NASA Technical Reports Server (NTRS)
Harmon, Timothy J.
1992-01-01
This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.
Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 3: Operations technology
NASA Technical Reports Server (NTRS)
Vilja, John O.
1990-01-01
The study was initiated to identify operational problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume describes operations technologies that will enhance operational efficiency of propulsion systems. A total of 15 operations technologies were identified that will eliminate or mitigate operations problems described in Volume 2. A recommended development plan is presented for eight promising technologies that will simplify the propulsion system and reduce operational requirements.
Operationally Efficient Propulsion System Study (OEPSS) data book. Executive summary
NASA Technical Reports Server (NTRS)
Wong, George S.
1990-01-01
The study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. Summarized here are the salient results of the first year. A synopsis of each volume listed above is presented.
NASA Technical Reports Server (NTRS)
Byrd, Raymond J.
1990-01-01
This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advance Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. This volume presents ground processing data for a generic LOX/LH2 booster and core propulsion system based on current STS experience. The data presented includes: top logic diagram, process flow, activities bar-chart, loaded timelines, manpower requirements in terms of duration, headcount and skill mix per operations and maintenance instruction (OMI), and critical path tasks and durations.
NASA Technical Reports Server (NTRS)
Ziese, James M.
1992-01-01
A design tool of figure of merit was developed that allows the operability of a propulsion system design to be measured. This Launch Operations Index (LOI) relates Operations Efficiency to System Complexity. The figure of Merit can be used by conceptual designers to compare different propulsion system designs based on their impact on launch operations. The LOI will improve the design process by making sure direct launch operations experience is a necessary feedback to the design process.
Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 4: OEPSS design concepts
NASA Technical Reports Server (NTRS)
Wong, George S.; Ziese, James M.; Farhangi, Shahram
1990-01-01
This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study have been organized into a series of OEPSS Data Books. This volume describes three propulsion concepts that will simplify the propulsion system design and significantly reduce operational requirements. The concepts include: (1) a fully integrated, booster propulsion module concept for the ALS that avoids the complex system created by using autonomous engines with numerous artificial interfaces; (2) an LOX tank aft concept which avoids potentially dangerous geysering in long LOX propellant lines; and (3) an air augmented, rocket engine nozzle afterburning propulsion concept that will significantly reduce LOX propellant requirements, reduce vehicle size and simplify ground operations and ground support equipment and facilities.
Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script
NASA Technical Reports Server (NTRS)
Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)
1992-01-01
The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.
NASA Technical Reports Server (NTRS)
Waldrop, Glen S.
1990-01-01
Operations problems and cost drivers were identified for current propulsion systems and design and technology approaches were identified to increase the operational efficiency and to reduce operations costs for future propulsion systems. To provide readily usable data for the ALS program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume presents a detailed description of 25 major problems encountered during launch processing of current expendable and reusable launch vehicles. A concise description of each problem and its operational impact on launch processing is presented, along with potential solutions and technology recommendation.
Energy efficient engine: Propulsion system-aircraft integration evaluation
NASA Technical Reports Server (NTRS)
Owens, R. E.
1979-01-01
Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.
Electromagnetic propulsion for spacecraft
NASA Technical Reports Server (NTRS)
Myers, Roger M.
1993-01-01
Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.
The advantages of the high voltage solar array for electric propulsion
NASA Technical Reports Server (NTRS)
Sater, B. L.
1973-01-01
The high voltage solar array offers improvements in efficiency, weight, and reliability for the electric propulsion power system. Conventional power processes and problems associated with ion thruster operation using SERT 2 experience are discussed and the advantages of the HVSA concept for electric propulsion are presented. Tests conducted operating the SERT 2 thruster system in conjunction with HVSA are reported. Thruster operation was observed to be normal and in some respects improved.
Electric propulsion - Characteristics, applications, and status
NASA Technical Reports Server (NTRS)
Maloy, J. E.; Dulgeroff, C. R.; Poeschel, R. L.
1981-01-01
As chemical propulsion systems were achieving their ultimate capability for planetary exploration, space scientists were developing solar electric propulsion as the propulsion system need for future missions. This paper provides a comparative review of the principles of ion thruster and chemical rocket operations and discusses the current status of the 30-cm mercury ion thruster development and the specifications imposed on the 30-cm thruster by the Solar Electric Propulsion System program. The 30-cm thruster operating range, efficiency, wear out lifetime, and interface requirements are described. Finally, the areas of 30-cm thruster technology that remain to be refined are discussed.
Characterization of advanced electric propulsion systems
NASA Technical Reports Server (NTRS)
Ray, P. K.
1982-01-01
Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1982-01-01
The development of the technology to improve energy efficiency of propulsion systems for subsonic commercial aircrafts was examined. Goals established include: (1) fuel consumption, reduction in flight propulsion system; (2) direct operation cost; (3) noise, with provision for engine growth corresponding to future engine application; and (4) emissions, EPA new engine standards.
Overview of NASA's Supersonic Cruise Efficiency - Propulsion Research
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2009-01-01
The research in Supersonic Cruise Efficiency Propulsion (SCE-P) Technical Challenge area of NASA's Supersonics project is discussed. The research in SCE-P is being performed to enable efficient supersonic flight over land. Research elements in this area include: Advance Inlet Concepts, High Performance/Wider Operability Fan and Compressor, Advanced Nozzle Concepts, and Intelligent Sensors/Actuators. The research under each of these elements is briefly discussed.
Focused technology: Nuclear propulsion
NASA Technical Reports Server (NTRS)
Miller, Thomas J.
1991-01-01
The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.
NASA Technical Reports Server (NTRS)
Gerrish, Harold P., Jr.
2003-01-01
This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.
The advantages of the high voltage solar array for electric propulsion
NASA Technical Reports Server (NTRS)
Sater, B. L.
1973-01-01
The high voltage solar array (HVSA) offers improvements in efficiency, weight, and reliability for the electric propulsion power system. The basic HVSA technology involves designing the solar array to deliver power in the form required by the ion thruster. This paper delves into conventional power processes and problems associated with ion thruster operation using SERT II experience for examples. In this light, the advantages of the HVSA concept for electric propulsion are presented. Tests conducted operating the SERT II thruster system in conjunction with HVSA are discussed. Thruster operation was observed to be normal and in some respects improved.
Energy Efficient Engine Flight Propulsion System Preliminary Analysis and Design Report
NASA Technical Reports Server (NTRS)
Bisset, J. W.; Howe, D. C.
1983-01-01
The final design and analysis of the flight propulsion system is presented. This system is the conceptual study engine defined to meet the performance, economic and environmental goals established for the Energy Efficient Engine Program. The design effort included a final definition of the engine, major components, internal subsystems, and nacelle. Various analytical representations and results from component technology programs are used to verify aerodynamic and structural design concepts and to predict performance. Specific design goals and specifications, reflecting future commercial aircraft propulsion system requirements for the mid-1980's, are detailed by NASA and used as guidelines during engine definition. Information is also included which details salient results from a separate study to define a turbofan propulsion system, known as the maximum efficiency engine, which reoptimized the advanced fuel saving technologies for improved fuel economy and direct operating costs relative to the flight propulsion system.
Blake, R W; Ng, H; Chan, K H S; Li, J
2008-09-01
Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications).
Low Noise Cruise Efficient Short Take-Off and Landing Transport Vehicle Study
NASA Technical Reports Server (NTRS)
Kim, Hyun D.; Berton, Jeffrey J.; Jones, Scott M.
2007-01-01
The saturation of the airspace around current airports combined with increasingly stringent community noise limits represents a serious impediment to growth in world aviation travel. Breakthrough concepts that both increase throughput and reduce noise impacts are required to enable growth in aviation markets. Concepts with a 25 year horizon must facilitate a 4x increase in air travel while simultaneously meeting community noise constraints. Attacking these horizon issues holistically is the concept study of a Cruise Efficient Short Take-Off and Landing (CESTOL) high subsonic transport under the NASA's Revolutionary Systems Concepts for Aeronautics (RSCA) project. The concept is a high-lift capable airframe with a partially embedded distributed propulsion system that takes a synergistic approach in propulsion-airframe-integration (PAI) by fully integrating the airframe and propulsion systems to achieve the benefits of both low-noise short take-off and landing (STOL) operations and efficient high speed cruise. This paper presents a summary of the recent study of a distributed propulsion/airframe configuration that provides low-noise STOL operation to enable 24-hour use of the untapped regional and city center airports to increase the capacity of the overall airspace while still maintaining efficient high subsonic cruise flight capability.
Electromagnetic propulsion for spacecraft
NASA Technical Reports Server (NTRS)
Myers, Roger M.
1993-01-01
Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.
Viscous investigation of a flapping foil propulsor
NASA Astrophysics Data System (ADS)
Posri, Attapol; Phoemsapthawee, Surasak; Thaweewat, Nonthipat
2018-01-01
Inspired by how fishes propel themselves, a flapping-foil device is invented as an alternative propulsion system for ships and boats. The performance of such propulsor has been formerly investigated using a potential flow code. The simulation results have shown that the device has high propulsive efficiency over a wide range of operation. However, the potential flow gives good results only when flow separation is not present. In case of high flapping frequency, the flow separation can occur over a short instant due to fluid viscosity and high angle of attack. This may cause a reduction of propulsive efficiency. A commercial CFD code based on Lattice Boltzmann Method, XFlow, is then employed in order to investigate the viscous effect over the propulsive performance of the flapping foil. The viscous results agree well with the potential flow results, confirming the high efficiency of the propulsor. As expected, viscous results show lower efficiency in high flapping frequency zone.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.
Lightweight Radiator for in Space Nuclear Electric Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul; Tomboulian, Briana; SanSoucie, Michael
2014-01-01
Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Auslender, Aaron H.; Guy, R. Wayne; McClinton, Charles R.; Welch, Sharon S.
2002-01-01
Third-generation reusable launch vehicle (RLV) systems are envisioned that utilize airbreathing and combined-cycle propulsion to take advantage of potential performance benefits over conventional rocket propulsion and address goals of reducing the cost and enhancing the safety of systems to reach earth orbit. The dual-mode scramjet (DMSJ) forms the core of combined-cycle or combination-cycle propulsion systems for single-stage-to-orbit (SSTO) vehicles and provides most of the orbital ascent energy. These concepts are also relevant to two-stage-to-orbit (TSTO) systems with an airbreathing first or second stage. Foundation technology investments in scramjet propulsion are driven by the goal to develop efficient Mach 3-15 concepts with sufficient performance and operability to meet operational system goals. A brief historical review of NASA scramjet development is presented along with a summary of current technology efforts and a proposed roadmap. The technology addresses hydrogen-fueled combustor development, hypervelocity scramjets, multi-speed flowpath performance and operability, propulsion-airframe integration, and analysis and diagnostic tools.
Cooling of Electric Motors Used for Propulsion on SCEPTOR
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.
2017-01-01
NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.
Axial propulsion with flapping and rotating wings, a comparison of potential efficiency.
Kroninger, Christopher M
2018-04-18
Interest in biological locomotion and what advantages the principles governing it might offer in the design of manmade vehicles prompts one to consider the power requirements of flapping relative to rotary propulsion. The amount of work performed on the fluid surrounding a thrusting surface (wing or blade) is reflected in the kinetic energy of the wake. Consideration of the energy in the wake is sufficient to define absolute minimum limitations on the power requirement to generate a particular thrust. This work applies wake solutions to compare the minimum inviscid propulsive power requirement of wings flapping and in rotation at wing loading conditions reflective of hover through a state of lightly-loaded cruise. It is demonstrated that hovering flapping flight is less efficient than rotary wing propulsion except for the most extreme flap amplitude strokes ([Formula: see text] > 160°) if operating at large wake wavelength. In cruise, a larger range of flap amplitude kinematics ([Formula: see text] > 140°) can be aerodynamically more energy efficient for wake wavelengths reflective of biological propulsion. These results imply, based on the observed wing kinematics of continuous steady flight, that flapping propulsion in animals is unlikely to be more efficient than rotary propulsion.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... fuels, for purposes of propulsion or operation on board a ship. Also, new Annex VI Regulations 20 and 21.... 10, 2012). Annex VI exempts ships using diesel-electric, turbine or hybrid propulsion systems from...
Flow Control of Liquid Metal Propellants for In-Space Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
Bonds, Kevin W.; Polzin, Kurt A.
2010-01-01
Operation of Hall thrusters with bismuth propellant has been shown to be a promising path for development of high-power (140 kW per thruster), high performance (8000s I(sub sp at >70% efficiency) electric propulsion systems.
Wide speed range turboshaft study
NASA Technical Reports Server (NTRS)
Dangelo, Martin
1995-01-01
NASA-Lewis and NASA-Ames have sponsored a series of studies over the last few years to identify key high speed rotorcraft propulsion and airframe technologies. NASA concluded from these studies that for near term aircraft with cruise speeds up to 450 kt, tilting rotor rotorcraft concepts are the most economical and technologically viable. The propulsion issues critical to tilting rotor rotorcraft are: (1) high speed cruise propulsion system efficiency and (2) adequate power to hover safely with one engine inoperative. High speed cruise propeller efficiency can be dramatically improved by reducing rotor speed, yet high rotor speed is critical for good hover performance. With a conventional turboshaft, this wide range of power turbine operating speeds would result in poor engine performance at one or more of these critical operating conditions. This study identifies several wide speed range turboshaft concepts, and analyzes their potential to improve performance at the diverse cruise and hover operating conditions. Many unique concepts were examined, and the selected concepts are simple, low cost, relatively low risk, and entirely contained within the power turbine. These power turbine concepts contain unique, incidence tolerant airfoil designs that allow the engine to cruise efficiently at 51 percent of the hover rotor speed. Overall propulsion system efficiency in cruise is improved as much as 14 percent, with similar improvements in engine weight and cost. The study is composed of a propulsion requirement survey, a concept screening study, a preliminary definition and evaluation of selected concepts, and identification of key technologies and development needs. In addition, a civil transport tilting rotor rotorcraft mission analysis was performed to show the benefit of these concepts versus a conventional turboshaft. Other potential applications for this technology are discussed.
NASA's In-Space Propulsion Technology Program: Overview and Status
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.
Space Transportation Propulsion Technology Symposium. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Transportation Propulsion Technology Symposium was held to provide a forum for communication within the propulsion within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.
Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm
NASA Technical Reports Server (NTRS)
Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.
2013-01-01
This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.
NASA In-Space Propulsion Technology Program: Overview and Update
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.
NASA's In-Space Propulsion Technology Program: Overview and Update
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.
NASA Technical Reports Server (NTRS)
Nobbs, Steven G.
1995-01-01
An overview of the performance seeking control (PSC) algorithm and details of the important components of the algorithm are given. The onboard propulsion system models, the linear programming optimization, and engine control interface are described. The PSC algorithm receives input from various computers on the aircraft including the digital flight computer, digital engine control, and electronic inlet control. The PSC algorithm contains compact models of the propulsion system including the inlet, engine, and nozzle. The models compute propulsion system parameters, such as inlet drag and fan stall margin, which are not directly measurable in flight. The compact models also compute sensitivities of the propulsion system parameters to change in control variables. The engine model consists of a linear steady state variable model (SSVM) and a nonlinear model. The SSVM is updated with efficiency factors calculated in the engine model update logic, or Kalman filter. The efficiency factors are used to adjust the SSVM to match the actual engine. The propulsion system models are mathematically integrated to form an overall propulsion system model. The propulsion system model is then optimized using a linear programming optimization scheme. The goal of the optimization is determined from the selected PSC mode of operation. The resulting trims are used to compute a new operating point about which the optimization process is repeated. This process is continued until an overall (global) optimum is reached before applying the trims to the controllers.
Space Transportation Propulsion Technology Symposium. Volume 2: Symposium proceedings
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Transportation Propulsion Symposium was held to provide a forum for communication within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.
Power-limited low-thrust trajectory optimization with operation point detection
NASA Astrophysics Data System (ADS)
Chi, Zhemin; Li, Haiyang; Jiang, Fanghua; Li, Junfeng
2018-06-01
The power-limited solar electric propulsion system is considered more practical in mission design. An accurate mathematical model of the propulsion system, based on experimental data of the power generation system, is used in this paper. An indirect method is used to deal with the time-optimal and fuel-optimal control problems, in which the solar electric propulsion system is described using a finite number of operation points, which are characterized by different pairs of thruster input power. In order to guarantee the integral accuracy for the discrete power-limited problem, a power operation detection technique is embedded in the fourth-order Runge-Kutta algorithm with fixed step. Moreover, the logarithmic homotopy method and normalization technique are employed to overcome the difficulties caused by using indirect methods. Three numerical simulations with actual propulsion systems are given to substantiate the feasibility and efficiency of the proposed method.
Power processing for electric propulsion
NASA Technical Reports Server (NTRS)
Finke, R. C.; Herron, B. G.; Gant, G. D.
1975-01-01
The potential of achieving up to 30 per cent more spacecraft payload or 50 per cent more useful operating life by the use of electric propulsion in place of conventional cold gas or hydrazine systems in science, communications, and earth applications spacecraft is a compelling reason to consider the inclusion of electric thruster systems in new spacecraft design. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. This paper will present electron bombardment ion thruster requirements; review the performance characteristics of present power processing systems; discuss design philosophies and alternatives in areas such as inverter type, arc protection, and control methods; and project future performance potentials for meeting goals in the areas of power processor weight (10 kg/kW), efficiency (approaching 92 per cent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).
NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy
2005-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.
NASA Technical Reports Server (NTRS)
Sargent, N. B.
1980-01-01
The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.
NASA Technical Reports Server (NTRS)
1993-01-01
The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.
Component research for future propulsion systems
NASA Technical Reports Server (NTRS)
Walker, C. L.; Weden, G. J.; Zuk, J.
1981-01-01
Factors affecting the helicopter market are reviewed. The trade-offs involving acquisition cost, mission reliability, and life cycle cost are reviewed, including civil and military aspects. The potential for advanced vehicle configurations with substantial improvements in energy efficiency, operating economics, and characteristics to satisfy the demands of the future market are identified. Advanced propulsion systems required to support these vehicle configurations are discussed, as well as the component technology for the engine systems. Considerations for selection of components in areas of economics and efficiency are presented.
NASA Technical Reports Server (NTRS)
Weidner, John P.
1996-01-01
The need for efficient access to space has created interest in airbreathing propulsion as a means of achieving that goal. The NASP program explored a single-stage-to-orbit approach which could require scramjet airbreathing propulsion out to Mach 16 to 20. Recent interest in global access could require hypersonic cruise engines operating efficiently in the Mach 10 to 12 speed range. A common requirement of both these types of propulsion systems is that they would have to be fully integrated with the aero configuration so that the forebody becomes a part of the external compression inlet and the nozzle expansion is completed on the vehicle aftbody.
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Transportation Propulsion Technology Symposium was held at the Pennsylvania State University on June 25 to 29, 1990. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps and other programmatic deficiencies. Key space transportation propulsion issues are addressed through four panels with government, industry, and academia membership. The panel focused on systems engineering and integration; development, manufacturing, and certification; operational efficiency; program development; and cultural issues.
NASA Puffin Electric Tailsitter VTOL Concept
NASA Technical Reports Server (NTRS)
Moore, Mark D.
2010-01-01
Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.
NASA Technical Reports Server (NTRS)
DiBlasi, Angelo G.
1992-01-01
A preliminary development plan for an integrated propulsion module (IPM) is described. The IPM, similar to the Space Transportation Main engine (STME) engine, is applicable to the Advanced Launch System (ALS) baseline vehicle. The same STME development program ground rules and time schedule were assumed for the IPM. However, the unique advantages of testing an integrated engine element, in terms of reduced number of hardware and number of system and reliability tests, compared to single standalone engine and MPTA, are highlighted. The potential ability of the IPM to meet the ALS program goals for robustness, operability and reliability is emphasized.
A white paper: Operational efficiency. New approaches to future propulsion systems
NASA Technical Reports Server (NTRS)
Rhodes, Russel; Wong, George
1991-01-01
Advanced launch systems for the next generation of space transportation systems (1995 to 2010) must deliver large payloads (125,000 to 500,000 lbs) to low earth orbit (LEO) at one tenth of today's cost, or 300 to 400 $/lb of payload. This cost represents an order of magnitude reduction from the Titan unmanned vehicle cost of delivering payload to orbit. To achieve this sizable reduction, the operations cost as well as the engine cost must both be lower than current engine system. The Advanced Launch System (ALS) is studying advanced engine designs, such as the Space Transportation Main Engine (STME), which has achieved notable reduction in cost. The results are presented of a current study wherein another level of cost reduction can be achieved by designing the propulsion module utilizing these advanced engines for enhanced operations efficiency and reduced operations cost.
H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation
NASA Technical Reports Server (NTRS)
Jones, Jonathan E.; Hawk, Clark W.
1998-01-01
A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.
Program test objectives milestone 3. [Integrated Propulsion Technology Demonstrator
NASA Technical Reports Server (NTRS)
Gaynor, T. L.
1994-01-01
The following conclusions have been developed relative to propulsion system technology adequacy for efficient development and operation of recoverable and expendable launch vehicles (RLV and ELV) and the benefits which the integrated propulsion technology demonstrator will provide for enhancing technology: (1) Technology improvements relative to propulsion system design and operation can reduce program cost. Many features or improvement needs to enhance operability, reduce cost, and improve payload are identified. (2) The Integrated Propulsion Technology Demonstrator (IPTD) Program provides a means of resolving the majority of issues associated with improvement needs. (3) The IPTD will evaluate complex integration of vehicle and facility functions in fluid management and propulsion control systems, and provides an environment for validating improved mechanical and electrical components. (4) The IPTD provides a mechanism for investigating operational issues focusing on reducing manpower and time to perform various functions at the launch site. These efforts include model development, collection of data to validate subject models, and ultimate development of complex time line models. (5) The IPTD provides an engine test bed for tri/bi-propellant engine development firings which is representative of the actual vehicle environment. (6) The IPTD provides for only a limited multiengine configuration integration environment for RLV. Multiengine efforts may be simulated for a number of subsystems and a number of subsystems are relatively independent of the multiengine influences.
Simulation Propulsion System and Trajectory Optimization
NASA Technical Reports Server (NTRS)
Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.
2017-01-01
A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.
Future long-range transports - Prospects for improved fuel efficiency
NASA Technical Reports Server (NTRS)
Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.
1975-01-01
A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: historical trends in airplane efficiency; technological opportunities including supercritical aerodynamics, vortex diffusers, composite materials, propulsion systems, active controls, and terminal-area operations; unconventional design concepts, and hydrogen-fueled airplane.
Evaluation of Low Power Hall Thruster Propulsion
NASA Technical Reports Server (NTRS)
Manzella, David; Oleson, Steve; Sankovic, John; Haag, Tom; Semenkin, Alexander; Kim, Vladimir
1996-01-01
Hall thruster systems based on the SPT-50 and the TAL D-38 were evaluated and mission studies were performed. The 0.3 kilowatt SPT-50 operated with a specific impulse of 1160 seconds and an efficiency of 0.32. The 0.8 kilowatt D-38 provided a specific impulse above 1700 seconds at an efficiency of 0.5. The D-38 system was shown to offer a 56 kilogram propulsion system mass savings over a 101 kilogram hydrazine monopropellant system designed to perform North-South station keeping maneuvers on board a 430 kilogram geostationary satellite. The SPIT-50 system offered a greater than 50% propulsion system mass reduction in comparison to the chemical system on board a 200 kilogram low Earth orbit spacecraft performing two orbit raises and drag makeup over two years. The performance characteristics of the SPF-50 were experimentally evaluated at a number of operating conditions. The ion current density distribution of this engine was measured. The performance and system mass benefits of advanced systems based on both engines were considered.
Energy efficient engine: Flight propulsion system, preliminary analysis and design update
NASA Technical Reports Server (NTRS)
Stearns, E. M.
1982-01-01
The preliminary design of General Electric's Energy Efficient Engine (E3) was reported in detail in 1980. Since then, the design has been refined and the components have been rig-tested. The changes which have occurred in the engine and a reassessment of the economic payoff are presented in this report. All goals for efficiency, environmental considerations, and economic payoff are being met. The E3 Flight Propulsion System has 14.9% lower sfc than a CF6-50C. It provides a 7.1% reduction in direct operating cost for a short haul domestic transport and 14.5% reduction for an international long distance transport.
Propulsion requirements for reusable single-stage-to-orbit rocket vehicles
NASA Astrophysics Data System (ADS)
Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger
1994-05-01
The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.
Drag and Propulsive Characteristics of Air-Cooled Engine-Nacelle Installations for Large Airplane
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Wilson, Herbert A , Jr
1942-01-01
An investigation was conducted in the NACA full-scale wind tunnel to determine the drag and the propulsive efficiency of nacelle-propeller arrangements for a large range of nacelle sizes. In contrast with usual tests with a single nacelle, these tests were conducted with nacelle-propeller installations on a large model of a four-engine airplane. Data are presented on the first part of the investigation, covering seven nacelle arrangements with nacelle diameters from 0.53 to 1.5 times the wing thickness. These ratios are similar to those occurring on airplanes weighing from about 20 to 100 tons. The results show the drag, the propulsive efficiency, and the over-all efficiency of the various nacelle arrangements as functions of the nacelle size, the propeller position, and the airplane lift coefficient. The effect of the nacelles on the aerodynamic characteristics of the model is shown for both propeller-removed and propeller-operating conditions.
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Wilson, Herbert A., Jr.
1939-01-01
An investigation is in progress in the NACA full-scale wind tunnel to determine the drag and propulsive efficiency of nacelle sizes. In contrast with the usual tests with a single nacelle, these tests were conducted with nacelle-propeller installations on a large model of a 4-engine airplane. Data are presented on the first part of the investigation, covering seven nacelle arrangements with nacelle diameters from 0.53 to 1.5 times the wing thickness. These ratios are similar to those occurring on airplane weighing from about 20 to 100 tons. The results show that the drag, the propulsive efficiency, and the overall efficiency of the various nacelle arrangements as functions of the nacelle size, the propeller position, and the airplane lift coefficient. The effect of the nacelles on the aerodynamic characteristics of the model are shown for both propeller-removed and propeller-operating conditions.
Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion
NASA Technical Reports Server (NTRS)
Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur
2017-01-01
Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.
Xenon ion propulsion for orbit transfer
NASA Technical Reports Server (NTRS)
Rawlin, V. K.; Patterson, M. J.; Gruber, R. P.
1990-01-01
For more than 30 years, NASA has conducted an ion propulsion program which has resulted in several experimental space flight demonstrations and the development of many supporting technologies. Technologies appropriate for geosynchronous stationkeeping, earth-orbit transfer missions, and interplanetary missions are defined and evaluated. The status of critical ion propulsion system elements is reviewed. Electron bombardment ion thrusters for primary propulsion have evolved to operate on xenon in the 5 to 10 kW power range. Thruster efficiencies of 0.7 and specific impulse values of 4000 s were documented. The baseline thruster currently under development by NASA LeRC includes ring-cusp magnetic field plasma containment and dished two-grid ion optics. Based on past experience and demonstrated simplifications, power processors for these thrusters should have approximately 500 parts, a mass of 40 kg, and an efficiency near 0.94. Thrust vector control, via individual thruster gimbals, is a mature technology. High pressure, gaseous xenon propellant storage and control schemes, using flight qualified hardware, result in propellant tankage fractions between 0.1 and 0.2. In-space and ground integration testing has demonstrated that ion propulsion systems can be successfully integrated with their host spacecraft. Ion propulsion system technologies are mature and can significantly enhance and/or enable a variety of missions in the nation's space propulsion program.
Mission Assessment of the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Polzin, Kurt A.
2008-01-01
Pulsed inductive thrusters have typically been considered for future, high-power, missions requiring nuclear electric propulsion. These high-power systems, while promising equivalent or improved performance over state-of-the-art propulsion systems, presently have no planned missions for which they are well suited. The ability to efficiently operate an inductive thruster at lower energy and power levels may provide inductive thrusters near term applicability and mission pull. The Faraday Accelerator with Radio-frequency Assisted Discharge concept demonstrated potential for a high-efficiency, low-energy pulsed inductive thruster. The added benefits of energy recapture and/or pulse compression are shown to enhance the performance of the pulsed inductive propulsion system, yielding a system that con compete with and potentially outperform current state-of-the-art electric propulsion technologies. These enhancements lead to mission-level benefits associated with the use of a pulsed inductive thruster. Analyses of low-power near to mid-term missions and higher power far-term missions are undertaken to compare the performance of pulsed inductive thrusters with that delivered by state-of-the-art and development-level electric propulsion systems.
Energy efficient engine flight propulsion system preliminary analysis and design report
NASA Technical Reports Server (NTRS)
Gardner, W. B.
1979-01-01
A flight propulsion system preliminary design was established that meets the program goals of at least a 12 percent reduction in thrust specific fuel consumption, at least a five percent reduction in direct operating cost, and one-half the performance deterioration rate of the most efficient current commercial engines. The engine provides a high probability of meeting the 1978 noise rule goal. Smoke and gaseous emissions defined by the EPA proposed standards for engines newly certified after 1 January 1981 are met with the exception of NOx, despite incorporation of all known NOx reduction technology.
In-Situ Propellant Production on Mars: A Sabatier/Electrolysis Demonstration Plant
NASA Astrophysics Data System (ADS)
Clark, David L.
1997-01-01
An efficient, reliable propellant production plant has been developed for use on Mars. Using a Sabatier reactor in conjunction with a water electrolysis system, a complete demonstration plant has produced methane and liquid oxygen from simulated Martian atmosphere. The production plant has demonstrated high efficiency, extended duration production and autonomous operations. This paper presents the results and conclusions relating to eventual use in a Mars sample return mission. This work was funded by the Jet Propulsion Laboratory (JPL). The production plant was built and tested at the Propulsion Center of Lockheed Martin at the Denver Colorado facility.
Future long-range transports: Prospects for improved fuel efficiency
NASA Technical Reports Server (NTRS)
Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.
1975-01-01
A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: (1) historical trends in airplane efficiency; (2) technological opportunities including supercritical aerodynamics, (3) vortex diffusers, (4) composite materials, (5) propulsion systems, (6) active controls, and terminal-area operations; (7) unconventional design concepts, and (8) hydrogen-fueled airplane.
Hydrogen-oxygen auxiliary propulsion for the space shuttle. Volume 1: High pressure thrusters
NASA Technical Reports Server (NTRS)
1973-01-01
Technology for long life, high performing, gaseous hydrogen-gaseous oxygen rocket engines suitable for auxiliary propulsion was provided by a combined analytical and experimental program. Propellant injectors, fast response valves, igniters, and regeneratively and film-cooled thrust chambers were tested over a wide range of operating conditions. Data generated include performance, combustion efficiency, thermal characteristics film cooling effectiveness, dynamic response in pulsing, and cycle life limitations.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2010-01-01
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2008-01-01
Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2008-01-01
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero- Propulso-Servo-Elastic model and for propulsion efficiency studies.
Design of an Electric Propulsion System for SCEPTOR
NASA Technical Reports Server (NTRS)
Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.
2016-01-01
The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.
Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400
NASA Technical Reports Server (NTRS)
Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.
Potential operating orbits for fission electric propulsion systems driven by the SAFE-400
NASA Astrophysics Data System (ADS)
Houts, Mike; Kos, Larry; Poston, David
2002-01-01
Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp>3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially non-radioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified. .
Study of Conical Pulsed Inductive Thruster with Multiple Modes of Operation
NASA Technical Reports Server (NTRS)
Miller, Robert; Eskridge, Richard; Martin, Adam; Rose, Frank
2008-01-01
An electrodeless, pulsed, inductively coupled thruster has several advantages over current electric propulsion designs. The efficiency of a pulsed inductive thruster is dependent upon the pulse characteristics of the device. Therefore, these thrusters are throttleable over a wide range of thrust levels by varying the pulse rate without affecting the thruster efficiency. In addition, by controlling the pulse energy and the mass bit together, the ISP of the thruster can also be varied with minimal efficiency loss over a wide range of ISP levels. Pulsed inductive thrusters will work with a multitude of propellants, including ammonia. Thus, a single pulsed inductive thruster could be used to handle a multitude of mission needs from high thrust to high ISP with one propulsion solution that would be variable in flight. A conical pulsed inductive lab thruster has been built to study this form of electric propulsion in detail. This thruster incorporates many advantages that are meant to enable this technology as a viable space propulsion technology. These advantages include incorporation of solid state switch technology for all switching needs of the thruster and pre-ionization of the propellant gas prior to acceleration. Pre-ionizing will significantly improve coupling efficiency between drive and bias fields and the plasma. This enables lower pulse energy levels without efficiency reduction. Pre-ionization can be accomplished at a small fraction of the drive pulse energy.
Investigation of Various Novel Air-Breathing Propulsion Systems
NASA Astrophysics Data System (ADS)
Wilhite, Jarred M.
The current research investigates the operation and performance of various air-breathing propulsion systems, which are capable of utilizing different types of fuel. This study first focuses on a modular RDE configuration, which was mainly studied to determine which conditions yield stable, continuous rotating detonation for an ethylene-air mixture. The performance of this RDE was analyzed by studying various parameters such as mass flow rate, equivalence ratios, wave speed and cell size. For relatively low mass flow rates near stoichiometric conditions, a rotating detonation wave is observed for an ethylene-RDE, but at speeds less than an ideal detonation wave. The current research also involves investigating the newly designed, Twin Oxidizer Injection Capable (TOXIC) RDE. Mixtures of hydrogen and air were utilized for this configuration, resulting in sustained rotating detonation for various mass flow rates and equivalence ratios. A thrust stand was also developed to observe and further measure the performance of the TOXIC RDE. Further analysis was conducted to accurately model and simulate the response of thrust stand during operation of the RDE. Also included in this research are findings and analysis of a propulsion system capable of operating on the Inverse Brayton Cycle. The feasibility of this novel concept was validated in a previous study to be sufficient for small-scale propulsion systems, namely UAV applications. This type of propulsion system consists of a reorganization of traditional gas turbine engine components, which incorporates expansion before compression. This cycle also requires a heat exchanger to reduce the temperature of the flow entering the compressor downstream. While adding a heat exchanger improves the efficiency of the cycle, it also increases the engine weight, resulting in less endurance for the aircraft. Therefore, this study focuses on the selection and development of a new heat exchanger design that is lightweight, and is capable of transferring significant amounts of heat and improving the efficiency and performance of the propulsion system.
NASA Astrophysics Data System (ADS)
Kovtun, V. S.
2012-12-01
Traditionally, management of propellant fuel consumption on board of a spacecraft is only associated with the operation of jet-propulsion engines (JPE) that are actuator devices of motion control systems (MCS). The efficiency of propellant fuel consumption depends not only on the operation of the MCS, but also, to one extent or another, on all systems functioning on board of a spacecraft, and on processes that occur in them and involve conversion of variable management of propellant fuel consumption by JPEs as a constituent part of the control of the complex process of spacecraft flight.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew
2015-01-01
The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to include iodine compatible control valves with internal heaters and temperature sensors to coincide with the iodine-compatible thruster. A key advantage to using iodine as a propellant is that it may be stored in the tank as an unpressurized solid on the ground and before flight operations. During operations, the tank is heated to vaporize the propellant. Iodine vapor is then routed through custom flow control valves to control mass flow to the thruster and cathode assembly. The thruster then ionizes the vapor and accelerates it via magnetic and electrostatic fields, resulting in high specific impulse, characteristic of a highly efficient propulsion system. The iSat spacecraft is a 12-unit (12U) CubeSat with dimensions of about 8 inches x 8 inches x 12 inches (20 centimeters x 20 centimeters x 30 centimeters). The spacecraft frame will be constructed from aluminum with a finish to prevent iodine-driven corrosion. The iSat spacecraft includes full three-axis control and will leverage heat generated by spacecraft components and radiators for a passive thermal control system. After the CubeSat has successfully detached from its launch vehicle, it will deploy its solar panels, correct for tip-off and maintain attitude control before ground contact. An initial check-out period of two weeks is planned for testing all subsystems. The spacecraft will charge the power system while in sunlight, using momentum wheels and magnetic torque rods to rotate the vehicle to the required attitude.
Effect of Body Nose Shape on the Propulsive Efficiency of a Propeller
NASA Technical Reports Server (NTRS)
Stickle, George W; Crigler, John L; Naiman, Irven
1941-01-01
Report presents the results of an investigation of the propulsive efficiency of three adjustable propellers of 10-foot diameter operated in front of four body nose shapes, varying from streamline nose that continued through the propeller plane in the form of a large spinner to a conventional open-nose radial-engine cowling. One propeller had airfoil sections close to the hub, the second had conventional round blade shanks, and the third differed from the second only in pitch distribution. The blade-angle settings ranged from 20 degrees to 55 degrees at the 0.75 radius. The effect of the body nose shape on propulsive efficiency may be divided into two parts: (1) the change in the body drag due to the propeller slipstream and (2) the change in propeller load distribution due to the change in velocity caused by the body. For the nose shape tested in the report, the first effect is shown to be very small; therefore, the chief emphasis of the report is confined to the second effect.
Integral inverter/battery charger for use in electric vehicles
NASA Technical Reports Server (NTRS)
Thimmesch, D.
1983-01-01
The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).
NASA Technical Reports Server (NTRS)
Howard, Samuel
2012-01-01
A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.
NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
2005-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the NASA (National Aeronautics and Space Administration) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
A Small Modular Laboratory Hall Effect Thruster
NASA Astrophysics Data System (ADS)
Lee, Ty Davis
Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.
Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses
NASA Technical Reports Server (NTRS)
Melton, John E. (Inventor); Dudley, Michael R. (Inventor)
2016-01-01
The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.
Cost-Efficient Storage of Cryogens
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojoumer, S. J.; Morris, D. L.; Augustynowicz, S. D.
2007-01-01
NASA's cryogenic infrastructure that supports launch vehicle operations and propulsion testing is reaching an age where major refurbishment will soon be required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at the various NASA field centers. Perlite powder has historically been the insulation material of choice for these large storage tank applications. New bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. A research testing program was conducted to investigate the thermal performance benefits as well as to identify operational considerations and associated risks associated with the application of these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, economic analysis, and insulation changeout). The results of this research work show that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarize the operational requirements that should be considered for these applications.
A Graphical Operator Interface for a Telerobotic Inspection System
NASA Technical Reports Server (NTRS)
Kim, W. S.; Tso, K. S.; Hayati, S.
1993-01-01
Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.
Heliocentric interplanetary low thrust trajectory optimization program, supplement 1, part 2
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.
