ERIC Educational Resources Information Center
Digital Equipment Corp., Maynard, MA.
The curriculum materials and computer programs in this booklet introduce the idea of a matrix. They go on to discuss matrix operations of addition, subtraction, multiplication by a scalar, and matrix multiplication. The last section covers several contemporary applications of matrix multiplication, including problems of communication…
Tao, Z-Q; Shi, A-M
2016-05-01
The aim of this study is to explore the application of Boston matrix combined with SWOT analysis on operational development and evaluations of hospital departments. We selected 73 clinical and medical technology departments of our hospital from 2011 to 2013, and evaluated our hospital by Boston matrix combined with SWOT analysis according to the volume of services, medical quality, work efficiency, patients' evaluations, development capacity, operational capability, economic benefits, comprehensive evaluation of hospital achievement, innovation ability of hospital, influence of hospital, human resources of hospital, health insurance costs, etc. It was found that among clinical departments, there were 11 in Stars (22.4%), 17 in cash cow (34.7%), 15 in question marks (31.2%), 6 Dogs (12.2%), 16 in the youth stage of life cycle assessment (27.6%), 14 in the prime stage (24.1%), 12 in the stationary stage (20.7%), 9 in the aristocracy stage (15.5%) and 7 in the recession stage (12.1%). Among medical technology departments, there were 5 in Stars (20.8%), 1 in Cash cow (4.2%), 10 in question marks (41.6%), 8 Dogs (29.1%), 9 in the youth stage of life cycle assessment (37.5%), 4 in the prime stage (16.7%), 4 in the stable stage (16.7%), 1 in the aristocracy stage (4.2%) and 6 in the recession stage (25%). In conclusion, Boston matrix combined with SWOT analysis is suitable for operational development and comprehensive evaluations of hospital development, and it plays an important role in providing hospitals with development strategies. PMID:27249614
Tao, Z-Q; Shi, A-M
2016-05-01
The aim of this study is to explore the application of Boston matrix combined with SWOT analysis on operational development and evaluations of hospital departments. We selected 73 clinical and medical technology departments of our hospital from 2011 to 2013, and evaluated our hospital by Boston matrix combined with SWOT analysis according to the volume of services, medical quality, work efficiency, patients' evaluations, development capacity, operational capability, economic benefits, comprehensive evaluation of hospital achievement, innovation ability of hospital, influence of hospital, human resources of hospital, health insurance costs, etc. It was found that among clinical departments, there were 11 in Stars (22.4%), 17 in cash cow (34.7%), 15 in question marks (31.2%), 6 Dogs (12.2%), 16 in the youth stage of life cycle assessment (27.6%), 14 in the prime stage (24.1%), 12 in the stationary stage (20.7%), 9 in the aristocracy stage (15.5%) and 7 in the recession stage (12.1%). Among medical technology departments, there were 5 in Stars (20.8%), 1 in Cash cow (4.2%), 10 in question marks (41.6%), 8 Dogs (29.1%), 9 in the youth stage of life cycle assessment (37.5%), 4 in the prime stage (16.7%), 4 in the stable stage (16.7%), 1 in the aristocracy stage (4.2%) and 6 in the recession stage (25%). In conclusion, Boston matrix combined with SWOT analysis is suitable for operational development and comprehensive evaluations of hospital development, and it plays an important role in providing hospitals with development strategies.
MOP /Matrix Operation Programs system/
NASA Technical Reports Server (NTRS)
Muller, P. M.
1968-01-01
MOP /Matrix Operation Programs/ system consists of a set of FORTRAN 4 subroutines which are related through a small common allocation. The system accomplishes all matrix algebra operations plus related input-output and housekeeping details.
Radiative transfer model: matrix operator method.
