klang River Basin is the most urbanized region in Malaysia. More than half of the basin has been urbanized on the land that is prone to flooding. Numerous flood mitigation projects and studies have been carried out to enhance the existing flood forecasting and mitigation project. The objective of this study is to develop a hydrological model for flood forecasting in Klang Basin Malaysia. Hydrological modelling generally requires large set of input data and this is more often a challenge for a developing country. Due to this limitation, the Tropical Rainfall Measuring Mission (TRMM) rainfall measurement, initiated by the US space agency NASA and Japanese space agency JAXA was used in this study. TRMM data was transformed and corrected by quantile to quantile transformation. However, transforming the data based on ground measurement doesn't make any significant improvement and the statistical comparison shows only 10% difference. The conceptual HYMOD model was used in this study and calibrated using ROPE algorithm. But, using the whole time series of the observation period in this area resulted in insufficient performance. The depth function which used in ROPE algorithm are then used to identified and calibrated using only unusual event to observed the improvement and efficiency of the model.

  19. Dynamic modelling of five different phytoplankton groups in the River Thames (UK)

    NASA Astrophysics Data System (ADS)

    Bussi, Gianbattista; Whitehead, Paul; Bowes, Michael; Read, Daniel; Dadson, Simon

    2015-04-01

    Phytoplankton play a vital role in fluvial ecosystems, being a major producer of organic carbon, a food source for primary consumers and a relevant source of oxygen for many low-gradient rivers, but also a producer of potentially harmful toxins (e.g. cyanobacteria). For these reasons, the forecast and prevention of algal blooms is fundamental for the safe management of river systems. In this study, we developed a new process-based phytoplankton model for operational management and forecast of algal and cyanobacteria blooms subject to environmental change. The model is based on a mass-balance and it reproduces phytoplankton growth and death, taking into account the controlling effect played by water temperature, solar radiation, self-shading and dissolved phosphorus and silicon concentrations. The model was implemented in five reaches of the River Thames (UK) with a daily time step over a period of three years, and its results were compared to a novel dataset of cytometric data which includes community cell abundance of chlorophytes, diatoms, cyanobacteria, microcystis-like cyanobacteria and picoalgae. The model results were satisfactory in terms of fitting the observed data. A Multi-Objective General Sensitivity Analysis was also carried out in order to quantify model sensitivity to its parameters. It showed that the most influential parameters are phytoplankton growth and death rates, while phosphorus concentration showed little influence on phytoplankton growth, due to the high levels of phosphorus in the River Thames. The model was demonstrated to be a reliable tool to be used in algal bloom forecasting and management.

  20. Uncertainties in Forecasting Streamflow using Entropy Theory

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2017-12-01

    Streamflow forecasting is essential in river restoration, reservoir operation, power generation, irrigation, navigation, and water management. However, there is always uncertainties accompanied in forecast, which may affect the forecasting results and lead to large variations. Therefore, uncertainties must be considered and be assessed properly when forecasting streamflow for water management. The aim of our work is to quantify the uncertainties involved in forecasting streamflow and provide reliable streamflow forecast. Despite that streamflow time series are stochastic, they exhibit seasonal and periodic patterns. Therefore, streamflow forecasting entails modeling seasonality, periodicity, and its correlation structure, and assessing uncertainties. This study applies entropy theory to forecast streamflow and measure uncertainties during the forecasting process. To apply entropy theory for streamflow forecasting, spectral analysis is combined to time series analysis, as spectral analysis can be employed to characterize patterns of streamflow variation and identify the periodicity of streamflow. That is, it permits to extract significant information for understanding the streamflow process and prediction thereof. Application of entropy theory for streamflow forecasting involves determination of spectral density, determination of parameters, and extension of autocorrelation function. The uncertainties brought by precipitation input, forecasting model and forecasted results are measured separately using entropy. With information theory, how these uncertainties transported and aggregated during these processes will be described.

  1. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    NASA Astrophysics Data System (ADS)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  2. Assimilation of ground and satellite snow observations in a distributed hydrologic model to improve water supply forecasts in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Day, G. N.; Quebbeman, J.; Carney, S.; Park, G. H.

    2016-12-01

    The Upper Colorado River Basin above Lake Powell is a major source of water supply for 25 million people and provides irrigation water for 3.5 million acres. Approximately 85% of the annual runoff is produced from snowmelt. Water supply forecasts of the April-July runoff produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC), are critical to basin water management. This project leverages advanced distributed models, datasets, and snow data assimilation techniques to improve operational water supply forecasts made by CBRFC in the Upper Colorado River Basin. The current work will specifically focus on improving water supply forecasts through the implementation of a snow data assimilation process coupled with the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM). Three types of observations will be used in the snow data assimilation system: satellite Snow Covered Area (MODSCAG), satellite Dust Radiative Forcing in Snow (MODDRFS), and SNOTEL Snow Water Equivalent (SWE). SNOTEL SWE provides the main source of high elevation snowpack information during the snow season, however, these point measurement sites are carefully selected to provide consistent indices of snowpack, and may not be representative of the surrounding watershed. We address this problem by transforming the SWE observations to standardized deviates and interpolating the standardized deviates using a spatial regression model. The interpolation process will also take advantage of the MODIS Snow Covered Area and Grainsize (MODSCAG) product to inform the model on the spatial distribution of snow. The interpolated standardized deviates are back-transformed and used in an Ensemble Kalman Filter (EnKF) to update the model simulated SWE. The MODIS Dust Radiative Forcing in Snow (MODDRFS) product will be used more directly through temporary adjustments to model snowmelt parameters, which should improve melt estimates in areas affected by dust on snow. In order to assess the value of different data sources, reforecasts will be produced for a historical period and performance measures will be computed to assess forecast skill. The existing CBRFC Ensemble Streamflow Prediction (ESP) reforecasts will provide a baseline for comparison to determine the added-value of the data assimilation process.

  3. Data Assimilation of AIRS Water Vapor Profiles: Impact on Precipitation Forecasts for Atmospheric River Cases Affecting the Western of the United States

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Bradley; Jedlovec, Gary; Wick, Gary; Neiman, Paul

    2013-01-01

    Atmospheric rivers are transient, narrow regions in the atmosphere responsible for the transport of large amounts of water vapor. These phenomena can have a large impact on precipitation. In particular, they can be responsible for intense rain events on the western coast of North America during the winter season. This paper focuses on attempts to improve forecasts of heavy precipitation events in the Western US due to atmospheric rivers. Profiles of water vapor derived from from Atmospheric Infrared Sounder (AIRS) observations are combined with GFS forecasts by a three-dimensional variational data assimilation in the Gridpoint Statistical Interpolation (GSI). Weather Research and Forecasting (WRF) forecasts initialized from the combined field are compared to forecasts initialized from the GFS forecast only for 3 test cases in the winter of 2011. Results will be presented showing the impact of the AIRS profile data on water vapor and temperature fields, and on the resultant precipitation forecasts.

  4. Value of Seasonal Fuzzy-based Inflow Prediction in the Jucar River Basin

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, M.; Macian-Sorribes, H.

    2016-12-01

    The development and application of climate services in Integrated Water Resources Management (IWRM) is said to add important benefits in terms of water use efficiency due to an increase ability to foresee future water availability. A method to evaluate the economic impact of these services is presented, based on the use of hydroeconomic modelling techniques (hydroeconomic simulation) to compare the net benefits from water use in the system with and without the inflow forecasting. The Jucar River Basin (Spain) has been used as case study. Operating rules currently applied in the basin were assessed using fuzzy rule-based (FRB) systems via a co-development process involving the system operators. These operating rules use as input variable the hydrological inflows in several sub-basins, which need to be foreseen by the system operators. The inflow forecasting mechanism to preview water availability in the irrigation season (May-September) relied on fuzzy regression in which future inflows were foreseen based on past inflows and rainfall in the basin. This approach was compared with the current use of the two past year inflows for projecting the future inflow. For each irrigation season, the previewed inflows were determined using both methods and their impact on the system operation assessed through a hydroeconomic DSS. Results show that the implementation of the fuzzy inflow forecasting system offers higher economic returns. Another advantage of the fuzzy approach regards to the uncertainty treatment using fuzzy numbers, which allow us to estimate the uncertainty range of the expected benefits. Consequently, we can use the fuzzy approach to estimate the uncertainty associated with both the prediction and the associated benefits.

  5. Improving regional climate and hydrological forecasting following the record setting flooding across the Lake Ontario - St. Lawrence River system

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Seglenieks, F.; Bruxer, J.; Fortin, V.; Noel, J.

    2017-12-01

    In the spring of 2017, water levels across Lake Ontario and the upper St. Lawrence River exceeded record high levels, leading to widespread flooding, damage to property, and controversy over regional dam operating protocols. Only a few years earlier, water levels on Lakes Superior, Michigan, and Huron (upstream of Lake Ontario) had dropped to record low levels leading to speculation that either anthropogenic controls or climate change were leading to chronic water loss from the Great Lakes. The contrast between low water level conditions across Earth's largest lake system from the late 1990s through 2013, and the rapid rise prior to the flooding in early 2017, underscores the challenges of quantifying and forecasting hydrologic impacts of rising regional air and water temperatures (and associated changes in lake evaporation) and persistent increases in long-term precipitation. Here, we assess the hydrologic conditions leading to the recent record flooding across the Lake Ontario - St. Lawrence River system, with a particular emphasis on understanding the extent to which those conditions were consistent with observed and anticipated changes in historical and future climate, and the extent to which those conditions could have been anticipated through improvements in seasonal climate outlooks and hydrological forecasts.

  6. Flood Risk Assessment and Forecasting for the Ganges-Brahmaputra-Meghna River Basins

    NASA Astrophysics Data System (ADS)

    Hopson, T. M.; Priya, S.; Young, W.; Avasthi, A.; Clayton, T. D.; Brakenridge, G. R.; Birkett, C. M.; Riddle, E. E.; Broman, D.; Boehnert, J.; Sampson, K. M.; Kettner, A.; Singh, D.

    2017-12-01

    During the 2017 South Asia monsoon, torrential rains and catastrophic floods affected more than 45 million people, including 16 million children, across the Ganges-Brahmaputra-Meghna (GBM) basins. The basin is recognized as one of the world's most disaster-prone regions, with severe floods occurring almost annually causing extreme loss of life and property. In light of this vulnerability, the World Bank and collaborators have contributed toward reducing future flood impacts through recent developments to improve operational preparedness for such events, as well as efforts in more general preparedness and resilience building through planning based on detailed risk assessments. With respect to improved event-specific flood preparedness through operational warnings, we discuss a new forecasting system that provides probability-based flood forecasts developed for more than 85 GBM locations. Forecasts are available online, along with near-real-time data maps of rainfall (predicted and actual) and river levels. The new system uses multiple data sets and multiple models to enhance forecasting skill, and provides improved forecasts up to 16 days in advance of the arrival of high waters. These longer lead times provide the opportunity to save both lives and livelihoods. With sufficient advance notice, for example, farmers can harvest a threatened rice crop or move vulnerable livestock to higher ground. Importantly, the forecasts not only predict future water levels but indicate the level of confidence in each forecast. Knowing whether the probability of a danger-level flood is 10 percent or 90 percent helps people to decide what, if any, action to take. With respect to efforts in general preparedness and resilience building, we also present a recent flood risk assessment, and how it provides, for the first time, a numbers-based view of the impacts of different size floods across the Ganges basin. The findings help identify priority areas for tackling flood risks (for example, relocating levees, improving flood warning systems, or boosting overall economic resilience). The assessment includes the locations and numbers of people at risk, as well as the locations and value of buildings, roads and railways, and crops at risk. An accompanying atlas includes easy-to-use risk maps and tables for the Ganges basins.

  7. Conditional Monthly Weather Resampling Procedure for Operational Seasonal Water Resources Forecasting

    NASA Astrophysics Data System (ADS)

    Beckers, J.; Weerts, A.; Tijdeman, E.; Welles, E.; McManamon, A.

    2013-12-01

    To provide reliable and accurate seasonal streamflow forecasts for water resources management several operational hydrologic agencies and hydropower companies around the world use the Extended Streamflow Prediction (ESP) procedure. The ESP in its original implementation does not accommodate for any additional information that the forecaster may have about expected deviations from climatology in the near future. Several attempts have been conducted to improve the skill of the ESP forecast, especially for areas which are affected by teleconnetions (e,g. ENSO, PDO) via selection (Hamlet and Lettenmaier, 1999) or weighting schemes (Werner et al., 2004; Wood and Lettenmaier, 2006; Najafi et al., 2012). A disadvantage of such schemes is that they lead to a reduction of the signal to noise ratio of the probabilistic forecast. To overcome this, we propose a resampling method conditional on climate indices to generate meteorological time series to be used in the ESP. The method can be used to generate a large number of meteorological ensemble members in order to improve the statistical properties of the ensemble. The effectiveness of the method was demonstrated in a real-time operational hydrologic seasonal forecasts system for the Columbia River basin operated by the Bonneville Power Administration. The forecast skill of the k-nn resampler was tested against the original ESP for three basins at the long-range seasonal time scale. The BSS and CRPSS were used to compare the results to those of the original ESP method. Positive forecast skill scores were found for the resampler method conditioned on different indices for the prediction of spring peak flows in the Dworshak and Hungry Horse basin. For the Libby Dam basin however, no improvement of skill was found. The proposed resampling method is a promising practical approach that can add skill to ESP forecasts at the seasonal time scale. Further improvement is possible by fine tuning the method and selecting the most informative climate indices for the region of interest.

  8. Two-stage seasonal streamflow forecasts to guide water resources decisions and water rights allocation

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Gonzalez, E.; Bonnafous, L.

    2011-12-01

    Decision-making in water resources is inherently uncertain producing copious risks, ranging from operational (present) to planning (season-ahead) to design/adaptation (decadal) time-scales. These risks include human activity and climate variability/change. As the risks in designing and operating water systems and allocating available supplies vary systematically in time, prospects for predicting and managing such risks become increasingly attractive. Considerable effort has been undertaken to improve seasonal forecast skill and advocate for integration to reduce risk, however only minimal adoption is evident. Impediments are well defined, yet tailoring forecast products and allowing for flexible adoption assist in overcoming some obstacles. The semi-arid Elqui River basin in Chile is contending with increasing levels of water stress and demand coupled with insufficient investment in infrastructure, taxing its ability to meet agriculture, hydropower, and environmental requirements. The basin is fed from a retreating glacier, with allocation principles founded on a system of water rights and markets. A two-stage seasonal streamflow forecast at leads of one and two seasons prescribes the probability of reductions in the value of each water right, allowing water managers to inform their constituents in advance. A tool linking the streamflow forecast to a simple reservoir decision model also allows water managers to select a level of confidence in the forecast information.

  9. Upscaling

    NASA Astrophysics Data System (ADS)

    Vandenbulcke, Luc; Barth, Alexander

    2017-04-01

    In the present European operational oceanography context, global and basin-scale models are run daily at different Monitoring and Forecasting Centers from the Copernicus Marine component (CMEMS). Regional forecasting centers, which run outside of CMEMS, then use these forecasts as initial conditions and/or boundary conditions for high-resolution or coastal forecasts. However, these improved simulations are lost to the basin-scale models (i.e. there is no feedback). Therefore, some potential improvements inside (and even outside) the areas covered by regional models are lost, and the risk for discrepancy between basin-scale and regional model remains high. The objective of this study is to simulate two-way nesting by extracting pseudo-observations from the regional models and assimilating them in the basin-scale models. The proposed method is called "upscaling". A ensemble of 100 one-way nested NEMO models of the Mediterranean Sea (Med) (1/16°) and the North-Western Med (1/80°) is implemented to simulate the period 2014-2015. Each member has perturbed initial conditions, atmospheric forcing fields and river discharge data. The Med model uses climatological Rhone river data, while the nested model uses measured daily discharges. The error of the pseudo-observations can be estimated by analyzing the ensemble of nested models. The pseudo-observations are then assimilated in the parent model by means of an Ensemble Kalman Filter. The experiments show that the proposed method improves different processes in the Med model, such as the position of the Northern Current and its incursion (or not) on the Gulf of Lions, the cold water mass on the shelf, and the position of the Rhone river plume. Regarding areas where no operational regional models exist, (some variables of) the parent model can still be improved by relating some resolved parameters to statistical properties of a higher-resolution simulation. This is the topic of a complementary study also presented at the EGU 2017 (Barth et al).

  10. Introduction to SNPP/VIIRS Flood Mapping Software Version 1.0

    NASA Astrophysics Data System (ADS)

    Li, S.; Sun, D.; Goldberg, M.; Sjoberg, W.; Santek, D.; Hoffman, J.

    2017-12-01

    Near real-time satellite-derived flood maps are invaluable to river forecasters and decision-makers for disaster monitoring and relief efforts. With support from the JPSS (Joint Polar Satellite System) Proving Ground and Risk Reduction (PGRR) Program, flood detection software has been developed using Suomi-NPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite) imagery to automatically generate near real-time flood maps for National Weather Service (NWS) River Forecast Centers (RFC) in the USA. The software, which is called VIIRS NOAA GMU Flood Version 1.0 (hereafter referred to as VNG Flood V1.0), consists of a series of algorithms that include water detection, cloud shadow removal, terrain shadow removal, minor flood detection, water fraction retrieval, and floodwater determination. The software is designed for flood detection in any land region between 80°S and 80°N, and it has been running routinely with direct broadcast SNPP/VIIRS data at the Space Science and Engineering Center at the University of Wisconsin-Madison (UW/SSEC) and the Geographic Information Network of Alaska at the University of Alaska-Fairbanks (UAF/GINA) since 2014. Near real-time flood maps are distributed via the Unidata Local Data Manager (LDM), reviewed by river forecasters in AWIPS-II (the second generation of the Advanced Weather Interactive Processing System) and applied in flood operations. Initial feedback from operational forecasters on the product accuracy and performance has been largely positive. The software capability has also been extended to areas outside of the USA via a case-driven mode to detect major floods all over the world. Offline validation efforts include the visual inspection of over 10,000 VIIRS false-color composite images, an inter-comparison with MODIS automatic flood products and a quantitative evaluation using Landsat imagery. The steady performance from the 3-year routine process and the promising validation results indicate that VNG Flood V1.0 has a high feasibility for flood detection at the product level.

  11. Simultaneous calibration of ensemble river flow predictions over an entire range of lead times

    NASA Astrophysics Data System (ADS)

    Hemri, S.; Fundel, F.; Zappa, M.

    2013-10-01

    Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.

  12. An operational procedure for rapid flood risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  13. Extending flood forecasting lead time in large basin by coupling bias-corrected WRF QPF with distributed hydrological model

    NASA Astrophysics Data System (ADS)

    LI, J.; Chen, Y.; Wang, H. Y.

    2016-12-01

    In large basin flood forecasting, the forecasting lead time is very important. Advances in numerical weather forecasting in the past decades provides new input to extend flood forecasting lead time in large rivers. Challenges for fulfilling this goal currently is that the uncertainty of QPF with these kinds of NWP models are still high, so controlling the uncertainty of QPF is an emerging technique requirement.The Weather Research and Forecasting (WRF) model is one of these NWPs, and how to control the QPF uncertainty of WRF is the research topic of many researchers among the meteorological community. In this study, the QPF products in the Liujiang river basin, a big river with a drainage area of 56,000 km2, was compared with the ground observation precipitation from a rain gauge networks firstly, and the results show that the uncertainty of the WRF QPF is relatively high. So a post-processed algorithm by correlating the QPF with the observed precipitation is proposed to remove the systematical bias in QPF. With this algorithm, the post-processed WRF QPF is close to the ground observed precipitation in area-averaged precipitation. Then the precipitation is coupled with the Liuxihe model, a physically based distributed hydrological model that is widely used in small watershed flash flood forecasting. The Liuxihe Model has the advantage with gridded precipitation from NWP and could optimize model parameters when there are some observed hydrological data even there is only a few, it also has very high model resolution to improve model performance, and runs on high performance supercomputer with parallel algorithm if executed in large rivers. Two flood events in the Liujiang River were collected, one was used to optimize the model parameters and another is used to validate the model. The results show that the river flow simulation has been improved largely, and could be used for real-time flood forecasting trail in extending flood forecasting leading time.

  14. Science implementation of Forecast Mekong for food and environmental security

    USGS Publications Warehouse

    Turnipseed, D. Phil

    2012-01-01

    Forecast Mekong is a significant international thrust under the Delta Research and Global Observation Network (DRAGON) of the U.S. Geological Survey (USGS) and was launched in 2009 by the U.S. Department of State and the Foreign Ministers of Cambodia, Laos, Thailand, and Vietnam under U.S. Department of State Secretary Hillary R. Clinton's Lower Mekong Initiative to enhance U.S. engagement with countries of the Lower Mekong River Basin in the areas of environment, health, education, and infrastructure. Since 2009, the USGS has worked closely with the U.S. Department of State; personnel from Cambodia, Laos, Thailand, and Vietnam; nongovernmental organizations; and academia to collect and use research and data from the Lower Mekong River Basin to provide hands-on results that will help decisionmakers in future planning and design for restoration, conservation, and management efforts in the Lower Mekong River Basin. In 2012 Forecast Mekong is highlighting the increasing cooperation between the United States and Lower Mekong River Basin countries in the areas of food and environmental security. Under the DRAGON, Forecast Mekong continues work in interactive data integration, modeling, and visualization system by initiating three-dimensional bathymetry and river flow data along with a pilot study of fish distribution, population, and migratory patterns in the Lower Mekong River Basin. When fully developed by the USGS, in partnership with local governments and universities throughout the Mekong River region, Forecast Mekong will provide valuable planning tools to visualize the consequences of climate change and river management.

  15. Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.

    2018-04-01

    The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.

  16. A comparison of operational and LANDSAT-aided snow water content estimation systems. [Feather River Basin, California

    NASA Technical Reports Server (NTRS)

    Sharp, J. M.; Thomas, R. W.

    1975-01-01

    How LANDSAT imagery can be cost effectively employed to augment an operational hydrologic model is described. Attention is directed toward the estimation of snow water content, a major predictor variable in the volumetric runoff forecasting model. A stratified double sampling scheme is supplemented with qualitative and quantitative analyses of existing operations to develop a comparison between the existing and satellite-aided approaches to snow water content estimation. Results show a decided advantage for the LANDSAT-aided approach.

  17. Ensemble hydrological forecast efficiency evolution over various issue dates and lead-time: case study for the Cheboksary reservoir (Volga River)

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander; Moreido, Vsevolod

    2017-04-01

    Ensemble hydrological forecasting allows for describing uncertainty caused by variability of meteorological conditions in the river basin for the forecast lead-time. At the same time, in snowmelt-dependent river basins another significant source of uncertainty relates to variability of initial conditions of the basin (snow water equivalent, soil moisture content, etc.) prior to forecast issue. Accurate long-term hydrological forecast is most crucial for large water management systems, such as the Cheboksary reservoir (the catchment area is 374 000 sq.km) located in the Middle Volga river in Russia. Accurate forecasts of water inflow volume, maximum discharge and other flow characteristics are of great value for this basin, especially before the beginning of the spring freshet season that lasts here from April to June. The semi-distributed hydrological model ECOMAG was used to develop long-term ensemble forecast of daily water inflow into the Cheboksary reservoir. To describe variability of the meteorological conditions and construct ensemble of possible weather scenarios for the lead-time of the forecast, two approaches were applied. The first one utilizes 50 weather scenarios observed in the previous years (similar to the ensemble streamflow prediction (ESP) procedure), the second one uses 1000 synthetic scenarios simulated by a stochastic weather generator. We investigated the evolution of forecast uncertainty reduction, expressed as forecast efficiency, over various consequent forecast issue dates and lead time. We analyzed the Nash-Sutcliffe efficiency of inflow hindcasts for the period 1982 to 2016 starting from 1st of March with 15 days frequency for lead-time of 1 to 6 months. This resulted in the forecast efficiency matrix with issue dates versus lead-time that allows for predictability identification of the basin. The matrix was constructed separately for observed and synthetic weather ensembles.

  18. Integrated Flood Forecast and Virtual Dam Operation System for Water Resources and Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio

    2014-05-01

    While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.

  19. A study of application of remote sensing to river forecasting. Volume 2: Detailed technical report, NASA-IBM streamflow forecast model user's guide

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Model is described along with data preparation, determining model parameters, initializing and optimizing parameters (calibration) selecting control options and interpreting results. Some background information is included, and appendices contain a dictionary of variables, a source program listing, and flow charts. The model was operated on an IBM System/360 Model 44, using a model 2250 keyboard/graphics terminal for interactive operation. The model can be set up and operated in a batch processing mode on any System/360 or 370 that has the memory capacity. The model requires 210K bytes of core storage, and the optimization program, OPSET (which was used previous to but not in this study), requires 240K bytes. The data band for one small watershed requires approximately 32 tracks of disk storage.

  20. Combining empirical approaches and error modelling to enhance predictive uncertainty estimation in extrapolation for operational flood forecasting. Tests on flood events on the Loire basin, France.

    NASA Astrophysics Data System (ADS)

    Berthet, Lionel; Marty, Renaud; Bourgin, François; Viatgé, Julie; Piotte, Olivier; Perrin, Charles

    2017-04-01

    An increasing number of operational flood forecasting centres assess the predictive uncertainty associated with their forecasts and communicate it to the end users. This information can match the end-users needs (i.e. prove to be useful for an efficient crisis management) only if it is reliable: reliability is therefore a key quality for operational flood forecasts. In 2015, the French flood forecasting national and regional services (Vigicrues network; www.vigicrues.gouv.fr) implemented a framework to compute quantitative discharge and water level forecasts and to assess the predictive uncertainty. Among the possible technical options to achieve this goal, a statistical analysis of past forecasting errors of deterministic models has been selected (QUOIQUE method, Bourgin, 2014). It is a data-based and non-parametric approach based on as few assumptions as possible about the forecasting error mathematical structure. In particular, a very simple assumption is made regarding the predictive uncertainty distributions for large events outside the range of the calibration data: the multiplicative error distribution is assumed to be constant, whatever the magnitude of the flood. Indeed, the predictive distributions may not be reliable in extrapolation. However, estimating the predictive uncertainty for these rare events is crucial when major floods are of concern. In order to improve the forecasts reliability for major floods, an attempt at combining the operational strength of the empirical statistical analysis and a simple error modelling is done. Since the heteroscedasticity of forecast errors can considerably weaken the predictive reliability for large floods, this error modelling is based on the log-sinh transformation which proved to reduce significantly the heteroscedasticity of the transformed error in a simulation context, even for flood peaks (Wang et al., 2012). Exploratory tests on some operational forecasts issued during the recent floods experienced in France (major spring floods in June 2016 on the Loire river tributaries and flash floods in fall 2016) will be shown and discussed. References Bourgin, F. (2014). How to assess the predictive uncertainty in hydrological modelling? An exploratory work on a large sample of watersheds, AgroParisTech Wang, Q. J., Shrestha, D. L., Robertson, D. E. and Pokhrel, P (2012). A log-sinh transformation for data normalization and variance stabilization. Water Resources Research, , W05514, doi:10.1029/2011WR010973

  1. Daily river flow prediction based on Two-Phase Constructive Fuzzy Systems Modeling: A case of hydrological - meteorological measurements asymmetry

    NASA Astrophysics Data System (ADS)

    Bou-Fakhreddine, Bassam; Mougharbel, Imad; Faye, Alain; Abou Chakra, Sara; Pollet, Yann

    2018-03-01

    Accurate daily river flow forecast is essential in many applications of water resources such as hydropower operation, agricultural planning and flood control. This paper presents a forecasting approach to deal with a newly addressed situation where hydrological data exist for a period longer than that of meteorological data (measurements asymmetry). In fact, one of the potential solutions to resolve measurements asymmetry issue is data re-sampling. It is a matter of either considering only the hydrological data or the balanced part of the hydro-meteorological data set during the forecasting process. However, the main disadvantage is that we may lose potentially relevant information from the left-out data. In this research, the key output is a Two-Phase Constructive Fuzzy inference hybrid model that is implemented over the non re-sampled data. The introduced modeling approach must be capable of exploiting the available data efficiently with higher prediction efficiency relative to Constructive Fuzzy model trained over re-sampled data set. The study was applied to Litani River in the Bekaa Valley - Lebanon by using 4 years of rainfall and 24 years of river flow daily measurements. A Constructive Fuzzy System Model (C-FSM) and a Two-Phase Constructive Fuzzy System Model (TPC-FSM) are trained. Upon validating, the second model has shown a primarily competitive performance and accuracy with the ability to preserve a higher day-to-day variability for 1, 3 and 6 days ahead. In fact, for the longest lead period, the C-FSM and TPC-FSM were able of explaining respectively 84.6% and 86.5% of the actual river flow variation. Overall, the results indicate that TPC-FSM model has provided a better tool to capture extreme flows in the process of streamflow prediction.

  2. Hybrid Forecasting of Daily River Discharges Considering Autoregressive Heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Szolgayová, Elena Peksová; Danačová, Michaela; Komorniková, Magda; Szolgay, Ján

    2017-06-01

    It is widely acknowledged that in the hydrological and meteorological communities, there is a continuing need to improve the quality of quantitative rainfall and river flow forecasts. A hybrid (combined deterministic-stochastic) modelling approach is proposed here that combines the advantages offered by modelling the system dynamics with a deterministic model and a deterministic forecasting error series with a data-driven model in parallel. Since the processes to be modelled are generally nonlinear and the model error series may exhibit nonstationarity and heteroscedasticity, GARCH-type nonlinear time series models are considered here. The fitting, forecasting and simulation performance of such models have to be explored on a case-by-case basis. The goal of this paper is to test and develop an appropriate methodology for model fitting and forecasting applicable for daily river discharge forecast error data from the GARCH family of time series models. We concentrated on verifying whether the use of a GARCH-type model is suitable for modelling and forecasting a hydrological model error time series on the Hron and Morava Rivers in Slovakia. For this purpose we verified the presence of heteroscedasticity in the simulation error series of the KLN multilinear flow routing model; then we fitted the GARCH-type models to the data and compared their fit with that of an ARMA - type model. We produced one-stepahead forecasts from the fitted models and again provided comparisons of the model's performance.

  3. Use of medium-range numerical weather prediction model output to produce forecasts of streamflow

    USGS Publications Warehouse

    Clark, M.P.; Hay, L.E.

    2004-01-01

    This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases he accuracy of precipitation forecasts over the northeastern United States, but overall, the accuracy of MOS-based precipitation forecasts is slightly lower than the raw NCEP forecasts. Four basins in the United States were chosen as case studies to evaluate the value of MRF output for predictions of streamflow. Streamflow forecasts using MRF output were generated for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado: East Fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). Hydrologic model output forced with measured-station data were used as "truth" to focus attention on the hydrologic effects of errors in the MRF forecasts. Eight-day streamflow forecasts produced using the MOS-corrected MRF output as input (MOS) were compared with those produced using the climatic Ensemble Streamflow Prediction (ESP) technique. MOS-based streamflow forecasts showed increased skill in the snowmelt-dominated river basins, where daily variations in streamflow are strongly forced by temperature. In contrast, the skill of MOS forecasts in the rainfall-dominated basin (the Alapaha River) were equivalent to the skill of the ESP forecasts. Further improvements in streamflow forecasts require more accurate local-scale forecasts of precipitation and temperature, more accurate specification of basin initial conditions, and more accurate model simulations of streamflow. ?? 2004 American Meteorological Society.

  4. Utilization of Precipitation and Moisture Products Derived from Satellites to Support NOAA Operational Precipitation Forecasts

    NASA Astrophysics Data System (ADS)

    Ferraro, R.; Zhao, L.; Kuligowski, R. J.; Kusselson, S.; Ma, L.; Kidder, S. Q.; Forsythe, J. M.; Jones, A. S.; Ebert, E. E.; Valenti, E.

    2012-12-01

    NOAA/NESDIS operates a constellation of polar and geostationary orbiting satellites to support weather forecasts and to monitor the climate. Additionally, NOAA utilizes satellite assets from other U.S. agencies like NASA and the Department of Defense, as well as those from other nations with similar weather and climate responsibilities (i.e., EUMETSAT and JMA). Over the past two decades, through joint efforts between U.S. and international government researchers, academic partners, and private sector corporations, a series of "value added" products have been developed to better serve the needs of weather forecasters and to exploit the full potential of precipitation and moisture products generated from these satellites. In this presentation, we will focus on two of these products - Ensemble Tropical Rainfall Potential (eTRaP) and Blended Total Precipitable Water (bTPW) - and provide examples on how they contribute to hydrometeorological forecasts. In terms of passive microwave satellite products, TPW perhaps is most widely used to support real-time forecasting applications, as it accurately depicts tropospheric water vapor and its movement. In particular, it has proven to be extremely useful in determining the location, timing, and duration of "atmospheric rivers" which contribute to and sustain flooding events. A multi-sensor approach has been developed and implemented at NESDIS in which passive microwave estimates from multiple satellites and sensors are merged to create a seamless, bTPW product that is more efficient for forecasters to use. Additionally, this product is being enhanced for utilization for television weather forecasters. Examples will be shown to illustrate the roll of atmospheric rivers and contribution to flooding events, and how the bTPW product was used to improve the forecast of these events. Heavy rains associated with land falling tropical cyclones (TC) frequently trigger floods that cause millions of dollars of damage and tremendous loss of lives. To provide observations-based forecast guidance for TC heavy rain, the Tropical Rainfall Potential (TRaP), an extrapolation forecast generated by accumulating rainfall estimates from satellites with microwave sensors as the storm is translated along the forecast track, was originally developed to predict the maximum rainfall at landfall, as well as the spatial pattern of precipitation. More recently, an enhancement has been made to combine the TRaP forecasts from multiple sensors and various start times into an ensemble (eTRaP). The ensemble approach provides not only more accurate quantitative precipitation forecasts, including more skillful maximum rainfall amount and location, it also produces probabilistic forecasts of rainfall exceeding various thresholds that decision makers can use to make critical risk assessments. Examples of the utilization and performance of eTRaP will be given in the presentation.

  5. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models

    NASA Astrophysics Data System (ADS)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2015-10-01

    Reliable river flow forecasts play a key role in flood risk mitigation. Among different approaches of river flow forecasting, data driven approaches have become increasingly popular in recent years due to their minimum information requirements and ability to simulate nonlinear and non-stationary characteristics of hydrological processes. In this study, attempts are made to apply four different types of data driven approaches, namely traditional artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), wavelet neural networks (WNN), and, hybrid ANFIS with multi resolution analysis using wavelets (WNF). Developed models applied for real time flood forecasting at Casino station on Richmond River, Australia which is highly prone to flooding. Hourly rainfall and runoff data were used to drive the models which have been used for forecasting with 1, 6, 12, 24, 36 and 48 h lead-time. The performance of models further improved by adding an upstream river flow data (Wiangaree station), as another effective input. All models perform satisfactorily up to 12 h lead-time. However, the hybrid wavelet-based models significantly outperforming the ANFIS and ANN models in the longer lead-time forecasting. The results confirm the robustness of the proposed structure of the hybrid models for real time runoff forecasting in the study area.

  6. The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers

    NASA Astrophysics Data System (ADS)

    Foster, Kean; Bertacchi Uvo, Cintia; Olsson, Jonas

    2018-05-01

    Hydropower makes up nearly half of Sweden's electrical energy production. However, the distribution of the water resources is not aligned with demand, as most of the inflows to the reservoirs occur during the spring flood period. This means that carefully planned reservoir management is required to help redistribute water resources to ensure optimal production and accurate forecasts of the spring flood volume (SFV) is essential for this. The current operational SFV forecasts use a historical ensemble approach where the HBV model is forced with historical observations of precipitation and temperature. In this work we develop and test a multi-model prototype, building on previous work, and evaluate its ability to forecast the SFV in 84 sub-basins in northern Sweden. The hypothesis explored in this work is that a multi-model seasonal forecast system incorporating different modelling approaches is generally more skilful at forecasting the SFV in snow dominated regions than a forecast system that utilises only one approach. The testing is done using cross-validated hindcasts for the period 1981-2015 and the results are evaluated against both climatology and the current system to determine skill. Both the multi-model methods considered showed skill over the reference forecasts. The version that combined the historical modelling chain, dynamical modelling chain, and statistical modelling chain performed better than the other and was chosen for the prototype. The prototype was able to outperform the current operational system 57 % of the time on average and reduce the error in the SFV by ˜ 6 % across all sub-basins and forecast dates.

  7. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.

  8. Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service

    NASA Astrophysics Data System (ADS)

    Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.

    2016-12-01

    The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.

  9. Precipitation and floodiness: forecasts of flood hazard at the regional scale

    NASA Astrophysics Data System (ADS)

    Stephens, Liz; Day, Jonny; Pappenberger, Florian; Cloke, Hannah

    2016-04-01

    In 2008, a seasonal forecast of an increased likelihood of above-normal rainfall in West Africa led the Red Cross to take early humanitarian action (such as prepositioning of relief items) on the basis that this forecast implied heightened flood risk. However, there are a number of factors that lead to non-linearity between precipitation anomalies and flood hazard, so in this presentation we use a recently developed global-scale hydrological model driven by the ERA-Interim/Land precipitation reanalysis (1980-2010) to quantify this non-linearity. Using these data, we introduce the concept of floodiness to measure the incidence of floods over a large area, and quantify the link between monthly precipitation, river discharge and floodiness anomalies. Our analysis shows that floodiness is not well correlated with precipitation, demonstrating the problem of using seasonal precipitation forecasts as a proxy for forecasting flood hazard. This analysis demonstrates the value of developing hydrometeorological forecasts of floodiness for decision-makers. As a result, we are now working with the European Centre for Medium-Range Weather Forecasts and the Joint Research Centre, as partners of the operational Global Flood Awareness System (GloFAS), to implement floodiness forecasts in real-time.

  10. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which might provide better and more reliable forecast for the flood affected communities.

  11. Monthly streamflow forecasting in the Rhine basin

    NASA Astrophysics Data System (ADS)

    Schick, Simon; Rössler, Ole; Weingartner, Rolf

    2017-04-01

    Forecasting seasonal streamflow of the Rhine river is of societal relevance as the Rhine is an important water way and water resource in Western Europe. The present study investigates the predictability of monthly mean streamflow at lead times of zero, one, and two months with the focus on potential benefits by the integration of seasonal climate predictions. Specifically, we use seasonal predictions of precipitation and surface air temperature released by the European Centre for Medium-Range Weather Forecasts (ECMWF) for a regression analysis. In order to disentangle forecast uncertainty, the 'Reverse Ensemble Streamflow Prediction' framework is adapted here to the context of regression: By using appropriate subsets of predictors the regression model is constrained to either the initial conditions, the meteorological forcing, or both. An operational application is mimicked by equipping the model with the seasonal climate predictions provided by ECMWF. Finally, to mitigate the spatial aggregation of the meteorological fields the model is also applied at the subcatchment scale, and the resulting predictions are combined afterwards. The hindcast experiment is carried out for the period 1982-2011 in cross validation mode at two gauging stations, namely the Rhine at Lobith and Basel. The results show that monthly forecasts are skillful with respect to climatology only at zero lead time. In addition, at zero lead time the integration of seasonal climate predictions decreases the mean absolute error by 5 to 10 percentage compared to forecasts which are solely based on initial conditions. This reduction most likely is induced by the seasonal prediction of precipitation and not air temperature. The study is completed by bench marking the regression model with runoff simulations from ECMWFs seasonal forecast system. By simply using basin averages followed by a linear bias correction, these runoff simulations translate well to monthly streamflow. Though the regression model is only slightly outperformed, we argue that runoff out of the land surface component of seasonal climate forecasting systems is an interesting option when it comes to seasonal streamflow forecasting in large river basins.

  12. Adaptive Regulation of the Northern California Reservoir System for Water, Energy, and Environmental Management

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.; Kistenmacher, M.; Yao, H.; Georgakakos, K. P.

    2014-12-01

    The 2014 National Climate Assessment of the US Global Change Research Program emphasizes that water resources managers and planners in most US regions will have to cope with new risks, vulnerabilities, and opportunities, and recommends the development of adaptive capacity to effectively respond to the new water resources planning and management challenges. In the face of these challenges, adaptive reservoir regulation is becoming all the more ncessary. Water resources management in Northern California relies on the coordinated operation of several multi-objective reservoirs on the Trinity, Sacramento, American, Feather, and San Joaquin Rivers. To be effective, reservoir regulation must be able to (a) account for forecast uncertainty; (b) assess changing tradeoffs among water uses and regions; and (c) adjust management policies as conditions change; and (d) evaluate the socio-economic and environmental benefits and risks of forecasts and policies for each region and for the system as a whole. The Integrated Forecast and Reservoir Management (INFORM) prototype demonstration project operated in Northern California through the collaboration of several forecast and management agencies has shown that decision support systems (DSS) with these attributes add value to stakeholder decision processes compared to current, less flexible management practices. Key features of the INFORM DSS include: (a) dynamically downscaled operational forecasts and climate projections that maintain the spatio-temporal coherence of the downscaled land surface forcing fields within synoptic scales; (b) use of ensemble forecast methodologies for reservoir inflows; (c) assessment of relevant tradeoffs among water uses on regional and local scales; (d) development and evaluation of dynamic reservoir policies with explicit consideration of hydro-climatic forecast uncertainties; and (e) focus on stakeholder information needs.This article discusses the INFORM integrated design concept, underlying methodologies, and selected applications with the California water resources system.

  13. The FAST-T approach for operational, real time, short term hydrological forecasting: Results from the Betania Hydropower Reservoir case study

    NASA Astrophysics Data System (ADS)

    Domínguez, Efraín; Angarita, Hector; Rosmann, Thomas; Mendez, Zulma; Angulo, Gustavo

    2013-04-01

    A viable quantitative hydrological forecasting service is a combination of technological elements, personnel and knowledge, working together to establish a stable operational cycle of forecasts emission, dissemination and assimilation; hence, the process for establishing such system usually requires significant resources and time to reach an adequate development and integration in order to produce forecasts with acceptable levels of performance. Here are presented the results of this process for the recently implemented Operational Forecast Service for the Betania's Hydropower Reservoir - or SPHEB, located at the Upper-Magdalena River Basin (Colombia). The current scope of the SPHEB includes forecasting of water levels and discharge for the three main streams affluent to the reservoir, for lead times between +1 to +57 hours, and +1 to +10 days. The core of the SPHEB is the Flexible, Adaptive, Simple and Transient Time forecasting approach, namely FAST-T. This comprises of a set of data structures, mathematical kernel, distributed computing and network infrastructure designed to provide seamless real-time operational forecast and automatic model adjustment in case of failures in data transmission or assimilation. Among FAST-T main features are: an autonomous evaluation and detection of the most relevant information for the later configuration of forecasting models; an adaptively linearized mathematical kernel, the optimal adaptive linear combination or OALC, which provides a computationally simple and efficient algorithm for real-time applications; and finally, a meta-model catalog, containing prioritized forecast models at given stream conditions. The SPHEB is at present feed by the fraction of hydrological monitoring network installed at the basin that has telemetric capabilities via NOAA-GOES satellites (8 stages, approximately 47%) with data availability of about a 90% at one hour intervals. However, there is a dense network of 'conventional' hydro-meteorological stages -read manually once or twice per day - that, despite not ideal in the context of real-time system, improve model performance significantly, and therefore are entered into the system by manual input. At its current configuration, the SPHEB performance objectives are fulfilled for 90% of the forecasts with lead times up to +2 days and +15 hours (using the predictability criteria of the Russian Hydrometeorological Center S/?Δ) and the average accuracy is in the range 70-99% ( r2 criteria). However, longer lead times are at present not satisfactory in terms of forecasts accuracy.

  14. Developments of the European Flood Awareness System (EFAS)

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Olav Skøien, Jon; Salamon, Peter; Pappenberger, Florian; Wetterhall, Fredrik; Holst, Bo; Asp, Sara-Sophia; Garcia Padilla, Mercedes; Garcia, Rafael J.; Schweim, Christoph; Ziese, Markus

    2017-04-01

    EFAS (http://www.efas.eu) is an operational system for flood forecasting and early warning for the entire Europe, which is fully operational as part of the Copernicus Emergency Management Service since 2012. The prime aim of EFAS is to gain time for preparedness measures before major flood events - particularly in trans-national river basins - strike. This is achieved by providing complementary, added value information to the national and regional services holding the mandate for flood warning as well as to the ERCC (European Response and Coordination Centre). Using a coherent model for all of Europe forced with a range of deterministic and ensemble weather forecasts, the system can give a probabilistic flood forecast for a medium range lead time (up to 10 days) independent of country borders. The system is under continuous development, and we will present the basic set up, some prominent examples of recent and ongoing developments (such as the rapid impact assessment, seasonal outlook and the extended domain) and the future challenges.

  15. Forecasting snowmelt flooding over Britain using the Grid-to-Grid model: a review and assessment of methods

    NASA Astrophysics Data System (ADS)

    Dey, Seonaid R. A.; Moore, Robert J.; Cole, Steven J.; Wells, Steven C.

    2017-04-01

    In many regions of high annual snowfall, snowmelt modelling can prove to be a vital component of operational flood forecasting and warning systems. Although Britain as a whole does not experience prolonged periods of lying snow, with the exception of the Scottish Highlands, the inclusion of snowmelt modelling can still have a significant impact on the skill of flood forecasts. Countrywide operational flood forecasts over Britain are produced using the national Grid-to-Grid (G2G) distributed hydrological model. For Scotland, snowmelt is included in these forecasts through a G2G snow hydrology module involving temperature-based snowfall/rainfall partitioning and functions for temperature-excess snowmelt, snowpack storage and drainage. Over England and Wales, the contribution of snowmelt is included by pre-processing the precipitation prior to input into G2G. This removes snowfall diagnosed from weather model outputs and adds snowmelt from an energy budget land surface scheme to form an effective liquid water gridded input to G2G. To review the operational options for including snowmelt modelling in G2G over Britain, a project was commissioned by the Environment Agency through the Flood Forecasting Centre (FFC) for England and Wales and in partnership with the Scottish Environment Protection Agency (SEPA) and Natural Resources Wales (NRW). Results obtained from this snowmelt review project will be reported on here. The operational methods used by the FFC and SEPA are compared on past snowmelt floods, alongside new alternative methods of treating snowmelt. Both case study and longer-term analyses are considered, covering periods selected from the winters 2009-2010, 2012-2013, 2013-2014 and 2014-2015. Over Scotland, both of the snowmelt methods used operationally by FFC and SEPA provided a clear improvement to the river flow simulations. Over England and Wales, fewer and less significant snowfall events occurred, leading to less distinction in the results between the methods. It is noted that, for all methods considered, large uncertainties remain in flood forecasts influenced by snowmelt. Understanding and quantifying these uncertainties should lead to more informed flood forecasts and associated guidance information.

  16. National Water Model assessment for water management needs over the Western United States.

    NASA Astrophysics Data System (ADS)

    Viterbo, F.; Thorstensen, A.; Cifelli, R.; Hughes, M.; Johnson, L.; Gochis, D.; Wood, A.; Nowak, K.; Dahm, K.

    2017-12-01

    The NOAA National Water Model (NWM) became operational in August 2016, providing the first ever, real-time distributed high-resolution forecasts for the continental United States. Since the model predictions occur at the CONUS scale, there is a need to evaluate the NWM in different regions to assess the wide variety and heterogeneity of hydrological processes that are included (e.g., snow melting, ice freezing, flash flooding events). In particular, to address water management needs in the western U.S., a collaborative project between the Bureau of Reclamation, NOAA, and NCAR is ongoing to assess the NWM performance for reservoir inflow forecasting needs and water management operations. In this work, the NWM is evaluated using different forecast ranges (short to medium) and retrospective historical runs forced by North American Land Data Assimilation System (NLDAS) analysis to assess the NWM skills over key headwaters watersheds in the western U.S. that are of interest to the Bureau of Reclamation. The streamflow results are analyzed and compared with the available observations at the gauge sites, evaluating different NWM operational versions together with the already existing local River Forecast Center forecasts. The NWM uncertainty is also considered, evaluating the propagation of the precipitation forcing uncertainties in the resulting hydrograph. In addition, the possible advantages of high-resolution distributed output variables (such as soil moisture, evapotranspiration fluxes) are investigated, to determine the utility of such information for water managers in terms of watershed characteristics in areas that traditionally have not had any forecast information. The results highlight the NWM's ability to provide high-resolution forecast information in space and time. As anticipated, the performance is best in regions that are dominated by natural flows and where the model has benefited from efforts toward parameter calibration. In highly regulated basins, the water management operations result in NWM overestimation of the peak flows and too fast recession curves. As a future project goal, some reforecasts will be run on target locations, ingesting water management information into the NWM and comparing the new results with the actual operational forecast.

  17. Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales

    NASA Astrophysics Data System (ADS)

    Baggett, Cory F.; Barnes, Elizabeth A.; Maloney, Eric D.; Mundhenk, Bryan D.

    2017-07-01

    Atmospheric rivers are elongated plumes of intense moisture transport that are capable of producing extreme and impactful weather. Along the West Coast of North America, they occasionally cause considerable mayhem—delivering flooding rains during periods of heightened activity and desiccating droughts during periods of reduced activity. The intrinsic chaos of the atmosphere makes the prediction of atmospheric rivers at subseasonal-to-seasonal time scales (3 to 5 weeks) an inherently difficult task. We demonstrate here that the potential exists to advance forecast lead times of atmospheric rivers into subseasonal-to-seasonal time scales through knowledge of two of the atmosphere's most prominent oscillations, the Madden-Julian oscillation (MJO) and the quasi-biennial oscillation (QBO). Strong MJO and QBO activity modulates the frequency at which atmospheric rivers strike—offering an opportunity to improve subseasonal-to-seasonal forecast models and thereby skillfully predict atmospheric river activity up to 5 weeks in advance.

  18. Forecasting of Seasonal Rainfall using ENSO and IOD teleconnection with Classification Models

    NASA Astrophysics Data System (ADS)

    De Silva, T.; Hornberger, G. M.

    2017-12-01

    Seasonal to annual forecasts of precipitation patterns are very important for water infrastructure management. In particular, such forecasts can be used to inform decisions about the operation of multipurpose reservoir systems in the face of changing climate conditions. Success in making useful forecasts often is achieved by considering climate teleconnections such as the El-Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) as related to sea surface temperature variations. We present an analysis to explore the utility of using rainfall relationships in Sri Lanka with ENSO and IOD to predict rainfall to the Mahaweli, river basin. Forecasting of rainfall as classes - above normal, normal, and below normal - can be useful for water resource management decision making. Quadratic discrimination analysis (QDA) and random forest models are used to identify the patterns of rainfall classes with respect to ENSO and IOD indices. These models can be used to forecast the likelihood of areal rainfall anomalies using predicted climate indices. Results can be used for decisions regarding allocation of water for agriculture and electricity generation within the Mahaweli project of Sri Lanka.

  19. Use of distributed snow cover information to update snow storages of a lumped rainfall-runoff model operationally

    NASA Astrophysics Data System (ADS)

    Lisniak, D.; Meissner, D.; Klein, B.; Pinzinger, R.

    2013-12-01

    The German Federal Institute of Hydrology (BfG) offers navigational water-level forecasting services on the Federal Waterways, like the rivers Rhine and Danube. In cooperation with the Federal States this mandate also includes the forecasting of flood events. For the River Rhine, the most frequented inland waterway in Central Europe, the BfG employs a hydrological model (HBV) coupled to a hydraulic model (SOBEK) by the FEWS-framework to perform daily forecasts of water-levels operationally. Sensitivity studies have shown that the state of soil water storage in the hydrological model is a major factor of uncertainty when performing short- to medium-range forecasts some days ahead. Taking into account the various additional sources of uncertainty associated with hydrological modeling, including measurement uncertainties, it is essential to estimate an optimal initial state of the soil water storage before propagating it in time, forced by meteorological forecasts, and transforming it into discharge. We show, that using the Ensemble Kalman Filter these initial states can be updated straightforward under certain hydrologic conditions. However, this approach is not sufficient if the runoff is mainly generated by snow melt. Since the snow cover evolution is modeled rather poorly by the HBV-model in our operational setting, flood events caused by snow melt are consistently underestimated by the HBV-model, which has long term effects in basins characterized by a nival runoff regime. Thus, it appears beneficial to update the snow storage of the HBV-model with information derived from regionalized snow cover observations. We present a method to incorporate spatially distributed snow cover observations into the lumped HBV-model. We show the plausibility of this approach and asses the benefits of a coupled snow cover and soil water storage updating, which combine a direct insertion with an Ensemble Kalman Filter. The Ensemble Kalman Filter used here takes into account the internal routing mechanism of the HBV-model, which causes a delayed response of the simulated discharge at the catchment outlet to changes in internal states.

  20. A pilot study of river flow prediction in urban area based on phase space reconstruction

    NASA Astrophysics Data System (ADS)

    Adenan, Nur Hamiza; Hamid, Nor Zila Abd; Mohamed, Zulkifley; Noorani, Mohd Salmi Md

    2017-08-01

    River flow prediction is significantly related to urban hydrology impact which can provide information to solve any problems such as flood in urban area. The daily river flow of Klang River, Malaysia was chosen to be forecasted in this pilot study which based on phase space reconstruction. The reconstruction of phase space involves a single variable of river flow data to m-dimensional phase space in which the dimension (m) is based on the optimal values of Cao method. The results from the reconstruction of phase space have been used in the forecasting process using local linear approximation method. From our investigation, river flow at Klang River is chaotic based on the analysis from Cao method. The overall results provide good value of correlation coefficient. The value of correlation coefficient is acceptable since the area of the case study is influence by a lot of factors. Therefore, this pilot study may be proposed to forecast daily river flow data with the purpose of providing information about the flow of the river system in urban area.

  1. Water quality in the Schuylkill River, Pennsylvania: the potential for long-lead forecasts

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Peralez, J.

    2012-12-01

    Prior analysis of pathogen levels in the Schuylkill River has led to a categorical daily forecast of water quality (denoted as red, yellow, or green flag days.) The forecast, available to the public online through the Philadelphia Water Department, is predominantly based on the local precipitation forecast. In this study, we explore the feasibility of extending the forecast to the seasonal scale by associating large-scale climate drivers with local precipitation and water quality parameter levels. This advance information is relevant for recreational activities, ecosystem health, and water treatment (energy, chemicals), as the Schuylkill provides 40% of Philadelphia's water supply. Preliminary results indicate skillful prediction of average summertime water quality parameters and characteristics, including chloride, coliform, turbidity, alkalinity, and others, using season-ahead oceanic and atmospheric variables, predominantly from the North Atlantic. Water quality parameter trends, including historic land use changes along the river, association with climatic variables, and prediction models will be presented.

  2. ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation

    NASA Astrophysics Data System (ADS)

    Lavers, David A.; Pappenberger, Florian; Richardson, David S.; Zsoter, Ervin

    2016-11-01

    In winter, heavy precipitation and floods along the west coasts of midlatitude continents are largely caused by intense water vapor transport (integrated vapor transport (IVT)) within the atmospheric river of extratropical cyclones. This study builds on previous findings that showed that forecasts of IVT have higher predictability than precipitation, by applying and evaluating the European Centre for Medium-Range Weather Forecasts Extreme Forecast Index (EFI) for IVT in ensemble forecasts during three winters across Europe. We show that the IVT EFI is more able (than the precipitation EFI) to capture extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase; conversely, the precipitation EFI is better during the negative NAO phase and at shorter leads. An IVT EFI example for storm Desmond in December 2015 highlights its potential to identify upcoming hydrometeorological extremes, which may prove useful to the user and forecasting communities.

  3. Verifying and Postprocesing the Ensemble Spread-Error Relationship

    NASA Astrophysics Data System (ADS)

    Hopson, Tom; Knievel, Jason; Liu, Yubao; Roux, Gregory; Wu, Wanli

    2013-04-01

    With the increased utilization of ensemble forecasts in weather and hydrologic applications, there is a need to verify their benefit over less expensive deterministic forecasts. One such potential benefit of ensemble systems is their capacity to forecast their own forecast error through the ensemble spread-error relationship. The paper begins by revisiting the limitations of the Pearson correlation alone in assessing this relationship. Next, we introduce two new metrics to consider in assessing the utility an ensemble's varying dispersion. We argue there are two aspects of an ensemble's dispersion that should be assessed. First, and perhaps more fundamentally: is there enough variability in the ensembles dispersion to justify the maintenance of an expensive ensemble prediction system (EPS), irrespective of whether the EPS is well-calibrated or not? To diagnose this, the factor that controls the theoretical upper limit of the spread-error correlation can be useful. Secondly, does the variable dispersion of an ensemble relate to variable expectation of forecast error? Representing the spread-error correlation in relation to its theoretical limit can provide a simple diagnostic of this attribute. A context for these concepts is provided by assessing two operational ensembles: 30-member Western US temperature forecasts for the U.S. Army Test and Evaluation Command and 51-member Brahmaputra River flow forecasts of the Climate Forecast and Applications Project for Bangladesh. Both of these systems utilize a postprocessing technique based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. In addition, the methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. We will describe both ensemble systems briefly, review the steps used to calibrate the ensemble forecast, and present verification statistics using error-spread metrics, along with figures from operational ensemble forecasts before and after calibration.

  4. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan

    2017-07-01

    An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.

  5. A multimodel approach to interannual and seasonal prediction of Danube discharge anomalies

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Ionita, Monica; Patrut, Simona; Dima, Mihai

    2010-05-01

    Interannual and seasonal predictability of Danube river discharge is investigated using three model types: 1) time series models 2) linear regression models of discharge with large-scale climate mode indices and 3) models based on stable teleconnections. All models are calibrated using discharge and climatic data for the period 1901-1977 and validated for the period 1978-2008 . Various time series models, like autoregressive (AR), moving average (MA), autoregressive and moving average (ARMA) or singular spectrum analysis and autoregressive moving average (SSA+ARMA) models have been calibrated and their skills evaluated. The best results were obtained using SSA+ARMA models. SSA+ARMA models proved to have the highest forecast skill also for other European rivers (Gamiz-Fortis et al. 2008). Multiple linear regression models using large-scale climatic mode indices as predictors have a higher forecast skill than the time series models. The best predictors for Danube discharge are the North Atlantic Oscillation (NAO) and the East Atlantic/Western Russia patterns during winter and spring. Other patterns, like Polar/Eurasian or Tropical Northern Hemisphere (TNH) are good predictors for summer and autumn discharge. Based on stable teleconnection approach (Ionita et al. 2008) we construct prediction models through a combination of sea surface temperature (SST), temperature (T) and precipitation (PP) from the regions where discharge and SST, T and PP variations are stable correlated. Forecast skills of these models are higher than forecast skills of the time series and multiple regression models. The models calibrated and validated in our study can be used for operational prediction of interannual and seasonal Danube discharge anomalies. References Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part I: intearannual predictability. J. Climate, 2484-2501, 2008. Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part II: seasonal predictability. J. Climate, 2503-2518, 2008. Ionita, M., G. Lohmann, and N. Rimbu, Prediction of spring Elbe river discharge based on stable teleconnections with global temperature and precipitation. J. Climate. 6215-6226, 2008.

  6. Payette River Basin Project: Improving Operational Forecasting in Complex Terrain through Chemistry

    NASA Astrophysics Data System (ADS)

    Blestrud, D.; Kunkel, M. L.; Parkinson, S.; Holbrook, V. P.; Benner, S. G.; Fisher, J.

    2015-12-01

    Idaho Power Company (IPC) is an investor owned hydroelectric based utility, serving customers throughout southern Idaho and eastern Oregon. The University of Arizona (UA) runs an operational 1.8-km resolution Weather and Research Forecast (WRF) model for IPC, which is incorporated into IPC near and real-time forecasts for hydro, solar and wind generation, load servicing and a large-scale wintertime cloud seeding operation to increase winter snowpack. Winter snowpack is critical to IPC, as hydropower provides ~50% of the company's generation needs. In efforts to improve IPC's near-term forecasts and operational guidance to its cloud seeding program, IPC is working extensively with UA and the National Center for Atmospheric Research (NCAR) to improve WRF performance in the complex terrain of central Idaho. As part of this project, NCAR has developed a WRF based cloud seeding module (WRF CS) to deliver high-resolution, tailored forecasts to provide accurate guidance for IPC's operations. Working with Boise State University (BSU), IPC is conducting a multiyear campaign to validate the WRF CS's ability to account for and disperse the cloud seeding agent (AgI) within the boundary layer. This improved understanding of how WRF handles the AgI dispersion and fate will improve the understanding and ultimately the performance of WRF to forecast other parameters. As part of this campaign, IPC has developed an extensive ground based monitoring network including a Remote Area Snow Sampling Device (RASSD) that provides spatially and temporally discrete snow samples during active cloud seeding periods. To quantify AgI dispersion in the complex terrain, BSU conducts trace element analysis using LA-ICP-MS on the RASSD sampled snow to provide measurements (at the 10-12 level) of incorporated AgI, measurements are compare directly with WRF CS's estimates of distributed AgI. Modeling and analysis results from previous year's research and plans for coming seasons will be presented.

  7. MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno

    2017-04-01

    Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.