1978-01-01
The improvements made to the HILTOP electric propulsion trajectory computer program are described. A more realistic propulsion system model was implemented in which various thrust subsystem efficiencies and specific impulse are modeled as variable functions of power available to the propulsion system. The number of operating thrusters are staged, and the beam voltage is selected from a set of five (or less) constant voltages, based upon the application of variational calculus. The constant beam voltages may be optimized individually or collectively. The propulsion system logic is activated by a single program input key in such a manner as to preserve the HILTOP logic. An analysis describing these features, a complete description of program input quantities, and sample cases of computer output illustrating the program capabilities are presented.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1980-01-01
The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.
Power processing systems for ion thrusters.
NASA Technical Reports Server (NTRS)
Herron, B. G.; Garth, D. R.; Finke, R. C.; Shumaker, H. A.
1972-01-01
The proposed use of ion thrusters to fulfill various communication satellite propulsion functions such as east-west and north-south stationkeeping, attitude control, station relocation and orbit raising, naturally leads to the requirement for lightweight, efficient and reliable thruster power processing systems. Collectively, the propulsion requirements dictate a wide range of thruster power levels and operational lifetimes, which must be matched by the power processing. This paper will discuss the status of such power processing systems, present system design alternatives and project expected near future power system performance.
NASA Technical Reports Server (NTRS)
Farhangi, Shahram; Trent, Donnie (Editor)
1992-01-01
A study was directed towards assessing viability and effectiveness of an air augmented ejector/rocket. Successful thrust augmentation could potentially reduce a multi-stage vehicle to a single stage-to-orbit vehicle (SSTO) and, thereby, eliminate the associated ground support facility infrastructure and ground processing required by the eliminated stage. The results of this preliminary study indicate that an air augmented ejector/rocket propulsion system is viable. However, uncertainties resulting from simplified approach and assumptions must be resolved by further investigations.
Propulsive efficiency of frog swimming with different feet and swimming patterns
Jizhuang, Fan; Wei, Zhang; Bowen, Yuan; Gangfeng, Liu
2017-01-01
ABSTRACT Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11%) between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58%) fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency. PMID:28302669
Power processing for electric propulsion
NASA Technical Reports Server (NTRS)
Finke, R. C.; Herron, B. G.; Gant, G. D.
1975-01-01
The inclusion of electric thruster systems in spacecraft design is considered. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. Electron bombardment ion thruster requirements are presented, and the performance characteristics of present power processing systems are reviewed. Design philosophies and alternatives in areas such as inverter type, arc protection, and control methods are discussed along with future performance potentials for meeting goals in the areas of power process or weight (10 kg/kW), efficiency (approaching 92 percent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Astrophysics Data System (ADS)
Stenger, F. J.
1982-12-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Technical Reports Server (NTRS)
Stenger, F. J.
1982-01-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
Zhou, Hao; Alici, Gursel; Than, Trung Duc; Li, Weihua
2013-06-01
In this paper, a spiral-type medical robot based on an endoscopic capsule was propelled in a fluidic and tubular environment using electromagnetic actuation. Both modeling and experimental methods have been employed to characterize the propulsion of the robotic capsule. The experiments were performed not only in a simulated environment (vinyl tube filled with silicone oil) but also in a real small intestine. The effects of the spiral parameters including lead, spiral height, the number of spirals, and cross section of the spirals on the propulsion efficiency of the robot are investigated. Based on the transmission efficiency from rotation to translation as well as the balancing of the microrobot in operation, it is demonstrated that the robot with two spirals could provide the best propulsion performance when its lead is slightly smaller than the perimeter of the capsule. As for the spiral height, it is better to use a larger one as long as the intestine's size allows. Based on the simulation and experimental results presented, this study quantifies the influence of the spiral structure on the capsule's propulsion. It provides a helpful reference for the design and optimization of the traction topology of the microrobot navigating inside the mucus-filled small intestine.
Airbreathing combined cycle engine systems
NASA Technical Reports Server (NTRS)
Rohde, John
1992-01-01
The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.
CSTI Earth-to-orbit propulsion research and technology program overview
NASA Technical Reports Server (NTRS)
Gentz, Steven J.
1993-01-01
NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.
Deriving the Generalized Power and Efficiency Equations for Jet Propulsion Systems
NASA Astrophysics Data System (ADS)
Lee, Hsing-Juin; Chang, Chih-Luong
The kinetic power and efficiency equations for general jet propulsion systems are classically given in a much cursory, incomplete, and ununified format. This situation prohibits the propulsion designer from seeing the panorama of interrelated propulsion parameters and effects. And in some cases, it may lead to an energy-inefficient propulsion system design, or induce significant offset in propulsion performance as demonstrated in this study. Thus, herein we attempt to clarify some related concepts and to rigorously derive the associated generalized equations with a complete spectrum of physical parameters to be manipulated in quest of better performance. By a highly efficient interweaved transport scheme, we have derived the following equations for general jet propulsion systems: i.e., generalized total kinetic power, generalized kinetic power delivered to the jet propulsion system, generalized thrust power, generalized available propulsion power, and relevant generalized propulsive, thermal, and overall efficiency equations. Further, the variants of these equations under special conditions are also considered. For taking advantage of the above propulsion theories, we also illustrate some novel propulsion strategies in the final discussion, such as the dive-before-climb launch of rocket from highland mountain on eastbound rail, with perhaps minisatellites as the payloads.
Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.
2009-01-01
The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.
NASA Technical Reports Server (NTRS)
Trefny, Charles J.; Dippold, Vance F., III; Yungster, Shaye
2017-01-01
The dual-mode free-jet combustor concept, pictured in figure 1, is described. It was introduced in 2010 as a wide- operating-range propulsion device using a novel supersonic free-jet combustion process. The unique feature of the free-jet combustor pictured in figure 1a, is supersonic combustion in an unconfined free-jet that traverses a larger subsonic combustion chamber to a variable nozzle. During this mode of operation, the propulsive stream is not in contact with the combustor walls, and equilibrates to the combustion chamber pressure. To a first order, thermodynamic efficiency is similar to that of a traditional scramjet under the assumption of constant-pressure combustion. Qualitatively, a number of possible benefits to this approach are obvious.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1981-01-01
The technology that will improve the energy efficiency of propulsion systems for subsonic commercial aircraft is investigated. A reduction of 14.4% in cruise installed sfc (0.572 versus 0.668 for the CF6-50C) and a direct operation cost reduction in excess of the 5% goal is projected. Noise and emissions projections are consistent with the established goals.
Development Status of the NSTAR Ion Propulsion System Power Processor
NASA Technical Reports Server (NTRS)
Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Cartier, Kevin C.; Bowers, Glen E.
1995-01-01
A 0.5-2.3 kW xenon ion propulsion system is presently being developed under the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program. This propulsion system includes a 30 cm diameter xenon ion thruster, a Digital Control Interface Unit, a xenon feed system, and a power processing unit (PPU). The PPU consists of the power supply assemblies which operate the thruster neutralizer, main discharge chamber, and ion optics. Also included are recycle logic and a digital microcontroller. The neutralizer and discharge power supplies employ a dual use configuration which combines the functions of two power supplies into one, significantly simplifying the PPU. Further simplification was realized by implementing a single thruster control loop which regulates the beam current via the discharge current. Continuous throttling is possible over a 0.5-2.3 kW output power range. All three power supplies have been fabricated and tested with resistive loads, and have been combined into a single breadboard unit with the recycle logic and microcontroller. All line and load regulation test results show the power supplies to be within the NSTAR flight PPU specified power output of 1.98 kW. The overall efficiency of the PPU, calculated as the combined efficiencies of the power supplies and controller, at 2.3 kW delivered to resistive loads was 0.90. The component was 6.16 kg. Integration testing of the neutralizer and discharge power supplies with a functional model thruster revealed no issues with discharge ignition or steady state operation.
Direct drive options for electric propulsion systems
NASA Technical Reports Server (NTRS)
Hamley, John A.
1995-01-01
Power processing units (PPU's) in an electric propulsion system provide many challenging integration issues. The PPU must provide power to the electric thruster while maintaining compatibility with all of the spacecraft power and data systems. Inefficiencies in the power processor produce heat, which must be radiated to the environment in order to ensure reliable operation. Although PPU efficiencies are generally greater than 0.9, heat loads are often substantial. This heat must be rejected by thermal control systems which generally have specific masses of 15-30 kg/kW. PPU's also represent a large fraction of the electric propulsion system dry mass. Simplification or elimination of power processing in a propulsion system would reduce the electric propulsion system specific mass and improve the overall reliability and performance. A direct drive system would eliminate all or some of the power supplies required to operate a thruster by directly connecting the various thruster loads to the solar array. The development of concentrator solar arrays has enabled power bus voltages in excess of 300 V which is high enough for direct drive applications for Hall thrusters such as the Stationary Plasma Thruster (SPT). The option of solar array direct drive for SPT's is explored to provide a comparison between conventional and direct drive system mass.
The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
2007-01-01
High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.
A fast Chebyshev method for simulating flexible-wing propulsion
NASA Astrophysics Data System (ADS)
Moore, M. Nicholas J.
2017-09-01
We develop a highly efficient numerical method to simulate small-amplitude flapping propulsion by a flexible wing in a nearly inviscid fluid. We allow the wing's elastic modulus and mass density to vary arbitrarily, with an eye towards optimizing these distributions for propulsive performance. The method to determine the wing kinematics is based on Chebyshev collocation of the 1D beam equation as coupled to the surrounding 2D fluid flow. Through small-amplitude analysis of the Euler equations (with trailing-edge vortex shedding), the complete hydrodynamics can be represented by a nonlocal operator that acts on the 1D wing kinematics. A class of semi-analytical solutions permits fast evaluation of this operator with O (Nlog N) operations, where N is the number of collocation points on the wing. This is in contrast to the minimum O (N2) cost of a direct 2D fluid solver. The coupled wing-fluid problem is thus recast as a PDE with nonlocal operator, which we solve using a preconditioned iterative method. These techniques yield a solver of near-optimal complexity, O (Nlog N) , allowing one to rapidly search the infinite-dimensional parameter space of all possible material distributions and even perform optimization over this space.
Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, Edward L.; Rothschild, William J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
Green Propellant Landing Demonstration at U.S. Range
NASA Technical Reports Server (NTRS)
Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.
2016-01-01
The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation in order to investigate the handling and process safety variances in project resources between LMP-103S and typical in-space propellants. The GPLD risk reduction operation proved successful for many reasons including handling the green propellant at a U.S. Range, loading and pressurizing a flight-like tank, expelling the propellant, measuring the tank expulsion efficiency, and most significantly, GSFC propulsion personnel's new insight into the LMP-103S propellant handling details.
Green Propellant Loading Demonstration at U.S. Range
NASA Technical Reports Server (NTRS)
Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.
2016-01-01
The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation in order to investigate the handling and process safety variances in project resources between LMP-103S and typical in-space propellants. The GPLD risk reduction operation proved successful for many reasons including handling the green propellant at a U.S. Range, loading and pressurizing a flight-like tank, expelling the propellant, measuring the tank expulsion efficiency, and most significantly, GSFC propulsion personnel's new insight into the LMP-103S propellant handling details.
On parallel hybrid-electric propulsion system for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Hung, J. Y.; Gonzalez, L. F.
2012-05-01
This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.
Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.
2012-01-01
Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.
Partially Turboelectric Aircraft Drive Key Performance Parameters
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Duffy, Kirsten P.; Brown, Gerald V.
2017-01-01
The purpose of this paper is to propose electric drive specific power, electric drive efficiency, and electrical propulsion fraction as the key performance parameters for a partially turboelectric aircraft power system and to investigate their impact on the overall aircraft performance. Breguet range equations for a base conventional turbofan aircraft and a partially turboelectric aircraft are found. The benefits and costs that may result from the partially turboelectric system are enumerated. A break even analysis is conducted to find the minimum allowable electric drive specific power and efficiency, for a given electrical propulsion fraction, that can preserve the range, fuel weight, operating empty weight, and payload weight of the conventional aircraft. Current and future power system performance is compared to the required performance to determine the potential benefit.
Chitosan-based water-propelled micromotors with strong antibacterial activity.
Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph
2017-02-09
A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.
Swimming mechanics and propulsive efficiency in the chambered nautilus
NASA Astrophysics Data System (ADS)
Neil, Thomas R.; Askew, Graham N.
2018-02-01
The chambered nautilus (Nautilus pompilius) encounters severe environmental hypoxia during diurnal vertical movements in the ocean. The metabolic cost of locomotion (Cmet) and swimming performance depend on how efficiently momentum is imparted to the water and how long on-board oxygen stores last. While propulsive efficiency is generally thought to be relatively low in jet propelled animals, the low Cmet in Nautilus indicates that this is not the case. We measured the wake structure in Nautilus during jet propulsion swimming, to determine their propulsive efficiency. Animals swam with either an anterior-first or posterior-first orientation. With increasing swimming speed, whole cycle propulsive efficiency increased during posterior-first swimming but decreased during anterior-first swimming, reaching a maximum of 0.76. The highest propulsive efficiencies were achieved by using an asymmetrical contractile cycle in which the fluid ejection phase was relatively longer than the refilling phase, reducing the volume flow rate of the ejected fluid. Our results demonstrate that a relatively high whole cycle propulsive efficiency underlies the low Cmet in Nautilus, representing a strategy to reduce the metabolic demands in an animal that spends a significant part of its daily life in a hypoxic environment.
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1999-01-01
A technohistorical and forward-planning overview of U.S. developments in combined airbreathing/rocket propulsion for advanced aerospace vehicle applications is presented. Such system approaches fall into one of two categories: (1) Combination propulsion systems (separate, non-interacting engines installed), and (2) Combined-Cycle systems. The latter, and main subject, comprises a large family of closely integrated engine types, made up of both airbreathing and rocket derived subsystem hardware. A single vehicle-integrated, multimode engine results, one capable of operating efficiently over a very wide speed and altitude range, atmospherically and in space. While numerous combination propulsion systems have reached operational flight service, combined-cycle propulsion development, initiated ca. 1960, remains at the subscale ground-test engine level of development. However, going beyond combination systems, combined-cycle propulsion potentially offers a compelling set of new and unique capabilities. These capabilities are seen as enabling ones for the evolution of Spaceliner class aerospace transportation systems. The following combined-cycle hypersonic engine developments are reviewed: (1) RENE (rocket engine nozzle ejector), (2) Cryojet and LACE, (3) Ejector Ramjet and its derivatives, (4) the seminal NASA NAS7-377 study, (5) Air Force/Marquardt Hypersonic Ramjet, (6) Air Force/Lockheed-Marquardt Incremental Scramjet flight-test project, (7) NASA/Garrett Hypersonic Research Engine (HRE), (8) National Aero-Space Plane (NASP), (9) all past projects; and such current and planned efforts as (10) the NASA ASTP-ART RBCC project, (11) joint CIAM/NASA DNSCRAM flight test,(12) Hyper-X, (13) Trailblazer,( 14) W-Vehicle and (15) Spaceliner 100. Forward planning programmatic incentives, and the estimated timing for an operational Spaceliner powered by combined-cycle engines are discussed.
Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective.
Vegter, Riemer J K; de Groot, Sonja; Lamoth, Claudine J; Veeger, Dirkjan Hej; van der Woude, Lucas H V
2014-01-01
To gain insight into cyclic motor learning processes, hand rim wheelchair propulsion is a suitable cyclic task, to be learned during early rehabilitation and novel to almost every individual. To propel in an energy efficient manner, wheelchair users must learn to control bimanually applied forces onto the rims, preserving both speed and direction of locomotion. The purpose of this study was to evaluate mechanical efficiency and propulsion technique during the initial stage of motor learning. Therefore, 70 naive able-bodied men received 12-min uninstructed wheelchair practice, consisting of three 4-min blocks separated by 2 min rest. Practice was performed on a motor-driven treadmill at a fixed belt speed and constant power output relative to body mass. Energy consumption and the kinetics of propulsion technique were continuously measured. Participants significantly increased their mechanical efficiency and changed their propulsion technique from a high frequency mode with a lot of negative work to a longer-slower movement pattern with less power losses. Furthermore a multi-level model showed propulsion technique to relate to mechanical efficiency. Finally improvers and non-improvers were identified. The non-improving group was already more efficient and had a better propulsion technique in the first block of practice (i.e., the fourth minute). These findings link propulsion technique to mechanical efficiency, support the importance of a correct propulsion technique for wheelchair users and show motor learning differences.
NASA Technical Reports Server (NTRS)
Mikic, Gregor Veble; Stoll, Alex; Bevirt, JoeBen; Grah, Rok; Moore, Mark D.
2016-01-01
Theoretical and numerical aspects of aerodynamic efficiency of propulsion systems are studied. Focus is on types of propulsion that closely couples to the aerodynamics of the complete vehicle. We discuss the effects of local flow fields, which are affected both by conservative flow acceleration as well as total pressure losses, on the efficiency of boundary layer immersed propulsion devices. We introduce the concept of a boundary layer retardation turbine that helps reduce skin friction over the fuselage. We numerically investigate efficiency gains offered by boundary layer and wake interacting devices. We discuss the results in terms of a total energy consumption framework and show that efficiency gains offered depend on all the elements of the propulsion system.
NASA Technical Reports Server (NTRS)
Kemp, Victoria R.
1992-01-01
A fluid-dynamic, digital-transient computer model of an integrated, parallel propulsion system was developed for the CDC mainframe and the SUN workstation computers. Since all STME component designs were used for the integrated system, computer subroutines were written characterizing the performance and geometry of all the components used in the system, including the manifolds. Three transient analysis reports were completed. The first report evaluated the feasibility of integrated engine systems in regards to the start and cutoff transient behavior. The second report evaluated turbopump out and combined thrust chamber/turbopump out conditions. The third report presented sensitivity study results in staggered gas generator spin start and in pump performance characteristics.
An SCR inverter for electric vehicles
NASA Technical Reports Server (NTRS)
Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.
1980-01-01
An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.
On-Orbit Propulsion and Methods of Momentum Management for the International Space Station
NASA Technical Reports Server (NTRS)
Russell, Samuel P.; Spencer, Victor; Metrocavage, Kevin; Swanson, Robert A.; Krajchovich, Mark; Beisner, Matthew; Kamath, Ulhas P.
2010-01-01
Since the first documented design of a space station in 1929, it has been a dream of many to sustain a permanent presence in space. Russia and the US spent several decades competing for a sustained human presence in low Earth orbit. In the 1980 s, Russia and the US began to openly collaborate to achieve this goal. This collaboration lead to the current design of the ISS. Continuous improvement of procedures for controlling the ISS have lead to more efficient propellant management over the years. Improved efficiency combined with the steady use of cargo vehicles has kept ISS propellant levels well above their defined thresholds in all categories. The continuing evolution of propellant and momentum management operational strategies demonstrates the capability and flexibility of the ISS propulsion system. The hard work and cooperation of the international partners and the evolving operational strategies have made the ISS safe and successful. The ISS s proven success is the foundation for the future of international cooperation for sustaining life in space.
A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.
2005-01-01
Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.
NASA Technical Reports Server (NTRS)
Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.
2003-01-01
The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system that produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.
NASA Technical Reports Server (NTRS)
Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.
2002-01-01
The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system thai: produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.
Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert
2014-01-01
Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.
Energy Efficient Engine: Flight propulsion system final design and analysis
NASA Technical Reports Server (NTRS)
Davis, Donald Y.; Stearns, E. Marshall
1985-01-01
The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport engines. The Flight Propulsion System (FPS) is the engine designed to achieve E3 goals. Achieving these goals required aerodynamic, mechanical and system technologies advanced beyond that of current production engines. These technologies were successfully demonstrated in component rigs, a core engine and a turbofan ground test engine. The design and benefits of the FPS are presented. All goals for efficiency, environmental considerations, and economic payoff were met. The FPS has, at maximum cruise, 10.67 km (35,000 ft), M0.8, standard day, a 16.9 percent lower installed specific fuel consumption than a CF6-50C. It provides an 8.6 percent reduction in direct operating cost for a short haul domestic transport and a 16.2 percent reduction for an international long distance transport.
TAL Performance and Mission Analysis in a CDL Capacitor Powered Direct-Drive Configuration
NASA Technical Reports Server (NTRS)
Hrbud, Ivana; Rose, M. Frank; Oleson, Steve R.; Jenkins, Rhonald M.
1999-01-01
The goals of this research are (1) to prove the concept feasibility of a direct-drive electric propulsion system, and (2) to evaluate the performance and characteristics of a Russian TAL (Thruster with Anode Layer) operating in a long-pulse mode, powered by a capacitor-based power source developed at Space Power Institute. The TAL, designated D-55, is characterized by an external acceleration zone and is powered by a unique chemical double layer (CDL) capacitor bank with a capacitance of 4 F at a charge voltage of 400 V. Performance testing of this power supply on the TAL was conducted at NASA Lewis Research Center in Cleveland, OH. Direct thrust measurements of the TAL were obtained at CDL power levels ranging from 450 to 1750 W. The specific impulse encompassed a range from 1150 s to 2200 s, yielding thruster system efficiencies between 50 and 60%. Preliminary mission analysis of the CDL direct-drive concept and other electric propulsion options was performed for the ORACLE spacecraft in 6am/6pm and 12am/12pm, 300 km sun-synchronous orbits. The direct-drive option was competitive with the other systems by increasing available net mass between 5 and 42% and reducing two-year system wet mass between 18 and 63%. Overall, the electric propulsion power requirements for the satellite solar array were reduced between 57 and 91% depending oil the orbit evaluated The direct-drive, CDL capacitor-based concept in electric propulsion thus promises to be a highly-efficient, viable alternative for satellite operations in specific near-Earth missions.
Power Electronics Development for the SPT-100 Thruster
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.; Sankovic, John M.
1994-01-01
Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.
Machinist's Mate 1 and C: Rate Training Manual.
ERIC Educational Resources Information Center
Naval Training Command, Pensacola, FL.
The rate training manual covers the duties required to efficiently operate and maintain ship propulsion machinery and associated equipment and to maintain applicable records and reports. Chapters cover: turbines; reduction gears; steam-driven generators; heat exchangers and air ejectors; pumps; piping and valves; distilling plants; refrigeration…
Method for providing real-time control of a gaseous propellant rocket propulsion system
NASA Technical Reports Server (NTRS)
Morris, Brian G. (Inventor)
1991-01-01
The new and improved methods and apparatus disclosed provide effective real-time management of a spacecraft rocket engine powered by gaseous propellants. Real-time measurements representative of the engine performance are compared with predetermined standards to selectively control the supply of propellants to the engine for optimizing its performance as well as efficiently managing the consumption of propellants. A priority system is provided for achieving effective real-time management of the propulsion system by first regulating the propellants to keep the engine operating at an efficient level and thereafter regulating the consumption ratio of the propellants. A lower priority level is provided to balance the consumption of the propellants so significant quantities of unexpended propellants will not be left over at the end of the scheduled mission of the engine.
Aircraft Energy Efficiency (ACEE) status report
NASA Technical Reports Server (NTRS)
Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.
1979-01-01
Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.
Preliminary Design of Low-Thrust Interplanetary Missions
NASA Technical Reports Server (NTRS)
Sims, Jon A.; Flanagan, Steve N.
1997-01-01
For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.
NASA Astrophysics Data System (ADS)
Faitar, C.; Novac, I.
2017-08-01
Today, the concept of energy efficiency or energy optimization in ships has become one of the main problems of engineers in the whole world. To increase the fiability of a crude oil super tanker ship it means, among other things, to improve the energy performance and optimize the fuel consumption of ship through the development of engines and propulsion system or using alternative energies. Also, the importance of having an effective and reliable Power Management System (PMS) in a vessel operating system means to reduce operational costs and maintain power system of machine parts working in minimum stress in all operating conditions. Studying the Energy Efficiency Design Index and Energy Efficiency Operational Indicator for a crude oil super tanker ship, it allows us to study the reconfiguration of ship power system introducing new generation systems.
An electric vehicle propulsion system's impact on battery performance: An overview
NASA Technical Reports Server (NTRS)
Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.
1980-01-01
The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.
Ultrasound-modulated bubble propulsion of chemically powered microengines.
Xu, Tailin; Soto, Fernando; Gao, Wei; Garcia-Gradilla, Victor; Li, Jinxing; Zhang, Xueji; Wang, Joseph
2014-06-18
The use of an ultrasound (US) field for rapid and reversible control of the movement of bubble-propelled chemically powered PEDOT/Ni/Pt microengines is demonstrated. Such operation reflects the US-induced disruption of normal bubble evolution and ejection, essential for efficient propulsion of catalytic microtubular engines. It offers precise speed control, with sharp increases and decreases of the speed at low and high US powers, respectively. A wide range of speeds can thus be generated by tuning the US power. Extremely fast changes in the motor speed (<0.1 s) and reproducible "On/Off" activations are observed, indicating distinct advantages compared to motion control methods based on other external stimuli. Such effective control of the propulsion of chemically powered microengines, including remarkable "braking" ability, holds considerable promise for diverse applications.
Practical application of power conditioning to electric propulsion for passenger vehicles
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Lee, F. C.; Nehl, T. W.; Overton, B. P.
1980-01-01
A functional model 15 HP, 120 volt, 4-pole, 7600 r.p.m. samarium-cobalt permanent magnet type brushless dc motor-transistorized power conditioner unit was designed, fabricated and tested for specific use in propulsion of electric passenger vehicles. This new brushless motor system, including its power conditioner package, has a number of important advantages over existing systems such as reduced weight and volume, higher reliability, and potential for improvements in efficiencies. These advantages are discussed in this paper in light of the substantial test data collected during experimentation with the newly developed conditioner motor propulsion system. Details of the power conditioner design philosophy and particulars are given in the paper. Also, described here are the low level electronic design and operation in relation to the remainder of the system.
Component Data Base for Space Station Resistojet Auxiliary Propulsion
NASA Technical Reports Server (NTRS)
Bader, Clayton H.
1988-01-01
The resistojet was baselined for Space Station auxiliary propulsion because of its operational versatility, efficiency, and durability. This report was conceived as a guide to designers and planners of the Space Station auxiliary propulsion system. It is directed to the low thrust resistojet concept, though it should have application to other station concepts or systems such as the Environmental Control and Life Support System (ECLSS), Manufacturing and Technology Laboratory (MTL), and the Waste Fluid Management System (WFMS). The information will likely be quite useful in the same capacity for other non-Space Station systems including satellite, freeflyers, explorers, and maneuvering vehicles. The report is a catalog of the most useful information for the most significant feed system components and is organized for the greatest convenience of the user.
NASA Astrophysics Data System (ADS)
Dandavino, S.; Ataman, C.; Ryan, C. N.; Chakraborty, S.; Courtney, D.; Stark, J. P. W.; Shea, H.
2014-07-01
Microfabricated electrospray thrusters could revolutionize the spacecraft industry by providing efficient propulsion capabilities to micro and nano satellites (1-100 kg). We present the modeling, design, fabrication and characterization of a new generation of devices, for the first time integrating in the fabrication process individual accelerator electrodes capable of focusing and accelerating the emitted sprays. Integrating these electrodes is a key milestone in the development of this technology; in addition to increasing the critical performance metrics of thrust, specific impulse and propulsive efficiency, the accelerators enable a number of new system features such as power tuning and thrust vectoring and balancing. Through microfabrication, we produced high density arrays (213 emitters cm-2) of capillary emitters, assembling them at wafer-level with an extractor/accelerator electrode pair separated by micro-sandblasted glass. Through IV measurements, we could confirm that acceleration could be decoupled from the extraction of the spray—an important element towards the flexibility of this technology. We present the largest reported internally fed microfabricated arrays operation, with 127 emitters spraying in parallel, for a total beam of 10-30 µA composed by 95% of ions. Effective beam focusing was also demonstrated, with plume half-angles being reduced from approximately 30° to 15° with 2000 V acceleration. Based on these results, we predict, with 3000 V acceleration, thrust per emitter of 38.4 nN, specific impulse of 1103 s and a propulsive efficiency of 22% with <1 mW/emitter power consumption.
Benefits of Improved HP Turbine Active Clearance Control
NASA Technical Reports Server (NTRS)
Ruiz, Rafael; Albers, Bob; Sak, Wojciech; Seitzer, Ken; Steinetz, Bruce M.
2007-01-01
As part of the NASA Propulsion 21 program, GE Aircraft Engines was contracted to develop an improved high pressure turbine(HPT) active clearance control (ACC) system. The system is envisioned to minimize blade tip clearances to improve HPT efficiency throughout the engine operation range simultaneously reducing fuel consumption and emissions.
Low Order Modeling Tools for Preliminary Pressure Gain Combustion Benefits Analyses
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2012-01-01
Pressure gain combustion (PGC) offers the promise of higher thermodynamic cycle efficiency and greater specific power in propulsion and power systems. This presentation describes a model, developed under a cooperative agreement between NASA and AFRL, for preliminarily assessing the performance enhancement and preliminary size requirements of PGC components either as stand-alone thrust producers or coupled with surrounding turbomachinery. The model is implemented in the Numerical Propulsion Simulation System (NPSS) environment allowing various configurations to be examined at numerous operating points. The validated model is simple, yet physics-based. It executes quickly in NPSS, yet produces realistic results.
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.; Howell, Joe (Technical Monitor)
2002-01-01
Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 successfully demonstrated electric propulsion as the primary propulsion source for a satellite. The POWOW concept is a solar-electric propelled spacecraft capable of significant cargo and short trip times for traveling to Mars. There it would enter areosynchronous orbit (Mars GEO equivalent) and beam power to surface installations via lasers. The concept has been developed with industrial partner expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The present baseline spacecraft design providing 898 kW using technologies expected to be available in 2003 will be described. Areal power densities approaching 350 W/sq m at 80 C operating temperatures and wing level specific powers of over 350 W/kg are projected. Details of trip times and payloads to Mars are presented. Electric propulsion options include Hall, MPD, and ion thrusters of various power levels and trade studies have been conducted to define the most advantageous options. Because the design is modular, learning curve methodology has been applied to determine expected cost reductions and is included.
Is effective force application in handrim wheelchair propulsion also efficient?
Bregman, D J J; van Drongelen, S; Veeger, H E J
2009-01-01
Efficiency in manual wheelchair propulsion is low, as is the fraction of the propulsion force that is attributed to the moment of propulsion of the wheelchair. In this study we tested the hypothesis that a tangential propulsion force direction leads to an increase in physiological cost, due to (1) the sub-optimal use of elbow flexors and extensors, and/or (2) the necessity of preventing of glenohumeral subluxation. Five able-bodied and 11 individuals with a spinal cord injury propelled a wheelchair while kinematics and kinetics were collected. The results were used to perform inverse dynamical simulations with input of (1) the experimentally obtained propulsion force, and (2) only the tangential component of that force. In the tangential force condition the physiological cost was over 30% higher, while the tangential propulsion force was only 75% of the total experimental force. According to model estimations, the tangential force condition led to more co-contraction around the elbow, and a higher power production around the shoulder joint. The tangential propulsion force led to a significant, but small 4% increase in necessity for the model to compensate for glenohumeral subluxation, which indicates that this is not a likely cause of the decrease in efficiency. The present findings support the hypothesis that the observed force direction in wheelchair propulsion is a compromise between efficiency and the constraints imposed by the wheelchair-user system. This implies that training should not be aimed at optimization of the propulsion force, because this may be less efficient and more straining for the musculoskeletal system.
Lunar surface base propulsion system study, volume 1
NASA Technical Reports Server (NTRS)
1987-01-01
The efficiency, capability, and evolution of a lunar base will be largely dependent on the transportation system that supports it. Beyond Space Station in low Earth orbit (LEO), a Lunar-derived propellant supply could provide the most important resource for the transportation infrastructure. The key to an efficient Lunar base propulsion system is the degree of Lunar self-sufficiency (from Earth supply) and reasonable propulsion system performance. Lunar surface propellant production requirements must be accounted in the measurement of efficiency of the entire space transportation system. Of all chemical propellant/propulsion systems considered, hydrogen/oxygen (H/O) OTVs appear most desirable, while both H/O and aluminum/oxygen propulsion systems may be considered for the lander. Aluminized-hydrogen/oxygen and Silane/oxygen propulsion systems are also promising candidates. Lunar propellant availability and processing techniques, chemical propulsion/vehicle design characteristics, and the associated performance of the total transportation infrastructure are reviewed, conceptual propulsion system designs and vehicle/basing concepts, and technology requirements are assessed in context of a Lunar Base mission scenario.
Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion
NASA Technical Reports Server (NTRS)
Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.
2017-01-01
The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.
Dynamic Analysis for a Geared Turbofan Engine with Variable Area Fan Nozzle
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Thomas, George L.
2017-01-01
Aggressive design goals have been set for future aero-propulsion systems with regards to fuel economy, noise, and emissions. To meet these challenging goals, advanced propulsion concepts are being explored and current operating margins are being re-evaluated to find additional concessions that can be made. One advanced propulsion concept being evaluated is a geared turbofan with a variable area fan nozzle (VAFN), developed by NASA. This engine features a small core, a fan driven by the low pressure turbine through a reduction gearbox, and a shape memory alloy (SMA)-actuated VAFN. The VAFN is designed to allow both a small exit area for efficient operation at cruise, while being able to open wider at high power conditions to reduce backpressure on the fan and ensure a safe level of stall margin is maintained. The VAFN is actuated via a SMA-based system instead of a conventional system to decrease overall weight of the system, however, SMA-based actuators respond relatively slowly, which introduces dynamic issues that are investigated in this work. This paper describes both a control system designed specifically for issues associated with SMAs, and dynamic analysis of the geared turbofan VAFN with the SMA actuators. Also, some future recommendations are provided for this type of propulsion system.
Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility
NASA Technical Reports Server (NTRS)
Hill, Gerald M.; Weaver, Harold F.; Kudlac, Maureen T.; Maloney, Christian T.; Evans, Richard K.
2011-01-01
The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs.
NASA Technical Reports Server (NTRS)
Soreide, David; Bogue, Rodney K.; Ehernberger, L. J.; Seidel, Jonathan
1997-01-01
Inlet unstart causes a disturbance akin to severe turbulence for a supersonic commercial airplane. Consequently, the current goal for the frequency of unstarts is a few times per fleet lifetime. For a mixed-compression inlet, there is a tradeoff between propulsion system efficiency and unstart margin. As the unstart margin decreases, propulsion system efficiency increases, but so does the unstart rate. This paper intends to first, quantify that tradeoff for the High Speed Civil Transport (HSCT) and second, to examine the benefits of using a sensor to detect turbulence ahead of the airplane. When the presence of turbulence is known with sufficient lead time to allow the propulsion system to adjust the unstart margin, then inlet un,starts can be minimized while overall efficiency is maximized. The NASA Airborne Coherent Lidar for Advanced In-Flight Measurements program is developing a lidar system to serve as a prototype of the forward-looking sensor. This paper reports on the progress of this development program and its application to the prevention of inlet unstart in a mixed-compression supersonic inlet. Quantified benefits include significantly reduced takeoff gross weight (TOGW), which could increase payload, reduce direct operating costs, or increase range for the HSCT.
Energy efficient engine: Flight propulsion system preliminary analysis and design
NASA Technical Reports Server (NTRS)
Johnston, R. P.; Beitler, R. S.; Bobinger, R. O.; Broman, C. L.; Gravitt, R. D.; Heineke, H.; Holloway, P. R.; Klem, J. S.; Nash, D. O.; Ortiz, P.
1980-01-01
The characteristics of an advanced flight propulsion system (FPS), suitable for introduction in the late 1980's to early 1990's, was more fully defined. It was determined that all goals for efficiency, environmental considerations, and economics could be met or exceeded with the possible exception of NOx emission. In evaluating the FPS, all aspects were considered including component design, performance, weight, initial cost, maintenance cost, engine system integration (including nacelle), and aircraft integration considerations. The current FPS installed specific fuel consumption was reduced 14.2% from that of the CF6-50C reference engine. When integrated into an advanced, subsonic, study transport, the FPS produced a fuel burn savings of 15 to 23% and a direct operating cost reduction of 5 to 12% depending on the mission and study aircraft characteristics relative to the reference engine.
Energy efficient engine. Volume 1: Component development and integration program
NASA Technical Reports Server (NTRS)
1981-01-01
Technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines are developed, evaluated, and demonstrated. The four program objectives are: (1) propulsion system analysis; (2) component analysis, design, and development; (3) core design, fabrication, and test; and (4) integrated core/low spoon design, fabrication, and test.
Status of Brayton Cycle Power Conversion Development at NASA GRC
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Shaltens, Richard K.; Dolce, James L.; Cataldo, Robert L.
2002-01-01
The NASA Glenn Research Center (GRC) is pursuing the development of Brayton cycle power conversion for various NASA initiatives. Brayton cycle power systems offer numerous advantages for space power generation including high efficiency, long life, high maturity, and broad scalability. Candidate mission applications include surface rovers and bases, advanced propulsion vehicles, and earth orbiting satellites. A key advantage is the ability for Brayton converters to span the wide range of power demands of future missions from several kilowatts to multi-megawatts using either solar, isotope, or reactor heat sources. Brayton technology has been under development by NASA since the early 1960's resulting in engine prototypes in the 2 to 15 kW-class that have demonstrated conversion efficiency of almost 30% and cumulative operation in excess of 40,000 hours. Present efforts at GRC are focusing on a 2 kW testbed as a proving ground for future component advances and operational strategies, and a 25 kW engine design as a modular building block for 100 kW-class electric propulsion and Mars surface power applications.
Liquid-Metal-Fed Pulsed Electromagnetic Thrusters For In-Space Propulsion
NASA Technical Reports Server (NTRS)
Markusic, T. E.
2004-01-01
We describe three pulsed electromagnetic thruster concepts, which span four orders of magnitude in power processing capability (100 W to >100 kW), for in-space propulsion applications. The primary motivation for using a pulsed system is to is to enable high (instantaneous) power operation, which provides high acceleration efficiency, while using considerably less (continuous) power from the spacecraft power system. Unfortunately, conventional pulsed thrusters require failure-prone electrical switches and gas-puff valves. The series of thrusters described here directly address this problem, through the use of liquid metal propellant, by either eliminating both components or providing less taxing operational requirements, thus yielding a path toward both efficient and reliable pulsed electromagnetic thrusters. The emphasis of this paper is to conceptually describe each of the thruster concepts; however, initial test results with gallium propellant in one thruster geometry are presented. These tests reveal that a greater understanding of gallium material compatibility, contamination, and wetting behavior will be necessary before a completely functional thruster can be developed. Initial experimental results aimed at providing insight into these issues are presented.