Liu, Q; Ruprecht, E
1996-07-20
A radiative transfer model, the matrix operator method, is discussed here. The matrix operator method is applied to a plane-parallel atmosphere within three spectral ranges: the visible, the infrared, and the microwave. For a homogeneous layer with spherical scattering, the radiative transfer equation can be solved analytically. The vertically inhomogeneous atmosphere can be subdivided into a set of homogeneous layers. The solution of the radiative transfer equation for the vertically inhomogeneous atmosphere is obtained recurrently from the analytical solutions for the subdivided layers. As an example for the application of the matrix operator method, the effects of the cirrus and the stratocumulus clouds on the net radiation at the surface and at the top of the atmosphere are investigated. The relationship between the polarization in the microwave range and the rain rates is also studied. Copies of the FORTRAN program and the documentation of the FORTRAN program on a diskette are available.
NASA Astrophysics Data System (ADS)
Narayanan, Sreeram; Cho, Paul S.
2006-03-01
Currently available seed reconstruction algorithms are based on the assumption that accurate information about the imaging geometry is known. The assumption is valid for isocentric x-ray units such as radiotherapy simulators. However, the large majority of the clinics performing prostate brachytherapy today use C-arms for which imaging parameters such as source to axis distance, image acquisition angles, central axis of the image are not accurately known. We propose a seed reconstruction algorithm that requires no such knowledge of geometry. The new algorithm makes use of perspective projection matrix, which can be easily derived from a set of known reference points. The perspective matrix calculates the transformation of a point in 3D space to the imaging coordinate system. An accurate representation of the imaging geometry can be derived from the generalized projection matrix (GPM) with eleven degrees of freedom. In this paper we show how GPM can be derived given a theoretical minimum number of reference points. We propose an algorithm to compute the line equation that defines the backprojection operation given the GPM. The algorithm can be extended to any ray-tracing based seed reconstruction algorithms. Reconstruction using the GPM does not require calibration of C-arms and the images can be acquired at arbitrary angles. The reconstruction is performed in near real-time. Our simulations show that reconstruction using GPM is robust and accuracy is independent of the source to detector distance and location of the reference points used to generate the GPM. Seed reconstruction from C-arm images acquired at unknown geometry provides a useful tool for intra-operative dosimetry in prostate brachytherapy.
Learned fusion operators based on matrix completion
NASA Astrophysics Data System (ADS)
Risko, Kelly K. D.; Hester, Charles F.
2011-05-01
The efficient and timely management of imagery captured in the battlefield requires methods capable of searching the voluminous databases and extracting highly symbolic concepts. When processing images, a semantic and definition gap exists between machine representations and the user's language. Based on matrix completion techniques, we present a fusion operator that fuses imagery and expert knowledge provided by user inputs during post analysis. Specifically, an information matrix is formed from imagery and a class map as labeled by an expert. From this matrix an image operator is derived for the extraction/prediction of information from future imagery. We will present results using this technique on single mode data.
Improvements in sparse matrix operations of NASTRAN
NASA Technical Reports Server (NTRS)
Harano, S.
1980-01-01
A "nontransmit" packing routine was added to NASTRAN to allow matrix data to be refered to directly from the input/output buffer. Use of the packing routine permits various routines for matrix handling to perform a direct reference to the input/output buffer if data addresses have once been received. The packing routine offers a buffer by buffer backspace feature for efficient backspacing in sequential access. Unlike a conventional backspacing that needs twice back record for a single read of one record (one column), this feature omits overlapping of READ operation and back record. It eliminates the necessity of writing, in decomposition of a symmetric matrix, of a portion of the matrix to its upper triangular matrix from the last to the first columns of the symmetric matrix, thus saving time for generating the upper triangular matrix. Only a lower triangular matrix must be written onto the secondary storage device, bringing 10 to 30% reduction in use of the disk space of the storage device.
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094
Staggered fermion matrix elements using smeared operators
NASA Astrophysics Data System (ADS)
Kilcup, Greg; Gupta, Rajan; Sharpe, Stephen R.