  8. Coupled lagged ensemble weather- and river runoff prediction in complex Alpine terrain

    NASA Astrophysics Data System (ADS)

    Smiatek, Gerhard; Kunstmann, Harald; Werhahn, Johannes

    2013-04-01

    It is still a challenge to predict fast reacting streamflow precipitation response in Alpine terrain. Civil protection measures require flood prediction in 24 - 48 lead time. This holds particularly true for the Ammer River region which was affected by century floods in 1999, 2003 and 2005. Since 2005 a coupled NWP/Hydrology model system is operated in simulating and predicting the Ammer River discharges. The Ammer River catchment is located in the Bavarian Ammergau Alps and alpine forelands, Germany. With elevations reaching 2185 m and annual mean precipitation between 1100 and 2000 mm it represents very demanding test ground for a river runoff prediction system. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. The major components of the system are the MM5 NWP model run at 3.5 km resolution and initialized twice a day, the hydrology model WaSiM-ETH run at 100 m resolution and Perl object environment (POE) implementing the networking and the system operation. Results obtained in the years 2005-2012 reveal that river runoff simulations depict already high correlation (NSC in range 0.53 and 0.95) with observed runoff in retrospective runs with monitored meteorology data, but suffer from errors in quantitative precipitation forecast (QPF) from the employed numerical weather prediction model. We evaluate the NWP model accuracy, especially the precipitation intensity, frequency and location and put a focus on the performance gain of bias adjustment procedures. We show how this enhanced QFP data help to reduce the uncertainty in the discharge prediction. In addition to the HND (Hochwassernachrichtendienst, Bayern) observations TERENO Longterm Observatory hydrometeorological observation data are available since 2011. They are used to evaluate the NWP performance and setup of a bias correction procedure based on ensemble postprocessing applying Bayesian (BMA) model averaging. We first present briefly the technical setup of the operational coupled lagged NWP/Hydrology model system and then focus on the evaluation of the NWP model, the BMA enhanced QPF and its application within the Ammer simulation system in the period 2011 - 2012

  9. Delft-FEWS:A Decision Making Platform to Intergrate Data, Model, Algorithm for Large-Scale River Basin Water Management

    NASA Astrophysics Data System (ADS)

    Yang, T.; Welles, E.

    2017-12-01

    In this paper, we introduce a flood forecasting and decision making platform, named Delft-FEWS, which has been developed over years at the Delft Hydraulics and now at Deltares. The philosophy of Delft-FEWS is to provide water managers and operators with an open shell tool, which allows the integratation of a variety of hydrological, hydraulics, river routing, and reservoir models with hydrometerological forecasts data. Delft-FEWS serves as an powerful tool for both basin-scale and national-scale water resources management. The essential novelty of Delft-FEWS is to change the flood forecasting and water resources management from a single model or agency centric paradigm to a intergrated framework, in which different model, data, algorithm and stakeholders are strongly linked together. The paper will start with the challenges in water resources managment, and the concept and philosophy of Delft-FEWS. Then, the details of data handling and linkages of Delft-FEWS with different hydrological, hydraulic, and reservoir models, etc. Last, several cases studies and applications of Delft-FEWS will be demonstrated, including the National Weather Service and the Bonneville Power Administration in USA, and a national application in the water board in the Netherland.

  10. Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting

    NASA Astrophysics Data System (ADS)

    Wardah, T.; Abu Bakar, S. H.; Bardossy, A.; Maznorizan, M.

    2008-07-01

    SummaryFrequent flash-floods causing immense devastation in the Klang River Basin of Malaysia necessitate an improvement in the real-time forecasting systems being used. The use of meteorological satellite images in estimating rainfall has become an attractive option for improving the performance of flood forecasting-and-warning systems. In this study, a rainfall estimation algorithm using the infrared (IR) information from the Geostationary Meteorological Satellite-5 (GMS-5) is developed for potential input in a flood forecasting system. Data from the records of GMS-5 IR images have been retrieved for selected convective cells to be trained with the radar rain rate in a back-propagation neural network. The selected data as inputs to the neural network, are five parameters having a significant correlation with the radar rain rate: namely, the cloud-top brightness-temperature of the pixel of interest, the mean and the standard deviation of the temperatures of the surrounding five by five pixels, the rate of temperature change, and the sobel operator that indicates the temperature gradient. In addition, three numerical weather prediction (NWP) products, namely the precipitable water content, relative humidity, and vertical wind, are also included as inputs. The algorithm is applied for the areal rainfall estimation in the upper Klang River Basin and compared with another technique that uses power-law regression between the cloud-top brightness-temperature and radar rain rate. Results from both techniques are validated against previously recorded Thiessen areal-averaged rainfall values with coefficient correlation values of 0.77 and 0.91 for the power-law regression and the artificial neural network (ANN) technique, respectively. An extra lead time of around 2 h is gained when the satellite-based ANN rainfall estimation is coupled with a rainfall-runoff model to forecast a flash-flood event in the upper Klang River Basin.

  11. Applications of satellite snow cover in computerized short-term streamflow forecasting. [Conejos River, Colorado

    NASA Technical Reports Server (NTRS)

    Leaf, C. F.

    1975-01-01

    A procedure is described whereby the correlation between: (1) satellite derived snow-cover depletion and (2) residual snowpack water equivalent, can be used to update computerized residual flow forecasts for the Conejos River in southern Colorado.

  12. Using FRET for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Osborne, H. D.; Palmer, C. K.; Hobbins, M.

    2016-12-01

    With the ongoing drought plaguing California and much of the Western United States, water agencies and the general public have a heightened need for short term forecasts of evapotranspiration. The National Weather Service's (NWS) Forecast Reference Evapotranspiration (FRET) product suite can fill this need. The FRET product suite uses the Penman - Monteith Reference Evapotranspiration (ETrc) equation for a short canopy (12 cm grasses), adopted by the Environmental Water Resources Institute of the American Society of Civil Engineers. FRET is calculated across the contiguous U.S. using temperatures, humidity, winds, and sky cover from Numerical Weather Prediction (NPW) models and adjusted by NWS forecasters with local expertise of terrain and weather patterns. The Weekly ETrc product is easily incorporated into drought-planning strategies, allowing water managers, the agricultural community, and the public to make better informed water-use decisions. FRET can assist with the decision making process for scheduling irrigation (e.g., farms, golf courses, vineyards) and timing of fertilizers. The California Department of Water Resources (CA DWR) also ingests the FRET into their soil moisture models, and uses FRET to assist in determining the reservoir releases for the Feather River. The United States Bureau of Reclamation (USBR) also uses FRET in determining reservoir releases and assessing water temperature along the Sacramento and American Rivers. FRET is now operational on the National Digital Forecast Database (NDFD), permitting other agencies easy access to this nationwide data for all drought mitigation and planning purposes.

  13. Application of The Rainfall-runoff Model Topkapi For The Entire Basin of The Po River As Part of The European Project Effs

    NASA Astrophysics Data System (ADS)

    Todini, E.; Bartholmes, J.

    The project EFFS (European Flood Forecasting System) aims at developing a flood forecasting system for the major river basins all over Europe. To extend the forecast- ing and thus the warning time in a significant way (up to 10 days) meteorological forecasting data from the ECMWF will be used as input to hydrological models. For this purpose it is fundamental to have a reliable rainfall-runoff model. For the river Po basin we chose the TOPKAPI model (Ciarapica, Todini 1998). TOPKAPI is a physi- cally based rainfall-runoff model that maintains its physical significance passing from hillslope to large basin scale. The aim of the distributed version is to reproduce the spatial variability and to lead to a better understanding of scaling effects on meteo- rological data used as well as of physical phenomena and parameters. By now the TOPKAPI model has been applied successfully to basins of smaller and medium size (up to 8000 km2). The present work also proves that TOPKAPI is a valuable flood forecasting tool for larger basins such as the Po river. An advantage of the TOPKAPI model is its physical basis. It doesn't need a "real" calibration in the common sense of the expression. The calibration work that has to be done is due to the unavoidable averaging and approximation in the input data representing various phenomena. This reduces the calibration work as well as the length of data required. The model was implemented on the Po river at spatial steps of 1km and time steps of 1 hour using available data during the year 1994. After the calibration phase, mesoscale forecasts (from ECMWF) as well as forecasts of LAM models (DWD,DMI) will be used as input to the Po river models and their behaviour will be studied as a function of the prediction quality and of the coarseness of the spatial discretisation.

  14. Post-processing of multi-model ensemble river discharge forecasts using censored EMOS

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2014-05-01

    When forecasting water levels and river discharge, ensemble weather forecasts are used as meteorological input to hydrologic process models. As hydrologic models are imperfect and the input ensembles tend to be biased and underdispersed, the output ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, statistical post-processing is required in order to achieve calibrated and sharp predictions. Standard post-processing methods such as Ensemble Model Output Statistics (EMOS) that have their origins in meteorological forecasting are now increasingly being used in hydrologic applications. Here we consider two sub-catchments of River Rhine, for which the forecasting system of the Federal Institute of Hydrology (BfG) uses runoff data that are censored below predefined thresholds. To address this methodological challenge, we develop a censored EMOS method that is tailored to such data. The censored EMOS forecast distribution can be understood as a mixture of a point mass at the censoring threshold and a continuous part based on a truncated normal distribution. Parameter estimates of the censored EMOS model are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over the training dataset. Model fitting on Box-Cox transformed data allows us to take account of the positive skewness of river discharge distributions. In order to achieve realistic forecast scenarios over an entire range of lead-times, there is a need for multivariate extensions. To this end, we smooth the marginal parameter estimates over lead-times. In order to obtain realistic scenarios of discharge evolution over time, the marginal distributions have to be linked with each other. To this end, the multivariate dependence structure can either be adopted from the raw ensemble like in Ensemble Copula Coupling (ECC), or be estimated from observations in a training period. The censored EMOS model has been applied to multi-model ensemble forecasts issued on a daily basis over a period of three years. For the two catchments considered, this resulted in well calibrated and sharp forecast distributions over all lead-times from 1 to 114 h. Training observations tended to be better indicators for the dependence structure than the raw ensemble.

  15. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.

  16. Incorporating probabilistic seasonal climate forecasts into river management using a risk-based framework

    USGS Publications Warehouse

    Sojda, Richard S.; Towler, Erin; Roberts, Mike; Rajagopalan, Balaji

    2013-01-01

    [1] Despite the influence of hydroclimate on river ecosystems, most efforts to date have focused on using climate information to predict streamflow for water supply. However, as water demands intensify and river systems are increasingly stressed, research is needed to explicitly integrate climate into streamflow forecasts that are relevant to river ecosystem management. To this end, we present a five step risk-based framework: (1) define risk tolerance, (2) develop a streamflow forecast model, (3) generate climate forecast ensembles, (4) estimate streamflow ensembles and associated risk, and (5) manage for climate risk. The framework is successfully demonstrated for an unregulated watershed in southwest Montana, where the combination of recent drought and water withdrawals has made it challenging to maintain flows needed for healthy fisheries. We put forth a generalized linear modeling (GLM) approach to develop a suite of tools that skillfully model decision-relevant low flow characteristics in terms of climate predictors. Probabilistic precipitation forecasts are used in conjunction with the GLMs, resulting in season-ahead prediction ensembles that provide the full risk profile. These tools are embedded in an end-to-end risk management framework that directly supports proactive fish conservation efforts. Results show that the use of forecasts can be beneficial to planning, especially in wet years, but historical precipitation forecasts are quite conservative (i.e., not very “sharp”). Synthetic forecasts show that a modest “sharpening” can strongly impact risk and improve skill. We emphasize that use in management depends on defining relevant environmental flows and risk tolerance, requiring local stakeholder involvement.

  17. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    NASA Astrophysics Data System (ADS)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  18. On operational flood forecasting system involving 1D/2D coupled hydraulic model and data assimilation

    NASA Astrophysics Data System (ADS)

    Barthélémy, S.; Ricci, S.; Morel, T.; Goutal, N.; Le Pape, E.; Zaoui, F.

    2018-07-01

    In the context of hydrodynamic modeling, the use of 2D models is adapted in areas where the flow is not mono-dimensional (confluence zones, flood plains). Nonetheless the lack of field data and the computational cost constraints limit the extensive use of 2D models for operational flood forecasting. Multi-dimensional coupling offers a solution with 1D models where the flow is mono-dimensional and with local 2D models where needed. This solution allows for the representation of complex processes in 2D models, while the simulated hydraulic state is significantly better than that of the full 1D model. In this study, coupling is implemented between three 1D sub-models and a local 2D model for a confluence on the Adour river (France). A Schwarz algorithm is implemented to guarantee the continuity of the variables at the 1D/2D interfaces while in situ observations are assimilated in the 1D sub-models to improve results and forecasts in operational mode as carried out by the French flood forecasting services. An implementation of the coupling and data assimilation (DA) solution with domain decomposition and task/data parallelism is proposed so that it is compatible with operational constraints. The coupling with the 2D model improves the simulated hydraulic state compared to a global 1D model, and DA improves results in 1D and 2D areas.

  19. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of each timestep and minimize computational overhead. Power generation for each reservoir is estimated using a 2-dimensional regression that accounts for both the available head and turbine efficiency. The object-oriented architecture makes run configuration easy to update. The dynamic model inputs include inflow and meteorological forecasts while static inputs include bathymetry data, reservoir and power generation characteristics, and topological descriptors. Ensemble forecasts of hydrological and meteorological conditions are supplied in real-time by Pacific Northwest National Laboratory and are used as a proxy for uncertainty, which is carried through the simulation and optimization process to produce output that describes the probability that different operational scenario's will be optimal. The full toolset, which includes HydroSCOPE, is currently being tested on the Feather River system in Northern California and the Upper Colorado Storage Project.

  20. Effect of initial conditions of a catchment on seasonal streamflow prediction using ensemble streamflow prediction (ESP) technique for the Rangitata and Waitaki River basins on the South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Singh, Shailesh Kumar; Zammit, Christian; Hreinsson, Einar; Woods, Ross; Clark, Martyn; Hamlet, Alan

    2013-04-01

    Increased access to water is a key pillar of the New Zealand government plan for economic growths. Variable climatic conditions coupled with market drivers and increased demand on water resource result in critical decision made by water managers based on climate and streamflow forecast. Because many of these decisions have serious economic implications, accurate forecast of climate and streamflow are of paramount importance (eg irrigated agriculture and electricity generation). New Zealand currently does not have a centralized, comprehensive, and state-of-the-art system in place for providing operational seasonal to interannual streamflow forecasts to guide water resources management decisions. As a pilot effort, we implement and evaluate an experimental ensemble streamflow forecasting system for the Waitaki and Rangitata River basins on New Zealand's South Island using a hydrologic simulation model (TopNet) and the familiar ensemble streamflow prediction (ESP) paradigm for estimating forecast uncertainty. To provide a comprehensive database for evaluation of the forecasting system, first a set of retrospective model states simulated by the hydrologic model on the first day of each month were archived from 1972-2009. Then, using the hydrologic simulation model, each of these historical model states was paired with the retrospective temperature and precipitation time series from each historical water year to create a database of retrospective hindcasts. Using the resulting database, the relative importance of initial state variables (such as soil moisture and snowpack) as fundamental drivers of uncertainties in forecasts were evaluated for different seasons and lead times. The analysis indicate that the sensitivity of flow forecast to initial condition uncertainty is depend on the hydrological regime and season of forecast. However initial conditions do not have a large impact on seasonal flow uncertainties for snow dominated catchments. Further analysis indicates that this result is valid when the hindcast database is conditioned by ENSO classification. As a result hydrological forecasts based on ESP technique, where present initial conditions with histological forcing data are used may be plausible for New Zealand catchments.

  1. Non-parametric data-based approach for the quantification and communication of uncertainties in river flood forecasts

    NASA Astrophysics Data System (ADS)

    Van Steenbergen, N.; Willems, P.

    2012-04-01

    Reliable flood forecasts are the most important non-structural measures to reduce the impact of floods. However flood forecasting systems are subject to uncertainty originating from the input data, model structure and model parameters of the different hydraulic and hydrological submodels. To quantify this uncertainty a non-parametric data-based approach has been developed. This approach analyses the historical forecast residuals (differences between the predictions and the observations at river gauging stations) without using a predefined statistical error distribution. Because the residuals are correlated with the value of the forecasted water level and the lead time, the residuals are split up into discrete classes of simulated water levels and lead times. For each class, percentile values are calculated of the model residuals and stored in a 'three dimensional error' matrix. By 3D interpolation in this error matrix, the uncertainty in new forecasted water levels can be quantified. In addition to the quantification of the uncertainty, the communication of this uncertainty is equally important. The communication has to be done in a consistent way, reducing the chance of misinterpretation. Also, the communication needs to be adapted to the audience; the majority of the larger public is not interested in in-depth information on the uncertainty on the predicted water levels, but only is interested in information on the likelihood of exceedance of certain alarm levels. Water managers need more information, e.g. time dependent uncertainty information, because they rely on this information to undertake the appropriate flood mitigation action. There are various ways in presenting uncertainty information (numerical, linguistic, graphical, time (in)dependent, etc.) each with their advantages and disadvantages for a specific audience. A useful method to communicate uncertainty of flood forecasts is by probabilistic flood mapping. These maps give a representation of the probability of flooding of a certain area, based on the uncertainty assessment of the flood forecasts. By using this type of maps, water managers can focus their attention on the areas with the highest flood probability. Also the larger public can consult these maps for information on the probability of flooding for their specific location, such that they can take pro-active measures to reduce the personal damage. The method of quantifying the uncertainty was implemented in the operational flood forecasting system for the navigable rivers in the Flanders region of Belgium. The method has shown clear benefits during the floods of the last two years.

  2. Hydrologic scales, cloud variability, remote sensing, and models: Implications for forecasting snowmelt and streamflow

    USGS Publications Warehouse

    Simpson, James J.; Dettinger, M.D.; Gehrke, F.; McIntire, T.J.; Hufford, Gary L.

    2004-01-01

    Accurate prediction of available water supply from snowmelt is needed if the myriad of human, environmental, agricultural, and industrial demands for water are to be satisfied, especially given legislatively imposed conditions on its allocation. Robust retrievals of hydrologic basin model variables (e.g., insolation or areal extent of snow cover) provide several advantages over the current operational use of either point measurements or parameterizations to help to meet this requirement. Insolation can be provided at hourly time scales (or better if needed during rapid melt events associated with flooding) and at 1-km spatial resolution. These satellite-based retrievals incorporate the effects of highly variable (both in space and time) and unpredictable cloud cover on estimates of insolation. The insolation estimates are further adjusted for the effects of basin topography using a high-resolution digital elevation model prior to model input. Simulations of two Sierra Nevada rivers in the snowmelt seasons of 1998 and 1999 indicate that even the simplest improvements in modeled insolation can improve snowmelt simulations, with 10%-20% reductions in root-mean-square errors. Direct retrieval of the areal extent of snow cover may mitigate the need to rely entirely on internal calculations of this variable, a reliance that can yield large errors that are difficult to correct until long after the season is complete and that often leads to persistent underestimates or overestimates of the volumes of the water to operational reservoirs. Agencies responsible for accurately predicting available water resources from the melt of snowpack [e.g., both federal (the National Weather Service River Forecast Centers) and state (the California Department of Water Resources)] can benefit by incorporating concepts developed herein into their operational forecasting procedures. ?? 2004 American Meteorological Society.

  3. Advancing Atmospheric River Forecasts into Subseasonal-to-Seasonal Timescales

    NASA Astrophysics Data System (ADS)

    Barnes, E. A.; Baggett, C.; Mundhenk, B. D.; Nardi, K.; Maloney, E. D.

    2017-12-01

    Atmospheric rivers can cause considerable mayhem along the west coast of North America - delivering flooding rains during periods of heightened activity and desiccating droughts during periods of reduced activity. The intrinsic chaos of the atmosphere makes the prediction of atmospheric rivers at subseasonal-to-seasonal (S2S) timescales ( 2 to 6 weeks) an inherently difficult task. We demonstrate here that the potential exists to advance forecast lead times of atmospheric rivers into S2S timescales through knowledge of two of the atmosphere's most prominent oscillations; the Madden-Julian oscillation (MJO) and the Quasi-biennial oscillation (QBO). The dynamical relationship between atmospheric rivers, the MJO and the QBO is hypothesized to occur through modulation of North Pacific blocking. We present an empirical prediction scheme for anomalous atmospheric river activity based solely on the MJO and QBO and demonstrate skillful subseasonal "forecasts of opportunity" 5+ weeks ahead. We conclude with a discussion of the ability of state-of-the-art NWP models to predict atmospheric river characteristics on S2S timescales. With the wide-ranging impacts associated with landfalling atmospheric rivers, even modest gains in the subseasonal prediction of anomalous atmospheric river activity may support early action decision making and benefit numerous sectors of society.

  4. Inflow forecasting model construction with stochastic time series for coordinated dam operation

    NASA Astrophysics Data System (ADS)

    Kim, T.; Jung, Y.; Kim, H.; Heo, J. H.

    2014-12-01

    Dam inflow forecasting is one of the most important tasks in dam operation for an effective water resources management and control. In general, dam inflow forecasting with stochastic time series model is possible to apply when the data is stationary because most of stochastic process based on stationarity. However, recent hydrological data cannot be satisfied the stationarity anymore because of climate change. Therefore a stochastic time series model, which can consider seasonality and trend in the data series, named SARIMAX(Seasonal Autoregressive Integrated Average with eXternal variable) model were constructed in this study. This SARIMAX model could increase the performance of stochastic time series model by considering the nonstationarity components and external variable such as precipitation. For application, the models were constructed for four coordinated dams on Han river in South Korea with monthly time series data. As a result, the models of each dam have similar performance and it would be possible to use the model for coordinated dam operation.Acknowledgement This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-NH-12-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  5. Computer model of Raritan River Basin water-supply system in central New Jersey

    USGS Publications Warehouse

    Dunne, Paul; Tasker, Gary D.

    1996-01-01

    This report describes a computer model of the Raritan River Basin water-supply system in central New Jersey. The computer model provides a technical basis for evaluating the effects of alternative patterns of operation of the Raritan River Basin water-supply system during extended periods of below-average precipitation. The computer model is a continuity-accounting model consisting of a series of interconnected nodes. At each node, the inflow volume, outflow volume, and change in storage are determined and recorded for each month. The model runs with a given set of operating rules and water-use requirements including releases, pumpages, and diversions. The model can be used to assess the hypothetical performance of the Raritan River Basin water- supply system in past years under alternative sets of operating rules. It also can be used to forecast the likelihood of specified outcomes, such as the depletion of reservoir contents below a specified threshold or of streamflows below statutory minimum passing flows, for a period of up to 12 months. The model was constructed on the basis of current reservoir capacities and the natural, unregulated monthly runoff values recorded at U.S. Geological Survey streamflow- gaging stations in the basin.

  6. Assessing Applications of GPM and IMERG Passive Microwave Rain Rates in Modeling and Operational Forecasting

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Le Roy, A.; Smith, M. R.; Case, J.

    2016-12-01

    In support of NASA's recently launched GPM `core' satellite, the NASA-SPoRT project is leveraging experience in research-to-operations transitions and training to provide feedback on the operational utility of GPM products. Thus far, SPoRT has focused on evaluating the Level 2 GPROF passive microwave and IMERG rain rate estimates. Formal evaluations with end-users have occurred, as well as internal evaluations of the datasets. One set of end users for these products is National Weather Service Forecast Offices (WFOs) and National Weather Service River Forecast Centers (RFCs), comprising forecasters and hydrologists. SPoRT has hosted a series of formal assessments to determine uses and utility of these datasets for NWS operations at specific offices. Forecasters primarily have used Level 2 swath rain rates to observe rainfall in otherwise data-void regions and to confirm model QPF for their nowcasting or short-term forecasting. Hydrologists have been evaluating both the Level 2 rain rates and the IMERG rain rates, including rain rate accumulations derived from IMERG; hydrologists have used these data to supplement gauge data for post-event analysis as well as for longer-term forecasting. Results from specific evaluations will be presented. Another evaluation of the GPM passive microwave rain rates has been in using the data within other products that are currently transitioned to end-users, rather than as stand-alone observations. For example, IMERG Early data is being used as a forcing mechanism in the NASA Land Information System (LIS) for real-time soil moisture product over eastern Africa. IMERG is providing valuable precipitation information to LIS in an otherwise data-void region. Results and caveats will briefly be discussed. A third application of GPM data is using the IMERG Late and Final products for model verification in remote regions where high-quality gridded precipitation fields are not readily available. These datasets can now be used to verify NWP model forecasts over Eastern Africa using the SPoRT-MET scripts verification package, a wrapper around the NCAR Model Evaluation Toolkit (MET) verification software.

  7. Operational Hydrological Forecasting During the Iphex-iop Campaign - Meet the Challenge

    NASA Technical Reports Server (NTRS)

    Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa D.; Barros, Ana P.

    2016-01-01

    An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basins outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15 h was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins.

  8. Operational hydrological forecasting during the IPHEx-IOP campaign - Meet the challenge

    NASA Astrophysics Data System (ADS)

    Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa; Barros, Ana P.

    2016-10-01

    An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basin's outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15 h was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins.

  9. A temporal-spatial postprocessing model for probabilistic run-off forecast. With a case study from Ulla-Førre with five catchments and ten lead times

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Steinsland, I.

    2012-04-01

    This work is driven by the needs of next generation short term optimization methodology for hydro power production. Stochastic optimization are about to be introduced; i.e. optimizing when available resources (water) and utility (prices) are uncertain. In this paper we focus on the available resources, i.e. water, where uncertainty mainly comes from uncertainty in future runoff. When optimizing a water system all catchments and several lead times have to be considered simultaneously. Depending on the system of hydropower reservoirs, it might be a set of headwater catchments, a system of upstream /downstream reservoirs where water used from one catchment /dam arrives in a lower catchment maybe days later, or a combination of both. The aim of this paper is therefore to construct a simultaneous probabilistic forecast for several catchments and lead times, i.e. to provide a predictive distribution for the forecasts. Stochastic optimization methods need samples/ensembles of run-off forecasts as input. Hence, it should also be possible to sample from our probabilistic forecast. A post-processing approach is taken, and an error model based on Box- Cox transformation, power transform and a temporal-spatial copula model is used. It accounts for both between catchment and between lead time dependencies. In operational use it is strait forward to sample run-off ensembles from this models that inherits the catchment and lead time dependencies. The methodology is tested and demonstrated in the Ulla-Førre river system, and simultaneous probabilistic forecasts for five catchments and ten lead times are constructed. The methodology has enough flexibility to model operationally important features in this case study such as hetroscadasety, lead-time varying temporal dependency and lead-time varying inter-catchment dependency. Our model is evaluated using CRPS for marginal predictive distributions and energy score for joint predictive distribution. It is tested against deterministic run-off forecast, climatology forecast and a persistent forecast, and is found to be the better probabilistic forecast for lead time grater then two. From an operational point of view the results are interesting as the between catchment dependency gets stronger with longer lead-times.

  10. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios

    NASA Astrophysics Data System (ADS)

    Addor, N.; Jaun, S.; Zappa, M.

    2011-01-01

    The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This models chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH), coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that COSMO-LEPS-based hydrological forecasts overall outperform their COSMO-7 based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts and used to generate high discharge scenarios. They highlight challenges for making decisions on the basis of hydrological predictions, and indicate the need for a tool to be used in addition to forecasts to compare the different mitigation actions possible in the Sihl catchment.

  11. Development of seasonal flow outlook model for Ganges-Brahmaputra Basins in Bangladesh

    NASA Astrophysics Data System (ADS)

    Hossain, Sazzad; Haque Khan, Raihanul; Gautum, Dilip Kumar; Karmaker, Ripon; Hossain, Amirul

    2016-10-01

    Bangladesh is crisscrossed by the branches and tributaries of three main river systems, the Ganges, Bramaputra and Meghna (GBM). The temporal variation of water availability of those rivers has an impact on the different water usages such as irrigation, urban water supply, hydropower generation, navigation etc. Thus, seasonal flow outlook can play important role in various aspects of water management. The Flood Forecasting and Warning Center (FFWC) in Bangladesh provides short term and medium term flood forecast, and there is a wide demand from end-users about seasonal flow outlook for agricultural purposes. The objective of this study is to develop a seasonal flow outlook model in Bangladesh based on rainfall forecast. It uses European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal precipitation, temperature forecast to simulate HYDROMAD hydrological model. Present study is limited for Ganges and Brahmaputra River Basins. ARIMA correction is applied to correct the model error. The performance of the model is evaluated using coefficient of determination (R2) and Nash-Sutcliffe Efficiency (NSE). The model result shows good performance with R2 value of 0.78 and NSE of 0.61 for the Brahmaputra River Basin, and R2 value of 0.72 and NSE of 0.59 for the Ganges River Basin for the period of May to July 2015. The result of the study indicates strong potential to make seasonal outlook to be operationalized.

  12. Snow mass and river flows modelled using GRACE total water storage observations

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2017-12-01

    Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS and temperature data for river flow or flood forecasting. The model can be particularly useful for regions with spare observation networks, and can be used in combination with other available methods to help improve the accuracy in river flow and flood forecasting over cold regions.

  13. Streamflow Forecasting Using Nuero-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Nanduri, U. V.; Swain, P. C.

    2005-12-01

    The prediction of flow into a reservoir is fundamental in water resources planning and management. The need for timely and accurate streamflow forecasting is widely recognized and emphasized by many in water resources fraternity. Real-time forecasts of natural inflows to reservoirs are of particular interest for operation and scheduling. The physical system of the river basin that takes the rainfall as an input and produces the runoff is highly nonlinear, complicated and very difficult to fully comprehend. The system is influenced by large number of factors and variables. The large spatial extent of the systems forces the uncertainty into the hydrologic information. A variety of methods have been proposed for forecasting reservoir inflows including conceptual (physical) and empirical (statistical) models (WMO 1994), but none of them can be considered as unique superior model (Shamseldin 1997). Owing to difficulties of formulating reasonable non-linear watershed models, recent attempts have resorted to Neural Network (NN) approach for complex hydrologic modeling. In recent years the use of soft computing in the field of hydrological forecasting is gaining ground. The relatively new soft computing technique of Adaptive Neuro-Fuzzy Inference System (ANFIS), developed by Jang (1993) is able to take care of the non-linearity, uncertainty, and vagueness embedded in the system. It is a judicious combination of the Neural Networks and fuzzy systems. It can learn and generalize highly nonlinear and uncertain phenomena due to the embedded neural network (NN). NN is efficient in learning and generalization, and the fuzzy system mimics the cognitive capability of human brain. Hence, ANFIS can learn the complicated processes involved in the basin and correlate the precipitation to the corresponding discharge. In the present study, one step ahead forecasts are made for ten-daily flows, which are mostly required for short term operational planning of multipurpose reservoirs. A Neuro-Fuzzy model is developed to forecast ten-daily flows into the Hirakud reservoir on River Mahanadi in the state of Orissa in India. Correlation analysis is carried out to find out the most influential variables on the ten daily flow at Hirakud. Based on this analysis, four variables, namely, flow during the previous time period, ql1, rainfall during the previous two time periods, rl1 and rl2, and flow during the same period in previous year, qpy, are identified as the most influential variables to forecast the ten daily flow. Performance measures such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and coefficient of efficiency R2 are computed for training and testing phases of the model to evaluate its performance. The results indicate that the ten-daily forecasting model is efficient in predicting the high and medium flows with reasonable accuracy. The forecast of low flows is associated with less efficiency. REFERENCES Jang, J.S.R. (1993). "ANFIS: Adaptive - network- based fuzzy inference system." IEEE Trans. on Systems, Man and Cybernetics, 23 (3), 665-685. Shamseldin, A.Y. (1997). "Application of a neural network technique to rainfall-runoff modeling." Journal of Hydrology, 199, 272-294. World Meteorological Organization (1975). Intercomparison of conceptual models used in operational hydrological forecasting. World Meteorological Organization, Technical Report No.429, Geneva, Switzerland.

  14. Interpretation of snowcover from satellite imagery for use in water supply forecasts in the Sierra Nevada

    NASA Technical Reports Server (NTRS)

    Brown, A. J.; Hannaford, J. F.

    1975-01-01

    The California ASVT test area is composed of two study areas; one in Northern California covering the Upper Sacramento and Feather River Basins, and the other covering the Southern Sierra Basins of the San Joaquin, Kings, Kaweah, Tule, and Kern Rivers. Experiences of reducing snowcover from satellite imagery; the accuracy of present water supply forecast schemes; and the potential advantages of introducing snowcover into the forecast procedures are described.

  15. Long Range River Discharge Forecasting Using the Gravity Recovery and Climate Experiment (GRACE) Satellite to Predict Conditions for Endemic Cholera

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2014-12-01

    Prediction of conditions of an impending disease outbreak remains a challenge but is achievable if the associated and appropriate large scale hydroclimatic process can be estimated in advance. Outbreaks of diarrheal diseases such as cholera, are related to episodic seasonal variability in river discharge in the regions where water and sanitation infrastructure are inadequate and insufficient. However, forecasting river discharge, few months in advance, remains elusive where cholera outbreaks are frequent, probably due to non-availability of geophysical data as well as transboundary water stresses. Here, we show that satellite derived water storage from Gravity Recovery and Climate Experiment Forecasting (GRACE) sensors can provide reliable estimates on river discharge atleast two months in advance over regional scales. Bayesian regression models predicted flooding and drought conditions, a prerequisite for cholera outbreaks, in Bengal Delta with an overall accuracy of 70% for upto 60 days in advance without using any other ancillary ground based data. Forecasting of river discharge will have significant impacts on planning and designing intervention strategies for potential cholera outbreaks in the coastal regions where the disease remain endemic and often fatal.

  16. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    NASA Astrophysics Data System (ADS)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  17. An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 2: The added value from climate forecast models

    DOE PAGES

    Yuan, Xing

    2016-06-22

    This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast skill in terms of anomaly correlation (AC) for 2 m air temperature and precipitation does not necessarily decrease overmore » leads but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME ensemble mean forecast has consistently higher skill than the best single model up to 6 months for the temperature but up to 2 months for the precipitation. The NMME climate predictions are downscaled to drive the variable infiltration capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982–2010. As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, with an increase of the average AC by 0.08–0.2. To compare with the observed streamflow, both the hindcasts from NMME/VIC and ESP/VIC are post-processed through a linear regression model fitted by using VIC offline-simulated streamflow. The post-processed NMME/VIC reduces the root mean squared error (RMSE) from the post-processed ESP/VIC by 5–15 %. And the reduction occurs mostly during the transition from wet to dry seasons. As a result, with the consideration of the uncertainty in the hydrological models, the added value from climate forecast models is decreased especially at short leads, suggesting the necessity of improving the large-scale hydrological models in human-intervened river basins.« less

  18. An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 2: The added value from climate forecast models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xing

    This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast skill in terms of anomaly correlation (AC) for 2 m air temperature and precipitation does not necessarily decrease overmore » leads but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME ensemble mean forecast has consistently higher skill than the best single model up to 6 months for the temperature but up to 2 months for the precipitation. The NMME climate predictions are downscaled to drive the variable infiltration capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982–2010. As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, with an increase of the average AC by 0.08–0.2. To compare with the observed streamflow, both the hindcasts from NMME/VIC and ESP/VIC are post-processed through a linear regression model fitted by using VIC offline-simulated streamflow. The post-processed NMME/VIC reduces the root mean squared error (RMSE) from the post-processed ESP/VIC by 5–15 %. And the reduction occurs mostly during the transition from wet to dry seasons. As a result, with the consideration of the uncertainty in the hydrological models, the added value from climate forecast models is decreased especially at short leads, suggesting the necessity of improving the large-scale hydrological models in human-intervened river basins.« less

  19. Development of a flood early warning system and communication with end-users: the Vipava/Vipacco case study in the KULTURisk FP7 project

    NASA Astrophysics Data System (ADS)

    Grossi, Giovanna; Caronna, Paolo; Ranzi, Roberto

    2014-05-01

    Within the framework of risk communication, the goal of an early warning system is to support the interaction between technicians and authorities (and subsequently population) as a prevention measure. The methodology proposed in the KULTURisk FP7 project aimed to build a closer collaboration between these actors, in the perspective of promoting pro-active actions to mitigate the effects of flood hazards. The transnational (Slovenia/ Italy) Soča/Isonzo case study focused on this concept of cooperation between stakeholders and hydrological forecasters. The DIMOSHONG_VIP hydrological model was calibrated for the Vipava/Vipacco River (650 km2), a tributary of the Soča/Isonzo River, on the basis of flood events occurred between 1998 and 2012. The European Centre for Medium-Range Weather Forecasts (ECMWF) provided the past meteorological forecasts, both deterministic (1 forecast) and probabilistic (51 ensemble members). The resolution of the ECMWF grid is currently about 15 km (Deterministic-DET) and 30 km (Ensemble Prediction System-EPS). A verification was conducted to validate the flood-forecast outputs of the DIMOSHONG_VIP+ECMWF early warning system. Basic descriptive statistics, like event probability, probability of a forecast occurrence and frequency bias were determined. Some performance measures were calculated, such as hit rate (probability of detection) and false alarm rate (probability of false detection). Relative Opening Characteristic (ROC) curves were generated both for deterministic and probabilistic forecasts. These analysis showed a good performance of the early warning system, in respect of the small size of the sample. A particular attention was spent to the design of flood-forecasting output charts, involving and inquiring stakeholders (Alto Adriatico River Basin Authority), hydrology specialists in the field, and common people. Graph types for both forecasted precipitation and discharge were set. Three different risk thresholds were identified ("attention", "pre-alarm" or "alert", "alarm"), with an "icon-style" representation, suitable for communication to civil protection stakeholders or the public. Aiming at showing probabilistic representations in a "user-friendly" way, we opted for the visualization of the single deterministic forecasted hydrograph together with the 5%, 25%, 50%, 75% and 95% percentiles bands of the Hydrological Ensemble Prediction System (HEPS). HEPS is generally used for 3-5 days hydrological forecasts, while the error due to incorrect initial data is comparable to the error due to the lower resolution with respect to the deterministic forecast. In the short term forecasting (12-48 hours) the HEPS-members show obviously a similar tendency; in this case, considering its higher resolution, the deterministic forecast is expected to be more effective. The plot of different forecasts in the same chart allows the use of model outputs from 4/5 days to few hours before a potential flood event. This framework was built to help a stakeholder, like a mayor, a civil protection authority, etc, in the flood control and management operations, and was designed to be included in a wider decision support system.

  20. Multi-model global assessment of subseasonal prediction skill of atmospheric rivers

    NASA Astrophysics Data System (ADS)

    Deflorio, M. J.

    2017-12-01

    Atmospheric rivers (ARs) are global phenomena that are characterized by long, narrow plumes of water vapor transport. They are most often observed in the midlatitudes near climatologically active storm track regions. Because of their frequent association with floods, landslides, and other hydrological impacts on society, there is significant incentive at the intersection of academic research, water management, and policymaking to understand the skill with which state-of-the-art operational weather models can predict ARs weeks-to-months in advance. We use the newly assembled Subseasonal-to-Seasonal (S2S) database, which includes extensive hindcast records of eleven operational weather models, to assess global prediction skill of atmospheric rivers on S2S timescales. We develop a metric to assess AR skill that is suitable for S2S timescales by counting the total number of AR days which occur over each model and observational grid cell during a 2-week time window. This "2-week AR occurrence" metric is suitable for S2S prediction skill assessment because it does not consider discrete hourly or daily AR objects, but rather a smoothed representation of AR occurrence over a longer period of time. Our results indicate that several of the S2S models, especially the ECMWF model, show useful prediction skill in the 2-week forecast window, with significant interannual variation in some regions. We also present results from an experimental forecast of S2S AR prediction skill using the ECMWF and NCEP models.

  1. Forecasting of Average Monthly River Flows in Colombia

    NASA Astrophysics Data System (ADS)

    Mesa, O. J.; Poveda, G.

    2006-05-01

    The last two decades have witnessed a marked increase in our knowledge of the causes of interannual hydroclimatic variability and our ability to make predictions. Colombia, located near the seat of the ENSO phenomenon, has been shown to experience negative (positive) anomalies in precipitation in concert with El Niño (La Niña). In general besides the Pacific Ocean, Colombia has climatic influences from the Atlantic Ocean and the Caribbean Sea through the tropical forest of the Amazon basin and the savannas of the Orinoco River, in top of the orographic and hydro-climatic effects introduced by the Andes. As in various other countries of the region, hydro-electric power contributes a large proportion (75 %) of the total electricity generation in Colombia. Also, most agriculture is rain-fed dependant, and domestic water supply relies mainly on surface waters from creeks and rivers. Besides, various vector borne tropical diseases intensify in response to rain and temperature changes. Therefore, there is a direct connection between climatic fluctuations and national and regional economies. This talk specifically presents different forecasts of average monthly stream flows for the inflow into the largest reservoir used for hydropower generation in Colombia, and illustrates the potential economic savings of such forecasts. Because of planning of the reservoir operation, the most appropriated time scale for this application is the annual to interannual. Fortunately, this corresponds to the scale at which hydroclimate variability understanding has improved significantly. Among the different possibilities we have explored: traditional statistical ARIMA models, multiple linear regression, natural and constructed analogue models, the linear inverse model, neural network models, the non-parametric regression splines (MARS) model, regime dependant Markovian models and one we termed PREBEO, which is based on spectral bands decomposition using wavelets. Most of the methods make use of the climatic observations and the general prediction models of ENSO which are routinely reported in various sources (http://www.cpc.ncep.noaa.gov/). We will compare the forecasting skills of the models, depending on lead time and initial month of forecasting. Besides ENSO indices, tropical Atlantic sea surface temperatures and the North Atlantic Oscillation index are relevant for these predictions in Colombia. Clear-cut benefits of these predictions are evident for the operation of the system. Ever since the 1991-1992 ENSO event the government, power companies and big consumers realized on its importance and routinely incorporated it into their operational planning. On the contrary, this new knowledge has not been useful for the expansion of the system to accommodate the increasing demand. Some kind of resonance between the scale of fluctuation of climate and the memory of decision makers produces a hydro-illogical cycle of urgency during El Niño dry times and of unawareness during La Niña abundance.

  2. A retrospective streamflow ensemble forecast for an extreme hydrologic event: a case study of Hurricane Irene and on the Hudson River basin

    NASA Astrophysics Data System (ADS)

    Saleh, Firas; Ramaswamy, Venkatsundar; Georgas, Nickitas; Blumberg, Alan F.; Pullen, Julie

    2016-07-01

    This paper investigates the uncertainties in hourly streamflow ensemble forecasts for an extreme hydrological event using a hydrological model forced with short-range ensemble weather prediction models. A state-of-the art, automated, short-term hydrologic prediction framework was implemented using GIS and a regional scale hydrological model (HEC-HMS). The hydrologic framework was applied to the Hudson River basin ( ˜ 36 000 km2) in the United States using gridded precipitation data from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) and was validated against streamflow observations from the United States Geologic Survey (USGS). Finally, 21 precipitation ensemble members of the latest Global Ensemble Forecast System (GEFS/R) were forced into HEC-HMS to generate a retrospective streamflow ensemble forecast for an extreme hydrological event, Hurricane Irene. The work shows that ensemble stream discharge forecasts provide improved predictions and useful information about associated uncertainties, thus improving the assessment of risks when compared with deterministic forecasts. The uncertainties in weather inputs may result in false warnings and missed river flooding events, reducing the potential to effectively mitigate flood damage. The findings demonstrate how errors in the ensemble median streamflow forecast and time of peak, as well as the ensemble spread (uncertainty) are reduced 48 h pre-event by utilizing the ensemble framework. The methodology and implications of this work benefit efforts of short-term streamflow forecasts at regional scales, notably regarding the peak timing of an extreme hydrologic event when combined with a flood threshold exceedance diagram. Although the modeling framework was implemented on the Hudson River basin, it is flexible and applicable in other parts of the world where atmospheric reanalysis products and streamflow data are available.

  3. Improvements and Lingering Challenges with Modeling Low-Level Winds Over Complex Terrain during the Wind Forecast Improvement Project 2

    NASA Astrophysics Data System (ADS)

    Olson, J.; Kenyon, J.; Brown, J. M.; Angevine, W. M.; Marquis, M.; Pichugina, Y. L.; Choukulkar, A.; Bonin, T.; Banta, R. M.; Bianco, L.; Djalalova, I.; McCaffrey, K.; Wilczak, J. M.; Lantz, K. O.; Long, C. N.; Redfern, S.; McCaa, J. R.; Stoelinga, M.; Grimit, E.; Cline, J.; Shaw, W. J.; Lundquist, J. K.; Lundquist, K. A.; Kosovic, B.; Berg, L. K.; Kotamarthi, V. R.; Sharp, J.; Jiménez, P.

    2017-12-01

    The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) are NOAA real-time operational hourly updating forecast systems run at 13- and 3-km grid spacing, respectively. Both systems use the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) as the model component of the forecast system. During the second installment of the Wind Forecast Improvement Project (WFIP 2), the RAP/HRRR have been targeted for the improvement of low-level wind forecasts in the complex terrain within the Columbia River Basin (CRB), which requires much finer grid spacing to resolve important terrain peaks in the Cascade Mountains as well as the Columbia River Gorge. Therefore, this project provides a unique opportunity to test and develop the RAP/HRRR physics suite within a very high-resolution nest (Δx = 750 m) over the northwestern US. Special effort is made to incorporate scale-aware aspects into the model physical parameterizations to improve RAP/HRRR wind forecasts for any application at any grid spacing. Many wind profiling and scanning instruments have been deployed in the CRB in support the WFIP 2 field project, which spanned 01 October 2015 to 31 March 2017. During the project, several forecast error modes were identified, such as: (1) too-shallow cold pools during the cool season, which can mix-out more frequently than observed and (2) the low wind speed bias in thermal trough-induced gap flows during the warm season. Development has been focused on the column-based turbulent mixing scheme to improve upon these biases, but investigating the effects of horizontal (and 3D) mixing has also helped improve some of the common forecast failure modes. This presentation will highlight the testing and development of various model components, showing the improvements over original versions for temperature and wind profiles. Examples of case studies and retrospective periods will be presented to illustrate the improvements. We will demonstrate that the improvements made in WFIP 2 will be extendable to other regions, complex or flat terrain. Ongoing and future challenges in RAP/HRRR physics development will be touched upon.

  4. Season-ahead Drought Forecast Models for the Lower Colorado River Authority in Texas

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Zimmerman, B.; Grzegorzewski, M.; Watkins, D. W., Jr.; Anderson, R.

    2014-12-01

    The Lower Colorado River Authority (LCRA) in Austin, Texas, manages the Highland Lakes reservoir system in Central Texas, a series of six lakes on the Lower Colorado River. This system provides water to approximately 1.1 million people in Central Texas, supplies hydropower to a 55-county area, supports rice farming along the Texas Gulf Coast, and sustains in-stream flows in the Lower Colorado River and freshwater inflows to Matagorda Bay. The current, prolonged drought conditions are severely taxing the LCRA's system, making allocation and management decisions exceptionally challenging, and affecting the ability of constituents to conduct proper planning. In this work, we further develop and evaluate season-ahead statistical streamflow and precipitation forecast models for integration into LCRA decision support models. Optimal forecast lead time, predictive skill, form, and communication are all considered.

  5. Improving medium-range ensemble streamflow forecasts through statistical post-processing

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo; Wood, Andy; Clark, Elizabeth; Nijssen, Bart; Clark, Martyn; Ramos, Maria-Helena; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    Probabilistic hydrologic forecasts are a powerful source of information for decision-making in water resources operations. A common approach is the hydrologic model-based generation of streamflow forecast ensembles, which can be implemented to account for different sources of uncertainties - e.g., from initial hydrologic conditions (IHCs), weather forecasts, and hydrologic model structure and parameters. In practice, hydrologic ensemble forecasts typically have biases and spread errors stemming from errors in the aforementioned elements, resulting in a degradation of probabilistic properties. In this work, we compare several statistical post-processing techniques applied to medium-range ensemble streamflow forecasts obtained with the System for Hydromet Applications, Research and Prediction (SHARP). SHARP is a fully automated prediction system for the assessment and demonstration of short-term to seasonal streamflow forecasting applications, developed by the National Center for Atmospheric Research, University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. The suite of post-processing techniques includes linear blending, quantile mapping, extended logistic regression, quantile regression, ensemble analogs, and the generalized linear model post-processor (GLMPP). We assess and compare these techniques using multi-year hindcasts in several river basins in the western US. This presentation discusses preliminary findings about the effectiveness of the techniques for improving probabilistic skill, reliability, discrimination, sharpness and resolution.

  6. Fews-Risk: A step towards risk-based flood forecasting

    NASA Astrophysics Data System (ADS)

    Bachmann, Daniel; Eilander, Dirk; de Leeuw, Annemargreet; Diermanse, Ferdinand; Weerts, Albrecht; de Bruijn, Karin; Beckers, Joost; Boelee, Leonore; Brown, Emma; Hazlewood, Caroline

    2015-04-01

    Operational flood prediction and the assessment of flood risk are important components of flood management. Currently, the model-based prediction of discharge and/or water level in a river is common practice for operational flood forecasting. Based on the prediction of these values decisions about specific emergency measures are made within operational flood management. However, the information provided for decision support is restricted to pure hydrological or hydraulic aspects of a flood. Information about weak sections within the flood defences, flood prone areas and assets at risk in the protected areas are rarely used in a model-based flood forecasting system. This information is often available for strategic planning, but is not in an appropriate format for operational purposes. The idea of FEWS-Risk is the extension of existing flood forecasting systems with elements of strategic flood risk analysis, such as probabilistic failure analysis, two dimensional flood spreading simulation and the analysis of flood impacts and consequences. Thus, additional information is provided to the decision makers, such as: • Location, timing and probability of failure of defined sections of the flood defence line; • Flood spreading, extent and hydraulic values in the hinterland caused by an overflow or a breach flow • Impacts and consequences in case of flooding in the protected areas, such as injuries or casualties and/or damages to critical infrastructure or economy. In contrast with purely hydraulic-based operational information, these additional data focus upon decision support for answering crucial questions within an operational flood forecasting framework, such as: • Where should I reinforce my flood defence system? • What type of action can I take to mend a weak spot in my flood defences? • What are the consequences of a breach? • Which areas should I evacuate first? This presentation outlines the additional required workflows towards risk-based flood forecasting systems. In a cooperation between HR Wallingford and Deltares, the extended workflows are being integrated into the Delft-FEWS software system. Delft-FEWS provides modules for managing the data handling and forecasting process. Results of a pilot study that demonstrates the new tools are presented. The value of the newly generated information for decision support during a flood event is discussed.

  7. Improving Flood Forecasting in International River Basins

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Katiyar, Nitin

    2006-01-01

    In flood-prone international river basins (IRBs), many riparian nations that are located close to a basin's outlet face a major problem in effectively forecasting flooding because they are unable to assimilate in situ rainfall data in real time across geopolitical boundaries. NASA's proposed Global Precipitation Measurement (GPM) mission, which is expected to begin in 2010, will comprise high-resolution passive microwave (PM) sensors (at resolution ~3-6 hours, 10 × 10 square kilometers) that may provide new opportunities to improve flood forecasting in these river basins. Research is now needed to realize the potential of GPM. With adequate research in the coming years, it may be possible to identify the specific IRBs that would benefit cost-effectively from a preprogrammed satellite-based forecasting system in anticipation of GPM. Acceleration of such a research initiative is worthwhile because it could reduce the risk of the cancellation of GPM [see Zielinski, 2005].

  8. Using ensemble rainfall predictions in a countrywide flood forecasting model in Scotland

    NASA Astrophysics Data System (ADS)

    Cranston, M. D.; Maxey, R.; Tavendale, A. C. W.; Buchanan, P.

    2012-04-01

    Improving flood predictions for all sources of flooding is at the centre of flood risk management policy in Scotland. With the introduction of the Flood Risk Management (Scotland) Act providing a new statutory basis for SEPA's flood warning responsibilities, the pressures on delivering hydrological science developments in support of this legislation has increased. Specifically, flood forecasting capabilities need to develop in support of the need to reduce the impact of flooding through the provision of actively disseminated, reliable and timely flood warnings. Flood forecasting in Scotland has developed significantly in recent years (Cranston and Tavendale, 2012). The development of hydrological models to predict flooding at a catchment scale has relied upon the application of rainfall runoff models utilising raingauge, radar and quantitative precipitation forecasts in the short lead time (less than 6 hours). Single or deterministic forecasts based on highly uncertain rainfall predictions have led to the greatest operational difficulties when communicating flood risk with emergency responders, therefore the emergence of probability-based estimates offers the greatest opportunity for managing uncertain predictions. This paper presents operational application of a physical-conceptual distributed hydrological model on a countrywide basis across Scotland. Developed by CEH Wallingford for SEPA in 2011, Grid-to-Grid (G2G) principally runs in deterministic mode and employs radar and raingauge estimates of rainfall together with weather model predictions to produce forecast river flows, as gridded time-series at a resolution of 1km and for up to 5 days ahead (Cranston, et al., 2012). However the G2G model is now being run operationally using ensemble predictions of rainfall from the MOGREPS-R system to provide probabilistic flood forecasts. By presenting a range of flood predictions on a national scale through this approach, hydrologists are now able to consider an objective measure of the likelihood of flooding impacts to help with risk based emergency communication.

  9. Performance of stochastic approaches for forecasting river water quality.

    PubMed

    Ahmad, S; Khan, I H; Parida, B P

    2001-12-01

    This study analysed water quality data collected from the river Ganges in India from 1981 to 1990 for forecasting using stochastic models. Initially the box and whisker plots and Kendall's tau test were used to identify the trends during the study period. For detecting the possible intervention in the data the time series plots and cusum charts were used. The three approaches of stochastic modelling which account for the effect of seasonality in different ways. i.e. multiplicative autoregressive integrated moving average (ARIMA) model. deseasonalised model and Thomas-Fiering model were used to model the observed pattern in water quality. The multiplicative ARIMA model having both nonseasonal and seasonal components were, in general, identified as appropriate models. In the deseasonalised modelling approach, the lower order ARIMA models were found appropriate for the stochastic component. The set of Thomas-Fiering models were formed for each month for all water quality parameters. These models were then used to forecast the future values. The error estimates of forecasts from the three approaches were compared to identify the most suitable approach for the reliable forecast. The deseasonalised modelling approach was recommended for forecasting of water quality parameters of a river.

  10. iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region

    NASA Astrophysics Data System (ADS)

    Sumi, S. J.; Ferreira, C.

    2017-12-01

    Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system simulations will help to develop a seamless integration with the boundary systems in the service-gap area with new insights into our scientific understanding of such complex systems. A visualization system is being developed to allow stake holders and the community to have access to the flood forecasting for their region with sufficient lead time.

  11. Seamless hydrological predictions for a monsoon driven catchment in North-East India

    NASA Astrophysics Data System (ADS)

    Köhn, Lisei; Bürger, Gerd; Bronstert, Axel

    2016-04-01

    Improving hydrological forecasting systems on different time scales is interesting and challenging with regards to humanitarian as well as scientific aspects. In meteorological research, short-, medium-, and long-term forecasts are now being merged to form a system of seamless weather and climate predictions. Coupling of these meteorological forecasts with a hydrological model leads to seamless predictions of streamflow, ranging from one day to a season. While there are big efforts made to analyse the uncertainties of probabilistic streamflow forecasts, knowledge of the single uncertainty contributions from meteorological and hydrological modeling is still limited. The overarching goal of this project is to gain knowledge in this subject by decomposing and quantifying the overall predictive uncertainty into its single factors for the entire seamless forecast horizon. Our study area is the Mahanadi River Basin in North-East India, which is prone to severe floods and droughts. Improved streamflow forecasts on different time scales would contribute to early flood warning as well as better water management operations in the agricultural sector. Because of strong inter-annual monsoon variations in this region, which are, unlike the mid-latitudes, partly predictable from long-term atmospheric-oceanic oscillations, the Mahanadi catchment represents an ideal study site. Regionalized precipitation forecasts are obtained by applying the method of expanded downscaling to the ensemble prediction systems of ECMWF and NCEP. The semi-distributed hydrological model HYPSO-RR, which was developed in the Eco-Hydrological Simulation Environment ECHSE, is set up for several sub-catchments of the Mahanadi River Basin. The model is calibrated automatically using the Dynamically Dimensioned Search algorithm, with a modified Nash-Sutcliff efficiency as objective function. Meteorological uncertainty is estimated from the existing ensemble simulations, while the hydrological uncertainty is derived from a statistical post-processor. After running the hydrological model with the precipitation forecasts and applying the hydrological post-processor, the predictive uncertainty of the streamflow forecast can be analysed. The decomposition of total uncertainty is done using a two-way analysis of variance. In this contribution we present the model set-up and the first results of our hydrological forecasts with up to a 180 days lead time, which are derived by using 15 downscaled members of the ECMWF multi-model seasonal forecast ensemble as model input.

  12. Improving a stage forecasting Muskingum model by relating local stage and remote discharge

    NASA Astrophysics Data System (ADS)

    Barbetta, S.; Moramarco, T.; Melone, F.; Brocca, L.

    2009-04-01

    Following the parsimonious concept of parameters, simplified models for flood forecasting based only on flood routing have been developed for flood-prone sites located downstream of a gauged station and at a distance allowing an appropriate forecasting lead-time. In this context, the Muskingum model can be a useful tool. However, critical points in hydrological routing are the representation of lateral inflows contribution and the knowledge of stage-discharge relationships. As regards the former, O'Donnell (O'Donnell, T., 1985. A direct three-parameter Muskingum procedure incorporating lateral inflow, Hydrol. Sci. J., 30[4/12], 479-496) proposed a three-parameter Muskingum procedure assuming the lateral inflows proportional to the contribution entering upstream. Using this approach, Franchini and Lamberti (Franchini, M. & Lamberti, P., 1994. A flood routing Muskingum type simulation and forecasting model based on level data alone, Water Resour. Res., 30[7], 2183-2196) presented a simple model Muskingum type to provide forecast water levels at the downstream end by selecting a routing time interval and, hence, a forecasting lead-time allowing to express the forecast stage as a function of only observed quantities. Moramarco et al. (Moramarco, T., Barbetta, S., Melone, F. & Singh, V.P., 2006. A real-time stage Muskingum forecasting model for a site without rating curve, Hydrol. Sci. J., 51[1], 66-82) enhanced the modeling scheme incorporating a procedure for adapting the parameter linked to lateral inflows. This last model, called STAFOM (STAge FOrecasting Model), was also extended to a two connected river branches schematization in order to improve significantly the forecasting lead-time. The STAFOM model provided satisfactory results for most of the analysed flood events observed in different river reaches in the Upper-Middle Tiber River basin in Central Italy. However, the analysis highlighted that the stage forecast should be enhanced when sudden modifications occur in the upstream and downstream hydrographs recorded in real-time. Moramarco et al. (Moramarco, T., Barbetta, S., F. Melone, F. & Singh, V.P., 2005. Relating local stage and remote discharge with significant lateral inflow, J. Hydrol. Engng ASCE, 10[1], 58-69) showed that for any flood condition at ends of a river reach, a direct proportionality between the upstream and downstream mean velocity can be found. This insight was the basis for developing the Rating Curve Model (RCM) that allows to also accommodate significant lateral inflow contributions, permitting, without using a flood routing procedure and without the need of a rating curve at a local site, to relate the local hydraulic conditions with those at a remote gauged section. Therefore, to improve the STAFOM performance mainly for highly varying flood conditions, the model has been here modified by coupling it with a procedure based on the RCM approach. Several flood events occurred along different equipped river reaches of the Upper Tiber River basin have been used as case study. Results showed that the new model, named STAFOM-RCM, apart from to improve the stage forecast accuracy in terms of error on peak stage, Nash-Sutcliffe efficiency coefficient and the coefficient of persistence, allowed to use a larger lead time thus avoiding the two-river branches cascade schematization where fluctuations in stage forecasting occur more frequently.

  13. Uncertainty estimation of long-range ensemble forecasts of snowmelt flood characteristics

    NASA Astrophysics Data System (ADS)

    Kuchment, L.

    2012-04-01

    Long-range forecasts of snowmelt flood characteristics with the lead time of 2-3 months have important significance for regulation of flood runoff and mitigation of flood damages at almost all large Russian rivers At the same time, the application of current forecasting techniques based on regression relationships between the runoff volume and the indexes of river basin conditions can lead to serious errors in forecasting resulted in large economic losses caused by wrong flood regulation. The forecast errors can be caused by complicated processes of soil freezing and soil moisture redistribution, too high rate of snow melt, large liquid precipitation before snow melt. or by large difference of meteorological conditions during the lead-time periods from climatologic ones. Analysis of economic losses had shown that the largest damages could, to a significant extent, be avoided if the decision makers had an opportunity to take into account predictive uncertainty and could use more cautious strategies in runoff regulation. Development of methodology of long-range ensemble forecasting of spring/summer floods which is based on distributed physically-based runoff generation models has created, in principle, a new basis for improving hydrological predictions as well as for estimating their uncertainty. This approach is illustrated by forecasting of the spring-summer floods at the Vyatka River and the Seim River basins. The application of the physically - based models of snowmelt runoff generation give a essential improving of statistical estimates of the deterministic forecasts of the flood volume in comparison with the forecasts obtained from the regression relationships. These models had been used also for the probabilistic forecasts assigning meteorological inputs during lead time periods from the available historical daily series, and from the series simulated by using a weather generator and the Monte Carlo procedure. The weather generator consists of the stochastic models of daily temperature and precipitation. The performance of the probabilistic forecasts were estimated by the ranked probability skill scores. The application of Monte Carlo simulations using weather generator has given better results then using the historical meteorological series.