Durán-Grados, Vanesa; Mejías, Javier; Musina, Liliya; Moreno-Gutiérrez, Juan
2018-08-01
In this study we consider the problems associated with calculating ships' energy and emission inventories. Various related uncertainties are described in many similar studies published in the last decade, and applying to Europe, the USA and Canada. However, none of them have taken into account the performance of ships' propulsion systems. On the one hand, when a ship uses its propellers, there is no unanimous agreement on the equations used to calculate the main engines load factor and, on the other, the performance of waterjet propulsion systems (for which this variable depends on the speed of the ship) has not been taken into account in any previous studies. This paper proposes that the efficiency of the propulsion system should be included as a new parameter in the equation that defines the actual power delivered by a ship's main engines, as applied to calculate energy consumption and emissions in maritime transport. To highlight the influence of the propulsion system on calculated energy consumption and emissions, the bottom-up method has been applied using data from eight fast ferries operating across the Strait of Gibraltar over the course of one year. This study shows that the uncertainty about the efficiency of the propulsion system should be added as one more uncertainty in the energy and emission inventories for maritime transport as currently prepared. After comparing four methods for this calculation, the authors propose a new method for eight cases. For the calculation of the Main Engine's fuel oil consumption, differences up to 22% between some methods were obtained at low loads. Copyright © 2018 Elsevier B.V. All rights reserved.
Space Electric Research Test in the Electric Propulsion Laboratory
1964-06-21
Technicians prepare the Space Electric Research Test (SERT-I) payload for a test in Tank Number 5 of the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust, but once lofted into orbit by workhorse chemical rockets, they are capable of small, continuous thrust for periods up to several years. The electron bombardment thruster operated at a 90-percent efficiency during testing in the Electric Propulsion Laboratory. The package was rapidly rotated in a vacuum to simulate its behavior in space. The SERT-I mission, launched from Wallops Island, Virginia, was the first flight test of Kaufman’s ion engine. SERT-I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. The Electric Propulsion Laboratory included two large space simulation chambers, one of which is seen here. Each uses twenty 2.6-foot diameter diffusion pumps, blowers, and roughing pumps to remove the air inside the tank to create the thin atmosphere. A helium refrigeration system simulates the cold temperatures of space.
1000 Hours of Testing Completed on 10-kW Hall Thruster
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2001-01-01
Between the months of April and August 2000, a 10-kW Hall effect thruster, designated T- 220, was subjected to a 1000-hr life test evaluation. Hall effect thrusters are propulsion devices that electrostatically accelerate xenon ions to produce thrust. Hall effect propulsion has been in development for many years, and low-power devices (1.35 kW) have been used in space for satellite orbit maintenance. The T-220, shown in the photo, produces sufficient thrust to enable efficient orbital transfers, saving hundreds of kilograms in propellant over conventional chemical propulsion systems. This test is the longest operation ever achieved on a high-power Hall thruster (greater than 4.5 kW) and is a key milestone leading to the use of this technology for future NASA, commercial, and military missions.
Lui, Jordon; MacGillivray, Megan K; Sheel, A William; Jeyasurya, Jeswin; Sadeghi, Mahsa; Sawatzky, Bonita Jean
2013-01-01
The purpose of this study was to (1) evaluate the mechanical efficiency (ME) of two commercially available lever-propulsion mechanisms for wheelchairs and (2) compare the ME of lever propulsion with hand rim propulsion within the same wheelchair. Of the two mechanisms, one contained a torsion spring while the other used a roller clutch design. We hypothesized that the torsion spring mechanism would increase the ME of propulsion due to a passive recovery stroke enabled by the mechanism. Ten nondisabled male participants with no prior manual wheeling experience performed submaximal exercise tests using both lever-propulsion mechanisms and hand rim propulsion on two different wheelchairs. Cardiopulmonary parameters including oxygen uptake (VO2), heart rate (HR), and energy expenditure (En) were determined. Total external power (Pext) was measured using a drag test protocol. ME was determined by the ratio of Pext to En. Results indicated no significant effect of lever-propulsion mechanism for all physiological measures tested. This suggests that the torsion spring did not result in a physiological benefit compared with the roller clutch mechanism. However, both lever-propulsion mechanisms showed decreased VO2 and HR and increased ME (as a function of slope) compared with hand rim propulsion (p < 0.001). This indicates that both lever-propulsion mechanisms tested are more mechanically efficient than conventional hand rim propulsion, especially when slopes are encountered.
NASA Technical Reports Server (NTRS)
Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2013-01-01
A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.
NASA Technical Reports Server (NTRS)
2005-01-01
The goal of this research is to develop and demonstrate innovative adaptive seal technologies that can lead to dramatic improvements in engine performance, life, range, and emissions, and enhance operability for next generation gas turbine engines. This work is concentrated on the development of self-adaptive clearance control systems for gas turbine engines. Researchers have targeted the high-pressure turbine (HPT) blade tip seal location for following reasons: Current active clearance control (ACC) systems (e.g., thermal case-cooling schemes) cannot respond to blade tip clearance changes due to mechanical, thermal, and aerodynamic loads. As such they are prone to wear due to the required tight running clearances during operation. Blade tip seal wear (increased clearances) reduces engine efficiency, performance, and service life. Adaptive sealing technology research has inherent impact on all envisioned 21st century propulsion systems (e.g. distributed vectored, hybrid and electric drive propulsion concepts).
NASA Technical Reports Server (NTRS)
Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.
2006-01-01
The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.
NASA Technical Reports Server (NTRS)
Mason, Lee; Birchenough, Arthur; Pinero, Luis
2004-01-01
A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.
NASA Technical Reports Server (NTRS)
Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis
2004-01-01
A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.
Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems
NASA Technical Reports Server (NTRS)
Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey
2015-01-01
Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Engine health monitoring: An advanced system
NASA Technical Reports Server (NTRS)
Dyson, R. J. E.
1981-01-01
The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.
An Overview Of NASA's Solar Sail Propulsion Project
NASA Technical Reports Server (NTRS)
Garbe, Gregory; Montgomery, Edward E., IV
2003-01-01
Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high solar latitudes). The ISP Program technology suite has been prioritized by an agency wide study. Solar Sail propulsion is one of ISP's three high-priority technology areas. Solar sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of solar activity and observations at high solar latitudes. Near-term work funded by the ISP solar sail propulsion project is centered around the quantitative demonstration of scalability of present solar sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the solar sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.
Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs.
Pavlidou, Efthymia; Kloosterman, Marieke G M; Buurke, Jaap H; Rietman, Johan S; Janssen, Thomas W J
2015-11-01
Rolling resistance is one of the main forces resisting wheelchair propulsion and thus affecting stress exerted on the upper limbs. The present study investigates the differences in rolling resistance, propulsion efficiency and energy expenditure required by the user during power-assisted and manual propulsion. Different tire pressures (50%, 75%, 100%) and two different levels of motor assistance were tested. Drag force, energy expenditure and propulsion efficiency were measured in 10 able-bodied individuals under different experimental settings on a treadmill. Results showed that drag force levels were significantly higher in the 50%, compared to the 75% and 100% inflation conditions. In terms of wheelchair type, the manual wheelchair displayed significantly lower drag force values than the power-assisted one. The use of extra-power-assisted wheelchair appeared to be significantly superior to conventional power-assisted and manual wheelchairs concerning both propulsion efficiency and energy expenditure required by the user. Overall, the results of the study suggest that the use of power-assisted wheelchair was more efficient and required less energy input by the user, depending on the motor assistance provided. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Innovative Airbreathing Propulsion Concepts for Access to Space
NASA Technical Reports Server (NTRS)
Whitlow, Jr., Woodrow; Blech, Richard A.; Blankson, Isaiah M.
2001-01-01
This paper will present technologies and concepts for novel aeropropulsion systems. These technologies will enhance the safety of operations, reduce life cycle costs, and contribute to reduced costs of air travel and access to space. One of the goals of the NASA program is to reduce the carbon-dioxide emissions of aircraft engines. Engine concepts that use highly efficient fuel cell/electric drive technologies in hydrogen-fueled engines will be presented in the proposed paper. Carbon-dioxide emissions will be eliminated by replacing hydrocarbon fuel with hydrogen, and reduce NOx emissions through better combustion process control. A revolutionary exoskeletal engine concept, in which the engine drum is rotated, will be shown. This concept has the potential to allow a propulsion system that can be used for subsonic through hypersonic flight. Dual fan concepts that have ultra-high bypass ratios, low noise, and low drag will be presented. Flow-controlled turbofans and control-configured turbofans also will be discussed. To increase efficiency, a system of microengines distributed along lifting surfaces and on the fuselage is being investigated. This concept will be presented in the paper. Small propulsion systems for affordable, safe personal transportation vehicles will be discussed. These low-oil/oilless systems use technologies that enable significant cost and weight reductions. Pulse detonation engine-based hybrid-cycle and combined-cycle propulsion systems for aviation and space access will be presented.
Kurt, Melike; Moored, Keith
2018-04-19
We present experiments that examine the modes of interaction, the collective performance and the role of three-dimensionality in two pitching propulsors in an in-line arrangement. Both two-dimensional foils and three-dimensional rectangular wings of $AR = 2$ are examined. \\kwm{In contrast to previous work, two interaction modes distinguished as the coherent and branched wake modes are not observed to be directly linked to the propulsive efficiency, although they are linked to peak thrust performance and minimum power consumption as previously described \\cite[]{boschitsch2014propulsive}.} \\kwm{In fact, in closely-spaced propulsors peak propulsive efficiency of the follower occurs near its minimum power and this condition \\kwm{ reveals a} branched wake mode. Alternatively, for propulsors spaced far apart peak propulsive efficiency of the follower occurs near its peak thrust and this condition \\kwm{reveals a} coherent wake mode.} By examining the collective performance, it is discovered that there is an optimal spacing between the propulsors to maximize the collective efficiency. For two-dimensional foils the optimal spacing of $X^* = 0.75$ and the synchrony of $\\phi = 2\\pi /3$ leads to a collective efficiency and thrust enhancement of 50\\% and 32\\%, respectively, as compared to two isolated foils. In comparison, for $AR = 2$ wings the optimal spacing of $X^* = 0.25$ and the synchrony of $\\phi = 7\\pi /6$ leads to a collective efficiency and thrust enhancement of 30\\% and 22\\%, respectively. In addition, at the optimal conditions the collective lateral force coefficients in both the two- and three-dimensional cases are negligible, while operating off these conditions can lead to non-negligible lateral forces. Finally, the peak efficiency of the collective and the follower are shown to have opposite trends with increasing spacing in two- and three-dimensional flows. This is correlated to the breakdown of the impinging vortex on the follower wing in three-dimensions. These results can aid in the design of networked bio-inspired control elements that through integrated sensing can synchronize to three-dimensional flow interactions. © 2018 IOP Publishing Ltd.
Nichols, J Tyler; Krueger, Paul S
2012-09-01
Recent results have demonstrated that pulsed-jet propulsion can achieve propulsive efficiency greater than that for steady jets when short, high frequency pulses are used, and the pulsed-jet advantage increases as Reynolds number decreases into the intermediate range (∼50). An important aspect of propulsive performance, however, is the vehicle configuration. The nozzle configuration influences the jet speed and, in the case of pulsed-jets, the formation of the vortex rings with each jet pulse, which have important effects on thrust. Likewise, the hull configuration influences the vehicle speed through its effect on drag. To investigate these effects, several flow inlet, nozzle, and hull tail configurations were tested on a submersible, self-propelled pulsed-jet vehicle ('Robosquid' for short) for jet pulse length-to-diameter ratios (L/D) in the range 0.5-6 and pulsing duty cycles (St(L)) of 0.2 and 0.5. For the configurations tested, the vehicle Reynolds number (Re(υ)) ranged from 25 to 110. In terms of propulsive efficiency, changing between forward and aft-facing inlets had little effect for the conditions considered, but changing from a smoothly tapered aft hull section to a blunt tail increased propulsive efficiency slightly due to reduced drag for the blunt tail at intermediate Re(υ). Sharp edged orifices also showed increased vehicle velocity and propulsive efficiency in comparison to smooth nozzles, which was associated with stronger vortex rings being produced by the flow contraction through the orifice. Larger diameter orifices showed additional gains in propulsive efficiency over smaller orifices if the rate of mass flow was matched with the smaller diameter cases, but using the same maximum jet velocity with the larger diameter decreased the propulsive efficiency relative to the smaller diameter cases.
High energy density propulsion systems and small engine dynamometer
NASA Astrophysics Data System (ADS)
Hays, Thomas
2009-07-01
Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Brohpy, John R.; Merrill, Raymond G.
2013-01-01
The Asteroid Retrieval Mission (ARM) is a robotic mission concept with the goal of returning a small (7 m diameter) near-Earth asteroid (NEA), or part of a large NEA, to a safe, stable orbit in cislunar space using a 50 kW-class solar electric propulsion (SEP) robotic spacecraft (40 kW available to the electric propulsion system) and currently available technologies. The mass of the asteroidal material returned from this mission is anticipated to be up to 1,000 metric tons, depending on the orbit of the target NEA and the thrust-to-weight and control authority of the SEP spacecraft. Even larger masses could be returned in the future as technological capability and operational experience improve. The use of high-power solar electric propulsion is the key enabling technology for this mission concept, and is beneficial or enabling for a variety of space missions and architectures where high-efficiency, low-thrust transfers are applicable. Many of the ARM operations and technologies could also be applicable to, or help inform, planetary defense efforts. These include the operational approaches and systems associated with the NEA approach, rendezvous, and station-keeping mission phases utilizing a low-thrust, high-power SEP spacecraft, along with interacting with, capturing, maneuvering, and processing the massive amounts of material associated with this mission. Additionally, the processed materials themselves (e.g., high-specific impulse chemical propellants) could potentially be used for planetary defense efforts. Finally, a ubiquitous asteroid retrieval and resource extraction infrastructure could provide the foundation of an on call planetary defense system, where a SEP fleet capable of propelling large masses could deliver payloads to deflect or disrupt a confirmed impactor in an efficient and timely manner.
Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis
NASA Technical Reports Server (NTRS)
Min, James B.
2005-01-01
Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.
The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft
NASA Astrophysics Data System (ADS)
Ko, Yan-Yee Andy
The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a distributed propulsion blended-wing-body (BWB) aircraft. The BWB is a hybrid shape resembling a flying wing, placing the payload in the inboard sections of the wing. The distributed propulsion concept involves replacing a small number of large engines with many smaller engines. The distributed propulsion concept considered here ducts part of the engine exhaust to exit out along the trailing edge of the wing. The distributed propulsion concept affects almost every aspect of the BWB design. Methods to model these effects and integrate them into an MDO framework were developed. The most important effect modeled is the impact on the propulsive efficiency. There has been conjecture that there will be an increase in propulsive efficiency when there is blowing out of the trailing edge of a wing. A mathematical formulation was derived to explain this. The formulation showed that the jet 'fills in' the wake behind the body, improving the overall aerodynamic/propulsion system, resulting in an increased propulsive efficiency. The distributed propulsion concept also replaces the conventional elevons with a vectored thrust system for longitudinal control. An extension of Spence's Jet Flap theory was developed to estimate the effects of this vectored thrust system on the aircraft longitudinal control. It was found to provide a reasonable estimate of the control capability of the aircraft. An MDO framework was developed, integrating all the distributed propulsion effects modeled. Using a gradient based optimization algorithm, the distributed propulsion BWB aircraft was optimized and compared with a similarly optimized conventional BWB design. Both designs are for an 800 passenger, 0.85 cruise Mach number and 7000 nmi mission. The MDO results found that the distributed propulsion BWB aircraft has a 4% takeoff gross weight and a 2% fuel weight. Both designs have similar planform shapes, although the planform area of the distributed propulsion BWB design is 10% smaller. Through parametric studies, it was also found that the aircraft was most sensitive to the amount of savings in propulsive efficiency and the weight of the ducts used to divert the engine exhaust.
An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.
2018-01-01
This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.
NASA Technical Reports Server (NTRS)
1992-01-01
Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.
Development and Validation of an NPSS Model of a Small Turbojet Engine
NASA Astrophysics Data System (ADS)
Vannoy, Stephen Michael
Recent studies have shown that integrated gas turbine engine (GT)/solid oxide fuel cell (SOFC) systems for combined propulsion and power on aircraft offer a promising method for more efficient onboard electrical power generation. However, it appears that nobody has actually attempted to construct a hybrid GT/SOFC prototype for combined propulsion and electrical power generation. This thesis contributes to this ambition by developing an experimentally validated thermodynamic model of a small gas turbine (˜230 N thrust) platform for a bench-scale GT/SOFC system. The thermodynamic model is implemented in a NASA-developed software environment called Numerical Propulsion System Simulation (NPSS). An indoor test facility was constructed to measure the engine's performance parameters: thrust, air flow rate, fuel flow rate, engine speed (RPM), and all axial stage stagnation temperatures and pressures. The NPSS model predictions are compared to the measured performance parameters for steady state engine operation.
High-Payoff Space Transportation Design Approach with a Technology Integration Strategy
NASA Technical Reports Server (NTRS)
McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.
2011-01-01
A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.
NASA Technical Reports Server (NTRS)
Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.
2016-01-01
The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid-electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid-electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of AC and DC for power transmission. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power generation, transmission, and distribution systems, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of dual-fed induction machines, which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the project along with the system architecture, development status and preliminary results.
NASA Technical Reports Server (NTRS)
Chai, Patrick R.; Merrill, Raymond G.; Qu, Min
2016-01-01
NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign.
Predicted performance of an integrated modular engine system
NASA Technical Reports Server (NTRS)
Binder, Michael; Felder, James L.
1993-01-01
Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in termsmore » of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.« less
Parametric Studies of the Ejector Process within a Turbine-Based Combined-Cycle Propulsion System
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Walker, James F.; Trefny, Charles J.
1999-01-01
Performance characteristics of the ejector process within a turbine-based combined-cycle (TBCC) propulsion system are investigated using the NPARC Navier-Stokes code. The TBCC concept integrates a turbine engine with a ramjet into a single propulsion system that may efficiently operate from takeoff to high Mach number cruise. At the operating point considered, corresponding to a flight Mach number of 2.0, an ejector serves to mix flow from the ramjet duct with flow from the turbine engine. The combined flow then passes through a diffuser where it is mixed with hydrogen fuel and burned. Three sets of fully turbulent Navier-Stokes calculations are compared with predictions from a cycle code developed specifically for the TBCC propulsion system. A baseline ejector system is investigated first. The Navier-Stokes calculations indicate that the flow leaving the ejector is not completely mixed, which may adversely affect the overall system performance. Two additional sets of calculations are presented; one set that investigated a longer ejector region (to enhance mixing) and a second set which also utilized the longer ejector but replaced the no-slip surfaces of the ejector with slip (inviscid) walls in order to resolve discrepancies with the cycle code. The three sets of Navier-Stokes calculations and the TBCC cycle code predictions are compared to determine the validity of each of the modeling approaches.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1994-01-01
The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.
Phase 1 Space Fission Propulsion System Design Considerations
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Carter, Robert; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a "Phase 1" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Phase 1 space fission propulsion system design considerations
NASA Astrophysics Data System (ADS)
Houts, Mike; van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a ``Phase 1'' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system. .
Analytical theory of the Campini propulsion system
NASA Technical Reports Server (NTRS)
Campini, S
1942-01-01
Following the description of the new propulsion system and the definition of the propulsive efficiency, this efficiency is calculated under various conditions of flight with allowance for all internal losses. The efficiency and consumption curves are plotted, their practical values discussed and the behavior of the system analyzed at various altitudes and speeds. The immediate possibilities of the new system in flight at high and very high altitudes in relation to the theoretical and experimental results are discussed in detail.
Comparative jet wake structure and swimming performance of salps.
Sutherland, Kelly R; Madin, Laurence P
2010-09-01
Salps are barrel-shaped marine invertebrates that swim by jet propulsion. Morphological variations among species and life-cycle stages are accompanied by differences in swimming mode. The goal of this investigation was to compare propulsive jet wakes and swimming performance variables among morphologically distinct salp species (Pegea confoederata, Weelia (Salpa) cylindrica, Cyclosalpa sp.) and relate swimming patterns to ecological function. Using a combination of in situ dye visualization and particle image velocimetry (PIV) measurements, we describe properties of the jet wake and swimming performance variables including thrust, drag and propulsive efficiency. Locomotion by all species investigated was achieved via vortex ring propulsion. The slow-swimming P. confoederata produced the highest weight-specific thrust (T=53 N kg(-1)) and swam with the highest whole-cycle propulsive efficiency (eta(wc)=55%). The fast-swimming W. cylindrica had the most streamlined body shape but produced an intermediate weight-specific thrust (T=30 N kg(-1)) and swam with an intermediate whole-cycle propulsive efficiency (eta(wc)=52%). Weak swimming performance variables in the slow-swimming C. affinis, including the lowest weight-specific thrust (T=25 N kg(-1)) and lowest whole-cycle propulsive efficiency (eta(wc)=47%), may be compensated by low energetic requirements. Swimming performance variables are considered in the context of ecological roles and evolutionary relationships.
Energy efficient engine high-pressure turbine detailed design report
NASA Technical Reports Server (NTRS)
Thulin, R. D.; Howe, D. C.; Singer, I. D.
1982-01-01
The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.
Physics and potentials of fissioning plasmas for space power and propulsion
NASA Technical Reports Server (NTRS)
Thom, K.; Schwenk, F. C.; Schneider, R. T.
1976-01-01
Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.
Development Status of High-Thrust Density Electrostatic Engines
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Haag, Thomas W.; Foster, John E.; Young, Jason A.; Crofton, Mark W.
2017-01-01
Ion thruster technology offers the highest performance and efficiency of any mature electric propulsion thruster. It has by far the highest demonstrated total impulse of any technology option, demonstrated at input power levels appropriate for primary propulsion. It has also been successfully implemented for primary propulsion in both geocentric and heliocentric environments, with excellent ground/in-space correlation of both its performance and life. Based on these attributes there is compelling reasoning to continue the development of this technology: it is a leading candidate for high power applications; and it provides risk reduction for as-yet unproven alternatives. As such it is important that the operational limitations of ion thruster technology be critically examined and in particular for its application to primary propulsion its capabilities relative to thrust the density and thrust-to-power ratio be understood. This publication briefly addresses some of the considerations relative to achieving high thrust density and maximizing thrust-to-power ratio with ion thruster technology, and discusses the status of development work in this area being executed under a collaborative effort among NASA Glenn Research Center, the Aerospace Corporation, and the University of Michigan.
Introduction to Advanced Engine Control Concepts
NASA Technical Reports Server (NTRS)
Sanjay, Garg
2007-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
Formulation and Implementation of Inflow/Outflow Boundary Conditions to Simulate Propulsive Effects
NASA Technical Reports Server (NTRS)
Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian
2018-01-01
Boundary conditions appropriate for simulating flow entering or exiting the computational domain to mimic propulsion effects have been implemented in an adaptive Cartesian simulation package. A robust iterative algorithm to control mass flow rate through an outflow boundary surface is presented, along with a formulation to explicitly specify mass flow rate through an inflow boundary surface. The boundary conditions have been applied within a mesh adaptation framework based on the method of adjoint-weighted residuals. This allows for proper adaptive mesh refinement when modeling propulsion systems. The new boundary conditions are demonstrated on several notional propulsion systems operating in flow regimes ranging from low subsonic to hypersonic. The examples show that the prescribed boundary state is more properly imposed as the mesh is refined. The mass-flowrate steering algorithm is shown to be an efficient approach in each example. To demonstrate the boundary conditions on a realistic complex aircraft geometry, two of the new boundary conditions are also applied to a modern low-boom supersonic demonstrator design with multiple flow inlets and outlets.
NASA Technical Reports Server (NTRS)
Castner, Ray
2012-01-01
The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
New Propulsion Technologies For Exploration of the Solar System and Beyond
NASA Technical Reports Server (NTRS)
Johnson, Les; Cook, Stephen (Technical Monitor)
2001-01-01
In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. The ASTP technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to fission-powered multi-kilowatt systems, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will also be described. Results of recent earth-based technology demonstrations and space tests for many of these new propulsion technologies will be discussed.
Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets
NASA Technical Reports Server (NTRS)
Moore, Mark D.; Fredericks, Bill
2014-01-01
Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and create opportunities for the effective, near-term electric aircraft products. Without understanding both the context of how electric propulsion will integrate into the vehicle system, and evolve into the market place it is likely that electric propulsion will continue to be misunderstood.
Propellant Analysis and Distillation Unit Design
NASA Technical Reports Server (NTRS)
Barragan, Michelle H.; Spangler, Cindy; Barrera, Louis K.
2007-01-01
The NASA White Sands Test Facility (WSTF) routinely operates hypergolic propulsion systems. Some of the onsite activities include performing long duration studies on the operational life of these systems. A few of them have been in use for over twenty years. During this span of time contamination has built up in the propellant and some of the distribution infrastructure. This study investigated the nature of this contamination, the pathology of its generation, and developed a process for removal of the contamination that was cost efficient with minimal waste generation.
Auxiliary engine digital interface unit (DIU)
NASA Technical Reports Server (NTRS)
1972-01-01
This auxiliary propulsion engine digital unit controls both the valving of the fuel and oxidizer to the engine combustion chamber and the ignition spark required for timely and efficient engine burns. In addition to this basic function, the unit is designed to manage it's own redundancy such that it is still operational after two hard circuit failures. It communicates to the data bus system several selected information points relating to the operational status of the electronics as well as the engine fuel and burning processes.
Hybrid drive for motor vehicles with a preponderantly intermittent method of operation
NASA Technical Reports Server (NTRS)
Schreck, H.
1977-01-01
A flywheel hybrid propulsion system is compared with a conventional propulsion system in a test vehicle under intermittent operation. An energy balance is presented for the conventional propulsion system. Results so far indicate especially high energy conversion of the gyro component under dynamic operation along with favorable internal combustion engine conditions.
Swimming efficiency of bacterium Escherichia coli
Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck; Wu, X. L.
2006-01-01
We use measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we directly measure the force required to hold the bacterium in the optical trap and determine the propulsion matrix, which relates the translational and angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix, dynamical properties such as torques, swimming speed, and power can be obtained by measuring the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be ≈2%, which is consistent with the efficiency predicted theoretically for a rigid helical coil. PMID:16954194
Electronics Demonstrated for Low- Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammond, Ahmad; Gerber, Scott S.
2000-01-01
The operation of electronic systems at cryogenic temperatures is anticipated for many NASA spacecraft, such as planetary explorers and deep space probes. For example, an unheated interplanetary probe launched to explore the rings of Saturn would experience an average temperature near Saturn of about 183 C. Electronics capable of low-temperature operation in the harsh deep space environment also would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. An ongoing research and development program on low-temperature electronics at the NASA Glenn Research Center at Lewis Field is focusing on the design of efficient power systems that can survive and exploit the advantages of low-temperature environments. The targeted systems, which are mission driven, include converters, inverters, controls, digital circuits, and special-purpose circuits. Initial development efforts successfully demonstrated the low-temperature operation and cold-restart of several direct-current/direct-current (dc/dc) converters based on different types of circuit design, some with superconducting inductors. The table lists some of these dc/dc converters with their properties, and the photograph shows a high-voltage, high-power dc/dc converter designed for an ion propulsion system for low-temperature operation. The development efforts of advanced electronic systems and the supporting technologies for low-temperature operation are being carried out in-house and through collaboration with other Government agencies, industry, and academia. The Low Temperature Electronics Program supports missions and development programs at NASA s Jet Propulsion Laboratory and Goddard Space Flight Center. The developed technologies will be transferred to commercial end users for applications such as satellite infrared sensors and medical diagnostic equipment.
A Flight Demonstration of Plasma Rocket Propulsion
NASA Technical Reports Server (NTRS)
Petro, Andrew; Chang-Diaz, Franklin; Schwenterly, WIlliam; Hitt, Michael; Lepore, Joseph
2000-01-01
The Advanced Space Propulsion Laboratory at the NASA Johnson Space Center has been engaged in the development of a variable specific impulse magnetoplasma rocket (V ASIMR) for several years. This type of rocket could be used in the future to propel interplanetary spacecraft and has the potential to open the entire solar system to human exploration. One feature of this propulsion technology is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. Variation of specific impulse and thrust enhances the ability to optimize interplanetary trajectories and results in shorter trip times and lower propellant requirements than with a fixed specific impulse. In its ultimate application for interplanetary travel, the VASIMR would be a multi-megawatt device. A much lower power system is being designed for demonstration in the 2004 timeframe. This first space demonstration would employ a lO-kilowatt thruster aboard a solar powered spacecraft in Earth orbit. The 1O-kilowatt V ASIMR demonstration unit would operate for a period of several months with hydrogen or deuterium propellant with a specific impulse of 10,000 seconds.
NASA Technical Reports Server (NTRS)
Menkin, Evgeny; Juillerat, Robert
2015-01-01
With the International Space Station Program transition from assembly to utilization, focus has been placed on the optimization of essential resources. This includes resources both resupplied from the ground and also resources produced by the ISS. In an effort to improve the use of two of these, the ISS Engineering teams, led by the ISS Program Systems Engineering and Integration Office, undertook an effort to modify the techniques use to perform several key on-orbit events. The primary purposes of this endeavor was to make the ISS more efficient in the use of the Russian-supplied fuel for the propulsive attitude control system and also to minimize the impacts to available ISS power due to the positioning of the ISS solar arrays. Because the ISS solar arrays are sensitive to several factors that are present when propulsive attitude control is used, they must be operated in a manner to protect them from damage. This results in periods of time where the arrays must be positioned, rather than autonomously tracking the sun, resulting in negative impacts to power generated by the solar arrays and consumed by both the ISS core systems and payload customers. A reduction in the number and extent of the events each year that require the ISS to use propulsive attitude control simultaneously accomplishes both these goals. Each instance where the ISS solar arrays normal sun tracking mode must be interrupted represent a need for some level of powerdown of equipment. As the magnitude of payload power requirements increases, and the efficiency of the ISS solar arrays decreases, these powerdowns caused by array positioning, will likely become more significant and could begin to negatively impact the payload operations. Through efforts such as this, the total number of events each year that require positioning of the arrays to unfavorable positions for power generation, in order to protect them against other constraints, are reduced. Optimization of propulsive events and transitioning some of them to non-propulsive CMG control significantly reduces propellant usage on the ISS leading to the reduction of the propellant delivery requirement. This results in move available upmass that can be used for delivering critical dry cargo, additional water, air, crew supplies and science experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Steven Howe; Nathan Jerred; Troy Howe
Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizingmore » an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds to the complexity of the mission architecture.« less
Guide to Flow Measurement for Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve
2013-01-01
In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."
NASA Astrophysics Data System (ADS)
Harmon, Frederick G.
2005-11-01
Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid-electric propulsion system. The CMAC neural network approximates the hyper-plane generated from the instantaneous optimization algorithm and produces torque commands for the internal combustion engine and electric motor. The CMAC neural network controller saves on the required memory as compared to a large look-up table by two orders of magnitude. The CMAC controller also prevents the need to compute a hyper-plane or complex logic every time step.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
Field emission electric propulsion thruster modeling and simulation
NASA Astrophysics Data System (ADS)
Vanderwyst, Anton Sivaram
Electric propulsion allows space rockets a much greater range of capabilities with mass efficiencies that are 1.3 to 30 times greater than chemical propulsion. Field emission electric propulsion (FEEP) thrusters provide a specific design that possesses extremely high efficiency and small impulse bits. Depending on mass flow rate, these thrusters can emit both ions and droplets. To date, fundamental experimental work has been limited in FEEP. In particular, detailed individual droplet mechanics have yet to be understood. In this thesis, theoretical and computational investigations are conducted to examine the physical characteristics associated with droplet dynamics relevant to FEEP applications. Both asymptotic analysis and numerical simulations, based on a new approach combining level set and boundary element methods, were used to simulate 2D-planar and 2D-axisymmetric probability density functions of the droplets produced for a given geometry and electrode potential. The combined algorithm allows the simulation of electrostatically-driven liquids up to and after detachment. Second order accuracy in space is achieved using a volume of fluid correction. The simulations indicate that in general, (i) lowering surface tension, viscosity, and potential, or (ii) enlarging electrode rings, and needle tips reduce operational mass efficiency. Among these factors, surface tension and electrostatic potential have the largest impact. A probability density function for the mass to charge ratio (MTCR) of detached droplets is computed, with a peak around 4,000 atoms per electron. High impedance surfaces, strong electric fields, and large liquid surface tension result in a lower MTCR ratio, which governs FEEP droplet evolution via the charge on detached droplets and their corresponding acceleration. Due to the slow mass flow along a FEEP needle, viscosity is of less importance in altering the droplet velocities. The width of the needle, the composition of the propellant, the current and the mass efficiency are interrelated. The numerical simulations indicate that more electric power per Newton of thrust on a narrow needle with a thin, high surface tension fluid layer gives better performance.
Efficiency of a flapping propulsion system based on two side-by-side pitching foils
NASA Astrophysics Data System (ADS)
Huera-Huarte, Francisco
2017-11-01
We explore the propulsive performance of two foils flapping side-by-side in a wide variety of configurations, for different foil separations, pitching amplitudes and frequencies and phase differences. Direct force and torque measurements will be shown in each situation, after a thorough parametric study, that led to the identification of highly efficient modes of propulsion. The especially designed experimental rig allowed the computation of efficiencies globally and at each shaft in the system. Planar and volumetric Particle Image Velocimetry (PIV) allowed a detailed description of the wake generated by the system, for each different kinematics investigated. The investigation is part of an ambitious project with the aim of producing a high efficient and highly manoeuvrable flapping propulsion system for underwater vehicles. Funding from Spanish Ministry MINECO through Grant DPI2015-71645-P is gratefully acknowledged.
IEC Thrusters for Space Probe Applications and Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, George H.; Momota, Hiromu; Wu Linchun
Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In thismore » spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a 'plasma analytic probe' for interrogation of the object.« less
Performance and lifetime assessment of MPD arc thruster technology
NASA Technical Reports Server (NTRS)
Sovey, James S.; Mantenieks, Maris A.
1988-01-01
A summary of performance and lifetime characteristics of pulsed and steady-state magnetoplasmadynamic (MPD) thrusters is presented. The technical focus is on cargo vehicle propulsion for exploration-class missions to the Moon and Mars. Relatively high MPD thruster efficiencies of 0.43 and 0.69 have been reported at about 5000 s specific impulse using hydrogen and lithium, respectively. Efficiencies of 0.10 to 0.35 in the 1000 to 4500 s specific impulse range have been obtained with other propellants (e.g., Ar, NH3, N2). Thermal efficiency data in excess of 0.80 at MW power levels using pulsed thrusters indicate the potential of high MPD thruster performance. Extended tests of pulsed and steady-state MPD thrusters yield total impulses at least two to three orders of magnitude below that necessary for cargo vehicle propulsion. Performance tests and diagnostics for life-limiting mechanisms of megawatt-class thrusters will require high fidelity test stands which handle in excess of 10 kA and a vacuum facility whose operational pressure is less than 3 x 10 to the -4 torr.
NASA Astrophysics Data System (ADS)
Choi, Jongseong
The performance of a hypersonic flight vehicle will depend on existing materials and fuels; this work presents the performance of the ideal scramjet engine for three different combustion chamber materials and three different candidate fuels. Engine performance is explored by parametric cycle analysis for the ideal scramjet as a function of material maximum service temperature and the lower heating value of jet engine fuels. The thermodynamic analysis is based on the Brayton cycle as similarly employed in describing the performance of the ramjet, turbojet, and fanjet ideal engines. The objective of this work is to explore material operating temperatures and fuel possibilities for the combustion chamber of a scramjet propulsion system to show how they relate to scramjet performance and the seven scramjet engine parameters: specific thrust, fuel-to-air ratio, thrust-specific fuel consumption, thermal efficiency, propulsive efficiency, overall efficiency, and thrust flux. The information presented in this work has not been done by others in the scientific literature. This work yields simple algebraic equations for scramjet performance which are similar to that of the ideal ramjet, ideal turbojet and ideal turbofan engines.
Li, Jinxing; Singh, Virendra V; Sattayasamitsathit, Sirilak; Orozco, Jahir; Kaufmann, Kevin; Dong, Renfeng; Gao, Wei; Jurado-Sanchez, Beatriz; Fedorak, Yuri; Wang, Joseph
2014-11-25
Threats of chemical and biological warfare agents (CBWA) represent a serious global concern and require rapid and efficient neutralization methods. We present a highly effective micromotor strategy for photocatalytic degradation of CBWA based on light-activated TiO2/Au/Mg microspheres that propel autonomously in natural water and obviate the need for external fuel, decontaminating reagent, or mechanical agitation. The activated TiO2/Au/Mg micromotors generate highly reactive oxygen species responsible for the efficient destruction of the cell membranes of the anthrax simulant Bacillus globigii spore, as well as rapid and complete in situ mineralization of the highly persistent organophosphate nerve agents into nonharmful products. The water-driven propulsion of the TiO2/Au/Mg micromotors facilitates efficient fluid transport and dispersion of the photogenerated reactive oxidative species and their interaction with the CBWA. Coupling of the photocatalytic surface of the micromotors and their autonomous water-driven propulsion thus leads to a reagent-free operation which holds a considerable promise for diverse "green" defense and environmental applications.
An overview of the Nuclear Electric Xenon Ion System (NEXIS) program
NASA Technical Reports Server (NTRS)
Polk, Jay E.; Goebel, Don; Brophy, John R.; Beatty, John; Monheiser, J.; Giles, D.; Hobson, D.; Wilson, F.; Christensen, J.; De Pano, M.;
2003-01-01
NASA is investigating high power, high specific impulse propulsion technologies that could enable ambitious flights such as multi-body rendezvous missions, outer planet orbiters and interstellar precursor missions. The requirements for these missions are much more demanding than those for state-of-the-art solar-powered ion propulsion applications. The purpose of the NEXIS program is to develop advanced ion thruster technologies that satisfy the requirements for high power, high specific impulse operation, high efficiency and long thruster life. The nominal design point for the NEXIS thruster is 20 kWe at a specific impulse of 7500 s with an efficiency over 78% and a xenon throughput capability of greater than 2000 kg. These performance and throughput goals will be achieved by applying a combination of advanced technologies including a large discharge chamber, erosion resistant carbon-carbon grids, an advanced reservoir hollow cathode and techniques for increasing propellant efficiency such as grid masking and accelerator grid aperture diameter tailoring. This paper provides an overview of the challenges associated with these requirements and how they are being addressed in the NEXIS program.
Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.
Leving, Marika T; Vegter, Riemer J K; Hartog, Johanneke; Lamoth, Claudine J C; de Groot, Sonja; van der Woude, Lucas H V
2015-01-01
It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability.