  14. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios

    NASA Astrophysics Data System (ADS)

    Addor, N.; Jaun, S.; Fundel, F.; Zappa, M.

    2011-07-01

    The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This model chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH), coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework with which to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that overall COSMO-LEPS-based hydrological forecasts outperforms their COSMO-7-based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts, and are used to generate high discharge scenarios. They highlight challenges for making decisions on the basis of hydrological predictions, and indicate the need for a tool to be used in addition to forecasts to compare the different mitigation actions possible in the Sihl catchment. No definitive conclusion on the model chain capacity to forecast flooding events endangering the city of Zurich could be drawn because of the under-sampling of extreme events. Further research on the form of the reforecasts needed to infer on floods associated to return periods of several decades, centuries, is encouraged.

  15. Thirty-year solid waste generation forecast for facilities at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less

  16. Improving seasonal forecast through the state of large-scale climate signals

    NASA Astrophysics Data System (ADS)

    Samale, Chiara; Zimmerman, Brian; Giuliani, Matteo; Castelletti, Andrea; Block, Paul

    2017-04-01

    Increasingly uncertain hydrologic regimes are challenging water systems management worldwide, emphasizing the need of accurate medium- to long-term predictions to timely prompt anticipatory operations. In fact, forecasts are usually skillful over short lead time (from hours to days), but predictability tends to decrease on longer lead times. The forecast lead time might be extended by using climate teleconnection, such as El Nino Southern Oscillation (ENSO). Despite the ENSO teleconnection is well defined in some locations such as Western USA and Australia, there is no consensus on how it can be detected and used in other river basins, particularly in Europe, Africa, and Asia. In this work, we propose the use of the Nino Index Phase Analysis for capturing the state of multiple large-scale climate signals (i.e., ENSO, North Atlantic Oscillation, Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation, Dipole Mode Index). This climate state information is used for distinguishing the different phases of the climate signals and for identifying relevant teleconnections between the observations of Sea Surface Temperature (SST) that mostly influence the local hydrologic conditions. The framework is applied to the Lake Como system, a regulated lake in northern Italy which is mainly operated for flood control and irrigation supply. Preliminary results show high correlations between SST and three to six months ahead precipitation in the Lake Como basin. This forecast represents a valuable information to partially anticipate the summer water availability, ultimately supporting the improvement of the Lake Como operations.

  17. Recent advances in the multimodel hydrologic ensemble forecasting using the HydroProg system in the Nysa Klodzka river basin (southwestern Poland)

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Mizinski, Bartlomiej; Swierczynska-Chlasciak, Malgorzata

    2017-04-01

    The HydroProg system, the real-time multimodel hydrologic ensemble system elaborated at the University of Wroclaw (Poland) in frame of the research grant no. 2011/01/D/ST10/04171 financed by National Science Centre of Poland, has been experimentally launched in 2013 in the Nysa Klodzka river basin (southwestern Poland). Since that time the system has been working operationally to provide water level predictions in real time. At present, depending on a hydrologic gauge, up to eight hydrologic models are run. They are data- and physically-based solutions, with the majority of them being the data-based ones. The paper aims to report on the performance of the implementation of the HydroProg system for the basin in question. We focus on several high flows episodes and discuss the skills of the individual models in forecasting them. In addition, we present the performance of the multimodel ensemble solution. We also introduce a new prognosis which is determined in the following way: for a given lead time we select the most skillful prediction (from the set of all individual models running at a given gauge and their multimodel ensemble) using the performance statistics computed operationally in real time as a function of lead time.

  18. Development and Implementation of an Optimization Model for Hydropower and Total Dissolved Gas in the Mid-Columbia River System

    DOE PAGES

    Witt, Adam; Magee, Timothy; Stewart, Kevin; ...

    2017-08-10

    Managing energy, water, and environmental priorities and constraints within a cascade hydropower system is a challenging multiobjective optimization effort that requires advanced modeling and forecasting tools. Within the mid-Columbia River system, there is currently a lack of specific solutions for predicting how coordinated operational decisions can mitigate the impacts of total dissolved gas (TDG) supersaturation while satisfying multiple additional policy and hydropower generation objectives. In this study, a reduced-order TDG uptake equation is developed that predicts tailrace TDG at seven hydropower facilities on the mid-Columbia River. The equation is incorporated into a general multiobjective river, reservoir, and hydropower optimization toolmore » as a prioritized operating goal within a broader set of system-level objectives and constraints. A test case is presented to assess the response of TDG and hydropower generation when TDG supersaturation is optimized to remain under state water-quality standards. Satisfaction of TDG as an operating goal is highly dependent on whether constraints that limit TDG uptake are implemented at a higher priority than generation requests. According to the model, an opportunity exists to reduce TDG supersaturation and meet hydropower generation requirements by shifting spillway flows to different time periods. In conclusion, a coordinated effort between all project owners is required to implement systemwide optimized solutions that satisfy the operating policies of all stakeholders.« less

  19. Development and Implementation of an Optimization Model for Hydropower and Total Dissolved Gas in the Mid-Columbia River System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witt, Adam; Magee, Timothy; Stewart, Kevin

    Managing energy, water, and environmental priorities and constraints within a cascade hydropower system is a challenging multiobjective optimization effort that requires advanced modeling and forecasting tools. Within the mid-Columbia River system, there is currently a lack of specific solutions for predicting how coordinated operational decisions can mitigate the impacts of total dissolved gas (TDG) supersaturation while satisfying multiple additional policy and hydropower generation objectives. In this study, a reduced-order TDG uptake equation is developed that predicts tailrace TDG at seven hydropower facilities on the mid-Columbia River. The equation is incorporated into a general multiobjective river, reservoir, and hydropower optimization toolmore » as a prioritized operating goal within a broader set of system-level objectives and constraints. A test case is presented to assess the response of TDG and hydropower generation when TDG supersaturation is optimized to remain under state water-quality standards. Satisfaction of TDG as an operating goal is highly dependent on whether constraints that limit TDG uptake are implemented at a higher priority than generation requests. According to the model, an opportunity exists to reduce TDG supersaturation and meet hydropower generation requirements by shifting spillway flows to different time periods. In conclusion, a coordinated effort between all project owners is required to implement systemwide optimized solutions that satisfy the operating policies of all stakeholders.« less

  20. Assessment of Folsom Lake Watershed response to historical and potential future climate scenarios

    USGS Publications Warehouse

    Carpenter, Theresa M.; Georgakakos, Konstantine P.

    2000-01-01

    An integrated forecast-control system was designed to allow the profitable use of ensemble forecasts for the operational management of multi-purpose reservoirs. The system ingests large-scale climate model monthly precipitation through the adjustment of the marginal distribution of reservoir-catchment precipitation to reflect occurrence of monthly climate precipitation amounts in the extreme terciles of their distribution. Generation of ensemble reservoir inflow forecasts is then accomplished with due account for atmospheric- forcing and hydrologic- model uncertainties. These ensemble forecasts are ingested by the decision component of the integrated system, which generates non- inferior trade-off surfaces and, given management preferences, estimates of reservoir- management benefits over given periods. In collaboration with the Bureau of Reclamation and the California Nevada River Forecast Center, the integrated system is applied to Folsom Lake in California to evaluate the benefits for flood control, hydroelectric energy production, and low flow augmentation. In addition to retrospective studies involving the historical period 1964-1993, system simulations were performed for the future period 2001-2030, under a control (constant future greenhouse-gas concentrations assumed at the present levels) and a greenhouse-gas- increase (1-% per annum increase assumed) scenario. The present paper presents and validates ensemble 30-day reservoir- inflow forecasts under a variety of situations. Corresponding reservoir management results are presented in Yao and Georgakakos, A., this issue. Principle conclusions of this paper are that the integrated system provides reliable ensemble inflow volume forecasts at the 5-% confidence level for the majority of the deciles of forecast frequency, and that the use of climate model simulations is beneficial mainly during high flow periods. It is also found that, for future periods with potential sharp climatic increases of precipitation amount and to maintain good reliability levels, operational ensemble inflow forecasting should involve atmospheric forcing from appropriate climatic periods.

  1. Practical implementation of a particle filter data assimilation approach to estimate initial hydrologic conditions and initialize medium-range streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Clark, Elizabeth; Wood, Andy; Nijssen, Bart; Mendoza, Pablo; Newman, Andy; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    In an automated forecast system, hydrologic data assimilation (DA) performs the valuable function of correcting raw simulated watershed model states to better represent external observations, including measurements of streamflow, snow, soil moisture, and the like. Yet the incorporation of automated DA into operational forecasting systems has been a long-standing challenge due to the complexities of the hydrologic system, which include numerous lags between state and output variations. To help demonstrate that such methods can succeed in operational automated implementations, we present results from the real-time application of an ensemble particle filter (PF) for short-range (7 day lead) ensemble flow forecasts in western US river basins. We use the System for Hydromet Applications, Research and Prediction (SHARP), developed by the National Center for Atmospheric Research (NCAR) in collaboration with the University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. SHARP is a fully automated platform for short-term to seasonal hydrologic forecasting applications, incorporating uncertainty in initial hydrologic conditions (IHCs) and in hydrometeorological predictions through ensemble methods. In this implementation, IHC uncertainty is estimated by propagating an ensemble of 100 temperature and precipitation time series through conceptual and physically-oriented models. The resulting ensemble of derived IHCs exhibits a broad range of possible soil moisture and snow water equivalent (SWE) states. The PF selects and/or weights and resamples the IHCs that are most consistent with external streamflow observations, and uses the particles to initialize a streamflow forecast ensemble driven by ensemble precipitation and temperature forecasts downscaled from the Global Ensemble Forecast System (GEFS). We apply this method in real-time for several basins in the western US that are important for water resources management, and perform a hindcast experiment to evaluate the utility of PF-based data assimilation on streamflow forecasts skill. This presentation describes findings, including a comparison of sequential and non-sequential particle weighting methods.

  2. Real-time demonstration and evaluation of over-the-loop short to medium-range ensemble streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Clark, E.; Newman, A. J.; Nijssen, B.; Clark, M. P.; Gangopadhyay, S.; Arnold, J. R.

    2015-12-01

    The US National Weather Service River Forecasting Centers are beginning to operationalize short range to medium range ensemble predictions that have been in development for several years. This practice contrasts with the traditional single-value forecast practice at these lead times not only because the ensemble forecasts offer a basis for quantifying forecast uncertainty, but also because the use of ensembles requires a greater degree of automation in the forecast workflow than is currently used. For instance, individual ensemble member forcings cannot (practically) be manually adjusted, a step not uncommon with the current single-value paradigm, thus the forecaster is required to adopt a more 'over-the-loop' role than before. The relative lack of experience among operational forecasters and forecast users (eg, water managers) in the US with over-the-loop approaches motivates the creation of a real-time demonstration and evaluation platform for exploring the potential of over-the-loop workflows to produce usable ensemble short-to-medium range forecasts, as well as long range predictions. We describe the development and early results of such an effort by a collaboration between NCAR and the two water agencies, the US Army Corps of Engineers and the US Bureau of Reclamation. Focusing on small to medium sized headwater basins around the US, and using multi-decade series of ensemble streamflow hindcasts, we also describe early results, assessing the skill of daily-updating, over-the-loop forecasts driven by a set of ensemble atmospheric outputs from the NCEP GEFS for lead times from 1-15 days.

  3. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  4. Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding

    USGS Publications Warehouse

    Lavers, David A.; Waliser, Duane E.; Ralph, F. Martin; Dettinger, Michael

    2016-01-01

    The western United States is vulnerable to socioeconomic disruption due to extreme winter precipitation and floods. Traditionally, forecasts of precipitation and river discharge provide the basis for preparations. Herein we show that earlier event awareness may be possible through use of horizontal water vapor transport (integrated vapor transport (IVT)) forecasts. Applying the potential predictability concept to the National Centers for Environmental Prediction global ensemble reforecasts, across 31 winters, IVT is found to be more predictable than precipitation. IVT ensemble forecasts with the smallest spreads (least forecast uncertainty) are associated with initiation states with anomalously high geopotential heights south of Alaska, a setup conducive for anticyclonic conditions and weak IVT into the western United States. IVT ensemble forecasts with the greatest spreads (most forecast uncertainty) have initiation states with anomalously low geopotential heights south of Alaska and correspond to atmospheric rivers. The greater IVT predictability could provide warnings of impending storminess with additional lead times for hydrometeorological applications.

  5. Range-Specific High-Resolution Mesoscale Model Setup: Data Assimilation

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.

    2014-01-01

    Mesoscale weather conditions can have an adverse effect on space launch, landing, and ground processing at the Eastern Range (ER) in Florida and Wallops Flight Facility (WFF) in Virginia. During summer, land-sea interactions across Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) lead to sea breeze front formation, which can spawn deep convection that can hinder operations and endanger personnel and resources. Many other weak locally driven low-level boundaries and their interactions with the sea breeze front and each other can also initiate deep convection in the KSC/CCAFS area. Some of these other boundaries include the Indian River breeze front, Banana River breeze front, outflows from previous convection, horizontal convective rolls, convergence lines from other inland bodies of water such as Lake Okeechobee, the trailing convergence line from convergence of sea breeze fronts due to the shape of Cape Canaveral, frictional convergence lines from the islands in the Bahamas, convergence lines from soil moisture differences, convergence lines from cloud shading, and others. All these subtle weak boundary interactions often make forecasting of operationally important weather very difficult at KSC/CCAFS during the convective season (May-Oct). These convective processes often build quickly, last a short time (60 minutes or less), and occur over small distances, all of which also poses a significant challenge to the local forecasters who are responsible for issuing weather advisories, watches, and warnings. Surface winds during the transition seasons of spring and fall pose the most difficulties for the forecasters at WFF. They also encounter problems forecasting convective activity and temperature during those seasons. Therefore, accurate mesoscale model forecasts are needed to aid in their decision making. Both the ER and WFF would benefit greatly from high-resolution mesoscale model output to better forecast a variety of unique weather phenomena. Global and national scale models cannot properly resolve important local-scale weather features at each location due to their horizontal resolutions being much too coarse. Therefore, a properly tuned model at a high resolution is needed to provide improved capability. This task is a multi-year effort in which the Applied Meteorology Unit (AMU) will tune the Weather Research and Forecasting (WRF) model individually for each range. The goal of the first year, the results of which are in this report, was to tune the WRF model based on the best model resolution and run time while using reasonable computing capabilities. To accomplish this, the ER and WFF supported the tasking of the AMU to perform a number of sensitivity tests in order to determine the best model configuration for operational use at each of the ranges to best predict winds, precipitation, and temperature (Watson 2013). This task is a continuation of that work and will provide a recommended local data assimilation (DA) and numerical forecast model design optimized for the ER and WFF to support space launch activities. The model will be optimized for local weather challenges at both ranges.

  6. The NRL relocatable ocean/acoustic ensemble forecast system

    NASA Astrophysics Data System (ADS)

    Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.

    2009-04-01

    A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.

  7. Snowmelt and water resources in a changing climate and dustier world

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2015-12-01

    Snow cover and its melt dominate regional climate and water resources in the world's mountain regions, providing for critical agricultural and sustaining populations in otherwise dry regions. Snowmelt timing and magnitude in mountains tend to be controlled by absorption of solar radiation and snow water equivalent, respectively, and yet both of these are very poorly known even in the best-instrumented mountain regions of the globe. In this talk, we discuss developments in the spaceborne and airborne remote sensing of snow properties, and the assimilation of these products into research water cycle modeling and operational forecasting. Our work with the NWS Colorado Basin River Forecast Center has shown marked improvements in runoff forecasting through inclusion of MODIS and VIIRS fractional snow covered area data. Moreover, the analyses have shown that the CBRFC forecasting errors are strongly sensitive to actual dust radiative forcing in snow with rising limb excursions as large as 40%. With MODIS retrievals of dust radiative forcing, the CBRFC will be implementing modifications to forecasts to reduce those errors to order < 10%. In the last few years, the NASA Airborne Snow Observatory has emerged to provide the first spatially explicit distributions of snow water equivalent and coincident snow albedo products for mountain basins. ASO is an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. ASO has been flying in the Western US for three snowmelt seasons. In 2015, ASO provided complete basin coverage for the Tuolumne, Merced, Lakes, Rush Creek, and Middle+South Forks of Kings River Basins in the California Sierra Nevada and the Upper Rio Grande, Conejos, and Uncompahgre Basins in the Colorado Rocky Mountains. Analyses show that with ASO data, river flows and reservoir inflows from the ASO acquisition date to 1 July can be estimated with uncertainties of less than 2%. The synergy of the ASO and the satellite retrievals will ultimately allow extension of quantitative knowledge to addressing the snowmelt water resources and availability for agricultural regions in sparsely instrumented regions of the globe.

  8. Objective Use of Climate Indices to Inform Ensemble Streamflow Forecasts in the Columbia River Basin - An Initial Review

    NASA Astrophysics Data System (ADS)

    Pytlak, E.; McManamon, A.; Hughes, S. P.; Van Der Zweep, R. A.; Butcher, P.; Karafotias, C.; Beckers, J.; Welles, E.

    2016-12-01

    Numerous studies have documented the impacts that large scale weather patterns and climate phenomenon like the El Niño Southern Oscillation (ENSO), Pacific-North American (PNA) Pattern, and others can have on seasonal temperature and precipitation in the Columbia River Basin (CRB). While far from perfect in terms of seasonal predictability in specific locations, these intra-annual weather and climate signal do tilt the odds toward different temperature and precipitation outcomes, which in turn can have impacts on seasonal snowpacks, streamflows and water supply in large river basins like the CRB. We hypothesize that intraseasonal climate signals and long wave jet stream patterns can be objectively incorporated into what it is otherwise a climatology-based set of Ensemble Streamflow Forecasts, and can increase the predictive skill and utility of these forecasts used for mid-range hydropower planning. The Bonneville Power Administration (BPA) and Deltares have developed a subsampling-resampling method to incorporate climate mode information into the Ensemble Streamflow Prediction (ESP) forecasts (Beckers, et al., 2016). Since 2015, BPA and Deltares USA have experimented with this method in pre-operational use, using five objective multivariate climate indices that appear to have the greatest predictive value for seasonal temperature and precipitation in the CRB. The indices are used to objectively select historical weather from about twenty analog years in the 66-year (1949-2015) historical ESP set. These twenty scenarios then serve as the starting point to generate monthly synthetic weather and streamflow time series to return to a set of 66 streamflow traces. Our poster will share initial results from the 2015 and 2016 water years, which included large swings in the Quasi-Biennial Oscillation, persistent blocking jet stream patterns, and the development of a strong El Niño event. While the results are very preliminary and for only two seasons, there may be some value in incorporating objectively-identified climate signals into ESP-based streamflow forecasts.Beckers, J. V. L., Weerts, A. H., Tijdeman, E., and Welles, E.: ENSO-Conditioned Weather Resampling Method for Seasonal Ensemble Streamflow Prediction, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-72, in review, 2016.

  9. Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting

    NASA Astrophysics Data System (ADS)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2013-12-01

    Discrete wavelet transform was applied to decomposed ANN and ANFIS inputs.Novel approach of WNF with subtractive clustering applied for flow forecasting.Forecasting was performed in 1-5 step ahead, using multi-variate inputs.Forecasting accuracy of peak values and longer lead-time significantly improved.

  10. Understanding and seasonal forecasting of hydrological drought in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Yuan, Xing; Zhang, Miao; Wang, Linying; Zhou, Tian

    2017-11-01

    Hydrological drought is not only caused by natural hydroclimate variability but can also be directly altered by human interventions including reservoir operation, irrigation, groundwater exploitation, etc. Understanding and forecasting of hydrological drought in the Anthropocene are grand challenges due to complicated interactions among climate, hydrology and humans. In this paper, five decades (1961-2010) of naturalized and observed streamflow datasets are used to investigate hydrological drought characteristics in a heavily managed river basin, the Yellow River basin in north China. Human interventions decrease the correlation between hydrological and meteorological droughts, and make the hydrological drought respond to longer timescales of meteorological drought. Due to large water consumptions in the middle and lower reaches, there are 118-262 % increases in the hydrological drought frequency, up to 8-fold increases in the drought severity, 21-99 % increases in the drought duration and the drought onset is earlier. The non-stationarity due to anthropogenic climate change and human water use basically decreases the correlation between meteorological and hydrological droughts and reduces the effect of human interventions on hydrological drought frequency while increasing the effect on drought duration and severity. A set of 29-year (1982-2010) hindcasts from an established seasonal hydrological forecasting system are used to assess the forecast skill of hydrological drought. In the naturalized condition, the climate-model-based approach outperforms the climatology method in predicting the 2001 severe hydrological drought event. Based on the 29-year hindcasts, the former method has a Brier skill score of 11-26 % against the latter for the probabilistic hydrological drought forecasting. In the Anthropocene, the skill for both approaches increases due to the dominant influence of human interventions that have been implicitly incorporated by the hydrological post-processing, while the difference between the two predictions decreases. This suggests that human interventions can outweigh the climate variability for the hydrological drought forecasting in the Anthropocene, and the predictability for human interventions needs more attention.

  11. Forecasting seasonal hydrologic response in major river basins

    NASA Astrophysics Data System (ADS)

    Bhuiyan, A. M.

    2014-05-01

    Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts.

  12. Linking Science of Flood Forecasts to Humanitarian Actions for Improved Preparedness and Effective Response

    NASA Astrophysics Data System (ADS)

    Uprety, M.; Dugar, S.; Gautam, D.; Kanel, D.; Kshetri, M.; Kharbuja, R. G.; Acharya, S. H.

    2017-12-01

    Advances in flood forecasting have provided opportunities for humanitarian responders to employ a range of preparedness activities at different forecast time horizons. Yet, the science of prediction is less understood and realized across the humanitarian landscape, and often preparedness plans are based upon average level of flood risk. Working under the remit of Forecast Based Financing (FbF), we present a pilot from Nepal on how available flood and weather forecast products are informing specific pre-emptive actions in the local preparedness and response plans, thereby supporting government stakeholders and humanitarian agencies to take early actions before an impending flood event. In Nepal, forecasting capabilities are limited but in a state of positive flux. Whilst local flood forecasts based upon rainfall-runoff models are yet to be operationalized, streamflow predictions from Global Flood Awareness System (GLoFAS) can be utilized to plan and implement preparedness activities several days in advance. Likewise, 3-day rainfall forecasts from Nepal Department of Hydrology and Meteorology (DHM) can further inform specific set of early actions for potential flash floods due to heavy precipitation. Existing community based early warning systems in the major river basins of Nepal are utilizing real time monitoring of water levels and rainfall together with localised probabilistic flood forecasts which has increased warning lead time from 2-3 hours to 7-8 hours. Based on these available forecast products, thresholds and trigger levels have been determined for different flood scenarios. Matching these trigger levels and assigning responsibilities to relevant actors for early actions, a set of standard operating procedures (SOPs) are being developed, broadly covering general preparedness activities and science informed anticipatory actions for different forecast lead times followed by the immediate response activities. These SOPs are currently being rolled out and tested by the Ministry of Home Affairs (MoHA) through its district emergency operation centres in West Nepal. Potential scale up and successful implementation of this science based approach would be instrumental to take forward global commitments on disaster risk reduction, climate change adaptation and sustainable goals in Nepal.

  13. An Experimental Real-Time Ocean Nowcast/Forecast System for Intra America Seas

    NASA Astrophysics Data System (ADS)

    Ko, D. S.; Preller, R. H.; Martin, P. J.

    2003-04-01

    An experimental real-time Ocean Nowcast/Forecast System has been developed for the Intra America Seas (IASNFS). The area of coverage includes the Caribbean Sea, the Gulf of Mexico and the Straits of Florida. The system produces nowcast and up to 72 hours forecast the sea level variation, 3D ocean current, temperature and salinity fields. IASNFS consists an 1/24 degree (~5 km), 41-level sigma-z data-assimilating ocean model based on NCOM. For daily nowcast/forecast the model is restarted from previous nowcast. Once model is restarted it continuously assimilates the synthetic temperature/salinity profiles generated by a data analysis model called MODAS to produce nowcast. Real-time data come from satellite altimeter (GFO, TOPEX/Poseidon, ERS-2) sea surface height anomaly and AVHRR sea surface temperature. Three hourly surface heat fluxes, including solar radiation, wind stresses and sea level air pressure from NOGAPS/FNMOC are applied for surface forcing. Forecasts are produced with available NOGAPS forecasts. Once the nowcast/forecast are produced they are distributed through the Internet via the updated web pages. The open boundary conditions including sea surface elevation, transport, temperature, salinity and currents are provided by the NRL 1/8 degree Global NCOM which is operated daily. An one way coupling scheme is used to ingest those boundary conditions into the IAS model. There are 41 rivers with monthly discharges included in the IASNFS.

  14. Experiments with Interaction between the National Water Model and the Reservoir System Simulation Model: A Case Study of Russian River Basin

    NASA Astrophysics Data System (ADS)

    Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.

    2017-12-01

    NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.

  15. Drought Monitoring and Forecasting Using the Princeton/U Washington National Hydrologic Forecasting System

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Roundy, J. K.; Lettenmaier, D. P.; Mo, K. C.; Xia, Y.; Ek, M. B.

    2011-12-01

    Extreme hydrologic events in the form of droughts or floods are a significant source of social and economic damage in many parts of the world. Having sufficient warning of extreme events allows managers to prepare for and reduce the severity of their impacts. A hydrologic forecast system can give seasonal predictions that can be used by mangers to make better decisions; however there is still much uncertainty associated with such a system. Therefore it is important to understand the forecast skill of the system before transitioning to operational usage. Seasonal reforecasts (1982 - 2010) from the NCEP Climate Forecast System (both version 1 (CFS) and version 2 (CFSv2), Climate Prediction Center (CPC) outlooks and the European Seasonal Interannual Prediction (EUROSIP) system, are assessed for forecasting skill in drought prediction across the U.S., both singularly and as a multi-model system The Princeton/U Washington national hydrologic monitoring and forecast system is being implemented at NCEP/EMC via their Climate Test Bed as the experimental hydrological forecast system to support U.S. operational drought prediction. Using our system, the seasonal forecasts are biased corrected, downscaled and used to drive the Variable Infiltration Capacity (VIC) land surface model to give seasonal forecasts of hydrologic variables with lead times of up to six months. Results are presented for a number of events, with particular focus on the Apalachicola-Chattahoochee-Flint (ACF) River Basin in the South Eastern United States, which has experienced a number of severe droughts in recent years and is a pilot study basin for the National Integrated Drought Information System (NIDIS). The performance of the VIC land surface model is evaluated using observational forcing when compared to observed streamflow. The effectiveness of the forecast system to predict streamflow and soil moisture is evaluated when compared with observed streamflow and modeled soil moisture driven by observed atmospheric forcing. The forecast skills from the dynamical seasonal models (CFSv1, CFSv2, EUROSIP) and CPC are also compared with forecasts based on the Ensemble Streamflow Prediction (ESP) method, which uses initial conditions and historical forcings to generate seasonal forecasts. The skill of the system to predict drought, drought recovery and related hydrological conditions such as low-flows is assessed, along with quantified uncertainty.

  16. Lake Erie Water Level Study. Appendix D. Commercial Navigation.

    DTIC Science & Technology

    1981-07-01

    this area. This system also serves the large Canadian mining operations in Quebec and Labrador and metropolitan areas on the St. Lawrence River in Quebec...The bulk cargo forecasts were obtained from expert secondary sources such as the U.S. Bureau of Mines and U.S. Department of Agriculture. The utility...advantage of the overwhelming cost savings that exist. As such, over 97 percent of Superior District (i.e., Minnesota , Wisconsin and Michigan) iron

  17. How Hydroclimate Influences the Effectiveness of Particle Filter Data Assimilation of Streamflow in Initializing Short- to Medium-range Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Clark, E.; Wood, A.; Nijssen, B.; Clark, M. P.

    2017-12-01

    Short- to medium-range (1- to 7-day) streamflow forecasts are important for flood control operations and in issuing potentially life-save flood warnings. In the U.S., the National Weather Service River Forecast Centers (RFCs) issue such forecasts in real time, depending heavily on a manual data assimilation (DA) approach. Forecasters adjust model inputs, states, parameters and outputs based on experience and consideration of a range of supporting real-time information. Achieving high-quality forecasts from new automated, centralized forecast systems will depend critically on the adequacy of automated DA approaches to make analogous corrections to the forecasting system. Such approaches would further enable systematic evaluation of real-time flood forecasting methods and strategies. Toward this goal, we have implemented a real-time Sequential Importance Resampling particle filter (SIR-PF) approach to assimilate observed streamflow into simulated initial hydrologic conditions (states) for initializing ensemble flood forecasts. Assimilating streamflow alone in SIR-PF improves simulated streamflow and soil moisture during the model spin up period prior to a forecast, with consequent benefits for forecasts. Nevertheless, it only consistently limits error in simulated snow water equivalent during the snowmelt season and in basins where precipitation falls primarily as snow. We examine how the simulated initial conditions with and without SIR-PF propagate into 1- to 7-day ensemble streamflow forecasts. Forecasts are evaluated in terms of reliability and skill over a 10-year period from 2005-2015. The focus of this analysis is on how interactions between hydroclimate and SIR-PF performance impact forecast skill. To this end, we examine forecasts for 5 hydroclimatically diverse basins in the western U.S. Some of these basins receive most of their precipitation as snow, others as rain. Some freeze throughout the mid-winter while others experience significant mid-winter melt events. We describe the methodology and present seasonal and inter-basin variations in DA-enhanced forecast skill.

  18. Forecast Mekong: navigating changing waters

    USGS Publications Warehouse

    Powell, Janine

    2011-01-01

    The U.S. Geological Survey (USGS) is using research and data from the Mekong River Delta in Southeast Asia to compare restoration, conservation, and management efforts there with those done in other major river deltas, such as the Mississippi River Delta in the United States. The project provides a forum to engage regional partners in the Mekong Basin countries to share data and support local research efforts. Ultimately, Forecast Mekong will lead to more informed decisions about how to make the Mekong and Mississippi Deltas resilient in the face of climate change, economic stresses, and other impacts.

  19. Moving beyond the cost-loss ratio: economic assessment of streamflow forecasts for a risk-averse decision maker

    NASA Astrophysics Data System (ADS)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier Filion, Thomas-Charles

    2017-06-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost-loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed deterministic forecasts, forecasts based on meteorological ensembles, and a variant of the latter that also includes an estimation of state variable uncertainty. This comparison takes place for the Montmorency River, a small flood-prone watershed in southern central Quebec, Canada. The assessment of forecasts is performed for lead times of 1 to 5 days, both in terms of forecasts' quality (relative to the corresponding record of observations) and in terms of economic value, using the new proposed framework based on the CARA utility function. It is found that the economic value of a forecast for a risk-averse decision maker is closely linked to the forecast reliability in predicting the upper tail of the streamflow distribution. Hence, post-processing forecasts to avoid over-forecasting could help improve both the quality and the value of forecasts.

  20. The FIRO-2017 Field Campaign: Findings from a Unique Observing Period in the Russian River Watershed in Northern California during Jan - Mar 2017

    NASA Astrophysics Data System (ADS)

    Wilson, A. M.; Ralph, M.; Demirdjian, R.; Kawzenuk, B.; Cannon, F.; Cordeira, J. M.

    2017-12-01

    Forecast Informed Reservoir Operations (FIRO) is a proposed water management strategy that aims to improve water supply, maintain reduction in flood risk, and achieve ecosystem sustainability using data from state of the art watershed monitoring and weather and water forecasting. The first testbed for this strategy is Lake Mendocino, in the Russian River Watershed in northern California. In order to accomplish these goals, it is necessary to understand and better predict Atmospheric Rivers (ARs), which provide 50% of the annual precipitation, and cause most of the heavy rain and flood events in this watershed. To support this effort, a field campaign was held during January-March 2017 in the Russian River Watershed with the science objectives of understanding AR evolution as the AR makes landfall and interacts with terrain, assess reasons for additional variance in the relationship between storm total precipitation and bulk water vapor flux, and to form a unique database for model verification. Coastal and inland field sites equipped with multiple ground-based sensors as well as Vaisala radiosonde systems were deployed to support these objectives. The 2017 water year was among the wettest recorded in California. During the January-March 2017 period, the coastal/inland pair of radiosonde systems captured 13 storms with maximum integrated vapor transport (IVT) values nearing 1200 kg/m/s. This presentation will provide an overview of the water year and the field campaign observations. Results indicate that bulk upslope water vapor flux measured by the ARO, which is the measurement regularly available to forecasters and researchers, correlates extremely well with integrated vapor transport (IVT). The profiles of water vapor flux observed by the coastal and inland sites are very different both in maximum flux magnitude and height of the maximum flux.

  1. Flood-inundation maps for the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.; Johnston, Craig M.; Hays, Laura

    2012-01-01

    Digital flood-inundation maps for a 16.5-mile reach of the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, N.H., from the confluence with the Merrimack River to U.S. Geological Survey (USGS) Suncook River streamgage 01089500 at Depot Road in North Chichester, N.H., were created by the USGS in cooperation with the New Hampshire Department of Homeland Security and Emergency Management. The inundation maps presented in this report depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suncook River at North Chichester, N.H. (station 01089500). The current conditions at the USGS streamgage may be obtained on the Internet (http://waterdata.usgs.gov/nh/nwis/uv/?site_no=01089500&PARAmeter_cd=00065,00060). The National Weather Service forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) flood-warning system site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. These maps along with real-time stream stage data from the USGS Suncook River streamgage (station 01089500) and forecasted stream stage from the NWS will provide emergency management personnel and residents with information that is critical for flood-response activities, such as evacuations, road closures, disaster declarations, and post-flood recovery. The maps, along with current stream-stage data from the USGS Suncook River streamgage and forecasted stream-stage data from the NWS, can be accessed at the USGS Flood Inundation Mapping Science Web site http://water.usgs.gov/osw/flood_inundation/.

  2. Climate Change Adaptation in the Western U.S.: the Case for Dynamic Rule Curves in Water Resources Management

    NASA Astrophysics Data System (ADS)

    Lee, S.; Hamlet, A. F.; Burges, S. J.

    2008-12-01

    Climate change in the Western U.S. will bring systematic hydrologic changes affecting many water resources systems. Successful adaptation to these changes, which will be ongoing through the 21st century, will require the 'rebalancing' of competing system objectives such as water supply, flood control, hydropower production, and environmental services in response to hydrologic (and other) changes. Although fixed operating policies for the operation of reservoirs has been a traditional approach to water management in the 20th century, the rapid pace of projected climate shifts (~0.5 F per decade), and the prohibitive costs of recursive policy intervention to mitigate impacts, suggest that more sophisticated approaches will be needed to cope with climate change on a long term basis. The use of 'dynamic rule curves' is an approach that maintains some of the key characteristics of current water management practice (reservoir rule curves) while avoiding many of the fundamental drawbacks of traditional water resources management strategies in a non-stationary climate. In this approach, water resources systems are optimized for each operational period using ensemble streamflow and/or water demand forecasts. The ensemble of optimized reservoir storage traces are then analyzed to produce a set of unique reservoir rule curves for each operational period reflecting the current state of the system. The potential advantage of this approach is that hydrologic changes associated with climate change (such as systematically warmer temperatures) can be captured explicitly in operational hydrologic forecasts, which would in turn inform the optimized reservoir management solutions, creating water resources systems that are largely 'self tending' as the climate system evolves. Furthermore, as hydrologic forecasting systems improve (e.g. in response to improved ENSO forecasting or other scientific advances), so does the performance of reservoir operations. An example of the approach is given for flood control in the Columbia River basin.

  3. Water survey of Canada: Application for use of ERTS-A for retransmission of water resources data

    NASA Technical Reports Server (NTRS)

    Halliday, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Nine sites in isolated regions in Canada have been selected for installation of ERTS data collection platforms. Seven platforms were installed in 1972, one of which did not operate. The six operating platforms transmitted over 7000 water level readings from stream gauging stations. This data is available on a near real time basis through the Canada Center for Remote Sensing and is used for river flow forecasting. The practicability of using satellite retransmission as a means of obtaining data from remote areas has been demonstrated.

  4. A pan-African medium-range ensemble flood forecast system

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Bisselink, Bernard; Pappenberger, Florian; Thielen, Jutta

    2015-04-01

    The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions of the ECMWF and critical hydrological thresholds. In this study the predictive capability is investigated, to estimate AFFS' potential as an operational flood forecasting system for the whole of Africa. This is done in a hindcast mode, by reproducing pan-African hydrological predictions for the whole year of 2003 where important flood events were observed. Results were analysed in two ways, each with its individual objective. The first part of the analysis is of paramount importance for the assessment of AFFS as a flood forecasting system, as it focuses on the detection and prediction of flood events. Here, results were verified with reports of various flood archives such as Dartmouth Flood Observatory, the Emergency Event Database, the NASA Earth Observatory and Reliefweb. The number of hits, false alerts and missed alerts as well as the Probability of Detection, False Alarm Rate and Critical Success Index were determined for various conditions (different regions, flood durations, average amount of annual precipitations, size of affected areas and mean annual discharge). The second part of the analysis complements the first by giving a basic insight into the prediction skill of the general streamflow. For this, hydrological predictions were compared against observations at 36 key locations across Africa and the Continuous Rank Probability Skill Score (CRPSS), the limit of predictability and reliability were calculated. Results showed that AFFS detected around 70 % of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (> 1 week) and large affected areas (> 10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. Also the forecasts showed on average a good reliability, and the CRPSS helped identifying regions to focus on for future improvements. The case study for the flood event in March 2003 in the Sabi Basin (Zimbabwe and Mozambique) illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a good prospective as an operational system, as it has demonstrated its significant potential to contribute to the reduction of flood-related losses in Africa by providing national and international aid organizations timely with medium-range flood forecast information. However, issues related to the practical implication will still need to be investigated.

  5. Performance assessment of deterministic and probabilistic weather predictions for the short-term optimization of a tropical hydropower reservoir

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Schwanenberg, Dirk; Alvarado, Rodolfo; Assis dos Reis, Alberto; Naumann, Steffi; Collischonn, Walter

    2016-04-01

    Hydropower is the most important electricity source in Brazil. During recent years, it accounted for 60% to 70% of the total electric power supply. Marginal costs of hydropower are lower than for thermal power plants, therefore, there is a strong economic motivation to maximize its share. On the other hand, hydropower depends on the availability of water, which has a natural variability. Its extremes lead to the risks of power production deficits during droughts and safety issues in the reservoir and downstream river reaches during flood events. One building block of the proper management of hydropower assets is the short-term forecast of reservoir inflows as input for an online, event-based optimization of its release strategy. While deterministic forecasts and optimization schemes are the established techniques for the short-term reservoir management, the use of probabilistic ensemble forecasts and stochastic optimization techniques receives growing attention and a number of researches have shown its benefit. The present work shows one of the first hindcasting and closed-loop control experiments for a multi-purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower project (HPP) Três Marias, located in southeast Brazil. The HPP reservoir is operated with two main objectives: (i) hydroelectricity generation and (ii) flood control at Pirapora City located 120 km downstream of the dam. In the experiments, precipitation forecasts based on observed data, deterministic and probabilistic forecasts with 50 ensemble members of the ECMWF are used as forcing of the MGB-IPH hydrological model to generate streamflow forecasts over a period of 2 years. The online optimization depends on a deterministic and multi-stage stochastic version of a model predictive control scheme. Results for the perfect forecasts show the potential benefit of the online optimization and indicate a desired forecast lead time of 30 days. In comparison, the use of actual forecasts with shorter lead times of up to 15 days shows the practical benefit of actual operational data. It appears that the use of stochastic optimization combined with ensemble forecasts leads to a significant higher level of flood protection without compromising the HPP's energy production.

  6. Impact of AIRS Thermodynamic Profiles on Precipitation Forecasts for Atmospheric River Cases Affecting the Western United States

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley T.; Jedlovec, Gary J.; Blakenship, Clay B.; Wick, Gary A.; Neiman, Paul J.

    2013-01-01

    This project is a collaborative activity between the NASA Short-term Prediction Research and Transition (SPoRT) Center and the NOAA Hydrometeorology Testbed (HMT) to evaluate a SPoRT Advanced Infrared Sounding Radiometer (AIRS: Aumann et al. 2003) enhanced moisture analysis product. We test the impact of assimilating AIRS temperature and humidity profiles above clouds and in partly cloudy regions, using the three-dimensional variational Gridpoint Statistical Interpolation (GSI) data assimilation (DA) system (Developmental Testbed Center 2012) to produce a new analysis. Forecasts of the Weather Research and Forecasting (WRF) model initialized from the new analysis are compared to control forecasts without the additional AIRS data. We focus on some cases where atmospheric rivers caused heavy precipitation on the US West Coast. We verify the forecasts by comparison with dropsondes and the Cooperative Institute for Research in the Atmosphere (CIRA) Blended Total Precipitable Water product.

  7. Inclusion of potential vorticity uncertainties into a hydrometeorological forecasting chain: application to a medium size basin of Mediterranean Spain

    NASA Astrophysics Data System (ADS)

    Amengual, A.; Romero, R.; Vich, M.; Alonso, S.

    2009-06-01

    The improvement of the short- and mid-range numerical runoff forecasts over the flood-prone Spanish Mediterranean area is a challenging issue. This work analyses four intense precipitation events which produced floods of different magnitude over the Llobregat river basin, a medium size catchment located in Catalonia, north-eastern Spain. One of them was a devasting flash flood - known as the "Montserrat" event - which produced 5 fatalities and material losses estimated at about 65 million euros. The characterization of the Llobregat basin's hydrological response to these floods is first assessed by using rain-gauge data and the Hydrologic Engineering Center's Hydrological Modeling System (HEC-HMS) runoff model. In second place, the non-hydrostatic fifth-generation Pennsylvania State University/NCAR mesoscale model (MM5) is nested within the ECMWF large-scale forecast fields in a set of 54 h period simulations to provide quantitative precipitation forecasts (QPFs) for each hydrometeorological episode. The hydrological model is forced with these QPFs to evaluate the reliability of the resulting discharge forecasts, while an ensemble prediction system (EPS) based on perturbed atmospheric initial and boundary conditions has been designed to test the value of a probabilistic strategy versus the previous deterministic approach. Specifically, a Potential Vorticity (PV) Inversion technique has been used to perturb the MM5 model initial and boundary states (i.e. ECMWF forecast fields). For that purpose, a PV error climatology has been previously derived in order to introduce realistic PV perturbations in the EPS. Results show the benefits of using a probabilistic approach in those cases where the deterministic QPF presents significant deficiencies over the Llobregat river basin in terms of the rainfall amounts, timing and localization. These deficiences in precipitation fields have a major impact on flood forecasts. Our ensemble strategy has been found useful to reduce the biases at different hydrometric sections along the watershed. Therefore, in an operational context, the devised methodology could be useful to expand the lead times associated with the prediction of similar future floods, helping to alleviate their possible hazardous consequences.

  8. Inclusion of potential vorticity uncertainties into a hydrometeorological forecasting chain: application to a medium size basin of Mediterranean Spain

    NASA Astrophysics Data System (ADS)

    Amengual, A.; Romero, R.; Vich, M.; Alonso, S.

    2009-01-01

    The improvement of the short- and mid-range numerical runoff forecasts over the flood-prone Spanish Mediterranean area is a challenging issue. This work analyses four intense precipitation events which produced floods of different magnitude over the Llobregat river basin, a medium size catchment located in Catalonia, north-eastern Spain. One of them was a devasting flash flood - known as the "Montserrat" event - which produced 5 fatalities and material losses estimated at about 65 million euros. The characterization of the Llobregat basin's hydrological response to these floods is first assessed by using rain-gauge data and the Hydrologic Engineering Center's Hydrological Modeling System (HEC-HMS) runoff model. In second place, the non-hydrostatic fifth-generation Pennsylvania State University/NCAR mesoscale model (MM5) is nested within the ECMWF large-scale forecast fields in a set of 54 h period simulations to provide quantitative precipitation forecasts (QPFs) for each hydrometeorological episode. The hydrological model is forced with these QPFs to evaluate the reliability of the resulting discharge forecasts, while an ensemble prediction system (EPS) based on perturbed atmospheric initial and boundary conditions has been designed to test the value of a probabilistic strategy versus the previous deterministic approach. Specifically, a Potential Vorticity (PV) Inversion technique has been used to perturb the MM5 model initial and boundary states (i.e. ECMWF forecast fields). For that purpose, a PV error climatology has been previously derived in order to introduce realistic PV perturbations in the EPS. Results show the benefits of using a probabilistic approach in those cases where the deterministic QPF presents significant deficiencies over the Llobregat river basin in terms of the rainfall amounts, timing and localization. These deficiences in precipitation fields have a major impact on flood forecasts. Our ensemble strategy has been found useful to reduce the biases at different hydrometric sections along the watershed. Therefore, in an operational context, the devised methodology could be useful to expand the lead times associated with the prediction of similar future floods, helping to alleviate their possible hazardous consequences.

  9. Evaluation of flash-flood discharge forecasts in complex terrain using precipitation

    USGS Publications Warehouse

    Yates, D.; Warner, T.T.; Brandes, E.A.; Leavesley, G.H.; Sun, Jielun; Mueller, C.K.

    2001-01-01

    Operational prediction of flash floods produced by thunderstorm (convective) precipitation in mountainous areas requires accurate estimates or predictions of the precipitation distribution in space and time. The details of the spatial distribution are especially critical in complex terrain because the watersheds are generally small in size, and small position errors in the forecast or observed placement of the precipitation can distribute the rain over the wrong watershed. In addition to the need for good precipitation estimates and predictions, accurate flood prediction requires a surface-hydrologic model that is capable of predicting stream or river discharge based on the precipitation-rate input data. Different techniques for the estimation and prediction of convective precipitation will be applied to the Buffalo Creek, Colorado flash flood of July 1996, where over 75 mm of rain from a thunderstorm fell on the watershed in less than 1 h. The hydrologic impact of the precipitation was exacerbated by the fact that a significant fraction of the watershed experienced a wildfire approximately two months prior to the rain event. Precipitation estimates from the National Weather Service's operational Weather Surveillance Radar-Doppler 1988 and the National Center for Atmospheric Research S-band, research, dual-polarization radar, colocated to the east of Denver, are compared. In addition, very short range forecasts from a convection-resolving dynamic model, which is initialized variationally using the radar reflectivity and Doppler winds, are compared with forecasts from an automated-algorithmic forecast system that also employs the radar data. The radar estimates of rain rate, and the two forecasting systems that employ the radar data, have degraded accuracy by virtue of the fact that they are applied in complex terrain. Nevertheless, the radar data and forecasts from the dynamic model and the automated algorithm could be operationally useful for input to surface-hydrologic models employed for flood warning. Precipitation data provided by these various techniques at short time scales and at fine spatial resolutions are employed as detailed input to a distributed-parameter hydrologic model for flash-flood prediction and analysis. With the radar-based precipitation estimates employed as input, the simulated flood discharge was similar to that observed. The dynamic-model precipitation forecast showed the most promise in providing a significant discharge-forecast lead time. The algorithmic system's precipitation forecast did not demonstrate as much skill, but the associated discharge forecast would still have been sufficient to have provided an alert of impending flood danger.

  10. Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc

    2016-04-01

    The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.

  11. Medium range flood forecasts at global scale

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Wood, A. W.; Lettenmaier, D. P.; Wood, E. F.

    2006-12-01

    While weather and climate forecast methods have advanced greatly over the last two decades, this capability has yet to be evidenced in mitigation of water-related natural hazards (primarily floods and droughts), especially in the developing world. Examples abound of extreme property damage and loss of life due to floods in the underdeveloped world. For instance, more than 4.5 million people were affected by the July 2000 flooding of the Mekong River and its tributaries in Cambodia, Vietnam, Laos and Thailand. The February- March 2000 floods in the Limpopo River of Mozambique caused extreme disruption to that country's fledgling economy. Mitigation of these events through advance warning has typically been modest at best. Despite the above noted improvement in weather and climate forecasts, there is at present no system for forecasting of floods globally, notwithstanding that the potential clearly exists. We describe a methodology that is eventually intended to generate global flood predictions routinely. It draws heavily from the experimental North American Land Data Assimilation System (NLDAS) and the companion Global Land Data Assimilation System (GLDAS) for development of nowcasts, and the University of Washington Experimental Hydrologic Prediction System to develop ensemble hydrologic forecasts based on Numerical Weather Prediction (NWP) models which serve both as nowcasts (and hence reduce the need for in situ precipitation and other observations in parts of the world where surface networks are critically deficient) and provide forecasts for lead times as long as fifteen days. The heart of the hydrologic modeling system is the University of Washington/Princeton University Variable Infiltration Capacity (VIC) macroscale hydrology model. In the prototype (tested using retrospective data), VIC is driven globally up to the time of forecast with daily ERA40 precipitation (rescaled on a monthly basis to a station-based global climatology), ERA40 wind, and ERA40 average surface air temperature (with temperature ranges adjusted to a station-based climatology). In the retrospective forecasting mode, VIC is driven by global NCEP ensemble 15-day reforecasts provided by Tom Hamill (NOAA/ERL), bias corrected with respect to the adjusted ERA40 data and further downscaled spatially using higher spatial resolution Global Precipitation Climatology Project (GPCP) 1dd daily precipitation. Downward solar and longwave radiation, surface relative humidity, and other model forcings are derived from relationships with the daily temperature range during both the retrospective (spinup) and forecast period. The initial system is implemented globally at one-half degree spatial resolution. We evaluate model performance retrospectively for predictions of major floods for the Oder River in 1997, the Mekong River in 2000 and the Limpopo River in 2000.

  12. A high resolution Adriatic-Ionian Sea circulation model for operational forecasting

    NASA Astrophysics Data System (ADS)

    Ciliberti, Stefania Angela; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Vukicevic, Tomislava; Lecci, Rita; Verri, Giorgia; Kumkar, Yogesh; Creti', Sergio

    2015-04-01

    A new numerical regional ocean model for the Italian Seas, with focus on the Adriatic-Ionian basin, has been implemented within the framework of Technologies for Situational Sea Awareness (TESSA) Project. The Adriatic-Ionian regional model (AIREG) represents the core of the new Adriatic-Ionian Forecasting System (AIFS), maintained operational by CMCC since November 2014. The spatial domain covers the Adriatic and the Ionian Seas, extending eastward until the Peloponnesus until the Libyan coasts; it includes also the Tyrrhenian Sea and extends westward, including the Ligurian Sea, the Sardinia Sea and part of the Algerian basin. The model is based on the NEMO-OPA (Nucleus for European Modeling of the Ocean - Ocean PArallelise), version 3.4 (Madec et al. 2008). NEMO has been implemented for AIREG at 1/45° resolution model in horizontal using 121 vertical levels with partial steps. It solves the primitive equations using the time-splitting technique for solving explicitly the external gravity waves. The model is forced by momentum, water and heat fluxes interactively computed by bulk formulae using the 6h-0.25° horizontal-resolution operational analysis and forecast fields from the European Centre for Medium-Range Weather Forecast (ECMWF) (Tonani et al. 2008, Oddo et al. 2009). The atmospheric pressure effect is included as surface forcing for the model hydrodynamics. The evaporation is derived from the latent heat flux, while the precipitation is provided by the Climate Prediction Centre Merged Analysis of Precipitation (CMAP) data. Concerning the runoff contribution, the model considers the estimate of the inflow discharge of 75 rivers that flow into the Adriatic-Ionian basin, collected by using monthly means datasets. Because of its importance as freshwater input in the Adriatic basin, the Po River contribution is provided using daily average observations from ARPA Emilia Romagna observational network. AIREG is one-way nested into the Mediterranean Forecasting System (MFS, http://medforecast.bo.ingv.it/) using daily means fields computed from daily outputs of the 1/16° general circulation model. One-way nesting is done by a novel pre-processing tool for an on-the-fly computation of boundary datasets compatible with BDY module provided by NEMO. It imposes the interpolation constraint and correction as in Pinardi et al. (2003) on the total velocity, ensuring that the total volume transport across boundaries is preserved after the interpolation procedures. In order to compute the lateral open boundary conditions, the model applies the Flow Relaxation Scheme (Engerdhal, 1995) for temperature, salinity and velocities and the Flather's radiation condition (Flather, 1976) for the depth-mean transport. Concerning the forecasting production cycle, AIFS produces 9-days forecast every day, producing hourly and daily means of temperature, salinity, surface currents, heat flux, water flux and shortwave radiation fields. AIREG model performances have been verified by using statistics (root mean square errors and BIAS) with respect to observed data (ARGO and CDT datasets)

  13. Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjorn; Steinsland, Ingelin

    2014-05-01

    This study introduces a methodology for the construction of probabilistic inflow forecasts for multiple catchments and lead times, and investigates criterions for evaluation of multi-variate forecasts. A post-processing approach is used, and a Gaussian model is applied for transformed variables. The post processing model has two main components, the mean model and the dependency model. The mean model is used to estimate the marginal distributions for forecasted inflow for each catchment and lead time, whereas the dependency models was used to estimate the full multivariate distribution of forecasts, i.e. co-variances between catchments and lead times. In operational situations, it is a straightforward task to use the models to sample inflow ensembles which inherit the dependencies between catchments and lead times. The methodology was tested and demonstrated in the river systems linked to the Ulla-Førre hydropower complex in southern Norway, where simultaneous probabilistic forecasts for five catchments and ten lead times were constructed. The methodology exhibits sufficient flexibility to utilize deterministic flow forecasts from a numerical hydrological model as well as statistical forecasts such as persistent forecasts and sliding window climatology forecasts. It also deals with variation in the relative weights of these forecasts with both catchment and lead time. When evaluating predictive performance in original space using cross validation, the case study found that it is important to include the persistent forecast for the initial lead times and the hydrological forecast for medium-term lead times. Sliding window climatology forecasts become more important for the latest lead times. Furthermore, operationally important features in this case study such as heteroscedasticity, lead time varying between lead time dependency and lead time varying between catchment dependency are captured. Two criterions were used for evaluating the added value of the dependency model. The first one was the Energy score (ES) that is a multi-dimensional generalization of continuous rank probability score (CRPS). ES was calculated for all lead-times and catchments together, for each catchment across all lead times and for each lead time across all catchments. The second criterion was to use CRPS for forecasted inflows accumulated over several lead times and catchments. The results showed that ES was not very sensitive to correct covariance structure, whereas CRPS for accumulated flows where more suitable for evaluating the dependency model. This indicates that it is more appropriate to evaluate relevant univariate variables that depends on the dependency structure then to evaluate the multivariate forecast directly.

  14. An Operational Coastal Forecasting System in Galicia (NW Spain)

    NASA Astrophysics Data System (ADS)

    Balseiro, C. F.; Carracedo, P.; Pérez, E.; Pérez, V.; Taboada, J.; Venacio, A.; Vilasa, L.

    2009-09-01

    The Galician coast (NW Iberian Peninsula coast) and mainly the Rias Baixas (southern Galician rias) are one of the most productive ecosystems in the world, supporting a very active fishing and aquiculture industry. This high productivity lives together with a high human pressure and an intense maritime traffic, which means an important environmental risk. Besides that, Harmful Algae Blooms (HAB) are common in this area, producing important economical losses in aquiculture. In this context, the development of an Operational Hydrodynamic Ocean Forecast System is the first step to the development of a more sophisticated Ocean Integrated Decision Support Tool. A regional oceanographic forecasting system in the Galician Coast has been developed by MeteoGalicia (the Galician regional meteorological agency) inside ESEOO project to provide forecasts on currents, sea level, water temperature and salinity. This system is based on hydrodynamic model MOHID, forced with the operational meteorological model WRF, supported daily at MeteoGalicia . Two grid meshes are running nested at different scales, one of ~2km at the shelf scale and the other one with a resolution of 500 m at the rias scale. ESEOAT (Puertos del Estado) model provide salinity and temperature fields which are relaxed at all depth along the open boundary of the regional model (~6km). Temperature and salinity initial fields are also obtained from this application. Freshwater input from main rivers are included as forcing in MOHID model. Monthly mean discharge data from gauge station have been provided by Aguas de Galicia. Nowadays a coupling between an hydrological model (SWAT) and the hydrodynamic one are in development with the aim to verify the impact of the rivers discharges. The system runs operationally daily, providing two days of forecast. First model verifications had been performed against Puertos del Estado buoys and Xunta de Galicia buoys network along the Galician coast. High resolution model results were validated against a CTDs profiles campaign carried out during an oil spill exercise in the Ria de Vigo in April 2007. During EROCIPS INTERREG IIIB and EASY INTERREG IVB projects, a Galician oceanographic observation network were built. Three stations located inside the Rias Baixas allow to collect meteorological and oceanographic data at different depths to calibrate and validate the modelization of the rias. To complete this network and to create a common data platform a new project emerged (RAIA INTERREG IVA). It will provide MeteoGalicia more scientific data to improve the study of the rias. Furthermore, MeteoGalicia is also involved in DRIFTER AMPERA project which allows to improve the capability of modelling and monitoring the trajectory of hazardous substances and inerts.

  15. Operational flood forecasting system of Umbria Region "Functional Centre

    NASA Astrophysics Data System (ADS)

    Berni, N.; Pandolfo, C.; Stelluti, M.; Ponziani, F.; Viterbo, A.

    2009-04-01

    The hydrometeorological alert office (called "Decentrate Functional Centre" - CFD) of Umbria Region, in central Italy, is the office that provides technical tools able to support decisions when significant flood/landslide events occur, furnishing 24h support for the whole duration of the emergency period, according to the national directive DPCM 27 February 2004 concerning the "Operating concepts for functional management of national and regional alert system during flooding and landslide events for civil protection activities purposes" that designs, within the Italian Civil Defence Emergency Management System, a network of 21 regional Functional Centres coordinated by a central office at the National Civil Protection Department in Rome. Due to its "linking" role between Civil Protection "real time" activities and environmental/planning "deferred time" ones, the Centre is in charge to acquire and collect both real time and quasi-static data: quantitative data from monitoring networks (hydrometeorological stations, meteo radar, ...), meteorological forecasting models output, Earth Observation data, hydraulic and hydrological simulation models, cartographic and thematic GIS data (vectorial and raster type), planning studies related to flooding areas mapping, dam managing plans during flood events, non instrumental information from direct control of "territorial presidium". A detailed procedure for the management of critical events was planned, also in order to define the different role of various authorities and institutions involved. Tiber River catchment, of which Umbria region represents the main upper-medium portion, includes also regional trans-boundary issues very important to cope with, especially for what concerns large dam behavior and management during heavy rainfall. The alert system is referred to 6 different warning areas in which the territory has been divided into and based on a threshold system of three different increasing critical levels according to the expected ground effects: ordinary, moderate and high. Particularly, hydrometric and rainfall thresholds for both floods and landslides alarms were assessed. Based on these thresholds, at the Umbria Region Functional Centre an automatic phone-call and SMS alert system is operating. For a real time flood forecasting system, at the CFD several hydrological and hydraulic models were developed. Three rainfall-runoff hydrological models, using different quantitative meteorological forecasts, are available: the event based models X-Nash (based on the Nash theory) and Mike-Drift coupled with the hydraulic model Mike-11 (developed by the Danish Hydraulic Institute - DHI); and the physically-based continuous model Mobidic (MOdello di Bilancio Idrologico DIstribuito e Continuo - Distributed and Continuous Model for the Hydrological Balance, developed by the University of Florence in cooperation with the Functional Centre of Tuscany Region). Other two hydrological models, using observed data of the real time hydrometeorological network, were implemented: the first one is the rainfall-runoff hydrological model Hec-Hms coupled with the hydraulic model Hec-Ras (United States Army Corps of Engineers - USACE). Moreover, Hec-Hms, is coupled also with a continuous soil moisture model for a more precise evaluation of the antecedent moisture condition of the basin, which is a key factor for a correct runoff volume evaluation. The second one is the routing hydrological model Stafom (STage FOrecasting Model, developed by the Italian Research Institute for Geo-Hydrological Protection of the National Research Council - IRPI-CNR). This model is an adaptive model for on-line stage forecasting for river branches where significant lateral inflow contributions occur and, up to now, it is implemented for the main Tiber River branch and it allows a forecasting lead time up to 10 hours for the downstream river section. Recently, during the period between December the 4th and the 16th 2008, Umbria region territory was interested by a severe rainfall event causing many floods and landslides. During the mainly critical phases the CFD furnished an immediate, significant 24h support for the decision support activities. The official web site (www.cfumbria.it), entirely developed with open source tools, represented a very useful device furnishing good performances for the monitoring and data dissemination to all the subjects involved, especially to the National/Regional Civil Protection offices and territorial presidium. Thresholds presented good accordance with non instrumental observations and automatic alert system was very effective. At last, during the flooding event a continuous link with the National Department, regional Civil Protection offices, territorial presidium and local public services, together with real time instrumental monitoring and now-casting hydrological activities performed by available models, represented a suitable junction between practice and science in CFD operational forecasting system at local, regional and national scale.

  16. Timetable of an operational flood forecasting system

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Jaun, Simon; Zappa, Massimiliano

    2010-05-01

    At present a new underground part of Zurich main station is under construction. For this purpose the runoff capacity of river Sihl, which is passing beneath the main station, is reduced by 40%. If a flood is to occur the construction site is evacuated and gates can be opened for full runoff capacity to prevent bigger damages. However, flooding the construction site, even if it is controlled, is coupled with costs and retardation. The evacuation of the construction site at Zurich main station takes about 2 to 4 hours and opening the gates takes another 1 to 2 hours each. In the upper part of the 336 km2 Sihl catchment the Sihl lake, a reservoir lake, is situated. It belongs and is used by the Swiss Railway Company for hydropower production. This lake can act as a retention basin for about 46% of the Sihl catchment. Lowering the lake level to gain retention capacity, and therewith safety, is coupled with direct loss for the Railway Company. To calculate the needed retention volume and the water to be released facing unfavourable weather conditions, forecasts with a minimum lead time of 2 to 3 days are needed. Since the catchment is rather small, this can only be realised by the use of meteorological forecast data. Thus the management of the construction site depends on accurate forecasts to base their decisions on. Therefore an operational hydrological ensemble prediction system (HEPS) was introduced in September 2008 by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). It delivers daily discharge forecasts with a time horizon of 5 days. The meteorological forecasts are provided by MeteoSwiss and stem from the operational limited-area COSMO-LEPS which downscales the ECMWF ensemble prediction system to a spatial resolution of 7 km. Additional meteorological data for model calibration and initialisation (air temperature, precipitation, water vapour pressure, global radiation, wind speed and sunshine duration) and radar data are also provided by MeteoSwiss. Additional meteorological and hydrological observations are provided by a hydropower company, the Canton of Zurich and the Federal Office for the Environment (FOEN). The hydrological forecasting is calculated by the semi-distributed hydrological model PREVAH (Precipitation-Runoff-EVapotranspiration-HRU-related Model) and is further processed by the hydraulic model FLORIS. Finally the forecasts and alerts along with additional meteorological and hydrological observations and forecasts from collaborating institution are sent to a webserver accessible for decision makers. We will document the setup of our operational flood forecasting system, evaluate its performance and show how the collaboration and communication between science and practice, including all the different interests, works for this particular example.

  17. The Genesis of August 2017 Nepal Floods

    NASA Astrophysics Data System (ADS)

    Uprety, M.; Dugar, S.; Gautam, D.; Budimir, M.; Parajuli, B.; Kharbuja, R. G.

    2017-12-01

    The 2017 monsoon in Nepal was normal until mid-August 2017 when a low pressure system that formed parallel to the foothills of the Churia range brought significant amount of rain in the southern Terai belt. Rivers from East to West swelled as many of them crossed the pre-defined warning thresholds, and rainfall depths in excess of 200 mm to 600 mm were recorded in over a dozen meteorological stations across the country between 11th and 13th of August. The West Rapti River recorded water level of approximately 9 meters while the adjacent Babai River crossed 10 meters and smaller rivers such as Riu Khola and Kankai rose up to 4.8 meters and 5.5 meters respectively, well above danger levels for consecutive days. Early warning systems established in the aforementioned rivers were critical to saving lives and livelihoods. However the severity of flash floods from intermittent streams that originate from the Churia range caught people unaware and led to massive water logging and devastation across Eastern and Central Nepal that claimed 96 lives and displaced more than 14.060 families. The Department of Hydrology and Meteorology with help from telecom operators sent more than 6 million SMS messages to communities residing along the floodplains. These messages provided them with critical information on when to evacuate their homes and move to safer grounds, yet the shear spatial scale and extend of floods meant that communities struggled to find refuge on higher ground. Whilst the Global Flood Awareness System (GLoFAS) indicated with medium probability that major rivers across Nepal might swell in mid-August and the 3 day rainfall forecasts from the Numerical Weather Prediction (NWP) consistently indicated heavy precipitation in the southern Terai belt, yet no significant early actions were taken in response to this information. Despite the availability of forecast information on streamflow prediction and rainfall, there was limited pre-emptive actions and now it is imperative that governments, donors and humanitarian responders in Nepal think beyond the traditional disaster response and relief paradigm and move towards developing and investing in a system that links scientific weather forecasts with predefined early preparedness actions which is currently being piloted and can contribute towards minimizing disaster losses.

  18. OHD/HL: Presentations

    Science.gov Websites

    enter or select the go button to submit request City, St Go Science Research and Collaboration Hydrology River Forecasts, January 2002 AMS Short Course on Quantitative Precipitation Estimation and Forecasting

  19. Application of a medium-range global hydrologic probabilistic forecast scheme to the Ohio River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.

    2011-08-15

    A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatialmore » scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.« less

  20. Early Flood Warning in Africa: Results of a Feasibility study in the JUBA, SHABELLE and ZAMBEZI

    NASA Astrophysics Data System (ADS)

    Pappenberger, F. P.; de Roo, A. D.; Buizza, Roberto; Bodis, Katalin; Thiemig, Vera

    2009-04-01

    Building on the experiences gained with the European Flood Alert System (EFAS), pilot studies are carried out in three river basins in Africa. The European Flood Alert System, pre-operational since 2003, provides early flood alerts for European rivers. At present, the experiences with the European EFAS system are used to evaluate the feasibility of flood early warning for Africa. Three case studies are carried in the Juba and Shabelle rivers (Somalia and Ethiopia), and in the Zambesi river (Southern Africa). Predictions in these data scarce regions are extremely difficult to make as records of observations are scarce and often unreliable. Meteorological and Discharge observations are used to calibrate and test the model, as well as soils, landuse and topographic data available within the JRC African Observatory. ECMWF ERA-40, ERA-Interim data and re-forecasts of flood events from January to March 1978, and in March 2001 are evaluated to examine the feasibility for early flood warning. First results will be presented.

  1. Improving the effectiveness of real-time flood forecasting through Predictive Uncertainty estimation: the multi-temporal approach

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Todini, Ezio

    2015-04-01

    The negative effects of severe flood events are usually contrasted through structural measures that, however, do not fully eliminate flood risk. Non-structural measures, such as real-time flood forecasting and warning, are also required. Accurate stage/discharge future predictions with appropriate forecast lead-time are sought by decision-makers for implementing strategies to mitigate the adverse effects of floods. Traditionally, flood forecasting has been approached by using rainfall-runoff and/or flood routing modelling. Indeed, both types of forecasts, cannot be considered perfectly representing future outcomes because of lacking of a complete knowledge of involved processes (Todini, 2004). Nonetheless, although aware that model forecasts are not perfectly representing future outcomes, decision makers are de facto implicitly assuming the forecast of water level/discharge/volume, etc. as "deterministic" and coinciding with what is going to occur. Recently the concept of Predictive Uncertainty (PU) was introduced in hydrology (Krzysztofowicz, 1999), and several uncertainty processors were developed (Todini, 2008). PU is defined as the probability of occurrence of the future realization of a predictand (water level/discharge/volume) conditional on: i) prior observations and knowledge, ii) the available information obtained on the future value, typically provided by one or more forecast models. Unfortunately, PU has been frequently interpreted as a measure of lack of accuracy rather than the appropriate tool allowing to take the most appropriate decisions, given a model or several models' forecasts. With the aim to shed light on the benefits for appropriately using PU, a multi-temporal approach based on the MCP approach (Todini, 2008; Coccia and Todini, 2011) is here applied to stage forecasts at sites along the Upper Tiber River. Specifically, the STAge Forecasting-Rating Curve Model Muskingum-based (STAFOM-RCM) (Barbetta et al., 2014) along with the Rating-Curve Model in Real Time (RCM-RT) (Barbetta and Moramarco, 2014) are used to this end. Both models without considering rainfall information explicitly considers, at each time of forecast, the estimate of lateral contribution along the river reach for which the stage forecast is performed at downstream end. The analysis is performed for several reaches using different lead times according to the channel length. Barbetta, S., Moramarco, T., Brocca, L., Franchini, M. and Melone, F. 2014. Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3),729-743. Barbetta, S. and Moramarco, T. 2014. Real-time flood forecasting by relating local stage and remote discharge. Hydrological Sciences Journal, 59(9 ), 1656-1674. Coccia, G. and Todini, E. 2011. Recent developments in predictive uncertainty assessment based on the Model Conditional Processor approach. Hydrology and Earth System Sciences, 15, 3253-3274. doi:10.5194/hess-15-3253-2011. Krzysztofowicz, R. 1999. Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resour. Res., 35, 2739-2750. Todini, E. 2004. Role and treatment of uncertainty in real-time flood forecasting. Hydrological Processes 18(14), 2743_2746. Todini, E. 2008. A model conditional processor to assess predictive uncertainty in flood forecasting. Intl. J. River Basin Management, 6(2): 123-137.

  2. Using Collaborative Modeling to Inform Policy Decisions in the Bow River Basin

    NASA Astrophysics Data System (ADS)

    Sheer, A. S.; Sheer, D. P.; Hill, D.

    2011-12-01

    The Bow River in Alberta, Canada serves a wide range of municipal, agricultural, recreational, and industrial purposes in the province. In 2006, the basin was deemed over-allocation and closed to new licenses. The Calgary region, however, continues to expand. In the next 60 to 70 years, population levels are expected to reach 2.8 million (more than double the current 1.2 million) with 800,000 new jobs. This increasing pressure led several stakeholders to work together in the development of a new management model to improve the management of the system as an integrated watershed. The major previous model of the system allowed only limited flexibility in management, focusing instead on strict license based operations. Over a 6 month period, with numerous multi-party meetings, the group developed the Bow River Operations Model (BROM). Based in OASIS software, this model integrated input from the major water users in the region to emulate the real-life decisions that are actually made on a daily bases, even when technically in violation of the strict license agreements (e.x. junior licensees receiving water despite senior priority due to exceedingly low volume requirements). Using historical records as forecasts, and performance measures developed with the best available science through expert opinion, participants jointly developed a new reservoir operation strategy. Even with such a short timeframe, the BROM exercise showed that there was substantial room for improvement. Utilizing a "Water Bank" of purchased storage, downstream flows could be significantly improved without affecting quality. Additional benefits included fishery improvement, new recreation opportunities, dissolved oxygen improvement during critical periods, and the ability to accommodate long-term demand forecasts for surrounding municipalities. This strategy has been presented to, and favorably received by, the Alberta Minister of Environment for guidance during negotiations with the local hydropower utility. Work continues on implementation and new areas of the basin are being considered for similar processes.

  3. Stakeholder Application of NOAA/NWS River Forecasts: Oil and Water?

    NASA Astrophysics Data System (ADS)

    Werner, K.; Averyt, K.; Bardlsey, T.; Owen, G.

    2011-12-01

    The literature strongly suggests that water management seldom uses forecasts for decision making despite the proven skill of the prediction system and the obvious application of these forecasts to mitigate risk. The literature also suggests that forecast usage is motivated most strongly by risk of failure of the water management objectives. In the semi-arid western United States where water demand has grown such that it roughly equals the long term supply, risk of failure has become pervasive. In the Colorado Basin, the US National Weather Service's Colorado Basin River Forecast Center (CBRFC) has partnered with the Western Water Assessment (WWA) and the Climate Assessment for the Southwest (CLIMAS) to develop a toolkit for stakeholder engagement and application of seasonal streamflow predictions. This toolkit has been used to facilitate several meetings both in the Colorado Basin and elsewhere to assess the factors that motivate, deter, and improve the application of forecasts in this region. The toolkit includes idealized (1) scenario exercises where participants are asked to apply forecasts to real world water management problems, (2) web based exercises where participants gain experience with forecasts and other online forecast tools, and (3) surveys that assess respondents' experience with and perceptions of forecasts and climate science. This talk will present preliminary results from this effort as well as how the CBRFC has adopted the results into its stakeholder engagement strategies.

  4. Application of satellite-based rainfall and medium range meteorological forecast in real-time flood forecasting in the Mahanadi River basin

    NASA Astrophysics Data System (ADS)

    Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath

    2016-04-01

    Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling

  5. Enhancing Seasonal Water Outlooks: Needs and Opportunities in the Critical Runoff Season

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Barsugli, J. J.; Yocum, H.; Stokes, M.; Miskus, D.

    2017-12-01

    The runoff season is a critical period for the management of water supply in the western U.S., where in many places over 70% of the annual runoff occurs in the snowmelt period. Managing not only the volume, but the intra-seasonal timing of the runoff is important for optimizing storage, as well as achieving other goals such as mitigating flood risk, and providing peak flows for riparian habitat management, for example, for endangered species. Western river forecast centers produce volume forecasts for western reservoirs that are key input into many water supply decisions, and also short term river forecasts out to 10 days. The early volume forecasts each year typically begin in December, and are updated throughout the winter and into the runoff season (April-July for many areas, but varies). This presentation will discuss opportunities for enhancing this existing suite of RFC water outlooks, including the needs for and potential use for "intraseasonal" products beyond those provided by the Ensemble Streamflow Prediction system and the volume forecasts. While precipitation outlooks have little skill for many areas and seasons, and may not contribute significantly to the outlook, late winter and spring temperature forecasts have meaningful skill in certain areas and sub-seasonal to seasonal time scales. This current skill in CPC temperature outlooks is an opportunity to translate these products into information about the snowpack and potential runoff timing, even where the skill in precipitation is low. Temperature is important for whether precipitation falls as snow or rain, which is critical for streamflow forecasts, especially in the melt season in snowpack-dependent watersheds. There is a need for better outlooks of the evolution of snowpack, conditions influencing the April-July runoff, and the timing of spring peak or shape of the spring hydrograph. The presentation will also discuss a our work with stakeholders of the River Forecast Centers and the NIDIS Drought Early Warning Systems to refine stakeholder needs and create a refined decision calendar for upper Colorado River reservoirs that details decisions in the runoff period.

  6. Forecast Informed Reservoir Operations - An Opportunity to Improve Water Supply Reliability Lake Mendocino Demonstration Project

    NASA Astrophysics Data System (ADS)

    Jasperse, J.; Ralph, F. M.

    2016-12-01

    Forecast Informed Reservoir Operations (FIRO) is a management strategy that is gaining interest in the western United States as a means to improve the performance of reservoirs to provide more reliable water supply for municipal, agricultural, and environmental water needs as well as enhancing the flood protection capacity of reservoirs. Many surface water reservoirs were built decades ago and are operated in accordance with rules that were developed based on the best information at the time of construction. Over time there have been increasing stressors that impact effective reservoir operations including: increasing water demand; providing in-stream flows for habitat of aquatic species; and climate change. Few new reservoirs are being constructed, therefore there is motivation by water managers to more effectively operate existing reservoirs by optimizing operational rules under a decision framework that considers forecasting. The viability of FIRO is being investigated at Lake Mendocino in northern California. This facility is managed for flood protection by the U.S. Army Corps of Engineers (USACE) while the Sonoma County Water Agency (SCWA) is responsible for the management of the water supply pool. Reductions of reservoir inflow due to recent operational license conditions of an upstream hydroelectric facility coupled with highly variable precipitation (due to the significance of atmospheric rivers in the region) has led to difficulties in maintaining reservoir storage to meet stream flows for agricultural and municipal water users and to meet in-stream flow requirements for three salmonid species listed under the Endangered Species Act. The reduced water supply reliability of the reservoir has motivated water managers and scientists from local, state, and federal agencies to investigate whether FIRO could help address this challenge. This effort is led by a Steering Committee comprised of members from SCWA, Scripps-UC San Diego, USACE, NOAA, California Department of Water Resources, USGS, and Bureau of Reclamation. The partnership is involved with: conducting a preliminary viability assessment; evaluating operational strategies and decision support tools should FIRO be found to be viable; and coordinating research to support advances in new technology and improved forecasting skill.

  7. Repurposing of open data through large scale hydrological modelling - hypeweb.smhi.se

    NASA Astrophysics Data System (ADS)

    Strömbäck, Lena; Andersson, Jafet; Donnelly, Chantal; Gustafsson, David; Isberg, Kristina; Pechlivanidis, Ilias; Strömqvist, Johan; Arheimer, Berit

    2015-04-01

    Hydrological modelling demands large amounts of spatial data, such as soil properties, land use, topography, lakes and reservoirs, ice and snow coverage, water management (e.g. irrigation patterns and regulations), meteorological data and observed water discharge in rivers. By using such data, the hydrological model will in turn provide new data that can be used for new purposes (i.e. re-purposing). This presentation will give an example of how readily available open data from public portals have been re-purposed by using the Hydrological Predictions for the Environment (HYPE) model in a number of large-scale model applications covering numerous subbasins and rivers. HYPE is a dynamic, semi-distributed, process-based, and integrated catchment model. The model output is launched as new Open Data at the web site www.hypeweb.smhi.se to be used for (i) Climate change impact assessments on water resources and dynamics; (ii) The European Water Framework Directive (WFD) for characterization and development of measure programs to improve the ecological status of water bodies; (iii) Design variables for infrastructure constructions; (iv) Spatial water-resource mapping; (v) Operational forecasts (1-10 days and seasonal) on floods and droughts; (vi) Input to oceanographic models for operational forecasts and marine status assessments; (vii) Research. The following regional domains have been modelled so far with different resolutions (number of subbasins within brackets): Sweden (37 000), Europe (35 000), Arctic basin (30 000), La Plata River (6 000), Niger River (800), Middle-East North-Africa (31 000), and the Indian subcontinent (6 000). The Hype web site provides several interactive web applications for exploring results from the models. The user can explore an overview of various water variables for historical and future conditions. Moreover the user can explore and download historical time series of discharge for each basin and explore the performance of the model towards observed river flow. The presentation will describe the Open Data sources used, show the functionality of the web site and discuss model performance and experience from this world-wide hydrological modelling of multi-basins using open data.

  8. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, DPSF, and ESF. Schematic diagram of the increase in forecast uncertainty with forecast lead-time and the dynamic updating property of real-time streamflow forecast

  9. Simulating Glacial Outburst Lake Releases for Suicide Basin, Mendenhall Glacier, Juneau, Alaska

    NASA Astrophysics Data System (ADS)

    Jacobs, A. B.; Moran, T.; Hood, E. W.

    2017-12-01

    Glacial Lake outbursts from Suicide Basin are recent phenomenon first characterized in 2011. The 2014 event resulted in record river stage and moderate flooding on the Mendenhall River in Juneau. Recognizing that these events can adversely impact residential areas of Juneau's Mendenhall Valley, the Alaska-Pacific River Forecast Center developed a real-time modeling technique capable of forecasting the timing and magnitude of the flood-wave crest due to releases from Suicide Basin. The 2014 event was estimated at about 37,000 acre feet with water levels cresting within 36 hours from the time the flood wave hit Mendenhall Lake. Given the magnitude of possible impacts to the public, accurate hydrological forecasting is essential for public safety and Emergency Managers. However, the data needed to effectively forecast magnitudes of specific jökulhlaup events are limited. Estimating this event as related to river stage depended upon three variables: 1) the timing of the lag between Suicide Basin water level declines and the related rise of Mendenhall Lake, 2) continuous monitoring of Mendenhall Lake water levels, and 3) estimating the total water volume stored in Suicide Basin. Real-time modeling of the event utilized a Time of Concentration hydrograph with independent power equations representing the rising and falling limbs of the hydrograph. The initial accuracy of the model — as forecasted about 24 hours prior to crest — resulted in an estimated crest within 0.5 feet of the actual with a timing error of about six hours later than the actual crest.

  10. Assessment of an ensemble seasonal streamflow forecasting system for Australia

    NASA Astrophysics Data System (ADS)

    Bennett, James C.; Wang, Quan J.; Robertson, David E.; Schepen, Andrew; Li, Ming; Michael, Kelvin

    2017-11-01

    Despite an increasing availability of skilful long-range streamflow forecasts, many water agencies still rely on simple resampled historical inflow sequences (stochastic scenarios) to plan operations over the coming year. We assess a recently developed forecasting system called forecast guided stochastic scenarios (FoGSS) as a skilful alternative to standard stochastic scenarios for the Australian continent. FoGSS uses climate forecasts from a coupled ocean-land-atmosphere prediction system, post-processed with the method of calibration, bridging and merging. Ensemble rainfall forecasts force a monthly rainfall-runoff model, while a staged hydrological error model quantifies and propagates hydrological forecast uncertainty through forecast lead times. FoGSS is able to generate ensemble streamflow forecasts in the form of monthly time series to a 12-month forecast horizon. FoGSS is tested on 63 Australian catchments that cover a wide range of climates, including 21 ephemeral rivers. In all perennial and many ephemeral catchments, FoGSS provides an effective alternative to resampled historical inflow sequences. FoGSS generally produces skilful forecasts at shorter lead times ( < 4 months), and transits to climatology-like forecasts at longer lead times. Forecasts are generally reliable and unbiased. However, FoGSS does not perform well in very dry catchments (catchments that experience zero flows more than half the time in some months), sometimes producing strongly negative forecast skill and poor reliability. We attempt to improve forecasts through the use of (i) ESP rainfall forcings, (ii) different rainfall-runoff models, and (iii) a Bayesian prior to encourage the error model to return climatology forecasts in months when the rainfall-runoff model performs poorly. Of these, the use of the prior offers the clearest benefit in very dry catchments, where it moderates strongly negative forecast skill and reduces bias in some instances. However, the prior does not remedy poor reliability in very dry catchments. Overall, FoGSS is an attractive alternative to historical inflow sequences in all but the driest catchments. We discuss ways in which forecast reliability in very dry catchments could be improved in future work.

  11. Global Ocean Forecast System (GOFS) Version 2.6. User’s Manual

    DTIC Science & Technology

    2010-03-31

    odimens.D, which takes the rivers.dat flow levels, inputs an SST and sea surface salinity (SSS) climatology from GDEM , and outputs the orivs_1.D...Center for Medium-range Weather Forecast GB GigaByte GDEM Global Digital Elevation Map GOFS Global Ocean Forecast System HPCMP High Performance

  12. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model

    PubMed Central

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-01-01

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something about water security of roughly one-third of China’s population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM (1,1) (DWSGM (1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of “r” by using particle swarm optimization (PSO) algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM (1,1) model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM (1,1) grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system. PMID:29295517

  13. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model.

    PubMed

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-12-23

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something aboutwater security of roughly one-third of China's population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM(1,1)(DWSGM(1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of "r" by using particle swarm optimization(PSO)algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM(1,1)model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM(1,1)grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system.

  14. Use of the LANDSAT-2 Data Collection System in the Colorado River Basin Weather Modification Program. [San Juan Mountains, Colorado

    NASA Technical Reports Server (NTRS)

    Kahan, A. M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The LANDSAT data collection system has proven itself to be a valuable tool for control of cloud seeding operations and for verification of weather forecasts. These platforms have proven to be reliable weather resistant units suitable for the collection of hydrometeorological data from remote severe weather environments. The detailed design of the wind speed and direction system and the wire-wrapping of the logic boards were completed.

  15. Climate and Salmon Restoration in the Columbia River Basin: The Role and Usability of Seasonal Forecasts.

    NASA Astrophysics Data System (ADS)

    Pulwarty, Roger S.; Redmond, Kelly T.

    1997-03-01

    The Pacific Northwest is dependent on the vast and complex Columbia River system for power production, irrigation, navigation, flood control, recreation, municipal and industrial water supplies, and fish and wildlife habitat. In recent years Pacific salmon populations in this region, a highly valued cultural and economic resource, have declined precipitously. Since 1980, regional entities have embarked on the largest effort at ecosystem management undertaken to date in the United States, primarily aimed at balancing hydropower demands with salmon restoration activities. It has become increasingly clear that climatically driven fluctuations in the freshwater and marine environments occupied by these fish are an important influence on population variability. It is also clear that there are significant prospects of climate predictability that may prove advantageous in managing the water resources shared by the long cast of regional interests. The main thrusts of this study are 1) to describe the climate and management environments of the Columbia River basin, 2) to assess the present degree of use and benefits of available climate information, 3) to identify new roles and applications made possible by recent advances in climate forecasting, and 4) to understand, from the point of view of present and potential users in specific contexts of salmon management, what information might be needed, for what uses, and when, where, and how it should be provided. Interviews were carried out with 32 individuals in 19 organizations involved in salmon management decisions. Primary needs were in forecasting runoff volume and timing, river transit times, and stream temperatures, as much as a year or more in advance. Most respondents desired an accuracy of 75% for a seasonal forecast. Despite the significant influence of precipitation and its subsequent hydrologic impacts on the regional economy, no specific use of the present climate forecasts was uncovered. Understanding the limitations to information use forms a major component of this study. The complexity of the management environment, the lack of well-defined linkages among potential users and forecasters, and the lack of supplementary background information relating to the forecasts pose substantial barriers to future use of forecasts. Recommendations to address these problems are offered. The use of climate information and forecasts to reduce the uncertainty inherent in managing large systems for diverse needs bears significant promise.

  16. Coupled Teleconnections and River Dynamics for Enhanced Hydrologic Forecasting in the Upper Colorado River Basin USA

    NASA Astrophysics Data System (ADS)

    Matter, M. A.; Garcia, L. A.; Fontane, D. G.

    2005-12-01

    Accuracy of water supply forecasts has improved for some river basins in the western U.S.A. by integrating knowledge of climate teleconnections, such as El Niño/Southern Oscillation (ENSO), into forecasting routines, but in other basins, such as the Colorado River Basin (CRB), forecast accuracy has declined (Pagano et al. 2004). Longer lead time and more accurate seasonal forecasts, particularly during floods or drought, could help reduce uncertainty and risk in decision-making and lengthen the period for planning more efficient and effective strategies for water use and ecosystem management. The goal of this research is to extend the lead time for snowmelt hydrograph estimation by 4-6 months (from spring to the preceding fall), and at the same time increase the accuracy of snowmelt runoff estimates in the Upper CRB (UCRB). We hypothesize that: (1) UCRB snowpack accumulation and melt are driven by large scale climate modes, including ENSO, PDO and AMO, that establish by fall and persist into early spring; (2) forecast analysis may begin in the fall prior to the start of the primary snow accumulation period and when energy to change the climate system is decreasing; and (3) between fall and early spring, streamflow hydrographs will amplify precipitation and temperature signals, and thus will evolve characteristically in response to wet, dry or average hydroclimatic conditions. Historical in situ records from largely unregulated river reaches and undeveloped time periods of the UCRB are used to test this hypothesis. Preliminary results show that, beginning in the fall (e.g., October or November) streamflow characteristics, including magnitude, rate of change and variability, as well as timing and magnitude of fall/early winter and late winter/early spring season flow volumes, are directly correlated with the magnitude of the upcoming snowmelt runoff (or annual basin yield). The use of climate teleconnections to determine characteristic streamflow responses in the UCRB advances understanding of atmosphere/land surface processes and interactions in complex terrain and subsequent effects on snowpack development and runoff (i.e., water supply), and may be used to improve seasonal forecast accuracy and extend lead time to develop more efficient and effective management strategies for water resources and ecosystems.

  17. Experiences in regional landslide forecasting from Piemonte region (North-western Italy) and South-Eastern Norway between the 15th and the 23rd of May 2013

    NASA Astrophysics Data System (ADS)

    Tiranti, Davide; Boje, Søren; Cremonini, Roberto; Devoli, Graziella; Sund, Monica

    2017-04-01

    Although Italy and Norway belongs to different climates, they can be influenced by the same large low pressure systems. On May 2013, ARPA in Piemonte region and NVE in Norway issued warning for flood and landslides due to the arriving of a deep and large low pressure (known as Vb-tief). This type of weather is well known to produce the largest floods in Europe. Recent studies in Norway confirm that similar systems are also responsible of triggering landslide events. In this contribution we present how the existing forecasting systems in Piemonte region and in Norway react and we summarize our experiences. Regional early warning systems (EWS) are operational both in Piemonte region (Italy) and nationally in Norway to forecast shallow landslides, debris flows and debris avalanches. Both EWSs provides daily landslide hazard assessments based on quantitative thresholds and daily rainfall forecasts coupled with qualitative expert analysis. The ARPA Piemonte warning system has been operational since 1994 while the NVE one since 2013: daily bulletins are published respectively by http://www.arpa.piemonte.gov.it/rischinaturali and www.varsom.no. From 15th May to 19nd June 2013, ARPA Piemonte rain gauges recorded more that 200mm in Piemonte and 60-90cm fresh snow over the Alps above 2000m asl. Several rivers were flooded and diffuse landslides were occurred over all the region. In Norway the same weather type lasts a bit longer from 15th May to 2nd June 2013. South-Eastern Norway received a lot of rain distributed in 2 major events, the 15th - 16th of May and between the 22nd and 23rd of May. In addition, high temperatures produced intense snow melting over a large area. Snow depth was less than normal but the snow melted within two weeks while the frost in the area was deeper than normal. From 21st to 23rd May heavy rainfall, over 70 mm in a few hours, fell over the Glomma river basin, especially over Gudbrandsdalen, causing extensive flood along Glomma river and hundreds of landslides. The large floods and landslides caused extensive damages to roads and railways as well as buildings and other infrastructure in both countries. In Norway, the Oppland and Hedmark counties suffered most of the damages, as well as railway lines and road line estimated at over 175000 Euro.

  18. Multivariate Statistical Postprocessing of Ensemble Forcasts of Precipitation and Temperature over four River Basins in California

    NASA Astrophysics Data System (ADS)

    Scheuerer, Michael; Hamill, Thomas M.; Whitin, Brett; He, Minxue; Henkel, Arthur

    2017-04-01

    Hydrological forecasts strongly rely on predictions of precipitation amounts and temperature as meteorological inputs to hydrological models. Ensemble weather predictions provide a number of different scenarios that reflect the uncertainty about these meteorological inputs, but are often biased and underdispersive, and therefore require statistical postprocessing. In hydrological applications it is crucial that spatial and temporal (i.e. between different forecast lead times) dependencies as well as dependence between the two weather variables is adequately represented by the recalibrated forecasts. We present a study with temperature and precipitation forecasts over four river basins over California that are postprocessed with a variant of the nonhomogeneous Gaussian regression method (Gneiting et al., 2005) and the censored, shifted gamma distribution approach (Scheuerer and Hamill, 2015) respectively. For modelling spatial, temporal and inter-variable dependence we propose a variant of the Schaake Shuffle (Clark et al., 2005) that uses spatio-temporal trajectories of observed temperture and precipitation as a dependence template, and chooses the historic dates in such a way that the divergence between the marginal distributions of these trajectories and the univariate forecast distributions is minimized. For the four river basins considered in our study, this new multivariate modelling technique consistently improves upon the Schaake Shuffle and yields reliable spatio-temporal forecast trajectories of temperature and precipitation that can be used to force hydrological forecast systems. References: Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., Wilby, R., 2004. The Schaake Shuffle: A method for reconstructing space-time variability in forecasted precipitation and temperature fields. Journal of Hydrometeorology, 5, pp.243-262. Gneiting, T., Raftery, A.E., Westveld, A.H., Goldman, T., 2005. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS. Monthly Weather Review, 133, pp.1098-1118. Scheuerer, M., Hamill, T.M., 2015. Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Monthly Weather Review, 143, pp.4578-4596. Scheuerer, M., Hamill, T.M., Whitin, B., He, M., and Henkel, A., 2016: A method for preferential selection of dates in the Schaake shuffle approach to constructing spatio-temporal forecast fields of temperature and precipitation. Water Resources Research, submitted.

  19. Seasonal Forecasting of Reservoir Inflow for the Segura River Basin, Spain

    NASA Astrophysics Data System (ADS)

    de Tomas, Alberto; Hunink, Johannes

    2017-04-01

    A major threat to the agricultural sector in Europe is an increasing occurrence of low water availability for irrigation, affecting the local and regional food security and economies. Especially in the Mediterranean region, such as in the Segura river basin (Spain), drought epidodes are relatively frequent. Part of the irrigation water demand in this basin is met by a water transfer from the Tagus basin (central Spain), but also in this basin an increasing pressure on the water resources has reduced the water available to be transferred. Currently, Drought Management Plans in these Spanish basins are in place and mitigate the impact of drought periods to some extent. Drought indicators that are derived from the available water in the storage reservoirs impose a set of drought mitigation measures. Decisions on water transfers are dependent on a regression-based time series forecast from the reservoir inflows of the preceding months. This user-forecast has its limitations and can potentially be improved using more advanced techniques. Nowadays, seasonal climate forecasts have shown to have increasing skill for certain areas and for certain applications. So far, such forecasts have not been evaluated in a seasonal hydrologic forecasting system in the Spanish context. The objective of this work is to develop a prototype of a Seasonal Hydrologic Forecasting System and compare this with a reference forecast. The reference forecast in this case is the locally used regression-based forecast. Additionally, hydrological simulations derived from climatological reanalysis (ERA-Interim) are taken as a reference forecast. The Spatial Processes in Hydrology model (SPHY - http://www.sphy.nl/) forced with the ECMWF- SFS4 (15 ensembles) Seasonal Forecast Systems is used to predict reservoir inflows of the upper basins of the Segura and Tagus rivers. The system is evaluated for 4 seasons with a forecasting lead time of 3 months. First results show that only for certain initialization months and lead times, the developed system outperforms the reference forecast. This research is carried out within the European research project IMPREX (www.imprex.eu) that aims at investigating the value of improving predictions of hydro-meteorological extremes in a number of water sectors, including agriculture . The next step is to integrate improved seasonal forecasts into the system and evaluate these. This should finally lead to a more robust forecasting system that allows water managers and irrigators to better anticipate to drought episodes and putting into practice more effective water allocation and mitigation practices.

  20. Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability concept

    NASA Astrophysics Data System (ADS)

    Fulton, John; Ostrowski, Joseph

    2008-07-01

    SummaryForecasting streamflow during extreme hydrologic events such as floods can be problematic. This is particularly true when flow is unsteady, and river forecasts rely on models that require uniform-flow rating curves to route water from one forecast point to another. As a result, alternative methods for measuring streamflow are needed to properly route flood waves and account for inertial and pressure forces in natural channels dominated by nonuniform-flow conditions such as mild water surface slopes, backwater, tributary inflows, and reservoir operations. The objective of the demonstration was to use emerging technologies to measure instantaneous streamflow in open channels at two existing US Geological Survey streamflow-gaging stations in Pennsylvania. Surface-water and instream-point velocities were measured using hand-held radar and hydroacoustics. Streamflow was computed using the probability concept, which requires velocity data from a single vertical containing the maximum instream velocity. The percent difference in streamflow at the Susquehanna River at Bloomsburg, PA ranged from 0% to 8% with an average difference of 4% and standard deviation of 8.81 m 3/s. The percent difference in streamflow at Chartiers Creek at Carnegie, PA ranged from 0% to 11% with an average difference of 5% and standard deviation of 0.28 m 3/s. New generation equipment is being tested and developed to advance the use of radar-derived surface-water velocity and instantaneous streamflow to facilitate the collection and transmission of real-time streamflow that can be used to parameterize hydraulic routing models.

  1. Reduction Continuous Rank Probability Score for Hydrological Ensemble Prediction System

    NASA Astrophysics Data System (ADS)

    Trinh, Nguyen Bao; Thielen Del-Pozo, Jutta; Pappenberger, Florian; Cloke, Hannah L.; Bogner, Konrad

    2010-05-01

    Ensemble Prediction System (EPS), calculated operationally by the weather services for various lead-times, are increasingly used as input to hydrological models to extend warning times from short- to medium and even long-range. Although the general skill of EPS has been demonstrated to increase continuously over the past decades, it remains comparatively low for precipitation, one of the driving forces of hydrological processes. Due to the non-linear integrating nature of river runoff and the complexities of catchment runoff processes, one cannot assume that the skill of the hydrological forecasts is necessarily similar to the skill of the meteorological predictions. Furthermore, due to the integrating nature of discharge, which accumulates effects from upstream catchment and slow-responding groundwater processes, commonly applied skill scores in meteorology may not be fully adapted to describe the skill of probabilistic discharge predictions. For example, while for hydrological applications it may be interesting to compare the forecast skill between upstream and downstream stations, meteorological applications focus more on climatologically relevant regions. In this paper, a range of widely used probabilistic skill scores for assessing reliability, spread-skill, sharpness and bias are calculated for a 12 months case study in the Danube river basin. The Continuous Rank Probability Score (CRPS) is demonstrated to have deficiencies when comparing skill of discharge forecast for different hydrological stations. Therefore, we propose a modified CRPS that allows this comparison and is therefore particularly useful for hydrological applications.

  2. Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability concept

    USGS Publications Warehouse

    Fulton, J.; Ostrowski, J.

    2008-01-01

    Forecasting streamflow during extreme hydrologic events such as floods can be problematic. This is particularly true when flow is unsteady, and river forecasts rely on models that require uniform-flow rating curves to route water from one forecast point to another. As a result, alternative methods for measuring streamflow are needed to properly route flood waves and account for inertial and pressure forces in natural channels dominated by nonuniform-flow conditions such as mild water surface slopes, backwater, tributary inflows, and reservoir operations. The objective of the demonstration was to use emerging technologies to measure instantaneous streamflow in open channels at two existing US Geological Survey streamflow-gaging stations in Pennsylvania. Surface-water and instream-point velocities were measured using hand-held radar and hydroacoustics. Streamflow was computed using the probability concept, which requires velocity data from a single vertical containing the maximum instream velocity. The percent difference in streamflow at the Susquehanna River at Bloomsburg, PA ranged from 0% to 8% with an average difference of 4% and standard deviation of 8.81 m3/s. The percent difference in streamflow at Chartiers Creek at Carnegie, PA ranged from 0% to 11% with an average difference of 5% and standard deviation of 0.28 m3/s. New generation equipment is being tested and developed to advance the use of radar-derived surface-water velocity and instantaneous streamflow to facilitate the collection and transmission of real-time streamflow that can be used to parameterize hydraulic routing models.

  3. Does a more skilful meteorological input lead to a more skilful flood forecast at seasonal timescales?

    NASA Astrophysics Data System (ADS)

    Neumann, Jessica; Arnal, Louise; Magnusson, Linus; Cloke, Hannah

    2017-04-01

    Seasonal river flow forecasts are important for many aspects of the water sector including flood forecasting, water supply, hydropower generation and navigation. In addition to short term predictions, seasonal forecasts have the potential to realise higher benefits through more optimal and consistent decisions. Their operational use however, remains a challenge due to uncertainties posed by the initial hydrologic conditions (e.g. soil moisture, groundwater levels) and seasonal climate forcings (mainly forecasts of precipitation and temperature), leading to a decrease in skill with increasing lead times. Here we present a stakeholder-led case study for the Thames catchment (UK), currently being undertaken as part of the H2020 IMPREX project. The winter of 2013-14 was the wettest on record in the UK; driven by 12 major Atlantic depressions, the Thames catchment was subject to compound (concurrent) flooding from fluvial and groundwater sources. Focusing on the 2013-14 floods, this study aims to see whether increased skill in meteorological input translates through to more accurate forecasting of compound flood events at seasonal timescales in the Thames catchment. An earlier analysis of the ECMWF System 4 (S4) seasonal meteorological forecasts revealed that it did not skilfully forecast the extreme event of winter 2013-14. This motivated the implementation of an atmospheric experiment by the ECMWF to force the S4 to more accurately represent the low-pressure weather conditions prevailing in winter 2013-14 [1]. Here, we used both the standard and the "improved" S4 seasonal meteorological forecasts to force the EFAS (European Flood Awareness System) LISFLOOD hydrological model. Both hydrological forecasts were started on the 1st of November 2013 and run for 4 months of lead time to capture the peak of the 2013-14 flood event. Comparing the seasonal hydrological forecasts produced with both meteorological forcing data will enable us to assess how the improved meteorology translates into skill in the hydrological forecast for this extreme compound event. As primary stakeholders involved in the study, the Environment Agency and Flood Forecasting Centre are responsible for managing flood risk in the UK. For them, the detection of a potential flood signal weeks or months in advance could be of great value in terms of operational practice, decision-making and early warning. [1] Rodwell, M.J., Ferranti, L., Magnusson, L., Weisheimer, A., Rabier, F. & Richardson, D. (2015) Diagnosis of northern hemispheric regime behaviour during winter 2013/14. ECMWF Technical Memoranda 769.

  4. The HEPEX Seasonal Streamflow Forecast Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Schepen, A.; Bennett, J.; Mendoza, P. A.; Ramos, M. H.; Wetterhall, F.; Pechlivanidis, I.

    2016-12-01

    The Hydrologic Ensemble Prediction Experiment (HEPEX; www.hepex.org) has launched an international seasonal streamflow forecasting intercomparison project (SSFIP) with the goal of broadening community knowledge about the strengths and weaknesses of various operational approaches being developed around the world. While some of these approaches have existed for decades (e.g. Ensemble Streamflow Prediction - ESP - in the United States and elsewhere), recent years have seen the proliferation of new operational and experimental streamflow forecasting approaches. These have largely been developed independently in each country, thus it is difficult to assess whether the approaches employed in some centers offer more promise for development than others. This motivates us to establish a forecasting testbed to facilitate a diagnostic evaluation of a range of different streamflow forecasting approaches and their components over a common set of catchments, using a common set of validation methods. Rather than prescribing a set of scientific questions from the outset, we are letting the hindcast results and notable differences in methodologies on a watershed-specific basis motivate more targeted analyses and sub-experiments that may provide useful insights. The initial pilot of the testbed involved two approaches - CSIRO's Bayesian joint probability (BJP) and NCAR's sequential regression - for two catchments, each designated by one of the teams (the Murray River, Australia, and Hungry Horse reservoir drainage area, USA). Additional catchments/approaches are in the process of being added to the testbed. To support this CSIRO and NCAR have developed data and analysis tools, data standards and protocols to formalize the experiment. These include requirements for cross-validation, verification, reference climatologies, and common predictands. This presentation describes the SSFIP experiments, pilot basin results and scientific findings to date.

  5. Evaluating Snow Data Assimilation Framework for Streamflow Forecasting Applications Using Hindcast Verification

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.

    2012-12-01

    Snow water equivalent (SWE) estimation is a key factor in producing reliable streamflow simulations and forecasts in snow dominated areas. However, measuring or predicting SWE has significant uncertainty. Sequential data assimilation, which updates states using both observed and modeled data based on error estimation, has been shown to reduce streamflow simulation errors but has had limited testing for forecasting applications. In the current study, a snow data assimilation framework integrated with the National Weather System River Forecasting System (NWSRFS) is evaluated for use in ensemble streamflow prediction (ESP). Seasonal water supply ESP hindcasts are generated for the North Fork of the American River Basin (NFARB) in northern California. Parameter sets from the California Nevada River Forecast Center (CNRFC), the Differential Evolution Adaptive Metropolis (DREAM) algorithm and the Multistep Automated Calibration Scheme (MACS) are tested both with and without sequential data assimilation. The traditional ESP method considers uncertainty in future climate conditions using historical temperature and precipitation time series to generate future streamflow scenarios conditioned on the current basin state. We include data uncertainty analysis in the forecasting framework through the DREAM-based parameter set which is part of a recently developed Integrated Uncertainty and Ensemble-based data Assimilation framework (ICEA). Extensive verification of all tested approaches is undertaken using traditional forecast verification measures, including root mean square error (RMSE), Nash-Sutcliffe efficiency coefficient (NSE), volumetric bias, joint distribution, rank probability score (RPS), and discrimination and reliability plots. In comparison to the RFC parameters, the DREAM and MACS sets show significant improvement in volumetric bias in flow. Use of assimilation improves hindcasts of higher flows but does not significantly improve performance in the mid flow and low flow categories.

  6. A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data

    NASA Astrophysics Data System (ADS)

    Ashrafi, Mohammad; Chua, Lloyd Hock Chye; Quek, Chai; Qin, Xiaosheng

    2017-02-01

    Current state-of-the-art online neuro fuzzy models (NFMs) such as DENFIS (Dynamic Evolving Neural-Fuzzy Inference System) have been used for runoff forecasting. Online NFMs adopt a local learning approach and are able to adapt to changes continuously. The DENFIS model however requires upper/lower bound for normalization and also the number of rules increases monotonically. This requirement makes the model unsuitable for use in basins with limited data, since a priori data is required. In order to address this and other drawbacks of current online models, the Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) is adopted in this study for forecast applications in basins with limited data. GSETSK is a fully-online NFM which updates its structure and parameters based on the most recent data. The model does not require the need for historical data and adopts clustering and rule pruning techniques to generate a compact and up-to-date rule-base. GSETSK was used in two forecast applications, rainfall-runoff (a catchment in Sweden) and river routing (Lower Mekong River) forecasts. Each of these two applications was studied under two scenarios: (i) there is no prior data, and (ii) only limited data is available (1 year for the Swedish catchment and 1 season for the Mekong River). For the Swedish Basin, GSETSK model results were compared to available results from a calibrated HBV (Hydrologiska Byråns Vattenbalansavdelning) model. For the Mekong River, GSETSK results were compared against the URBS (Unified River Basin Simulator) model. Both comparisons showed that results from GSETSK are comparable with the physically based models, which were calibrated with historical data. Thus, even though GSETSK was trained with a very limited dataset in comparison with HBV or URBS, similar results were achieved. Similarly, further comparisons between GSETSK with DENFIS and the RBF (Radial Basis Function) models highlighted further advantages of GSETSK as having a rule-base (compared to opaque RBF) which is more compact, up-to-date and more easily interpretable.

  7. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    NASA Astrophysics Data System (ADS)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.

  8. A New Multivariate Approach in Generating Ensemble Meteorological Forcings for Hydrological Forecasting

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2015-04-01

    Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.

  9. Large-watershed flood simulation and forecasting based on different-resolution distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Li, J.

    2017-12-01

    Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.

  10. How seasonal forecast could help a decision maker: an example of climate service for water resource management

    NASA Astrophysics Data System (ADS)

    Viel, Christian; Beaulant, Anne-Lise; Soubeyroux, Jean-Michel; Céron, Jean-Pierre

    2016-04-01

    The FP7 project EUPORIAS was a great opportunity for the climate community to co-design with stakeholders some original and innovative climate services at seasonal time scales. In this framework, Météo-France proposed a prototype that aimed to provide to water resource managers some tailored information to better anticipate the coming season. It is based on a forecasting system, built on a refined hydrological suite, forced by a coupled seasonal forecast model. It particularly delivers probabilistic river flow prediction on river basins all over the French territory. This paper presents the work we have done with "EPTB Seine Grands Lacs" (EPTB SGL), an institutional stakeholder in charge of the management of 4 great reservoirs on the upper Seine Basin. First, we present the co-design phase, which means the translation of classical climate outputs into several indices, relevant to influence the stakeholder's decision making process (DMP). And second, we detail the evaluation of the impact of the forecast on the DMP. This evaluation is based on an experiment realised in collaboration with the stakeholder. Concretely EPTB SGL has replayed some past decisions, in three different contexts: without any forecast, with a forecast A and with a forecast B. One of forecast A and B really contained seasonal forecast, the other only contained random forecasts taken from past climate. This placebo experiment, realised in a blind test, allowed us to calculate promising skill scores of the DMP based on seasonal forecast in comparison to a classical approach based on climatology, and to EPTG SGL current practice.

  11. Near-real-time simulation and internet-based delivery of forecast-flood inundation maps using two-dimensional hydraulic modeling--A pilot study for the Snoqualmie River, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Fulford, Janice M.; Voss, Frank D.

    2002-01-01

    A system of numerical hydraulic modeling, geographic information system processing, and Internet map serving, supported by new data sources and application automation, was developed that generates inundation maps for forecast floods in near real time and makes them available through the Internet. Forecasts for flooding are generated by the National Weather Service (NWS) River Forecast Center (RFC); these forecasts are retrieved automatically by the system and prepared for input to a hydraulic model. The model, TrimR2D, is a new, robust, two-dimensional model capable of simulating wide varieties of discharge hydrographs and relatively long stream reaches. TrimR2D was calibrated for a 28-kilometer reach of the Snoqualmie River in Washington State, and is used to estimate flood extent, depth, arrival time, and peak time for the RFC forecast. The results of the model are processed automatically by a Geographic Information System (GIS) into maps of flood extent, depth, and arrival and peak times. These maps subsequently are processed into formats acceptable by an Internet map server (IMS). The IMS application is a user-friendly interface to access the maps over the Internet; it allows users to select what information they wish to see presented and allows the authors to define scale-dependent availability of map layers and their symbology (appearance of map features). For example, the IMS presents a background of a digital USGS 1:100,000-scale quadrangle at smaller scales, and automatically switches to an ortho-rectified aerial photograph (a digital photograph that has camera angle and tilt distortions removed) at larger scales so viewers can see ground features that help them identify their area of interest more effectively. For the user, the option exists to select either background at any scale. Similar options are provided for both the map creator and the viewer for the various flood maps. This combination of a robust model, emerging IMS software, and application interface programming should allow the technology developed in the pilot study to be applied to other river systems where NWS forecasts are provided routinely.

  12. Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling

    PubMed Central

    Ye, Hao; Beamish, Richard J.; Glaser, Sarah M.; Grant, Sue C. H.; Hsieh, Chih-hao; Richards, Laura J.; Schnute, Jon T.; Sugihara, George

    2015-01-01

    It is well known that current equilibrium-based models fall short as predictive descriptions of natural ecosystems, and particularly of fisheries systems that exhibit nonlinear dynamics. For example, model parameters assumed to be fixed constants may actually vary in time, models may fit well to existing data but lack out-of-sample predictive skill, and key driving variables may be misidentified due to transient (mirage) correlations that are common in nonlinear systems. With these frailties, it is somewhat surprising that static equilibrium models continue to be widely used. Here, we examine empirical dynamic modeling (EDM) as an alternative to imposed model equations and that accommodates both nonequilibrium dynamics and nonlinearity. Using time series from nine stocks of sockeye salmon (Oncorhynchus nerka) from the Fraser River system in British Columbia, Canada, we perform, for the the first time to our knowledge, real-data comparison of contemporary fisheries models with equivalent EDM formulations that explicitly use spawning stock and environmental variables to forecast recruitment. We find that EDM models produce more accurate and precise forecasts, and unlike extensions of the classic Ricker spawner–recruit equation, they show significant improvements when environmental factors are included. Our analysis demonstrates the strategic utility of EDM for incorporating environmental influences into fisheries forecasts and, more generally, for providing insight into how environmental factors can operate in forecast models, thus paving the way for equation-free mechanistic forecasting to be applied in management contexts. PMID:25733874

  13. Against all odds -- Probabilistic forecasts and decision making

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Zappa, Massimiliano

    2015-04-01

    In the city of Zurich (Switzerland) the setting is such that the damage potential due to flooding of the river Sihl is estimated to about 5 billion US dollars. The flood forecasting system that is used by the administration for decision making runs continuously since 2007. It has a time horizon of max. five days and operates at hourly time steps. The flood forecasting system includes three different model chains. Two of those are run by the deterministic NWP models COSMO-2 and COSMO-7 and one is driven by the probabilistic NWP COSMO-Leps. The model chains are consistent since February 2010, so five full years are available for the evaluation for the system. The system was evaluated continuously and is a very nice example to present the added value that lies in probabilistic forecasts. The forecasts are available on an online-platform to the decision makers. Several graphical representations of the forecasts and forecast-history are available to support decision making and to rate the current situation. The communication between forecasters and decision-makers is quite close. To put it short, an ideal situation. However, an event or better put a non-event in summer 2014 showed that the knowledge about the general superiority of probabilistic forecasts doesn't necessarily mean that the decisions taken in a specific situation will be based on that probabilistic forecast. Some years of experience allow gaining confidence in the system, both for the forecasters and for the decision-makers. Even if from the theoretical point of view the handling during crisis situation is well designed, a first event demonstrated that the dialog with the decision-makers still lacks of exercise during such situations. We argue, that a false alarm is a needed experience to consolidate real-time emergency procedures relying on ensemble predictions. A missed event would probably also fit, but, in our case, we are very happy not to report about this option.

  14. The multi temporal/multi-model approach to predictive uncertainty assessment in real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Brocca, Luca; Todini, Ezio

    2017-08-01

    This work extends the multi-temporal approach of the Model Conditional Processor (MCP-MT) to the multi-model case and to the four Truncated Normal Distributions (TNDs) approach, demonstrating the improvement on the single-temporal one. The study is framed in the context of probabilistic Bayesian decision-making that is appropriate to take rational decisions on uncertain future outcomes. As opposed to the direct use of deterministic forecasts, the probabilistic forecast identifies a predictive probability density function that represents a fundamental knowledge on future occurrences. The added value of MCP-MT is the identification of the probability that a critical situation will happen within the forecast lead-time and when, more likely, it will occur. MCP-MT is thoroughly tested for both single-model and multi-model configurations at a gauged site on the Tiber River, central Italy. The stages forecasted by two operative deterministic models, STAFOM-RCM and MISDc, are considered for the study. The dataset used for the analysis consists of hourly data from 34 flood events selected on a time series of six years. MCP-MT improves over the original models' forecasts: the peak overestimation and the rising limb delayed forecast, characterizing MISDc and STAFOM-RCM respectively, are significantly mitigated, with a reduced mean error on peak stage from 45 to 5 cm and an increased coefficient of persistence from 0.53 up to 0.75. The results show that MCP-MT outperforms the single-temporal approach and is potentially useful for supporting decision-making because the exceedance probability of hydrometric thresholds within a forecast horizon and the most probable flooding time can be estimated.

  15. Decision Support System for Evaluation of Gunnison River Flow Regimes With Respect To Resources of the Black Canyon of the Gunnison National Park

    USGS Publications Warehouse

    Auble, Gregor T.; Wondzell, Mark; Talbert, Colin

    2009-01-01

    This report describes and documents a decision support system for the Gunnison River in Black Canyon of the Gunnison National Park. It is a macro-embedded EXCEL program that calculates and displays indicators representing valued characteristics or processes in the Black Canyon based on daily flows of the Gunnison River. The program is designed to easily accept input from downloaded stream gage records or output from the RIVERWARE reservoir operations model being used for the upstream Aspinall Unit. The decision support system is structured to compare as many as eight alternative flow regimes, where each alternative is represented by a daily sequence of at least 20 calendar years of streamflow. Indicators include selected flow statistics, riparian plant community distribution, clearing of box elder by inundation and scour, several measures of sediment mobilization, trout fry habitat, and federal reserved water rights. Calculation of variables representing National Park Service federal reserved water rights requires additional secondary input files pertaining to forecast and actual basin inflows and storage levels in Blue Mesa reservoir. Example input files representing a range of situations including historical, reconstructed natural, and simulated alternative reservoir operations are provided with the software.

  16. Improving governance action by an advanced water modelling system applied to the Po river basin in Italy

    NASA Astrophysics Data System (ADS)

    Alessandrini, Cinzia; Del Longo, Mauro; Pecora, Silvano; Puma, Francesco; Vezzani, Claudia

    2013-04-01

    In spite of the historical abundance of water due to rains and to huge storage capacity provided by alpine lakes, Po river basin, the most important Italian water district experienced in the past ten years five drought/water scarcity events respectively in 2003, 2006, 2007 and 2012 summers and in the 2011-2012 winter season. The basic approach to these crises was the observation and the post-event evaluation; from 2007 an advanced numerical modelling system, called Drought Early Warning System for the Po River (DEWS-Po) was developed, providing advanced tools to simulate the hydrological and anthropic processes that affect river flows and allowing to follow events with real-time evaluations. In early 2012 the same system enabled also forecasts. Dews-Po system gives a real-time representation of water distribution across the basin, characterized by high anthropogenic pressure, optimizing with specific tools water allocation in competing situations. The system represents an innovative approach in drought forecast and in water resource management in the Po basin, giving deterministic and probabilistic meteorological forecasts as input to a chain for numerical distributed modelling of hydrological and hydraulic simulations. The system architecture is designed to receive in input hydro-meteorological actually observed and forecasted variables: deterministic meteorological forecasts with a fifteen days lead time, withdrawals data for different uses, natural an artificial reservoirs storage and release data. The model details are very sharp, simulating also the interaction between Adriatic sea and Po river in the delta area in terms of salt intrusion forecasting. Calculation of return period through run-method and of drought stochastic-indicators are enabled to assess the characteristics of the on-going and forecasted event. An Inter-institutional Technical Board is constituted within the Po River Basin Authority since 2008 and meets regularly during water crises to act decisions regarding water management in order to prevent major impacts. The Board is made of experts from public administrations with a strong involvement of stakeholders representative of different uses. The Dews- Po was intensively used by the Technical Board as decision support system during the 2012 summer event, providing tools to understand the on-going situation of water availability and use across the basin, helping to evaluate water management choices in an objective way, through what-if scenarios considering withdrawals reduction and increased releases from regulated Alpine lakes. A description of the use of Dews- Po system within the Technical Board is given, especially focusing on those elements, prone to be considered "good management indicators", which proved to be most useful in ensuring the success of governance action. Strength and improvement needs of the system are then described

  17. Definition of Pluviometric Thresholds For A Real Time Flood Forecasting System In The Arno Watershed

    NASA Astrophysics Data System (ADS)

    Amadio, P.; Mancini, M.; Mazzetti, P.; Menduni, G.; Nativi, S.; Rabuffetti, D.; Ravazzani, G.; Rosso, R.

    The pluviometric flood forecasting thresholds are an easy method that helps river flood emergency management collecting data from limited area meteorologic model or telemetric raingauges. The thresholds represent the cumulated rainfall depth which generate critic discharge for a particular section. The thresholds were calculated for different sections of Arno river and for different antecedent moisture condition using the flood event distributed hydrologic model FEST. The model inputs were syntethic hietographs with different shape and duration. The system realibility has been verified by generating 500 year syntethic rainfall for 3 important subwatersheds of the studied area. A new technique to consider spatial variability of rainfall and soil properties effects on hydrograph has been investigated. The "Geomorphologic Weights" were so calculated. The alarm system has been implemented in a dedicated software (MIMI) that gets measured and forecast rainfall data from Autorità di Bacino and defines the state of the alert of the river sections.

  18. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  19. Using JPSS Retrievals to Implement a Multisensor, Synoptic, Layered Water Vapor Product for Forecasters

    NASA Astrophysics Data System (ADS)

    Forsythe, J. M.; Jones, A. S.; Kidder, S. Q.; Fuell, K.; LeRoy, A.; Bikos, D.; Szoke, E.

    2015-12-01

    Forecasters have been using the NOAA operational blended total precipitable water (TPW) product, developed by the Cooperative Institute for Research in the Atmosphere (CIRA), since 2009. Blended TPW has a wide variety of uses related to heavy precipitation and flooding, such as measuring the amount of moisture in an atmospheric river originating in the tropics. But blended TPW conveys no information on the vertical distribution of moisture, which is relevant to a variety of forecast concerns. Vertical profile information is particularly lacking over the oceans for landfalling storms. A blended six-satellite, four-layer, layered water vapor product demonstrated by CIRA and the NASA Short-term Prediction Research and Transition Center (SPoRT) in allows forecasters to see the vertical distribution of water vapor in near real-time. National Weather Service (NWS) forecaster feedback indicated that this new, vertically-resolved view of water vapor has a substantial impact on forecasts. This product uses NOAA investments in polar orbiting satellite sounding retrievals from passive microwave radiances, in particular, the Microwave Integrated Retrieval System (MIRS). The product currently utilizes data from the NOAA-18 and -19 spacecraft, Metop-A and -B, and the Defense Meteorological Program (DMSP) F18 spacecraft. The sounding instruments onboard the Suomi-NPP and JPSS spacecraft will be cornerstone instruments in the future evolution of this product. Applications of the product to heavy rain cases will be presented and compared to commonly used data such as radiosondes and Geostationary Operational Environmental Satellite (GOES) water vapor channel imagery. Research is currently beginning to implement advective blending, where model winds are used to move the water vapor profiles to a common time. Interactions with the NOAA Satellite Analysis Branch (SAB), National Center for Environmental Prediction (NCEP) centers including the Ocean Prediction Center (OPC) and Weather Prediction Center (WPC) will be discussed.

  20. Evaluating the improvements of the BOLAM meteorological model operational at ISPRA: A case study approach - preliminary results

    NASA Astrophysics Data System (ADS)

    Mariani, S.; Casaioli, M.; Lastoria, B.; Accadia, C.; Flavoni, S.