Effects of Visual Feedback-Induced Variability on Motor Learning of Handrim Wheelchair Propulsion
Leving, Marika T.; Vegter, Riemer J. K.; Hartog, Johanneke; Lamoth, Claudine J. C.; de Groot, Sonja; van der Woude, Lucas H. V.
2015-01-01
Background It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. Methods 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. Results The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. Conclusion These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability. PMID:25992626
2002-03-11
Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.
Reaction Control Engine for Space Launch Initiative
NASA Technical Reports Server (NTRS)
2002-01-01
Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.
Theoretical Investigations on the Efficiency and the Conditions for the Realization of Jet Engines
NASA Technical Reports Server (NTRS)
Roy, Maurice
1950-01-01
Contents: Preliminary notes on the efficiency of propulsion systems; Part I: Propulsion systems with direct axial reaction rockets and rockets with thrust augmentation; Part II: Helicoidal reaction propulsion systems; Appendix I: Steady flow of viscous gases; Appendix II: On the theory of viscous fluids in nozzles; and Appendix III: On the thrusts augmenters, and particularly of gas augmenters
Experimental investigation of the pulsed electrothermal (PET) thruster
NASA Technical Reports Server (NTRS)
Burton, R. L.; Goldstein, S. A.; Hiko, B. K.; Tidman, D. A.; Winsor, N. K.
1984-01-01
Burton et al. (1982) have discussed the theory of the Pulsed Electrothermal (PET) thruster, a device which in principle can operate with 70 percent efficiency at a specific impulse of 1000 seconds and higher. It is pointed out that this level of performance would be particularly attractive for orbit raising of large satellites and other near-earth missions, which cannot be easily accomplished by chemical propulsion. The present investigation is concerned with two PET thruster operating modes. A PET thruster was built and tested on a thrust stand. Exhaust velocities for polyethylene propellant vary from 20 to 27 km/sec. Single pulse specific impulse and efficiency measurements based on ablated mass show a thruster efficiency of 37-56 percent in the time range from 1000 to 1750 seconds. It is believed that an improved design with a thruster efficiency in the range from 70 to 80 percent might be possible.
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.; Rosario, Ruben Del; Madavan, Nateri K.
2013-01-01
This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 percent relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030 to 2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.; DelRasario, Ruben; Madavan, Nateri K.
2013-01-01
This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 % relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030-2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.
Propulsion Options for the LISA Mission
NASA Technical Reports Server (NTRS)
Cardiff, Eric H.; Marr, Gregory C.
2004-01-01
The LISA mission is a constellation of three spacecraft operating at 1 AU from the Sun in a position trailing the Earth. After launch, a propulsion module provides the AV necessary to reach this operational orbit, and separates from the spacecraft. A second propulsion system integrated with the spacecraft maintains the operational orbit and reduces nongravitational disturbances on the instruments. Both chemical and electrical propulsion systems were considered for the propulsion module, and this trade is presented to show the possible benefits of an EP system. Several options for the orbit maintenance and disturbance reduction system are also briefly discussed, along with several important requirements that suggest the use of a FEEP thruster system.
Relative Efficiencies and Design Charts for Various Engine-Propeller Combinations, Special Report
NASA Technical Reports Server (NTRS)
Biermann, David
1936-01-01
The relative efficiencies of various engine-propeller combinations were the subject of a study that covered the important flight conditions, particularly the take-off. Design charts that graphically correlate the various propeller parameters were prepared to facilitate the solution of problems and also to c1arify the conception of the relationships of the various engine-propeller design factors. It is shown that, among the many methods for improving the take-off thrust, the use of high-pitch, large-diameter controllable propellers turning at low rotational speeds is probably the most generally promising. With such a combination the take-off thrust may be further increased, at the expense of a small loss in cruising efficiency, by compromise designs wherein the pitch setting is slightly reduced and the diameter is further increased. The degree of compromise necessary to accomplish the maximum possible take-off improvement depends on such design factors as overspeeding and overboosting at take-off as well as depending on the design altitude. Both overspeeding and designing for altitude operation have the same effect on the take-off thrust as compromising in that the propulsive efficiency is increased thereby; boosting the engine, however, has the reverse effect on the propulsive efficiency, although the brake horsepower is increased.
Ultra-High Temperature Materials Characterization for Propulsion Applications
NASA Technical Reports Server (NTRS)
Rogers, Jan; Hyers, Robert
2007-01-01
Propulsion system efficiency increases as operating temperatures are increased. Some very high-temperature materials are being developed, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available for many materials of interest at the desired operating temperatures (up to approx. 3000 K). The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, density and thermal expansion for materials being developed for propulsion applications. The ESL facility uses electrostatic fields to position samples between electrodes during processing and characterization studies. Because the samples float between the electrodes during studies, they are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. The MSFC ESL has provided non-contact measurements of properties of materials up to 3400 C. Density and thermal expansion are measured by analyzing digital images of the sample at different temperatures. Our novel, non-contact method for measuring creep uses rapid rotation to deform the sample. Digital images of the deformed samples are analyzed to obtain the creep properties, which match those obtained using ASTM Standard E-139 for Nb at 1985 C. Data from selected ESL-based characterization studies will be presented. The ESL technique could support numerous propulsion technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.
Efficient Plasma Production in Low Background Neutral Pressures with the M2P2 Prototype
NASA Technical Reports Server (NTRS)
Ziemba, T.; Euripides, P.; Winglee, R.; Slough, J.; Giersch, L.
2003-01-01
Mini-Magnetospheric Plasma Propulsion (M2P2) seeks the creation of a large-scale (10 km radius) magnetic wall or bubble (i.e. a magnetosphere) by the electromagnetic inflation of a small-scale (20 cm radius) dipole magnet. The inflated magnetosphere will intercept the solar wind and thereby provide high-speed propulsion with modest power and fuel requirements due to the gain provided by the ambient medium. Magnetic field inflation is produced by the injection of plasma onto the dipole magnetic field eliminating the need for large mechanical structures and added material weight at launch. For successful inflation of the magnetic bubble a beta near unity must be achieved along the imposed dipole field. This is dependent on the plasma parameters that can be achieved with a plasma source that provide continuous operation at the desired power levels of 1 to 2 kilowatts. Over the last two years we have been developing a laboratory prototype to demonstrate the inflation of the magnetic field under space-like conditions. In this paper we will present some of the latest results from the prototype development at the University of Washington and show that the prototype can produce high ionization efficiencies while operating in near space like neutral background pressures producing electron temperatures of a few tens of electron volts. This allows for operation with propellant expenditures lower than originally estimated.
Tradespace Exploration of Distributed Propulsors for Advanced On-Demand Mobility Concepts
NASA Technical Reports Server (NTRS)
Borer, Nicholas K.; Moore, Mark D.; Turnbull, Andrew R.
2014-01-01
Combustion-based sources of shaft power tend to significantly penalize distributed propulsion concepts, but electric motors represent an opportunity to advance the use of integrated distributed propulsion on an aircraft. This enables use of propellers in nontraditional, non-thrust-centric applications, including wing lift augmentation, through propeller slipstream acceleration from distributed leading edge propellers, as well as wingtip cruise propulsors. Developing propellers for these applications challenges long-held constraints within propeller design, such as the notion of optimizing for maximum propulsive efficiency, or the use of constant-speed propellers for high-performance aircraft. This paper explores the design space of fixed-pitch propellers for use as (1) lift augmentation when distributed about a wing's leading edge, and (2) as fixed-pitch cruise propellers with significant thrust at reduced tip speeds for takeoff. A methodology is developed for evaluating the high-level trades for these types of propellers and is applied to the exploration of a NASA Distributed Electric Propulsion concept. The results show that the leading edge propellers have very high solidity and pitch well outside of the empirical database, and that the cruise propellers can be operated over a wide RPM range to ensure that thrust can still be produced at takeoff without the need for a pitch change mechanism. To minimize noise exposure to observers on the ground, both the leading edge and cruise propellers are designed for low tip-speed operation during takeoff, climb, and approach.
FY2010 Annual Progress Report for Propulsion Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.
The Propulsion Materials Technology actively supports the energy security and reduction of greenhouse emissions goals of the Vehicle Technologies Program by developing advanced materials that enable development of higher efficiency powertrains for ground transportation. Propulsion Materials works closely with the other disciplines within the VT Program to identify the materials properties essential for the development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light duty powertrains.
Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities
NASA Technical Reports Server (NTRS)
Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke
2014-01-01
High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.
Propulsive efficiency of the underwater dolphin kick in humans.
von Loebbecke, Alfred; Mittal, Rajat; Fish, Frank; Mark, Russell
2009-05-01
Three-dimensional fully unsteady computational fluid dynamic simulations of five Olympic-level swimmers performing the underwater dolphin kick are used to estimate the swimmer's propulsive efficiencies. These estimates are compared with those of a cetacean performing the dolphin kick. The geometries of the swimmers and the cetacean are based on laser and CT scans, respectively, and the stroke kinematics is based on underwater video footage. The simulations indicate that the propulsive efficiency for human swimmers varies over a relatively wide range from about 11% to 29%. The efficiency of the cetacean is found to be about 56%, which is significantly higher than the human swimmers. The computed efficiency is found not to correlate with either the slender body theory or with the Strouhal number.
An integral nuclear power and propulsion system concept
NASA Astrophysics Data System (ADS)
Choong, Phillip T.; Teofilo, Vincent L.; Begg, Lester L.; Dunn, Charles; Otting, William
An integral space power concept provides both the electrical power and propulsion from a common heat source and offers superior performance capabilities over conventional orbital insertion using chemical propulsion systems. This paper describes a hybrid (bimodal) system concept based on a proven, inherently safe solid fuel form for the high temperature reactor core operation and rugged planar thermionic energy converter for long-life steady state electric power production combined with NERVA-based rocket technology for propulsion. The integral system is capable of long-life power operation and multiple propulsion operations. At an optimal thrust level, the integral system can maintain the minimal delta-V requirement while minimizing the orbital transfer time. A trade study comparing the overall benefits in placing large payloads to GEO with the nuclear electric propulsion option shows superiority of nuclear thermal propulsion. The resulting savings in orbital transfer time and the substantial reduction of overall lift requirement enables the use of low-cost launchers for several near-term military satellite missions.
A Flight Demonstration of Plasma Rocket Propulsion
NASA Technical Reports Server (NTRS)
Petro, Andrew
1999-01-01
The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.
Performance capabilities of the 12-centimeter Xenon ion thruster
NASA Technical Reports Server (NTRS)
Mantenieks, M.; Schatz, M.
1984-01-01
The 8- and 12-cm mercury ion thruster systems were developed primarily to provide N-S station keeping of satellites with masses up to about 1800 to 3600 kg respectively. The on-orbit propulsion requirements of recently proposed Large Space Systems (LSS) are beyond the thrust capabilities of the baseline 8- and 12-cm thruster systems. This paper presents a characterization of the performance capabilities of the 12-cm Xenon ion thruster to enable an evaluation of its application to LSS auxiliary propulsion requirements. With minor thruster modifications and simplifications the thrust was increased to 64 mN, a factor of six over the baseline 12-cm mercury thruster performance. The thruster was operated over a range of specific impulse of about 2000 to 4000 seconds and at total efficiencies up to 68.0 percent. The operating levels reached in this study were found to be close to the operating limits of the thruster design in terms of perveance, grid breakdown voltage and thruster component temperatures such as those of the magnets and cathode baffle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, DR
2000-12-11
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles.« less
Quiet Cruise Efficient Short Take-off and Landing Subsonic Transport System
NASA Technical Reports Server (NTRS)
Kawai, Ron
2008-01-01
This NASA funded study conceived a revolutionary airplane concept to enable future traffic growth by using regional air space. This requires a very quiet airplane with STOL capability. Starting with a Blended Wing Body that is cruise efficient with inherent low noise characteristics from forward noise shielding and void of aft downward noise reflections, integration of embedded distributed propulsion enables incorporation of the revolutionary concept for jet noise shielding. Embedded distributed propulsion also enables incorporation of a fan bleed internally blown flap for quiet powered lift. The powered lift provides STOL capability for operation at regional airports with rapid take-off and descent to further reduce flyover noise. This study focused on configuring the total engine noise shielding STOL concept with a BWB airplane using the Boeing Phantom Works WingMOD multidisciplinary optimization code to define a planform that is pitch controllable. The configuration was then sized and mission data developed to enable NASA to assess the flyover and sideline noise. The foundational technologies needed are identified including military dual use benefits.
Development of the electric vehicle analyzer
NASA Astrophysics Data System (ADS)
Dickey, Michael R.; Klucz, Raymond S.; Ennix, Kimberly A.; Matuszak, Leo M.
1990-06-01
The increasing technological maturity of high power (greater than 20 kW) electric propulsion devices has led to renewed interest in their use as a means of efficiently transferring payloads between earth orbits. Several systems and architecture studies have identified the potential cost benefits of high performance Electric Orbital Transfer Vehicles (EOTVs). These studies led to the initiation of the Electric Insertion Transfer Experiment (ELITE) in 1988. Managed by the Astronautics Laboratory, ELITE is a flight experiment designed to sufficiently demonstrate key technologies and options to pave the way for the full-scale development of an operational EOTV. An important consideration in the development of the ELITE program is the capability of available analytical tools to simulate the orbital mechanics of a low thrust, electric propulsion transfer vehicle. These tools are necessary not only for ELITE mission planning exercises but also for continued, efficient, accurate evaluation of DoD space transportation architectures which include EOTVs. This paper presents such a tool: the Electric Vehicle Analyzer (EVA).
Comparative performance evaluation of advanced AC and DC EV propulsion systems
NASA Astrophysics Data System (ADS)
MacDowall, R. D.; Crumley, R. L.
Idaho National Engineering Laboratory (INEL) evaluates EV propulsion systems and components for the U.S. Department of Energy (DOE) Electric and Hybrid Vehicle (EHV) Program. In this study, experimental data were used to evaluate the relative performances of the benchmark Chrysler/GE ETV-1 DC and the Ford/GE First Generation Single-Shaft AC (ETX-I) propulsion systems. Tests were conducted on the INEL's chassis dynamometer using identical aerodynamic and rolling resistance road-load coefficients and vehicle test weights. The results allowed a direct comparison of selected efficiency and performance characteristics for the two propulsion system technologies. The ETX-I AC system exhibited slightly lower system efficiency during constant speed testing than the ETV-1 DC propulsion system.
Green Propulsion Technologies for Advanced Air Transports
NASA Technical Reports Server (NTRS)
Del Rosario, Ruben
2015-01-01
Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.
NASA Technical Reports Server (NTRS)
Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.
2017-01-01
The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.
2010-06-01
cell ( PEMFC ), and the phosphoric acid fuel cell (PAFC). 2.3.1 Solid Oxide Fuel Cells (SOFC) The first type of fuel cell considered is the SOFC. This...durability issues for use within a given application. 2.3.2 Polymer Electrolyte Membrane Fuel Cells ( PEMFC ) The PEMFC operates by passing hydrogen that has...cells. Some advantages of PEMFC operating at such low temperatures is that the fuel cell doesn’t require as meticulous of a support system infrastructure
Energy use in the marine transportation industry. Task II. Efficiency improvements. Draft report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-06-02
Research and development areas that hold promise for maritime energy conservation are identified and evaluated. The methodology used in the evaluation of potential research areas and results, conclusions, and recommendations are presented. Fifteen programs are identified in four generic technologies and these are discussed in detail in appendices A-D. The areas are: main propulsion plants, propulsors, hydrodynamics, and vessel operations. Fuels are discussed briefly in appendix E. Additional information is presented on the generic US flag baseline operational and cost parameters; a sample output model is presented. (MCW)
Vapor-Driven Propulsion of Catalytic Micromotors
NASA Astrophysics Data System (ADS)
Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph
2015-08-01
Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.
Vapor-Driven Propulsion of Catalytic Micromotors
Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph
2015-01-01
Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors. PMID:26285032
Top-Mounted Propulsion Test Plans (TMP17)
NASA Technical Reports Server (NTRS)
Bridges, James; Henderson, Brenda; Huff, Dennis
2017-01-01
NASA recently completed a study of propulsion cycles and nozzle types applicable to a 70-passenger, M1.6 supersonic airliner, paying especial attention to the noise produced during landing and take-off. The results of the study were validated in a model-scale test at NASA Glenn last summer. The findings of that study and test, along with other studies, have resulted in a new strategy for achieving the Commercial Supersonic Technologys goals for noise and performance. Key to that strategy is moving the propulsion to the top-side of the vehicle and modifying the nozzle and inlet to maximally shield the propulsion noise while maintaining efficient operation. Installed exhaust configurations have been designed to minimize the exhaust noise using new acoustic design tools. A test planned for the fall of 2017 will validate both the new design tools and the low-noise concept using a new translating phased array. During the test, questions regarding modifications of convected waves in the jet near-field that are key to new understandings of aft jet noise will be addressed. Also, to better tie rig results to real-world measurements, a model-scale version of a nozzle that was flight tested by Glenn Research Center in 2001 will be tested.
Design and Development of a Methane Cryogenic Propulsion Stage for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Percy, Thomas K.; Polsgrove, Tara; Turpin, Jason; Alexander, Leslie
2016-01-01
NASA is currently working on the Evolvabe Mars Campaign (EMC) study to outline transportation and mission options for human exploration of Mars. One of the key aspects of the EMC is leveraging current and planned near-term technology investments to build an affordable and evolvable approach to Mars exploration. This leveraging of investments includes the use of high-power Solar Electric Propulsion (SEP) systems, evolved from those currently under development in support of the Asteroid Redirect Mission (ARM), to deliver payloads to Mars. The EMC is considering several transportation options that combine solar electric and chemical propulsion technologies to deliver crew and cargo to Mars. In one primary architecture option, the SEP propulsion system is used to pre-deploy mission elements to Mars while a high-thrust chemical propulsion system is used to send crew on faster ballistic transfers between Earth and Mars. This high-thrust chemical system uses liquid oxygen - liquid methane main propulsion and reaction control systems integrated into the Methane Cryogenic Propulsion Stage (MCPS). Over the past year, there have been several studies completed to provide critical design and development information related to the MCPS. This paper is intended to provide a summary of these efforts. A summary of the current point of departure design for the MCPS is provided as well as an overview of the mission architecture and concept of operations that the MCPS is intended to support. To leverage the capabilities of solar electric propulsion to the greatest extent possible, the EMC architecture pre-deploys to Mars orbit the stages required for returning crew from Mars. While this changes the risk posture of the architecture, it can provide some mass savings by using higher-efficiency systems for interplanetary transfer. However, this does introduce significantly longer flight times to Mars which, in turn, increases the overall lifetime of the stages to as long as 2500 days. This unique aspect to the concept of operations introduces several challenges, specifically related to propellant storage and engine reliability. These challenges and some potential solutions are discussed. Specific focus is provided on two key technology areas; propulsion and cryogenic fluid management. In the area of propulsion development, the development of an integrated methane propulsion system that combines both main propulsion and reaction control is discussed. This includes an overview of potential development paths, areas where development for Mars applications are complementary to development efforts underway in other parts of the aerospace industry, and commonality between the MCPS methane propulsion applications and other Mars elements, including the Mars lander systems. This commonality is a key affordability aspect of the Evolvable Mars Campaign. A similar discussion is provided for cryogenic fluid management technologies including a discussion of how using cryo propulsion in the Mars transportation application not only provides performance benefits but also leverages decades of technology development investments made by NASA and its aerospace contractor community.
Design and Development of a Methane Cryogenic Propulsion Stage for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Percy, Thomas K.; Polsgrove, Tara; Turpin, Jason; Alexander, Leslie
2016-01-01
NASA is currently working on the Evolvabe Mars Campaign (EMC) study to outline transportation and mission options for human exploration of Mars. One of the key aspects of the EMC is leveraging current and planned near-term technology investments to build an affordable and evolvable approach to Mars exploration. This leveraging of investments includes the use of high-power Solar Electric Propulsion (SEP) systems evolved from those currently under development in support of the Asteroid Redirect Mission to deliver payloads to Mars. The EMC is considering several transportation options that combine solar electric and chemical propulsion technologies to deliver crew and cargo to Mars. In one primary architecture option, the SEP propulsion system is used to pre-deploy mission elements to Mars while a high-thrust chemical propulsion system is used to send crew on faster ballistic transfers between Earth and Mars. This high-thrust chemical system uses liquid oxygen - liquid methane main propulsion and reaction control systems integrated into the Methane Cryogenic Propulsion Stage (MCPS). Over the past year, there have been several studies completed to provide critical design and development information related to the MCPS. This paper is intended to provide a summary of these efforts. A summary of the current point of departure design for the MCPS is provided as well as an overview of the mission architecture and concept of operations that the MCPS is intended to support. To leverage the capabilities of solar electric propulsion to the greatest extent possible, the EMC architecture pre-deploys the required stages for returning crew from Mars. While this changes the risk posture of the architecture, it provides mass savings by using higher-efficiency systems for interplanetary transfer. However, this does introduce significantly longer flight times to Mars which, in turn, increases the overall lifetime of the stages to as long as 3000 days. This unique aspect to the concept of operations introduces several challenges, specifically related to propellant storage and engine reliability. These challenges and some potential solutions are discussed. Specific focus is provided on two key technology areas; propulsion and cryogenic fluid management. In the area of propulsion development, the development of an integrated methane propulsion system that combines both main propulsion and reaction control is discussed. This includes an overview of potential development paths, areas where development for Mars applications are complementary to development efforts underway in other parts of the aerospace industry, and commonality between the MCPS methane propulsion applications and other Mars elements, including the Mars lander systems. This commonality is a key affordability aspect of the Evolvable Mars Campaign. A similar discussion is provided for cryogenic fluid management technologies including a discussion of how using cryo-propulsion in the Mars transportation application not only provides performance benefits but also leverages decades of technology development investments made by NASA and its aerospace contractor community.
Chaikhot, Dhissanuvach; Taylor, Matthew J D; Hettinga, Florentina J
2018-06-01
An awareness of sex differences in gait can be beneficial for detecting the early stages of gait abnormalities that may lead to pathology. The same may be true for wheelchair propulsion. The aim of this study was to determine the effect of sex on wheelchair biomechanics and mechanical efficiency in novice young able-bodied wheelchair propulsion. Thirty men and 30 women received 12 min of familiarisation training. Subsequently, they performed two 10-m propulsion tests to evaluate comfortable speed (CS). Additionally, they performed a 4-min submaximal propulsion test on a treadmill at CS, 125% and 145% of CS. Propulsion kinetics (via Smart wheel ) and oxygen uptake were continuously measured in all tests and were used to determine gross mechanical efficiency (GE), net efficiency (NE) and fraction of effective force (FEF). Ratings of perceived exertion (RPE) were assessed directly after each trial. Results indicated that CS for men was faster (0.98 ± 0.24 m/s) compared to women (0.71 ± 0.18 m/s). A lower GE was found in women compared to men. Push percentage, push angle and local RPE were different across the three speeds and between men and women. NE and FEF were not different between groups. Thus, even though their CS was lower, women demonstrated a higher locally perceived exertion than men. The results suggest sex differences in propulsion characteristics and GE. These insights may aid in optimising wheelchair propulsion through proper training and advice to prevent injuries and improve performance. This is relevant in stimulating an active lifestyle for those with a disability.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1982-01-01
The objective of the Energy Efficient Engine Component Development and Integration program is to develop, evaluate, and demonstrate the technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines. Minimum goals have been set for a 12 percent reduction in thrust specific fuel consumption (TSFC), 5 percent reduction in direct operating cost (DOC), and 50 percent reduction in performance degradation for the Energy Efficient Engine (flight propulsion system) relative to the JT9D-7A reference engine. The Energy Efficienct Engine features a twin spool, direct drive, mixed flow exhaust configuration, utilizing an integrated engine nacelle structure. A short, stiff, high rotor and a single stage high pressure turbine are among the major enhancements in providing for both performance retention and major reductions in maintenance and direct operating costs. Improved clearance control in the high pressure compressor and turbines, and advanced single crystal materials in turbine blades and vanes are among the major features providing performance improvement. Highlights of work accomplished and programs modifications and deletions are presented.
Review of Nuclear Thermal Propulsion Ground Test Options
NASA Technical Reports Server (NTRS)
Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen
2015-01-01
High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.
Application of Solar Electric Propulsion to a Comet Surface Sample Return Mission
NASA Technical Reports Server (NTRS)
Cupples, Mike; Coverstone, Victoria; Woo, Byoungsam
2004-01-01
Current NSTAR (planned for the Discovery Mission: Dawn) and NASA's Evolutionary Xenon Thruster based propulsion systems were compared for a comet surface sample return mission to Tempe1 1. Mission and systems analyses were conducted over a range of array power for each propulsion system with an array of 12 kW EOL at 1 AU chosen for a baseline. Engine configurations investigated for NSTAR included 4 operational engines with 1 spare and 5 operational engines with 1 spare. The NEXT configuration investigated included 2 operational engines plus 1 spare, with performance estimated for high thrust and high Isp throttling modes. Figures of merit for this comparison include Solar Electric Propulsion dry mass, average engine throughput, and net non-propulsion payload returned to Earth flyby.
Approach to an Affordable and Productive Space Transportation System
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Robinson, John W.
2012-01-01
This paper describes an approach for creating space transportation architectures that are affordable, productive, and sustainable. The architectural scope includes both flight and ground system elements, and focuses on their compatibility to achieve a technical solution that is operationally productive, and also affordable throughout its life cycle. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper follows up previous work by using a structured process to derive examples of conceptual architectures that integrate a number of advanced concepts and technologies. The examples are not intended to provide a near-term alternative architecture to displace current near-term design and development activity. Rather, the examples demonstrate an approach that promotes early investments in advanced system concept studies and trades (flight and ground), as well as in advanced technologies with the goal of enabling highly affordable, productive flight and ground space transportation systems.
2002 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2003-01-01
The 2002 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s perspective of aeronautics and space technology for the 21st century; (ii) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET), Turbine-Based Combined-Cycle (TBCC), and Revolutionary Turbine Accelator (RTA) programs; (iii) Overview of NASA Glenn's seal program aimed at developing advanced seals for NASA's turbomachinery, space propulsion, and reentry vehicle needs; (iv) Reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. The NASA UEET and TBCC/RTA program overviews illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to investigate advanced reusable space vehicle technologies (X-38) and advanced space ram/scramjet propulsion systems. Seal challenges posed by these advanced systems include high-temperature operation, resiliency at the operating temperature to accommodate sidewall flexing, and durability to last many missions.
Investigation of Recombination Processes In A Magnetized Plasma
NASA Technical Reports Server (NTRS)
Chavers, Greg; Chang-Diaz, Franklin; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and exhausts plasma to provide variable thrust and Isp, optimally meeting the mission requirements. A large fraction of the energy to create the plasma is frozen in the exhaust in the form of ionization energy. This loss mechanism is common to all electromagnetic plasma thrusters and has an impact on their efficiency. When the device operates at high Isp, where the exhaust kinetic energy is high compared to the ionization energy, the frozen flow component is of little consequence; however, at low Isp, the effect of the frozen flow may be important. If some of this energy could be recovered through recombination processes, and re-injected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. In this operating regime, the ionization energy is a large portion of the total plasma energy. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma. This presentation will cover the progress and status of the experiment involving surface recombination of the plasma.
Effects of variable practice on the motor learning outcomes in manual wheelchair propulsion.
Leving, Marika T; Vegter, Riemer J K; de Groot, Sonja; van der Woude, Lucas H V
2016-11-23
Handrim wheelchair propulsion is a cyclic skill that needs to be learned during rehabilitation. It has been suggested that more variability in propulsion technique benefits the motor learning process of wheelchair propulsion. The purpose of this study was to determine the influence of variable practice on the motor learning outcomes of wheelchair propulsion in able-bodied participants. Variable practice was introduced in the form of wheelchair basketball practice and wheelchair-skill practice. Motor learning was operationalized as improvements in mechanical efficiency and propulsion technique. Eleven Participants in the variable practice group and 12 participants in the control group performed an identical pre-test and a post-test. Pre- and post-test were performed in a wheelchair on a motor-driven treadmill (1.11 m/s) at a relative power output of 0.23 W/kg. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated. Between the pre- and the post-test the variable practice group received 7 practice sessions. During the practice sessions participants performed one-hour of variable practice, consisting of five wheelchair-skill tasks and a 30 min wheelchair basketball game. The control group did not receive any practice between the pre- and the post-test. Comparison of the pre- and the post-test showed that the variable practice group significantly improved the mechanical efficiency (4.5 ± 0.6% → 5.7 ± 0.7%) in contrast to the control group (4.5 ± 0.6% → 4.4 ± 0.5%) (group x time interaction effect p < 0.001).With regard to propulsion technique, both groups significantly reduced the push frequency and increased the contact angle of the hand with the handrim (within group, time effect). No significant group × time interaction effects were found for propulsion technique. With regard to propulsion variability, the variable practice group increased variability when compared to the control group (interaction effect p < 0.001). Compared to a control, variable practice, resulted in an increase in mechanical efficiency and increased variability. Interestingly, the large relative improvement in mechanical efficiency was concomitant with only moderate improvements in the propulsion technique, which were similar in the control group, suggesting that other factors besides propulsion technique contributed to the lower energy expenditure.
Damage-mitigating control of space propulsion systems for high performance and extended life
NASA Technical Reports Server (NTRS)
Ray, Asok; Wu, Min-Kuang; Dai, Xiaowen; Carpino, Marc; Lorenzo, Carl F.
1993-01-01
Calculations are presented showing that a substantial improvement in service life of a reusable rocket engine can be achieved by an insignificant reduction in the system dynamic performance. The paper introduces the concept of damage mitigation and formulates a continuous-time model of fatigue damage dynamics. For control of complex mechanical systems, damage prediction and damage mitigation are carried out based on the available sensory and operational information such that the plant can be inexpensively maintained and safely and efficiently steered under diverse operating conditions. The results of simulation experiments are presented for transient operations of a reusable rocket engine.
Prediction of dry ice mass for firefighting robot actuation
NASA Astrophysics Data System (ADS)
Ajala, M. T.; Khan, Md R.; Shafie, A. A.; Salami, MJE; Mohamad Nor, M. I.
2017-11-01
The limitation in the performance of electric actuated firefighting robots in high-temperature fire environment has led to research on the alternative propulsion system for the mobility of firefighting robots in such environment. Capitalizing on the limitations of these electric actuators we suggested a gas-actuated propulsion system in our earlier study. The propulsion system is made up of a pneumatic motor as the actuator (for the robot) and carbon dioxide gas (self-generated from dry ice) as the power source. To satisfy the consumption requirement (9cfm) of the motor for efficient actuation of the robot in the fire environment, the volume of carbon dioxide gas, as well as the corresponding mass of the dry ice that will produce the required volume for powering and actuation of the robot, must be determined. This article, therefore, presents the computational analysis to predict the volumetric requirement and the dry ice mass sufficient to power a carbon dioxide gas propelled autonomous firefighting robot in a high-temperature environment. The governing equation of the sublimation of dry ice to carbon dioxide is established. An operating time of 2105.53s and operating pressure ranges from 137.9kPa to 482.65kPa were achieved following the consumption rate of the motor. Thus, 8.85m3 is computed as the volume requirement of the CAFFR while the corresponding dry ice mass for the CAFFR actuation ranges from 21.67kg to 75.83kg depending on the operating pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedrick, J.; Buchholtz, B.; Ward, P.
1991-01-01
Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, spacemore » connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium. Helium can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.« less
Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency
NASA Technical Reports Server (NTRS)
Castner, Raymond
2011-01-01
The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
NASA Technical Reports Server (NTRS)
Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric
1991-01-01
Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.
Experimental study of a fuel cell power train for road transport application
NASA Astrophysics Data System (ADS)
Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.
The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles). In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc-dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc-dc converter in directing the energy flows within the propulsion system.
Propulsive Efficiencies of Magnetohydrodynamic Submerged Vehicular Propulsors
1990-04-01
TERMS (Con’we on mrae . neoaay and kWerty by back nLt.) FIELD GROUP SUB-GROUP Magnetohydrodynamic propulsion, marine propulsion, seawater pump ...propelling a vehicular structure by a seawater elec- tromagnetic pump . This propulsion system can be applied to a surface ship or a submerged vehicle; however...structure by a seawater electromagnetic pump . This propulsion system can be applied to a surface ship or a submerged vehicle; however, in this work only
NASA Technical Reports Server (NTRS)
Meserole, J. S.; Keefer, Dennis; Ruyten, Wilhelmus; Peng, Xiaohang
1995-01-01
An ion engine is a plasma thruster which produces thrust by extracting ions from the plasma and accelerating them to high velocity with an electrostatic field. The ions are then neutralized and leave the engine as high velocity neutral particles. The advantages of ion engines are high specific impulse and efficiency and their ability to operate over a wide range of input powers. In comparison with other electric thrusters, the ion engine has higher efficiency and specific impulse than thermal electric devices such as the arcjet, microwave, radiofrequency and laser heated thrusters and can operate at much lower current levels than the MPD thruster. However, the thrust level for an ion engine may be lower than a thermal electric thruster of the same operating power, consistent with its higher specific impulse, and therefore ion engines are best suited for missions which can tolerate longer duration propulsive phases. The critical issue for the ion engine is lifetime, since the prospective missions may require operation for several thousands of hours. The critical components of the ion engine, with respect to engine lifetime, are the screen and accelerating grid structures. Typically, these are large metal screens that must support a large voltage difference and maintain a small gap between them. Metallic whisker growth, distortion and vibration can lead to arcing, and over a long period of time ion sputtering will erode the grid structures and change their geometry. In order to study the effects of long time operation of the grid structure, we are developing computer codes based on the Particle-In-Cell (PIC) technique and Laser Induced Fluorescence (LIF) diagnostic techniques to study the physical processes which control the performance and lifetime of the grid structures.
Flexible All-Digital Receiver for Bandwidth Efficient Modulations
NASA Technical Reports Server (NTRS)
Gray, Andrew; Srinivasan, Meera; Simon, Marvin; Yan, Tsun-Yee
2000-01-01
An all-digital high data rate parallel receiver architecture developed jointly by Goddard Space Flight Center and the Jet Propulsion Laboratory is presented. This receiver utilizes only a small number of high speed components along with a majority of lower speed components operating in a parallel frequency domain structure implementable in CMOS, and can currently process up to 600 Mbps with standard QPSK modulation. Performance results for this receiver for bandwidth efficient QPSK modulation schemes such as square-root raised cosine pulse shaped QPSK and Feher's patented QPSK are presented, demonstrating the flexibility of the receiver architecture.
NASA Technical Reports Server (NTRS)
Schoenberg, Kurt F.; Gerwin, Richard A.; Henins, Ivars; Mayo, Robert; Scheuer, Jay; Wurden, Glen
1992-01-01
The present report on preliminary results of theoretical and experimental investigations of power flow in a large, unoptimized, multimegawatt coaxial thruster evaluates the significance of these data for the development of efficient, megawatt-class magnetoplasmadynamic (MPD) thrusters. The good agreement obtained between thruster operational performance and model predictions suggests that ideal MHD processes, including those of a magnetic nozzle, play an important role in coaxial plasma thruster dynamics at power levels relevant to advanced space propulsion. An optimized magnetic nozzle design would aid the development of efficient, multimegawatt MPD thrusters.
Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul D.; SanSoucie, Michael P.
2015-01-01
NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power is enabled. High thermal conductivity carbon fibers are lightweight, damage tolerant, and can be heated to high temperature. Areal densities in the NASA set target range of 2 to 4 kg/m2 (for enabling NEP) are achieved and with specific powers (kW/kg) a factor of about 7 greater than conventional metal fins and about 1.5 greater than carbon composite fins. Figure 2 shows one fin under test. All tests were done under vacuum conditions.
Advanced Plasma Propulsion for Human Missions to Jupiter
NASA Technical Reports Server (NTRS)
Donahue, Benjamin B.; Pearson, J. Boise
1999-01-01
This paper will briefly identify a promising fusion plasma power source, which when coupled with a promising electric thruster technology would provide for an efficient interplanetary transfer craft suitable to a 4 year round trip mission to the Jovian system. An advanced, nearly radiation free Inertial Electrostatic Confinement scheme for containing fusion plasma was judged as offering potential for delivering the performance and operational benefits needed for such high energy human expedition missions, without requiring heavy superconducting magnets for containment of the fusion plasma. Once the Jovian transfer stage has matched the heliocentric velocity of Jupiter, the energy requirements for excursions to its outer satellites (Callisto, Ganymede and Europa) by smaller excursion craft are not prohibitive. The overall propulsion, power and thruster system is briefly described and a preliminary vehicle mass statement is presented.
Air Intake Performance of Air Breathing Ion Engines
NASA Astrophysics Data System (ADS)
Fujita, Kazuhisa
The air breathing ion engine (ABIE) is a new type of electric propulsion system which can be used to compensate the aerodynamic drag of the satellite orbiting at extremely low altitudes. In this propulsion system, the low-density atmosphere surrounding the satellite is taken in and used as the propellant of ion engines to reduce the propellant mass for a long operation lifetime. Since feasibility and performance of the ABIE are subject to the compression ratio and the air intake efficiency, a numerical analysis has been conducted by means of the direct-simulation Monte-Carlo method to clarify the characteristics of the air-intake performance in highly rarefied flows. Influences of the flight altitude, the aspect-ratio of the air intake duct, the angle of attack, and the wall conditions are investigated.
Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft
NASA Technical Reports Server (NTRS)
Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.
2009-01-01
Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new possibilities. The Boeing N2 hybrid-wing-body (HWB) is used as a baseline aircraft for this study. The two pylon mounted conventional turbofans are replaced by two wing-tip mounted turboshaft engines, each driving a superconducting generator. Both generators feed a common electrical bus which distributes power to an array of superconducting motor-driven fans in a continuous nacelle centered along the trailing edge of the upper surface of the wing-body. A key finding was that traditional inlet performance methodology has to be modified when most of the air entering the inlet is boundary layer air. A very thorough and detailed propulsion/airframe integration (PAI) analysis is required at the very beginning of the design process since embedded engine inlet performance must be based on conditions at the inlet lip rather than freestream conditions. Examination of a range of fan pressure ratios yielded a minimum Thrust-specific-fuel-consumption (TSFC) at the aerodynamic design point of the vehicle (31,000 ft /Mach 0.8) between 1.3 and 1.35 FPR. We deduced that this was due to the higher pressure losses prior to the fan inlet as well as higher losses in the 2-D inlets and nozzles. This FPR is likely to be higher than the FPR that yields a minimum TSFC in a pylon mounted engine. 1
A Compact, Soft-Switching DC-DC Converter for Electric Propulsion
NASA Technical Reports Server (NTRS)
Button, Robert; Redilla, Jack; Ayyanar, Raja
2003-01-01
A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.