    2009-04-01

    The Institute for Environmental Protection and Research - ISPRA (former Agency for Environmental Protection and Technical Services - APAT) runs operationally since 2000 an integrated meteo-marine forecasting chain, named the Hydro-Meteo-Marine Forecasting System (Sistema Idro-Meteo-Mare - SIMM), formed by a cascade of four numerical models, telescoping from the Mediterranean basin to the Venice Lagoon, and initialized by means of analyses and forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF). The operational integrated system consists of a meteorological model, the parallel verision of BOlogna Limited Area Model (BOLAM), coupled over the Mediterranean sea with a WAve Model (WAM), a high-resolution shallow-water model of the Adriatic and Ionian Sea, namely the Princeton Ocean Model (POM), and a finite-element version of the same model (VL-FEM) on the Venice Lagoon, aimed to forecast the acqua alta events. Recently, the physically based, fully distributed, rainfall-runoff TOPographic Kinematic APproximation and Integration (TOPKAPI) model has been integrated into the system, coupled to BOLAM, over two river basins, located in the central and northeastern part of Italy, respectively. However, at the present time, this latter part of the forecasting chain is not operational and it is used in a research configuration. BOLAM was originally implemented in 2000 onto the Quadrics parallel supercomputer (and for this reason referred to as QBOLAM, as well) and only at the end of 2006 it was ported (together with the other operational marine models of the forecasting chain) onto the Silicon Graphics Inc. (SGI) Altix 8-processor machine. In particular, due to the Quadrics implementation, the Kuo scheme was formerly implemented into QBOLAM for the cumulus convection parameterization. On the contrary, when porting SIMM onto the Altix Linux cluster, it was achievable to implement into QBOLAM the more advanced convection parameterization by Kain and Fritsch. A fully updated serial version of the BOLAM code has been recently acquired. Code improvements include a more precise advection scheme (Weighted Average Flux); explicit advection of five hydrometeors, and state-of-the-art parameterization schemes for radiation, convection, boundary layer turbulence and soil processes (also with possible choice among different available schemes). The operational implementation of the new code into the SIMM model chain, which requires the development of a parallel version, will be achieved during 2009. In view of this goal, the comparative verification of the different model versions' skill represents a fundamental task. On this purpose, it has been decided to evaluate the performance improvement of the new BOLAM code (in the available serial version, hereinafter BOLAM 2007) with respect to the version with the Kain-Fritsch scheme (hereinafter KF version) and to the older one employing the Kuo scheme (hereinafter Kuo version). In the present work, verification of precipitation forecasts from the three BOLAM versions is carried on in a case study approach. The intense rainfall episode occurred on 10th - 17th December 2008 over Italy has been considered. This event produced indeed severe damages in Rome and its surrounding areas. Objective and subjective verification methods have been employed in order to evaluate model performance against an observational dataset including rain gauge observations and satellite imagery. Subjective comparison of observed and forecast precipitation fields is suitable to give an overall description of the forecast quality. Spatial errors (e.g., shifting and pattern errors) and rainfall volume error can be assessed quantitatively by means of object-oriented methods. By comparing satellite images with model forecast fields, it is possible to investigate the differences between the evolution of the observed weather system and the predicted ones, and its sensitivity to the improvements in the model code. Finally, the error in forecasting the cyclone evolution can be tentatively related with the precipitation forecast error.

  1. Development of an integrated hydrological modeling system for near-real-time multi-objective reservoir operation in large river basins

    NASA Astrophysics Data System (ADS)

    Wang, L.; Koike, T.

    2010-12-01

    The climate change-induced variability in hydrological cycles directly affects regional water resources management. For improved multiple multi-objective reservoir operation, an integrated modeling system has been developed by incorporating a global optimization system (SCE-UA) into a distributed biosphere hydrological model (WEB-DHM) coupled with the reservoir routing module. The reservoir storage change is estimated from the difference between the simulated inflows and outflows; while the reservoir water level can be defined from the updated reservoir storage by using the H-V curve. According to the reservoir water level, the new operation rule can be decided. For optimization: (1) WEB-DHM is calibrated for each dam’s inflows separately; (2) then the calibrated WEB-DHM is used to simulate inflows and outflows by assuming outflow proportional to inflow; and (3) the proportion coefficients are optimized with Shuffle Complex Evolution method (SCE-UA), to fulfill an objective function towards minimum flood risk at downstream and maximum reservoir water storage for future use. The GSMaP product offers hourly global precipitation maps in near real-time (about four hours after observation). Aiming at near real-time reservoir operation in large river basins, the integrated modeling system takes the inputs from both an operational global quantitative precipitation forecast (JMA-GPV; to achieve an optimal operation rule in the assumed lead time period) and the GSMaP product (to perform current operation with the obtained optimal rule, after correction by gauge rainfall). The newly-developed system was then applied to the Red River Basin, with an area of 160,000 km2, to test its performance for near real-time dam operation. In Vietnam, three reservoirs are located in the upstream of Hanoi city, with Hoa Binh the largest (69% of total volume). After calibration with the gauge rainfall, the inflows to three reservoirs are well simulated; the discharge and water level at Hanoi city are also well reproduced with the actual dam releases. With the corrected GSMaP rainfall (by using gauge rainfall), the inflows to reservoirs and the water level at Hanoi city can be also reasonably reproduced. The study aims at achieving an optimal operation rule in the lead time period (with the quantitative precipitation forecast) and then using it to perform current operation (with the corrected GSMaP rainfall). At Hanoi, there are relatively low flows in July, but high floods in August 2005. Results show that with the actual operation, dangerous water level in Hanoi was observed; while with the lead-time operation, the water level in Hanoi can be obviously cut down, and maximum water storage is also achieved for Hoa Binh reservoir at the end of flood season.

  2. Going with the flow: using species-discharge relationships to forecast losses in fish biodiversity.

    PubMed

    Xenopoulos, Marguerite A; Lodge, David M

    2006-08-01

    In response to the scarcity of tools to make quantitative forecasts of the loss of aquatic species from anthropogenic effects, we present a statistical model that relates fish species richness to river discharge. Fish richness increases logarithmically with discharge, an index of habitat space, similar to a species-area curve in terrestrial systems. We apply the species-discharge model as a forecasting tool to build scenarios of changes in riverine fish richness from climate change, water consumption, and other anthropogenic drivers that reduce river discharge. Using hypothetical reductions in discharges (of magnitudes that have been observed in other rivers), we predict that reductions of 20-90% in discharge would result in losses of 2-38% of the fish species in two biogeographical regions in the United States (Lower Ohio-Upper Mississippi and Southeastern). Additional data on the occurrence of specific species relative to specific discharge regimes suggests that fishes found exclusively in high discharge environments (e.g., Shovelnose sturgeon) would be most vulnerable to reductions in discharge. Lag times in species extinctions after discharge reduction provide a window of opportunity for conservation efforts. Applications of the species-discharge model can help prioritize such management efforts among species and rivers.

  3. Application of current and future satellite missions to hydrologic prediction in transboundary rivers

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Clark, E.; Lettenmaier, D. P.

    2010-12-01

    More than 256 major global river basins, which cover about 45% of the continental land surface, are shared among two or more countries. The flow of such a large part of the global runoff across international boundaries has led to tension in many cases between upstream and downstream riparian countries. Among many examples, this is the case of the Ganges and the Brahmaputra Rivers, which cross the boundary between India and Bangladesh. Hydrological data (river discharge, reservoir storage) are viewed as sensitive by India (the upstream country) and are therefore not shared with Bangladesh, which can only monitor river discharge and water depth at the international border crossing. These measurements only allow forecasting of floods in the interior and southern portions of the country two to three days in advance. These forecasts are not long enough either for agricultural water management purposes (for which knowledge of upstream reservoir storage is essential) or for disaster preparedness purposes. Satellite observations of river spatial extent, surface slope, reservoir area and surface elevation have the potential to make tremendous changes in management of water within the basins. In this study, we examine the use of currently available satellite measurements (in India) and in-situ measurements in Bangladesh to increase forecast lead time in the Ganges and Brahmaputra Rivers. Using nadir altimeters, we find that it is possible to forecast the discharge of the Ganges River at the Bangladesh border with lead time 3 days and mean absolute error of around 25%. On the Ganges River, 2-day forecasts are possible with a mean absolute error of around 20%. When combined with optical/infra-red MODIS images, it is possible to map water elevations along the river and its floodplain upstream of the boundary, and to compute water storage. However, the high frequency of clouds in this region results in relatively large errors in the water mask. Due to the nadir altimeter temporal repeat (10 days for current satellites) and to gaps in the water mask, water volume estimates are meaningful only at the monthly scale. Furthermore, this information is limited to channels with wider than 250-500 m. The future Surface Water and Ocean Topography (SWOT) mission, which is intended to be launched in 2020, will provide global maps of water elevations, with a spatial resolution of 100 m and errors on the water elevation equal to or below 10 cm. The SWOT Ka band interferometric Synthetic Aperture Radar (SAR), will not be affected by cloud cover (aside from infrequent heavy rain); therefore, estimation of the water volume change on the Ganges and on the Brahmaputra upstream to the Bangladesh provided by SWOT should be much more accurate in space and time than can currently be achieved. We discuss the implications of future SWOT observations in the context of our preliminary work on the Ganges-Brahmaputra Rivers using current generation satellite data.

  4. Impact of the Fraser River Geometry on Tides and the River Plumes in a Model of the Fraser River Plume

    NASA Astrophysics Data System (ADS)

    Liu, J.; Allen, S. E.; Soontiens, N. K.

    2016-02-01

    Fraser River is the largest river on the west coast of Canada. It empties into the Strait of Georgia, which is a large, semi-enclosed body of water between Vancouver Island and the mainland of British Columbia. We have developed a three-dimensional model of the Strait of Georgia, including the Fraser River plume, using the NEMO model in its regional configuration. This operational model produces daily nowcasts and forecasts for salinity, temperature, currents and sea surface heights. Observational data available for evaluation of the model includes daily British Columbia ferry salinity data, profile data and surface drifter data. The salinity of the modelled Fraser River plume agrees well with ferry based measurements of salinity. However, large discrepencies exist between the modelled and observed position of the plume. Modelled surface currents compared to drifter observations show that the model has too strong along-strait velocities and too weak cross-strait velocities. We investigated the impact of river geometry. A sensitivity experiment was performed comparing the original, short, shallow river channel to an extended and deepened river channel. With the latter bathymetry, tidal amplitudes within Fraser River correspond well with observations. Comparisons to drifter tracks show that the surface currents have been improved with the new bathymetry. However, substantial discrepencies remain. We will discuss how reducing vertical eddy viscosity and other changes further improve the modelled position of the plume.

  5. Flare forecasting at the Met Office Space Weather Operations Centre

    NASA Astrophysics Data System (ADS)

    Murray, S. A.; Bingham, S.; Sharpe, M.; Jackson, D. R.

    2017-04-01

    The Met Office Space Weather Operations Centre produces 24/7/365 space weather guidance, alerts, and forecasts to a wide range of government and commercial end-users across the United Kingdom. Solar flare forecasts are one of its products, which are issued multiple times a day in two forms: forecasts for each active region on the solar disk over the next 24 h and full-disk forecasts for the next 4 days. Here the forecasting process is described in detail, as well as first verification of archived forecasts using methods commonly used in operational weather prediction. Real-time verification available for operational flare forecasting use is also described. The influence of human forecasters is highlighted, with human-edited forecasts outperforming original model results and forecasting skill decreasing over longer forecast lead times.

  6. Seasonal and daily snowmelt runoff estimates utilizing satellite data. [Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Methods using snowcovered area to update seasonal forecasts as snowmelt progresses are also being used in quasi-operational situations. The input of snowcovered area to snowmelt models for short term perdictions was attempted in two ways; namely, the modification of existing hydrologic models and/or the use of models that were specifically designed to use snowcovered area. A daily snowmelt runoff model was used with LANDSAT data to simulate discharge on remote basins in the Wind River Mountains of Wyoming. Daily predicted and actual flows compare closely, and, summarized over the entire snowmelt season (April 1 - September 30), the average difference is only three percent. The model and snowcovered area data are currently being tested on additional watersheds to determine the method's transferability.

  7. Development of flood-inundation maps for the West Branch Susquehanna River near the Borough of Jersey Shore, Lycoming County, Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Hoffman, Scott A.

    2011-01-01

    Streamflow data, water-surface-elevation profiles derived from a Hydrologic Engineering Center River Analysis System hydraulic model, and geographical information system digital elevation models were used to develop a set of 18 flood-inundation maps for an approximately 5-mile reach of the West Branch Susquehanna River near the Borough of Jersey Shore, Pa. The inundation maps were created by the U.S. Geological Survey in cooperation with the Susquehanna River Basin Commission and Lycoming County as part of an ongoing effort by the National Oceanic and Atmospheric Administration's National Weather Service to focus on continued improvements to the flood forecasting and warning abilities in the Susquehanna River Basin and to modernize flood-forecasting methodologies. The maps, ranging from 23.0 to 40.0 feet in 1-foot increments, correspond to river stage at the U.S. Geological Survey streamgage 01549760 at Jersey Shore. The electronic files used to develop the maps were provided to the National Weather Service for incorporation into their Advanced Hydrologic Prediction Service website. The maps are displayed on this website, which serves as a web-based floodwarning system, and can be used to identify areas of predicted flood inundation associated with forecasted flood-peak stages. During times of flooding or predicted flooding, these maps can be used by emergency managers and the public to take proactive steps to protect life and reduce property damage caused by floods.

  8. The Volta Grande do Xingu: reconstruction of past environments and forecasting of future scenarios of a unique Amazonian fluvial landscape

    NASA Astrophysics Data System (ADS)

    Sawakuchi, A. O.; Hartmann, G. A.; Sawakuchi, H. O.; Pupim, F. N.; Bertassoli, D. J.; Parra, M.; Antinao, J. L.; Sousa, L. M.; Sabaj Pérez, M. H.; Oliveira, P. E.; Santos, R. A.; Savian, J. F.; Grohmann, C. H.; Medeiros, V. B.; McGlue, M. M.; Bicudo, D. C.; Faustino, S. B.

    2015-12-01

    The Xingu River is a large clearwater river in eastern Amazonia and its downstream sector, known as the Volta Grande do Xingu ("Xingu Great Bend"), is a unique fluvial landscape that plays an important role in the biodiversity, biogeochemistry and prehistoric and historic peopling of Amazonia. The sedimentary dynamics of the Xingu River in the Volta Grande and its downstream sector will be shifted in the next few years due to the construction of dams associated with the Belo Monte hydropower project. Impacts on river biodiversity and carbon cycling are anticipated, especially due to likely changes in sedimentation and riverbed characteristics. This research project aims to define the geological and climate factors responsible for the development of the Volta Grande landscape and to track its environmental changes during the Holocene, using the modern system as a reference. In this context, sediment cores, riverbed rock and sediment samples and greenhouse gas (GHG) samples were collected in the Volta Grande do Xingu and adjacent upstream and downstream sectors. The reconstruction of past conditions in the Volta Grande is necessary for forecasting future scenarios and defining biodiversity conservation strategies under the operation of Belo Monte dams. This paper describes the scientific questions of the project and the sampling surveys performed by an international team of Earth scientists and biologists during the dry seasons of 2013 and 2014. Preliminary results are presented and a future workshop is planned to integrate results, present data to the scientific community and discuss possibilities for deeper drilling in the Xingu ria to extend the sedimentary record of the Volta Grande do Xingu.

  9. Seasonal forecast of St. Louis encephalitis virus transmission, Florida.

    PubMed

    Shaman, Jeffrey; Day, Jonathan F; Stieglitz, Marc; Zebiak, Stephen; Cane, Mark

    2004-05-01

    Disease transmission forecasts can help minimize human and domestic animal health risks by indicating where disease control and prevention efforts should be focused. For disease systems in which weather-related variables affect pathogen proliferation, dispersal, or transmission, the potential for disease forecasting exists. We present a seasonal forecast of St. Louis encephalitis virus transmission in Indian River County, Florida. We derive an empiric relationship between modeled land surface wetness and levels of SLEV transmission in humans. We then use these data to forecast SLEV transmission with a seasonal lead. Forecast skill is demonstrated, and a real-time seasonal forecast of epidemic SLEV transmission is presented. This study demonstrates how weather and climate forecast skill-verification analyses may be applied to test the predictability of an empiric disease forecast model.

  10. Seasonal Forecast of St. Louis Encephalitis Virus Transmission, Florida

    PubMed Central

    Day, Jonathan F.; Stieglitz, Marc; Zebiak, Stephen; Cane, Mark

    2004-01-01

    Disease transmission forecasts can help minimize human and domestic animal health risks by indicating where disease control and prevention efforts should be focused. For disease systems in which weather-related variables affect pathogen proliferation, dispersal, or transmission, the potential for disease forecasting exists. We present a seasonal forecast of St. Louis encephalitis virus transmission in Indian River County, Florida. We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission in humans. We then use these data to forecast SLEV transmission with a seasonal lead. Forecast skill is demonstrated, and a real-time seasonal forecast of epidemic SLEV transmission is presented. This study demonstrates how weather and climate forecast skill verification analyses may be applied to test the predictability of an empirical disease forecast model. PMID:15200812

  11. A River Discharge Model for Coastal Taiwan during Typhoon Morakot

    DTIC Science & Technology

    2012-08-01

    Multidisciplinary Simulation, Estimation, and Assimilation Systems Reports in Ocean Science and Engineering MSEAS-13 A River Discharge...in this region. The island’s major rivers have correspondingly large drainage basins, and outflow from these river mouths can substantially reduce the...Multidisciplinary Simulation, Estimation, and Assimilation System (MSEAS) has been used to simulate the ocean dynamics and forecast the uncertainty

  12. Prospects for seasonal forecasting of summer drought and low river flow anomalies in England and Wales

    NASA Astrophysics Data System (ADS)

    Wedgbrow, C. S.; Wilby, R. L.; Fox, H. R.; O'Hare, G.

    2002-02-01

    Future climate change scenarios suggest enhanced temporal and spatial gradients in water resources across the UK. Provision of seasonal forecast statistics for surface climate variables could alleviate some negative effects of climate change on water resource infrastructure. This paper presents a preliminary investigation of spatial and temporal relationships between large-scale North Atlantic climatic indices, drought severity and river flow anomalies in England and Wales. Potentially useful predictive relationships are explored between winter indices of the Polar-Eurasian (POL) teleconnection pattern, the North Atlantic oscillation (NAO), North Atlantic sea surface temperature anomalies (SSTAs), and the summer Palmer drought severity index (PDSI) and reconstructed river flows in England and Wales. Correlation analyses, coherence testing and an index of forecast potential, demonstrate that preceding winter values of the POL index, SSTA (and to a lesser extent the NAO), provide indications of summer and early autumn drought severity and river flow anomalies in parts of northwest, southwest and southeast England. Correlation analyses demonstrate that positive winter anomalies of T1, POL index and NAO index are associated with negative PDSI (i.e. drought) across eastern parts of the British Isles in summer (r < 0.51). Coherence tests show that a positive winter SSTA (1871-1995) and POL index (1950-95) have preceded below-average summer river flows in the northwest and southwest of England and Wales in 70 to 100% of summers. The same rivers have also experienced below-average flows during autumn following negative winter phases of the NAO index in 64 to 93% of summers (1865-1995). Possible explanations for the predictor-predictand relationships are considered, including the memory of groundwater, and ocean-atmosphere coupling, and regional manifestations of synoptic rainfall processes. However, further research is necessary to increase the number of years and predictor variables from which it is possible to derive rules that may be useful for forecasting.

  13. Scenario approach for the seasonal forecast of Kharif flows from the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Fraz Ismail, Muhammad; Bogacki, Wolfgang

    2018-02-01

    Snow and glacial melt runoff are the major sources of water contribution from the high mountainous terrain of the Indus River upstream of the Tarbela reservoir. A reliable forecast of seasonal water availability for the Kharif cropping season (April-September) can pave the way towards better water management and a subsequent boost in the agro-economy of Pakistan. The use of degree-day models in conjunction with satellite-based remote-sensing data for the forecasting of seasonal snow and ice melt runoff has proved to be a suitable approach for data-scarce regions. In the present research, the Snowmelt Runoff Model (SRM) has not only been enhanced by incorporating the glacier (G) component but also applied for the forecast of seasonal water availability from the Upper Indus Basin (UIB). Excel-based SRM+G takes account of separate degree-day factors for snow and glacier melt processes. All-year simulation runs with SRM+G for the period 2003-2014 result in an average flow component distribution of 53, 21, and 26 % for snow, glacier, and rain, respectively. The UIB has been divided into Upper and Lower parts because of the different climatic conditions in the Tibetan Plateau. The scenario approach for seasonal forecasting, which like the Ensemble Streamflow Prediction method uses historic meteorology as model forcings, has proven to be adequate for long-term water availability forecasts. The accuracy of the forecast with a mean absolute percentage error (MAPE) of 9.5 % could be slightly improved compared to two existing operational forecasts for the UIB, and the bias could be reduced to -2.0 %. However, the association between forecasts and observations as well as the skill in predicting extreme conditions is rather weak for all three models, which motivates further research on the selection of a subset of ensemble members according to forecasted seasonal anomalies.

  14. Coupling Fluvial and Oceanic Drivers in Flooding Forecasts for San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Herdman, L.; Kim, J.; Cifelli, R.; Barnard, P.; Erikson, L. H.; Johnson, L. E.; Chandrasekar, V.

    2016-12-01

    San Francisco Bay is a highly urbanized estuary and the surrounding communities are susceptible to flooding along the bay shoreline and inland rivers and creeks that drain to the Bay. A forecast model that integrates fluvial and oceanic drivers is necessary for predicting flooding in this complex urban environment. This study introduces the state-of-the-art coupling of the USGS Coastal Storm Modeling System (CoSMoS) with the NWS Research Distributed Hydrologic Model (RDHM) for San Francisco Bay. For this application, we utilize Delft3D-FM, a hydrodynamic model based on a flexible mesh grid, to calculate water levels that account for tidal forcing, seasonal water level anomalies, surge and in-Bay generated wind waves from the wind and pressure fields of a NWS forecast model. The tributary discharges from RDHM are dynamic, meteorologically driven allowing for operational use of CoSMoS which has previously relied on statistical estimates of river discharge. The flooding extent is determined by overlaying the resulting maximum water levels onto a recently updated 2-m digital elevation model of the study area which best resolves the extensive levee and tidal marsh systems in the region. The results we present here are focused on the interaction of the Bay and the Napa River watershed. This study demonstrates the interoperability of the CoSMoS and RDHM prediction models. We also use this pilot region to examine storm flooding impacts in a series of storm scenarios that simulate 5-100yr return period events in terms of either coastal or fluvial events. These scenarios demonstrate the wide range of possible flooding outcomes considering rainfall recurrence intervals, soil moisture conditions, storm surge, wind speed, and tides (spring and neap). With a simulated set of over 25 storm scenarios we show how the extent, level, and duration of flooding is dependent on these atmospheric and hydrologic parameters and we also determine a range of likely flood events.

  15. Economic assessment of flood forecasts for a risk-averse decision-maker

    NASA Astrophysics Data System (ADS)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier-Filion, Thomas-Charles

    2017-04-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. It has also been suggested in past studies that ensemble forecasts might possess a greater economic value than deterministic forecasts. However, the vast majority of recent hydro-economic literature is based on the cost-loss ratio framework, which might be appealing for its simplicity and intuitiveness. One important drawback of the cost-loss ratio is that it implicitly assumes a risk-neutral decision maker. By definition, a risk-neutral individual is indifferent to forecasts' sharpness: as long as forecasts agree with observations on average, the risk-neutral individual is satisfied. A risk-averse individual, however, is sensitive to the level of precision (sharpness) of forecasts. This person is willing to pay to increase his or her certainty about future events. In fact, this is how insurance companies operate: the probability of seeing one's house burn down is relatively low, so the expected cost related to such event is also low. However, people are willing to buy insurance to avoid the risk, however small, of loosing everything. Similarly, in a context where people's safety and property is at stake, the typical decision maker is more risk-averse than risk-neutral. Consequently, the cost-loss ratio is not the most appropriate tool to assess the economic value of flood forecasts. This presentation describes a more realistic framework for assessing the economic value of such forecasts for flood mitigation purposes. Borrowing from economics, the Constant Absolute Risk Aversion utility function (CARA) is the central tool of this new framework. Utility functions allow explicitly accounting for the level of risk aversion of the decision maker and fully exploiting the information related to ensemble forecasts' uncertainty. Three concurrent ensemble streamflow forecasting systems are compared in terms of quality (comparison with observed values) and in terms of their economic value. This assessment is performed for lead times of one to five days. The three systems are: (1) simple statistically dressed deterministic forecasts, (2) forecasts based on meteorological ensembles and (3) a variant of the latter that also includes an estimation of state variables uncertainty. The comparison takes place on the Montmorency River, a small flood-prone watershed in south central Quebec, Canada. The results show that forecasts quality as assessed by well-known tools such as the Continuous Ranked Probability Score or the reliability diagram do not necessarily translate directly into economic value, especially if the decision maker is not risk-neutral. In addition, results show that the economic value of forecasts for a risk-averse decision maker is very much influenced by the most extreme members of ensemble forecasts (upper tail of the predictive distributions). This study provides a new basis for further improvement of our comprehension of the complex interactions between forecasts uncertainty, risk-aversion and decision-making.

  16. Linked Hydrologic-Hydrodynamic Model Framework to Forecast Impacts of Rivers on Beach Water Quality

    NASA Astrophysics Data System (ADS)

    Anderson, E. J.; Fry, L. M.; Kramer, E.; Ritzenthaler, A.

    2014-12-01

    The goal of NOAA's beach quality forecasting program is to use a multi-faceted approach to aid in detection and prediction of bacteria in recreational waters. In particular, our focus has been on the connection between tributary loads and bacteria concentrations at nearby beaches. While there is a clear link between stormwater runoff and beach water quality, quantifying the contribution of river loadings to nearshore bacterial concentrations is complicated due to multiple processes that drive bacterial concentrations in rivers as well as those processes affecting the fate and transport of bacteria upon exiting the rivers. In order to forecast potential impacts of rivers on beach water quality, we developed a linked hydrologic-hydrodynamic water quality framework that simulates accumulation and washoff of bacteria from the landscape, and then predicts the fate and transport of washed off bacteria from the watershed to the coastal zone. The framework includes a watershed model (IHACRES) to predict fecal indicator bacteria (FIB) loadings to the coastal environment (accumulation, wash-off, die-off) as a function of effective rainfall. These loadings are input into a coastal hydrodynamic model (FVCOM), including a bacteria transport model (Lagrangian particle), to simulate 3D bacteria transport within the coastal environment. This modeling system provides predictive tools to assist local managers in decision-making to reduce human health threats.

  17. Development and Evaluation of an Integrated Hydrological Modeling Framework for Monitoring and Understanding Floods and Droughts

    NASA Astrophysics Data System (ADS)

    Yang, Z. L.; Wu, W. Y.; Lin, P.; Maidment, D. R.

    2017-12-01

    Extreme water events such as catastrophic floods and severe droughts have increased in recent decades. Mitigating the risk to lives, food security, infrastructure, energy supplies, as well as numerous other industries posed by these extreme events requires informed decision-making and planning based on sound science. We are developing a global water modeling capability by building models that will provide total operational water predictions (evapotranspiration, soil moisture, groundwater, channel flow, inundation, snow) at unprecedented spatial resolutions and updated frequencies. Toward this goal, this talk presents an integrated global hydrological modeling framework that takes advantage of gridded meteorological forcing, land surface modeling, channeled flow modeling, ground observations, and satellite remote sensing. Launched in August 2016, the National Water Model successfully incorporates weather forecasts to predict river flows for more than 2.7 million rivers across the continental United States, which transfers a "synoptic weather map" to a "synoptic river flow map" operationally. In this study, we apply a similar framework to a high-resolution global river network database, which is developed from a hierarchical Dominant River Tracing (DRT) algorithm, and runoff output from the Global Land Data Assimilation System (GLDAS) to a vector-based river routing model (The Routing Application for Parallel Computation of Discharge, RAPID) to produce river flows from 2001 to 2016 using Message Passing Interface (MPI) on Texas Advanced Computer Center's Stampede system. In this simulation, global river discharges for more than 177,000 rivers are computed every 30 minutes. The modeling framework's performance is evaluated with various observations including river flows at more than 400 gauge stations globally. Overall, the model exhibits a reasonably good performance in simulating the averaged patterns of terrestrial water storage, evapotranspiration and runoff. The system is appropriate for monitoring and studying floods and droughts. Directions for future research will be outlined and discussed.

  18. Study on optimization of the short-term operation of cascade hydropower stations by considering output error

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Wang, Boquan; Zhang, Pu; Liu, Minghao; Li, Chuangang

    2017-06-01

    The study of reservoir deterministic optimal operation can improve the utilization rate of water resource and help the hydropower stations develop more reasonable power generation schedules. However, imprecise forecasting inflow may lead to output error and hinder implementation of power generation schedules. In this paper, output error generated by the uncertainty of the forecasting inflow was regarded as a variable to develop a short-term reservoir optimal operation model for reducing operation risk. To accomplish this, the concept of Value at Risk (VaR) was first applied to present the maximum possible loss of power generation schedules, and then an extreme value theory-genetic algorithm (EVT-GA) was proposed to solve the model. The cascade reservoirs of Yalong River Basin in China were selected as a case study to verify the model, according to the results, different assurance rates of schedules can be derived by the model which can present more flexible options for decision makers, and the highest assurance rate can reach 99%, which is much higher than that without considering output error, 48%. In addition, the model can greatly improve the power generation compared with the original reservoir operation scheme under the same confidence level and risk attitude. Therefore, the model proposed in this paper can significantly improve the effectiveness of power generation schedules and provide a more scientific reference for decision makers.

  19. Towards a National Hydrological Forecasting system for Canada : Lessons Learned from the Great Lakes and St. Lawrence Prediction System

    NASA Astrophysics Data System (ADS)

    Fortin, V.; Durnford, D.; Gaborit, E.; Davison, B.; Dimitrijevic, M.; Matte, P.

    2016-12-01

    Environment and Climate Change Canada has recently deployed a water cycle prediction system for the Great Lakes and St. Lawrence River. The model domain includes both the Canadian and US portions of the watershed. It provides 84-h forecasts of weather elements, lake level, lake ice cover and surface currents based on two-way coupling of the GEM numerical weather prediction (NWP) model with the NEMO ocean model. Streamflow of all the major tributaries of the Great Lakes and St. Lawrence River are estimated by the WATROUTE routing model, which routes the surface runoff forecasted by GEM's land-surface scheme and assimilates streamflow observations where available. Streamflow forecasts are updated twice daily and are disseminated through an OGC compliant web map service (WMS) and a web feature service (WFS). In this presentation, in addition to describing the system and documenting its forecast skill, we show how it is being used by clients for various environmental prediction applications. We then discuss the importance of two-way coupling, land-surface and hillslope modelling and the impact of horizontal resolution on hydrological prediction skill. In the second portion of the talk, we discuss plans for implementing a similar system at the national scale, using what we have learned in the Great Lakes and St. Lawrence watershed. Early results obtained for the headwaters of the Saskatchewan River as well as for the whole Nelson-Churchill watershed are presented.

  20. On the forecast of runoff based on the harmonic analysis of time series of precipitation in the catchment area

    NASA Astrophysics Data System (ADS)

    Cherednichenko, A. V.; Cherednichenko, A. V.; Cherednichenko, V. S.

    2018-01-01

    It is shown that a significant connection exists between the most important harmonics, extracted in the process of harmonic analysis of time series of precipitation in the catchment area of rivers and the amount of runoff. This allowed us to predict the size of the flow for a period of up to 20 years, assuming that the main parameters of the harmonics are preserved at the predicted time interval. The results of such a forecast for three river basins of Kazakhstan are presented.

  1. Community-based early warning systems for flood risk mitigation in Nepal

    NASA Astrophysics Data System (ADS)

    Smith, Paul J.; Brown, Sarah; Dugar, Sumit

    2017-03-01

    This paper focuses on the use of community-based early warning systems for flood resilience in Nepal. The first part of the work outlines the evolution and current status of these community-based systems, highlighting the limited lead times currently available for early warning. The second part of the paper focuses on the development of a robust operational flood forecasting methodology for use by the Nepal Department of Hydrology and Meteorology (DHM) to enhance early warning lead times. The methodology uses data-based physically interpretable time series models and data assimilation to generate probabilistic forecasts, which are presented in a simple visual tool. The approach is designed to work in situations of limited data availability with an emphasis on sustainability and appropriate technology. The successful application of the forecast methodology to the flood-prone Karnali River basin in western Nepal is outlined, increasing lead times from 2-3 to 7-8 h. The challenges faced in communicating probabilistic forecasts to the last mile of the existing community-based early warning systems across Nepal is discussed. The paper concludes with an assessment of the applicability of this approach in basins and countries beyond Karnali and Nepal and an overview of key lessons learnt from this initiative.

  2. Developing Snow Model Forcing Data From WRF Model Output to Aid in Water Resource Forecasting

    NASA Astrophysics Data System (ADS)

    Havens, S.; Marks, D. G.; Watson, K. A.; Masarik, M.; Flores, A. N.; Kormos, P.; Hedrick, A. R.

    2015-12-01

    Traditional operational modeling tools used by water managers in the west are challenged by more frequently occurring uncharacteristic stream flow patterns caused by climate change. Water managers are now turning to new models based on the physical processes within a watershed to combat the increasing number of events that do not follow the historical patterns. The USDA-ARS has provided near real time snow water equivalent (SWE) maps using iSnobal since WY2012 for the Boise River Basin in southwest Idaho and since WY2013 for the Tuolumne Basin in California that feeds the Hetch Hetchy reservoir. The goal of these projects is to not only provide current snowpack estimates but to use the Weather Research and Forecasting (WRF) model to drive iSnobal in order to produce a forecasted stream flow when coupled to a hydrology model. The first step is to develop methods on how to create snow model forcing data from WRF outputs. Using a reanalysis 1km WRF dataset from WY2009 over the Boise River Basin, WRF model results like surface air temperature, relative humidity, wind, precipitation, cloud cover, and incoming long wave radiation must be downscaled for use in iSnobal. iSnobal results forced with WRF output are validated at point locations throughout the basin, as well as compared with iSnobal results forced with traditional weather station data. The presentation will explore the differences in forcing data derived from WRF outputs and weather stations and how this affects the snowpack distribution.

  3. Parameter estimation of an ARMA model for river flow forecasting using goal programming

    NASA Astrophysics Data System (ADS)

    Mohammadi, Kourosh; Eslami, H. R.; Kahawita, Rene

    2006-11-01

    SummaryRiver flow forecasting constitutes one of the most important applications in hydrology. Several methods have been developed for this purpose and one of the most famous techniques is the Auto regressive moving average (ARMA) model. In the research reported here, the goal was to minimize the error for a specific season of the year as well as for the complete series. Goal programming (GP) was used to estimate the ARMA model parameters. Shaloo Bridge station on the Karun River with 68 years of observed stream flow data was selected to evaluate the performance of the proposed method. The results when compared with the usual method of maximum likelihood estimation were favorable with respect to the new proposed algorithm.

  4. Determining effective forecast horizons for multi-purpose reservoirs with short- and long-term operating objectives

    NASA Astrophysics Data System (ADS)

    Luchner, Jakob; Anghileri, Daniela; Castelletti, Andrea

    2017-04-01

    Real-time control of multi-purpose reservoirs can benefit significantly from hydro-meteorological forecast products. Because of their reliability, the most used forecasts range on time scales from hours to few days and are suitable for short-term operation targets such as flood control. In recent years, hydro-meteorological forecasts have become more accurate and reliable on longer time scales, which are more relevant to long-term reservoir operation targets such as water supply. While the forecast quality of such products has been studied extensively, the forecast value, i.e. the operational effectiveness of using forecasts to support water management, has been only relatively explored. It is comparatively easy to identify the most effective forecasting information needed to design reservoir operation rules for flood control but it is not straightforward to identify which forecast variable and lead time is needed to define effective hedging rules for operational targets with slow dynamics such as water supply. The task is even more complex when multiple targets, with diverse slow and fast dynamics, are considered at the same time. In these cases, the relative importance of different pieces of information, e.g. magnitude and timing of peak flow rate and accumulated inflow on different time lags, may vary depending on the season or the hydrological conditions. In this work, we analyze the relationship between operational forecast value and streamflow forecast horizon for different multi-purpose reservoir trade-offs. We use the Information Selection and Assessment (ISA) framework to identify the most effective forecast variables and horizons for informing multi-objective reservoir operation over short- and long-term temporal scales. The ISA framework is an automatic iterative procedure to discriminate the information with the highest potential to improve multi-objective reservoir operating performance. Forecast variables and horizons are selected using a feature selection technique. The technique determines the most informative combination in a multi-variate regression model to the optimal reservoir releases based on perfect information at a fixed objective trade-off. The improved reservoir operation is evaluated against optimal reservoir operation conditioned upon perfect information on future disturbances and basic reservoir operation using only the day of the year and the reservoir level. Different objective trade-offs are selected for analyzing resulting differences in improved reservoir operation and selected forecast variables and horizons. For comparison, the effective streamflow forecast horizon determined by the ISA framework is benchmarked against the performances obtained with a deterministic model predictive control (MPC) optimization scheme. Both the ISA framework and the MPC optimization scheme are applied to the real-world case study of Lake Como, Italy, using perfect streamflow forecast information. The principal operation targets for Lake Como are flood control and downstream water supply which makes its operation a suitable case study. Results provide critical feedback to reservoir operators on the use of long-term streamflow forecasts and to the hydro-meteorological forecasting community with respect to the forecast horizon needed from reliable streamflow forecasts.

  5. An Overview of the Iowa Flood Forecasting and Monitoring System

    NASA Astrophysics Data System (ADS)

    Krajewski, W. F.

    2016-12-01

    Following the 2008 flood that devastated eastern Iowa the state legislators established the Iowa Flood Center at the University of Iowa with the mission of translational research towards flood mitigation. The Center has adavanced several components towards this goal. In particular, the Center has developed (1) state-wide flood inundation maps based on airborne lidar-based topography data and hydraulic models; (2) a network of nearly 250 real-time ultrasonic river stage sensors; (3) a detailed rainfall-runoff model for real time streamflow forecasting; and (4) cyberinfrastructure to acquire and manage data that includes High Performance Computing and browser-based information system designed for use by general public. The author discusses these components, their operational performance and their potential to assist in development of similar nation-wide systems. Specifically, many developments taking place at the National Water Center can benefit from the Iowa system serving as a reference.

  6. Forecasting models for flow and total dissolved solids in Karoun river-Iran

    NASA Astrophysics Data System (ADS)

    Salmani, Mohammad Hassan; Salmani Jajaei, Efat

    2016-04-01

    Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA) models to forecast TDS and water flow in this river. Then, we build up a Transfer Function (TF) model to formulate the TDS as a function of water flow volume. A performance comparison between the Seasonal ARIMA and the TF models are presented.

  7. Development and application of an atmospheric-hydrologic-hydraulic flood forecasting model driven by TIGGE ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Bao, Hongjun; Zhao, Linna

    2012-02-01

    A coupled atmospheric-hydrologic-hydraulic ensemble flood forecasting model, driven by The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, has been developed for flood forecasting over the Huaihe River. The incorporation of numerical weather prediction (NWP) information into flood forecasting systems may increase forecast lead time from a few hours to a few days. A single NWP model forecast from a single forecast center, however, is insufficient as it involves considerable non-predictable uncertainties and leads to a high number of false alarms. The availability of global ensemble NWP systems through TIGGE offers a new opportunity for flood forecast. The Xinanjiang model used for hydrological rainfall-runoff modeling and the one-dimensional unsteady flow model applied to channel flood routing are coupled with ensemble weather predictions based on the TIGGE data from the Canadian Meteorological Centre (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF), the UK Met Office (UKMO), and the US National Centers for Environmental Prediction (NCEP). The developed ensemble flood forecasting model is applied to flood forecasting of the 2007 flood season as a test case. The test case is chosen over the upper reaches of the Huaihe River above Lutaizi station with flood diversion and retarding areas. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The Muskingum method is used for flood routing in the flood diversion area. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE ensemble forecasts. The results demonstrate satisfactory flood forecasting with clear signals of probability of floods up to a few days in advance, and show that TIGGE ensemble forecast data are a promising tool for forecasting of flood inundation, comparable with that driven by raingauge observations.

  8. Initial assessment of a multi-model approach to spring flood forecasting in Sweden

    NASA Astrophysics Data System (ADS)

    Olsson, J.; Uvo, C. B.; Foster, K.; Yang, W.

    2015-06-01

    Hydropower is a major energy source in Sweden and proper reservoir management prior to the spring flood onset is crucial for optimal production. This requires useful forecasts of the accumulated discharge in the spring flood period (i.e. the spring-flood volume, SFV). Today's SFV forecasts are generated using a model-based climatological ensemble approach, where time series of precipitation and temperature from historical years are used to force a calibrated and initialised set-up of the HBV model. In this study, a number of new approaches to spring flood forecasting, that reflect the latest developments with respect to analysis and modelling on seasonal time scales, are presented and evaluated. Three main approaches, represented by specific methods, are evaluated in SFV hindcasts for three main Swedish rivers over a 10-year period with lead times between 0 and 4 months. In the first approach, historically analogue years with respect to the climate in the period preceding the spring flood are identified and used to compose a reduced ensemble. In the second, seasonal meteorological ensemble forecasts are used to drive the HBV model over the spring flood period. In the third approach, statistical relationships between SFV and the large-sale atmospheric circulation are used to build forecast models. None of the new approaches consistently outperform the climatological ensemble approach, but for specific locations and lead times improvements of 20-30 % are found. When combining all forecasts in a weighted multi-model approach, a mean improvement over all locations and lead times of nearly 10 % was indicated. This demonstrates the potential of the approach and further development and optimisation into an operational system is ongoing.

  9. Effects of Changing Climate During the Snow Ablation Season on Seasonal Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Gutzler, D. S.; Chavarria, S. B.

    2017-12-01

    Seasonal forecasts of total surface runoff (Q) in snowmelt-dominated watersheds derive most of their prediction skill from the historical relationship between late winter snowpack (SWE) and subsequent snowmelt runoff. Across the western US, however, the relationship between SWE and Q is weakening as temperatures rise. We describe the effects of climate variability and change during the springtime snow ablation season on water supply outlooks (forecasts of Q) for southwestern rivers. As snow melts earlier, the importance of post-snow rainfall increases: interannual variability of spring season precipitation accounts for an increasing fraction of the variability of Q in recent decades. The results indicate that improvements to the skill of S2S forecasts of spring season temperature and precipitation would contribute very significantly to water supply outlooks that are now based largely on observed SWE. We assess this hypothesis using historical data from several snowpack-dominated basins in the American Southwest (Rio Grande, Pecos, and Gila Rivers) which are undergoing rapid climate change.

  10. Decadal predictability of river discharge with climate oscillations over the 20th and early 21st century

    NASA Astrophysics Data System (ADS)

    Wanders, Niko; Wada, Yoshihide

    2015-12-01

    Long-term hydrological forecasts are important to increase our resilience and preparedness to extreme hydrological events. The skill in these forecasts is still limited due to large uncertainties inherent in hydrological models and poor predictability of long-term meteorological conditions. Here we show that strong (lagged) correlations exist between four different major climate oscillation modes and modeled and observed discharge anomalies over a 100 year period. The strongest correlations are found between the El Niño-Southern Oscillation signal and river discharge anomalies all year round, while North Atlantic Oscillation and Antarctic Oscillation time series are strongly correlated with winter discharge anomalies. The correlation signal is significant for periods up to 5 years for some regions, indicating a high added value of this information for long-term hydrological forecasting. The results suggest that long-term hydrological forecasting could be significantly improved by including the climate oscillation signals and thus improve our preparedness for hydrological extremes in the near future.

  11. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?

    PubMed

    Liu, Mei; Lu, Jun

    2014-09-01

    Water quality forecasting in agricultural drainage river basins is difficult because of the complicated nonpoint source (NPS) pollution transport processes and river self-purification processes involved in highly nonlinear problems. Artificial neural network (ANN) and support vector model (SVM) were developed to predict total nitrogen (TN) and total phosphorus (TP) concentrations for any location of the river polluted by agricultural NPS pollution in eastern China. River flow, water temperature, flow travel time, rainfall, dissolved oxygen, and upstream TN or TP concentrations were selected as initial inputs of the two models. Monthly, bimonthly, and trimonthly datasets were selected to train the two models, respectively, and the same monthly dataset which had not been used for training was chosen to test the models in order to compare their generalization performance. Trial and error analysis and genetic algorisms (GA) were employed to optimize the parameters of ANN and SVM models, respectively. The results indicated that the proposed SVM models performed better generalization ability due to avoiding the occurrence of overtraining and optimizing fewer parameters based on structural risk minimization (SRM) principle. Furthermore, both TN and TP SVM models trained by trimonthly datasets achieved greater forecasting accuracy than corresponding ANN models. Thus, SVM models will be a powerful alternative method because it is an efficient and economic tool to accurately predict water quality with low risk. The sensitivity analyses of two models indicated that decreasing upstream input concentrations during the dry season and NPS emission along the reach during average or flood season should be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data and even trimonthly data are available, the SVM methodology developed here can easily be applied to other NPS-polluted rivers.

  12. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Robertson, D. E.; Chiew, F. H. S.

    2009-05-01

    Seasonal forecasting of streamflows can be highly valuable for water resources management. In this paper, a Bayesian joint probability (BJP) modeling approach for seasonal forecasting of streamflows at multiple sites is presented. A Box-Cox transformed multivariate normal distribution is proposed to model the joint distribution of future streamflows and their predictors such as antecedent streamflows and El Niño-Southern Oscillation indices and other climate indicators. Bayesian inference of model parameters and uncertainties is implemented using Markov chain Monte Carlo sampling, leading to joint probabilistic forecasts of streamflows at multiple sites. The model provides a parametric structure for quantifying relationships between variables, including intersite correlations. The Box-Cox transformed multivariate normal distribution has considerable flexibility for modeling a wide range of predictors and predictands. The Bayesian inference formulated allows the use of data that contain nonconcurrent and missing records. The model flexibility and data-handling ability means that the BJP modeling approach is potentially of wide practical application. The paper also presents a number of statistical measures and graphical methods for verification of probabilistic forecasts of continuous variables. Results for streamflows at three river gauges in the Murrumbidgee River catchment in southeast Australia show that the BJP modeling approach has good forecast quality and that the fitted model is consistent with observed data.

  13. Fine-temporal forecasting of outbreak probability and severity: Ross River virus in Western Australia.

    PubMed

    Koolhof, I S; Bettiol, S; Carver, S

    2017-10-01

    Health warnings of mosquito-borne disease risk require forecasts that are accurate at fine-temporal resolutions (weekly scales); however, most forecasting is coarse (monthly). We use environmental and Ross River virus (RRV) surveillance to predict weekly outbreak probabilities and incidence spanning tropical, semi-arid, and Mediterranean regions of Western Australia (1991-2014). Hurdle and linear models were used to predict outbreak probabilities and incidence respectively, using time-lagged environmental variables. Forecast accuracy was assessed by model fit and cross-validation. Residual RRV notification data were also examined against mitigation expenditure for one site, Mandurah 2007-2014. Models were predictive of RRV activity, except at one site (Capel). Minimum temperature was an important predictor of RRV outbreaks and incidence at all predicted sites. Precipitation was more likely to cause outbreaks and greater incidence among tropical and semi-arid sites. While variable, mitigation expenditure coincided positively with increased RRV incidence (r 2 = 0·21). Our research demonstrates capacity to accurately predict mosquito-borne disease outbreaks and incidence at fine-temporal resolutions. We apply our findings, developing a user-friendly tool enabling managers to easily adopt this research to forecast region-specific RRV outbreaks and incidence. Approaches here may be of value to fine-scale forecasting of RRV in other areas of Australia, and other mosquito-borne diseases.

  14. The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data

    NASA Astrophysics Data System (ADS)

    Le Bihan, Guillaume; Payrastre, Olivier; Gaume, Eric; Moncoulon, David; Pons, Frédéric

    2017-11-01

    Up to now, flash flood monitoring and forecasting systems, based on rainfall radar measurements and distributed rainfall-runoff models, generally aimed at estimating flood magnitudes - typically discharges or return periods - at selected river cross sections. The approach presented here goes one step further by proposing an integrated forecasting chain for the direct assessment of flash flood possible impacts on inhabited areas (number of buildings at risk in the presented case studies). The proposed approach includes, in addition to a distributed rainfall-runoff model, an automatic hydraulic method suited for the computation of flood extent maps on a dense river network and over large territories. The resulting catalogue of flood extent maps is then combined with land use data to build a flood impact curve for each considered river reach, i.e. the number of inundated buildings versus discharge. These curves are finally used to compute estimated impacts based on forecasted discharges. The approach has been extensively tested in the regions of Alès and Draguignan, located in the south of France, where well-documented major flash floods recently occurred. The article presents two types of validation results. First, the automatically computed flood extent maps and corresponding water levels are tested against rating curves at available river gauging stations as well as against local reference or observed flood extent maps. Second, a rich and comprehensive insurance claim database is used to evaluate the relevance of the estimated impacts for some recent major floods.

  15. Development, Implementation, and Skill Assessment of the NOAA/NOS Great Lakes Operational Forecast System

    DTIC Science & Technology

    2011-01-01

    USA) 2011 Abstract The NOAA Great Lakes Operational Forecast System ( GLOFS ) uses near-real-time atmospheric observa- tions and numerical weather...Operational Oceanographic Products and Services (CO-OPS) in Silver Spring, MD. GLOFS has been making operational nowcasts and forecasts at CO-OPS... GLOFS ) uses near-real-time atmospheric observations and numerical weather prediction forecast guidance to produce three-dimensional forecasts of water

  16. Improving the performance of streamflow forecasting model using data-preprocessing technique in Dungun River Basin

    NASA Astrophysics Data System (ADS)

    Khai Tiu, Ervin Shan; Huang, Yuk Feng; Ling, Lloyd

    2018-03-01

    An accurate streamflow forecasting model is important for the development of flood mitigation plan as to ensure sustainable development for a river basin. This study adopted Variational Mode Decomposition (VMD) data-preprocessing technique to process and denoise the rainfall data before putting into the Support Vector Machine (SVM) streamflow forecasting model in order to improve the performance of the selected model. Rainfall data and river water level data for the period of 1996-2016 were used for this purpose. Homogeneity tests (Standard Normal Homogeneity Test, the Buishand Range Test, the Pettitt Test and the Von Neumann Ratio Test) and normality tests (Shapiro-Wilk Test, Anderson-Darling Test, Lilliefors Test and Jarque-Bera Test) had been carried out on the rainfall series. Homogenous and non-normally distributed data were found in all the stations, respectively. From the recorded rainfall data, it was observed that Dungun River Basin possessed higher monthly rainfall from November to February, which was during the Northeast Monsoon. Thus, the monthly and seasonal rainfall series of this monsoon would be the main focus for this research as floods usually happen during the Northeast Monsoon period. The predicted water levels from SVM model were assessed with the observed water level using non-parametric statistical tests (Biased Method, Kendall's Tau B Test and Spearman's Rho Test).

  17. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less

  18. Complex relationship between seasonal streamflow forecast skill and value in reservoir operations

    NASA Astrophysics Data System (ADS)

    Turner, Sean W. D.; Bennett, James C.; Robertson, David E.; Galelli, Stefano

    2017-09-01

    Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strong relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made - namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.

  19. Complex relationship between seasonal streamflow forecast skill and value in reservoir operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Sean W. D.; Bennett, James C.; Robertson, David E.

    Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strongmore » relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.« less

  20. Complex relationship between seasonal streamflow forecast skill and value in reservoir operations

    DOE PAGES

    Turner, Sean W. D.; Bennett, James C.; Robertson, David E.; ...

    2017-09-28

    Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strongmore » relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.« less

  1. National Weather Service Forecast Office Guam Home

    Science.gov Websites

    National Alerts Text Current Conditions Observations Satellite Hydrology River & Lake AHPS Radar Imagery AAFB (Guam) AAFB (Guam) Dial up CONUS Radar Forecasts Activity Planner Guam Public Marine Aviation ; Weather Topics: Local Alerts, Current Conditions, Radar, Satellite, Climate, W-GUM.Webmaster@noaa.gov

  2. Comparative Performance Evaluation of Rainfall-runoff Models, Six of Black-box Type and One of Conceptual Type, From The Galway Flow Forecasting System (gffs) Package, Applied On Two Irish Catchments

    NASA Astrophysics Data System (ADS)

    Goswami, M.; O'Connor, K. M.; Shamseldin, A. Y.

    The "Galway Real-Time River Flow Forecasting System" (GFFS) is a software pack- age developed at the Department of Engineering Hydrology, of the National University of Ireland, Galway, Ireland. It is based on a selection of lumped black-box and con- ceptual rainfall-runoff models, all developed in Galway, consisting primarily of both the non-parametric (NP) and parametric (P) forms of two black-box-type rainfall- runoff models, namely, the Simple Linear Model (SLM-NP and SLM-P) and the seasonally-based Linear Perturbation Model (LPM-NP and LPM-P), together with the non-parametric wetness-index-based Linearly Varying Gain Factor Model (LVGFM), the black-box Artificial Neural Network (ANN) Model, and the conceptual Soil Mois- ture Accounting and Routing (SMAR) Model. Comprised of the above suite of mod- els, the system enables the user to calibrate each model individually, initially without updating, and it is capable also of producing combined (i.e. consensus) forecasts us- ing the Simple Average Method (SAM), the Weighted Average Method (WAM), or the Artificial Neural Network Method (NNM). The updating of each model output is achieved using one of four different techniques, namely, simple Auto-Regressive (AR) updating, Linear Transfer Function (LTF) updating, Artificial Neural Network updating (NNU), and updating by the Non-linear Auto-Regressive Exogenous-input method (NARXM). The models exhibit a considerable range of variation in degree of complexity of structure, with corresponding degrees of complication in objective func- tion evaluation. Operating in continuous river-flow simulation and updating modes, these models and techniques have been applied to two Irish catchments, namely, the Fergus and the Brosna. A number of performance evaluation criteria have been used to comparatively assess the model discharge forecast efficiency.

  3. A probabilistic approach of the Flash Flood Early Warning System (FF-EWS) in Catalonia based on radar ensemble generation

    NASA Astrophysics Data System (ADS)

    Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique

    2010-05-01

    Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the probabilistic component to the FF-EWS. As a first step, we have incorporated the uncertainty in rainfall estimates and forecasts based on an ensemble of equiprobable rainfall scenarios. The presented study has focused on a number of rainfall events and the performance of the FF-EWS evaluated in terms of its ability to produce probabilistic hazard warnings for decision-making support.

  4. Assessment of Hydrologic Response to Variable Precipitation Forcing: Russian River Case Study

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Hsu, C.; Johnson, L. E.

    2014-12-01

    NOAA Hydrometeorology Testbed (HMT) activities in California have involved deployment of advanced sensor networks to better track atmospheric river (AR) dynamics and inland penetration of high water vapor air masses. Numerical weather prediction models and decision support tools have been developed to provide forecasters a better basis for forecasting heavy precipitation and consequent flooding. The HMT also involves a joint project with California Department of Water Resources (CA-DWR) and the Scripps Institute for Oceanography (SIO) as part of CA-DWR's Enhanced Flood Response and Emergency Preparedness (EFREP) program. The HMT activities have included development and calibration of a distributed hydrologic model, the NWS Office of Hydrologic Development's (OHD) Research Distributed Hydrologic Model (RDHM), to prototype the distributed approach for flood and other water resources applications. HMT has applied RDHM to the Russian-Napa watersheds for research assessment of gap-filling weather radars for precipitation and hydrologic forecasting and for establishing a prototype to inform both the NWS Monterey Forecast Office and the California Nevada River Forecast Center (CNRFC) of RDHM capabilities. In this presentation, a variety of precipitation forcings generated with and without gap filling radar and rain gauge data are used as input to RDHM to assess the hydrologic response for selected case study events. Both the precipitation forcing and hydrologic model are run at different spatial and temporal resolution in order to examine the sensitivity of runoff to the precipitation inputs. Based on the timing of the events and the variations of spatial and temporal resolution, the parameters which dominate the hydrologic response are identified. The assessment is implemented at two USGS stations (Ukiah near Russian River and Austin Creek near Cazadero) that are minimally influenced by managed flows and objective evaluation can thus be derived. The results are assessed using statistical metrics, including daily Nash scores, Pearson Correlation, and sub daily timing errors.

  5. River catchment rainfall series analysis using additive Holt-Winters method

    NASA Astrophysics Data System (ADS)

    Puah, Yan Jun; Huang, Yuk Feng; Chua, Kuan Chin; Lee, Teang Shui

    2016-03-01

    Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfall trends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt-Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10% missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010-2012. Most of the forecasts are acceptable.

  6. Hydrologic ensembles based on convection-permitting precipitation nowcasts for flash flood warnings

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Ramos, Maria-Helena

    2017-04-01

    In order to better anticipate flash flood events and provide timely warnings to communities at risk, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium ungauged basins. Based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014), the current version of the system runs a simplified hourly distributed hydrologic model with operational radar-gauge QPE grids from Météo-France at a 1-km2 resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. To further extend the effective warning lead time while accounting for hydrometeorological uncertainties, the flash flood warning system is being enhanced to include Météo-France's AROME-NWC high-resolution precipitation nowcasts as time-lagged ensembles and multiple sets of hydrological regionalized parameters. The operational deterministic precipitation forecasts, from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015), were provided at a 2.5-km resolution for a 6-hr forecast horizon for 9 significant rain events from September 2014 to June 2016. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 781 French basins showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). We also discuss how to effectively communicate verification information to help determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi:10.1002/qj.2463

  7. Stochastic Model of Seasonal Runoff Forecasts

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, Roman; Watada, Leslie M.

    1986-03-01

    Each year the National Weather Service and the Soil Conservation Service issue a monthly sequence of five (or six) categorical forecasts of the seasonal snowmelt runoff volume. To describe uncertainties in these forecasts for the purposes of optimal decision making, a stochastic model is formulated. It is a discrete-time, finite, continuous-space, nonstationary Markov process. Posterior densities of the actual runoff conditional upon a forecast, and transition densities of forecasts are obtained from a Bayesian information processor. Parametric densities are derived for the process with a normal prior density of the runoff and a linear model of the forecast error. The structure of the model and the estimation procedure are motivated by analyses of forecast records from five stations in the Snake River basin, from the period 1971-1983. The advantages of supplementing the current forecasting scheme with a Bayesian analysis are discussed.

  8. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS

    PubMed Central

    Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros

    2015-01-01

    Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models. PMID:26759830

  9. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS.

    PubMed

    Djurovic, Nevenka; Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros

    2015-01-01

    Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models.

  10. Home | Sonoma County Water Agency

    Science.gov Websites

    Precipitation Information (AQPI) Fluoridation Atmospheric Rivers Urban Water Management Plan Flood Protection Advanced Quantitative Precipitation Information (AQPI) Fluoridation Atmospheric Rivers Urban Water Management Plan Flood Protection Flood Forecast/Emergency Info Stream Maintenance Program Flood Protection

  11. Modelling of Sediment Transport of the Mehadica River, Caras Severin County, Romania

    NASA Astrophysics Data System (ADS)

    Grozav, Adia; Beilicci, Robert; Beilicci, Erika

    2017-10-01

    Study case is situated in Caras-Severin County. Every sediment transport model application is different both in terms of time and space scale, study objectives, required accuracy, allocated resources, background of the study team etc. For sediment transport modelling, it is necessary to know the characteristics of the sediment in the river bed. Therefore, it is recommended to collect a number of bed sediment grap samples. These samples should be analysing in terms of grain size distribution. To solve theoretical problems of movement of water in the river Mehadica, it requires modelling of water flow in this case. Numerical modelling was performed using the program MIKE11. MIKE 11 is a user-friendly, fully dynamic, one-dimensional modelling tool for the detailed analysis, design, management and operation of both simple and complex river and channel systems. With its exceptional flexibility, speed and user friendly environment, MIKE 11 provides a complete and effective design environment for engineering, water resources, water quality management and planning applications. The Hydrodynamic (HD) module is the nucleus of the MIKE 11 modelling system and forms the basis for most modules including Flood Forecasting, Advection- Dispersion, Water Quality and Non-cohesive sediment transport modules. The MIKE 11 HD module solves the vertically integrated equations for the conservation of mass and momentum, i.e. the Saint-Venant equations. The input data are: area plan with location of cross sections; cross sections topographical data and roughness of river bed; flood discharge hydrograph. Advanced computational modules are included for description of flow over hydraulic structures, including possibilities to describe structure operation.

  12. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume VI : Evaluation of the 2000 Predictions of the Run-Timing of Wild Migrant Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin, and Combined Wild Hatchery Salminids Migrating to Rock Island and McNary Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 2000 in season outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from nineteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Camas Creek (new), Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Johnson Creek (new), Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, East Fork Salmon River (new), South Fork Salmon River, Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for two stocks of hatchery-reared PIT-tagged summer-run sockeye salmon, from Redfish Lakemore » and Alturas Lake (new); for a subpopulation of the PIT-tagged wild Snake River fall subyearling chinook salmon; for all wild Snake River PIT-tagged spring/summer yearling chinook salmon (new) and steelhead trout (new)detected at Lower Granite Dam during the 2000 outmigration. The 2000 RealTime project began making forecasts for combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout migrating to Rock Island and McNary Dams on the mid-Columbia River and the mainstem Columbia River. Due to the new (in 1999-2000) Snake River basin hatchery protocol of releasing unmarked hatchery-reared fish, the RealTime forecasting project no longer makes run-timing forecasts for wild Snake River runs-at-large using FPC passage indices, as it has done for the previous three years (1997-1999). The season-wide measure of Program RealTime performance, the mean absolute difference (MAD) between in-season predictions and true (observed) passage percentiles, improved relative to previous years for nearly all stocks. The average season-wide MAD of all (nineteen) spring/summer yearling chinook salmon ESUs dropped from 5.7% in 1999 to 4.5% in 2000. The 2000 MAD for the hatchery-reared Redfish Lake sockeye salmon ESU was the lowest recorded, at 6.0%, down from 6.7% in 1999. The MAD for the PIT-tagged ESU of wild Snake River fall sub-yearling chinook salmon, after its second season of run-timing forecasting, was 4.7% in 2000 compared to 5.5% in 1999. The high accuracy of season-wide performance in 2000 was largely due to exceptional Program RealTime performance in the last half of the season. Passage predictions from fifteen of the sixteen spring/summer yearling chinook salmon ESUs available for comparison improved in 2000 compared to 1999. The last-half average MAD over all the yearling chinook salmon ESUs was 4.3% in 2000, compared to 6.5% in 1999. Program RealTime 2000 first-half forecasting performance was slightly worse than that of 1999 (MAD = 4.5%), but still comparable to previous years with a MAD equal to 5.1%. Three yearling chinook ESUs showed moderately large (> 10%) MADs. These stocks had larger-than-average recapture percentages in 2000, producing over-predictions early in the season, in a dynamic reminiscent of migration year 1998 (Burgess et al., 1999). The passage distribution of the new stock of hatchery-reared sockeye salmon from Alturas Lake was well-predicted by Program RealTime, based on only two years of historical data (whole-season MAD = 4.3%). The two new run-of-the-river PIT-tagged stocks of wild yearling chinook salmon and steelhead trout were predicted with very good accuracy (whole-season MADs were 4.8% for steelhead trout and 1.7% for yearling chinook salmon), particularly during the last half of the outmigration. First-half steelhead predictions were among the season's worst (MAD = 10.8%), with over-predictions attributable to the largest passage on record of wild PIT-tagged steelhead trout to Lower Granite Dam. The results of RealTime predictions of passage percentiles of combined wild and hatchery-reared salmonids to Rock Island and McNary were mixed. Some of these passage-indexed runs-at-large were predicted with exceptional accuracy (whole-season MADs for coho salmon outmigrating to Rock Island Dam and McNary Dam were, respectively, 0.58% and 1.24%; for yearling chinook to McNary, 0.59%) while others were not forecast well at all (first-half MADs of sockeye salmon migrating to Rock Island and McNary Dams, respectively, were 19.25% and 12.78%). The worst performances for these mid- and mainstem-Columbia River runs-at-large were probably due to large hatchery release disturbing the smoothly accumulating percentages of normal fish passage. The RealTime project used a stock-specific method of upwardly adjusting PIT-tagged smolt counts at Lower Granite Dam. For chinook and sockeye salmon, the project continued using the 1999 formulation for spill-adjustment. For the new stock of wild PIT-tagged steelhead trout, a formula derived for steelhead trout only was used.« less

  13. Estimated flood-inundation mapping for the Lower Blue River in Kansas City, Missouri, 2003-2005

    USGS Publications Warehouse

    Kelly, Brian P.; Rydlund, Jr., Paul H.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the city of Kansas City, Missouri, began a study in 2003 of the lower Blue River in Kansas City, Missouri, from Gregory Boulevard to the mouth at the Missouri River to determine the estimated extent of flood inundation in the Blue River valley from flooding on the lower Blue River and from Missouri River backwater. Much of the lower Blue River flood plain is covered by industrial development. Rapid development in the upper end of the watershed has increased the volume of runoff, and thus the discharge of flood events for the Blue River. Modifications to the channel of the Blue River began in late 1983 in response to the need for flood control. By 2004, the channel had been widened and straightened from the mouth to immediately downstream from Blue Parkway to convey a 30-year flood. A two-dimensional depth-averaged flow model was used to simulate flooding within a 2-mile study reach of the Blue River between 63rd Street and Blue Parkway. Hydraulic simulation of the study reach provided information for the design and performance of proposed hydraulic structures and channel improvements and for the production of estimated flood-inundation maps and maps representing an areal distribution of water velocity, both magnitude and direction. Flood profiles of the Blue River were developed between Gregory Boulevard and 63rd Street from stage elevations calculated from high water marks from the flood of May 19, 2004; between 63rd Street and Blue Parkway from two-dimensional hydraulic modeling conducted for this study; and between Blue Parkway and the mouth from an existing one-dimensional hydraulic model by the U.S. Army Corps of Engineers. Twelve inundation maps were produced at 2-foot intervals for Blue Parkway stage elevations from 750 to 772 feet. Each map is associated with National Weather Service flood-peak forecast locations at 63rd Street, Blue Parkway, Stadium Drive, U.S. Highway 40, 12th Street, and the Missouri River at the Hannibal railroad bridge in Kansas City. The National Weather Service issues peak-stage forecasts for these locations during times of flooding. Missouri River backwater inundation profiles were developed using interpolated Missouri River stage elevations at the mouth of the Blue River. Twelve backwater-inundation maps were produced at 2-foot intervals for the mouth of the Blue River from 730.9 to 752.9. To provide public access to the information presented in this report, a World Wide Web site (http://mo.water.usgs.gov/indep/kelly/blueriver/index.htm) was created that displays the results of two-dimensional modeling between 63rd Street and Blue Parkway, estimated flood-inundation maps, estimated backwater-inundation maps, and the latest gage heights and National Weather Service stage forecast for each forecast location within the study area. In addition, the full text of this report, all tables, and all plates are available for download at http://pubs.water.usgs.gov/sir2006-5089.

  14. Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Hoeth, Brian; Blottman, Peter F.

    2007-01-01

    Mesoscale weather conditions can significantly affect the space launch and landing operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). During the summer months, land-sea interactions that occur across KSC and CCAFS lead to the formation of a sea breeze, which can then spawn deep convection. These convective processes often last 60 minutes or less and pose a significant challenge to the forecasters at the National Weather Service (NWS) Spaceflight Meteorology Group (SMG). The main challenge is that a "GO" forecast for thunderstorms and precipitation at the Shuttle Landing Facility is required at the 90 minute deorbit decision for End Of Mission (EOM) and at the 30 minute Return To Launch Site (RTLS) decision. Convective initiation, timing, and mode also present a forecast challenge for the NWS in Melbourne, FL (MLB). The NWS MLB issues such tactical forecast information as Terminal Aerodrome Forecasts (TAF5), Spot Forecasts for fire weather and hazardous materials incident support, and severe/hazardous weather Watches, Warnings, and Advisories. Lastly, these forecasting challenges can also affect the 45th Weather Squadron (45 WS), which provides comprehensive weather forecasts for shuttle launch, as well as ground operations, at KSC and CCAFS. The need for accurate mesoscale model forecasts to aid in their decision making is crucial. This study specifically addresses the skill of different model configurations in forecasting warm season convective initiation. Numerous factors influence the development of convection over the Florida peninsula. These factors include sea breezes, river and lake breezes, the prevailing low-level flow, and convergent flow due to convex coastlines that enhance the sea breeze. The interaction of these processes produces the warm season convective patterns seen over the Florida peninsula. However, warm season convection remains one of the most poorly forecast meteorological parameters. To determine which configuration options are best to address this specific forecast concern, the Weather Research and Forecasting (WRF) model, which has two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM) was employed. In addition to the two dynamical cores, there are also two options for a "hot-start" initialization of the WRF model - the Local Analysis and Prediction System (LAPS; McGinley 1995) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS; Brewster 1996). Both LAPS and ADAS are 3- dimensional weather analysis systems that integrate multiple meteorological data sources into one consistent analysis over the user's domain of interest. This allows mesoscale models to benefit from the addition of highresolution data sources. Having a series of initialization options and WRF cores, as well as many options within each core, provides SMG and MLB with considerable flexibility as well as challenges. It is the goal of this study to assess the different configurations available and to determine which configuration will best predict warm season convective initiation.

  15. Predictability and possible earlier awareness of extreme precipitation across Europe

    NASA Astrophysics Data System (ADS)

    Lavers, David; Pappenberger, Florian; Richardson, David; Zsoter, Ervin

    2017-04-01

    Extreme hydrological events can cause large socioeconomic damages in Europe. In winter, a large proportion of these flood episodes are associated with atmospheric rivers, a region of intense water vapour transport within the warm sector of extratropical cyclones. When preparing for such extreme events, forecasts of precipitation from numerical weather prediction models or river discharge forecasts from hydrological models are generally used. Given the strong link between water vapour transport (integrated vapour transport IVT) and heavy precipitation, it is possible that IVT could be used to warn of extreme events. Furthermore, as IVT is located in extratropical cyclones, it is hypothesized to be a more predictable variable due to its link with synoptic-scale atmospheric dynamics. In this research, we firstly provide an overview of the predictability of IVT and precipitation forecasts, and secondly introduce and evaluate the ECMWF Extreme Forecast Index (EFI) for IVT. The EFI is a tool that has been developed to evaluate how ensemble forecasts differ from the model climate, thus revealing the extremeness of the forecast. The ability of the IVT EFI to capture extreme precipitation across Europe during winter 2013/14, 2014/15, and 2015/16 is presented. The results show that the IVT EFI is more capable than the precipitation EFI of identifying extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase. However, the precipitation EFI is superior during the negative NAO phase and at shorter lead times. An IVT EFI example is shown for storm Desmond in December 2015 highlighting its potential to identify upcoming hydrometeorological extremes.

  16. Performance assessment of a Bayesian Forecasting System (BFS) for real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Biondi, D.; De Luca, D. L.

    2013-02-01

    SummaryThe paper evaluates, for a number of flood events, the performance of a Bayesian Forecasting System (BFS), with the aim of evaluating total uncertainty in real-time flood forecasting. The predictive uncertainty of future streamflow is estimated through the Bayesian integration of two separate processors. The former evaluates the propagation of input uncertainty on simulated river discharge, the latter computes the hydrological uncertainty of actual river discharge associated with all other possible sources of error. A stochastic model and a distributed rainfall-runoff model were assumed, respectively, for rainfall and hydrological response simulations. A case study was carried out for a small basin in the Calabria region (southern Italy). The performance assessment of the BFS was performed with adequate verification tools suited for probabilistic forecasts of continuous variables such as streamflow. Graphical tools and scalar metrics were used to evaluate several attributes of the forecast quality of the entire time-varying predictive distributions: calibration, sharpness, accuracy, and continuous ranked probability score (CRPS). Besides the overall system, which incorporates both sources of uncertainty, other hypotheses resulting from the BFS properties were examined, corresponding to (i) a perfect hydrological model; (ii) a non-informative rainfall forecast for predicting streamflow; and (iii) a perfect input forecast. The results emphasize the importance of using different diagnostic approaches to perform comprehensive analyses of predictive distributions, to arrive at a multifaceted view of the attributes of the prediction. For the case study, the selected criteria revealed the interaction of the different sources of error, in particular the crucial role of the hydrological uncertainty processor when compensating, at the cost of wider forecast intervals, for the unreliable and biased predictive distribution resulting from the Precipitation Uncertainty Processor.

  17. An Integrated Urban Flood Analysis System in South Korea

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Min-Seok; Yoon, Tae-Hyung; Choi, Ji-Hyeok

    2017-04-01

    Due to climate change and the rapid growth of urbanization, the frequency of concentrated heavy rainfall has caused urban floods. As a result, we studied climate change in Korea and developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting in urban areas. This system supports synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information. As part of the measures to deal with the increase of inland flood damage, we have found it necessary to build a systematic city flood prevention system that systematizes technology to quantify flood risk as well as flood forecast, taking into consideration both inland and river water. This combined inland-river flood analysis system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area. In addition, flood forecasts should be accurate and immediate. Accurate flood forecasts signify that the prediction of the watch, warning time and water level is precise. Immediate flood forecasts represent the forecasts lead time which is the time needed to evacuate. Therefore, in this study, in order to apply rainfall-runoff method to medium and small urban stream for flood forecasts, short-term rainfall forecasting using radar is applied to improve immediacy. Finally, it supports synthetic decision-making for prevention of flood disaster through real-time monitoring. Keywords: Urban Flood, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This research was supported by a grant (16AWMP-B066744-04) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  18. Optimizing Water Use and Hydropower Production in Operational Reservoir System Scheduling with RiverWare

    NASA Astrophysics Data System (ADS)

    Magee, T. M.; Zagona, E. A.

    2017-12-01

    Practical operational optimization of multipurpose reservoir systems is challenging for several reasons. Each purpose has its own constraints which may conflict with those of other purposes. While hydropower generation typically provides the bulk of the revenue, it is also among the lowest priority purposes. Each river system has important details that are specific to the location such as hydrology, reservoir storage capacity, physical limitations, bottlenecks, and the continuing evolution of operational policy. In addition, reservoir operations models include discrete, nonlinear, and nonconvex physical processes and if-then operating policies. Typically, the forecast horizon for scheduling needs to be extended far into the future to avoid near term (e.g., a few hours or a day) scheduling decisions that result in undesirable future states; this makes the computational effort much larger than may be expected. Put together, these challenges lead to large and customized mathematical optimization problems which must be solved efficiently to be of practical use. In addition, the solution process must be robust in an operational setting. We discuss a unique modeling approach in RiverWare that meets these challenges in an operational setting. The approach combines a Preemptive Linear Goal Programming optimization model to handle prioritized policies complimented by preprocessing and postprocessing with Rulebased Simulation to improve the solution with regard to nonlinearities, discrete issues, and if-then logic. An interactive policy language with a graphical user interface allows modelers to customize both the optimization and simulation based on the unique aspects of the policy for their system while the routine physical aspect of operations are modeled automatically. The modeler is aided by a set of compiled predefined functions and functions shared by other modelers. We illustrate the success of the approach with examples from daily use at the Tennessee Valley Authority, the Bonneville Power Administration, and public utility districts on the Mid-Columbia River. We discuss recent innovations to improve solution quality, robustness, and performance for these systems. We conclude with new modeling challenges to extend the modeling approach to other uses.

  19. Transforming National Oceanic and Atmospheric Administration (NOAA) Water Prediction

    NASA Astrophysics Data System (ADS)

    Graziano, T. M.; Clark, E. P.

    2016-12-01

    As a significant step forward to transform NOAA's water prediction services, NOAA plans to implement a new National Water Model (NWM) Version 1.0 in August 2016. A continental scale water resources model, the NWM is an evolution of the WRF-Hydro architecture developed by the National Center for Atmospheric Research (NCAR). It represents NOAA's first foray into high performance computing for water prediction and will expand NOAA's current water quantity forecasts, at approximately 4000 U.S. Geological Survey (USGS) stream gage sites across the country, to forecasts of flow, soil moisture, evapotranspiration, runoff, snow water equivalent and other parameters for 2.7 million stream reaches nationwide. This new guidance will be provided to NOAA's River Forecast Centers around the country and other field offices, along with guidance for evaluation and validation, and tools to visualize these data and enhance decision support. Initially, a subset if these data will be available via NOAA's Office of Water Prediction web site and the full output of the NWM simulations will be available via the NOAA Operational Model Archive and Distribution System (NOMADS). These enhancements in turn will improve NWS' ability to deliver impact-based decision support services nationwide through the provision of short through extended range, high fidelity "street level" water forecasts and warnings. Subsequent planned out-year enhancements to the NWM include the expanded assimilation of anthropogenic data, an operational nest to provide higher resolution forecasts needed for inundation mapping, and tackling the deeper challenges associated with drought and other water resources issues. The NWM is a NOAA-led interagency effort that relies on the National Hydrographic Dataset of the USGS and EPA, as well as the National Streamflow Information Program of the USGS. Its development continues to be advanced in partnership with NCAR, and a partnership with the Consortium for the Advancement of Hydrologic Sciences, Inc. (CUASHI) and the National Science Foundation. This presentation will highlight the policy, programmatic, and service transformation of NOAA's water resources mission with the NWM.

  20. A channel dynamics model for real-time flood forecasting

    USGS Publications Warehouse

    Hoos, Anne B.; Koussis, Antonis D.; Beale, Guy O.

    1989-01-01

    A new channel dynamics scheme (alternative system predictor in real time (ASPIRE)), designed specifically for real-time river flow forecasting, is introduced to reduce uncertainty in the forecast. ASPIRE is a storage routing model that limits the influence of catchment model forecast errors to the downstream station closest to the catchment. Comparisons with the Muskingum routing scheme in field tests suggest that the ASPIRE scheme can provide more accurate forecasts, probably because discharge observations are used to a maximum advantage and routing reaches (and model errors in each reach) are uncoupled. Using ASPIRE in conjunction with the Kalman filter did not improve forecast accuracy relative to a deterministic updating procedure. Theoretical analysis suggests that this is due to a large process noise to measurement noise ratio.

  1. Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting

    NASA Astrophysics Data System (ADS)

    Sutawinaya, IP; Astawa, INGA; Hariyanti, NKD

    2018-01-01

    Heavy rainfall can cause disaster, therefore need a forecast to predict rainfall intensity. Main factor that cause flooding is there is a high rainfall intensity and it makes the river become overcapacity. This will cause flooding around the area. Rainfall factor is a dynamic factor, so rainfall is very interesting to be studied. In order to support the rainfall forecasting, there are methods that can be used from Artificial Intelligence (AI) to statistic. In this research, we used Adaline for AI method and Regression for statistic method. The more accurate forecast result shows the method that used is good for forecasting the rainfall. Through those methods, we expected which is the best method for rainfall forecasting here.

  2. Chemical weather forecasting for the Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Xu, J.; Zhou, G.; Chang, L.; Chen, B.

    2016-12-01

    Shanghai is one of the largest megacities in the world. With rapid economic growth of the city and its surrounding areas in recent years, air pollution has posed adverse effects on public health and ecosystem. In winter heavy pollution episodes are often associated with PM exceedances under stagnant conditions or transport events, whereas in summer the region frequently experiences elevated O3 levels. Chemical weather prediction systems with the WRF-Chem and CMAQ models are being developed to support air quality and haze forecasting for Shanghai and the Yangtze River Delta region. We will present main components of the modeling system, forecasting products, as well as evaluation results. Evaluation of the WRF-Chem forecasts show the model has generally good ability to capture the temporal variations of O3 and PM2.5. Substantial regional differences exist, with the best performance in Shanghai. Meanwhile, the forecasts tend to degrade during highly polluted episodes and transitional time periods, which highlights the need to improve model representation of key process (e.g. meteorological fields and formation of secondary pollutants). Recent work includes using the ECMWF global model forecasts as chemical boundary conditions for our regional model. We investigate the impact of chemical downscaling, and also compare the results from different models participated in the PANDA (PArtnership with chiNa on space Data) project. Results from ongoing efforts (e.g. chemical weather forecasting driven by SMS regional high resolution NWP) will also be presented.

  3. The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region

    NASA Astrophysics Data System (ADS)

    Song, Yiliao; Qin, Shanshan; Qu, Jiansheng; Liu, Feng

    2015-10-01

    The issue of air quality regarding PM pollution levels in China is a focus of public attention. To address that issue, to date, a series of studies is in progress, including PM monitoring programs, PM source apportionment, and the enactment of new ambient air quality index standards. However, related research concerning computer modeling for PM future trends estimation is rare, despite its significance to forecasting and early warning systems. Thereby, a study regarding deterministic and interval forecasts of PM is performed. In this study, data on hourly and 12 h-averaged air pollutants are applied to forecast PM concentrations within the Yangtze River Delta (YRD) region of China. The characteristics of PM emissions have been primarily examined and analyzed using different distribution functions. To improve the distribution fitting that is crucial for estimating PM levels, an artificial intelligence algorithm is incorporated to select the optimal parameters. Following that step, an ANF model is used to conduct deterministic forecasts of PM. With the identified distributions and deterministic forecasts, different levels of PM intervals are estimated. The results indicate that the lognormal or gamma distributions are highly representative of the recorded PM data with a goodness-of-fit R2 of approximately 0.998. Furthermore, the results of the evaluation metrics (MSE, MAPE and CP, AW) also show high accuracy within the deterministic and interval forecasts of PM, indicating that this method enables the informative and effective quantification of future PM trends.

  4. Use of a Smartphone for Collecting Data on River Discharge and Communication of Flood Risk.

    NASA Astrophysics Data System (ADS)

    Pena-Haro, S.; Lüthi, B.; Philippe, T.

    2015-12-01

    Although many developed countries have well-established systems for river monitoring and flood early warning systems, the population affected in developing countries by flood events is unsettled. Even more, future climate development is likely to increase the intensity and frequency of extreme weather events and therefore bigger impacts on the population can be expected.There are different types of flood forecasting systems, some are based on hydrologic models fed with rainfall predictions and observed river levels. Flood hazard maps are also used to increase preparedness in case of an extreme event, however these maps are static since they do not incorporate daily changing conditions on river stages. However, and especially in developing countries, data on river stages are scarce. Some of the reasons are that traditional fixed monitoring systems do not scale in terms of costs, repair is difficult as well as operation and maintenance, in addition vandalism poses additional challenges. Therefore there is a need of cheaper and easy-to-use systems for collecting information on river stage and discharge. We have developed a mobile device application for determining the water stage and discharge of open-channels (e.g. rivers, artificial channels, irrigation furrows). Via image processing the water level and surface velocity are measured, combining this information with priori knowledge on the channel geometry the discharge is estimated. River stage and discharge measurement via smart phones provides a non-intrusive, accurate and cost-effective monitoring method. No permanent installations, which can be flooded away, are needed. The only requirement is that the field of view contains two reference markers with known scale and with known position relative to the channel geometry, therefore operation and maintenance costs are very low. The other advantage of using smartphones, is that the data collected can be immediately sent via SMS to a central database. This information can be easily gathered for its use within models and redistributed, using the same channels, among interested stakeholders and the community.

  5. National Centers for Environmental Prediction

    Science.gov Websites

    / VISION | About EMC EMC > NAM > EXPERIMENTAL DATA Home NAM Operational Products HIRESW Operational Products Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model PARALLEL/EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION

  6. Using Fluvial Geomorphology as a Physical Template in Process-Based and Recovery Enhancement Approaches to River Management

    NASA Astrophysics Data System (ADS)

    Fryirs, K.

    2016-12-01

    In an `era of river repair' fluvial geomorphology has emerged as a key science in river management practice. Geomorphologists are ideally placed to use their science in an applied manner to provide guidance on the impact of floods and droughts, landuse and climate change, and water use on river forms, processes and evolution. Increasingly, fluvial geomorphologists are also asked to make forecasts about how systems might adjust in the future, and to work with managers to implement strategies on-the-ground. Using case study material from Eastern Australia (Bega, Hunter, Wollombi and Lockyer catchments) I will focus on how process-based understanding of rivers has developed and evolved to provide a coherent physical template for effective and proactive, river management practice. I will focus on four key principles and demonstrate how geomorphology has been, and should continue to be, used in process-based, recovery enhancement approaches to river management. How understanding the difference between river behaviour and river change is used to determine how a river is `expected' to function, and how to identify anomalous processes requiring a treatment response. How understanding evolutionary trajectory is used to make future forecasts on river condition and recovery potential, and how working with processes can enhance river recovery. How geomorphic information can be used as a physical template atop which to analyse a range of biotic processes and habitat outcomes. How geomorphic information is used to effectively prioritise and plan river conservation and rehabilitation activities as part of catchment and region-scale action plans.

  7. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  8. Iowa Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  9. Flood Risk Management in Iowa through an Integrated Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  10. Water and Power Systems Co-optimization under a High Performance Computing Framework

    NASA Astrophysics Data System (ADS)

    Xuan, Y.; Arumugam, S.; DeCarolis, J.; Mahinthakumar, K.

    2016-12-01

    Water and energy systems optimizations are traditionally being treated as two separate processes, despite their intrinsic interconnections (e.g., water is used for hydropower generation, and thermoelectric cooling requires a large amount of water withdrawal). Given the challenges of urbanization, technology uncertainty and resource constraints, and the imminent threat of climate change, a cyberinfrastructure is needed to facilitate and expedite research into the complex management of these two systems. To address these issues, we developed a High Performance Computing (HPC) framework for stochastic co-optimization of water and energy resources to inform water allocation and electricity demand. The project aims to improve conjunctive management of water and power systems under climate change by incorporating improved ensemble forecast models of streamflow and power demand. First, by downscaling and spatio-temporally disaggregating multimodel climate forecasts from General Circulation Models (GCMs), temperature and precipitation forecasts are obtained and input into multi-reservoir and power systems models. Extended from Optimus (Optimization Methods for Universal Simulators), the framework drives the multi-reservoir model and power system model, Temoa (Tools for Energy Model Optimization and Analysis), and uses Particle Swarm Optimization (PSO) algorithm to solve high dimensional stochastic problems. The utility of climate forecasts on the cost of water and power systems operations is assessed and quantified based on different forecast scenarios (i.e., no-forecast, multimodel forecast and perfect forecast). Analysis of risk management actions and renewable energy deployments will be investigated for the Catawba River basin, an area with adequate hydroclimate predicting skill and a critical basin with 11 reservoirs that supplies water and generates power for both North and South Carolina. Further research using this scalable decision supporting framework will provide understanding and elucidate the intricate and interdependent relationship between water and energy systems and enhance the security of these two critical public infrastructures.

  11. What is the relative role of initial hydrological conditions and meteorological forcing to the seasonal hydrological forecasting skill? Analysis along Europe's hydro-climatic gradient

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; Crochemore, Louise

    2017-04-01

    Recent advances in understanding and forecasting of climate have led into skilful seasonal meteorological predictions, which can consequently increase the confidence of hydrological prognosis. The majority of seasonal impact modelling has commonly been conducted at only one or a limited number of basins limiting the potential to understand large systems. Nevertheless, there is a necessity to develop operational seasonal forecasting services at the pan-European scale, capable of addressing the end-user needs. The skill of such forecasting services is subject to a number of sources of uncertainty, i.e. model structure, parameters, and forcing input. In here, we complement the "deep" knowledge from basin based modelling by investigating the relative contributions of initial hydrological conditions (IHCs) and meteorological forcing (MF) to the skill of a seasonal pan-European hydrological forecasting system. We use the Ensemble Streamflow Prediction (ESP) and reverse ESP (revESP) procedure to show a proxy of hydrological forecasting uncertainty due to MF and IHC uncertainties respectively. We further calculate the critical lead time (CLT), as a proxy of the river memory, after which the importance of MFs surpasses the importance of IHCs. We analyze these results in the context of prevailing hydro-climatic conditions for about 35000 European basins. Both model state initialisation (level in surface water, i.e. reservoirs, lakes and wetlands, soil moisture, snow depth) and provision of climatology are based on forcing input derived from the WFDEI product for the period 1981-2010. The analysis shows that the contribution of ICs and MFs to the hydrological forecasting skill varies considerably according to location, season and lead time. This analysis allows clustering of basins in which hydrological forecasting skill may be improved by better estimation of IHCs, e.g. via data assimilation of in-situ and/or satellite observations; whereas in other basins skill improvement depends on better MFs.

  12. From Research to Operations: Transitioning Noaa's Lake Erie Harmful Algal Bloom Forecast System

    NASA Astrophysics Data System (ADS)

    Kavanaugh, K. E.; Stumpf, R. P.

    2016-02-01

    A key priority of NOAA's Harmful Algal Bloom Operational Forecast System (HAB-OFS) is to leverage the Ecological Forecasting Roadmap to systematically transition to operations scientifically mature HAB forecasts in regions of the country where there is a strong user need identified and an operational framework can be supported. While in the demonstration phase, the Lake Erie HAB forecast has proven its utility. Over the next two years, NOAA will be transitioning the Lake Erie HAB forecast to operations with an initial operating capability established in the HAB OFS' operational infrastructure by the 2016 bloom season. Blooms of cyanobacteria are a recurring problem in Lake Erie, and the dominant bloom forming species, Microcystis aeruginosa, produces a toxin called microcystin that is poisonous to humans, livestock and pets. Once the toxins have contaminated the source water used for drinking water, it is costly for public water suppliers to remove them. As part of the Lake Erie HAB forecast demonstration, NOAA has provided information regarding the cyanobacterial blooms in a biweekly Experimental HAB Bulletin, which includes information about the current and forecasted distribution, toxicity, potential for vertical mixing or scum formation, mixing of the water column, and predictions of bloom decline. Coastal resource managers, public water suppliers and public health officials use the Experimental HAB Bulletins to respond to and mitigate the impacts of cyanobacterial blooms. The transition to operations will benefit stakeholders through ensuring that future Lake Erie HAB forecast products are sustained, systematic, reliable, and robust. Once operational, the forecasts will continue to be assessed and improvements will be made based on the results of emerging scientific research. In addition, the lessons learned from the Lake Erie transition will be used to streamline the process for future HAB forecasts presently in development.

  13. Toward long-lead operational forecasts of drought: An experimental study in the Murray-Darling River Basin

    NASA Astrophysics Data System (ADS)

    Barros, Ana P.; Bowden, Gavin J.

    2008-08-01

    SummaryResiliency and effectiveness in water resources management of drought is strongly depend on advanced knowledge of drought onset, duration and severity. The motivation of this work is to extend the lead time of operational drought forecasts. The research strategy is to explore the predictability of drought severity from space-time varying indices of large-scale climate phenomena relevant to regional hydrometeorology (e.g. ENSO) by integrating linear and non-linear statistical data models, specifically self-organizing maps (SOM) and multivariate linear regression analysis. The methodology is demonstrated through the step-by-step development of a model to forecast monthly spatial patterns of the standard precipitation index (SPI) within the Murray-Darling Basin (MDB) in Australia up to 12 months in advance. First, the rationale for the physical hypothesis and the exploratory data analysis including principal components, wavelet and partial mutual information analysis to identify and select predictor variables are presented. The focus is on spatial datasets of precipitation, sea surface temperature anomaly (SSTA) patterns over the Indian and Pacific Oceans, temporal and spatial gradients of outgoing longwave radiation (OLR) in the Pacific Ocean, and the far western Pacific wind-stress anomaly. Second, the process of model construction, calibration and evaluation is described. The experimental forecasts show that there is ample opportunity to increase the lead time of drought forecasts for decision support using parsimonious data models that capture the governing climate processes at regional scale. OLR gradients proved to be dispensable predictors, whereas SPI-based predictors appear to control predictability when the SSTA in the region [87.5°N-87.5°S; 27.5°E-67.5°W] and eastward wind-stress anomalies in the region [4°N-4°S; 130°E-160°E) are small, respectively, ±1° and ±0.01 dyne/cm 2, that is when ENSO activity is weak. The areal averaged 12-month lead-time forecasts of SPI in the MDB explain up to 60% of the variance in the observations ( r > 0.7). Based on a threshold SPI of -0.5 for severe drought at the regional scale and for a nominal 12-month lead time, the forecast of the timing of onset is within 0-2 months of the actual threshold being met by the observations, thus effectively a 10-month lead time forecast at a minimum. Spatial analysis suggests that forecast errors can be attributed in part to a mismatch between the spatial heterogeneity of rainfall and raingauge density in the observational network. Forecast uncertainty on the other hand appears associated with the number of redundant predictors used in the forecast model.

  14. Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties

    NASA Astrophysics Data System (ADS)

    Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.

    2017-12-01

    Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.

  15. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, Thomas Hoff; Kankiewicz, Adam

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP)more » forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest uncertainties. This work culminated in a GO decision being made by the California ISO to include zonal BTM forecasts into its operational load forecasting system. The California ISO’s Manager of Short Term Forecasting, Jim Blatchford, summarized the research performed in this project with the following quote: “The behind-the-meter (BTM) California ISO region forecasting research performed by Clean Power Research and sponsored by the Department of Energy’s SUNRISE program was an opportunity to verify value and demonstrate improved load forecast capability. In 2016, the California ISO will be incorporating the BTM forecast into the Hour Ahead and Day Ahead load models to look for improvements in the overall load forecast accuracy as BTM PV capacity continues to grow.”« less

  16. Development of Hydrometeorological Monitoring and Forecasting as AN Essential Component of the Early Flood Warning System:

    NASA Astrophysics Data System (ADS)

    Manukalo, V.

    2012-12-01

    Defining issue The river inundations are the most common and destructive natural hazards in Ukraine. Among non-structural flood management and protection measures a creation of the Early Flood Warning System is extremely important to be able to timely recognize dangerous situations in the flood-prone areas. Hydrometeorological information and forecasts are a core importance in this system. The primary factors affecting reliability and a lead - time of forecasts include: accuracy, speed and reliability with which real - time data are collected. The existing individual conception of monitoring and forecasting resulted in a need in reconsideration of the concept of integrated monitoring and forecasting approach - from "sensors to database and forecasters". Result presentation The Project: "Development of Flood Monitoring and Forecasting in the Ukrainian part of the Dniester River Basin" is presented. The project is developed by the Ukrainian Hydrometeorological Service in a conjunction with the Water Management Agency and the Energy Company "Ukrhydroenergo". The implementation of the Project is funded by the Ukrainian Government and the World Bank. The author is nominated as the responsible person for coordination of activity of organizations involved in the Project. The term of the Project implementation: 2012 - 2014. The principal objectives of the Project are: a) designing integrated automatic hydrometeorological measurement network (including using remote sensing technologies); b) hydrometeorological GIS database construction and coupling with electronic maps for flood risk assessment; c) interface-construction classic numerical database -GIS and with satellite images, and radar data collection; d) providing the real-time data dissemination from observation points to forecasting centers; e) developing hydrometeoroogical forecasting methods; f) providing a flood hazards risk assessment for different temporal and spatial scales; g) providing a dissemination of current information, forecasts and warnings to consumers automatically. Besides scientific and technical issues the implementation of these objectives requires solution of a number of organizational issues. Thus, as a result of the increased complexity of types of hydrometeorological data and in order to develop forecasting methods, a reconsideration of meteorological and hydrological measurement networks should be carried out. The "optimal density of measuring networks" is proposed taking into account principal terms: a) minimizing an uncertainty in characterizing the spacial distribution of hydrometeorological parameters; b) minimizing the Total Life Cycle Cost of creation and maintenance of measurement networks. Much attention will be given to training Ukrainian disaster management authorities from the Ministry of Emergencies and the Water Management Agency to identify the flood hazard risk level and to indicate the best protection measures on the basis of continuous monitoring and forecasts of evolution of meteorological and hydrological conditions in the river basin.

  17. Toward Seasonal Forecasting of Global Droughts: Evaluation over USA and Africa

    NASA Astrophysics Data System (ADS)

    Wood, Eric; Yuan, Xing; Roundy, Joshua; Sheffield, Justin; Pan, Ming

    2013-04-01

    Extreme hydrologic events in the form of droughts are significant sources of social and economic damage. In the United States according to the National Climatic Data Center, the losses from drought exceed US210 billion during 1980-2011, and account for about 24% of all losses from major weather disasters. Internationally, especially for the developing world, drought has had devastating impacts on local populations through food insecurity and famine. Providing reliable drought forecasts with sufficient early warning will help the governments to move from the management of drought crises to the management of drought risk. After working on drought monitoring and forecasting over the USA for over 10 years, the Princeton land surface hydrology group is now developing a global drought monitoring and forecasting system using a dynamical seasonal climate-hydrologic LSM-model (CHM) approach. Currently there is an active debate on the merits of the CHM-based seasonal hydrologic forecasts as compared to Ensemble Streamflow Prediction (ESP). We use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2) and its previous version CFSv1, to investigate the value of seasonal climate model forecasts by conducting a set of 27-year seasonal hydrologic hindcasts over the USA. Through Bayesian downscaling, climate models have higher squared correlation (R2) and smaller error than ESP for monthly precipitation averaged over major river basins across the USA, and the forecasts conditional on ENSO show further improvements (out to four months) over river basins in the southern USA. All three approaches have plausible predictions of soil moisture drought frequency over central USA out to six months because of strong soil moisture memory, and seasonal climate models provide better results over central and eastern USA. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur in different seasons for different basins. The R2 of drought severity accumulated over USA is higher during winter, and climate models present added value especially at long leads. For countries with sparse networks and weak reporting systems, remote sensing observations can provide the realtime data for the monitoring of drought. More importantly, these datasets are now available for at least a decade, which allows for estimating a climatology against which current conditions can be compared. Based on our established experimental African Drought Monitor (ADM) (see http://hydrology.princeton.edu/~nchaney/ADM_ML), we use the downscaled CFSv2 climate forcings to drive the re-calibrated VIC model and produce 6-month, 20-member ensemble hydrologic forecasts over Africa starting on the 1st of each calendar month during 1982-2007. Our CHM-based seasonal hydrologic forecasts are now being analyzed for its skill in predicting short-term soil moisture droughts over Africa. Besides relying on a single seasonal climate model or a single drought index, preliminary forecast results will be presented using multiple seasonal climate models based on the NOAA-supported National Multi-Model Ensemble (NMME) project, and with multiple drought indices. Results will be presented for the USA NIDIS test beds such as Southeast US and Colorado NIDIS (National Integrated Drought Information System) test beds, and potentially for other regions of the globe.

  18. California Data Exchange Center

    Science.gov Websites

    Historical Strong El Nino Years (PDF): 8-Station | 5-Station | 6-Station River Forecast Delta Tide Forecast year has been monitoring water quality in the Sacramento-San Joaquin Delta and upper San Francisco Delta and San Francisco Bay. http://www.water.ca.gov/news/newsreleases/2016/121916.pdf 12/12/2016

  19. Scenario Analysis: Evaluating Biodiversity Response to Forecasted Land-Use Change in the San Pedro River Basin (U.S.-Mexico)

    EPA Science Inventory

    Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions...

  20. Application of Hydrometeorological Information for Short-term and Long-term Water Resources Management over Ungauged Basin in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Ji-in; Ryu, Kyongsik; Suh, Ae-sook

    2016-04-01

    In 2014, three major governmental organizations that are Korea Meteorological Administration (KMA), K-water, and Korea Rural Community Corporation have been established the Hydrometeorological Cooperation Center (HCC) to accomplish more effective water management for scarcely gauged river basins, where data are uncertain or non-consistent. To manage the optimal drought and flood control over the ungauged river, HCC aims to interconnect between weather observations and forecasting information, and hydrological model over sparse regions with limited observations sites in Korean peninsula. In this study, long-term forecasting ensemble models so called Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system, provided by KMA was used in order to produce drought outlook. Glosea5 ensemble model prediction provides predicted drought information for 1 and 3 months ahead with drought index including Standardized Precipitation Index (SPI3) and Palmer Drought Severity Index (PDSI). Also, Global Precipitation Measurement and Global Climate Observation Measurement - Water1 satellites data products are used to estimate rainfall and soil moisture contents over the ungauged region.

  1. Application of HEC-RAS for flood forecasting in perched river-A case study of hilly region, China

    NASA Astrophysics Data System (ADS)

    Sun, Pingping; Wang, Shuqian; Gan, Hong; Liu, Bin; Jia, Ling

    2017-04-01

    Flooding in small and medium rivers are seriously threatening the safety of human beings’ life and property. The simulation forecasting of the river flood and bank risk in hilly region has gradually become a hotspot. At present, there are few studies on the simulation of hilly perched river, especially in the case of lacking section flow data. And the method of how to determine the position of the levee breach along the river bank is not much enough. Based on the characteristics of the sections in hilly perched river, an attempt is applied in this paper which establishes the correlation between the flow profile computed by HEC-RAS model and the river bank. A hilly perched river in Lingshi County, Shanxi Province of China, is taken as the study object, the levee breach positions along the bank are simulated under four different design storm. The results show that the flood control standard of upper reach is high, which can withstand the design storm of 100 years. The current standard of lower reach is low, which is the flooding channel with high frequency. As the standard of current channel between the 2rd and the 11th section is low, levee along that channel of the river bank is considered to be heighten and reinforced. The study results can provide some technical support for flood proofing in hilly region and some reference for the reinforcement of river bank.

  2. Forecast Tools for Alaska River Ice Breakup Timing and Severity

    NASA Astrophysics Data System (ADS)

    Moran, E. H.; Lindsey, S.; van Breukelen, C. M.; Thoman, R.

    2016-12-01

    Spring Breakup on the large interior rivers in Alaska means a time of nervous anticipation for many of the residents in the villages alongside those rivers. On the Yukon and Kuskokwim Rivers the record flood for most villages occurred as a result of ice jams that backed up water and dump truck sized ice floes into the village. Those floods can occur suddenly and can literally wipe out a village. The challenge is that with a limited observation network (3 automated USGS gages along the 1200 miles of the Yukon River flowing through Alaska) and the inherently transient nature of ice jam formation, prediction of the timing and severity of these events has been a tremendous challenge. Staff at the Alaska Pacific River Forecast Center as well as the Alaska Region Climate Program Manager have been developing more quantitative tools to attempt to provide a longer lead time for villages to prepare for potentially devastating flooding. In the past, a very qualitative assessment of the primary drivers of Spring Breakup (snow pack, river ice thickness and forecast spring weather) have led to the successful identification of years when flood severity was likely to be elevated or significantly decreased. These qualitative assessments have also allowed the forecasting of the probability of either a thermal or a dynamic breakup. But there has continued to be a need for an objective tool that can handle weather patterns that border on the tails of the climatic distributions as well as the timing and flood potential from weather patterns that are closer to the median of the distribution. Over the past 8 years there have been a significant number of years with anomalous spring weather patterns including cold springs followed by rapid warmups leading to record flooding from ice jams during spring breakup (2009, 2013), record late breakup (2013), record early breakup (2016), record high snowfall (2012), record snowmelt and aufeis flooding (2015) and record low snowfall (2015). The need for improved tools that can handle these events over the full breadth of the distribution has never been greater. This talk will describe efforts to incorporate climate signals into the spring breakup outlook and show results of some temperature based indices as an indicator of breakup timing.

  3. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data.

    PubMed

    Furquim, Gustavo; Filho, Geraldo P R; Jalali, Roozbeh; Pessin, Gustavo; Pazzi, Richard W; Ueyama, Jó

    2018-03-19

    The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol) sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT). SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN.

  4. Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales

    NASA Astrophysics Data System (ADS)

    Verkade, J. S.; Brown, J. D.; Reggiani, P.; Weerts, A. H.

    2013-09-01

    The ECMWF temperature and precipitation ensemble reforecasts are evaluated for biases in the mean, spread and forecast probabilities, and how these biases propagate to streamflow ensemble forecasts. The forcing ensembles are subsequently post-processed to reduce bias and increase skill, and to investigate whether this leads to improved streamflow ensemble forecasts. Multiple post-processing techniques are used: quantile-to-quantile transform, linear regression with an assumption of bivariate normality and logistic regression. Both the raw and post-processed ensembles are run through a hydrologic model of the river Rhine to create streamflow ensembles. The results are compared using multiple verification metrics and skill scores: relative mean error, Brier skill score and its decompositions, mean continuous ranked probability skill score and its decomposition, and the ROC score. Verification of the streamflow ensembles is performed at multiple spatial scales: relatively small headwater basins, large tributaries and the Rhine outlet at Lobith. The streamflow ensembles are verified against simulated streamflow, in order to isolate the effects of biases in the forcing ensembles and any improvements therein. The results indicate that the forcing ensembles contain significant biases, and that these cascade to the streamflow ensembles. Some of the bias in the forcing ensembles is unconditional in nature; this was resolved by a simple quantile-to-quantile transform. Improvements in conditional bias and skill of the forcing ensembles vary with forecast lead time, amount, and spatial scale, but are generally moderate. The translation to streamflow forecast skill is further muted, and several explanations are considered, including limitations in the modelling of the space-time covariability of the forcing ensembles and the presence of storages.

  5. Hydrologic and hydraulic flood forecasting constrained by remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2017-12-01

    Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.

  6. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data

    PubMed Central

    Furquim, Gustavo; Filho, Geraldo P. R.; Pessin, Gustavo; Pazzi, Richard W.

    2018-01-01

    The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol) sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT). SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN. PMID:29562657

  7. High Resolution Modeling in Mountainous Terrain for Water Resource Management: AN Extreme Precipitation Event Case Study

    NASA Astrophysics Data System (ADS)

    Masarik, M. T.; Watson, K. A.; Flores, A. N.; Anderson, K.; Tangen, S.

    2016-12-01

    The water resources infrastructure of the Western US is designed to deliver reliable water supply to users and provide recreational opportunities for the public, as well as afford flood control for communities by buffering variability in precipitation and snow storage. Thus water resource management is a balancing act of meeting multiple objectives while trying to anticipate and mitigate natural variability of water supply. Currently, the forecast guidance available to personnel managing resources in mountainous terrain is lacking in two ways: the spatial resolution is too coarse, and there is a gap in the intermediate time range (10-30 days). To address this need we examine the effectiveness of using the Weather Research and Forecasting (WRF) model, a state of the art, regional, numerical weather prediction model, as a means to generate high-resolution weather guidance in the intermediate time range. This presentation will focus on a reanalysis and hindcasting case study of the extreme precipitation and flooding event in the Payette River Basin of Idaho during the period of June 2nd-4th, 2010. For the reanalysis exercise we use NCEP's Climate Forecast System Reanalysis (CFSR) and the North American Regional Reanalysis (NARR) data sets as input boundary conditions to WRF. The model configuration includes a horizontal spatial resolution of 3km in the outer nest, and 1 km in the inner nest, with output temporal resolution of 3 hrs and 1 hr, respectively. The hindcast simulations, which are currently underway, will make use of the NCEP Climate Forecast System Reforecast (CFSRR) data. The current state of these runs will be discussed. Preparations for the second of two components in this project, weekly WRF forecasts during the intense portion of the water year, will be briefly described. These forecasts will use the NCEP Climate Forecast System version 2 (CFSv2) operational forecast data as boundary conditions to provide forecast guidance geared towards water resource managers out to a lead time of 30 days. We are particularly interested in the degree to which there is forecast skill in basinwide precipitation occurrence, departure from climatology, timing, and amount in the intermediate time range.

  8. Dynamic Management of Releases for the Delaware River Basin using NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Wang, L.; Murphy, T.; Muralidhar, D.; Tarrier, B.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. Using an interim version of OST, DEP and the New York State Department of Environmental Conservation (DEC) have developed a provisional, one-year Delaware River Basin reservoir release program to succeed the existing Flexible Flow Management Program (FFMP) which expired on May 31, 2011. The FFMP grew out of the Good Faith Agreement of 1983 among the four Basin states (New York, New Jersey, Pennsylvania, and Delaware) that established modified diversions and flow targets during drought conditions. It provided a set of release schedules as a framework for managing diversions and releases from New York City's Delaware Basin reservoirs in order to support multiple objectives, including water supply, drought mitigation, flood mitigation, tailwaters fisheries, main stem habitat, recreation, and salinity repulsion. The provisional program (OST-FFMP) defines available water based on current Upper Delaware reservoir conditions and probabilistic forecasts of reservoir inflow. Releases are then set based on a set of release schedules keyed to the water availability. Additionally, OST-FFMP attempts to provide enhanced downstream flood protection by making spill mitigation releases to keep the Delaware System reservoirs at a seasonally varying conditional storage objective. The OST-FFMP approach represents a more robust way of managing downstream releases, accounting for predicted future hydrologic conditions by making more water available for release when conditions are forecasted to be wet and protecting water supply reliability when conditions are forecasted to be dry. Further, the dynamic nature of the program allows the release decision to be adjusted as hydrologic conditions change. OST simulations predict that this program can provide substantial benefits for downstream stakeholders while protecting DEP's ability to ensure a reliable water supply for 9 million customers in NYC and the surrounding communities. The one-year nature of the program will allow for DEP and the Decree Parties to evaluate and improve the program in the future. This paper will describe the OST-FFMP program and discuss preliminary observations on its performance based on key NYC and downstream stakeholder performance metrics.

  9. Major Risks, Uncertain Outcomes: Making Ensemble Forecasts Work for Multiple Audiences

    NASA Astrophysics Data System (ADS)

    Semmens, K. A.; Montz, B.; Carr, R. H.; Maxfield, K.; Ahnert, P.; Shedd, R.; Elliott, J.

    2017-12-01

    When extreme river levels are possible in a community, effective communication of weather and hydrologic forecasts is critical to protect life and property. Residents, emergency personnel, and water resource managers need to make timely decisions about how and when to prepare. Uncertainty in forecasting is a critical component of this decision-making, but often poses a confounding factor for public and professional understanding of forecast products. In 2016 and 2017, building on previous research about the use of uncertainty forecast products, and with funding from NOAA's CSTAR program, East Carolina University and Nurture Nature Center (a non-profit organization with a focus on flooding issues, based in Easton, PA) conducted a research project to understand how various audiences use and interpret ensemble forecasts showing a range of hydrologic forecast possibilities. These audiences include community residents, emergency managers and water resource managers. The research team held focus groups in Jefferson County, WV and Frederick County, MD, to test a new suite of products from the National Weather Service's Hydrologic Ensemble Forecast System (HEFS). HEFS is an ensemble system that provides short and long-range forecasts, ranging from 6 hours to 1 year, showing uncertainty in hydrologic forecasts. The goal of the study was to assess the utility of the HEFS products, identify the barriers to proper understanding of the products, and suggest modifications to product design that could improve the understandability and accessibility for residential, emergency managers, and water resource managers. The research team worked with the Sterling, VA Weather Forecast Office and the Middle Atlantic River Forecast center to develop a weather scenario as the basis of the focus group discussions, which also included pre and post session surveys. This presentation shares the findings from those focus group discussions and surveys, including recommendations for revisions to HEFS products to improve accessibility of the forecast tools for various audiences. The presentation will provide a broad perspective on the range of graphic design considerations that affected how the public responded to products and will provide an overview of lessons learned about how product design can influence decision-making by users.

  10. Dynamic Change in Glacial Dammed Lake Behavior of Suicide Basin, Mendenhall Glacier, Juneau Alaska

    NASA Astrophysics Data System (ADS)

    Jacobs, A. B.; Moran, T.; Hood, E. W.

    2016-12-01

    Suicide Basin Jökulhlaups, since 2011, have resulted in moderate flooding on the Mendenhall Lake and River in Juneau, AK. At this time, the USGS recorded peak streamflow of 20,000 cfs in 2014, the highest flows officially reported by the USGS which was attributed to a Suicide Basin glacial-dammed lake release. However, the USGS estimated a peak flow of 27,000 cfs in 1961 and we suspect this event is partially the result of a glacial dammed lake release. From 2011 to 2015, data indicates that yearly outburst from Suicide Basin were the norm; however, in 2015 and 2016, multiple outbursts during the summer were observed suggesting a dynamic change in glacial behavior. For public safety and awareness, the University of Alaska Southeast and U.S. Geologic Survey began monitoring real-time Suicide Basin lake levels. A real-time model was developed by the National Weather Service Alaska-Pacific River Forecast Center capable of forecasting potential timing and magnitude of the flood-wave crest from this Suicide Basin release. However, the model now is being modified because data not previously available has become available and adapted to the change in state of glacial behavior. The importance of forecasting time and level of crest on the Mendenhall River system owing to these outbursts floods is an essential aid to emergency managers and the general public to provide impact decision support services (IDSS). The National Weather Service has been able to provide 36 to 24 hour forecasts for these large events, but with the change in glacial state on the Mendenhall Glacier, the success of forecasting these events is getting more challenging. We will show the success of the hydrologic model but at the same time show the challenges we have seen with the changing glacier dynamics.

  11. Enhancements to the WRF-Hydro Hydrologic Model Structure for Semi-arid Environments

    NASA Astrophysics Data System (ADS)

    Lahmers, T. M.; Gupta, H.; Hazenberg, P.; Castro, C. L.; Gochis, D.; Yates, D. N.; Dugger, A. L.; Goodrich, D. C.

    2017-12-01

    The NOAA National Water Center (NWC) implemented an operational National Water Model (NWM) in August 2016 to simulate and forecast streamflow and soil moisture throughout the Contiguous US (CONUS). The NWM is based on the WRF-Hydro hydrologic model architecture, with a 1-km resolution Noah-MP LSM grid and a 250m routing grid. The operational NWM does not currently resolve infiltration of water from the beds of ephemeral channels, which is an important component of the water balance in semi-arid environments common in many portions of the western US. This work demonstrates the benefit of a conceptual channel infiltration function in the WRF-Hydro model architecture following calibration. The updated model structure and parameters for the NWM architecture, when implemented operationally, will permit its use in flow simulation and forecasting in the southwest US, particularly for flash floods in basins with smaller drainage areas. Our channel infiltration function is based on that of the KINEROS2 semi-distributed hydrologic model, which has been tested throughout the southwest CONUS for flash flood forecasts. Model calibration utilizes the Dynamically Dimensioned Search (DDS) algorithm, and the model is calibrated using NLDAS-2 atmospheric forcing and NCEP Stage-IV precipitation. Our results show that adding channel infiltration to WRF-Hydro can produce a physically consistent hydrologic response with a high-resolution gauge based precipitation forcing dataset in the USDA-ARS Walnut Gulch Experimental Watershed. NWM WRF-Hydro is also tested for the Babocomari River, Beaver Creek, and Sycamore Creek catchments in southern and central Arizona. In these basins, model skill is degraded due to uncertainties in the NCEP Stage-IV precipitation forcing dataset.

  12. Does model structure limit the use of satellite data as hydrologic forcing for distributed operational models?

    NASA Astrophysics Data System (ADS)

    Bowman, A. L.; Franz, K.; Hogue, T. S.

    2015-12-01

    We are investigating the implications for use of satellite data in operational streamflow prediction. Specifically, the consequence of potential hydrologic model structure deficiencies on the ability to achieve improved forecast accuracy through the use of satellite data. We want to understand why advanced data do not lead to improved streamflow simulations by exploring how various fluxes and states differ among models of increasing complexity. In a series of prior studies, we investigated the use of a daily satellite-derived potential evapotranspiration (PET) estimate as input to the National Weather Service (NWS) streamflow forecast models for watersheds in the Upper Mississippi and Red river basins. Although the spatial PET product appears to represent the day-to-day variability in PET more realistically than current climatological methods used by the NWS, the impact of the satellite data on streamflow simulations results in slightly poorer model efficiency overall. Analysis of the model states indicates the model progresses differently between simulations with baseline PET and the satellite-derived PET input, though variation in streamflow simulations overall is negligible. For instance, the upper zone states, responsible for the high flows of a hydrograph, show a profound difference, while simulation of the peak flows tend to show little variation in the timing and magnitude. Using the spatial PET input, the lower zone states show improvement with simulating the recession limb and baseflow portion of the hydrograph. We anticipate that through a better understanding of the relationship between model structure, model states, and simulated streamflow we will be able to diagnose why simulations of discharge from the forecast model have failed to improve when provided seemingly more representative input data. Identifying model limitations are critical to demonstrating the full benefit of a satellite data for operational use.

  13. Effects of the Changiang river discharge on the change in ocean and atmosphere over the East Asian region

    NASA Astrophysics Data System (ADS)

    Kim, M. H.; Lim, Y. J.; Kang, H. S.; Kim, B. J.; Cho, C.

    2017-12-01

    This study investigates the effects of freshwater from the Changiang river basin over the East Asian region for summer season. To do this, we simulated global seasonal forecasting system (GloSea5) of KMA (Korea Meteorology Administration). GloSea5 consists of atmosphere, ocean, sea ice and land model. Also, it has river routing model (TRIP), which links between land and ocean using freshwater. It is very important component in long-term forecast because of be able to change the air-sea interaction. To improve more the freshwater performance over the East Asian region, we realistically modified the river mouth, direction and storage around Changiang river basin of TRIP in GloSea5. Here, the comparison study among the no freshwater forcing experiment to ocean model (TRIP-OFF), the operated original file based freshwater coupled experiment (TRIP-ON) and the improved one (TRIP-MODI) has been carried out and the results are evaluated against the reanalysis data. As a result, the amount of fresh water to the Yellow Sea increase in TRIP-ON experiment and it attributes to the improvement of bias and RMSE of local SST over the East Asia. The implementation of the realistic river related ancillary files (TRIP-MODI) improves the abnormal salinity distribution around the Changjiang river gate and its related SST reduces cold bias about 0.37˚C for July over the East Sea. Warm SST over this region is caused by barrier layer (BL). Freshwater flux and salinity changes can create a pronounced salinity-induced mixed layer (ML) above the top of the thermocline. The layer between the base of the ML and the top of the thermocline is called a barrier layer (BL), because it isolates the warm surface water from cold deep water. In addition, the improved fresh water forcing can lead to the change in the local volume transport from the Kuroshio to the Strait of Korea and Changed the transport and SST over the Straits of Korea have correlation 0.57 at 95% confidence level. For the atmospheric variables in East Asian region, the error statistics of temperature in TRIP-MODI is the best, reducing about 0.32˚C for July but there is no difference of the precipitation distribution among the experiments.

  14. Forecast Mekong

    USGS Publications Warehouse

    Turnipseed, D. Phil

    2011-01-01

    Forecast Mekong is part of the U.S. Department of State's Lower Mekong Initiative, which was launched in 2009 by Secretary Hillary Clinton and the Foreign Ministers of Cambodia, Laos, Thailand, and Vietnam to enhance partnerships between the U.S. and the Lower Mekong River countries in the areas of environment, health, education, and infrastructure. The U.S. Geological Survey (USGS) is working in close cooperation with the U.S. Department of State to use research and data from the Lower Mekong Basin to provide hands-on results that will help decision makers in Lower Mekong River countries in the planning and design for restoration, conservation, and management efforts in the basin.

  15. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    NASA Astrophysics Data System (ADS)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  16. Mount St. Helens Future Expected Deposition Scenario (FEDS)

    DTIC Science & Technology

    2011-04-14

    Gradation in HEC - RAS Sediment Transport Model of the Lower Cowlitz River ...Cowlitz 1-D/2-D modeling. Will also be used to test proposed measures where appropriate. Cowlitz River Toutle to Columbia 1-D HEC - RAS Aug 2004...Sep 2008 (6 years) Calibration Model Cowlitz River Toutle to Columbia 1-D HEC - RAS Oct 2007 – Sep 2035 (28 years) Forecast to predict trends in

  17. A New Approach in Generating Meteorological Forecasts for Ensemble Streamflow Forecasting using Multivariate Functions

    NASA Astrophysics Data System (ADS)

    Khajehei, S.; Madadgar, S.; Moradkhani, H.

    2014-12-01

    The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).

  18. 2014 Gulf of Mexico Hypoxia Forecast

    USGS Publications Warehouse

    Scavia, Donald; Evans, Mary Anne; Obenour, Dan

    2014-01-01

    The Gulf of Mexico annual summer hypoxia forecasts are based on average May total nitrogen loads from the Mississippi River basin for that year. The load estimate, recently released by USGS, is 4,761 metric tons per day. Based on that estimate, we predict the area of this summer’s hypoxic zone to be 14,000 square kilometers (95% credible interval, 8,000 to 20,000) – an “average year”. Our forecast hypoxic volume is 50 km3 (95% credible interval, 20 to 77).

  19. PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA

    EPA Science Inventory

    This paper describes a sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA for the purpose of characterizing and forecasting sediment and arsenic distributions before and after proposed dredging activitie...

  20. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid (Spanish Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Tian; Chernyakhovskiy, Ilya; Brancucci Martinez-Anido, Carlo

    This document is the Spanish version of 'Greening the Grid- Forecasting Wind and Solar Generation Improving System Operations'. It discusses improving system operations with forecasting with and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  1. Ensemble flare forecasting: using numerical weather prediction techniques to improve space weather operations

    NASA Astrophysics Data System (ADS)

    Murray, S.; Guerra, J. A.

    2017-12-01

    One essential component of operational space weather forecasting is the prediction of solar flares. Early flare forecasting work focused on statistical methods based on historical flaring rates, but more complex machine learning methods have been developed in recent years. A multitude of flare forecasting methods are now available, however it is still unclear which of these methods performs best, and none are substantially better than climatological forecasts. Current operational space weather centres cannot rely on automated methods, and generally use statistical forecasts with a little human intervention. Space weather researchers are increasingly looking towards methods used in terrestrial weather to improve current forecasting techniques. Ensemble forecasting has been used in numerical weather prediction for many years as a way to combine different predictions in order to obtain a more accurate result. It has proved useful in areas such as magnetospheric modelling and coronal mass ejection arrival analysis, however has not yet been implemented in operational flare forecasting. Here we construct ensemble forecasts for major solar flares by linearly combining the full-disk probabilistic forecasts from a group of operational forecasting methods (ASSA, ASAP, MAG4, MOSWOC, NOAA, and Solar Monitor). Forecasts from each method are weighted by a factor that accounts for the method's ability to predict previous events, and several performance metrics (both probabilistic and categorical) are considered. The results provide space weather forecasters with a set of parameters (combination weights, thresholds) that allow them to select the most appropriate values for constructing the 'best' ensemble forecast probability value, according to the performance metric of their choice. In this way different forecasts can be made to fit different end-user needs.

  2. Seasonal streamflow prediction using ensemble streamflow prediction technique for the Rangitata and Waitaki River basins on the South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Singh, Shailesh Kumar

    2014-05-01

    Streamflow forecasts are essential for making critical decision for optimal allocation of water supplies for various demands that include irrigation for agriculture, habitat for fisheries, hydropower production and flood warning. The major objective of this study is to explore the Ensemble Streamflow Prediction (ESP) based forecast in New Zealand catchments and to highlights the present capability of seasonal flow forecasting of National Institute of Water and Atmospheric Research (NIWA). In this study a probabilistic forecast framework for ESP is presented. The basic assumption in ESP is that future weather pattern were experienced historically. Hence, past forcing data can be used with current initial condition to generate an ensemble of prediction. Small differences in initial conditions can result in large difference in the forecast. The initial state of catchment can be obtained by continuously running the model till current time and use this initial state with past forcing data to generate ensemble of flow for future. The approach taken here is to run TopNet hydrological models with a range of past forcing data (precipitation, temperature etc.) with current initial conditions. The collection of runs is called the ensemble. ESP give probabilistic forecasts for flow. From ensemble members the probability distributions can be derived. The probability distributions capture part of the intrinsic uncertainty in weather or climate. An ensemble stream flow prediction which provide probabilistic hydrological forecast with lead time up to 3 months is presented for Rangitata, Ahuriri, and Hooker and Jollie rivers in South Island of New Zealand. ESP based seasonal forecast have better skill than climatology. This system can provide better over all information for holistic water resource management.