Integrated propulsion for near-Earth space missions. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.
1981-01-01
Tradeoffs between electric propulsion system mass ratio and transfer time from LEO to GEO were conducted parametrically for various thruster efficiency, specific impulse, and other propulsion parameters. A computer model was developed for performing orbit transfer calculations which included the effects of aerodynamic drag, radiation degradation, and occultation. The tradeoff results showed that thruster technology areas for integrated propulsion should be directed towards improving primary thruster efficiency in the range from 1500 to 2500 seconds, and be continued towards reducing specific mass. Comparison of auxiliary propulsion systems showed large total propellant mass savings with integrated electric auxiliary propulsion. Stationkeeping is the most demanding on orbit propulsion requirement. At area densities above 0.5 sq m/kg, East-West stationkeeping requirements from solar pressure exceed North-South stationkeeping requirements from gravitational forces. A solar array pointing strategy was developed to minimize the effects of atmospheric drag at low altitude, enabling electric propulsion to initiate orbit transfer at Shuttle's maximum cargo carrying altitude. Gravity gradient torques are used during ascent to sustain the spacecraft roll motion required for optimum solar array illumination. A near optimum cover glass thickness of 6 mils was established for LEO to GEO transfer.
Project Aryavarta: A Novel approach in Innovative and energy efficient space transportation systems
NASA Astrophysics Data System (ADS)
Ghadawala, Rushi; Chokshi, Poojan; Verma, Rajeev
With the advancement of technology, there is a growing interest about other planets and so it would be necessary to shift the scientific analysis activities from the earth's orbit to that of other planets. The main aim of project ARYAVARTA is to shift a satellite orbit from one planet to another with the help of an Unmanned Space Vehicle (USV). For example, to shift scientific activities economically to other planets, we need to change the orbit of the satellite from earth to that of the other planet instead of sending separate space probes, as that would entail comparatively much higher cost. A solar powered USV is one that will be having ion propulsion system along with solar propulsion system. The USV, placed in rocket boosters, will be externally launched like a space shuttle to enable it to go beyond the atmospheric limit of the earth with sufficient escape velocity. Xenon cylinders attached to the USV will provide ion propulsion for furthering the mission. The USV will then be attached to the satellite revolving in the orbit of the earth. The satellite which is attached to the USV will be de-orbited with the help of xenon engines, and will be shifted to another orbit of another planet/satellite. Electricity generated by solar panels, made from multicrystalline solar cells, of the USV will be stored in the USV to help the mission/operational requirements. With the help of multireflectors, the reflected solar rays will be re-concentrated to the solar panel and hence, power efficiency will increase more than twice. Solar-electromagnetic propulsion would make such a mission possible because an ion engine can run almost continuously and outperform any chemical rocket for such long flights. This project will help to achieve higher efficiency with great economy, and eliminate the need for sending extra space probes for any other mission. As xenon engine occupies lesser room than conventional engines, more compact instruments will emerge ahead resulting in the overall reduction of the size and mass of the spacecraft, and thereby further increasing efficiency of the spacecraft.
Optical trapping and propulsion of red blood cells on waveguide surfaces.
Ahluwalia, Balpreet Singh; McCourt, Peter; Huser, Thomas; Hellesø, Olav Gaute
2010-09-27
We have studied optical trapping and propulsion of red blood cells in the evanescent field of optical waveguides. Cell propulsion is found to be highly dependent on the biological medium and serum proteins the cells are submerged in. Waveguides made of tantalum pentoxide are shown to be efficient for cell propulsion. An optical propulsion velocity of up to 6 µm/s on a waveguide with a width of ~6 µm is reported. Stable optical trapping and propulsion of cells during transverse flow is also reported.
In-Space Propulsion for Science and Exploration
NASA Technical Reports Server (NTRS)
Bishop-Behel, Karen; Johnson, Les
2004-01-01
This paper presents viewgraphs on the development of In-Space Propulsion Technologies for Science and Exploration. The topics include: 1) In-Space Propulsion Technology Program Overview; 2) In-Space Propulsion Technology Project Status; 3) Solar Electric Propulsion; 4) Next Generation Electric Propulsion; 5) Aerocapture Technology Alternatives; 6) Aerocapture; 7) Advanced Thermal Protection Systems Developed and Being Tested; 8) Solar Sails; 9) Advanced Chemical Propulsion; 10) Momentum Exchange Tethers; and 11) Momentum-exchange/electrodynamic reboost (MXER) Tether Basic Operation.
Anderson, E J; DeMont, M E
2000-09-01
High-speed, high-resolution digital video recordings of swimming squid (Loligo pealei) were acquired. These recordings were used to determine very accurate swimming kinematics, body deformations and mantle cavity volume. The time-varying squid profile was digitized automatically from the acquired swimming sequences. Mantle cavity volume flow rates were determined under the assumption of axisymmetry and the condition of incompressibility. The data were then used to calculate jet velocity, jet thrust and intramantle pressure, including unsteady effects. Because of the accurate measurements of volume flow rate, the standard use of estimated discharge coefficients was avoided. Equations for jet and whole-cycle propulsive efficiency were developed, including a general equation incorporating unsteady effects. Squid were observed to eject up to 94 % of their intramantle working fluid at relatively high swimming speeds. As a result, the standard use of the so-called large-reservoir approximation in the determination of intramantle pressure by the Bernoulli equation leads to significant errors in calculating intramantle pressure from jet velocity and vice versa. The failure of this approximation in squid locomotion also implies that pressure variation throughout the mantle cannot be ignored. In addition, the unsteady terms of the Bernoulli equation and the momentum equation proved to be significant to the determination of intramantle pressure and jet thrust. Equations of propulsive efficiency derived for squid did not resemble Froude efficiency. Instead, they resembled the equation of rocket motor propulsive efficiency. The Froude equation was found to underestimate the propulsive efficiency of the jet period of the squid locomotory cycle and to overestimate whole-cycle propulsive efficiency when compared with efficiencies calculated from equations derived with the squid locomotory apparatus in mind. The equations for squid propulsive efficiency reveal that the refill period of squid plays a greater role, and the jet period a lesser role, in the low whole-cycle efficiencies predicted in squid and similar jet-propelled organisms. These findings offer new perspectives on locomotory hydrodynamics, intramantle pressure measurements and functional morphology with regard to squid and other jet-propelled organisms.
Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.
Chen, Chuanrui; Tang, Songsong; Teymourian, Hazhir; Karshalev, Emil; Zhang, Fangyu; Li, Jinxing; Mou, Fangzhi; Liang, Yuyan; Guan, Jianguo; Wang, Joseph
2018-07-02
Hybrid micromotors capable of both chemically powered propulsion and fuel-free light-driven actuation and offering built-in optical brakes for chemical propulsion are described. The new hybrid micromotors are designed by combining photocatalytic TiO 2 and catalytic Pt surfaces into a Janus microparticle. The chemical reactions on the different surfaces of the Janus particle hybrid micromotor can be tailored by using chemical or light stimuli that generate counteracting propulsion forces on the catalytic Pt and photocatalytic TiO 2 sides. Such modulation of the surface chemistry on a single micromotor leads to switchable propulsion modes and reversal of the direction of motion that reflect the tuning of the local ion concentration and hence the dominant propulsion force. An intermediate Au layer (under the Pt surface) plays an important role in determining the propulsion mechanism and operation of the hybrid motor. The built-in optical braking system allows "on-the-fly" control of the chemical propulsion through a photocatalytic reaction on the TiO 2 side to counterbalance the chemical propulsion force generated on the Pt side. The adaptive dual operation of these chemical/light hybrid micromotors, associated with such control of the surface chemistry, holds considerable promise for designing smart nanomachines that autonomously reconfigure their propulsion mode for various on-demand operations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Cubbage, J. M.; Mercer, C. E.
1977-01-01
Results from an investigation of the effects of the operation of a combined turbojet/scramjet propulsion system on the longitudinal aerodynamic characteristics of a 1/60-scale hypersonic airbreathing launch vehicle configuration are presented. Decomposition products of hydrogen peroxide were used for simulation of the propulsion system exhaust.
FY2016 Propulsion Materials Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies thatmore » overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less
Study of advanced electric propulsion system concept using a flywheel for electric vehicles
NASA Technical Reports Server (NTRS)
Younger, F. C.; Lackner, H.
1979-01-01
Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.
A summary of EHV propulsion technology. [Electric and Hybrid Vehicle
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1983-01-01
While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.
Chen, Chuanrui; Karshalev, Emil; Guan, Jianguo; Wang, Joseph
2018-06-01
The new capabilities and functionalities of synthetic micro/nanomotors open up considerable opportunities for diverse environmental and biomedical applications. Water-powered micromachines are particularly attractive for realizing many of these applications. Magnesium-based motors directly use water as fuel to generate hydrogen bubbles for their propulsion, eliminating the requirement of common toxic fuels. This Review highlights the development of new Mg-based micromotors and discusses the chemistry that makes it extremely attractive for micromotor applications. Understanding these Mg properties and its transient nature is essential for controlling the propulsion efficiency, lifetime, and overall performance. The unique and attractive behavior of Mg offers significant advantages, including efficient water-powered movement, remarkable biocompatibility, controlled degradation, convenient functionalization, and built-in acid neutralization ability, and has paved the way for multifunctional micromachines for diverse real-life applications, including operation in living animals. A wide range of such Mg motor-based applications, including the detection and destruction of environmental threats, effective in-vivo cargo delivery, and autonomous release, have been demonstrated. In conclusion, the current challenges, future opportunities, and performance improvements of the Mg-based micromotors are discussed. With continuous innovation and attention to key challenges, it is expected that Mg-based motors will have a profound impact on diverse biomedical and environmental applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Saunders, J. D.; Stueber, T. J.; Thomas, S. R.; Suder, K. L.; Weir, L. J.; Sanders, B. W.
2012-01-01
Status on an effort to develop Turbine Based Combined Cycle (TBCC) propulsion is described. This propulsion technology can enable reliable and reusable space launch systems. TBCC propulsion offers improved performance and safety over rocket propulsion. The potential to realize aircraft-like operations and reduced maintenance are additional benefits. Among most the critical TBCC enabling technologies are: 1) mode transition from turbine to scramjet propulsion, 2) high Mach turbine engines and 3) TBCC integration. To address these TBCC challenges, the effort is centered on a propulsion mode transition experiment and includes analytical research. The test program, the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE LIMX), was conceived to integrate TBCC propulsion with proposed hypersonic vehicles. The goals address: (1) dual inlet operability and performance, (2) mode-transition sequences enabling a switch between turbine and scramjet flow paths, and (3) turbine engine transients during transition. Four test phases are planned from which a database can be used to both validate design and analysis codes and characterize operability and integration issues for TBCC propulsion. In this paper we discuss the research objectives, features of the CCE hardware and test plans, and status of the parametric inlet characterization testing which began in 2011. This effort is sponsored by the NASA Fundamental Aeronautics Hypersonics project
Spacecraft Impacts with Advanced Power and Electric Propulsion
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Oleson, Steven R.
2000-01-01
A study was performed to assess the benefits of advanced power and electric propulsion systems for various space missions. Advanced power technologies that were considered included multiband gap and thin-film solar arrays, lithium batteries, and flywheels. Electric propulsion options included Hall effect thrusters and Ion thrusters. Several mission case studies were selected as representative of future applications for advanced power and propulsion systems. These included a low altitude Earth science satellite, a LEO communications constellation, a GEO military surveillance satellite, and a Mercury planetary mission. The study process entailed identification of overall mission performance using state-of-the-art power and propulsion technology, enhancements made possible with either power or electric propulsion advances individually, and the collective benefits realized when advanced power and electric propulsion are combined. Impacts to the overall spacecraft included increased payload, longer operational life, expanded operations and launch vehicle class step-downs.
Alternative Practices to Improve Surface Fleet Fuel Efficiency
2014-09-01
GTGs . These GTGs are used onboard Ticonderoga-class cruisers (from Bennett 2014). Approximately 95-120 GPH less fuel is burned when operating one... GTG vice two. ..........................22 Figure 9. This shows the optimum speed to minimize fuel consumption for USS Chosin (CG 65). The TFP line...FITREP fitness report FY fiscal year GPH gallons per hour GTG gas turbine generator hr hour JP5 jet propulsion fuel, type 5 kts knots kW kilowatt
X-37 Storable Propulsion System Design and Operations
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris; Rehagen, Ronald J.
2005-01-01
In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.
X-37 Storable Propulsion System Design and Operations
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris; Rehegan, Ronald J.
2006-01-01
In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.
Vegter, Riemer J K; Hartog, Johanneke; de Groot, Sonja; Lamoth, Claudine J; Bekker, Michel J; van der Scheer, Jan W; van der Woude, Lucas H V; Veeger, Dirkjan H E J
2015-03-10
To propel in an energy-efficient manner, handrim wheelchair users must learn to control the bimanually applied forces onto the rims, preserving both speed and direction of locomotion. Previous studies have found an increase in mechanical efficiency due to motor learning associated with changes in propulsion technique, but it is unclear in what way the propulsion technique impacts the load on the shoulder complex. The purpose of this study was to evaluate mechanical efficiency, propulsion technique and load on the shoulder complex during the initial stage of motor learning. 15 naive able-bodied participants received 12-minutes uninstructed wheelchair practice on a motor driven treadmill, consisting of three 4-minute blocks separated by two minutes rest. Practice was performed at a fixed belt speed (v = 1.1 m/s) and constant low-intensity power output (0.2 W/kg). Energy consumption, kinematics and kinetics of propulsion technique were continuously measured. The Delft Shoulder Model was used to calculate net joint moments, muscle activity and glenohumeral reaction force. With practice mechanical efficiency increased and propulsion technique changed, reflected by a reduced push frequency and increased work per push, performed over a larger contact angle, with more tangentially applied force and reduced power losses before and after each push. Contrary to our expectations, the above mentioned propulsion technique changes were found together with an increased load on the shoulder complex reflected by higher net moments, a higher total muscle power and higher peak and mean glenohumeral reaction forces. It appears that the early stages of motor learning in handrim wheelchair propulsion are indeed associated with improved technique and efficiency due to optimization of the kinematics and dynamics of the upper extremity. This process goes at the cost of an increased muscular effort and mechanical loading of the shoulder complex. This seems to be associated with an unchanged stable function of the trunk and could be due to the early learning phase where participants still have to learn to effectively use the full movement amplitude available within the wheelchair-user combination. Apparently whole body energy efficiency has priority over mechanical loading in the early stages of learning to propel a handrim wheelchair.
NASA Technical Reports Server (NTRS)
Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.
1999-01-01
NASA's Hyper-X Research Vehicle will provide a unique opportunity to obtain data on an operational airframe integrated scramjet propulsion system at true flight conditions. The airframe integrated nature of the scramjet engine with the Hyper-X vehicle results in a strong coupling effect between the propulsion system operation and the airframe s basic aerodynamic characteristics. Comments on general airframe integrated scramjet propulsion system effects on vehicle aerodynamic performance, stability, and control are provided, followed by examples specific to the Hyper-X research vehicle. An overview is provided of the current activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts. A brief summary of the Hyper-X aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics.
Status of the NASA YF-12 Propulsion Research Program
NASA Technical Reports Server (NTRS)
Albers, J. A.
1976-01-01
The YF-12 research program was initiated to establish a technology base for the design of an efficient propulsion system for supersonic cruise aircraft. The major technology areas under investigation in this program are inlet design analysis, propulsion system steady-state performance, propulsion system dynamic performance, inlet and engine control systems, and airframe/propulsion system interactions. The objectives, technical approach, and status of the YF-12 propulsion program are discussed. Also discussed are the results obtained to date by the NASA Ames, Lewis, and Dryden research centers. The expected technical results and proposed future programs are also given. Propulsion system configurations are shown.
Validated biomechanical model for efficiency and speed of rowing.
Pelz, Peter F; Vergé, Angela
2014-10-17
The speed of a competitive rowing crew depends on the number of crew members, their body mass, sex and the type of rowing-sweep rowing or sculling. The time-averaged speed is proportional to the rower's body mass to the 1/36th power, to the number of crew members to the 1/9th power and to the physiological efficiency (accounted for by the rower's sex) to the 1/3rd power. The quality of the rowing shell and propulsion system is captured by one dimensionless parameter that takes the mechanical efficiency, the shape and drag coefficient of the shell and the Froude propulsion efficiency into account. We derive the biomechanical equation for the speed of rowing by two independent methods and further validate it by successfully predicting race times. We derive the theoretical upper limit of the Froude propulsion efficiency for low viscous flows. This upper limit is shown to be a function solely of the velocity ratio of blade to boat speed (i.e., it is completely independent of the blade shape), a result that may also be of interest for other repetitive propulsion systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2002-01-01
Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.
The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing
NASA Technical Reports Server (NTRS)
Chamberlin, R.
1985-01-01
A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSTALLATION Propulsion Machinery § 182.200 General. (a) Propulsion machinery must be suitable in type and design for propulsion requirements of the hull in which it is installed and capable of operating at...
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSTALLATION Propulsion Machinery § 182.200 General. (a) Propulsion machinery must be suitable in type and design for propulsion requirements of the hull in which it is installed and capable of operating at...
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSTALLATION Propulsion Machinery § 182.200 General. (a) Propulsion machinery must be suitable in type and design for propulsion requirements of the hull in which it is installed and capable of operating at...
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSTALLATION Propulsion Machinery § 182.200 General. (a) Propulsion machinery must be suitable in type and design for propulsion requirements of the hull in which it is installed and capable of operating at...
Code of Federal Regulations, 2010 CFR
2010-10-01
... INSTALLATION Propulsion Machinery § 182.200 General. (a) Propulsion machinery must be suitable in type and design for propulsion requirements of the hull in which it is installed and capable of operating at...
Institute for Computational Mechanics in Propulsion (ICOMP)
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)
1999-01-01
The Institute for Computational Mechanics in Propulsion (ICOMP) was formed to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. ICOMP is operated by the Ohio Aerospace Institute (OAI) and funded via numerous cooperative agreements by the NASA Glenn Research Center in Cleveland, Ohio. This report describes the activities at ICOMP during 1998, the Institutes thirteenth year of operation.
Institute for Computational Mechanics in Propulsion (ICOMP)
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)
2001-01-01
The Institute for Computational Mechanics in Propulsion (ICOMP) was formed to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. ICOMP is operated by the Ohio Aerospace Institute (OAI) and funded via numerous cooperative agreements by the NASA Glenn Research Center in Cleveland, Ohio. This report describes the activities at ICOMP during 1999, the Institute's fourteenth year of operation.
Institute for Computational Mechanics in Propulsion (ICOMP)
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)
1998-01-01
The Institute for Computational Mechanics in Propulsion (ICOMP) was formed to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. ICOMP is operated by the Ohio Aerospace Institute (OAI) and funded via numerous cooperative agreements by the NASA Lewis Research Center in Cleveland, Ohio. This report describes the activities at ICOMP during 1997, the Institute's twelfth year of operation.
Rocket-Based Combined-Cycle (RBCC) Propulsion Technology Workshop. Tutorial session
NASA Technical Reports Server (NTRS)
1992-01-01
The goal of this workshop was to illuminate the nation's space transportation and propulsion engineering community on the potential of hypersonic combined cycle (airbreathing/rocket) propulsion systems for future space transportation applications. Four general topics were examined: (1) selections from the expansive advanced propulsion archival resource; (2) related propulsion systems technical backgrounds; (3) RBCC engine multimode operations related subsystem background; and (4) focused review of propulsion aspects of current related programs.
Modeling of plasma in a hybrid electric propulsion for small satellites
NASA Astrophysics Data System (ADS)
Jugroot, Manish; Christou, Alex
2016-09-01
As space flight becomes more available and reliable, space-based technology is allowing for smaller and more cost-effective satellites to be produced. Working in large swarms, many small satellites can provide additional capabilities while reducing risk. These satellites require efficient, long term propulsion for manoeuvres, orbit maintenance and de-orbiting. The high exhaust velocity and propellant efficiency of electric propulsion makes it ideally suited for low thrust missions. The two dominant types of electric propulsion, namely ion thrusters and Hall thrusters, excel in different mission types. In this work, a novel electric hybrid propulsion design is modelled to enhance understanding of key phenomena and evaluate performance. Specifically, the modelled hybrid thruster seeks to overcome issues with existing Ion and Hall thruster designs. Scaling issues and optimization of the design will be discussed and will investigate a conceptual design of a hybrid spacecraft plasma engine.
76 FR 49525 - Advisory Circular 20-24C, Approval of Propulsion Fuels and Lubricating Oils
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-10
... Propulsion Fuels and Lubricating Oils AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of..., Approval of Propulsion Fuels and Lubricating Oils. This AC provides guidance on regulations and policy... approve aircraft, engines, or APUs to operate with specified propulsion fuels and lubricating oils. DATES...
Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion.
Liu, Hanlin; Taylor, Bevan; Curet, Oscar M
2017-06-01
Ribbon-fin-based propulsion has rich locomotor capabilities that can enhance the mobility and performance of underwater vehicles navigating in complex environments. Bony fishes using this type of propulsion send one or multiple traveling waves along an elongated fin with the actuation of highly flexible rays that are interconnected by an elastic membrane. In this work, we study how the use of flexible rays and different morphology can affect the performance of ribbon-fin propulsion. We developed a physical model composed of 15 rays that are interconnected with an elastic membrane. We tested four different ray flexural stiffness and four aspect ratios. The robotic model was tested in a low-turbulence flume under two flow conditions ([Formula: see text] wavelength/s). In two experimental sets, we measured fin kinematics, net surge forces, and power consumption. Using these data, we perform a thrust and power analysis of the undulating fin. We present the thrust coefficient, power coefficient, and propulsive efficiency. We find that the thrust generation was linear with the enclosed area swept by the fin, and square of the relative velocity between the incoming flow and traveling wave. The thrust coefficient levels off around 0.5. In addition, for our parameter range, we find that the power consumption scales by the cube of the effective tangential velocity of the rays [Formula: see text] (A is the amplitude of the ray oscillating motion, and [Formula: see text] is the angular velocity). We show that a decay in stiffness decreases both thrust production and power consumption. However, for rays with high flexural stiffness, the difference in thrust compared with rigid rays is minimal. Moreover, our results show that flexible rays can improve the propulsive efficiency compared with a rigid counterpart. Finally, we find that the morphology of ribbon fin affects its propulsive efficiency. For the aspect ratio considered in our experiments, [Formula: see text] was the most efficient compared with [Formula: see text]. Our results suggest that there could be an optimal morphology for a given ribbon fin kinematics. Therefore, both natural swimmers and underwater vehicles using ribbon-fin-based propulsion can take advantage of flexible rays and optimal aspect ratio to improve propulsive performance.
Integrated Turbine-Based Combined Cycle Dynamic Simulation Model
NASA Technical Reports Server (NTRS)
Haid, Daniel A.; Gamble, Eric J.
2011-01-01
A Turbine-Based Combined Cycle (TBCC) dynamic simulation model has been developed to demonstrate all modes of operation, including mode transition, for a turbine-based combined cycle propulsion system. The High Mach Transient Engine Cycle Code (HiTECC) is a highly integrated tool comprised of modules for modeling each of the TBCC systems whose interactions and controllability affect the TBCC propulsion system thrust and operability during its modes of operation. By structuring the simulation modeling tools around the major TBCC functional modes of operation (Dry Turbojet, Afterburning Turbojet, Transition, and Dual Mode Scramjet) the TBCC mode transition and all necessary intermediate events over its entire mission may be developed, modeled, and validated. The reported work details the use of the completed model to simulate a TBCC propulsion system as it accelerates from Mach 2.5, through mode transition, to Mach 7. The completion of this model and its subsequent use to simulate TBCC mode transition significantly extends the state-of-the-art for all TBCC modes of operation by providing a numerical simulation of the systems, interactions, and transient responses affecting the ability of the propulsion system to transition from turbine-based to ramjet/scramjet-based propulsion while maintaining constant thrust.
General Aviation Light Aircraft Propulsion: From the 1940's to the Next Century
NASA Technical Reports Server (NTRS)
Burkardt, Leo A.
1998-01-01
Current general aviation light aircraft are powered by engines that were originally designed in the 1940's. This paper gives a brief history of light aircraft engine development, explaining why the air-cooled, horizontally opposed piston engine became the dominant engine for this class of aircraft. Current engines are fairly efficient, and their designs have been updated through the years, but their basic design and operational characteristics are archaic in comparison to modem engine designs, such as those used in the automotive industry. There have been some innovative engine developments, but in general they have not been commercially successful. This paper gives some insight into the reasons for this lack of success. There is now renewed interest in developing modem propulsion systems for light aircraft, in the fore-front of which is NASA's General Aviation Propulsion (GAP) program. This paper gives an overview of the engines being developed in the GAP program, what they will mean to the general aviation community, and why NASA and its industry partners believe that these new engine developments will bring about a new era in general aviation light aircraft.
Bimodal Nuclear Thermal Rocket Analysis Developments
NASA Technical Reports Server (NTRS)
Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark
2014-01-01
Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.
NASA Technical Reports Server (NTRS)
Robotti, A. C.; Oggero, M.
1985-01-01
Results of experimental electric propulsion research are presented. A plasma generator, with an arc stabilized by an air vortex is examined. The heat transfer efficiency between arc and fluid environment at a varying current and flow rate is discussed.
NASA Technical Reports Server (NTRS)
Bielozer, M.; VanLear, Benjamin S.; Kindred, N.; Monien, G.; Schulte, U.
2014-01-01
A concept of operations for the Assembly, Integration and Testing (AIT) and the Ground Systems Development Operations (GSDO) of the European Service Module (ESM) propulsion system has been developed. The AIT concept of operations covers all fabrication, integration and testing activities in both Europe and in the United States. The GSDO Program develops the facilities, equipment, and procedures for the loading of hypergolic propellants, the filling of high-pressure gases, and contingency de-servicing operations for the ESM. NASA and ESA along with the Lockheed Martin and Airbus Space and Defense are currently working together for the EM-1 and EM-2 missions in which the ESM will be flown as part of the Orion Multi-Purpose Crew Vehicle (MPCV). The NASA/ESA SM propulsion team is collaborating with the AIT personnel from ESA/Airbus and NASA/Lockheed Martin to ensure successful integration of the European designed Service Module propulsion system, the Lockheed Martin designed Crew Module Adapter and the heritage Space Shuttle Orbital Maneuvering System Engines (OMS-E) being provided as Government Furnished Equipment (GFE). This paper will provide an overview of the current AIT and GSDO concept of operations for the ESM propulsion system.
NASA Technical Reports Server (NTRS)
Bielozer, Matthew C.
2014-01-01
A concept of operations for the Assembly, Integration and Testing (AIT) and the Ground Systems Development Operations (GSDO) of the European Service Module (ESM) propulsion system has been developed. The AIT concept of operations covers all fabrication, integration and testing activities in both Europe and in the United States. The GSDO Program develops the facilities, equipment, and procedures for the loading of hypergolic propellants, the filling of high-pressure gases, and contingency de-servicing operations for the ESM. NASA and ESA along with the Lockheed Martin and Airbus Space and Defense are currently working together for the EM-1 and EM-2 missions in which the ESM will be flown as part of the Orion Multi-Purpose Crew Vehicle (MPCV). The NASA/ESA SM propulsion team is collaborating with the AIT personnel from ESA/Airbus and NASA/Lockheed Martin to ensure successful integration of the European designed Service Module propulsion system, the Lockheed Martin designed Crew Module Adapter and the heritage Space Shuttle Orbital Maneuvering System Engines (OMS-E) being provided as Government Furnished Equipment (GFE). This paper will provide an overview of the current AIT and GSDO concept of operations for the ESM propulsion system.
Multi-point Adjoint-Based Design of Tilt-Rotors in a Noninertial Reference Frame
NASA Technical Reports Server (NTRS)
Jones, William T.; Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Acree, Cecil W.
2014-01-01
Optimization of tilt-rotor systems requires the consideration of performance at multiple design points. In the current study, an adjoint-based optimization of a tilt-rotor blade is considered. The optimization seeks to simultaneously maximize the rotorcraft figure of merit in hover and the propulsive efficiency in airplane-mode for a tilt-rotor system. The design is subject to minimum thrust constraints imposed at each design point. The rotor flowfields at each design point are cast as steady-state problems in a noninertial reference frame. Geometric design variables used in the study to control blade shape include: thickness, camber, twist, and taper represented by as many as 123 separate design variables. Performance weighting of each operational mode is considered in the formulation of the composite objective function, and a build up of increasing geometric degrees of freedom is used to isolate the impact of selected design variables. In all cases considered, the resulting designs successfully increase both the hover figure of merit and the airplane-mode propulsive efficiency for a rotor designed with classical techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji
A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extractedmore » ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.« less
NASA Technical Reports Server (NTRS)
George, Jeffrey
2014-01-01
Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960's, and of renewed interest due to modern advances in nanotechnology, MEMS, materials and manufacturing. Benefits include high conversion efficiency (20%), static operation with no moving parts and potential for high reliability, greatly reduced plant complexity, and the potential for reduced development costs. Thermionic emission, credited to Edison in 1880, forms the basis of vacuum tubes and much of 20th century electronics. Heat can be converted into electricity when electrons emitted from a hot surface are collected across a small gap. For example, two "small" (6 kWe) Thermionic Space Reactors were flown by the USSR in 1987-88 for ocean radar reconnaissance. Higher powered Nuclear-Thermionic power systems driving Electric Propulsion (Q-thruster, VASIMR, etc.) may offer the breakthrough necessary for human Mars missions of < 1 yr round trip. Power generation on Earth could benefit from simpler, moe economical nuclear plants, and "topping" of more fuel and emission efficient fossil-fuel plants.
Multiply charged ion generation according to magnetic field configurations in Hall thruster plasmas
NASA Astrophysics Data System (ADS)
Kim, Holak; Lee, Seunghun; Kim, Junbum; Lim, Youbong; Choe, Wonho; KIMS Collaboration
2016-09-01
Plasma propulsion is the most promising techniques to operate satellites for low earth orbit as well as deep space exploration. A typical plasma propulsion system is Hall thruster (HT) that uses crossed electromagnetic fields to ionize a propellant gas and to accelerate the ionized gas. In HT the tailoring of magnetic fields is significant due to that the electron confinement in the electromagnetic fields affects thruster performances such as thrust force, specific impulse, power efficiency, and life time. We designed an anode layer HT (TAL) with the magnetic field tailoring. The TAL is possible to keep discharge in 1 2 kilovolts, which voltage is useful to obtain high specific impulse The magnetic field tailoring is adapted to minimize undesirable heat dissipations and secondary electron emissions at a wall surrounding plasma In presentation, we will report TAL performances including thrust force, specific impulse, and anode efficiency measured by a pendulum thrust stand. This mechanical measurement will be compared to the plasma diagnostics conducted by angular Faraday probe, retarding potential analyzer, and ExB probe Grant No. 2014M1A3A3A02034510.
In-Space Transportation for NASA's Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Percy, Thomas K.; McGuire, Melissa; Polsgrove, Tara
2015-01-01
As the nation embarks on a new and bold journey to Mars, significant work is being done to determine what that mission and those architectural elements will look like. The Evolvable Mars Campaign, or EMC, is being evaluated as a potential approach to getting humans to Mars. Built on the premise of leveraging current technology investments and maximizing element commonality to reduce cost and development schedule, the EMC transportation architecture is focused on developing the elements required to move crew and equipment to Mars as efficiently and effectively as possible both from a performance and a programmatic standpoint. Over the last 18 months the team has been evaluating potential options for those transportation elements. One of the key aspects of the EMC is leveraging investments being made today in missions like the Asteroid Redirect Mission (ARM) mission using derived versions of the Solar Electric Propulsion (SEP) propulsion systems and coupling them with other chemical propulsion elements that maximize commonality across the architecture between both transportation and Mars operations elements. This paper outlines the broad trade space being evaluated including the different technologies being assessed for transportation elements and how those elements are assembled into an architecture. Impacts to potential operational scenarios at Mars are also investigated. Trades are being made on the size and power level of the SEP vehicle for delivering cargo as well as the size of the chemical propulsion systems and various mission aspects including Inspace assembly and sequencing. Maximizing payload delivery to Mars with the SEP vehicle will better support the operational scenarios at Mars by enabling the delivery of landers and habitation elements that are appropriately sized for the mission. The purpose of this investigation is not to find the solution but rather a suite of solutions with potential application to the challenge of sending cargo and crew to Mars. The goal is that, by building an architecture intelligently with all aspects considered, the sustainable Mars program wisely invests limited resources enabling a long-term human Mars exploration program.
Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms.
Siddall, R; Kovač, M
2014-09-01
Current Micro Aerial Vehicles (MAVs) are greatly limited by being able to operate in air only. Designing multimodal MAVs that can fly effectively, dive into the water and retake flight would enable applications of distributed water quality monitoring, search and rescue operations and underwater exploration. While some can land on water, no technologies are available that allow them to both dive and fly, due to dramatic design trade-offs that have to be solved for movement in both air and water and due to the absence of high-power propulsion systems that would allow a transition from underwater to air. In nature, several animals have evolved design solutions that enable them to successfully transition between water and air, and move in both media. Examples include flying fish, flying squid, diving birds and diving insects. In this paper, we review the biological literature on these multimodal animals and abstract their underlying design principles in the perspective of building a robotic equivalent, the Aquatic Micro Air Vehicle (AquaMAV). Building on the inspire-abstract-implement bioinspired design paradigm, we identify key adaptations from nature and designs from robotics. Based on this evaluation we propose key design principles for the design of successful aerial-aquatic robots, i.e. using a plunge diving strategy for water entry, folding wings for diving efficiency, water jet propulsion for water takeoff and hydrophobic surfaces for water shedding and dry flight. Further, we demonstrate the feasibility of the water jet propulsion by building a proof-of-concept water jet propulsion mechanism with a mass of 2.6 g that can propel itself up to 4.8 m high, corresponding to 72 times its size. This propulsion mechanism can be used for AquaMAV but also for other robotic applications where high-power density is of use, such as for jumping and swimming robots.
Liquid Oxygen/Liquid Methane Integrated Power and Propulsion
NASA Technical Reports Server (NTRS)
Banker, Brian; Ryan, Abigail
2016-01-01
The proposed paper will cover ongoing work at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) on integrated power and propulsion for advanced human exploration. Specifically, it will present findings of the integrated design, testing, and operational challenges of a liquid oxygen / liquid methane (LOx/LCH4) propulsion brassboard and Solid Oxide Fuel Cell (SOFC) system. Human-Mars architectures point to an oxygen-methane economy utilizing common commodities, scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU), and common commodities across sub-systems. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth) increasing commonality between spacecraft subsystems such as power and propulsion can result in tremendous launch mass and volume savings. Historically, propulsion and fuel cell power subsystems have had little interaction outside of the generation (fuel cell) and consumption (propulsion) of electrical power. This was largely due to a mismatch in preferred commodities (hypergolics for propulsion; oxygen & hydrogen for fuel cells). Although this stove-piped approach benefits from simplicity in the design process, it means each subsystem has its own tanks, pressurization system, fluid feed system, etc. increasing overall spacecraft mass and volume. A liquid oxygen / liquid methane commodities architecture across propulsion and power subsystems would enable the use of common tankage and associated pressurization and commodity delivery hardware for both. Furthermore, a spacecraft utilizing integrated power and propulsion could use propellant residuals - propellant which could not be expelled from the tank near depletion due to hydrodynamic considerations caused by large flow demands of a rocket engine - to generate power after all propulsive maneuvers are complete thus utilizing previously wasted mass. Such is the case for human and robotic planetary landers. Although many potential benefits through integrated power & propulsion exist, integrated operations have yet to be successfully demonstrated and many challenges have already been identified the most obvious of which is the large temperature gradient. SOFC chemistry is exothermic with operating temperatures in excess of 1,000 K; however, any shared commodities will be undoubtedly stored at cryogenic temperatures (90-112 K) for mass efficiency reasons. Spacecraft packaging will drive these two subsystems in close proximity thus heat leak into the commodity tankage must be minimized and/or mitigated. Furthermore, commodities must be gasified prior to consumption by the SOFC. Excess heat generated by the SOFC could be used to perform this phase change; however, this has yet to be demonstrated. A further identified challenge is the ability of the SOFC to handle the sudden power spikes created by the propulsion system. A power accumulator (battery) will likely be necessary to handle these sudden demands while the SOFC thermally adjusts. JSC's current SOFC test system consists of a 1 kW fuel cell designed by Delphi. The fuel cell is currently undergoing characterization testing at the NASA JSC Energy Systems Test Area (ESTA) after which a Steam Methane Reformer (SMR) will be integrated and the combined system tested in closed-loop. The propulsion brassboard is approximately the size of what could be flown on a sounding rocket. It consists of one 100 lbf thrust "main" engine developed for NASA by Aerojet and two 10 lbf thrusters to simulate a reaction control system developed at NASA JSC. This system is also under development and initial testing at ESTA. After initial testing, combined testing will occur which will provide data on the fuel cell's ability to sufficiently handle the power spikes created by the propulsion system. These two systems will also be modeled using General-Use Nodal Network Solver (GUNNS) software. Once anchored with test data, this model will be used to extrapolate onto other firing profiles and used to size the power accumulator.
Ramjet Model and Technicians in the 8- by 6-Foot Supersonic Wind Tunnel
1952-02-21
A researcher at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory checks the setup of a RJM-2 ramjet model in the test section of the 8- by 6-Foot Supersonic Wind Tunnel. The 8- by 6 was not only the laboratory’s first large supersonic wind tunnel, but it was also the NACA’s first facility capable of testing an operating engine at supersonic speeds. The 8- by 6-foot tunnel has been used to study engine inlets, fuel injectors, flameholders, exit nozzles, and controls on ramjet and turbojet propulsion systems. The 8-foot wide and 6-foot tall test section consisted of 1-inch thick steel plates with hatches on the floor and ceiling to facilitate the installation of the test article. The two windows seen on the right wall allowed photographic equipment to be set up. The test section was modified in 1956 to accommodate transonic research. NACA engineers drilled 4,700 holes into the test section walls to reduce transonic pressure disturbances and shock waves. NACA Lewis undertook an extensive research program on ramjets in the 1940s using several of its facilities. Ramjets provide a very simple source of propulsion. They are basically a tube which ingests high speed air, ignites it, and then expels the heated air at a significantly higher velocity. Ramjets are extremely efficient and powerful but can only operate at high speeds. Therefore, they require a booster rocket or aircraft drop to accelerate them to high speeds before they can operate.
A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.
2014-01-01
Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).
Survey of Propulsion Systems for High Capacity Personal Rapid Transit
DOT National Transportation Integrated Search
1975-07-01
The high-capacity personal rapid transit (HCPRT) system must operate with very short headways. To achieve safe operation at these headways, the propulsion system should meet certain unconventional requirements. They include reversible thrust capabili...
A review of advanced turboprop transport aircraft
NASA Astrophysics Data System (ADS)
Lange, Roy H.
The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.
Variable-Reluctance Motor For Electric Vehicles
NASA Technical Reports Server (NTRS)
Lang, Jeffrey H.
1987-01-01
Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.
Fission Systems for Mars Exploration
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne
2012-01-01
Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.
Design, Performance, and Operation of Efficient Ramjet/Scramjet Combined Cycle Hypersonic Propulsion
2009-10-16
simulations, the blending of the RANS and LES portions is handled by the standard DES equations, now referred to as DES97. The one-equation Spalart...think that RANS can capture these dynamics. • Much remains to be learned about how to model chemistry-turbulence interactions in scramjet flows...BILLIG, F. S., R. BAURLE, AND C. TAM 1999 Design and Analysis of Streamline Traced Hypersonic Inlets. AIAA Paper 1999-4974. BILLIG, F.S., AND
Laser-Powered Thrusters for High Efficiency Variable Specific Impulse Missions (Preprint)
2007-04-10
technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a total of 350-W optical power can...in a single device using low-mass diode-pumped glass fiber laser amplifiers to operate in either long- or short-pulse regimes at will. Adequate fiber...pulsewidth glass fiber oscillator-amplifiers, rather than the diodes used in the µ LPT, to achieve Table 2. Demonstrated technology basis Ablation Fuel Gold
Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani
2004-01-01
The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.
Advanced space power and propulsion based on lasers
NASA Astrophysics Data System (ADS)
Roth, M.; Logan, B. G.
2015-10-01
One of the key components for future space exploration, manned or unmanned, is the availability of propulsion systems beyond the state of the art. The rapid development in conventional propulsion systems since the middle of the 20th century has already reached the limits of chemical propulsion technology. To enhance mission radius, shorten the transit time and also extend the lifetime of a spacecraft more efficient, but still powerful propulsion system must be developed. Apart from the propulsion system a major weight contribution arises from the required energy source. Envisioning rapid development of future high average power laser systems and especially the ICAN project we review the prospect of advanced space propulsion based on laser systems.
A review of underwater bio-mimetic propulsion: cruise and fast-start
NASA Astrophysics Data System (ADS)
Chao, Li-Ming; Cao, Yong-Hui; Pan, Guang
2017-08-01
This paper reviews recent developments in the understanding of underwater bio-mimetic propulsion. Two impressive models of underwater propulsion are considered: cruise and fast-start. First, we introduce the progression of bio-mimetic propulsion, especially underwater propulsion, where some primary conceptions are touched upon. Second, the understanding of flapping foils, considered as one of the most efficient cruise styles of aquatic animals, is introduced, where the effect of kinematics and the shape and flexibility of foils on generating thrust are elucidated respectively. Fast-start propulsion is always exhibited when predator behaviour occurs, and we provide an explicit introduction of corresponding zoological experiments and numerical simulations. We also provide some predictions about underwater bio-mimetic propulsion.
Steady-state simulation program for attitude control propulsion systems
NASA Technical Reports Server (NTRS)
Heinmiller, P. J.
1973-01-01
The formulation and the engineering equations employed in the steady state attitude control propulsion system simulation program are presented. The objective of this program is to aid in the preliminary design and development of propulsion systems used for spacecraft attitude control. The program simulates the integrated operation of the many interdependent components typically comprising an attitude control propulsion system. Flexibility, generality, ease of operation, and speed consistent with adequate accuracy were overriding considerations during the development of this program. Simulation modules were developed representing the various types of fluid components typically encountered in an attitude control propulsion system. These modules are basically self-contained and may be arranged by the program user into desired configuration through the program input data.
Development and Testing of Propulsion Health Management
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Lekki, John D.; Simon, Donald L.
2012-01-01
An Integrated Vehicle Health Management system aims to maintain vehicle health through detection, diagnostics, state awareness, prognostics, and lastly, mitigation of detrimental situations for each of the vehicle subsystems and throughout the vehicle as a whole. This paper discusses efforts to advance Propulsion Health Management technology for in-flight applications to provide improved propulsion sensors measuring a range of parameters, improve ease of propulsion sensor implementation, and to assess and manage the health of gas turbine engine flow-path components. This combined work is intended to enable real-time propulsion state assessments to accurately determine the vehicle health, reduce loss of control, and to improve operator situational awareness. A unique aspect of this work is demonstration of these maturing technologies on an operational engine.
NASA Technical Reports Server (NTRS)
Shepard, Kyle; Sager, Paul; Kusunoki, Sid; Porter, John; Campion, AL; Mouritzan, Gunnar; Glunt, George; Vegter, George; Koontz, Rob
1993-01-01
Several topics are presented in viewgraph form which together encompass the preliminary assessment of nuclear thermal rocket engine clustering. The study objectives, schedule, flow, and groundrules are covered. This is followed by the NASA groundrules mission and our interpretation of the associated operational scenario. The NASA reference vehicle is illustrated, then the four propulsion system options are examined. Each propulsion system's preliminary design, fluid systems, operating characteristics, thrust structure, dimensions, and mass properties are detailed as well as the associated key propulsion system/vehicle interfaces. A brief series of systems analysis is also covered including: thrust vector control requirements, engine out possibilities, propulsion system failure modes, surviving system requirements, and technology requirements. An assessment of vehicle/propulsion system impacts due to the lessons learned are presented.
In-Situ Propellant Supplied Lunar Lander Concept
NASA Astrophysics Data System (ADS)
Donahue, Benjamin; Maulsby, Curtis
2008-01-01
Future NASA and commercial Lunar missions will require innovative spacecraft configurations incorporating reliable, sustainable propulsion, propellant storage, power and crew life support technologies that can evolve into long duration, partially autonomous systems that can be used to emplace and sustain the massive supplies required for a permanently occupied lunar base. Ambitious surface science missions will require efficient Lunar transfer systems to provide the consumables, science equipment, energy generation systems, habitation systems and crew provisions necessary for lengthy tours on the surface. Lunar lander descent and ascent stages become significantly more efficient when they can be refueled on the Lunar surface and operated numerous times. Landers enabled by Lunar In-Situ Propellant Production (ISPP) facilities will greatly ease constraints on spacecraft mass and payload delivery capability, and may operate much more affordably (in the long term) then landers that are dependant on Earth supplied propellants. In this paper, a Lander concept that leverages ISPP is described and its performance is quantified. Landers, operating as sortie vehicles from Low Lunar Orbit, with efficiencies facilitated by ISPP will enable economical utilization and enhancements that will provide increasingly valuable science yields from Lunar Bases.
On-Orbit Propulsion System Performance of ISS Visiting Vehicles
NASA Technical Reports Server (NTRS)
Martin, Mary Regina M.; Swanson, Robert A.; Kamath, Ulhas P.; Hernandez, Francisco J.; Spencer, Victor
2013-01-01
The International Space Station (ISS) represents the culmination of over two decades of unprecedented global human endeavors to conceive, design, build and operate a research laboratory in space. Uninterrupted human presence in space since the inception of the ISS has been made possible by an international fleet of space vehicles facilitating crew rotation, delivery of science experiments and replenishment of propellants and supplies. On-orbit propulsion systems on both ISS and Visiting Vehicles are essential to the continuous operation of the ISS. This paper compares the ISS visiting vehicle propulsion systems by providing an overview of key design drivers, operational considerations and performance characteristics. Despite their differences in design, functionality, and purpose, all visiting vehicles must adhere to a common set of interface requirements along with safety and operational requirements. This paper addresses a wide variety of methods for satisfying these requirements and mitigating credible hazards anticipated during the on-orbit life of propulsion systems, as well as the seamless integration necessary for the continued operation of the ISS.
FY2014 Propulsion Materials R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less
FY2015 Propulsion Materials Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less
Propulsion system performance resulting from an integrated flight/propulsion control design
NASA Technical Reports Server (NTRS)
Mattern, Duane; Garg, Sanjay
1992-01-01
Propulsion-system-specific results are presented from the application of the integrated methodology for propulsion and airframe control (IMPAC) design approach to integrated flight/propulsion control design for a 'short takeoff and vertical landing' (STOVL) aircraft in transition flight. The IMPAC method is briefly discussed and the propulsion system specifications for the integrated control design are examined. The structure of a linear engine controller that results from partitioning a linear centralized controller is discussed. The details of a nonlinear propulsion control system are presented, including a scheme to protect the engine operational limits: the fan surge margin and the acceleration/deceleration schedule that limits the fuel flow. Also, a simple but effective multivariable integrator windup protection scheme is examined. Nonlinear closed-loop simulation results are presented for two typical pilot commands for transition flight: acceleration while maintaining flightpath angle and a change in flightpath angle while maintaining airspeed. The simulation nonlinearities include the airframe/engine coupling, the actuator and sensor dynamics and limits, the protection scheme for the engine operational limits, and the integrator windup protection. Satisfactory performance of the total airframe plus engine system for transition flight, as defined by the specifications, was maintained during the limit operation of the closed-loop engine subsystem.
2014-09-01
given mission. There are several different propulsion system choices that can be used in a weapon system, such as turbofan / turbojet, ramjet, ducted...Efficiencies of Propulsion Alternatives Across the Mach Number. Turbojet/ turbofan propulsion alternatives are mature technologies and they are
Brief review on pulse laser propulsion
NASA Astrophysics Data System (ADS)
Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun
2018-03-01
Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2010-01-01
Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.
Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Unfried, Kenneth G.
2015-01-01
Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.
LADEE Propulsion System Cold Flow Test
NASA Technical Reports Server (NTRS)
Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.
2013-01-01
Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012
Variable thrust/specific-impulse of multiplexed electrospray microthrusters
NASA Astrophysics Data System (ADS)
Lenguito, G.; Fernandez de la Mora, J.; Gomez, A.
We report on the development of a single-propellant ElectroSpray (ES) microthruster able to: (a) cover a wide range of specific impulse (Isp) and thrust at high propulsion efficiency, and (b) provide macroscopic thrust via micro-fabricated emitter arrays. The electrospray is a mature technology for the emission of fast nanodroplets at a propulsive efficiency larger than 50% over the full Isp range. The size of the droplets depends on the propellant flow rate and the physical properties of the electrolyte, especially the electric conductivity. To achieve a useful thrust one needs to multiplex the ES by operating many in parallel, which we achieve via silicon microfabrication of arrays of multiple and identical nozzles. The Multiplexed Electrospray (MES) micro-thruster is composed mainly of two electrodes: a nozzle-array and an extractor electrode, between which the electric field needed to form the ES is established. We tested nozzle arrays with up to 37 capillaries, that are spaced 1mm apart, with ID/OD = 10/30μ m. The capillaries are filled with 2.01μ m silicon dioxide beads to increase the hydraulic impedance and ensure uniform flow rate through the different emitters. A third electrode (accelerator) is mounted downstream the extractor to accelerate the droplets, thereby increasing the microthruster performance. The system is packaged in an alumina casing for electrical insulation and propellant feed. Tests run in a vacuum chamber at a pressure ≤ 10-5 mbar demonstrated reliable operation for several hours with a relatively high beam energy of 7.56kV. The 37-nozzle MES device was tested with the ionic liquid ethylammonium nitrate (EAN), at estimated total flow rates between 1.2 and 14 μ L/h, emitted currents between 14.2 and 23.0 μ A, specific impulse ranging between 710 and 1930s, and thrust ranging between 7.5 and 33 μ N. EAN is well suited to cover a relatively broad range of charge/mass- at an average propulsion efficiency of 66%. With further scale-up to a 600-MES system, the device would be suitable for micro-satellites missions such as attitude control and station keeping.
Overview of CMC Development Activities in NASA's Ultra-Efficient Engine Technology (UEET) Program
NASA Technical Reports Server (NTRS)
Brewer, Dave
2001-01-01
The primary objective of the UEET (Ultra-Efficient Engine Technology) Program is to address two of the most critical propulsion issues: performance/efficiency and reduced emissions. High performance, low emissions engine systems will lead to significant improvement in local air quality, minimum impact on ozone depletion and level to an overall reduction in aviation contribution to global warming. The Materials and Structures for High Performance project will develop and demonstrate advanced high temperature materials to enable high-performance, high efficiency, and environmentally compatible propulsion systems.
High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration
NASA Technical Reports Server (NTRS)
Hofer, Richard R.
2013-01-01
This work describes the scaling and design attributes of Nested Hall Thrusters (NHT) with extremely large operational envelopes, including a wide range of throttleability in power and specific impulse at high efficiency (>50%). NHTs have the potential to provide the game changing performance, powerprocessing capabilities, and cost effectiveness required to enable missions that cannot otherwise be accomplished. NHTs were first identified in the electric propulsion community as a path to 100- kW class thrusters for human missions. This study aimed to identify the performance capabilities NHTs can provide for NASA robotic and human missions, with an emphasis on 10-kW class thrusters well-suited for robotic exploration. A key outcome of this work has been the identification of NHTs as nearly constant-efficiency devices over large power throttling ratios, especially in direct-drive power systems. NHT systems sized for robotic solar system exploration are predicted to be capable of high-efficiency operation over nearly their entire power throttling range. A traditional Annular Hall Thruster (AHT) consists of a single annular discharge chamber where the propellant is ionized and accelerated. In an NHT, multiple annular channels are concentrically stacked. The channels can be operated in unison or individually depending on the available power or required performance. When throttling an AHT, performance must be sacrificed since a single channel cannot satisfy the diverse design attributes needed to maintain high thrust efficiency. NHTs can satisfy these requirements by varying which channels are operated and thereby offer significant benefits in terms of thruster performance, especially under deep power throttling conditions where the efficiency of an AHT suffers since a single channel can only operate efficiently (>50%) over a narrow power throttling ratio (3:1). Designs for 10-kW class NHTs were developed and compared with AHT systems. Power processing systems were considered using either traditional Power Processing Units (PPU) or Direct Drive Units (DDU). In a PPU-based system, power from the solar arrays is transformed from the low voltage of the arrays to the high voltage needed by the thruster. In a DDU-based system, power from the solar arrays is fed to the thruster without conversion. DDU-based systems are attractive for their simplicity since they eliminate the most complex and expensive part of the propulsion system. The results point to the strong potential of NHTs operating with either PPUs or DDUs to benefit robotic and human missions through their unprecedented power and specific impulse throttling capabilities. NHTs coupled to traditional PPUs are predicted to offer high-efficiency (>50%) power throttling ratios 320% greater than present capabilities, while NHTs with direct-drive power systems (DDU) could exceed existing capabilities by 340%. Because the NHT-DDU approach is implicitly low-cost, NHT-DDU technology has the potential to radically reduce the cost of SEP-enabled NASA missions while simultaneously enabling unprecedented performance capability.
NASA Astrophysics Data System (ADS)
Kriebel, Mary M.; Sanks, Terry M.
1992-02-01
Electric propulsion provides high specific impulses, and low thrust when compared to chemical propulsion systems. Therefore, electric propulsion offers improvements over chemical systems such as increased station-keeping time, prolonged on-orbit maneuverability, low acceleration of large structures, and increased launch vehicle flexibility. The anticipated near-term operational electric propulsion system for an electric orbit transfer vehicle is an arcjet propulsion system. Towards this end, the USAF's Phillips Laboratory (PL) has awarded a prime contract to TRW Space & Technology Group to design, build, and space qualify a 30-kWe class arcjet as well as develop and demonstrate, on the ground, a flight-qualified arcjet propulsion flight unit. The name of this effort is the 30 kWe Class Arcjet Advanced Technology Transition Demonstration (Arcjet ATTD) program. Once the flight unit has completed its ground qualification test, it will be given to the Space Test and Transportation Program Office of the Air Force's Space Systems Division (ST/T) for launch vehicle integration and space test. The flight unit's space test is known as the Electric Propulsion Space Experiment (ESEX). ESEX's mission scenario is 10 firings of 15 minutes each. The objectives of the ESEX flight are to measure arcjet plume deposition, electromagnetic interference, thermal radiation, and acceleration in space. Plume deposition, electromagnetic interference, and thermal radiation are operational issues that are primarily being answered for operational use. This paper describes the Arcjet ATTD flight unit design and identifies specifically how the diagnostic data will be collected as part of the ESEX program.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
... Application for Expansion; Mercury Marine (Marine Propulsion Products), Fond du Lac and Oshkosh, WI An... of FTZ 41, on behalf of Mercury Marine, operator of Subzone 41H at Mercury Marine's marine propulsion... manufacturing of marine propulsion products at Mercury Marine's facilities located in Fond du Lac and Oshkosh...
Apollo Command and Service Module Propulsion Systems Overview
NASA Technical Reports Server (NTRS)
Interbartolo, Michael A.
2009-01-01
An overview of the Apollo Command and Service Module (CSM) propulsion systems is provided. The systems for CSM propulsion and control are defined, the times during the mission when each system is used are listed, and, the basic components and operation of the service propulsion system, SM reaction control system and CM reaction control system are described.
Mars Science Laboratory Cruise Propulsion Maneuvering Operations
NASA Technical Reports Server (NTRS)
Baker, Raymond S.; Mizukami, Masahi; Barber, Todd J.
2013-01-01
Mars Science Laboratory "Curiosity" is NASA's most recent mission to Mars, launched in November 2011, and landed in August 2012. It is a subcompact car-sized nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. Entry, descent and landing used a unique "skycrane" concept. This report describes the propulsive maneuvering operations during cruise from Earth to Mars, to control attitudes and to target the vehicle for entry. The propulsion subsystem, mission operations, and flight performance are discussed. All trajectory control maneuvers were well within accuracy requirements, and all turns and spin corrections were nominal.
Solar electric propulsion/instrument/subsystems interaction study
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Cole, R. K.; Kemp, R. F.; Hall, D. F.; Shelton, H.
1973-01-01
The interactive effects between a solar electric propulsion system and an electrically propelled scientific spacecraft were examined. The operation of the ion thrusters may impact upon the acquisition and interpretation of data by the science payload of the spacecraft. The effluents from the operation of the electric propulsion unit may also impact upon the operation of the various subsystems of the vehicle. Specific interactive effects were isolated where meaningful levels of interaction may occur. The level of impact upon elements of the science payload and other affected subsystems is examined, and avenues for the reduction or elimination of impact are defined.
Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers.
Bartol, Ian K; Krueger, Paul S; Stewart, William J; Thompson, Joseph T
2009-05-01
Squid paralarvae (hatchlings) rely predominantly on a pulsed jet for locomotion, distinguishing them from the majority of aquatic locomotors at low/intermediate Reynolds numbers (Re), which employ oscillatory/undulatory modes of propulsion. Although squid paralarvae may delineate the lower size limit of biological jet propulsion, surprisingly little is known about the hydrodynamics and propulsive efficiency of paralarval jetting within the intermediate Re realm. To better understand paralarval jet dynamics, we used digital particle image velocimetry (DPIV) and high-speed video to measure bulk vortex properties (e.g. circulation, impulse, kinetic energy) and other jet features [e.g. average and peak jet velocity along the jet centerline (U(j) and U(jmax), respectively), jet angle, jet length based on the vorticity and velocity extents (L(omega) and L(V), respectively), jet diameter based on the distance between vorticity peaks (D(omega)), maximum funnel diameter (D(F)), average and maximum swimming speed (U and U(max), respectively)] in free-swimming Doryteuthis pealeii paralarvae (1.8 mm dorsal mantle length) (Re(squid)=25-90). Squid paralarvae spent the majority of their time station holding in the water column, relying predominantly on a frequent, high-volume, vertically directed jet. During station holding, paralarvae produced a range of jet structures from spherical vortex rings (L(omega)/D(omega)=2.1, L(V)/D(F)=13.6) to more elongated vortex ring structures with no distinguishable pinch-off (L(omega)/D(omega)=4.6, L(V)/D(F)=36.0). To swim faster, paralarvae increased pulse duration and L(omega)/D(omega), leading to higher impulse but kept jet velocity relatively constant. Paralarvae produced jets with low slip, i.e. ratio of jet velocity to swimming velocity (U(j)/U or U(jmax)/U(max)), and exhibited propulsive efficiency [eta(pd)=74.9+/-8.83% (+/-s.d.) for deconvolved data] comparable with oscillatory/undulatory swimmers. As slip decreased with speed, propulsive efficiency increased. The detection of high propulsive efficiency in paralarvae is significant because it contradicts many studies that predict low propulsive efficiency at intermediate Re for inertial forms of locomotion.
NASA Technical Reports Server (NTRS)
Narayanan, S. R.; Valdez, T. I.; Chun, W.
2000-01-01
The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.
Performance capabilities of the 8-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Mantenieks, M. A.
1981-01-01
A preliminary characterization of the performance capabilities of the 8-cm thruster in order to initiate an evaluation of its application to LSS propulsion requirements is presented. With minor thruster modifications, the thrust was increased by about a factor of four while the discharge voltage was reduced from 39 to 22 volts. The thruster was operated over a range of specific impulse of 1950 to 3040 seconds and a maximum total efficiency of about 54 percent was attained. Preliminary analysis of component lifetimes, as determined by temperature and spectroscopic line intensity measurements, indicated acceptable thruster lifetimes are anticipated at the high power level operation.
NASA Astrophysics Data System (ADS)
Allison, Eric
In this investigation, a propulsion system is introduced for propelling and guiding an object through a fluid. Thrust for forward motion and for turning is produced by acoustic waves generated by piezoelectric ultrasonic transducers. The principle of operation of the transducers is described, and methods are presented for the design of the entire system, including the transducers, signal generator, guidance and control system, and the power source. A wirelessly controlled proof-of-concept device was constructed. This device demonstrates the operation and practicality of the propulsion and guidance systems and illustrates that they may be employed in situations where the use of conventional propulsive devices such as propellers or jets is unfeasible.
Fusion energy for space missions in the 21st Century
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1991-01-01
Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified.
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Litt, Jonathan S.
2007-01-01
Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.
NASA Technical Reports Server (NTRS)
Nakagawa, R. Y.; Elliot, J. C.; Spilker, T. R.; Grayson, C. M.
2003-01-01
NASA has placed new emphasis on the development of advanced propulsion technologies including Nuclear Electric Propulsion (NEP). This technology would provide multiple benefits including high delta-V capability and high power for long duration spacecraft operations.
Progress in aeronautical research and technology applicable to civil air transports
NASA Technical Reports Server (NTRS)
Bower, R. E.
1981-01-01
Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.
Performance, Life, and Operability Trade-Offs in VCE Control Logic Design.
1981-08-01
primarily USAF Actuarial Reports), including all engine returns to the intermediate or depot shop - scheduled and unscheduled - engine and non-engine...Length (Min) Training * Air to Air (ATA) 30 576 87 e Air to Ground (ATG) 30 363 128 Combat e Air Superiority ( ASM ) 13 75 228 e Intercept 2 31 94... ASME , 16th Joint Propulsion Conference, Paper No. ALAA-80-1115, June 30 - July 2, 1980. 2. Akimov, V.M., Starik, D.E., et al., The Economic Efficiency
Air transportation energy efficiency - Alternatives and implications
NASA Technical Reports Server (NTRS)
Williams, L. J.
1976-01-01
Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.
Overview of the Turbine Based Combined Cycle Discipline
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Walker, James F.; Pittman, James L.
2009-01-01
The NASA Fundamental Aeronautics Hypersonics project is focused on technologies for combined cycle, airbreathing propulsions systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments and offer improved safety. The potential to realize more aircraft-like operations with expanded launch site capability and reduced system maintenance are additional benefits. The most critical TBCC enabling technologies as identified in the National Aeronautics Institute (NAI) study were: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development, 3) transonic aero-propulsion performance, 4) low-Mach-number dual-mode scramjet operation, 5) innovative 3-D flowpath concepts and 6) innovative turbine based combined cycle integration. To address several of these key TBCC challenges, NASA s Hypersonics project (TBCC Discipline) initiated an experimental mode transition task that includes an analytic research endeavor to assess the state-of-the-art of propulsion system performance and design codes. This initiative includes inlet fluid and turbine performance codes and engineering-level algorithms. This effort has been focused on the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) which is a fully integrated TBCC propulsion system with flow path sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment is being tested in the NASA-GRC 10 x 10 Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle-engine issues: (1) dual integrated inlet operability and performance issues unstart constraints, distortion constraints, bleed requirements, controls, and operability margins, (2) mode-transition constraints imposed by the turbine and the ramjet/scramjet flow paths (imposed variable geometry requirements), (3) turbine engine transients (and associated time scales) during transition, (4) high-altitude turbine engine re-light, and (5) the operating constraints of a Mach 3-7 combustor (specific to the TBCC). The model will be tested in several test phases to develop a unique TBCC database to assess and validate design and analysis tools and address operability, integration, and interaction issues for this class of advanced propulsion systems. The test article and all support equipment is complete and available at the facility. The test article installation and facility build-up in preparation for the inlet performance and operability characterization is near completion and testing is planned to commence in FY11.
Conceptual design and integration of a space station resistojet propulsion assembly
NASA Technical Reports Server (NTRS)
Tacina, Robert R.
1987-01-01
The resistojet propulsion module is designed as a simple, long life, low risk system offering operational flexibility to the space station program. It can dispose of a wide variety of typical space station waste fluids by using them as propellants for orbital maintenance. A high temperature mode offers relatively high specific impulse with long life while a low temperature mode can propulsively dispose of mixtures that contain oxygen or hydrocarbons without reducing thruster life or generating particulates in the plume. A low duty cycle and a plume that is confined to a small aft region minimizes the impacts on the users. Simple interfaces with other space station systems facilitate integration. It is concluded that there are no major obstacles and many advantages to developing, installing, and operating a resistojet propulsion module aboard the Initial Operational Capability (IOC) space station.
NASA Technical Reports Server (NTRS)
Martinez, Hugo E.; Albright, John D.; D'Amico, Stephen J.; Brewer, John M.; Melcher, John C., IV
2011-01-01
The Space Shuttle Integrated Main Propulsion System (IMPS) consists of the External Tank (ET), Orbiter Main Propulsion System (MPS), and Space Shuttle Main Engines (SSMEs). The IMPS is tasked with the storage, conditioning, distribution, and combustion of cryogenic liquid hydrogen (LH2) and liquid oxygen (LO2) propellants to provide first and second stage thrust for achieving orbital velocity. The design, certification, and operation of the associated IMPS hardware have produced many lessons learned over the course of the Space Shuttle Program (SSP). A subset of these items will be discussed in this paper for consideration when designing, building, and operating future spacecraft propulsion systems. This paper will focus on lessons learned related to Orbiter MPS and is the first of a planned series to address the subject matter.
NASA Technical Reports Server (NTRS)
Franklin, James A.
1997-01-01
This report describes revisions to a simulation model that was developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced short takeoff and vertical landing lift fan fighter aircraft. These revisions have been made to the flight/propulsion control system, head-up display, and propulsion system to reflect recent flight and simulation experience with short takeoff and vertical landing operations. They include nonlinear inverse control laws in all axes (eliminating earlier versions with state rate feedback), throttle scaling laws for flightpath and thrust command, control selector commands apportioned based on relative effectiveness of the individual controls, lateral guidance algorithms that provide more flexibility for terminal area operations, and a simpler representation of the propulsion system. The model includes modes tailored to the phases of the aircraft's operation, with several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the propulsion system. Head-up display modes for approach and hover are integrated with the corresponding control modes. Propulsion system components modeled include a remote lift fan and a lift-cruise engine. Their static performance and dynamic responses are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
NASA Astrophysics Data System (ADS)
Liu, Hanlin; Curet, Oscar
2016-11-01
Effective control of propulsive undulating fins has the potential to enhance the maneuverability and efficiency of underwater vehicles allowing them to navigate in more complex environments. Aquatic animals using this type of propulsion are able to perform complex maneuvers by sending different traveling waves along one or multiple elongated fins. Recent work has investigated the propulsive forces, the hydrodynamics and the efficiency of an undulating ribbon fin. However, it is still not understood how different traveling wave shapes along the fin can be used to control the hydrodynamic forces and torques to perform different maneuvers. In this work, we study the effect of traveling wave shapes on the hydrodynamic forces and torques, swimming speed, maneuver control and propulsive performance of an underwater vehicle propelled by an undulating fin. The underwater robot propels by actuating a fin that is composed of sixteen independent rays interconnected with a flexible membrane. The hull contains all the electronics, batteries, motors and sensors. The underwater vehicle was tested in a water tank-flume facility. In a series of experiments, we measured the motion of the vessel and the power consumption for different traveling wave patterns. In addition, we measured the flow around the fin using Particle Image Velocimetry. We present the results concerning the power distribution along the fin, propulsive efficiency, free-swimming speed and pitch control based on different fin kinematics. National Science Foundation under Grant No. 1420774.
NASA Technical Reports Server (NTRS)
Dustin, M. O.
1983-01-01
The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.
The Use of Steady and Unsteady Detonation Waves for Propulsion Systems
NASA Technical Reports Server (NTRS)
Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)
1995-01-01
Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.
Electric Propulsion Laboratory Vacuum Chamber
1964-06-21
Engineer Paul Reader and his colleagues take environmental measurements during testing of a 20-inch diameter ion engine in a vacuum tank at the Electric Propulsion Laboratory (EPL). Researchers at the Lewis Research Center were investigating the use of a permanent-magnet circuit to create the magnetic field required power electron bombardment ion engines. Typical ion engines use a solenoid coil to create this magnetic field. It was thought that the substitution of a permanent magnet would create a comparable magnetic field with a lower weight. Testing of the magnet system in the EPL vacuum tanks revealed no significant operational problems. Reader found the weight of the two systems was similar, but that the thruster’s efficiency increased with the magnet. The EPL contained a series of large vacuum tanks that could be used to simulate conditions in space. Large vacuum pumps reduced the internal air pressure, and a refrigeration system created the cryogenic temperatures found in space.
An Integrated Hybrid Transportation Architecture for Human Mars Expeditions
NASA Technical Reports Server (NTRS)
Merrill, Raymond G.; Chai, Patrick R.; Qu, Min
2015-01-01
NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture that uses both chemical and electric propulsion systems on the same vehicle to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By applying chemical and electrical propulsion where each is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper presents an integrated Hybrid in-space transportation architecture for piloted missions and delivery of cargo. A concept for a Mars campaign including orbital and Mars surface missions is described in detail including a system concept of operations and conceptual design. Specific constraints, margin, and pinch points are identified for the architecture and opportunities for critical path commercial and international collaboration are discussed.
NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2016-01-01
As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.
2010-01-01
Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.
Spacecraft and mission design for the SP-100 flight experiment
NASA Technical Reports Server (NTRS)
Deininger, William D.; Vondra, Robert J.
1988-01-01
The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kW(e) ammonia arcjet system operating at an experimentally measured specific impulse of 1031 s and an efficiency of 42.3 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kW(e) SRPS is assumed. The spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission, and an orbit raising round trip corresponding to possible orbit transfer vehicle (OTV) missions.
Potential of extended airbreathing operation of a two-stage launch vehicle by scramjet propulsion
NASA Astrophysics Data System (ADS)
Schoettle, U. M.; Hillesheimer, M.; Rahn, M.
This paper examines the application of scramjet propulsion to extend the ramjet operation of an airbreathing two-stage launch designed for horizontal takeoff and landing. Performance comparisons are made for two alternative propulsion concepts. The mission performance predictions presented are obtained from a multistep optimization procedure employing both trajectory optimization and vehicle design steps to achieve maximum payload capabilities. The simulation results are shown to offer an attractive payload advantage of the scramjet variant over the ramjet powered vehicle.
1982-08-01
technology , main propulsion systems, on- board training, on-the-job training, performance-oriented training, shipboard training, shipboard training...ensure that the trainee has a general idea of the role played by the system or equipment in the operation of the propulsion plant. If a system is...the watchstation modules, greater care is taken in their design. When the amount ofinformation involved in a diagram is not excessive, both names and
NASA Technical Reports Server (NTRS)
Sehra, Arun K.
2003-01-01
Twenty-first-century aeropropulsion and power research will enable new transport engine and aircraft systems including: 1) Emerging ultralow noise and emissions with the use of intelligent turbofans; 2) Future distributed vectored propulsion with 24-hour operations and greater community mobility; 3) Research in hybrid combustion and electric propulsion systems leading to silent aircraft with near-zero emissions; and 4) The culmination of these revolutions will deliver an all-electric- powered propulsion system with zero-impact emissions and noise and high-capacity, on-demand operation
Performance Evaluation of the Prototype Model NEXT Ion Thruster
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.
2008-01-01
The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, Alexandre A.; Pinheiro, Mario J.
In this work, the propulsion force developed in an asymmetric capacitor will be calculated for three different diameters of the ground electrode. The used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to provide a physical insight on the force mechanism that acts on the asymmetrical capacitors, and also to understand how to increase the efficiency of propulsion.
Impact of Space Transportation System on planetary spacecraft and missions design
NASA Technical Reports Server (NTRS)
Barnett, P. M.
1975-01-01
Results of Jet Propulsion Laboratory (JPL) activities to define and understand alternatives for planetary spacecraft operations with the Space Transportation System (STS) are summarized. The STS presents a set of interfaces, operational alternatives, and constraints in the prelaunch, launch, and near-earth flight phases of a mission. Shuttle-unique features are defined and coupled with JPL's existing program experience to begin development of operationally efficient alternatives, concepts, and methods for STS-launched missions. The time frame considered begins with the arrival of the planetary spacecraft at Kennedy Space Center and includes prelaunch ground operations, Shuttle-powered flight, and near-earth operations, up to acquisition of the spacecraft signal by the Deep Space Network. The areas selected for study within this time frame were generally chosen because they represent the 'driving conditions' on planetary-mission as well as system design and operations.
Upper limb joint motion of two different user groups during manual wheelchair propulsion
NASA Astrophysics Data System (ADS)
Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Lee, Jinbok; Kim, Youngho
2013-02-01
Manual wheelchair users have a high risk of injury to the upper extremities. Recent studies have focused on kinematic and kinetic analyses of manual wheelchair propulsion in order to understand the physical demands on wheelchair users. The purpose of this study was to investigate upper limb joint motion by using a motion capture system and a dynamometer with two different groups of wheelchair users propelling their wheelchairs at different speeds under different load conditions. The variations in the contact time, release time, and linear velocity of the experienced group were all larger than they were in the novice group. The propulsion angles of the experienced users were larger than those of the novices under all conditions. The variances in the propulsion force (both radial and tangential) of the experienced users were larger than those of the novices. The shoulder joint moment had the largest variance with the conditions, followed by the wrist joint moment and the elbow joint moment. The variance of the maximum shoulder joint moment was over four times the variance of the maximum wrist joint moment and eight times the maximum elbow joint moment. The maximum joint moments increased significantly as the speed and load increased in both groups. Quick and significant manipulation ability based on environmental changes is considered an important factor in efficient propulsion. This efficiency was confirmed from the propulsion power results. Sophisticated strategies for efficient manual wheelchair propulsion could be understood by observation of the physical responses of each upper limb joint to changes in load and speed. We expect that the findings of this study will be utilized for designing a rehabilitation program to reduce injuries.
The NASA-JPL advanced propulsion program
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
1994-01-01
The NASA Advanced Propulsion Concepts (APC) program at the Jet Propulsion Laboratory (JPL) consists of two main areas: The first involves cooperative modeling and research activities between JPL and various universities and industry; the second involves research at universities and industry that is directly supported by JPL. The cooperative research program consists of mission studies, research and development of ion engine technology using C-60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry- supported research includes research (modeling and proof-of-concept experiments) in advanced, long-life electric propulsion, and in fusion propulsion. These propulsion concepts were selected primarily to cover a range of applications from near-term to far-term missions. For example, the long-lived pulsed-xenon thruster research that JPL is supporting at Princeton University addresses the near-term need for efficient, long-life attitude control and station-keeping propulsion for Earth-orbiting spacecraft. The C-60-propellant ion engine has the potential for good efficiency in a relatively low specific impulse (Isp) range (10,000 - 30,000 m/s) that is optimum for relatively fast (less than 100 day) cis-lunar (LEO/GEO/Lunar) missions employing near-term, high-specific mass electric propulsion vehicles. Research and modeling on the C-60-ion engine are currently being performed by JPL (engine demonstration), Caltech (C-60 properties), MIT (plume modeling), and USC (diagnostics). The Li-propellant LFA engine also has good efficiency in the modest Isp range (40,000 - 50,000 m/s) that is optimum for near-to-mid-term megawatt-class solar- and nuclear-electric propulsion vehicles used for Mars missions transporting cargo (in support of a piloted mission). Research and modeling on the Li-LFA engine are currently being performed by JPL (cathode development), Moscow Aviation Institute (engine testing), Thermacore (electrode development), as well as at MIT (plume modeling), and USC (diagnostics). Also, the mission performance of a nuclear-electric propulsion (NEP) Li-LFA Mars cargo vehicle is being modeled by JPL (mission analysis; thruster and power processor modeling) and the Rocketdyne Energy Technology and Engineering Center (ETEC) (power system modeling). Finally, the fusion propulsion research activities that JPL is supporting at Pennsylvania State University (PSU) and at Lawrenceville Plasma Physics (LPP) are aimed at far-term fast (less than 100 day round trip) piloted Mars missions and, in the very far term, interstellar missions.
Propellant Feed Subsystem for the X-34 Main Propulsion System
NASA Technical Reports Server (NTRS)
McDonald, J. P.; Minor, R. B.; Knight, K. C.; Champion, R. H., Jr.; Russell, F. J., Jr.
1998-01-01
The Orbital Sciences Corporation X-34 vehicle demonstrates technologies and operations key to future reusable launch vehicles. The general flight performance goal of this unmanned rocket plane is Mach 8 flight at an altitude of 250,000 feet. The Main Propulsion System supplies liquid propellants to the main engine, which provides the primary thrust for attaining mission goals. Major NMS design and operational goals are aircraft-like ground operations, quick turnaround between missions, and low initial/operational costs. This paper reviews major design and analysis aspects of the X-34 propellant feed subsystem of the X-34 Main Propulsion System. Topics include system requirements, system design, the integration of flight and feed system performance, propellant acquisition at engine start, and propellant tank terminal drain.