  3. Multivariate postprocessing techniques for probabilistic hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2016-04-01

    Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, 96, 12-20, DOI: 10.1016/j.apenergy.2011.11.004. Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting (2013), Uncertainty quantification in complex simulation models using ensemble copula coupling, Statistical Science, 28, 616-640, DOI: 10.1214/13-STS443.

  4. An Open-Book Modular Watershed Modeling Framework for Rapid Prototyping of GPM- based Flood Forecasting in International River Basins

    NASA Astrophysics Data System (ADS)

    Katiyar, N.; Hossain, F.

    2006-05-01

    Floods have always been disastrous for human life. It accounts for about 15 % of the total death related to natural disasters. There are around 263 transboundary river basins listed by UNESCO, wherein at least 30 countries have more than 95% of their territory locked in one or more such transboundary basins. For flood forecasting in the lower riparian nations of these International River Basins (IRBs), real-time rainfall data from upstream nations is naturally the most critical factor governing the forecasting effectiveness. However, many upstream nations fail to provide data to the lower riparian nations due to a lack of in-situ rainfall measurement infrastructure or a lack of a treaty for real-time sharing of rainfall data. A potential solution is therefore to use satellites that inherently measure rainfall across political boundaries. NASA's proposed Global Precipitation Measurement (GPM) mission appears very promising in providing this vital rainfall information under the data- limited scenario that will continue to prevail in most IRBs. However, satellite rainfall is associated with uncertainty and hence, proper characterization of the satellite rainfall error propagation in hydrologic models for flood forecasting is a critical priority that should be resolved in the coming years in anticipation of GPM. In this study, we assess an open book modular watershed modeling approach for estimating the expected error in flood forecasting related to GPM rainfall data. Our motivation stems from the critical challenge in identifying the specific IRBs that would benefit from a pre-programmed satellite-based forecasting system in anticipation of GPM. As the number of flood-prone IRBs is large, conventional data-intensive implementation of existing physically-based distributed hydrologic models on case-by-case IRBs is considered time-consuming for completing such a global assessment. A more parsimonious approach is justified at the expense of a tolerable loss of detail and accuracy. Through assessment of our proposed modular modeling framework, we present our initial understanding in resolving the fundamental question - Can a parsimonious open-book watershed modeling framework be a physically consistent proxy for rapid and global identification of IRBs in greater need of a GPM-based flood forecasting system?

  5. The POLIMI forecasting chain for real time flood and drought predictions

    NASA Astrophysics Data System (ADS)

    Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Mancini, Marco

    2016-04-01

    Nowadays coupling meteorological and hydrological models is recognized by scientific community as a necessary way to forecast extreme hydrological phenomena, in order to activate useful mitigation measurements and alert systems in advance. The development and implementation of a real-time forecasting chain with a hydro-meteorological operational alert procedure for flood and drought events is presented in this study. Different weather models are used to build the POLIMI operative chain: the probabilistic COSMO-LEPS model with 16 ensembles developed by ARPA-Emilia Romagna, the deterministic Bolam and Moloch models, developed by the Italian ISAC-CNR, and nine further simulations obtained by different runs of the WRF-ARW (3), WRF-NMM (2), ETA2012 (1) and the GFS (3), provided by the private Epson Meteo Center and Terraria companies. All the meteorological runs are then implemented with the rainfall-runoff physically-based distributed FEST-WB model, developed at Politecnico di Milano to obtain a multi-model approach system with hydrological ensemble forecasts in different areas of study over the Italian country. As far as concerning drought predictions, three test-beds are monitored: two in maize fields, one in the Puglia region (South of Italy), and another in the Po Valley area, (northern Italy), and one in a golf course in Milan city. The hydrological model was here calibrated and validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station, TDR probes and remote sensing images. Regarding flood forecasts, two test-sites are chosen: the first one is the urban area northern Milan where three catchments (the Seveso, Olona, and Lambro River basins) are used to show how early warning systems are an effective complement to structural measures for flood control in Milan city which flooded frequently in the last 25 years, while the second test-site is the Idro Lake, located between the Lombardy and Trentino region where the POLIMI hydro-meteorological chain is performed to forecast the hydrometric lake level for a better management of the upstream and downstream basin. The same hydrological model has been here calibrated and validated with observed data coming from local bodies: ARPA Lombardy, Meteonetwork and Meteo Trentino. Reliability of the forecasting system and its benefits are assessed with skill scores on some cases-study occurred in the recent years and through the real-time visualization of the implemented dashboards.

  6. Development of a System to Generate Near Real Time Tropospheric Delay and Precipitable Water Vapor in situ at Geodetic GPS Stations, to Improve Forecasting of Severe Weather Events

    NASA Astrophysics Data System (ADS)

    Moore, A. W.; Bock, Y.; Geng, J.; Gutman, S. I.; Laber, J. L.; Morris, T.; Offield, D. G.; Small, I.; Squibb, M. B.

    2012-12-01

    We describe a system under development for generating ultra-low latency tropospheric delay and precipitable water vapor (PWV) estimates in situ at a prototype network of geodetic GPS sites in southern California, and demonstrating their utility in forecasting severe storms commonly associated with flooding and debris flow events along the west coast of North America through infusion of this meteorological data at NOAA National Weather Service (NWS) Forecast Offices and the NOAA Earth System Research Laboratory (ESRL). The first continuous geodetic GPS network was established in southern California in the early 1990s and much of it was converted to real-time (latency <1s) high-rate (1Hz) mode over the following decades. GPS stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV using collocated pressure and temperature measurements, the basis for GPS meteorology (Bevis et al. 1992, 1994; Duan et al. 1996) as implemented by NOAA with a nationwide distribution of about 300 GPS-Met stations providing PW estimates at subhourly resolution currently used in operational weather forecasting in the U.S. We improve upon the current paradigm of transmitting large quantities of raw data back to a central facility for processing into higher-order products. By operating semi-autonomously, each station will provide low-latency, high-fidelity and compact data products within the constraints of the narrow communications bandwidth that often occurs in the aftermath of natural disasters. The onsite ambiguity-resolved precise point positioning solutions are enabled by a power-efficient, low-cost, plug-in Geodetic Module for fusion of data from in situ sensors including GPS and a low-cost MEMS meteorological sensor package. The decreased latency (~5 minutes) PW estimates will provide the detailed knowledge of the distribution and magnitude of PW that NWS forecasters require to monitor and predict severe winter storms, landfalling atmospheric rivers, and summer thunderstorms associated with the North American monsoon. On the national level, the ESRL will evaluate the utility of ultra-low resolution GNSS observations to improve NOAA's warning and forecast capabilities. The overall objective is to better forecast, assess, and mitigate natural hazards through the flow of information from multiple geodetic stations to scientists, mission planners, decision makers, and first responders.

  7. New Techniques for Real-Time Stage Forecasting for Tributaries in the Nashville Area

    NASA Astrophysics Data System (ADS)

    Charley, W.; Moran, B.; LaRosa, J.

    2011-12-01

    On Saturday, May 1, 2010, heavy rain began falling in the Cumberland River Valley, Tennessee, and continued through the following day. 13.5 inches was measured at Nashville, an unprecedented amount that doubled the previous 2-day record, and exceeded the May monthly total record of 11 inches. Elsewhere in the valley, amounts of over 19 inches were measured. This intensity of rainfall quickly overwhelmed tributaries to the Cumberland in the Nashville area, causing wide-spread and serious flooding. Tractor-trailers and houses were seen floating down Mill Creek, a primary tributary in the south eastern area of Nashville. Twenty-six people died and over 2 billion dollars in damage occurred as a result of the flood. Since that time, several other significant rainfall events have occurred in the area. As a result of the flood, agencies in the Nashville area want better capabilities to forecast stages for the local tributaries. Better stage forecasting will help local agencies close roads, evacuate homes and businesses and similar actions. An interagency group, consisting of Metro Nashville Water Services and Office of Emergency Management, the National Weather Service, the US Geological Survey and the US Army Corps of Engineers, has been established to seek ways to better forecast short-term events in the region. It should be noted that the National Weather Service has the official responsibility of forecasting stages. This paper examines techniques and algorithms that are being developed to meet this need and the practical aspects of integrating them into a usable product that can quickly and accurately forecast stages in the short-time frame of the tributaries. This includes not only the forecasting procedure, but also the procedure to acquire the latest precipitation and stage data to make the forecasts. These procedures are integrated into the program HEC-RTS, the US Army Corps of Engineers Real-Time Simulation program. HEC-RTS is a Java-based integration tool that has been derived from the Corps Water Management System (CWMS). The modeling component takes observed and forecasted rainfall to compute river flow with the program HEC-HMS. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles. An inundation boundary and depth map of water in the flood plain is computed from HEC-RAS Mapper. The user-configurable sequence of modeling software allows engineers to evaluate and compare hydraulic impacts for various "what if?" scenarios. The implementation of these techniques and HEC-RTS is examined for the Mill Creek basin, the 108 square mile tributary basin south east of Nashville. Mill Creek has an average annual flow of 150 CFS and a short response time. It has suffered major damage from the 2010 and other events. The accuracy and effectiveness of the techniques in the integrated tool HEC-RTS is evaluated.

  8. Integrated Data-Archive and Distributed Hydrological Modelling System for Optimized Dam Operation

    NASA Astrophysics Data System (ADS)

    Shibuo, Yoshihiro; Jaranilla-Sanchez, Patricia Ann; Koike, Toshio

    2013-04-01

    In 2012, typhoon Bopha, which passed through the southern part of the Philippines, devastated the nation leaving hundreds of death tolls and significant destruction of the country. Indeed the deadly events related to cyclones occur almost every year in the region. Such extremes are expected to increase both in frequency and magnitude around Southeast Asia, during the course of global climate change. Our ability to confront such hazardous events is limited by the best available engineering infrastructure and performance of weather prediction. An example of the countermeasure strategy is, for instance, early release of reservoir water (lowering the dam water level) during the flood season to protect the downstream region of impending flood. However, over release of reservoir water affect the regional economy adversely by losing water resources, which still have value for power generation, agricultural and industrial water use. Furthermore, accurate precipitation forecast itself is conundrum task, due to the chaotic nature of the atmosphere yielding uncertainty in model prediction over time. Under these circumstances we present a novel approach to optimize contradicting objectives of: preventing flood damage via priori dam release; while sustaining sufficient water supply, during the predicted storm events. By evaluating forecast performance of Meso-Scale Model Grid Point Value against observed rainfall, uncertainty in model prediction is probabilistically taken into account, and it is then applied to the next GPV issuance for generating ensemble rainfalls. The ensemble rainfalls drive the coupled land-surface- and distributed-hydrological model to derive the ensemble flood forecast. Together with dam status information taken into account, our integrated system estimates the most desirable priori dam release through the shuffled complex evolution algorithm. The strength of the optimization system is further magnified by the online link to the Data Integration and Analysis System, a Japanese national project for collecting, integrating and analyzing massive amount of global scale observation data, meaning that the present system is applicable worldwide. We demonstrate the integrated system with observed extreme events in Angat Watershed, the Philippines, and Upper Tone River basin, Japan. The results show promising performance for operational use of the system to support river and dam managers' decision-making.

  9. Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.; Fitzpatrick, Patrick J.; Cross, Scott L.; Harding, John M.; Bub, Frank L.; Wiggert, Jerry D.; Ko, Dong S.; Lau, Yee; Woodard, Katharine; Mooers, Christopher N. K.

    2015-12-01

    In response to the Deepwater Horizon (DwH) oil spill event in 2010, the Naval Oceanographic Office deployed a nowcast-forecast system covering the Gulf of Mexico and adjacent Caribbean Sea that was designated Americas Seas, or AMSEAS, which is documented in this manuscript. The DwH disaster provided a challenge to the application of available ocean-forecast capabilities, and also generated a historically large observational dataset. AMSEAS was evaluated by four complementary efforts, each with somewhat different aims and approaches: a university research consortium within an Integrated Ocean Observing System (IOOS) testbed; a petroleum industry consortium, the Gulf of Mexico 3-D Operational Ocean Forecast System Pilot Prediction Project (GOMEX-PPP); a British Petroleum (BP) funded project at the Northern Gulf Institute in response to the oil spill; and the Navy itself. Validation metrics are presented in these different projects for water temperature and salinity profiles, sea surface wind, sea surface temperature, sea surface height, and volume transport, for different forecast time scales. The validation found certain geographic and time biases/errors, and small but systematic improvements relative to earlier regional and global modeling efforts. On the basis of these positive AMSEAS validation studies, an oil spill transport simulation was conducted using archived AMSEAS nowcasts to examine transport into the estuaries east of the Mississippi River. This effort captured the influences of Hurricane Alex and a non-tropical cyclone off the Louisiana coast, both of which pushed oil into the western Mississippi Sound, illustrating the importance of the atmospheric influence on oil spills such as DwH.

  10. Observations and predictability of gap winds in a steep, narrow, fire-prone canyon in central Idaho, USA

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, N. S.; Forthofer, J.; Gibson, C.; Lamb, B. K.

    2017-12-01

    Frequent strong gap winds were measured in a deep, steep, wildfire-prone river canyon of central Idaho, USA during July-September 2013. Analysis of archived surface pressure data indicate that the gap wind events were driven by regional scale surface pressure gradients. The events always occurred between 0400 and 1200 LT and typically lasted 3-4 hours. The timing makes these events particularly hazardous for wildland firefighting applications since the morning is typically a period of reduced fire activity and unsuspecting firefighters could be easily endangered by the onset of strong downcanyon winds. The gap wind events were not explicitly forecast by operational numerical weather prediction (NWP) models due to the small spatial scale of the canyon ( 1-2 km wide) compared to the horizontal resolution of operational NWP models (3 km or greater). Custom WRF simulations initialized with NARR data were run at 1 km horizontal resolution to assess whether higher resolution NWP could accurately simulate the observed gap winds. Here, we show that the 1 km WRF simulations captured many of the observed gap wind events, although the strength of the events was underpredicted. We also present evidence from these WRF simulations which suggests that the Salmon River Canyon is near the threshold of WRF-resolvable terrain features when the standard WRF coordinate system and discretization schemes are used. Finally, we show that the strength of the gap wind events can be predicted reasonably well as a function of the surface pressure gradient across the gap, which could be useful in the absence of high-resolution NWP. These are important findings for wildland firefighting applications in narrow gaps where routine forecasts may not provide warning for wind effects induced by high-resolution terrain features.

  11. FVCOM one-way and two-way nesting using ESMF: Development and validation

    NASA Astrophysics Data System (ADS)

    Qi, Jianhua; Chen, Changsheng; Beardsley, Robert C.

    2018-04-01

    Built on the Earth System Modeling Framework (ESMF), the one-way and two-way nesting methods were implemented into the unstructured-grid Finite-Volume Community Ocean Model (FVCOM). These methods help utilize the unstructured-grid multi-domain nesting of FVCOM with an aim at resolving the multi-scale physical and ecosystem processes. A detail of procedures on implementing FVCOM into ESMF was described. The experiments were made to validate and evaluate the performance of the nested-grid FVCOM system. The first was made for a wave-current interaction case with a two-domain nesting with an emphasis on qualifying a critical need of nesting to resolve a high-resolution feature near the coast and harbor with little loss in computational efficiency. The second was conducted for the pseudo river plume cases to examine the differences in the model-simulated salinity between one-way and two-way nesting approaches and evaluate the performance of mass conservative two-way nesting method. The third was carried out for the river plume case in the realistic geometric domain in Mass Bay, supporting the importance for having the two-way nesting for coastal-estuarine integrated modeling. The nesting method described in this paper has been used in the Northeast Coastal Ocean Forecast System (NECOFS)-a global-regional-coastal nesting FVCOM system that has been placed into the end-to-end forecast and hindcast operations since 2007.

  12. Using Temperature Forecasts to Improve Seasonal Streamflow Forecasts in the Colorado and Rio Grande Basins

    NASA Astrophysics Data System (ADS)

    Lehner, F.; Wood, A.; Llewellyn, D.; Blatchford, D. B.; Goodbody, A. G.; Pappenberger, F.

    2017-12-01

    Recent studies have documented the influence of increasing temperature on streamflow across the American West, including snow-melt driven rivers such as the Colorado or Rio Grande. At the same time, some basins are reporting decreasing skill in seasonal streamflow forecasts, termed water supply forecasts (WSFs), over the recent decade. While the skill in seasonal precipitation forecasts from dynamical models remains low, their skill in predicting seasonal temperature variations could potentially be harvested for WSFs to account for non-stationarity in regional temperatures. Here, we investigate whether WSF skill can be improved by incorporating seasonal temperature forecasts from dynamical forecasting models (from the North American Multi Model Ensemble and the European Centre for Medium-Range Weather Forecast System 4) into traditional statistical forecast models. We find improved streamflow forecast skill relative to traditional WSF approaches in a majority of headwater locations in the Colorado and Rio Grande basins. Incorporation of temperature into WSFs thus provides a promising avenue to increase the robustness of current forecasting techniques in the face of continued regional warming.

  13. Towards spatially distributed flood forecasts in flash flood prone areas: application to the supervision of a road network in the South of France

    NASA Astrophysics Data System (ADS)

    Naulin, Jean-Philippe; Payrastre, Olivier; Gaume, Eric; Delrieu, Guy

    2013-04-01

    Accurate flood forecasts are crucial for an efficient flood event management. Until now, hydro-meteorological forecasts have been mainly used for early-warnings in France (Meteorological and flood vigilance maps) or over the world (Flash-flood guidances). These forecasts are generally limited to the main streams covered by the flood forecasting services or to specific watersheds with particular assets like check dams which are in most cases well gauged river sections, leaving aside large parts of the territory. A distributed hydro-meteorological forecasting approach will be presented, able to take advantage of the high spatial and temporal resolution rainfall estimates that are now available to provide information at ungauged sites. The proposed system aiming at detecting road inundation risks had been initially developed and tested in areas of limited size. Its extension to a whole region (the Gard region in the South of France) will be presented, including over 2000 crossing points between rivers and roads and its validation against a large data set of actually reported road inundations observed during recent flash-flood events. These first validation results appear promising. Such a tool would provide the necessary information for flood event management services to identify the areas at risk and to take the appropriate safety and rescue measures: pre-positioning of rescue means, stopping of the traffic on exposed roads, determination of safe accesses or evacuation routes. Moreover, beyond the specific application to the supervision of a road network, this work provides also results concerning the performances of hydro-meteorological forecasts for ungauged headwaters.

  14. Client-Friendly Forecasting: Seasonal Runoff Predictions Using Out-of-the-Box Indices

    NASA Astrophysics Data System (ADS)

    Weil, P.

    2013-12-01

    For more than a century, statistical relationships have been recognized between atmospheric conditions at locations separated by thousands of miles, referred to as teleconnections. Some of the recognized teleconnections provide useful information about expected hydrologic conditions, so certain records of atmospheric conditions are quantified and published as hydroclimate indices. Certain hydroclimate indices can serve as strong leading indicators of climate patterns over North America and can be used to make skillful forecasts of seasonal runoff. The methodology described here creates a simple-to-use model that utilizes easily accessed data to make forecasts of April through September runoff months before the runoff season begins. For this project, forecasting models were developed for two snowmelt-driven river systems in Colorado and Wyoming. In addition to the global hydroclimate indices, the methodology uses several local hydrologic variables including the previous year's drought severity, headwater snow water equivalent and the reservoir contents for the major reservoirs in each basin. To improve the skill of the forecasts, logistic regression is used to develop a model that provides the likelihood that a year will fall into the upper, middle or lower tercile of historical flows. Categorical forecasting has two major advantages over modeling of specific flow amounts: (1) with less prediction outcomes models tend to have better predictive skill and (2) categorical models are very useful to clients and agencies with specific flow thresholds that dictate major changes in water resources management. The resulting methodology and functional forecasting model product is highly portable, applicable to many major river systems and easily explained to a non-technical audience.

  15. National Centers for Environmental Prediction

    Science.gov Websites

    Products Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model PARALLEL/EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS

  16. National Centers for Environmental Prediction

    Science.gov Websites

    Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model Configuration /EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION / DIAGNOSTICS Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS

  17. Development and Application of a Process-based River System Model at a Continental Scale

    NASA Astrophysics Data System (ADS)

    Kim, S. S. H.; Dutta, D.; Vaze, J.; Hughes, J. D.; Yang, A.; Teng, J.

    2014-12-01

    Existing global and continental scale river models, mainly designed for integrating with global climate model, are of very course spatial resolutions and they lack many important hydrological processes, such as overbank flow, irrigation diversion, groundwater seepage/recharge, which operate at a much finer resolution. Thus, these models are not suitable for producing streamflow forecast at fine spatial resolution and water accounts at sub-catchment levels, which are important for water resources planning and management at regional and national scale. A large-scale river system model has been developed and implemented for water accounting in Australia as part of the Water Information Research and Development Alliance between Australia's Bureau of Meteorology (BoM) and CSIRO. The model, developed using node-link architecture, includes all major hydrological processes, anthropogenic water utilisation and storage routing that influence the streamflow in both regulated and unregulated river systems. It includes an irrigation model to compute water diversion for irrigation use and associated fluxes and stores and a storage-based floodplain inundation model to compute overbank flow from river to floodplain and associated floodplain fluxes and stores. An auto-calibration tool has been built within the modelling system to automatically calibrate the model in large river systems using Shuffled Complex Evolution optimiser and user-defined objective functions. The auto-calibration tool makes the model computationally efficient and practical for large basin applications. The model has been implemented in several large basins in Australia including the Murray-Darling Basin, covering more than 2 million km2. The results of calibration and validation of the model shows highly satisfactory performance. The model has been operalisationalised in BoM for producing various fluxes and stores for national water accounting. This paper introduces this newly developed river system model describing the conceptual hydrological framework, methods used for representing different hydrological processes in the model and the results and evaluation of the model performance. The operational implementation of the model for water accounting is discussed.

  18. On the need for long-term, on the order of a decade, hydro-climatic forecasts over large domains

    NASA Astrophysics Data System (ADS)

    Burges, S. J.

    2012-12-01

    All problems of hydrology have been influenced to some extent by the need to describe delivery of water to, and its movement through, the critical zone. The nature of the questions and the level of required quantitative description have changed with time, but all involve accurate accounting of all components of the hydrologic cycle. The broadest issues involve the temporal and spatial distributions of excess (floods) or too little (droughts) water. The spatial domains can range from small catchments to major fractions of continents. The temporal domains range from relatively short-term, on the order of hours to days to a few months, to multiple decades. Hydrologic engineers have long recognized the need to offer designs for human occupied catchments that accommodate hydrologic extremes (principally floods and droughts) that affect human and animal safety, for example, through disruptions to infrastructure and supply chains, food supplies, and water supplies. As more has been learned about the criticality of ecosystems to the well-being of the planet, water allocation issues have become those of "water for people" and "water for ecology". These latter requirements have emphasized the need for increased accuracy of estimating water budgets, and how water (and pollutants) moves through the associated critical domain. Given the now large physical demand for societal water use (it exceeds 50% of the mean annual river flow in most conterminous US river basins) hydrologic balances that include the operation of water resource infrastructure (flood damage mitigation dams and levees, storage reservoirs for municipal and industrial water, irrigation and ecological preservation) have become the norm. In most basins the storage reservoirs are relatively small (few store more than the mean annual flow of rivers) and long-term hydrological forecasting has become a major issue. Whether the issue is floods or droughts, there is now a pressing need for societally useful forecasts from seasonal to up to a decade or so ahead. I address issues that need to be considered by the ocean and hydro-climatology communities to find a way forward for this societally important issue.

  19. Forecasting monthly inflow discharge of the Iffezheim reservoir using data-driven models

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Aljoumani, Basem; Hillebrand, Gudrun; Hoffmann, Thomas; Hinkelmann, Reinhard

    2017-04-01

    River stream flow is an essential element in hydrology study fields, especially for reservoir management, since it defines input into reservoirs. Forecasting this stream flow plays an important role in short or long-term planning and management in the reservoir, e.g. optimized reservoir and hydroelectric operation or agricultural irrigation. Highly accurate flow forecasting can significantly reduce economic losses and is always pursued by reservoir operators. Therefore, hydrologic time series forecasting has received tremendous attention of researchers. Many models have been proposed to improve the hydrological forecasting. Due to the fact that most natural phenomena occurring in environmental systems appear to behave in random or probabilistic ways, different cases may need a different methods to forecast the inflow and even a unique treatment to improve the forecast accuracy. The purpose of this study is to determine an appropriate model for forecasting monthly inflow to the Iffezheim reservoir in Germany, which is the last of the barrages in the Upper Rhine. Monthly time series of discharges, measured from 1946 to 2001 at the Plittersdorf station, which is located 6 km downstream of the Iffezheim reservoir, were applied. The accuracies of the used stochastic models - Fiering model and Auto-Regressive Integrated Moving Average models (ARIMA) are compared with Artificial Intelligence (AI) models - single Artificial Neural Network (ANN) and Wavelet ANN models (WANN). The Fiering model is a linear stochastic model and used for generating synthetic monthly data. The basic idea in modeling time series using ARIMA is to identify a simple model with as few model parameters as possible in order to provide a good statistical fit to the data. To identify and fit the ARIMA models, four phase approaches were used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, is utilized to enhance this flexible approach to set up the model. As distinct from both stochastic models, the ANN and its related conjunction methods Wavelet-ANN (WANN) models are effective to handle non-linear systems and have been developed with antecedent flows as inputs to forecast up to 12-months lead-time for the Iffezheim reservoir. In the ANN and WANN models, the Feed Forward Back Propagation method (FFBP) is applied. The sigmoid activity and linear functions were used with several different neurons for the hidden layers and for the output layer, respectively. To compare the accuracy of the different models and identify the most suitable model for reliable forecasting, four quantitative standard statistical performance evaluation measures, the root mean square error (RMSE), the mean bias error (MAE) and the determination correlation coefficient (DC), are employed. The results reveal that the ARIMA (2, 1, 2) performs better than Fiering, ANN and WANN models. Further, the WANN model is found to be slightly better than the ANN model for forecasting monthly inflow of the Iffezheim reservoir. As a result, by using the ARIMA model, the predicted and observed values agree reasonably well.

  20. MULTI-TEMPORAL LAND USE GENERATION FOR THE OHIO RIVER BASIN

    EPA Science Inventory

    A set of backcast and forecast land use maps of the Ohio River Basin (ORB) was developed that could be used to assess the spatial-temporal patterns of land use/land cover (LULC) change in this important basin. This approach was taken to facilitate assessment of integrated sustain...

  1. PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA

    EPA Science Inventory

    A sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA is described. The application is meant to characterize and forecast sediment and arsenic (As) distributions before and after proposed dredging activit...

  2. Valuing hydrological forecasts for a pumped storage assisted hydro facility

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi; Davison, Matt

    2009-07-01

    SummaryThis paper estimates the value of a perfectly accurate short-term hydrological forecast to the operator of a hydro electricity generating facility which can sell its power at time varying but predictable prices. The expected value of a less accurate forecast will be smaller. We assume a simple random model for water inflows and that the costs of operating the facility, including water charges, will be the same whether or not its operator has inflow forecasts. Thus, the improvement in value from better hydrological prediction results from the increased ability of the forecast using facility to sell its power at high prices. The value of the forecast is therefore the difference between the sales of a facility operated over some time horizon with a perfect forecast, and the sales of a similar facility operated over the same time horizon with similar water inflows which, though governed by the same random model, cannot be forecast. This paper shows that the value of the forecast is an increasing function of the inflow process variance and quantifies how much the value of this perfect forecast increases with the variance of the water inflow process. Because the lifetime of hydroelectric facilities is long, the small increase observed here can lead to an increase in the profitability of hydropower investments.

  3. Analog-Based Postprocessing of Navigation-Related Hydrological Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, S.; Klein, B.

    2017-11-01

    Inland waterway transport benefits from probabilistic forecasts of water levels as they allow to optimize the ship load and, hence, to minimize the transport costs. Probabilistic state-of-the-art hydrologic ensemble forecasts inherit biases and dispersion errors from the atmospheric ensemble forecasts they are driven with. The use of statistical postprocessing techniques like ensemble model output statistics (EMOS) allows for a reduction of these systematic errors by fitting a statistical model based on training data. In this study, training periods for EMOS are selected based on forecast analogs, i.e., historical forecasts that are similar to the forecast to be verified. Due to the strong autocorrelation of water levels, forecast analogs have to be selected based on entire forecast hydrographs in order to guarantee similar hydrograph shapes. Custom-tailored measures of similarity for forecast hydrographs comprise hydrological series distance (SD), the hydrological matching algorithm (HMA), and dynamic time warping (DTW). Verification against observations reveals that EMOS forecasts for water level at three gauges along the river Rhine with training periods selected based on SD, HMA, and DTW compare favorably with reference EMOS forecasts, which are based on either seasonal training periods or on training periods obtained by dividing the hydrological forecast trajectories into runoff regimes.

  4. Accessibility and Utilization of WSR-88D Radar Precipitation Data for Natural Resource Modeling Applications

    NASA Astrophysics Data System (ADS)

    Hardegree, S. P.

    2001-12-01

    The National Weather Service (NWS) operates approximately 160 WSR-88D radar-precipitation stations as part of a Next Generation Radar (NEXRAD) program that began implementation in 1992. Among other products, these radar sites provide spatial rainfall estimates, at approximately 4 km2 resolution (Stage 1, Level 3 data), with nominal coverage of 96% of the coterminous United States. Effective coverage is much less than this in a given radar domain depending upon storm type and topography. As the original intent of this network was to support operational objectives of the Departments of Defense, Transportation and Commerce, the production of these data have been optimized for detection and mitigation of severe weather events that might result in flooding, destruction of property and loss of life. The primary hydrologic application has been river and flood forecast modeling by 13 NWS River Forecast Centers (RFC). As each RFC is responsible for a large river drainage, data processing and quality control of these data are geared toward optimization over a relatively large spatial domain (>100,000 km2). Use of these data for other hydrologic and natural resource applications is hampered by a lack of tools for data access and manipulation. NWRC has modified decoding and geo-referencing programs to facilitate utilization of these data for other research and management applications. Stage 1, Level 3 Digital Precipitation Array (DPA) files were obtained for the Boise, Idaho radar location (CBX) for the period of January 1998 to December 2000. Nine rain-gauge locations in the Reynolds Creek Experimental Watershed and Snake River Birds of Prey National Conservation Area, south of Boise, were georeferenced relative to the CBX Hydrologic Rainfall Analysis Project (HRAP) grid. NEXRAD estimates of total cumulative rainfall at these sites averaged only 20% of that measured by the local gauge network. This underestimate was attributed in the most part to truncation of low intensity rainfall events by the precipitation detection function (pdf) rather than to mis-calibration of the ZR relationship. At this time, these data are unsuitable as inputs for long-term water balance modeling but may be useful in extreme-event or flood-modeling applications. New tools to extract and manipulate specific subsets of Stage 1, Level 2 radar data may improve our ability to use radar reflectance data for a broader number of applications than are currently supported.

  5. A Prototype Visualization of Real-time River Drainage Network Response to Rainfall

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.

  6. A Web-based Data Intensive Visualization of Real-time River Drainage Network Response to Rainfall

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.

  7. Evaluation and Application of Gridded Snow Water Equivalent Products for Improving Snowmelt Flood Predictions in the Red River Basin of the North

    NASA Astrophysics Data System (ADS)

    Schroeder, R.; Jacobs, J. M.; Vuyovich, C.; Cho, E.; Tuttle, S. E.

    2017-12-01

    Each spring the Red River basin (RRB) of the North, located between the states of Minnesota and North Dakota and southern Manitoba, is vulnerable to dangerous spring snowmelt floods. Flat terrain, low permeability soils and a lack of satisfactory ground observations of snow pack conditions make accurate predictions of the onset and magnitude of major spring flood events in the RRB very challenging. This study investigated the potential benefit of using gridded snow water equivalent (SWE) products from passive microwave satellite missions and model output simulations to improve snowmelt flood predictions in the RRB using NOAA's operational Community Hydrologic Prediction System (CHPS). Level-3 satellite SWE products from AMSR-E, AMSR2 and SSM/I, as well as SWE computed from Level-2 brightness temperatures (Tb) measurements, including model output simulations of SWE from SNODAS and GlobSnow-2 were chosen to support the snowmelt modeling exercises. SWE observations were aggregated spatially (i.e. to the NOAA North Central River Forecast Center forecast basins) and temporally (i.e. by obtaining daily screened and weekly unscreened maximum SWE composites) to assess the value of daily satellite SWE observations relative to weekly maximums. Data screening methods removed the impacts of snow melt and cloud contamination on SWE and consisted of diurnal SWE differences and a temperature-insensitive polarization difference ratio, respectively. We examined the ability of the satellite and model output simulations to capture peak SWE and investigated temporal accuracies of screened and unscreened satellite and model output SWE. The resulting SWE observations were employed to update the SNOW-17 snow accumulation and ablation model of CHPS to assess the benefit of using temporally and spatially consistent SWE observations for snow melt predictions in two test basins in the RRB.

  8. Synoptic thermodynamic and dynamic patterns associated with Quitandinha River flooding events in Petropolis, Rio de Janeiro (Brazil)

    NASA Astrophysics Data System (ADS)

    da Silva, Fabricio Polifke; Justi da Silva, Maria Gertrudes Alvarez; Rotunno Filho, Otto Corrêa; Pires, Gisele Dornelles; Sampaio, Rafael João; de Araújo, Afonso Augusto Magalhães

    2018-05-01

    Natural disasters are the result of extreme or intense natural phenomena that cause severe impacts on society. These impacts can be mitigated through preventive measures that can be aided by better knowledge of extreme phenomena and monitoring of forecasting and alert systems. The city of Petropolis (in a mountainous region of the state of Rio de Janeiro, Brazil) is prone to heavy rain events, often leading to River overflows, landslides, and loss of life. In that context, this work endeavored to characterize the thermodynamic and dynamic synoptic patterns that trigger heavy rainfall episodes and the corresponding flooding of Quitandinha River. More specifically, we reviewed events from the time period between January 2013 and December 2014 using reanalysis data. We expect that the overall description obtained of synoptic patterns should provide adequate qualitative aid to the decision-making processes involved in operational forecasting procedures. We noticed that flooding events were related to the presence of the South Atlantic Convergence Zone (SACZ), frontal systems (FS), and convective storms (CS). These systems showed a similar behavior on high-frequency wind components, notably with respect to northwest winds before precipitation and to a strong southwest wind component during rainfall events. Clustering analyses indicated that the main component for precipitation formation with regard to CS systems comes from daytime heating, with the dynamic component presenting greater efficiency for the FS configurations. The SACZ events were influenced by moisture availability along the vertical column of the atmosphere and also due to dynamic components of precipitation efficiency and daytime heating, the latter related to the continuous transport of moisture from the Amazon region and South Atlantic Ocean towards Rio de Janeiro state.

  9. Assessing water reservoir management and development in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Pianosi, F.; Quach, X.; Castelletti, A.; Soncini-Sessa, R.

    2012-04-01

    In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this work we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam), focusing on the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River. We first provide a general and mathematical description of the socio economic and physical system of the Red River Basin, including the three main objectives of hydropower production, flood control, and water supply, and using conceptual and data-driven modeling tools. Then, we analyze the historical operation of the HoaBinh reservoir and explore re-operation options corresponding to different tradeoffs among the three main objectives, using Multi-Objective Genetic Algorithm. Results show that there exist several operating policies that prove Pareto-dominant over the historical one, that is, they can improve all three management objectives simultaneously. However, while the improvement is rather significant with respect to hydropower production and water supply, it is much more limited in terms of flood control. To understand whether this is due to structural constraints (insufficient storing capacity) or to the imperfect information system (uncertainty in forecasting future flows and thus anticipate floods), we assessed the infrastructural system potential by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.

  10. Is the economic value of hydrological forecasts related to their quality? Case study of the hydropower sector.

    NASA Astrophysics Data System (ADS)

    Cassagnole, Manon; Ramos, Maria-Helena; Thirel, Guillaume; Gailhard, Joël; Garçon, Rémy

    2017-04-01

    The improvement of a forecasting system and the evaluation of the quality of its forecasts are recurrent steps in operational practice. However, the evaluation of forecast value or forecast usefulness for better decision-making is, to our knowledge, less frequent, even if it might be essential in many sectors such as hydropower and flood warning. In the hydropower sector, forecast value can be quantified by the economic gain obtained with the optimization of operations or reservoir management rules. Several hydropower operational systems use medium-range forecasts (up to 7-10 days ahead) and energy price predictions to optimize hydropower production. Hence, the operation of hydropower systems, including the management of water in reservoirs, is impacted by weather, climate and hydrologic variability as well as extreme events. In order to assess how the quality of hydrometeorological forecasts impact operations, it is essential to first understand if and how operations and management rules are sensitive to input predictions of different quality. This study investigates how 7-day ahead deterministic and ensemble streamflow forecasts of different quality might impact the economic gains of energy production. It is based on a research model developed by Irstea and EDF to investigate issues relevant to the links between quality and value of forecasts in the optimisation of energy production at the short range. Based on streamflow forecasts and pre-defined management constraints, the model defines the best hours (i.e., the hours with high energy prices) to produce electricity. To highlight the link between forecasts quality and their economic value, we built several synthetic ensemble forecasts based on observed streamflow time series. These inputs are generated in a controlled environment in order to obtain forecasts of different quality in terms of accuracy and reliability. These forecasts are used to assess the sensitivity of the decision model to forecast quality. Relationships between forecast quality and economic value are discussed. This work is part of the IMPREX project, a research project supported by the European Commission under the Horizon 2020 Framework programme, with grant No. 641811 (http://www.imprex.eu)

  11. Evaluating sub-seasonal skill in probabilistic forecasts of Atmospheric Rivers and associated extreme events

    NASA Astrophysics Data System (ADS)

    Subramanian, A. C.; Lavers, D.; Matsueda, M.; Shukla, S.; Cayan, D. R.; Ralph, M.

    2017-12-01

    Atmospheric rivers (ARs) - elongated plumes of intense moisture transport - are a primary source of hydrological extremes, water resources and impactful weather along the West Coast of North America and Europe. There is strong demand in the water management, societal infrastructure and humanitarian sectors for reliable sub-seasonal forecasts, particularly of extreme events, such as floods and droughts so that actions to mitigate disastrous impacts can be taken with sufficient lead-time. Many recent studies have shown that ARs in the Pacific and the Atlantic are modulated by large-scale modes of climate variability. Leveraging the improved understanding of how these large-scale climate modes modulate the ARs in these two basins, we use the state-of-the-art multi-model forecast systems such as the North American Multi-Model Ensemble (NMME) and the Subseasonal-to-Seasonal (S2S) database to help inform and assess the probabilistic prediction of ARs and related extreme weather events over the North American and European West Coasts. We will present results from evaluating probabilistic forecasts of extreme precipitation and AR activity at the sub-seasonal scale. In particular, results from the comparison of two winters (2015-16 and 2016-17) will be shown, winters which defied canonical El Niño teleconnection patterns over North America and Europe. We further extend this study to analyze probabilistic forecast skill of AR events in these two basins and the variability in forecast skill during certain regimes of large-scale climate modes.

  12. Advancing Data Assimilation in Operational Hydrologic Forecasting: Progresses, Challenges, and Emerging Opportunities

    NASA Technical Reports Server (NTRS)

    Liu, Yuqiong; Weerts, A.; Clark, M.; Hendricks Franssen, H.-J; Kumar, S.; Moradkhani, H.; Seo, D.-J.; Schwanenberg, D.; Smith, P.; van Dijk, A. I. J. M.; hide

    2012-01-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters. The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, the Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1) theoretical or mathematical aspects in DA algorithms, (2) the estimation of different types of uncertainty, (3) new observations and their objective use in hydrologic DA, (4) the use of DA for real-time control of water resources systems, and (5) the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modeling and DA tools or frameworks, and through fostering collaborative efforts among hydrologic modellers, DA developers, and operational forecasters.

  13. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq

    NASA Astrophysics Data System (ADS)

    Yaseen, Zaher Mundher; Jaafar, Othman; Deo, Ravinesh C.; Kisi, Ozgur; Adamowski, Jan; Quilty, John; El-Shafie, Ahmed

    2016-11-01

    Monthly stream-flow forecasting can yield important information for hydrological applications including sustainable design of rural and urban water management systems, optimization of water resource allocations, water use, pricing and water quality assessment, and agriculture and irrigation operations. The motivation for exploring and developing expert predictive models is an ongoing endeavor for hydrological applications. In this study, the potential of a relatively new data-driven method, namely the extreme learning machine (ELM) method, was explored for forecasting monthly stream-flow discharge rates in the Tigris River, Iraq. The ELM algorithm is a single-layer feedforward neural network (SLFNs) which randomly selects the input weights, hidden layer biases and analytically determines the output weights of the SLFNs. Based on the partial autocorrelation functions of historical stream-flow data, a set of five input combinations with lagged stream-flow values are employed to establish the best forecasting model. A comparative investigation is conducted to evaluate the performance of the ELM compared to other data-driven models: support vector regression (SVR) and generalized regression neural network (GRNN). The forecasting metrics defined as the correlation coefficient (r), Nash-Sutcliffe efficiency (ENS), Willmott's Index (WI), root-mean-square error (RMSE) and mean absolute error (MAE) computed between the observed and forecasted stream-flow data are employed to assess the ELM model's effectiveness. The results revealed that the ELM model outperformed the SVR and the GRNN models across a number of statistical measures. In quantitative terms, superiority of ELM over SVR and GRNN models was exhibited by ENS = 0.578, 0.378 and 0.144, r = 0.799, 0.761 and 0.468 and WI = 0.853, 0.802 and 0.689, respectively and the ELM model attained lower RMSE value by approximately 21.3% (relative to SVR) and by approximately 44.7% (relative to GRNN). Based on the findings of this study, several recommendations were suggested for further exploration of the ELM model in hydrological forecasting problems.

  14. Preliminary viability assessment of Lake Mendocino forecast informed reservoir operations

    USGS Publications Warehouse

    Jasperse, Jay; Ralph, Marty; Anderson, Michael; Brekke, Levi D.; Dillabough, Mike; Dettinger, Michael; Haynes, Alan; Hartman, Robert; Jones, Christy; Forbis, Joe; Rutten, Patrick; Talbot, Cary; Webb, Robert H.

    2017-01-01

    This report describes the preliminary viability assessment (PVA) of forecast informed reservoir operations (FIRO) for Lake Mendocino, which is located on the East Fork Russian River three miles east of Ukiah, California. The results described in this report represent the collective activities of the Lake Mendocino FIRO Steering Committee (SC) (SC members are named on the inside cover of the report). The SC consists of water managers and scientists from several federal, state, and local agencies, and universities who have teamed to evaluate whether current technology and scientific understanding can be utilized to improve reliability of meeting water management objectives of Lake Mendocino while not impairing flood protection. While the PVA provides an initial evaluation of the viability of FIRO as a concept, additional steps remain to complete the full viability assessment (FVA). Also, the PVA does not identify how FIRO strategies would be implemented. That effort would be the focus of the FVA, which builds off the analyses developed in the PVA. This report summarizes current Lake Mendocino operation and a preliminary analysis of FIRO alternatives, including analysis methods, results, and recommendations. A set of accompanying reports describes the analysis in detail. These are referred to herein as the Sonoma County Water Agency (SCWA) report, the Hydrologic Engineering Center (HEC) report, and the Center for Western Weather and Water Extremes (CW3E) report (SCWA 2017, USACE 2017, and CW3E 2017, respectively).

  15. High-resolution visibility and air quality forecasting using multi-layer urban canopy model for highly urbanized Hong Kong and the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Piu NG, Chak; HAO, Song; Fat LAM, Yun

    2015-04-01

    Visibility is a universally critical element which affects the public in many aspects, including economic activities, health of local citizens and safety of marine transportation and aviation. The Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility equation, an empirical equation developed by USEPA, has been modified by various studies to fit into the application upon the Asian continent including Hong Kong and China. Often these studies focused on the improvement of the existing IMPROVE equation by modifying its particulate speciation using local observation data. In this study, we developed an Integrated Forecast System (IFS) to predict the next-day air quality and visibility using Weather Research and Forecasting model with Building Energy Parameterization and Building Energy Model (WRF-BEP+BEM) and Community Multi-scale Air Quality Model (CMAQ). Unlike the other studies, the core of this study is to include detailed urbanization impacts with calibrated "IMPROVE equation for PRD" into the modeling system for Hong Kong's environs. The ultra-high resolution land cover information (~1km x 1km) from Google images, was digitized into the Geographic Information System (GIS) for preparing the model-ready input for IFS. The NCEP FNL (Final) Operation Global Analysis (FNL) and the Global Forecasting System (GFS) datasets were tested for both hind-cast and forecast cases, in order to calibrate the input of urban parameters in the WRF-BEP+BEM model. The evaluation of model performance with sensitivity cases was performed on sea surface temperature (SST), surface temperature (T), wind speed/direction with the major pollutants (i.e., PM10, PM2.5, NOx, SO2 and O3) using local observation and will be presented/discussed in this paper. References: 1. Y. L. Lee, R. Sequeira, Visibility degradation across Hong Kong its components and their relative contribution. Atmospheric Environment 2001, 35, 5861-5872. doi:10.1016/S1352-2310(01)00395-8 2. R. Zhang, Q. Bian, J. C. H. Fung, A. K. H. Lau, Mathematical modeling of seasonal variations in visibility in Hong Kong and the Pearl River Delta region. Atmospheric Environment 2013, 77, 803-816. http://dx.doi.org/10.1016/j.atmosenv.2013.05.048

  16. Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy

    NASA Astrophysics Data System (ADS)

    Klotz, S.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.

    2013-12-01

    The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography. These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC. Distribution Statement A: Approved for Public Release; distribution is unlimited

  17. Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy

    NASA Astrophysics Data System (ADS)

    Klotz, S. P.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.

    2012-12-01

    The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography (METOC). These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC.

  18. Integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Mosimann, Markus; Weingartner, Rolf

    2016-04-01

    A key aspect of disaster prevention is flood discharge forecasting which is used for early warning and therefore as a decision support for intervention forces. Hereby, the phase between the issued forecast and the time when the expected flood occurs is crucial for an optimal planning of the intervention. Typically, river discharge forecasts cover the regional level only, i.e. larger catchments. However, it is important to note that these forecasts are not useable directly for specific target groups on local level because these forecasts say nothing about the consequences of the predicted flood in terms of affected areas, number of exposed residents and houses. For this, on one hand simulations of the flooding processes and on the other hand data of vulnerable objects are needed. Furthermore, flood modelling in a high spatial and temporal resolution is required for robust flood loss estimation. This is a resource-intensive task from a computing time point of view. Therefore, in real-time applications flood modelling in 2D is not suited. Thus, forecasting flood losses in the short-term (6h-24h in advance) requires a different approach. Here, we propose a method to downscale the river discharge forecast to a spatially-explicit flood loss forecast. The principal procedure is to generate as many flood scenarios as needed in advance to represent the flooded areas for all possible flood hydrographs, e.g. very high peak discharges of short duration vs. high peak discharges with high volumes. For this, synthetic flood hydrographs were derived from the hydrologic time series. Then, the flooded areas of each scenario were modelled with a 2D flood simulation model. All scenarios were intersected with the dataset of vulnerable objects, in our case residential, agricultural and industrial buildings with information about the number of residents, the object-specific vulnerability, and the monetary value of the objects. This dataset was prepared by a data-mining approach. For each flood scenario, the resulting number of affected residents, houses and therefore the losses are computed. This integral assessment leads to a hydro-economical characterisation of each floodplain. Based on that, a transfer function between discharge forecast and damages can be elaborated. This transfer function describes the relationship between predicted peak discharge, flood volume and the number of exposed houses, residents and the related losses. It also can be used to downscale the regional discharge forecast to a local level loss forecast. In addition, a dynamic map delimiting the probable flooded areas on the basis of the forecasted discharge can be prepared. The predicted losses and the delimited flooded areas provide a complementary information for assessing the need of preventive measures on one hand on the long-term timescale and on the other hand 6h-24h in advance of a predicted flood. To conclude, we can state that the transfer function offers the possibility for an integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts. The procedure has been developed and tested in the alpine and pre-alpine environment of the Aare river catchment upstream of Bern, Switzerland.

  19. An assessment of a North American Multi-Model Ensemble (NMME) based global drought early warning forecast system

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.

    2013-12-01

    One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.

  20. Utilizing Climate Forecasts for Improving Water and Power Systems Coordination

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.

    2016-12-01

    Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.

  1. Impact of Initial Condition Errors and Precipitation Forecast Bias on Drought Simulation and Prediction in the Huaihe River Basin

    NASA Astrophysics Data System (ADS)

    Xu, H.; Luo, L.; Wu, Z.

    2016-12-01

    Drought, regarded as one of the major disasters all over the world, is not always easy to detect and forecast. Hydrological models coupled with Numerical Weather Prediction (NWP) has become a relatively effective method for drought monitoring and prediction. The accuracy of hydrological initial condition (IC) and the skill of NWP precipitation forecast can both heavily affect the quality and skill of hydrological forecast. In the study, the Variable Infiltration Capacity (VIC) model and Global Environmental Multi-scale (GEM) model were used to investigate the roles of IC and NWP forecast accuracy on hydrological predictions. A rev-ESP type experiment was conducted for a number of drought events in the Huaihe river basin. The experiment suggests that errors in ICs indeed affect the drought simulations by VIC and thus the drought monitoring. Although errors introduced in the ICs diminish gradually, the influence sometimes can last beyond 12 months. Using the soil moisture anomaly percentage index (SMAPI) as the metric to measure drought severity for the study region, we are able to quantify that time scale of influence from IC ranges. The analysis shows that the time scale is directly related to the magnitude of the introduced IC range and the average precipitation intensity. In order to explore how systematic bias correction in GEM forecasted precipitation can affect precipitation and hydrological forecast, we then both used station and gridded observations to eliminate biases of forecasted data. Meanwhile, different precipitation inputs with corrected data during drought process were conducted by VIC to investigate the changes of drought simulations, thus demonstrated short-term rolling drought prediction using a better performed corrected precipitation forecast. There is a word limit on the length of the abstract. So make sure your abstract fits the requirement. If this version is too long, try to shorten it as much as you can.

  2. Spatiotemporal drought forecasting using nonlinear models

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Loukas, Athanasios

    2010-05-01

    Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with increase in lead time. Finally, the developed nonlinear models could be used in an early warning system for risk and decision analyses at the study area.

  3. Drought forecasting in Luanhe River basin involving climatic indices

    NASA Astrophysics Data System (ADS)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2017-11-01

    Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the three proposed models outperform the two traditional models and involving large-scale climatic indices can improve the forecasting accuracy.

  4. Demonstrating the Operational Value of Thermodynamic Hyperspectral Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley T.; Jedlovec, Gary J.

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) Weather Forecasting Offices (WFO). As a part of the transition to operations process, SPoRT attempts to identify possible limitations in satellite observations and provide operational forecasters a product that will result in the most impact on their forecasts. One operational forecast challenge that some NWS offices face, is forecasting convection in data-void regions such as large bodies of water. The Atmospheric Infrared Sounder (AIRS) is a sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. This paper will demonstrate an approach to assimilate AIRS profile data into a regional configuration of the WRF model using its three-dimensional variational (3DVAR) assimilation component to be used as a proxy for the individual profiles.

  5. A Framework for Assessing Operational Madden–Julian Oscillation Forecasts: A CLIVAR MJO Working Group Project

    DOE PAGES

    Gottschalck, J.; Wheeler, M.; Weickmann, K.; ...

    2010-09-01

    The U.S. Climate Variability and Predictability (CLIVAR) MJO Working Group (MJOWG) has taken steps to promote the adoption of a uniform diagnostic and set of skill metrics for analyzing and assessing dynamical forecasts of the MJO. Here we describe the framework and initial implementation of the approach using real-time forecast data from multiple operational numerical weather prediction (NWP) centers. The objectives of this activity are to provide a means to i) quantitatively compare skill of MJO forecasts across operational centers, ii) measure gains in forecast skill over time by a given center and the community as a whole, and iii)more » facilitate the development of a multimodel forecast of the MJO. The MJO diagnostic is based on extensive deliberations among the MJOWG in conjunction with input from a number of operational centers and makes use of the MJO index of Wheeler and Hendon. This forecast activity has been endorsed by the Working Group on Numerical Experimentation (WGNE), the international body that fosters the development of atmospheric models for NWP and climate studies. The Climate Prediction Center (CPC) within the National Centers for Environmental Prediction (NCEP) is hosting the acquisition of the forecast data, application of the MJO diagnostic, and real-time display of the standardized forecasts. The activity has contributed to the production of 1–2-week operational outlooks at NCEP and activities at other centers. Further enhancements of the diagnostic's implementation, including more extensive analysis, comparison, illustration, and verification of the contributions from the participating centers, will increase the usefulness and application of these forecasts and potentially lead to more skillful predictions of the MJO and indirectly extratropical and other weather variability (e.g., tropical cyclones) influenced by the MJO. The purpose of this article is to inform the larger scientific and operational forecast communities of the MJOWG forecast effort and invite participation from additional operational centers.« less

  6. Real-Time System for Water Modeling and Management

    NASA Astrophysics Data System (ADS)

    Lee, J.; Zhao, T.; David, C. H.; Minsker, B.

    2012-12-01

    Working closely with the Texas Commission on Environmental Quality (TCEQ) and the University of Texas at Austin (UT-Austin), we are developing a real-time system for water modeling and management using advanced cyberinfrastructure, data integration and geospatial visualization, and numerical modeling. The state of Texas suffered a severe drought in 2011 that cost the state $7.62 billion in agricultural losses (crops and livestock). Devastating situations such as this could potentially be avoided with better water modeling and management strategies that incorporate state of the art simulation and digital data integration. The goal of the project is to prototype a near-real-time decision support system for river modeling and management in Texas that can serve as a national and international model to promote more sustainable and resilient water systems. The system uses National Weather Service current and predicted precipitation data as input to the Noah-MP Land Surface model, which forecasts runoff, soil moisture, evapotranspiration, and water table levels given land surface features. These results are then used by a river model called RAPID, along with an error model currently under development at UT-Austin, to forecast stream flows in the rivers. Model forecasts are visualized as a Web application for TCEQ decision makers, who issue water diversion (withdrawal) permits and any needed drought restrictions; permit holders; and reservoir operation managers. Users will be able to adjust model parameters to predict the impacts of alternative curtailment scenarios or weather forecasts. A real-time optimization system under development will help TCEQ to identify optimal curtailment strategies to minimize impacts on permit holders and protect health and safety. To develop the system we have implemented RAPID as a remotely-executed modeling service using the Cyberintegrator workflow system with input data downloaded from the North American Land Data Assimilation System. The Cyberintegrator workflow system provides RESTful web services for users to provide inputs, execute workflows, and retrieve outputs. Along with REST endpoints, PAW (Publishable Active Workflows) provides the web user interface toolkit for us to develop web applications with scientific workflows. The prototype web application is built on top of workflows with PAW, so that users will have a user-friendly web environment to provide input parameters, execute the model, and visualize/retrieve the results using geospatial mapping tools. In future work the optimization model will be developed and integrated into the workflow.; Real-Time System for Water Modeling and Management

  7. Interoperability challenges in river discharge modelling: A cross domain application scenario

    NASA Astrophysics Data System (ADS)

    Santoro, Mattia; Andres, Volker; Jirka, Simon; Koike, Toshio; Looser, Ulrich; Nativi, Stefano; Pappenberger, Florian; Schlummer, Manuela; Strauch, Adrian; Utech, Michael; Zsoter, Ervin

    2018-06-01

    River discharge is a critical water cycle variable, as it integrates all the processes (e.g. runoff and evapotranspiration) occurring within a river basin and provides a hydrological output variable that can be readily measured. Its prediction is of invaluable help for many water-related tasks including water resources assessment and management, flood protection, and disaster mitigation. Observations of river discharge are important to calibrate and validate hydrological or coupled land, atmosphere and ocean models. This requires using datasets from different scientific domains (Water, Weather, etc.). Typically, such datasets are provided using different technological solutions. This complicates the integration of new hydrological data sources into application systems. Therefore, a considerable effort is often spent on data access issues instead of the actual scientific question. This paper describes the work performed to address multidisciplinary interoperability challenges related to river discharge modeling and validation. This includes definition and standardization of domain specific interoperability standards for hydrological data sharing and their support in global frameworks such as the Global Earth Observation System of Systems (GEOSS). The research was developed in the context of the EU FP7-funded project GEOWOW (GEOSS Interoperability for Weather, Ocean and Water), which implemented a "River Discharge" application scenario. This scenario demonstrates the combination of river discharge observations data from the Global Runoff Data Centre (GRDC) database and model outputs produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) predicting river discharge based on weather forecast information in the context of the GEOSS.

  8. Impact of river discharge on the California coastal ocean circulation and variability

    NASA Astrophysics Data System (ADS)

    Leiva, J.; Chao, Y.; Farrara, J. D.; Zhang, H.

    2016-12-01

    A real-time California coastal ocean nowcast and forecast system is used to quantify the impact of river discharge on the California coastal ocean circulation and variability. River discharge and freshwater runoff is monitored by an extensive network of stream gages maintained through the U.S. Geological Survey, that offers archived stream flow records as well as real-time datasets. Of all the rivers monitored by the USGS, 25 empty into the Pacific Ocean and contribute a potential source of runoff data. Monthly averages for the current water year yield discharge estimates as high as 6,000 cubic meters per second of additional freshwater input into our present model. Using Regional Ocean Modeling System (ROMS), we performed simulations from October 2015 to May 2016 with and without the river discharge. Results of these model simulations are compared with available observations including both in situ and satellite. Particular attention is paid to the salinity simulation. Validation is done with comparisons to sea glider data available through Oregon State University and UC San Diego, which provides depth profiles along the California coast during this time period. Additional validation is performed through comparisons with sea surface salinity measurements from the Soil Moisture and Ocean Salinity (SMOS) mission. Continued testing for previous years, e.g. between 2011 and 2015, is being made using the Aquarius sea surface salinity data. Discharge data collected by the USGS stream gages provides a necessary source of freshwater input that must be accounted for. Incorporating a new runoff source produces a more robust model that generates improved forecasts. Following validation with available sea glider and satellite data, the enhanced model can be adapted to real-time forecasting.

  9. 1997 flood tracking chart for the Red River of the North basin

    USGS Publications Warehouse

    Wiche, G.J.; Martin, C.R.; Albright, L.L.; Wald, Geraldine B.

    1997-01-01

    The flood tracking chart for the Red River of the North Basin can be used by local citizens and emergency response personnel to determine the latest river stage. By comparing the current stage (water-surface elevation above some datum) and predicted flood crest to the recorded peak stages of previous floods, emergency response personnel and residents can make informed decisions concerning the threat to life and property. The flood tracking chart shows a map of the basin with the location of major real-time streamflow-gaging stations in the basin. Click on a station in the map or in the list below the map. Streamflow and stage information for the last 7 days, current stage relative to recorded peak stages, and streamflow for the previous 18 months are provided in graphic form, along with information such as station location and length of record. The National Weather Service has direct access to all information collected by the USGS for use in their forecasting models and routinely broadcasts the forecast information to the news media and on shortwave radio. The radio frequencies are 162.400 MHz (megahertz) in Petersburg, N. Dak., and Detroit Lakes, Minn.; 162.425 MHz in Webster, N. Dak., and Bemidji, Minn.; 162.450 MHz in Roosevelt, Minn.; 162.475 MHz in Grand Forks and Amenia, N. Dak.; and 162.550 MHz in Thief River Falls, Minn. To use the flood tracking chart for a particular property, determine the approximate elevation of the threatened property and the elevation of the gaging station that is closest to the threatened property. For example, most people in Grand Forks, N. Dak., probably will use the Red River of the North at Grand Forks station. Record the flood elevation for the gaging station. Compare the flood elevation to the elevation of the property to immediately know if the property has an impending threat of flooding. One must be cautioned by the fact that the surface of flowing water is not flat but has a slope. Therefore, the water-surface elevation near a threatened property might not be the same as the river stages at the gaging stations. The network of river-gaging stations in the Red River of the North Basin is operated by the USGS in cooperation with the U.S. Army Corps of Engineers, the North Dakota State Water Commission, the Minnesota Department of Natural Resources, the Southeast Cass Water Resources District, the Cass County Joint Water Resource District, the Red River Joint Water Resource Board, and the Red River Watershed Management Board. For more information about USGS programs in North Dakota, contact the District Chief, U.S. Geological Survey, North Dakota District, at (701) 250-7400.