Development and testing of the propulsion subsystem for the Mariner Mars 1971 spacecraft
NASA Technical Reports Server (NTRS)
Cannova, R. D.
1972-01-01
The design, testing, fabrication, and problems associated with the development of the Mariner 9 propulsion system are described. Also covered are the design and operation of the associated ground support equipment used to test and service the propulsion system.
Space station propulsion test bed
NASA Technical Reports Server (NTRS)
Briley, G. L.; Evans, S. A.
1989-01-01
A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.
Orbital transfer of large space structures with nuclear electric rockets
NASA Technical Reports Server (NTRS)
Silva, T. H.; Byers, D. C.
1980-01-01
This paper discusses the potential application of electric propulsion for orbit transfer of a large spacecraft structure from low earth orbit to geosynchronous altitude in a deployed configuration. The electric power was provided by the spacecraft nuclear reactor space power system on a shared basis during transfer operations. Factors considered with respect to system effectiveness included nuclear power source sizing, electric propulsion thruster concept, spacecraft deployment constraints, and orbital operations and safety. It is shown that the favorable total impulse capability inherent in electric propulsion provides a potential economic advantage over chemical propulsion orbit transfer vehicles by reducing the number of Space Shuttle flights in ground-to-orbit transportation requirements.
Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.
2004-01-01
This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.
NASA Technical Reports Server (NTRS)
1976-01-01
All themes require some form of advanced propulsion capabilities to achieve their stated objectives. Requirements cover a broad spectrum ranging from a new generation of heavy lift launch vehicles to low thrust, long lift system for on-orbit operations. The commonality extant between propulsive technologies was established and group technologies were grouped into vehicle classes by functional capability. The five classes of launch vehicles identified by the space transportation theme were augmented with a sixth class, encompassing planetary and on-orbit operations. Propulsion technologies in each class were then ranked, and assigned priority numbers. Prioritized technologies were matched to theme requirements.
Mission roles for the solar electric propulsion stage with the space transportation system
NASA Technical Reports Server (NTRS)
1974-01-01
A briefing outline is presented of the mission roles for the solar electric propulsion stage (SEPS). Topics outlined include operational considerations and mission characteristics, trade studies and technology assessments influencing SEPS configuration definition, program support requirements, and development and operations cost estimates.
Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John
2014-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
Investigation of the part-load performance of two 1.12 MW regenerative marine gas turbines
NASA Astrophysics Data System (ADS)
Korakianitis, T.; Beier, K. J.
1994-04-01
Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performances of two 1.12 MW (1500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.
Movement and Maneuver in Deep Space: A Framework to Leverage Advanced Propulsion
2017-04-01
array of benefits for the current National Security Enterprise, and for this reason alone demands attention in the form of disciplined investment...discusses a theoretical organization formed and chartered to develop, test, and acquire deep space propulsion technology and includes what the...different forms , particularly via multi-mode propulsion where both chemical thrusters and electric propulsion devices operate on a common
Modeling of Spacecraft Advanced Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
Benfield, Michael P. J.; Belcher, Jeremy A.
2004-01-01
This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.
Comparative Evaluation of Energy Measurement Models for Transit Systems
DOT National Transportation Integrated Search
1984-02-01
Recent advances in solid state control technology have led to chopper-controlled propulsion systems in urban rail transit applications. Such systems offer the potential for superior train performance through increased train propulsion efficiency and ...
FY2011 Annual Progress Report for Propulsion Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.
Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.
A Thruster Sub-System Module (TSSM) for solar electric propulsion
NASA Technical Reports Server (NTRS)
Sharp, G. R.
1975-01-01
Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near-earth and planetary missions. Thruster systems for these missions could be integrated directly into a spacecraft or modularized into a Thruster Sub-System Module (TSSM). A TSSM for electric propulsion missions would consist of a 30-cm ion thruster, thruster gimbal system, propellant storage and feed system, associated Power Processing Unit (PPU), thermal control system and complete supporting structure. The TSSM would be wholly self-contained and be essentially a plug-in or strap-on electric stage with simple mechanical, thermal, electrical and propellant interfaces. The TSSM described in this report is designed for a broad range of missions requiring from two to ten TSSM's mounted in a 2 by x configuration. The thermal control system is designed to accommodate waste heat from the power processor based on realistic efficiencies when the TSSM is operating from 0.7 to 3.5 AU's. The modules are 0.61 M (2 ft) wide by 2.29 M (7.5 ft) long and have a dry weight including propellant tank of 54.4 kg (120 lb). The propellant tank will hold 145.1 kg (320 lb) of mercury.
NASA Technical Reports Server (NTRS)
Obrien, Charles J.
1993-01-01
Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.
Identification of propulsion systems
NASA Technical Reports Server (NTRS)
Merrill, Walter; Guo, Ten-Huei; Duyar, Ahmet
1991-01-01
This paper presents a tutorial on the use of model identification techniques for the identification of propulsion system models. These models are important for control design, simulation, parameter estimation, and fault detection. Propulsion system identification is defined in the context of the classical description of identification as a four step process that is unique because of special considerations of data and error sources. Propulsion system models are described along with the dependence of system operation on the environment. Propulsion system simulation approaches are discussed as well as approaches to propulsion system identification with examples for both air breathing and rocket systems.
46 CFR 109.555 - Propulsion boilers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...
46 CFR 109.555 - Propulsion boilers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...
46 CFR 109.555 - Propulsion boilers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...
46 CFR 109.555 - Propulsion boilers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...
46 CFR 109.555 - Propulsion boilers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...
NASA Technical Reports Server (NTRS)
Chakrabarti, Suman; Schmidt, George R.; Thio, Y. C.; Hurst, Chantelle M.
1999-01-01
A preliminary model for spacecraft propulsion performance analysis based on nuclear gain and subsystem mass-power balances are presented in viewgraph form. For very fast missions with straight-line trajectories, it has been shown that mission trip time is proportional to the cube root of alpha. Analysis of spacecraft power systems via a power balance and examination of gain vs. mass-power ratio has shown: 1) A minimum gain is needed to have enough power for thruster and driver operation; and 2) Increases in gain result in decreases in overall mass-power ratio, which in turn leads to greater achievable accelerations. However, subsystem mass-power ratios and efficiencies are crucial: less efficient values for these can partially offset the effect of nuclear gain. Therefore, it is of interest to monitor the progress of gain-limited subsystem technologies and it is also possible that power-limited systems with sufficiently low alpha may be competitive for such ambitious missions. Topics include Space flight requirements; Spacecraft energy gain; Control theory for performance; Mission assumptions; Round trips: Time and distance; Trip times; Vehicle acceleration; and Minimizing trip times.
Development Status of the NASA 30-cm Ion Thruster and Power Processor
NASA Technical Reports Server (NTRS)
Sovey, James S.; Haag, Thomas W.; Hamley, John A.; Mantenieks, Maris A.; Patterson, Michael J.; Pinero, Luis R.; Rawlin, Vincent K.; Kussmaul, Michael T.; Manzella, David H.; Myers, Roger M.
1994-01-01
Xenon ion propulsion systems are being developed by NASA Lewis Research Center and the Jet Propulsion Laboratory to provide flight qualification and validation for planetary and earth-orbital missions. In the ground-test element of this program, light-weight (less than 7 kg), 30 cm diameter ion thrusters have been fabricated, and preliminary design verification tests have been conducted. At 2.3 kW, the thrust, specific impulse, and efficiency were 91 mN, 3300 s, and 0.65, respectively. An engineering model thruster is now undergoing a 2000 h wear-test. A breadboard power processor is being developed to operate from an 80 V to 120 V power bus with inverter switching frequencies of 50 kHz. The power processor design is a pathfinder and uses only three power supplies. The projected specific mass of a flight unit is about 5 kg/kW with an efficiency of 0.92 at the full-power of 2.5 kW. Preliminary integration tests of the neutralizer power supply and the ion thruster have been completed. Fabrication and test of the discharge and beam/accelerator power stages are underway.
NASA Technical Reports Server (NTRS)
Krebs, Richard P.; Suozzi, Frank L.
1947-01-01
Performance characteristics of the turbine in the 19B-8 jet propulsion engine were determined from an investigation of the complete engine in the Cleveland altitude wind tunnel. The investigation covered a range of simulated altitudes from 5000 to 30,000 feet and flight Mach numbers from 0.05 to 0.46 for various tail-cone positions over the entire operable range of engine speeds. The characteristics of the turbine are presented as functions of the total-pressure ratio across the turbine and the turbine speed and the gas flow corrected to NACA standard atmospheric conditions at sea level. The effect of changes in altitude, flight Mach number, and tail-cone position on turbine performance is discussed. The turbine efficiency with the tail cone in varied from a maximum of 80.5 percent to minimum of 75 percent over a range of engine speeds from 7500 to 17,500 rpm at a flight Mach number of 0.055. Turbine efficiency was unaffected by changes in altitude up to 15,000 feet but was a function of tail-cone position and flight Mach number. Decreasing the tail-pipe-nozzle outlet area 21 percent reduced the turbine efficiency between 2 and 4.5 percent. The turbine efficiency increased between 1.5 and 3 percent as the flight Mach number changed from 0.055 to 0.297.
Liquid-metal-ion source development for space propulsion at ARC.
Tajmar, M; Scharlemann, C; Genovese, A; Buldrini, N; Steiger, W; Vasiljevich, I
2009-04-01
The Austrian Research Centers have a long history of developing indium Liquid-Metal-Ion Source (LMIS) for space applications including spacecraft charging compensators, SIMS and propulsion. Specifically the application as a thruster requires long-term operation as well as high-current operation which is very challenging. Recently, we demonstrated the operation of a cluster of single LMIS at an average current of 100muA each for more than 4800h and developed models for tip erosion and droplet deposition suggesting that such a LMIS can operate up to 20,000h or more. In order to drastically increase the current, a porous multi-tip source that allows operation up to several mA was developed. Our paper will highlight the problem areas and challenges from our LMIS development focusing on space propulsion applications.
Micro-gun based on laser pulse propulsion.
Yu, Haichao; Li, Hanyang; Cui, Lugui; Liu, Shuangqiang; Yang, Jun
2017-11-24
This paper proposes a novel "micro-gun" structure for laser pulse propulsion. The "micro-bullets" (glass microspheres) are irradiated by a laser pulse with a 10 ns duration in a dynamic process. Experimental parameters such as the microsphere diameter and the laser pulse energy are varied to investigate their influence on laser pulse propulsion. The energy field and spatial intensity distribution in the capillary tube were simulated using a three-dimensional finite-difference time-domain method. The experimental results demonstrate that the propulsion efficiency is dependent on the laser pulse energy and the microsphere size. The propulsion modes and sources of the propelling force were confirmed through direct observation and theoretical calculation. Waves also generated by light-pressure and thermal expansions assisted the propulsion.
Solar Electric Propulsion for Mars Exploration
NASA Technical Reports Server (NTRS)
Hack, Kurt J.
1998-01-01
Highly propellant-efficient electric propulsion is being combined with advanced solar power technology to provide a non-nuclear transportation option for the human exploration of Mars. By virtue of its high specific impulse, electric propulsion offers a greater change in spacecraft velocity for each pound of propellant than do conventional chemical rockets. As a result, a mission to Mars based on solar electric propulsion (SEP) would require fewer heavy-lift launches than a traditional all-chemical space propulsion scenario would. Performance, as measured by mass to orbit and trip time, would be comparable to the NASA design reference mission for human Mars exploration, which utilizes nuclear thermal propulsion; but it would avoid the issues surrounding the use of nuclear reactors in space.
NASA Astrophysics Data System (ADS)
Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Kim, Youngho
2012-02-01
Manual wheelchair users are at a high risk of pain and injuries to the upper extremities due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper extremities during manual wheelchair propulsion in various conditions needed to be investigated. We developed and calibrated a wheelchair dynamometer for measuring kinetic parameters during propulsion. We utilized the dynamometer to investigate and compare the propulsion torque and power values of experienced and novice users under four different conditions. Experienced wheelchair users generated lower torques with more power than novice users and reacted alertly and sensitively to changing conditions. We expect that these basic methods and results may help to quantitatively evaluate the mechanical efficiency of manual wheelchair propulsion.
Performance Analysis of a Self-Propelling Flat Plate Fin with Joint Compliance
NASA Astrophysics Data System (ADS)
Reddy, N. Srinivasa; Sen, Soumen; Pal, Sumit; Shome, Sankar Nath
2017-12-01
Fish fin muscles are compliant and they regulate the stiffness to suit different swimming conditions. This article attempts to understand the significance of presence of compliance in fin muscle with help of a flexible joint flat plate fin model. Blade element method is employed to model hydrodynamics and to compute the forces of interaction during motion of the plate within fluid. The dynamic model of self-propelling fin is developed through multi-body dynamics approach considering the hydrodynamic forces as external forces acting on the fin. The derived hydrodynamic model is validated with experiments on rigid flat plate fin. The effect of the joint stiffness and flapping frequency on the propulsion speed and efficiency is investigated through simulations using the derived and validated model. The propulsion efficiency is found to be highly influenced by the joint stiffness at a given flapping frequency. The fin attained maximum propulsion efficiency when the joint stiffness is tuned to a value at which flapping frequency matches near natural frequency of the fin. At this tuned joint stiffness and flapping frequency, the resulted Strouhal numbers are observed to fall within the optimum range (0.2 to 0.4) for maximized propulsion efficiency of flying birds and swimming aquatic animals reported in literature.
High-Lift Propeller Noise Prediction for a Distributed Electric Propulsion Flight Demonstrator
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Buning, Pieter G.; Jones, William T.; Derlaga, Joseph M.
2017-01-01
Over the past several years, the use of electric propulsion technologies within aircraft design has received increased attention. The characteristics of electric propulsion systems open up new areas of the aircraft design space, such as the use of distributed electric propulsion (DEP). In this approach, electric motors are placed in many different locations to achieve increased efficiency through integration of the propulsion system with the airframe. Under a project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR), NASA is designing a flight demonstrator aircraft that employs many "high-lift propellers" distributed upstream of the wing leading edge and two cruise propellers (one at each wingtip). As the high-lift propellers are operational at low flight speeds (take-off/approach flight conditions), the impact of the DEP configuration on the aircraft noise signature is also an important design consideration. This paper describes efforts toward the development of a mulit-fidelity aerodynamic and acoustic methodology for DEP high-lift propeller aeroacoustic modeling. Specifically, the PAS, OVERFLOW 2, and FUN3D codes are used to predict the aerodynamic performance of a baseline high-lift propeller blade set. Blade surface pressure results from the aerodynamic predictions are then used with PSU-WOPWOP and the F1A module of the NASA second generation Aircraft NOise Prediction Program to predict the isolated high-lift propeller noise source. Comparisons of predictions indicate that general trends related to angle of attack effects at the blade passage frequency are captured well with the various codes. Results for higher harmonics of the blade passage frequency appear consistent for the CFD based methods. Conversely, evidence of the need for a study of the effects of increased azimuthal grid resolution on the PAS based results is indicated and will be pursued in future work. Overall, the results indicate that the computational approach is acceptable for fundamental assessment of low-noise high-lift propeller designs. The extent to which the various approaches may be used in a complementary manner will be further established as measured data becomes available for validation. Ultimately, it is anticipated that this combined approach may be used to provide realistic incident source fields for acoustic shielding/scattering studies on various aircraft configurations.
Powersail High Power Propulsion System Design Study
NASA Astrophysics Data System (ADS)
Gulczinski, Frank S., III
2000-11-01
A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.
Airvolt Aircraft Electric Propulsion Test Stand
NASA Technical Reports Server (NTRS)
Samuel, Aamod; Lin, Yohan
2015-01-01
Development of an electric propulsion test stand that collects high-fidelity data of motor, inverter, and battery system efficiencies; thermal dynamics; and acoustics independent of manufacturer reported values will improve understanding of electric propulsion systems to be used in future aircraft. A buildup approach to this development reveals new areas of research and best practices in testing, and attempts to establish a standard for testing these systems.
A Future with Hybrid Electric Propulsion Systems: A NASA Perspective
NASA Technical Reports Server (NTRS)
DelRosario, Ruben
2014-01-01
The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.
NASA Astrophysics Data System (ADS)
Launch vehicle propulsion system reliability considerations during the design and verification processes are discussed. The tools available for predicting and minimizing anomalies or failure modes are described and objectives for validating advanced launch system propulsion reliability are listed. Methods for ensuring vehicle/propulsion system interface reliability are examined and improvements in the propulsion system development process are suggested to improve reliability in launch operations. Also, possible approaches to streamline the specification and procurement process are given. It is suggested that government and industry should define reliability program requirements and manage production and operations activities in a manner that provides control over reliability drivers. Also, it is recommended that sufficient funds should be invested in design, development, test, and evaluation processes to ensure that reliability is not inappropriately subordinated to other management considerations.
ZnO-based microrockets with light-enhanced propulsion.
Dong, Renfeng; Wang, Chun; Wang, Qinglong; Pei, Allen; She, Xueling; Zhang, Yuxian; Cai, Yuepeng
2017-10-12
Improving the propulsion of artificial micro-nanomotors represents an exciting nanotechnology challenge, especially considering their cargo delivery ability and fuel efficiency. In light of the excellent photocatalytic performance of zinc oxide (ZnO) and chemical catalytic properties of platinum (Pt), ZnO-Pt microrockets with light-enhanced propulsion have been developed by atomic layer deposition (ALD) technology. The velocity of such microrockets is dramatically doubled upon irradiation by 77 mW cm -2 ultraviolet (UV) light in 10% H 2 O 2 and is almost 3 times higher than the classic poly(3,4-ethylenedioxythiophene)-Pt microrockets (PEDOT-Pt microrockets) even in 6% H 2 O 2 under the same UV light. In addition, such micromotors not only retain the standard approach to improve propulsion by varying the fuel concentration, but also demonstrate a simple way to enhance the movement velocity by adjusting the UV light intensity. High reversibility and controllable "weak/strong" propulsion can be easily achieved by switching the UV irradiation on or off. Finally, light-enhanced propulsion has been investigated by electrochemical measurements which further confirm the enhanced photocatalytic properties of ZnO and Pt. The successful demonstration of ZnO-based microrockets with excellent light-enhanced propulsion is significant for developing highly efficient synthetic micro-nanomotors which have strong delivery ability and economic fuel requirements for future practical applications in the micro-nanoscale world.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
These military-developed curriculum materials for turboprop propulsion mechanics are targeted for use in grades 11-adult. Organized in five instructional blocks, the materials deal with the following topics: fundamentals of turboprop propulsion mechanics; engine and propeller systems operation; propeller maintenance; engine repair; and engine…
14 CFR 34.62 - Test procedure (propulsion engines).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Test procedure (propulsion engines). 34.62 Section 34.62 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... (propulsion engines). (a)(1) The engine shall be tested in each of the following engine operating modes which...
NASA Technical Reports Server (NTRS)
Barnett, Gregory
2017-01-01
Science mission studies require spacecraft propulsion systems that are high-performance, lightweight, and compact. Highly matured technology and low-cost, short development time of the propulsion system are also very desirable. The Deep Space Engine (DSE) 100-lbf thruster is being developed to meet these needs. The overall goal of this game changing technology project is to qualify the DSE thrusters along with 5-lbf attitude control thrusters for space flight and for inclusion in science and exploration missions. The aim is to perform qualification tests representative of mission duty cycles. Most exploration missions are constrained by mass, power and cost. As major propulsion components, thrusters are identified as high-risk, long-lead development items. NASA spacecraft primarily rely on 1960s' heritage in-space thruster designs and opportunities exist for reducing size, weight, power, and cost through the utilization of modern materials and advanced manufacturing techniques. Advancements in MON-25/MMH hypergolic bipropellant thrusters represent a promising avenue for addressing these deficiencies with tremendous mission enhancing benefits. DSE is much lighter and costs less than currently available thrusters in comparable thrust classes. Because MON-25 propellants operate at lower temperatures, less power is needed for propellant conditioning for in-space propulsion applications, especially long duration and/or deep-space missions. Reduced power results in reduced mass for batteries and solar panels. DSE is capable of operating at a wide propellant temperature range (between -22 F and 122 F) while a similar existing thruster operates between 45 F and 70 F. Such a capability offers robust propulsion operation as well as flexibility in design. NASA's Marshall Space Flight Center evaluated available operational Missile Defense Agency heritage thrusters suitable for the science and lunar lander propulsion systems.
NASA Technical Reports Server (NTRS)
Biermann, David; Hartman, Edwin P
1938-01-01
Wind-tunnel tests are reported of five 3-blade 10-foot propellers operating in front of a radial and a liquid-cooled engine nacelle. The range of blade angles investigated extended from 15 degrees to 45 degrees. Two spinners were tested in conjunction with the liquid-cooled engine nacelle. Comparisons are made between propellers having different blade-shank shapes, blades of different thickness, and different airfoil sections. The results show that propellers operating in front of the liquid-cooled engine nacelle had higher take-off efficiencies than when operating in front of the radial engine nacelle; the peak efficiency was higher only when spinners were employed. One spinner increased the propulsive efficiency of the liquid-cooled unit 6 percent for the highest blade-angle setting investigated and less for lower blade angles. The propeller having airfoil sections extending into the hub was superior to one having round blade shanks. The thick propeller having a Clark y section had a higher take-off efficiency than the thinner one, but its maximum efficiency was possibly lower. Of the three blade sections tested, Clark y, R.A.F. 6, and NACA 2400-34, the Clark y was superior for the high-speed condition, but the R.A.F. 6 excelled for the take-off condition.
A Method of Efficient Inclination Changes for Low-thrust Spacecraft
NASA Technical Reports Server (NTRS)
Falck, Robert; Gefert, Leon
2002-01-01
The evolution of low-thrust propulsion technologies has reached a point where such systems have become an economical option for many space missions. The development of efficient, low trip time control laws has received an increasing amount of attention in recent years, though few studies have examined the subject of inclination changing maneuvers in detail. A method for performing economical inclination changes through the use of an efficiency factor is derived front Lagrange's planetary equations. The efficiency factor can be used to regulate propellant expenditure at the expense of trip time. Such a method can be used for discontinuous-thrust transfers that offer reduced propellant masses and trip-times in comparison to continuous thrust transfers, while utilizing thrusters that operate at a lower specific impulse. Performance comparisons of transfers utilizing this approach with continuous-thrust transfers are generated through trajectory simulation and are presented in this paper.
Energy efficient engine fan component detailed design report
NASA Technical Reports Server (NTRS)
Halle, J. E.; Michael, C. J.
1981-01-01
The fan component which was designed for the energy efficient engine is an advanced high performance, single stage system and is based on technology advancements in aerodynamics and structure mechanics. Two fan components were designed, both meeting the integrated core/low spool engine efficiency goal of 84.5%. The primary configuration, envisioned for a future flight propulsion system, features a shroudless, hollow blade and offers a predicted efficiency of 87.3%. A more conventional blade was designed, as a back up, for the integrated core/low spool demonstrator engine. The alternate blade configuration has a predicted efficiency of 86.3% for the future flight propulsion system. Both fan configurations meet goals established for efficiency surge margin, structural integrity and durability.
NASA Technical Reports Server (NTRS)
Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan
2012-01-01
A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.
1976-01-01
Low-aspect-ratio highly swept arrow-wing supersonic aircraft possess high levels of aerodynamic efficiency at supersonic cruising speeds, however, their inherently poor low-speed lift characteristics require design constraints that compromise supersonic performance. The data discussed in this paper were obtained in wind tunnel tests with supersonic crusing configurations, in which propulsive-lift concepts were used to improve low-speed performance. The data show that the increased low-speed lift provided by propulsive-lift permits reduction of both wing size and installed thrust. This yields a batter engine/airframe match for improved supersonic cruise efficiency and range, while still providing acceptable take-off field lengths.
NASA Astrophysics Data System (ADS)
Iakovleva, E. V.; Momot, B. A.
2017-10-01
The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.
Optimization of the SHX Fusion Powered Transatmospheric Propulsion Concept
NASA Technical Reports Server (NTRS)
Adams, Robert B.; Landrum, D. Brian
2001-01-01
Existing propulsion technology has not achieved cost effective payload delivery rates to low earth orbit. A fusion based propulsion system, denoted as the Simultaneous Heating and eXpansion (SHX) engine, has been proposed in earlier papers. The SHX couples energy generated by a fusion reactor to the engine flowpath by use of coherent beam emitters. A quasi-one-dimensional flow model was used to quantify the effects of area expansion and energy input on propulsive efficiency for several beam models. Entropy calculations were included to evaluate the lost work in the system.
NASA Astrophysics Data System (ADS)
Douvartzides, S.; Karmalis, I.
2016-11-01
A detailed method is presented on the thermal design of a natural gas - diesel dual fuel internal combustion engine. An 18 cylinder four stroke turbocharged engine is considered to operate at a maximum speed of 500 rpm for marine and power plant applications. Thermodynamic, heat transfer and fluid flow phenomena are mathematically analyzed to provide a real cycle analysis together with a complete set of calculated operation conditions, power characteristics and engine efficiencies. The method is found to provide results in close agreement to published data for the actual performance of similar engines such as V18 MAN 51/60DF.
NASA Technical Reports Server (NTRS)
Haro, Helida C.
2010-01-01
The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.
NASA Technical Reports Server (NTRS)
Haro, Helida C.
2010-01-01
The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.
High temperature material interactions of thermoelectric systems using silicon germanium.
NASA Technical Reports Server (NTRS)
Stapfer, G.; Truscello, V. C.
1973-01-01
The efficient use of silicon germanium thermoelectric material for radioisotope thermoelectric generators (RTG) is achieved by operation at relatively high temperatures. The insulation technique which is most appropriate for this application uses multiple layers of molybdenum foil and astroquartz. Even so, the long term operation of these materials at elevated temperatures can cause material interaction to occur within the system. To investigate these material interactions, the Jet Propulsion Laboratory is currently testing a number of thermoelectric modules which use four silicon germanium thermoelectric couples in conjunction with the multifoil thermal insulation. The paper discusses the results of the ongoing four-couple module test program and correlates test results with those of a basic material test program.
High Power Light Gas Helicon Plasma Source for VASIMR
NASA Technical Reports Server (NTRS)
Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.
2004-01-01
In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.
Hybrid propulsion system with a gyro component for economic and dynamic operation. [of motor vehicle
NASA Technical Reports Server (NTRS)
Giera, B.; Helling, J.; Schreck, J.
1977-01-01
The design of a hybrid drive with gyro components is described and its drive components for a medium class private car are discussed. The gyro component affects the short-period output of the drive by accelerating and slowing down and -- because of the mechanical transfer of kinetic energy between the gyro and the vehicle -- it affects also the energy balance in the case of intermittent operation. Energy can be taken in as desired either in the form of fuel or as fuel and current. A high energy recovery efficiency as well as the favorable operating range of the interval combustion engine makes it possible to reduce the fuel consumption per unit distance travelled to almost half that for a private car with a traditional engine.
Low-Power Ion Thruster Development Status
NASA Technical Reports Server (NTRS)
Patterson, Michael J.
1999-01-01
An effort is on-going to examine scaling relationships and design criteria for ion propulsion systems, and to address the need for a light weight, low power, high specific impulse propulsion option for small spacecraft. An element of this activity is the development of a low-power (sub-0.5 kW) ion thruster. This development effort has led to the fabrication and preliminary performance assessment of an 8 cm prototype xenon ion thruster operating over an input power envelope of 0.1-0.3 kW. Efficiencies for the thruster vary from 0.31 at 1750 seconds specific impulse at 0.1 kW, to about 0.48 at 2700 seconds specific impulse and 0.3 kW input power. Discharge losses for the thruster over this power range varied from about 320-380 W/A down to about 220-250 W/A. Ion optics performance compare favorably to that obtained with 30 cm ion optics, when scaled for the difference in beam area. The neutralizer, fabricated using 3 mm hollow cathode technology, operated at keeper currents of about 0.2-0.3 A, at a xenon flow rate of about 0.06 mg/s, over the 0.1-0.3 kW thruster input power envelope.
Effect of Variable Emittance Coatings on the Operation of a Miniature Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Douglas, Donya M.; Ku, Jentung; Ottenstein, Laura; Swanson, Theodore; Hess, Steve; Darrin, Ann
2005-01-01
Abstract. As the size of spacecraft shrink to accommodate small and more efficient instruments, smaller launch vehicles, and constellation missions, all subsystems must also be made smaller. Under NASA NFL4 03-OSS-02, Space Technology-8 (ST 8), NASA Goddard Space Flight Center and Jet Propulsion Laboratory jointly conducted a Concept Definition study to develop a miniature loop heat pipe (MLHP) thermal management system design suitable for future small spacecraft. The proposed MLHP thermal management system consists of a miniature loop heat pipe (LHP) and deployable radiators that are coated with variable emittance coatings (VECs). As part of the Phase A study and proof of the design concept, variable emittance coatings were integrated with a breadboard miniature loop heat pipe. The miniature loop heat pipe was supplied by the Jet Propulsion Laboratory (PL), while the variable emittance technology were supplied by Johns Hopkins University Applied Physics Laboratory and Sensortex, Inc. The entire system was tested under vacuum at various temperature extremes and power loads. This paper summarizes the results of this testing and shows the effect of the VEC on the operation of a miniature loop heat pipe.
Investigation of a Light Gas Helicon Plasma Source for the VASIMR Space Propulsion System
NASA Technical Reports Server (NTRS)
Squire, J. P.; Chang-Diaz, F. R.; Jacobson, V. T.; Glover, T. W.; Baity, F. W.; Carter, M. D.; Goulding, R. H.; Bengtson, R. D.; Bering, E. A., III
2003-01-01
An efficient plasma source producing a high-density (approx.10(exp 19/cu m) light gas (e.g. H, D, or He) flowing plasma with a high degree of ionization is a critical component of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept. We are developing an antenna to apply ICRF power near the fundamental ion cyclotron resonance to further accelerate the plasma ions to velocities appropriate for space propulsion applications. The high degree of ionization and a low vacuum background pressure are important to eliminate the problem of radial losses due to charge exchange. We have performed parametric (e.g. gas flow, power (0.5 - 3 kW), magnetic field , frequency (25 and 50 MHz)) studies of a helicon operating with gas (H2 D2, He, N2 and Ar) injected at one end with a high magnetic mirror downstream of the antenna. We have explored operation with a cusp and a mirror field upstream. Plasma flows into a low background vacuum (<10(exp -4) torr) at velocities higher than the ion sound speed. High densities (approx. 10(exp 19/cu m) have been achieved at the location where ICRF will be applied, just downstream of the magnetic mirror.
NASA Propulsion Concept Studies and Risk Reduction Activities for Resource Prospector Lander
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Williams, Hunter; Burnside, Chris
2015-01-01
The trade study has led to the selection of propulsion concept with the lowest cost and net lowest risk -Government-owned, flight qualified components -Meet mission requirements although the configuration is not optimized. Risk reduction activities have provided an opportunity -Implement design improvements while development with the early-test approach. -Gain knowledge on the operation and identify operation limit -Data to anchor analytical models for future flight designs; The propulsion system cold flow tests series have provided valuable data for future design. -The pressure surge from the system priming and waterhammer within component operation limits. -Enable to optimize the ullage volume to reduce the propellant tank mass; RS-34 hot fire tests have successfully demonstrated of using the engines for the RP mission -No degradation of performance due to extended storage life of the hardware. -Enable to operate the engine for RP flight mission scenarios, outside of the qualification regime. -Provide extended data for the thermal and GNC designs. Significant progress has been made on NASA propulsion concept design and risk reductions for Resource Prospector lander.
Software To Secure Distributed Propulsion Simulations
NASA Technical Reports Server (NTRS)
Blaser, Tammy M.
2003-01-01
Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines
Small Satellite Propulsion Options
NASA Technical Reports Server (NTRS)
Myers, Roger M.; Oleson, Steven R.; Curran, Francis M.; Schneider, Steven J.
1994-01-01
Advanced chemical and low power electric propulsion offer attractive options for small satellite propulsion. Applications include orbit raising, orbit maintenance, attitude control, repositioning, and deorbit of both Earth-space and planetary spacecraft. Potential propulsion technologies for these functions include high pressure Ir/Re bipropellant engines, very low power arcjets, Hall thrusters, and pulsed plasma thrusters, all of which have been shown to operate in manners consistent with currently planned small satellites. Mission analyses show that insertion of advanced propulsion technologies enables and/or greatly enhances many planned small satellite missions. Examples of commercial, DoD, and NASA missions are provided to illustrate the potential benefits of using advanced propulsion options on small satellites.
2010-01-01
constant-pressure ( Brayton ) cycle used in gas turbines and ramjets. The advantages of PDE for air- breathing propulsion are simplicity and easy scaling...constant-volume, and detonative combustion cycles will be referred to as Brayton , Humphrey, and PDE cycles. The efficiency of thermodynamic cycles O’ODD...efficiency of Brayton cycle, as 0G HH =′ , i.e., 0==constpχ (3) Constant-volume combustion (point E in Fig. 1) results in temperature K 2647/0E
The microspace launcher: first step to the fully air-breathing space launcher
NASA Astrophysics Data System (ADS)
Falempin, F.; Bouchez, M.; Calabro, M.
2009-09-01
A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated booster, the main stage ensuring the initial acceleration in liquid rocket mode and a complementary acceleration phase in rocket mode beyond the air-breathing propulsion system operation. Finally, the liquid rocket engine of this third variant can be replaced by a continuous detonation wave rocket engine. The paper describes the main guidelines for the design of these variants and provides their main characteristics. On this basis, the achievable performance, estimated by trajectory simulation, are detailed.
Superfast Near-Infrared Light-Driven Polymer Multilayer Rockets.
Wu, Zhiguang; Si, Tieyan; Gao, Wei; Lin, Xiankun; Wang, Joseph; He, Qiang
2016-02-03
A gold nanoshell-functionalized polymer multilayer nanorocket performs self-propulsion upon the irradiation with NIR light in the absence of chemical fuel. Theoretical simulations reveal that the NIR light-triggered self-thermophoresis drives the propulsion of the nanorocket. The nanorocket also displays -efficient NIR light-triggered propulsion in -biofluids and thus holds considerable promise for various potential biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannone, Greg; Thomas, John F; Reale, Michael
The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily availablemore » from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.« less
1997-02-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. This photograph shows components for the thermal propulsion engine being laid out prior to assembly. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.
Aperture effects in squid jet propulsion.
Staaf, Danna J; Gilly, William F; Denny, Mark W
2014-05-01
Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.
Institute for Computational Mechanics in Propulsion (ICOMP)
NASA Technical Reports Server (NTRS)
Feiler, Charles E. (Editor)
1991-01-01
The Institute for Computational Mechanics in Propulsion (ICOMP) is operated jointly by Case Western Reserve University and the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1990 are described.
Institute for Computational Mechanics in Propulsion (ICOMP)
NASA Technical Reports Server (NTRS)
1989-01-01
The Institute for Computational Mechanics in Propulsion (ICOMP) is operated jointly by Case Western Reserve University and the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the activities at ICOMP during 1988.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... Energy (DOE) implementing procedures (10 CFR part 1021), the DOE Naval Nuclear Propulsion Program (NNPP... INFORMATION: The NNPP is responsible for all aspects of U.S. Navy nuclear power and propulsion. These responsibilities include design, maintenance, and safe operation of nuclear propulsion systems throughout their...
Institute for Computational Mechanics in Propulsion (ICOMP)
NASA Technical Reports Server (NTRS)
1988-01-01
The Institute for Computational Mechanics in Propulsion (ICOMP) is operated jointly by Case Western Reserve University and the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. Described are the activities of ICOMP during 1987.
Integrated Propulsion Data System Public Web Site
NASA Technical Reports Server (NTRS)
Hamilton, Kimberly
2001-01-01
The Integrated Propulsion Data System's (IPDS) focus is to provide technologically-advanced philosophies of doing business at SSC that will enhance the existing operations, engineering and management strategies and provide insight and metrics to assess their daily impacts, especially as related to the Propulsion Test Directorate testing scenarios for the 21st Century.
Institute for Computational Mechanics in Propulsion (ICOMP) fourth annual review, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
The Institute for Computational Mechanics in Propulsion (ICOMP) is operated jointly by Case Western Reserve University and the NASA Lewis Research Center. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1989 are described.
An overview of the Penn State Propulsion Engineering Research Center
NASA Technical Reports Server (NTRS)
Merkle, Charles L.
1991-01-01
An overview of the Penn State Propulsion Engineering Research Center is presented. The following subject areas are covered: research objectives and long term perspective of the Center; current status and operational philosophy; and brief description of Center projects (combustion, fluid mechanics and heat transfer, materials compatibility, turbomachinery, and advanced propulsion concepts).
Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion
NASA Technical Reports Server (NTRS)
Galecki, Diane L.; Patterson, Michael J.
1987-01-01
Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.
Development of a Work Control System for Propulsion Testing at NASA Stennis
NASA Technical Reports Server (NTRS)
Messer, Elizabeth A.
2005-01-01
In 1996 Stennis Space Center was given management authority for all Propulsion Testing for NASA. Over the next few years several research and development (R&D) test facilities were completed and brought up to full operation in what is known as the E-Complex Test Facility at Stennis Space Center. To construct, activate and operate these test facilities, a manual paper-based work control system was created. After utilizing this paper-based work control system for approximately three years, it became apparent that the research and development test area needed a better method to execute, monitor, and report on tasks required to further propulsion testing. The paper based system did not provide the engineers adequate visibility into work tasks or the tracking of testing or hardware discrepancies. This system also restricted the engineer s ability to utilize and access past knowledge and experiences given the severe schedule limitations for most R&D propulsion testing projects. Therefore a system was developed to meet the growing need of Test Operations called the Propulsion Test Directorate (PTD) Work Control System. This system is used to plan, perform, and track tasks that support testing and also to capture lessons learned while doing so.
Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed
NASA Technical Reports Server (NTRS)
Flynn, Howard; Lusby, Brian; Villemarette, Mark
2011-01-01
In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.
High pressure compressor component performance report
NASA Technical Reports Server (NTRS)
Cline, S. J.; Fesler, W.; Liu, H. S.; Lovell, R. C.; Shaffer, S. J.
1983-01-01
A compressor optimization study defined a 10 stage configuration with a 22.6:1 pressure ratio, an adiabatic efficiency goal of 86.1%, and a polytropic efficiency of 90.6%; the corrected airflow is 53.5 kg/s. Subsequent component testing included three full scale tests: a six stage rig test, a 10 stage rig test, and another 10 stage rig test completed in the second quarter of 1982. Information from these tests is used to select the configuration for a core engine test and an integrated core/low spool test. The test results will also provide data base for the flight propulsion system. The results of the test series with both aerodynamic and mechanical performance of each compressor build are presented. The second 10 stage compressor adiabatic efficiency was 0.848 at a cruise operating point versus a test goal of 0.846.