  10. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  11. The Mauna Kea Weather Center: Custom Atmospheric Forecasting Support for Mauna Kea

    NASA Astrophysics Data System (ADS)

    Businger, Steven

    2011-03-01

    The success of operations at Mauna Kea Observatories is strongly influenced by weather conditions. The Mauna Kea Weather Center, an interdisciplinary research program, was established in 1999 to develop and provide custom weather support for Mauna Kea Observatories. The operational forecasting goals of the program are to facilitate the best possible use of favorable atmospheric conditions for scientific benefit and to ensure operational safety. During persistent clear periods, astronomical observing quality varies substantially due to changes in the vertical profiles of temperature, wind, moisture, and turbulence. Cloud and storm systems occasionally cause adverse or even hazardous conditions. A dedicated, daily, real-time mesoscale numerical modeling effort provides crucial forecast guidance in both cases. Several key atmospheric variables are forecast with sufficient skill to be of operational and scientific benefit to the telescopes on Mauna Kea. Summit temperature forecasts allow mirrors to be set to the ambient temperature to reduce image distortion. Precipitable water forecasts allow infrared observations to be prioritized according to atmospheric opacity. Forecasts of adverse and hazardous conditions protect the safety of personnel and allow for scheduling of maintenance when observing is impaired by cloud. The research component of the project continues to improve the accuracy and content of the forecasts. In particular, case studies have resulted in operational forecasts of astronomical observing quality, or seeing.

  12. A Watershed-based spatially-explicit demonstration of an Integrated Environmental Modeling Framework for Ecosystem Services in the Coal River Basin (WV, USA)

    EPA Science Inventory

    We demonstrate a spatially-explicit regional assessment of current condition of aquatic ecoservices in the Coal River Basin (CRB), with limited sensitivity analysis for the atmospheric contaminant mercury. The integrated modeling framework (IMF) forecasts water quality and quant...

  13. Flood-inundation maps for Grand River, Red Cedar River, and Sycamore Creek near Lansing, Michigan

    USGS Publications Warehouse

    Whitehead, Matthew; Ostheimer, Chad J.

    2015-08-26

    These maps, used in conjunction with real-time USGS streamgage data and NWS forecasting, provide critical information to emergency management personnel and the public. This information is used to plan flood response actions, such as evacuations and road closures, as well as aid in postflood recovery efforts.

  14. a 24/7 High Resolution Storm Surge, Inundation and Circulation Forecasting System for Florida Coast

    NASA Astrophysics Data System (ADS)

    Paramygin, V.; Davis, J. R.; Sheng, Y.

    2012-12-01

    A 24/7 forecasting system for Florida is needed because of the high risk of tropical storm surge-induced coastal inundation and damage, and the need to support operational management of water resources, utility infrastructures, and fishery resources. With the anticipated climate change impacts, including sea level rise, coastal areas are facing the challenges of increasing inundation risk and increasing population. Accurate 24/7 forecasting of water level, inundation, and circulation will significantly enhance the sustainability of coastal communities and environments. Supported by the Southeast Coastal Ocean Observing Regional Association (SECOORA) through NOAA IOOS, a 24/7 high-resolution forecasting system for storm surge, coastal inundation, and baroclinic circulation is being developed for Florida using CH3D Storm Surge Modeling System (CH3D-SSMS). CH3D-SSMS is based on the CH3D hydrodynamic model coupled to a coastal wave model SWAN and basin scale surge and wave models. CH3D-SSMS has been verified with surge, wave, and circulation data from several recent hurricanes in the U.S.: Isabel (2003); Charley, Dennis and Ivan (2004); Katrina and Wilma (2005); Ike and Fay (2008); and Irene (2011), as well as typhoons in the Pacific: Fanapi (2010) and Nanmadol (2011). The effects of tropical cyclones on flow and salinity distribution in estuarine and coastal waters has been simulated for Apalachicola Bay as well as Guana-Tolomato-Matanzas Estuary using CH3D-SSMS. The system successfully reproduced different physical phenomena including large waves during Ivan that damaged I-10 Bridges, a large alongshore wave and coastal flooding during Wilma, salinity drop during Fay, and flooding in Taiwan as a result of combined surge and rain effect during Fanapi. The system uses 4 domains that cover entire Florida coastline: West, which covers the Florida panhandle and Tampa Bay; Southwest spans from Florida Keys to Charlotte Harbor; Southeast, covering Biscayne Bay and Miami and East, which continues north to the Florida/Georgia border. The system has a data acquisition and processing module that is used to collect data for model runs (e.g. wind, river flow, precipitation). Depending on the domain, forecasts runs can take ~1-18 hours to complete on a single CPU (8-core) system (1-2 hrs for 2D setup and up to 18 hrs for a 3D setup) with 4 forecasts generated per day. All data is archived / catalogued and model forecast skill is continuously being evaluated. In addition to the baseline forecasts, additional forecasts are being perform using various options for wind forcing (GFS, GFDL, WRF, and parametric hurricane models), model configurations (2D/ 3D), and open boundary conditions by coupling with large scale models (ROMS, NCOM, HYCOM), as well as incorporating real-time and forecast river flow and precipitation data to better understand how to improve model skill. In addition, new forecast products (e.g. more informative inundation maps) are being developed to targeted stakeholders. To support modern data standards, CH3D-SSMS results are available online via a THREDDS server in CF-Compliant NetCDF format as well as other stakeholder-friendly (e.g. GIS) formats. The SECOORA website provides visualization of the model via GODIVA-THREDDS interface.

  15. Flood-inundation maps for the Yellow River at Plymouth, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2016-11-16

    Digital flood-inundation maps for a 4.9-mile reach of the Yellow River at Plymouth, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 05516500, Yellow River at Plymouth, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=05516500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many sites that are often collocated with USGS streamgages, including the Yellow River at Plymouth, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood and forecasts of flood hydrographs at this site.For this study, flood profiles were computed for the Yellow River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the current stage-discharge relations at the Yellow River streamgage, in combination with the flood-insurance study for Marshall County (issued in 2011). The calibrated hydraulic model was then used to determine eight water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability flood profile elevation (flood elevation with recurrence intervals within 100 years) is within the calibrated water-surface elevations for comparison. The simulated water-surface profiles were then used with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar]) in order to delineate the area flooded at each water level.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 05516500, Yellow River at Plymouth, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery efforts.

  16. 14 CFR 135.213 - Weather reports and forecasts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Weather reports and forecasts. 135.213... Operating Limitations and Weather Requirements § 135.213 Weather reports and forecasts. (a) Whenever a person operating an aircraft under this part is required to use a weather report or forecast, that person...

  17. 14 CFR 135.213 - Weather reports and forecasts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Weather reports and forecasts. 135.213... Operating Limitations and Weather Requirements § 135.213 Weather reports and forecasts. (a) Whenever a person operating an aircraft under this part is required to use a weather report or forecast, that person...

  18. 14 CFR 135.213 - Weather reports and forecasts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Weather reports and forecasts. 135.213... Operating Limitations and Weather Requirements § 135.213 Weather reports and forecasts. (a) Whenever a person operating an aircraft under this part is required to use a weather report or forecast, that person...

  19. 14 CFR 135.213 - Weather reports and forecasts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Weather reports and forecasts. 135.213... Operating Limitations and Weather Requirements § 135.213 Weather reports and forecasts. (a) Whenever a person operating an aircraft under this part is required to use a weather report or forecast, that person...

  20. 14 CFR 135.213 - Weather reports and forecasts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Weather reports and forecasts. 135.213... Operating Limitations and Weather Requirements § 135.213 Weather reports and forecasts. (a) Whenever a person operating an aircraft under this part is required to use a weather report or forecast, that person...

  1. Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in Southern France

    NASA Astrophysics Data System (ADS)

    Naulin, J.-P.; Payrastre, O.; Gaume, E.

    2013-04-01

    SummaryAccurate flood forecasts are critical to an efficient flood event management strategy. Until now, hydro-meteorological forecasts have mainly been used to establish early-warnings in France (meteorological and flood vigilance maps) or over the world (flash-flood guidances). These forecasts are typically limited either to the main streams covered by the flood forecasting services or to watersheds with specific assets like check dams, which in most cases are well gauged river sections, thus leaving aside large parts of the territory. This paper presents a distributed hydro-meteorological forecasting approach, which makes use of the high spatial and temporal resolution rainfall estimates that are now available, to provide information at ungauged sites. The proposed system intended to detect road inundation risks had initially been developed and tested in areas of limited size. This paper presents the extension of such a system to an entire region (i.e. the Gard region in Southern France), including over 2000 crossing points between rivers and roads and its validation with respect to a large data set of actual reported road inundations observed during recent flash flood events. These initial validation results appear to be most promising. The eventual proposed tool would provide the necessary information for flood event management services to identify the areas at risk and adopt appropriate safety and rescue measures: i.e. pre-positioning of rescue equipment, interruption of the traffic on the exposed roads and determination of safe access or evacuation routes. Moreover, beyond the specific application to the supervision of a road network, the research undertaken herein also provides results for the performance of hydro-meteorological forecasts on ungauged headwaters.

  2. Predictability and Prediction of Low-Frequency Rainfall Over the Lower Reaches of the Yangtze River Valley on the Time Scale of 20 to 30 days

    NASA Astrophysics Data System (ADS)

    Yang, Qiuming

    2018-01-01

    This paper presents a predictability study of the 20-30-day low-frequency rainfall over the lower reaches of the Yangtze River valley (LYRV). This study relies on an extended complex autoregressive (ECAR) model method, which is based on the principal components of the global 850 hPa low-frequency meridional wind. ECAR is a recently advanced climate forecast method, based on data-driven models. It not only reflects the lagged variations information between the leading low-frequency components of the global circulation and rainfall in a complex space, but also displays the ability to describe the synergy variations of low-frequency components of a climate system in a low dimensional space. A 6-year forecast experiment is conducted on the low-frequency rainfall over the LYRV for the extended-range daily forecasts during 2009-2014, based on the time-varying high-order ECAR. These experimental results demonstrate that the useful skills of the real-time forecasts are achieved for an extended lead-time up to 28 days with a fifth-order model, and are also shown to be 27-day lead for forecasts which are initiated from weak intraseasonal oscillation (ISO). This high-order ECAR displays the ability to significantly improve the predictions of the ISO. The analysis of the 20-30-day ISO predictability reveals a predictability limit of about 28-40 days. Therefore, the forecast framework used in this study is determined to have the potential to assist in improving the real-time forecasts for the 20-30-day oscillations related to the heavy rainfall over the LYRV in summer.

  3. Untangling Trends and Drivers of Changing River Discharge Along Florida's Gulf Coast

    NASA Astrophysics Data System (ADS)

    Glodzik, K.; Kaplan, D. A.; Klarenberg, G.

    2017-12-01

    Along the relatively undeveloped Big Bend coastline of Florida, discharge in many rivers and springs is decreasing. The causes are unclear, though they likely include a combination of groundwater extraction for water supply, climate variability, and altered land use. Saltwater intrusion from altered freshwater influence and sea level rise is causing transformative ecosystem impacts along this flat coastline, including coastal forest die-off and oyster reef collapse. A key uncertainty for understanding river discharge change is predicting discharge from rainfall, since Florida's karstic bedrock stores large amounts of groundwater, which has a long residence time. This study uses Dynamic Factor Analysis (DFA), a multivariate data reduction technique for time series, to find common trends in flow and reveal hydrologic variables affecting flow in eight Big Bend rivers since 1965. The DFA uses annual river flows as response time series, and climate data (annual rainfall and evapotranspiration by watershed) and climatic indices (El Niño Southern Oscillation [ENSO] Index and North Atlantic Oscillation [NAO] Index) as candidate explanatory variables. Significant explanatory variables (one evapotranspiration and three rainfall time series) explained roughly 50% of discharge variation across rivers. Significant trends (representing unexplained variation) were shared among rivers, with geographical grouping of five northern rivers and three southern rivers, along with a strong downward trend affecting six out of eight systems. ENSO and NAO had no significant impact. Advancing knowledge of these dynamics is necessary for forecasting how altered rainfall and temperatures from climate change may impact flows. Improved forecasting is especially important given Florida's reliance on groundwater extraction to support its growing population.

  4. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  5. Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers

    USGS Publications Warehouse

    Ralph, F.M.; Sukovich, E.; Reynolds, D.; Dettinger, M.; Weagle, S.; Clark, W.; Neiman, P.J.

    2010-01-01

    Extreme precipitation events, and the quantitative precipitation forecasts (QPFs) associated with them, are examined. The study uses data from the Hydrometeorology Testbed (HMT), which conducted its first field study in California during the 2005/06 cool season. National Weather Service River Forecast Center (NWS RFC) gridded QPFs for 24-h periods at 24-h (day 1), 48-h (day 2), and 72-h (day 3) forecast lead times plus 24-h quantitative precipitation estimates (QPEs) fromsites in California (CA) and Oregon-Washington (OR-WA) are used. During the 172-day period studied, some sites received more than 254 cm (100 in.) of precipitation. The winter season produced many extreme precipitation events, including 90 instances when a site received more than 7.6 cm (3.0 in.) of precipitation in 24 h (i.e., an "event") and 17 events that exceeded 12.7 cm (24 h)-1 [5.0 in. (24 h)-1]. For the 90 extreme events f.7.6 cm (24 h)-1 [3.0 in. (24 h)-1]g, almost 90% of all the 270 QPFs (days 1-3) were biased low, increasingly so with greater lead time. Of the 17 observed events exceeding 12.7 cm (24 h)-1 [5.0 in. (24 h)-1], only 1 of those events was predicted to be that extreme. Almost all of the extreme events correlated with the presence of atmospheric river conditions. Total seasonal QPF biases for all events fi.e., $0.025 cm (24 h)-1 [0.01 in. (24 h)-1]g were sensitive to local geography and were generally biased low in the California-Nevada River Forecast Center (CNRFC) region and high in the Northwest River Forecast Center(NWRFC) domain. The low bias in CA QPFs improved with shorter forecast lead time and worsened for extreme events. Differences were also noted between the CNRFC and NWRFC in terms of QPF and the frequency of extreme events. A key finding from this study is that there were more precipitation events .7.6 cm (24 h)-1 [3.0 in. (24 h)21] in CA than in OR-WA. Examination of 422 Cooperative Observer Program (COOP) sites in the NWRFC domain and 400 in the CNRFC domain found that the thresholds for the top 1% and top 0.1%of precipitation events were 7.6 cm (24 h)21 [3.0 in. (24 h)-1] and 14.2 cm (24 h)-1 [5.6 in. (24 h)-1] or greater for the CNRFC and only 5.1 cm (24 h)-1 [2.0 in. (24 h)-1] and 9.4 cm (24 h)-1 [3.7 in. (24 h)-1] for the NWRFC, respectively. Similar analyses for all NWS RFCs showed that the threshold for the top 1% of events varies from;3.8 cm (24 h)-1 [1.5 in. (24 h)-1] in the Colorado Basin River Forecast Center (CBRFC) to~5.1 cm (24 h)-1 [3.0 in. (24 h)-1] in the northern tier of RFCs and;7.6 cm (24 h)-1 [3.0 in. (24 h)-1] in both the southern tier and the CNRFC. It is recommended that NWS QPF performance in the future be assessed for extreme events using these thresholds. ?? 2010 American Meteorological Society.

  6. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  7. Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.

    2012-01-01

    Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  8. Forecasting risk along a river basin using a probabilistic and deterministic model for environmental risk assessment of effluents through ecotoxicological evaluation and GIS.

    PubMed

    Gutiérrez, Simón; Fernandez, Carlos; Barata, Carlos; Tarazona, José Vicente

    2009-12-20

    This work presents a computer model for Risk Assessment of Basins by Ecotoxicological Evaluation (RABETOX). The model is based on whole effluent toxicity testing and water flows along a specific river basin. It is capable of estimating the risk along a river segment using deterministic and probabilistic approaches. The Henares River Basin was selected as a case study to demonstrate the importance of seasonal hydrological variations in Mediterranean regions. As model inputs, two different ecotoxicity tests (the miniaturized Daphnia magna acute test and the D.magna feeding test) were performed on grab samples from 5 waste water treatment plant effluents. Also used as model inputs were flow data from the past 25 years, water velocity measurements and precise distance measurements using Geographical Information Systems (GIS). The model was implemented into a spreadsheet and the results were interpreted and represented using GIS in order to facilitate risk communication. To better understand the bioassays results, the effluents were screened through SPME-GC/MS analysis. The deterministic model, performed each month during one calendar year, showed a significant seasonal variation of risk while revealing that September represents the worst-case scenario with values up to 950 Risk Units. This classifies the entire area of study for the month of September as "sublethal significant risk for standard species". The probabilistic approach using Monte Carlo analysis was performed on 7 different forecast points distributed along the Henares River. A 0% probability of finding "low risk" was found at all forecast points with a more than 50% probability of finding "potential risk for sensitive species". The values obtained through both the deterministic and probabilistic approximations reveal the presence of certain substances, which might be causing sublethal effects in the aquatic species present in the Henares River.

  9. Performance of a coupled lagged ensemble weather and river runoff prediction model system for the Alpine Ammer River catchment

    NASA Astrophysics Data System (ADS)

    Smiatek, G.; Kunstmann, H.; Werhahn, J.

    2012-04-01

    The Ammer River catchment located in the Bavarian Ammergau Alps and alpine forelands, Germany, represents with elevations reaching 2185 m and annual mean precipitation between1100 and 2000 mm a very demanding test ground for a river runoff prediction system. Large flooding events in 1999 and 2005 motivated the development of a physically based prediction tool in this area. Such a tool is the coupled high resolution numerical weather and river runoff forecasting system AM-POE that is being studied in several configurations in various experiments starting from the year 2005. Corner stones of the coupled system are the hydrological water balance model WaSiM-ETH run at 100 m grid resolution, the numerical weather prediction model (NWP) MM5 driven at 3.5 km grid cell resolution and the Perl Object Environment (POE) framework. POE implements the input data download from various sources, the input data provision via SOAP based WEB services as well as the runs of the hydrology model both with observed and with NWP predicted meteorology input. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. Results obtained in the years 2005-2011 reveal that river runoff simulations depict high correlation with observed runoff when driven with monitored observations in hindcast experiments. The ability to runoff forecasts is depending on lead times in the lagged ensemble prediction and shows still limitations resulting from errors in timing and total amount of the predicted precipitation in the complex mountainous area. The presentation describes the system implementation, and demonstrates the application of the POE framework in networking, distributed computing and in the setup of various experiments as well as long term results of the system application in the years 2005 - 2011.

  10. Management Options During the 2011-2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation.

    PubMed

    Leitman, S; Pine, W E; Kiker, G

    2016-08-01

    The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.

  11. Management Options During the 2011-2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation

    NASA Astrophysics Data System (ADS)

    Leitman, S.; Pine, W. E.; Kiker, G.

    2016-08-01

    The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.

  12. The impacts of wind power integration on sub-daily variation in river flows downstream of hydroelectric dams.

    PubMed

    Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W

    2014-08-19

    Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.

  13. Verification of Ensemble Forecasts for the New York City Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.

    2012-12-01

    The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble forecasts is needed to verify that the post-processed forecasts are unbiased, statistically reliable, and preserve the skill inherent in the "raw" NWS ensemble forecasts. A verification procedure and set of metrics will be presented that provide an objective assessment of ensemble forecasts. The procedure will be applied to both raw ensemble hindcasts and to post-processed ensemble hindcasts. The verification metrics will be used to validate proper functioning of the post-processor and to provide a benchmark for comparison of different types of forecasts. For example, current NWS ensemble forecasts are based on climatology, using each historical year to generate a forecast trace. The NWS Hydrologic Ensemble Forecast System (HEFS) under development will utilize output from both the National Oceanic Atmospheric Administration (NOAA) Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFS). Incorporating short-term meteorological forecasts and longer-term climate forecast information should provide sharper, more accurate forecasts. Hindcasts from HEFS will enable New York City to generate verification results to validate the new forecasts and further fine-tune system operating rules. Project verification results will be presented for different watersheds across a range of seasons, lead times, and flow levels to assess the quality of the current ensemble forecasts.

  14. Communicating uncertainty in hydrological forecasts: mission impossible?

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted scenarios, is essential. We believe that the efficient communication of uncertainty in hydro-meteorological forecasts is not a mission impossible. Questions remaining unanswered in probabilistic hydrological forecasting should not neutralize the goal of such a mission, and the suspense kept should instead act as a catalyst for overcoming the remaining challenges.

  15. Multi-time scale Climate Informed Stochastic Hybrid Simulation-Optimization Model (McISH model) for Multi-Purpose Reservoir System

    NASA Astrophysics Data System (ADS)

    Lu, M.; Lall, U.

    2013-12-01

    In order to mitigate the impacts of climate change, proactive management strategies to operate reservoirs and dams are needed. A multi-time scale climate informed stochastic model is developed to optimize the operations for a multi-purpose single reservoir by simulating decadal, interannual, seasonal and sub-seasonal variability. We apply the model to a setting motivated by the largest multi-purpose dam in N. India, the Bhakhra reservoir on the Sutlej River, a tributary of the Indus. This leads to a focus on timing and amplitude of the flows for the monsoon and snowmelt periods. The flow simulations are constrained by multiple sources of historical data and GCM future projections, that are being developed through a NSF funded project titled 'Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoon Asia'. The model presented is a multilevel, nonlinear programming model that aims to optimize the reservoir operating policy on a decadal horizon and the operation strategy on an updated annual basis. The model is hierarchical, in terms of having a structure that two optimization models designated for different time scales are nested as a matryoshka doll. The two optimization models have similar mathematical formulations with some modifications to meet the constraints within that time frame. The first level of the model is designated to provide optimization solution for policy makers to determine contracted annual releases to different uses with a prescribed reliability; the second level is a within-the-period (e.g., year) operation optimization scheme that allocates the contracted annual releases on a subperiod (e.g. monthly) basis, with additional benefit for extra release and penalty for failure. The model maximizes the net benefit of irrigation, hydropower generation and flood control in each of the periods. The model design thus facilitates the consistent application of weather and climate forecasts to improve operations of reservoir systems. The decadal flow simulations are re-initialized every year with updated climate projections to improve the reliability of the operation rules for the next year, within which the seasonal operation strategies are nested. The multi-level structure can be repeated for monthly operation with weekly subperiods to take advantage of evolving weather forecasts and seasonal climate forecasts. As a result of the hierarchical structure, sub-seasonal even weather time scale updates and adjustment can be achieved. Given an ensemble of these scenarios, the McISH reservoir simulation-optimization model is able to derive the desired reservoir storage levels, including minimum and maximum, as a function of calendar date, and the associated release patterns. The multi-time scale approach allows adaptive management of water supplies acknowledging the changing risks, meeting both the objectives over the decade in expected value and controlling the near term and planning period risk through probabilistic reliability constraints. For the applications presented, the target season is the monsoon season from June to September. The model also includes a monthly flood volume forecast model, based on a Copula density fit to the monthly flow and the flood volume flow. This is used to guide dynamic allocation of the flood control volume given the forecasts.

  16. a system approach to the long term forecasting of the climat data in baikal region

    NASA Astrophysics Data System (ADS)

    Abasov, N.; Berezhnykh, T.

    2003-04-01

    The Angara river running from Baikal with a cascade of hydropower plants built on it plays a peculiar role in economy of the region. With view of high variability of water inflow into the rivers and lakes (long-term low water periods and catastrophic floods) that is due to climatic peculiarities of the water resource formation, a long-term forecasting is developed and applied for risk decreasing at hydropower plants. Methodology and methods of long-term forecasting of natural-climatic processes employs some ideas of the research schools by Academician I.P.Druzhinin and Prof. A.P.Reznikhov and consists in detailed investigation of cause-effect relations, finding out physical analogs and their application to formalized methods of long-term forecasting. They are divided into qualitative (background method; method of analogs based on solar activity), probabilistic and approximative methods (analog-similarity relations; discrete-continuous model). These forecasting methods have been implemented in the form of analytical aids of the information-forecasting software "GIPSAR" that provides for some elements of artificial intelligence. Background forecasts of the runoff of the Ob, the Yenisei, the Angara Rivers in the south of Siberia are based on space-time regularities that were revealed on taking account of the phase shifts in occurrence of secular maxima and minima on integral-difference curves of many-year hydrological processes in objects compared. Solar activity plays an essential role in investigations of global variations of climatic processes. Its consideration in the method of superimposed epochs has allowed a conclusion to be made on the higher probability of the low-water period in the actual inflow to Lake Baikal that takes place on the increasing branch of solar activity of its 11-year cycle. The higher probability of a high-water period is observed on the decreasing branch of solar activity from the 2nd to the 5th year after its maximum. Probabilistic method of forecasting (with a year in advance) is based on the property of alternation of series of years with increase and decrease in the observed indicators (characteristic indices) of natural processes. Most of the series (98.4-99.6%) are represented by series of one to three years. The problem of forecasting is divided into two parts: 1) qualitative forecast of the probability that the started series will either continue or be replaced by a new series during the next year that is based on the frequency characteristics of series of years with increase or decrease of the forecasted sequence); 2) quantitative estimate of the forecasted value in the form of a curve of conditional frequencies is made on the base of intra-sequence interrelations among hydrometeorological elements by their differentiation with respect to series of years of increase or decrease, by construction of particular curves of conditional frequencies of the runoff for each expected variant of series development and by subsequent construction a generalized curve. Approximative learning methods form forecasted trajectories of the studied process indices for a long-term perspective. The method of analog-similarity relations is based on the fact that long periods of observations reveal some similarities in the character of variability of indices for some fragments of the sequence x (t) by definite criteria. The idea of the method is to estimate similarity of such fragments of the sequence that have been called the analogs. The method applies multistage optimization of both external parameters (e.g. the number of iterations of the sliding averaging needed to decompose the sequence into two components: the smoothed one with isolated periodic oscillations and the residual or random one). The method is applicable to current terms of forecasts and ending with the double solar cycle. Using a special procedure of integration, it separates terms with the best results for the given optimization subsample. Several optimal vectors of parameters obtained are tested on the examination (verifying) subsample. If the procedure is successful, the forecast is immediately made by integration of several best solutions. Peculiarities of forecasting extreme processes. Methods of long-term forecasting allow the sufficiently reliable forecasts to be made within the interval of xmin+Δ_1, xmax - Δ_2 (i.e. in the interval of medium values of indices). Meanwhile, in the intervals close to extreme ones, reliability of forecasts is substantially lower. While for medium values the statistics of the100-year sequence gives acceptable results owing to a sufficiently large number of revealed analogs that correspond to prognostic samples, for extreme values the situation is quite different, first of all by virtue of poverty of statistical data. Decreasing the values of Δ_1,Δ_2: Δ_1,Δ_2 rightarrow 0 (by including them into optimization parameters of the considered forecasting methods) could be one of the ways to improve reliability of forecasts. Partially, such an approach has been realized in the method of analog-similarity relations, giving the possibility to form a range of possible forecasted trajectories in two variants - from the minimum possible trajectory to the maximum possible one. Reliability of long-term forecasts. Both the methodology and the methods considered above have been realized as the information-forecasting system "GIPSAR". The system includes some tools implementing several methods of forecasting, analysis of initial and forecasted information, a developed database, a set of tools for verification of algorithms, additional information on the algorithms of statistical processing of sequences (sliding averaging, integral-difference curves, etc.), aids to organize input of initial information (in its various forms) as well as aids to draw up output prognostic documents. Risk management. The normal functioning of the Angara cascade is periodically interrupted by risks of two types that take place in the Baikal, the Bratsk and Ust-Ilimsk reservoirs: long low-water periods and sudden periods of extremely high water levels. For example, low-water periods, observed in the reservoirs of the Angara cascade can be classified under four risk categories : 1 - acceptable (negligible reduction of electric power generation by hydropower plants; certain difficulty in meeting environmental and navigation requirements); 2 - significant (substantial reduction of electric power generation by hydropower plants; certain restriction on water releases for navigation; violation of environmental requirements in some years); 3 - emergency (big losses in electric power generation; limited electricity supply to large consumers; significant restriction of water releases for navigation; threat of exposure of drinkable water intake works; violation of environmental requirements for a number of years); 4 - catastrophic (energy crisis; social crisis exposure of drinkable water intake works; termination of navigation; environmental catastrophe). Management of energy systems consists in operative, many-year regulation and perspective planning and has to take into account the analysis of operative data (water reserves in reservoirs), long-term statistics and relations among natural processes and also forecasts - short-term (for a day, week, decade), long-term and/or super-long-term (from a month to several decades). Such natural processes as water inflow to reservoirs, air temperatures during heating periods depend in turn on external factors: prevailing types of atmospheric circulation, intensity of the 11- and 22-year cycles of solar activity, volcanic activity, interaction between the ocean and atmosphere, etc. Until recently despite the formed scientific schools on long-term forecasting (I.P.Druzhinin, A.P.Reznikhov) the energy system management has been based on specially drawn dispatching schedules and long-term hydrometeorological forecasts only without attraction of perspective forecasted indices. Insertion of a parallel block of forecast (based on the analysis of data on natural processes and special methods of forecasting) into the scheme can largely smooth unfavorable consequences from the impact of natural processes on sustainable development of energy systems and especially on its safe operation. However, the requirements to reliability and accuracy of long-term forecasts significantly increase. The considered approach to long term forecasting can be used for prediction: mean winter and summer air temperatures, droughts and wood fires.

  17. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model that does not contain AIRS profiles.

  18. Ensemble streamflow assimilation with the National Water Model.

    NASA Astrophysics Data System (ADS)

    Rafieeinasab, A.; McCreight, J. L.; Noh, S.; Seo, D. J.; Gochis, D.

    2017-12-01

    Through case studies of flooding across the US, we compare the performance of the National Water Model (NWM) data assimilation (DA) scheme to that of a newly implemented ensemble Kalman filter approach. The NOAA National Water Model (NWM) is an operational implementation of the community WRF-Hydro modeling system. As of August 2016, the NWM forecasts of distributed hydrologic states and fluxes (including soil moisture, snowpack, ET, and ponded water) over the contiguous United States have been publicly disseminated by the National Center for Environmental Prediction (NCEP) . It also provides streamflow forecasts at more than 2.7 million river reaches up to 30 days in advance. The NWM employs a nudging scheme to assimilate more than 6,000 USGS streamflow observations and provide initial conditions for its forecasts. A problem with nudging is how the forecasts relax quickly to open-loop bias in the forecast. This has been partially addressed by an experimental bias correction approach which was found to have issues with phase errors during flooding events. In this work, we present an ensemble streamflow data assimilation approach combining new channel-only capabilities of the NWM and HydroDART (a coupling of the offline WRF-Hydro model and NCAR's Data Assimilation Research Testbed; DART). Our approach focuses on the single model state of discharge and incorporates error distributions on channel-influxes (overland and groundwater) in the assimilation via an ensemble Kalman filter (EnKF). In order to avoid filter degeneracy associated with a limited number of ensemble at large scale, DART's covariance inflation (Anderson, 2009) and localization capabilities are implemented and evaluated. The current NWM data assimilation scheme is compared to preliminary results from the EnKF application for several flooding case studies across the US.

  19. Seasonal streamflow forecast with machine learning and teleconnection indices in the context non-stationary climate

    NASA Astrophysics Data System (ADS)

    Haguma, D.; Leconte, R.

    2017-12-01

    Spatial and temporal water resources variability are associated with large-scale pressure and circulation anomalies known as teleconnections that influence the pattern of the atmospheric circulation. Teleconnection indices have been used successfully to forecast streamflow in short term. However, in some watersheds, classical methods cannot establish relationships between seasonal streamflow and teleconnection indices because of weak correlation. In this study, machine learning algorithms have been applied for seasonal streamflow forecast using teleconnection indices. Machine learning offers an alternative to classical methods to address the non-linear relationship between streamflow and teleconnection indices the context non-stationary climate. Two machine learning algorithms, random forest (RF) and support vector machine (SVM), with teleconnection indices associated with North American climatology, have been used to forecast inflows for one and two leading seasons for the Romaine River and Manicouagan River watersheds, located in Quebec, Canada. The indices are Pacific-North America (PNA), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), Arctic Oscillation (AO) and Pacific Decadal Oscillation (PDO). The results showed that the machine learning algorithms have an important predictive power for seasonal streamflow for one and two leading seasons. The RF performed better for training and SVM generally have better results with high predictive capability for testing. The RF which is an ensemble method, allowed to assess the uncertainty of the forecast. The integration of teleconnection indices responds to the seasonal forecast of streamflow in the conditions of the non-stationarity the climate, although the teleconnection indices have a weak correlation with streamflow.

  20. Evaluating the performance of real-time streamflow forecasting using multi-satellite precipitation products in the Upper Zambezi, Africa

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Valdes, J. B.; Wi, S.; Serrat-Capdevila, A.; Valdés-Pineda, R.; Durcik, M.

    2016-12-01

    In under-instrumented basins around the world, accurate and timely forecasts of river streamflows have the potential of assisting water and natural resource managers in their management decisions. The Upper Zambezi river basin is the largest basin in southern Africa and its water resources are critical to sustainable economic growth and poverty reduction in eight riparian countries. We present a real-time streamflow forecast for the basin using a multi-model-multi-satellite approach that allows accounting for model and input uncertainties. Three distributed hydrologic models with different levels of complexity: VIC, HYMOD_DS, and HBV_DS are setup at a daily time step and a 0.25 degree spatial resolution for the basin. The hydrologic models are calibrated against daily observed streamflows at the Katima-Mulilo station using a Genetic Algorithm. Three real-time satellite products: Climate Prediction Center's morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and Tropical Rainfall Measuring Mission (TRMM-3B42RT) are bias-corrected with daily CHIRPS estimates. Uncertainty bounds for predicted flows are estimated with the Inverse Variance Weighting method. Because concentration times in the basin range from a few days to more than a week, we include the use of precipitation forecasts from the Global Forecasting System (GFS) to predict daily streamflows in the basin with a 10-days lead time. The skill of GFS-predicted streamflows is evaluated and the usefulness of the forecasts for short term water allocations is presented.

  1. General characteristics of causes of urban flood damage and flood forecasting/warning system in Seoul, Korea Young-Il Moon1, 2, Jong-Suk Kim1, 2 1 Department of Civil Engineering, University of Seoul, Seoul 130-743, South Korea 2 Urban Flood Research Inst

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-Suk

    2015-04-01

    Due to rapid urbanization and climate change, the frequency of concentrated heavy rainfall has increased, causing urban floods that result in casualties and property damage. As a consequence of natural disasters that occur annually, the cost of damage in Korea is estimated to be over two billion US dollars per year. As interest in natural disasters increase, demands for a safe national territory and efficient emergency plans are on the rise. In addition to this, as a part of the measures to cope with the increase of inland flood damage, it is necessary to build a systematic city flood prevention system that uses technology to quantify flood risk as well as flood forecast based on both rivers and inland water bodies. Despite the investment and efforts to prevent landside flood damage, research and studies of landside-river combined hydro-system is at its initial stage in Korea. Therefore, the purpose of this research introduces the causes of flood damage in Seoul and shows a flood forecasting and warning system in urban streams of Seoul. This urban flood forecasting and warning system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area and also supports synthetic decision-making for prevention through real-time monitoring. Although we cannot prevent damage from typhoons or localized heavy rain, we can minimize that damage with accurate and timely forecast and a prevention system. To this end, we developed a flood forecasting and warning system, so in case of an emergency there is enough time for evacuation and disaster control. Keywords: urban flooding, flood risk, inland-river system, Korea Acknowledgments This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  2. Monthly to seasonal low flow prediction: statistical versus dynamical models

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Klein, Bastian; Meissner, Dennis; Rademacher, Silke

    2016-04-01

    While the societal and economical impacts of floods are well documented and assessable, the impacts of lows flows are less studied and sometimes overlooked. For example, over the western part of Europe, due to intense inland waterway transportation, the economical loses due to low flows are often similar compared to the ones due to floods. In general, the low flow aspect has the tendency to be underestimated by the scientific community. One of the best examples in this respect is the facts that at European level most of the countries have an (early) flood alert system, but in many cases no real information regarding the development, evolution and impacts of droughts. Low flows, occurring during dry periods, may result in several types of problems to society and economy: e.g. lack of water for drinking, irrigation, industrial use and power production, deterioration of water quality, inland waterway transport, agriculture, tourism, issuing and renewing waste disposal permits, and for assessing the impact of prolonged drought on aquatic ecosystems. As such, the ever-increasing demand on water resources calls for better a management, understanding and prediction of the water deficit situation and for more reliable and extended studies regarding the evolution of the low flow situations. In order to find an optimized monthly to seasonal forecast procedure for the German waterways, the Federal Institute of Hydrology (BfG) is exploring multiple approaches at the moment. On the one hand, based on the operational short- to medium-range forecasting chain, existing hydrological models are forced with two different hydro-meteorological inputs: (i) resampled historical meteorology generated by the Ensemble Streamflow Prediction approach and (ii) ensemble (re-) forecasts of ECMWF's global coupled ocean-atmosphere general circulation model, which have to be downscaled and bias corrected before feeding the hydrological models. As a second approach BfG evaluates in cooperation with the Alfred Wegener Institute a purely statistical scheme to generate streamflow forecasts for several months ahead. Instead of directly using teleconnection indices (e.g. NAO, AO) the idea is to identify regions with stable teleconnections between different global climate information (e.g. sea surface temperature, geopotential height etc.) and streamflow at different gauges relevant for inland waterway transport. So-called stability (correlation) maps are generated showing regions where streamflow and climate variable from previous months are significantly correlated in a 21 (31) years moving window. Finally, the optimal forecast model is established based on a multiple regression analysis of the stable predictors. We will present current results of the aforementioned approaches with focus on the River Rhine (being one of the world's most frequented waterways and the backbone of the European inland waterway network) and the Elbe River. Overall, our analysis reveals the existence of a valuable predictability of the low flows at monthly and seasonal time scales, a result that may be useful to water resources management. Given that all predictors used in the models are available at the end of each month, the forecast scheme can be used operationally to predict extreme events and to provide early warnings for upcoming low flows.

  3. The Operational Forecasting of Undesirable Pollution Levels Based on a Combined Pollution Index

    ERIC Educational Resources Information Center

    McAdie, H. G.; Gillies, D. K. A.

    1973-01-01

    Describes the application of an air pollution index, in conjunction with synoptic meteorological forecasting, to an operational program for forecasting pollution potential in the Sarnia (Ontario) petrochemical complex. (JR)

  4. Optimal operating rules definition in complex water resource systems combining fuzzy logic, expert criteria and stochastic programming

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2016-04-01

    This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to foresee future inflows depending on present and past hydrological and meteorological variables actually used by the reservoir managers to define likely inflow scenarios. A Decision Support System (DSS) was created coupling the FRB systems and the inflow prediction scheme in order to give the user a set of possible optimal releases in response to the reservoir states at the beginning of the irrigation season and the fuzzy inflow projections made using hydrological and meteorological information. The results show that the optimal DSS created using the FRB operating policies are able to increase the amount of water allocated to the users in 20 to 50 Mm3 per irrigation season with respect to the current policies. Consequently, the mechanism used to define optimal operating rules and transform them into a DSS is able to increase the water deliveries in the Jucar River Basin, combining expert criteria and optimization algorithms in an efficient way. This study has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) and FEDER funds. It also has received funding from the European Union's Horizon 2020 research and innovation programme under the IMPREX project (grant agreement no: 641.811).

  5. Verification of operational solar flare forecast: Case of Regional Warning Center Japan

    NASA Astrophysics Data System (ADS)

    Kubo, Yûki; Den, Mitsue; Ishii, Mamoru

    2017-08-01

    In this article, we discuss a verification study of an operational solar flare forecast in the Regional Warning Center (RWC) Japan. The RWC Japan has been issuing four-categorical deterministic solar flare forecasts for a long time. In this forecast verification study, we used solar flare forecast data accumulated over 16 years (from 2000 to 2015). We compiled the forecast data together with solar flare data obtained with the Geostationary Operational Environmental Satellites (GOES). Using the compiled data sets, we estimated some conventional scalar verification measures with 95% confidence intervals. We also estimated a multi-categorical scalar verification measure. These scalar verification measures were compared with those obtained by the persistence method and recurrence method. As solar activity varied during the 16 years, we also applied verification analyses to four subsets of forecast-observation pair data with different solar activity levels. We cannot conclude definitely that there are significant performance differences between the forecasts of RWC Japan and the persistence method, although a slightly significant difference is found for some event definitions. We propose to use a scalar verification measure to assess the judgment skill of the operational solar flare forecast. Finally, we propose a verification strategy for deterministic operational solar flare forecasting. For dichotomous forecast, a set of proposed verification measures is a frequency bias for bias, proportion correct and critical success index for accuracy, probability of detection for discrimination, false alarm ratio for reliability, Peirce skill score for forecast skill, and symmetric extremal dependence index for association. For multi-categorical forecast, we propose a set of verification measures as marginal distributions of forecast and observation for bias, proportion correct for accuracy, correlation coefficient and joint probability distribution for association, the likelihood distribution for discrimination, the calibration distribution for reliability and resolution, and the Gandin-Murphy-Gerrity score and judgment skill score for skill.

  6. Ocean modelling and Early-Warning System for the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    de Lima Rego, Joao; Yan, Kun; Sisomphon, Piyamarn; Thanathanphon, Watin; Twigt, Daniel; Irazoqui Apecechea, Maialen

    2017-04-01

    Storm surges associated with severe tropical cyclones are among the most hazardous and damaging natural disasters to coastal areas. The Gulf of Thailand (GoT) has been periodically affected by typhoon induced storm surges in the past (e.g. storm Harriet in 1962, storm Gay in 1989 and storm Linda in 1997). Due to increased touristic / economic development and increased population density in the coastal zone, the combined effect and risk of high water level and increased rainfall / river discharge has dramatically increased and are expected to increase in future due to climate change effects. This presentation describes the development and implementation of the first real-time operational storm surge, wave and wave setup forecasting system in the GoT, a joint applied research initiative by Deltares in The Netherlands and the Hydro and Agro Informatics Institute (HAII) in Thailand. The modelling part includes a new hydrodynamic model to simulate tides and storm surges and two wave models (regional and local). The hydrodynamic model is based on Delft3D Flexible Mesh, capable of simulating water levels and detailed flows. The regional and the recently-developed local wave model are based on the SWAN model, a third-generation wave model. The operational platform is based on Delft-FEWS software, which coordinates all the data inputs, the modelling tasks and the automatic forecast exports including overland inundation in the upper Gulf of Thailand. The main objective of the Gulf of Thailand EWS is to provide daily accurate storm surge, wave and wave setup estimates automatically with various data exports possibilities to support this task. It adds a coastal component to HAII's existing practice of providing daily reports on fluvial flood forecasts, used for decision-support in issuing flood warnings for inland water systems in Thailand. Every day, three-day coastal forecasts are now produced based on the latest regional meteorological predictions. Examples are given to illustrate the system's development and main features, with a focus on decision-support products.

  7. Flood-inundation maps for White River at Petersburg, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2015-08-20

    The availability of these maps along with Internet information regarding current stage from the USGS streamgage at White River at Petersburg, Ind., and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  8. HESS Opinions "On forecast (in)consistency in a hydro-meteorological chain: curse or blessing?"

    NASA Astrophysics Data System (ADS)

    Pappenberger, F.; Cloke, H. L.; Persson, A.; Demeritt, D.

    2011-01-01

    Flood forecasting increasingly relies on Numerical Weather Prediction (NWP) forecasts to achieve longer lead times (see Cloke et al., 2009; Cloke and Pappenberger, 2009). One of the key difficulties that is emerging in constructing a decision framework for these flood forecasts is when consecutive forecasts are different, leading to different conclusions regarding the issuing of forecasts, and hence inconsistent. In this opinion paper we explore some of the issues surrounding such forecast inconsistency (also known as "jumpiness", "turning points", "continuity" or number of "swings"; Zoster et al., 2009; Mills and Pepper, 1999; Lashley et al., 2008). We begin by defining what forecast inconsistency is; why forecasts might be inconsistent; how we should analyse it; what we should do about it; how we should communicate it and whether it is a totally undesirable property. The property of consistency is increasingly emerging as a hot topic in many forecasting environments (for a limited discussion on NWP inconsistency see Persson, 2011). However, in this opinion paper we restrict the discussion to a hydro-meteorological forecasting chain in which river discharge forecasts are produced using inputs from NWP. In this area of research (in)consistency is receiving recent interest and application (see e.g., Bartholmes et al., 2008; Pappenberger et al., 2011).

  9. Reducing streamflow forecast uncertainty: Application and qualitative assessment of the upper klamath river Basin, Oregon

    USGS Publications Warehouse

    Hay, L.E.; McCabe, G.J.; Clark, M.P.; Risley, J.C.

    2009-01-01

    The accuracy of streamflow forecasts depends on the uncertainty associated with future weather and the accuracy of the hydrologic model that is used to produce the forecasts. We present a method for streamflow forecasting where hydrologic model parameters are selected based on the climate state. Parameter sets for a hydrologic model are conditioned on an atmospheric pressure index defined using mean November through February (NDJF) 700-hectoPascal geopotential heights over northwestern North America [Pressure Index from Geopotential heights (PIG)]. The hydrologic model is applied in the Sprague River basin (SRB), a snowmelt-dominated basin located in the Upper Klamath basin in Oregon. In the SRB, the majority of streamflow occurs during March through May (MAM). Water years (WYs) 1980-2004 were divided into three groups based on their respective PIG values (high, medium, and low PIG). Low (high) PIG years tend to have higher (lower) than average MAM streamflow. Four parameter sets were calibrated for the SRB, each using a different set of WYs. The initial set used WYs 1995-2004 and the remaining three used WYs defined as high-, medium-, and low-PIG years. Two sets of March, April, and May streamflow volume forecasts were made using Ensemble Streamflow Prediction (ESP). The first set of ESP simulations used the initial parameter set. Because the PIG is defined using NDJF pressure heights, forecasts starting in March can be made using the PIG parameter set that corresponds with the year being forecasted. The second set of ESP simulations used the parameter set associated with the given PIG year. Comparison of the ESP sets indicates that more accuracy and less variability in volume forecasts may be possible when the ESP is conditioned using the PIG. This is especially true during the high-PIG years (low-flow years). ?? 2009 American Water Resources Association.

  10. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B. M.; Florita, A.; Orwig, K.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent Systemmore » Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.« less

  11. Atmospheric rivers and bombs

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Newell, Reginald E.

    1994-09-01

    Filamentary structure is a common feature of atmospheric water vapor transport; the filaments may be termed “atmospheric rivers” because some carry as much water as the Amazon [Newell et al., 1992]. An extratropical cyclone whose central pressure fall averages at least 1 hPa hr-1 for 24 hours is known in meteorology as a “bomb” [Sanders and Gyakum, 1980]. We report here an association between rivers and bombs. When a cyclonic system is penetrated by a river, the cyclonic center moves to be close to the position occupied by the leading edge of the river twelve hours previously and the central pressure falls. If the river then moves away from the cyclone, the central pressure rises. Based on a pilot study of pressure fall and water vapor flux convergence for two winter months, the cause of the explosive deepening appears to be latent heat liberation. This is substantiated by composite maps of seven Atlantic and seven Pacific bombs which show that the flux convergence near the bomb center has a comma cloud signature. The observed association may be useful in forecasting 12-hour direction of motion and pressure change of rapidly developing cyclonic systems; the incorporation of better moisture data into numerical forecasting models may be the reason for the reported increase of skill in the prediction of bombs in recent years.

  12. Flash flood warnings for ungauged basins based on high-resolution precipitation forecasts

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Janet, Bruno

    2016-04-01

    Early detection of flash floods, which are typically triggered by severe rainfall events, is still challenging due to large meteorological and hydrologic uncertainties at the spatial and temporal scales of interest. Also the rapid rising of waters necessarily limits the lead time of warnings to alert communities and activate effective emergency procedures. To better anticipate such events and mitigate their impacts, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium (up to 1000 km²) ungauged basins based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The current deterministic AIGA system has been run in real-time in the South of France since 2005 and has been tested in the RHYTMME project (rhytmme.irstea.fr/). It ingests the operational radar-gauge QPE grids from Météo-France to run a simplified hourly distributed hydrologic model at a 1-km² resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. The calibration and regionalization of the hydrologic model has been recently enhanced for implementing the national flash flood warning system for the entire French territory by 2016. To further extend the effective warning lead time, the flash flood warning system is being enhanced to ingest Météo-France's AROME-NWC high-resolution precipitation nowcasts. The AROME-NWC system combines the most recent available observations with forecasts from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015). AROME-NWC pre-operational deterministic precipitation forecasts, produced every hour at a 2.5-km resolution for a 6-hr forecast horizon, were provided for 3 significant rain events in September and November 2014 and ingested as time-lagged ensembles. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 185 basins in the South of France showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). Various verification metrics (e.g., Relative Mean Error, Brier Skill Score) show the skill of ensemble precipitation and flow forecasts compared to single-valued persistency benchmarks. Planned enhancements include integrating additional probabilistic NWP products (e.g., AROME precipitation ensembles on longer forecast horizon), accounting for and reducing hydrologic uncertainties from the model parameters and initial conditions via data assimilation, and developing a comprehensive observational and post-event damage database to determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi: 10.1002/qj.2463

  13. Technical note: Combining quantile forecasts and predictive distributions of streamflows

    NASA Astrophysics Data System (ADS)

    Bogner, Konrad; Liechti, Katharina; Zappa, Massimiliano

    2017-11-01

    The enhanced availability of many different hydro-meteorological modelling and forecasting systems raises the issue of how to optimally combine this great deal of information. Especially the usage of deterministic and probabilistic forecasts with sometimes widely divergent predicted future streamflow values makes it even more complicated for decision makers to sift out the relevant information. In this study multiple streamflow forecast information will be aggregated based on several different predictive distributions, and quantile forecasts. For this combination the Bayesian model averaging (BMA) approach, the non-homogeneous Gaussian regression (NGR), also known as the ensemble model output statistic (EMOS) techniques, and a novel method called Beta-transformed linear pooling (BLP) will be applied. By the help of the quantile score (QS) and the continuous ranked probability score (CRPS), the combination results for the Sihl River in Switzerland with about 5 years of forecast data will be compared and the differences between the raw and optimally combined forecasts will be highlighted. The results demonstrate the importance of applying proper forecast combination methods for decision makers in the field of flood and water resource management.

  14. Application of snowcovered area to runoff forecasting in selected basins of the Sierra Nevada, California. [Kings, Kern and Kaweah River Basins

    NASA Technical Reports Server (NTRS)

    Brown, A. J.; Hannaford, J. F. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Direct overlay onto 1:1,000,000 prints takes about one third the time of 1:500,000 zone transfer scope analysis using transparencies, but the consistency of the transparencies reduce the time for data analysis. LANDSAT data received on transparencies is better and more easily interpreted than the near real-time data from Quick Look, or imagery from other sources such as NOAA. The greatest potential for water supply forecasting is probably in improving forecast accuracy and in expanding forecast services during the period of snowmelt. Problems of transient snow line and uncertainties in future weather are the main reasons that snow cover area appears to offer little in water supply forecast accuracy improvement during the peroid snowpack accumulation.

  15. Seasonal forecasting of discharge for the Raccoon River, Iowa

    NASA Astrophysics Data System (ADS)

    Slater, Louise; Villarini, Gabriele; Bradley, Allen; Vecchi, Gabriel

    2016-04-01

    The state of Iowa (central United States) is regularly afflicted by severe natural hazards such as the 2008/2013 floods and the 2012 drought. To improve preparedness for these catastrophic events and allow Iowans to make more informed decisions about the most suitable water management strategies, we have developed a framework for medium to long range probabilistic seasonal streamflow forecasting for the Raccoon River at Van Meter, a 8900-km2 catchment located in central-western Iowa. Our flow forecasts use statistical models to predict seasonal discharge for low to high flows, with lead forecasting times ranging from one to ten months. Historical measurements of daily discharge are obtained from the U.S. Geological Survey (USGS) at the Van Meter stream gage, and used to compute quantile time series from minimum to maximum seasonal flow. The model is forced with basin-averaged total seasonal precipitation records from the PRISM Climate Group and annual row crop production acreage from the U.S. Department of Agriculture's National Agricultural Statistics Services database. For the forecasts, we use corn and soybean production from the previous year (persistence forecast) as a proxy for the impacts of agricultural practices on streamflow. The monthly precipitation forecasts are provided by eight Global Climate Models (GCMs) from the North American Multi-Model Ensemble (NMME), with lead times ranging from 0.5 to 11.5 months, and a resolution of 1 decimal degree. Additionally, precipitation from the month preceding each season is used to characterize antecedent soil moisture conditions. The accuracy of our modelled (1927-2015) and forecasted (2001-2015) discharge values is assessed by comparison with the observed USGS data. We explore the sensitivity of forecast skill over the full range of lead times, flow quantiles, forecast seasons, and with each GCM. Forecast skill is also examined using different formulations of the statistical models, as well as NMME forecast weighting procedures based on the computed potential skill (historical forecast accuracy) of the different GCMs. We find that the models describe the year-to-year variability in streamflow accurately, as well as the overall tendency towards increasing (and more variable) discharge over time. Surprisingly, forecast skill does not decrease markedly with lead time, and high flows tend to be well predicted, suggesting that these forecasts may have considerable practical applications. Further, the seasonal flow forecast accuracy is substantially improved by weighting the contribution of individual GCMs to the forecasts, and also by the inclusion of antecedent precipitation. Our results can provide critical information for adaptation strategies aiming to mitigate the costs and disruptions arising from flood and drought conditions, and allow us to determine how far in advance skillful forecasts can be issued. The availability of these discharge forecasts would have major societal and economic benefits for hydrology and water resources management, agriculture, disaster forecasts and prevention, energy, finance and insurance, food security, policy-making and public authorities, and transportation.

  16. Transition from Research to Operations: Assessing Value of Experimental Forecast Products within the NWSFO Environment

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Wohlman, Richard; Bradshaw, Tom; Burks, Jason; Jedlovec, Gary; Goodman, Steve; Darden, Chris; Meyer, Paul

    2003-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NWS forecast operations and decision-making. To meet long-term program expectations, it is not sufficient simply to give forecasters sophisticated workstations or new forecast products without fully assessing the ways in which they will be utilized. Close communication must be established between the research and operational communities so that developers have a complete understanding of user needs. In turn, forecasters must obtain a more comprehensive knowledge of the modeling and sensing tools available to them. A major goal of the SPoRT Program is to develop metrics and conduct assessment studies with NWS forecasters to evaluate the impacts and benefits of ESE experimental products on forecast skill. At a glance the task seems relatively straightforward. However, performing assessment of experimental products in an operational environment is demanding. Given the tremendous time constraints placed on NWS forecasters, it is imperative that forecaster input be obtained in a concise unobtrusive manor. Great care must also be taken to ensure that forecasters understand their participation will eventually benefit them and WFO operations in general. Two requirements of the assessment plan developed under the SPoRT activity are that it 1) Can be implemented within the WFO environment; and 2) Provide tangible results for BOTH the research and operational communities. Supplemental numerical quantitative precipitation forecasts (QPF) were chosen as the first experimental SPoRT product to be evaluated during a Pilot Assessment Program conducted 1 May 2003 within the Huntsville AL National Weather Service Forecast Office. Forecast time periods were broken up into six- hour bins ranging from zero to twenty-four hours. Data were made available for display in AWIPS on an operational basis so they could be efficiently incorporated into the forecast process. The methodology used to assess the value of experimental QPFs compared to available operational products is best described as a three-tier approach involving both forecasters and research scientists. Tier-one is a web-based survey completed by duty forecasters on the aviation and public desks. The survey compiles information on how the experimental product was used in the forecast decision making process. Up to 6 responses per twenty-four hours can be compiled during a precipitation event. Tier-two consists of an event post mortem and experimental product assessment performed daily by the NASA/NWS Liaison. Tier-three is a detailed breakdown/analysis of specific events targeted by either the NWS SO0 or SPoRT team members. The task is performed by both NWS and NASA research scientists and may be conducted once every couple of months. The findings from the Pilot Assessment Program will be reported at the meeting.

  17. 2013 Gulf of Mexico Hypoxia Forecast

    USGS Publications Warehouse

    Scavia, Donald; Evans, Mary Anne; Obenour, Dan

    2013-01-01

    The Gulf of Mexico annual summer hypoxia forecasts are based on average May total nitrogen loads from the Mississippi River basin for that year. The load estimate, recently released by USGS, is 7,316 metric tons per day. Based on that estimate, we predict the area of this summer’s hypoxic zone to be 18,900 square kilometers (95% credible interval, 13,400 to 24,200), the 7th largest reported and about the size of New Jersey. Our forecast hypoxic volume is 74.5 km3 (95% credible interval, 51.5 to 97.0), also the 7th largest on record.

  18. Investigating Atmospheric Rivers using GPS TPW during CalWater 2015

    NASA Astrophysics Data System (ADS)

    Almanza, V.; Foster, J. H.; Businger, S.

    2015-12-01

    Ship-based Global Positioning System (GPS) receivers have been successful in obtaining millimeter accuracy total precipitable water (TPW). We apply this technique with a field experiment using a GPS meteorology system installed on board the R/V Ronald Brown during the CalWater 2015 project. The goal of CalWater is to monitor atmospheric river (AR) events over the Eastern Pacific Ocean and improve forecasting of the extreme precipitation events they can produce. During the 30-day cruise, TPW derived from radiosonde balloons released from the Ron Brown are used to verify the accuracy of shipboard GPS TPW. The results suggest that ship-based GPS TPW offers a cost-effective approach for acquiring accurate real-time meteorological observations of TPW in AR's over remote oceans, as well as near the coastlines where satellites algorithms have limited accuracy. The results have implications for augmenting operational observing networks to improve weather prediction and nowcasting of ARs, thereby supporting hazard response and mitigation efforts associated with coastal flooding events.

  19. Forecast-based Integrated Flood Detection System for Emergency Response and Disaster Risk Reduction (Flood-FINDER)

    NASA Astrophysics Data System (ADS)

    Arcorace, Mauro; Silvestro, Francesco; Rudari, Roberto; Boni, Giorgio; Dell'Oro, Luca; Bjorgo, Einar

    2016-04-01

    Most flood prone areas in the globe are mainly located in developing countries where making communities more flood resilient is a priority. Despite different flood forecasting initiatives are now available from academia and research centers, what is often missing is the connection between the timely hazard detection and the community response to warnings. In order to bridge the gap between science and decision makers, UN agencies play a key role on the dissemination of information in the field and on capacity-building to local governments. In this context, having a reliable global early warning system in the UN would concretely improve existing in house capacities for Humanitarian Response and the Disaster Risk Reduction. For those reasons, UNITAR-UNOSAT has developed together with USGS and CIMA Foundation a Global Flood EWS called "Flood-FINDER". The Flood-FINDER system is a modelling chain which includes meteorological, hydrological and hydraulic models that are accurately linked to enable the production of warnings and forecast inundation scenarios up to three weeks in advance. The system is forced with global satellite derived precipitation products and Numerical Weather Prediction outputs. The modelling chain is based on the "Continuum" hydrological model and risk assessments produced for GAR2015. In combination with existing hydraulically reconditioned SRTM data and 1D hydraulic models, flood scenarios are derived at multiple scales and resolutions. Climate and flood data are shared through a Web GIS integrated platform. First validation of the modelling chain has been conducted through a flood hindcasting test case, over the Chao Phraya river basin in Thailand, using multi temporal satellite-based analysis derived for the exceptional flood event of 2011. In terms of humanitarian relief operations, the EO-based services of flood mapping in rush mode generally suffer from delays caused by the time required for their activation, programming, acquisitions and image processing. Flood-FINDER aims to pre-empt this process and to provide preliminary analyses where no field data is available. In the early 2015, the Flood-FINDER's forecast along the Shire River has been used to guide the rapid mapping activities in Southern Malawi and Northern Mozambique. It proved efficient support providing timely information about the evolution of the flood event over an area lacking of field data. Regarding in-country capacity building, Flood-FINDER allowed UNOSAT to set up in middle 2015 a flood early warning system in Chad along the Chari River basin with the collaboration of Chadian Ministry of hydraulics and livestock. Weekly flood bulletins have been shared with local authorities and UN agencies over the entire rainy season. Finally, an experimental version of the global web alerting platform has been recently developed for supporting the El Nino flood preparedness in the Horn of Africa. Flood-FINDEŔs mission is to support decision makers throughout all the disaster management cycle with flood alerts, modelled scenarios, EO-based impact assessments and with direct support at country level to implement disaster mitigation strategies. The aim for the future is to seek funding for having the global system fully operational using CERN's supercomputing facilities and to establish new in-country projects with local authorities.

  20. NDBC - National Weather Service Marine Forecast FZUS51 KGYX

    Science.gov Websites

    Coastal Waters Forecast National Weather Service Gray ME 1218 PM EDT Sun May 27 2018 COASTAL WATERS FROM STONINGTON ME TO MERRIMACK RIVER MA OUT TO 25 NM ANZ100-280630- 1218 PM EDT Sun May 27 2018 Synopsis for - 1218 PM EDT Sun May 27 2018 SMALL CRAFT ADVISORY IN EFFECT UNTIL 6 PM EDT THIS EVENING REST OF TODAY E

Top