Effect of pectoral fin kinematics on manta ray propulsion
NASA Astrophysics Data System (ADS)
Lu, Hao; Yeo, Khoon Seng; Chew, Chee-Meng
2018-05-01
Recent advancement of bio-inspired underwater vehicles has led to a growing interest in understanding the fluid mechanics of fish locomotion, which involves complex interaction between the deforming structure and its surrounding fluid. Unlike most natural swimmers that undulate their body and caudal fin, manta rays employ an oscillatory mode by flapping their large, flattened pectoral fins to swim forward. Such a lift-based mode can achieve a substantially high propulsive efficiency, which is beneficial to long-distance swimming. In this study, numerical simulations are carried out on a realistic manta ray model to investigate the effect of pectoral fin kinematics on the propulsive performance and flow structure. A traveling wave model, which relates a local deflection angle to radial and azimuthal wavelengths, is applied to generate the motion of the pectoral fins. Hydrodynamic forces and propulsive efficiency are reported for systematically varying kinematic parameters such as wave amplitude and wavelengths. Key flow features, including a leading edge vortex (LEV) that forms close to the tip of each pectoral fin, and a wake consisting of interconnected vortex rings, are identified. In addition, how different fin motions alter the LEV behavior and hence affect the thrust and efficiency is illustrated.
Vehicle-Level Oxygen/Methane Propulsion System Hotfire Testing at Thermal Vacuum Conditions
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.; Desai, Pooja; Werlink, Rudy
2017-01-01
A prototype integrated liquid oxygen/liquid methane propulsion system was hot-fire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). This test campaign served two purposes: 1) Characterize the performance of the Plum Brook facility in vacuum accumulator mode and 2) Collect the unique data set of an integrated LOX/Methane propulsion system operating in high altitude and thermal vacuum environments (a first). Data from this propulsion system prototype could inform the design of future spacecraft in-space propulsion systems, including landers. The test vehicle for this campaign was the Integrated Cryogenic Propulsion Test Article (ICPTA), which was constructed for this project using assets from the former Morpheus Project rebuilt and outfitted with additional new hardware. The ICPTA utilizes one 2,800 lbf main engine, two 28 lbf and two 7 lbf reaction control engines mounted in two pods, four 48-inch propellant tanks (two each for liquid oxygen and liquid methane), and a cold helium system for propellant tank pressurization. Several hundred sensors on the ICPTA and many more in the test cell collected data to characterize the operation of the vehicle and facility. Multiple notable experiments were performed during this test campaign, many for the first time, including pressure-fed cryogenic reaction control system characterization over a wide range of conditions, coil-on-plug ignition system demonstration at the vehicle level, integrated main engine/RCS operation, and a non-intrusive propellant mass gauging system. The test data includes water-hammer and thermal heat leak data critical to validating models for use in future vehicle design activities. This successful test campaign demonstrated the performance of the updated Plum Brook In-Space Propulsion thermal vacuum chamber and incrementally advanced the state of LOX/Methane propulsion technology through numerous system-level and subsystem experiments.
Applying Contamination Modelling to Spacecraft Propulsion Systems Designs and Operations
NASA Technical Reports Server (NTRS)
Chen, Philip T.; Thomson, Shaun; Woronowicz, Michael S.
2000-01-01
Molecular and particulate contaminants generated from the operations of a propulsion system may impinge on spacecraft critical surfaces. Plume depositions or clouds may hinder the spacecraft and instruments from performing normal operations. Firing thrusters will generate both molecular and particulate contaminants. How to minimize the contamination impact from the plume becomes very critical for a successful mission. The resulting effect from either molecular or particulate contamination of the thruster firing is very distinct. This paper will discuss the interconnection between the functions of spacecraft contamination modeling and propulsion system implementation. The paper will address an innovative contamination engineering approach implemented from the spacecraft concept design, manufacturing, integration and test (I&T), launch, to on- orbit operations. This paper will also summarize the implementation on several successful missions. Despite other contamination sources, only molecular contamination will be considered here.
Performance and optimization of a derated ion thruster for auxiliary propulsion
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Foster, John E.
1991-01-01
The characteristics and implications of use of a derated ion thruster for north-south stationkeeping (NSSK) propulsion are discussed. A derated thruster is a 30 cm diameter primary propulsion ion thruster operated at highly throttled conditions appropriate to NSSK functions. The performance characteristics of a 30 cm ion thruster are presented, emphasizing throttled operation at low specific impulse and high thrust-to-power ratio. Performance data and component erosion are compared to other NSSK ion thrusters. Operations benefits derived from the performance advantages of the derated approach are examined assuming an INTELSAt 7-type spacecraft. Minimum ground test facility pumping capabilities required to maintain facility enhanced accelerator grid erosion at acceptable levels in a lifetest are quantified as a function of thruster operating condition. Approaches to reducing the derated thruster mass and volume are also discussed.
NASA Technical Reports Server (NTRS)
Garner, Charles E.; Jorns, Benjamin A.; van Derventer, Steven; Hofer, Richard R.; Rickard, Ryan; Liang, Raymond; Delgado, Jorge
2015-01-01
Hall thruster systems based on commercial product lines can potentially lead to lower cost electric propulsion (EP) systems for deep space science missions. A 4.5-kW SPT-140 Hall thruster presently under qualification testing by SSL leverages the substantial heritage of the SPT-100 being flown on Russian and US commercial satellites. The Jet Propulsion Laboratory is exploring the use of commercial EP systems, including the SPT-140, for deep space science missions, and initiated a program to evaluate the SPT-140 in the areas of low power operation and thruster operating life. A qualification model SPT-140 designated QM002 was evaluated for operation and plasma properties along channel centerline, from 4.5 kW to 0.8 kW. Additional testing was performed on a development model SPT-140 designated DM4 to evaluate operation with a Moog proportional flow control valve (PFCV). The PFCV was commanded by an SSL engineering model PPU-140 Power Processing Unit (PPU). Performance measurements on QM002 at 0.8 kW discharge power were 50 mN of thrust at a total specific impulse of 1250 s, a total thruster efficiency of 0.38, and discharge current oscillations of under 3% of the mean current. Steady-state operation at 0.8 kW was demonstrated during a 27 h firing. The SPT-140 DM4 was operated in closed-loop control of the discharge current with the PFCV and PPU over discharge power levels of 0.8-4.5 kW. QM002 and DM4 test data indicate that the SPT-140 design is a viable candidate for NASA missions requiring power throttling down to low thruster input power.
Solar Sail Material Performance Property Response to Space Environmental Effects
NASA Technical Reports Server (NTRS)
Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George
2004-01-01
The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized. The contribution of Near Ultraviolet (NUV) radiation combined with electron and proton radiation was also investigated. Conclusions will be presented providing a gauge of measure for engineering performance stability for sails operating in the L1 space environment.
Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation
NASA Technical Reports Server (NTRS)
Jones, Jonathan; Kibbey, Tim; Lampton, Pat; Brown, Thomas
2014-01-01
A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, risk tolerant university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed. A launch vehicle at the scale and price point which allows developers to take reasonable risks with new propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial "valley of death" that lies between demonstration in laboratory and flight environments. This effort will provide the framework to mature both on-orbit and earth-to-orbit avionics and propulsion technologies while also providing dedicated, affordable access to LEO for cubesat class payloads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise requiredmore » to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.« less
Materials Advance Chemical Propulsion Technology
NASA Technical Reports Server (NTRS)
2012-01-01
In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.
Engineering of the Magnetized Target Fusion Propulsion System
NASA Technical Reports Server (NTRS)
Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.
2003-01-01
Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.
In-Space Engine (ISE-100) Development - Design Verification Test
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Popp, Chris; Bullard, Brad
2017-01-01
In the past decade, NASA has formulated science mission concepts with an anticipation of landing spacecraft on the lunar surface, meteoroids, and other planets. Advancing thruster technology for spacecraft propulsion systems has been considered for maximizing science payload. Starting in 2010, development of In-Space Engine (designated as ISE-100) has been carried out. ISE-100 thruster is designed based on heritage Missile Defense Agency (MDA) technology aimed for a lightweight and efficient system in terms volume and packaging. It runs with a hypergolic bi-propellant system: MON-25 (nitrogen tetroxide, N2O4, with 25% of nitric oxide, NO) and MMH (monomethylhydrazine, CH6N2) for NASA spacecraft applications. The utilization of this propellant system will provide a propulsion system capable of operating at wide range of temperatures, from 50 C (122 F) down to -30 C (-22 F) to drastically reduce heater power. The thruster is designed to deliver 100 lb(sub f) of thrust with the capability of a pulse mode operation for a wide range of mission duty cycles (MDCs). Two thrusters were fabricated. As part of the engine development, this test campaign is dedicated for the design verification of the thruster. This presentation will report the efforts of the design verification hot-fire test program of the ISE-100 thruster in collaboration between NASA Marshall Space Flight Center (MSFC) and Aerojet Rocketdyne (AR) test teams. The hot-fire tests were conducted at Advance Mobile Propulsion Test (AMPT) facility in Durango, Colorado, from May 13 to June 10, 2016. This presentation will also provide a summary of key points from the test results.
Load response of shape-changing microswimmers scales with their swimming efficiency
NASA Astrophysics Data System (ADS)
Friedrich, Benjamin M.
2018-04-01
External forces acting on a microswimmer can feed back on its self-propulsion mechanism. We discuss this load response for a generic microswimmer that swims by cyclic shape changes. We show that the change in cycle frequency is proportional to the Lighthill efficiency of self-propulsion. As a specific example, we consider Najafi's three-sphere swimmer. The force-velocity relation of a microswimmer implies a correction for a formal superposition principle for active and passive motion.
New potentials for conventional aircraft when powered by hydrogen-enriched gasoline
NASA Technical Reports Server (NTRS)
Menard, W. A.; Moynihan, P. I.; Rupe, J. H.
1976-01-01
Overall system efficiency and performance of a Beech Model 20 Duke aircraft was studied to provide analytical representations of an aircraft piston engine system, including all essential components required for onboard hydrogen generation. Lower emission levels and a 20% reduction in fuel consumption may be obtained by using a catalytic hydrogen generator, incorporated as part of the air induction system, to generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen is then mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultra lean fuel/air ratios, resulting in higher efficiencies.
Some thoughts concerning large load-carrying vehicles
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1983-01-01
Some implications relative to combat operations and force sustainability into the twenty-first century are discussed. The basic conjecture is that, sometime in the future, secure overseas basing may be denied to the United States by the Soviet Union or by unfriendly, unstable governments. In that event, the support of future battle itself, may be conducted from the continental U.S. and would introduce requirements for large, long-range, efficient, and sometimes, fast air vehicles. Some unusual design concepts and the technology requirements for such vehicles are suggested. It is concluded that, while much of the required technology is already being pursued, further advanced should be expected and sought in improved aerodynamics, propulsion, structures, and avionics with a view toward increased efficiency, utility, and affordability.
Concept Design of High Power Solar Electric Propulsion Vehicles for Human Exploration
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Manzella, David H.; Falck, Robert D.; Cikanek, Harry A., III; Klem, Mark D.; Free, James M.
2011-01-01
Human exploration beyond low Earth orbit will require enabling capabilities that are efficient, affordable and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as one option to achieve human exploration missions beyond Earth orbit because of its favorable mass efficiency compared to traditional chemical propulsion systems. This paper describes the unique challenges associated with developing a large-scale high-power (300-kWe class) SEP vehicle and design concepts that have potential to meet those challenges. An assessment of factors at the subsystem level that must be considered in developing an SEP vehicle for future exploration missions is presented. Overall concepts, design tradeoffs and pathways to achieve development readiness are discussed.
Recommended Practice for Use of Emissive Probes in Electric Propulsion Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehan, J. P.; Raitses, Yevgeny; Hershkowitz, Noah
Here, this article provides recommended methods for building, operating, and taking plasma potential measurements from electron-emitting probes in electric propulsion devices, including Hall thrusters, gridded ion engines, and others. The two major techniques, the floating point technique and the inflection point technique, are described in detail as well as calibration and error-reduction methods. The major heating methods are described as well as the various considerations for emissive probe construction. Lastly, special considerations for electric propulsion plasmas are addressed, including high-energy densities, ion flows, magnetic fields, and potential fluctuations. Recommendations for probe design and operation are provided.
The impact of integrated water management on the Space Station propulsion system
NASA Technical Reports Server (NTRS)
Schmidt, George R.
1987-01-01
The water usage of elements in the Space Station integrated water system (IWS) is discussed, and the parameters affecting the overall water balance and the water-electrolysis propulsion-system requirements are considered. With nominal IWS operating characteristics, extra logistic water resupply (LWR) is found to be unnecessary in the satisfaction of the nominal propulsion requirements. With the consideration of all possible operating characteristics, LWR will not be required in 65.5 percent of the cases, and for 17.9 percent of the cases LWR can be eliminated by controlling the stay time of theShuttle Orbiter orbiter.
Recommended Practice for Use of Emissive Probes in Electric Propulsion Testing
Sheehan, J. P.; Raitses, Yevgeny; Hershkowitz, Noah; ...
2016-11-03
Here, this article provides recommended methods for building, operating, and taking plasma potential measurements from electron-emitting probes in electric propulsion devices, including Hall thrusters, gridded ion engines, and others. The two major techniques, the floating point technique and the inflection point technique, are described in detail as well as calibration and error-reduction methods. The major heating methods are described as well as the various considerations for emissive probe construction. Lastly, special considerations for electric propulsion plasmas are addressed, including high-energy densities, ion flows, magnetic fields, and potential fluctuations. Recommendations for probe design and operation are provided.
MW-Class Electric Propulsion System Designs
NASA Technical Reports Server (NTRS)
LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador
2011-01-01
Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary results of the COMPASS MW-class electric propulsion power system study are reported, and discussion is provided on how the analysis might be used to guide future technology investments as NASA moves to more capable high power in-space propulsion systems.
2015-08-30
Solar Thermal Propulsion for Micro. Sats 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew R. Gilpin 5d...ABSTRACT Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total V capability than chemical...to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to
The challenges and opportunities of supersonic transport propulsion technology
NASA Technical Reports Server (NTRS)
Strack, William C.; Morris, Shelby J., Jr.
1988-01-01
The major challenges confronting the propulsion community for civil supersonic transport applications are identified: high propulsion system efficiency at both supersonic and subsonic cruise conditions, low-cost fuel with adequate thermal stability at high temperatures, low noise cycles and exhaust systems, low emission combustion systems, and low drag installations. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful airplane that satisfies environmental constraints.
NASA Technical Reports Server (NTRS)
Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.
2013-01-01
Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and flight testing that verifies transition flight control. A final down-selected vehicle is also presented.
Maintaining technical excellence requires a national plan
NASA Technical Reports Server (NTRS)
Davidson, T. F.
1991-01-01
To meet the challenge of technical excellence, AIA established a rocket propulsion committee to develop the National Rocket Propulsion Strategic Plan. Developing such a plan required a broad spectrum of experience and disciplines. The Strategic Plan team needed the participation of industry, government, and academia. The plan provides, if followed, a means for the U.S. to maintain technical excellence and world leadership in rocket propulsion. To implement the National Rocket Propulsion Strategic Plan is to invest in the social, economic, and technological futures of America. The plan lays the basis for upgrading existing propulsion systems and a firm base for future full scale development, production, and operation of rocket propulsion systems for space, defense, and commercial applications.
Institute for Computational Mechanics in Propulsion (ICOMP)
NASA Technical Reports Server (NTRS)
Feiler, Charles E. (Editor)
1994-01-01
The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the accomplishments and activities at ICOMP during 1993.
Electric propulsion system technology
NASA Technical Reports Server (NTRS)
Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.
1992-01-01
The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of kilowatts, achievement of thruster efficiency and specific impulse levels required for missions of interest, and demonstration of adequate engine life at these input power, efficiency, and specific impulse levels. To address these issues we have designed, built, and tested a 100 kW class, radiation-cooled applied-field MPD thruster and a unique dual-beam thrust stand that enables separate measurements of the applied- and self-field thrust components. We have also initiated the development of cathode thermal and plasma sheath models that will eventually be used to guide the experimental program. In conjunction with the cathode modeling, a new cathode test facility is being constructed. This facility will support the study of cathode thermal behavior and erosion mechanisms, the diagnosis of the near-cathode plasma and the development and endurance testing of new, high-current cathode designs. To facilitate understanding of electrode surface phenomenon, we have implemented a telephoto technique to obtain photographs of the electrodes during engine operation. In order to reduce the background vacuum tank pressure during steady-state engine operation in order to obtain high fidelity anode thermal data, we have developed and are evaluating a gas-dynamic diffuser. A review of experience with alkali metal propellants for MPD thrusters led to the conclusion that alkali metals, particularly lithium, offer the potential for significant engine performance and lifetime improvements. These propellants are also condensible at room temperature, substantially reducing test facility pumping requirements. The most significant systems-level issue is the potential for spacecraft contamination. Subsequent experimental and theoretical efforts should be directed toward verifying the performance and lifetime gains and characterizing the thruster flow field to assess its impact on spacecraft surfaces. Consequently, we have begun the design and development of a new facility to study engine operation with alkali metal propellants.
NanoSail-D: A Solar Sail Demonstration Mission
NASA Technical Reports Server (NTRS)
Johnson, Les; Whorton, Mark; Heaton, Andy; Pinson, robin; Laue, Greg; Adams, Charles
2009-01-01
During the past decade, within the United States, NASA Marshall Space Flight Center (MSFC) was heavily engaged in the development of revolutionary new technologies for in-space propulsion. One of the major in-space propulsion technologies developed was a solar sail propulsion system. Solar sail propulsion uses the solar radiation pressure exerted by the momentum transfer of reflected photons to generate a net force on a spacecraft. To date, solar sail propulsion systems have been designed for large spacecraft in the tens to hundreds of kilograms mass range. Recently, however, MSFC has been investigating the application of solar sails for small satellite propulsion. Likewise, NASA Ames Research Center (ARC) has been developing small spacecraft missions that have a need for amass-efficient means of satisfying deorbit requirements. Hence, a synergistic collaboration was established between these two NASA field Centers with the objective of conducting a flight demonstration of solar sail technologies for small satellites. The NanoSail-D mission flew onboard the ill-fated Falcon Rocket launched August 2, 2008, and, due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare is ready for flight and a suitable launch arrangement is being actively pursued. Both the original sailcraft and the flight spare are hereafter referred to as NanoSail-D. The sailcraft consists of a sail subsystem stowed in a three-element CubeSat. Shortly after deployment of the NanoSail-D, the solar sail will deploy and mission operations will commence. This demonstration flight has two primary technical objectives: (1) to successfully stow and deploy the sail and (2) to demonstrate deorbit functionality. Given a near-term opportunity for launch on Falcon, the project was given the challenge of delivering the flight hardware in 6 mo, which required a significant constraint on flight system functionality. As a consequence, passive attitude stabilization of the spacecraft will be achieved using permanent magnets to detumble and orient the body with the magnetic field lines and then rely on atmospheric drag to passively stabilize the sailcraft in an essentially maximum drag attitude. This paper will present an introduction to solar sail propulsion systems and an overview of the NanoSail-D spacecraft.
Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; Duffy, Kirsten P.; Provenza, Andrew J.; Loyselle, Patricia L.; Choi, Benjamin B.; Morrison, Carlos R.; Lowe, Angela M.
2015-01-01
The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years.
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2014-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2012-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.
Active space debris removal by a hybrid propulsion module
NASA Astrophysics Data System (ADS)
DeLuca, L. T.; Bernelli, F.; Maggi, F.; Tadini, P.; Pardini, C.; Anselmo, L.; Grassi, M.; Pavarin, D.; Francesconi, A.; Branz, F.; Chiesa, S.; Viola, N.; Bonnal, C.; Trushlyakov, V.; Belokonov, I.
2013-10-01
During the last 40 years, the mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now, most of the cross-sectional area and mass (97% in LEO) is concentrated in about 4600 intact objects, i.e. abandoned spacecraft and rocket bodies, plus a further 1000 operational spacecraft. Simulations and parametric analyses have shown that the most efficient and effective way to prevent the outbreak of a long-term exponential growth of the catalogued debris population would be to remove enough cross-sectional area and mass from densely populated orbits. In practice, according to the most recent NASA results, the active yearly removal of approximately 0.1% of the abandoned intact objects would be sufficient to stabilize the catalogued debris in low Earth orbit, together with the worldwide adoption of mitigation measures. The candidate targets for removal would have typical masses between 500 and 1000 kg, in the case of spacecraft, and of more than 1000 kg, in the case of rocket upper stages. Current data suggest that optimal active debris removal missions should be carried out in a few critical altitude-inclination bands. This paper deals with the feasibility study of a mission in which the debris is removed by using a hybrid propulsion module as propulsion unit. Specifically, the engine is transferred from a servicing platform to the debris target by a robotic arm so to perform a controlled disposal. Hybrid rocket technology for de-orbiting applications is considered a valuable option due to high specific impulse, intrinsic safety, thrust throttle ability, low environmental impact and reduced operating costs. Typically, in hybrid rockets a gaseous or liquid oxidizer is injected into the combustion chamber along the axial direction to burn a solid fuel. However, the use of tangential injection on a solid grain Pancake Geometry allows for more compact design of the propulsion unit. Only explorative tests were performed in the past on this rocket configuration, which appears to be suitable as de-orbiting system of new satellites as well as for direct application on large debris in the framework of a mission for debris removal. The paper describes some critical aspects of the mission with particular concern to the target selection, the hybrid propulsion module, the operations as well as the systems needed to rendezvous and dock with the target, and the disposal strategy.
Comparison of Solar Electric and Chemical Propulsion Missions
NASA Technical Reports Server (NTRS)
Freeh, Joshua E.; Burke, Laura M.; Sjauw, Waldy K.; McGuire, Melissa L.; Smith, Bryan K.
2015-01-01
Solar Electric Propulsion (SEP) offers fuel efficiency and mission robustness for spacecraft. The combination of solar power and electric propulsion engines is currently used for missions ranging from geostationary stationkeeping to deep space science because of these benefits. Both solar power and electric propulsion technologies have progressed to the point where higher electric power systems can be considered, making substantial cargo missions and potentially human missions viable. This paper evaluates and compares representative lunar, Mars, and Sun-Earth Langrangian point missions using SEP and chemical propulsion subsystems. The potential benefits and limitations are discussed along with technology gaps that need to be resolved for such missions to become possible. The connection to NASA's human architecture and technology development efforts will be discussed.
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.
2017-01-01
The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.
Active Removal of Large Debris: Electrical Propulsion Capabilities
NASA Astrophysics Data System (ADS)
Billot Soccodato, Carole; Lorand, Anthony; Perrin, Veronique; Couzin, Patrice; FontdecabaBaig, Jordi
2013-08-01
The risk for current operational spacecraft or future market induced by large space debris, dead satellites or rocket bodies, in Low Earth Orbit has been identified several years ago. Many potential solutions and architectures are traded with a main objective of reducing cost per debris. Based on cost consideration, specially driven by launch cost, solutions constructed on multi debris capture capacities seem to be much affordable The recent technologic evolutions in electric propulsion and solar power generation can be used to combine high potential vehicles for debris removal. The present paper reports the first results of a study funded by CNES that addresses full electric solutions for large debris removal. Some analysis are currently in progress as the study will end in August. It compares the efficiency of in-orbit Active Removal of typical debris using electric propulsion The electric engine performances used in this analysis are demonstrated through a 2012/2013 PPS 5000 on-ground tests campaign. The traded missions are based on a launch in LEO, the possible vehicle architectures with capture means or contact less, the selection of deorbiting or reorbiting strategy. For contact less strategy, the ion-beam shepherd effect towards the debris problematic will be addressed. Vehicle architecture and performance of the overall system will be stated, showing the adequacy and the limits of each solution.
NASA Astrophysics Data System (ADS)
Romano, F.; Massuti-Ballester, B.; Binder, T.; Herdrich, G.; Fasoulas, S.; Schönherr, T.
2018-06-01
Challenging space mission scenarios include those in low altitude orbits, where the atmosphere creates significant drag to the S/C and forces their orbit to an early decay. For drag compensation, propulsion systems are needed, requiring propellant to be carried on-board. An atmosphere-breathing electric propulsion system (ABEP) ingests the residual atmosphere particles through an intake and uses them as propellant for an electric thruster. Theoretically applicable to any planet with atmosphere, the system might allow to orbit for unlimited time without carrying propellant. A new range of altitudes for continuous operation would become accessible, enabling new scientific missions while reducing costs. Preliminary studies have shown that the collectible propellant flow for an ion thruster (in LEO) might not be enough, and that electrode erosion due to aggressive gases, such as atomic oxygen, will limit the thruster lifetime. In this paper an inductive plasma thruster (IPT) is considered for the ABEP system. The starting point is a small scale inductively heated plasma generator IPG6-S. These devices are electrodeless and have already shown high electric-to-thermal coupling efficiencies using O2 and CO2 . The system analysis is integrated with IPG6-S tests to assess mean mass-specific energies of the plasma plume and estimate exhaust velocities.
NASA Technical Reports Server (NTRS)
Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.
2014-01-01
A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.
Bus Propulsion Alternatives Overview
DOT National Transportation Integrated Search
1982-04-01
The Urban Mass Transportation Administration (UMTA) is currently investigating propulsion alternatives which would conserve petroleum-based fuels and would be practical for use by U.S. transit operators. A discussion of these alternatives (electric p...
Flywheel Propulsion Simulation
DOT National Transportation Integrated Search
1977-05-01
This report develops and describes the analytical models and digital computer simulations that can be used for the evaluation of flywheel-electric propulsion systems employed with urban transit vehicles operating over specified routes and with predet...
Technology Area Roadmap for In Space Propulsion Technologies
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny
2010-01-01
This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.
Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system
NASA Astrophysics Data System (ADS)
Manikandan, J.; Jayaraman, M.; Jayachandran, M.
2011-02-01
This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.
Study of Jet-Propulsion System Comprising Blower, Burner, and Nozzle
NASA Technical Reports Server (NTRS)
Hall, Eldon W
1944-01-01
A study was made of the performance of a jet-propulsion system composed of an engine-driven blower, a combustion chamber, and a discharge nozzle. A simplified analysis is made of this system for the purpose of showing in concise form the effect of the important design variables and operating conditions on jet thrust, thrust horsepower, and fuel consumption. Curves are presented that permit a rapid evaluation of the performance of this system for a range of operating conditions. The performance for an illustrative case of a power plant of the type under consideration id discussed in detail. It is shown that for a given airplane velocity the jet thrust horsepower depends mainly on the blower power and the amount of fuel burned in the jet; the higher the thrust horsepower is for a given blower power, the higher the fuel consumption per thrust horsepower. Within limits the amount of air pumped has only a secondary effect on the thrust horsepower and efficiency. A lower limit on air flow for a given fuel flow occurs where the combustion-chamber temperature becomes excessive on the basis of the strength of the structure. As the air-flow rate is increased, an upper limit is reached where, for a given blower power, fuel-flow rate, and combustion-chamber size, further increase in air flow causes a decrease in power and efficiency. This decrease in power is caused by excessive velocity through the combustion chamber, attended by an excessive pressure drop caused by momentum changes occurring during combustion.
Lenton, J P; van der Woude, L; Fowler, N; Nicholson, G; Tolfrey, K; Goosey-Tolfrey, V
2014-03-01
To compare the force application characteristics at various push frequencies of asynchronous (ASY) and synchronous (SYN) hand-rim propulsion, 8 able-bodied participants performed a separate sub-maximal exercise test on a wheelchair roller ergometer for each propulsion mode. Each test consisted of a series of 5, 4-min exercise blocks at 1.8 m · s-1 - initially at their freely chosen frequency (FCF), followed by four counter-balanced trials at 60, 80, 120 and 140% FCF. Kinetic data was obtained using a SMARTWheel, measuring forces and moments. The gross efficiency (GE) was determined as the ratio of external work done and the total energy expended. The ASY propulsion produced higher force measures for FRES, FTAN, rate of force development & FEF (P<0.05), while there was no difference in GE values (P=0.518). In pair-matched push frequencies (ASY80:SYN60, ASY100:SYN80, ASY120:SYN100 and ASY140:SYN120), ASY propulsion forces remained significantly higher (FRES, FTAN, rate of force development & FEF P<0.05), and there was no significant effect on GE (P=0.456). Both ASY and SYN propulsion demonstrate similar trends: changes in push frequency are accompanied by changes in absolute force even without changes in the gross pattern/trend of force application, FEF or GE. Matched push frequencies continue to produce significant differences in force measures but not GE. This suggests ASY propulsion is the predominant factor in force application differences. The ASY would appear to offer a kinetic disadvantage to SYN propulsion and no physiological advantage under current testing conditions. © Georg Thieme Verlag KG Stuttgart · New York.
Performance Validation Approach for the GTX Air-Breathing Launch Vehicle
NASA Technical Reports Server (NTRS)
Trefny, Charles J.; Roche, Joseph M.
2002-01-01
The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.
Conservation and renewable energy technologies for transportation
NASA Astrophysics Data System (ADS)
1990-11-01
The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the U.S. transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.
High-Temperature (1000 F) Magnetic Thrust Bearing Test Rig Completed and Operational
NASA Technical Reports Server (NTRS)
Montague, Gerald T.
2005-01-01
Large axial loads are induced on the rolling element bearings of a gas turbine. To extend bearing life, designers use pneumatic balance pistons to reduce the axial load on the bearings. A magnetic thrust bearing could replace the balance pistons to further reduce the axial load. To investigate this option, the U.S. Army Research Laboratory, the NASA Glenn Research Center, and Texas A&M University designed and fabricated a 7-in.- diameter magnetic thrust bearing to operate at 1000 F and 30,000 rpm, with a 1000-lb load capacity. This research was funded through a NASA Space Technology Transfer Act with Allison Advance Development Company under the Ultra-Efficient Engine Technology (UEET) Intelligent Propulsion Systems Foundation Technology project.
Design and Testing of Non-Toxic RCS Thrusters for Second Generation Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Calvignac, Jacky; Tramel, Terri
2003-01-01
The current NASA Space Shuttle auxiliary propulsion system utilizes nitrogen tetroxide (NTO) and monomethylhydrazine (MMH), hypergolic propellants. This use of these propellants has resulted in high levels of maintenance and precautions that contribute to costly launch operations. By employing alternate propellant combinations, those less toxic to humans, the hazards and time required between missions can be significantly reduced. Use of alternate propellants can thereby increase the efficiency and lower the cost in launch operations. In support of NASA's Space Launch Initiative (SLI), TRW proposed a three-phase project structured to significantly increase the technology readiness of a high-performance reaction control subsystem (RCS) thruster using non-toxic propellant for an operationally efficient and reusable auxiliary propulsion system (APS). The project enables the development of an integrated primary/vernier thruster capable of providing dual-thrust levels of both 1000-lbf class thrust and 25-lbf thrust. The intent of the project is to reduce the risk associated with the development of an improved RCS flight design that meets the primary NASA objectives of improved safety and reliability while reducing systems operations and maintenance costs. TRW proposed two non-toxic auxiliary propulsion engine designs, one using liquid oxygen and liquid hydrogen and the other using liquid oxygen and liquid ethanol, as candidates to meet the goals of reliability and affordability at the RCS level. Both of these propellant combinations offer the advantage of a safe environment for maintenance, while at the same time providing adequate to excellent performance for a conventional liquid propulsion systems. The key enabling technology incorporated in both TRW thrusters is the coaxial liquid on liquid pintle injector. This paper will concentrate on only the design and testing of one of the thrusters, the liquid oxygen (LOX) and liquid hydrogen (LH2) thruster. The LOX/LH2 thruster design includes a LOX-centered pintle injector, consisting of two rows of slots that create a radial spoke spray pattern in the combustion chamber. The main fuel injector creates a continuous sheet of LH2 originating upstream of the LOX pintle injector. The two propellants impinge at the pintle slots, where the resulting momentum ratio and spray pattern determines the combustion efficiency and thermal effects on the hardware. Another enabling technology used in the design of this thruster is fuel film cooling through a duct, lining the inner wall of the combustion chamber barrel section. The duct is also acts as a secondary fuel injection point. The variation in the amount of LH2 used for the duct allows for adjustments in the cooling capacity for the thruster. The Non-Toxic LOX-LH2 RCS Workhorse Thruster was tested at the NASA Marshall Space Flight Center's Test Stand 500. Hot-fire tests were conducted between March 08, 2002 and April 05, 2002. All testing during the program base period were performed at sea-level conditions. During the test program, 7 configurations were tested, including 2 combustion chambers, 3 LOX injector pintle tips, and 4 LH2 injector stroke settings. The operating conditions that were surveyed varied thrust levels, mixture ratio and LH2 duct cooling flow. The copper heat sink chamber was used for 16 burns, each burn lasting from 0.4 to 10 seconds, totaling 51.4 seconds, followed by Haynes chamber testing ranging from 0.9 to 120 seconds, totaling 300.9 seconds. The total accumulated burn time for the test program is 352.3 seconds. C* efficiency was calculated and found to be within expectable limits for most operating conditions. The temperature on the Haynes combustion chamber remained below established material limits, with the exception of one localized hot spot. The test results demonstrate that both the coaxial liquid-on-liquid pintle injector design and fuel duct concepts are viable for the intended application. The thruster head-e design maintained cryogenic injection temperatures while firing, which validates the concept for minimal heat soak back. By injecting fuel into the duct, the throat temperatures were manageable, yet the split of fuel through the cooling duct does not compromise the overall combustion efficiency, which indicates that, provided proper design refinement, such a concept can be applied to a high-performance version of the thruster. These hot fire tests demonstrate the robustness of the duct design concept and good capability to withstand off-nominal operating conditions without adversely impacting the thermal response of the engine, a key design feature for a cryogenic thruster.
Baseline spacecraft and mission design for the SP-100 flight experiment
NASA Technical Reports Server (NTRS)
Deininger, William D.; Vondra, Robert J.
1989-01-01
The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kWe ammonia arcjet system operating at an experimentally-measured specific impulse of 1030 s and an efficiency of 42 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kWe SRPS is assumed. The total spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission and an orbit raising round trip corresponding to possible orbit transfer vehicle missions. Launches from Kennedy Space Center using the Titan IV expendable launch vehicle are assumed.
LOX/LH2 vane pump for auxiliary propulsion systems
NASA Technical Reports Server (NTRS)
Hemminger, J. A.; Ulbricht, T. E.
1985-01-01
Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.
Green Propulsion Technologies for Advanced Air Transports
NASA Technical Reports Server (NTRS)
Del Rosario, Ruben
2015-01-01
Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.
Analytical modeling of helium turbomachinery using FORTRAN 77
NASA Astrophysics Data System (ADS)
Balaji, Purushotham
Advanced Generation IV modular reactors, including Very High Temperature Reactors (VHTRs), utilize helium as the working fluid, with a potential for high efficiency power production utilizing helium turbomachinery. Helium is chemically inert and nonradioactive which makes the gas ideal for a nuclear power-plant environment where radioactive leaks are a high concern. These properties of helium gas helps to increase the safety features as well as to decrease the aging process of plant components. The lack of sufficient helium turbomachinery data has made it difficult to study the vital role played by the gas turbine components of these VHTR powered cycles. Therefore, this research work focuses on predicting the performance of helium compressors. A FORTRAN77 program is developed to simulate helium compressor operation, including surge line prediction. The resulting design point and off design performance data can be used to develop compressor map files readable by Numerical Propulsion Simulation Software (NPSS). This multi-physics simulation software that was developed for propulsion system analysis has found applications in simulating power-plant cycles.
Viscous Aerodynamic Shape Optimization with Installed Propulsion Effects
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Seidel, Jonathan A.; Rallabhandi, Sriram K.
2017-01-01
Aerodynamic shape optimization is demonstrated to tailor the under-track pressure signature of a conceptual low-boom supersonic aircraft. Primarily, the optimization reduces nearfield pressure waveforms induced by propulsion integration effects. For computational efficiency, gradient-based optimization is used and coupled to the discrete adjoint formulation of the Reynolds-averaged Navier Stokes equations. The engine outer nacelle, nozzle, and vertical tail fairing are axi-symmetrically parameterized, while the horizontal tail is shaped using a wing-based parameterization. Overall, 48 design variables are coupled to the geometry and used to deform the outer mold line. During the design process, an inequality drag constraint is enforced to avoid major compromise in aerodynamic performance. Linear elastic mesh morphing is used to deform volume grids between design iterations. The optimization is performed at Mach 1.6 cruise, assuming standard day altitude conditions at 51,707-ft. To reduce uncertainty, a coupled thermodynamic engine cycle model is employed that captures installed inlet performance effects on engine operation.
Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center
NASA Technical Reports Server (NTRS)
Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III
2001-01-01
After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.
Power console development for NASA's electric propulsion outreach program
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Patterson, Michael J.; Satterwhite, Vincent E.
1993-01-01
NASA LeRC is developing a 30 cm diameter xenon ion thruster for auxiliary and primary propulsion applications. To maximize expectations for user-acceptance of ion propulsion technology, NASA LeRC, through their Electric Propulsion Outreach Program, is providing sectors of industry with portable power consoles for operation of 5 KW-class xenon ion thrusters. This power console provides all necessary functions to permit thruster operations over a 0.5-5 KW envelope under both manual and automated control. These functions include the following: discharge, cathode heater, neutralizer keeper, and neutralizer heater currents, screen and accelerator voltages, and a gas feed system to regulate and control propellant flow to the thruster. An electronic circuit monitors screen and accelerator currents and controls arcing events. The power console was successfully integrated with the NASA 30 cm thruster.
Institute for Computational Mechanics in Propulsion (ICOMP)
NASA Technical Reports Server (NTRS)
Feiler, Charles E. (Editor)
1995-01-01
The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and funded under a cooperative agreement by the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the activities at ICOMP during 1994.
Code of Federal Regulations, 2014 CFR
2014-10-01
... electro-technical officer on vessels powered by main propulsion machinery of 750 kW/1,000 HP or more... propulsion machinery of 750 kW/1,000 HP or more (operational level). (a) To qualify for an STCW endorsement... electronics. (iii) Integrated navigation equipment. (iv) Ship propulsion and auxiliary machinery. (v...
Institute for Computational Mechanics in Propulsion (ICOMP). 10
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)
1996-01-01
The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and funded under a cooperative agreement by the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the activities at ICOUP during 1995.