1998-02-01
We investigate the use of two kinds of staggered fermion operators, smeared and unsmeared. The smeared operators extend over a 44 hypercube, and tend to have smaller perturbative corrections than the corresponding unsmeared operators. We use these operators to calculate kaon weak matrix elements on quenched ensembles at β=6.0, 6.2, and 6.4. Extrapolating to the continuum limit, we find BK(NDR,2 GeV)=0.62+/-0.02(stat)+/-0.02(syst). The systematic error is dominated by the uncertainty in the matching between lattice and continuum operators due to the truncation of perturbation theory at one loop. We do not include any estimate of the errors due to quenching or to the use of degenerate s and d quarks. For the ΔI=3/2 electromagnetic penguin operators we find B(3/2)7=0.62+/-0.03+/-0.06 and B(3/2)8=0.77+/-0.04+/-0.04. We also use the ratio of unsmeared to smeared operators to make a partially nonperturbative estimate of the renormalization of the quark mass for staggered fermions. We find that tadpole improved perturbation theory works well if the coupling is chosen to be αMS¯(q*=1/a).
NASA Astrophysics Data System (ADS)
Doppler, Lionel; Carbajal-Henken, Cintia; Pelon, Jacques; Ravetta, François; Fischer, Jürgen
2014-09-01
1-D radiative transfer code Matrix-Operator Model (MOMO), has been extended from [0.2-3.65 μm] the band to the whole [0.2-100 μm] spectrum. MOMO can now be used for the computation of a full range of radiation budgets (shortwave and longwave). This extension to the longwave part of the electromagnetic radiation required to consider radiative transfer processes that are features of the thermal infrared: the spectroscopy of the water vapor self- and foreign-continuum of absorption at 12 μm and the emission of radiation by gases, aerosol, clouds and surface. MOMO's spectroscopy module, Coefficient of Gas Absorption (CGASA), has been developed for computation of gas extinction coefficients, considering continua and spectral line absorptions. The spectral dependences of gas emission/absorption coefficients and of Planck's function are treated using a k-distribution. The emission of radiation is implemented in the adding-doubling process of the matrix operator method using Schwarzschild's approach in the radiative transfer equation (a pure absorbing/emitting medium, namely without scattering). Within the layer, the Planck-function is assumed to have an exponential dependence on the optical-depth. In this paper, validation tests are presented for clear air case studies: comparisons to the analytical solution of a monochromatic Schwarzschild's case without scattering show an error of less than 0.07% for a realistic atmosphere with an optical depth and a blackbody temperature that decrease linearly with altitude. Comparisons to radiative transfer code RTTOV are presented for simulations of top of atmosphere brightness temperature for channels of the space-borne instrument MODIS. Results show an agreement varying from 0.1 K to less than 1 K depending on the channel. Finally MOMO results are compared to CALIPSO Infrared Imager Radiometer (IIR) measurements for clear air cases. A good agreement was found between computed and observed radiance: biases are smaller than 0.5 K
Applications of matrix inversion tomosynthesis
NASA Astrophysics Data System (ADS)
Warp, Richard J.; Godfrey, Devon J.; Dobbins, James T., III
2000-04-01
The improved image quality and characteristics of new flat- panel x-ray detectors have renewed interest in advanced algorithms such as tomosynthesis. Digital tomosynthesis is a method of acquiring and reconstructing a three-dimensional data set with limited-angle tube movement. Historically, conventional tomosynthesis reconstruction has suffered contamination of the planes of interest by blurred out-of- plane structures. This paper focuses on a Matrix Inversion Tomosynthesis (MITS) algorithm to remove unwanted blur from adjacent planes. The algorithm uses a set of coupled equations to solve for the blurring function in each reconstructed plane. This paper demonstrates the use of the MITS algorithm in three imaging applications: small animal microscopy, chest radiography, and orthopedics. The results of the MITS reconstruction process demonstrate an improved reduction of blur from out-of-plane structures when compared to conventional tomosynthesis. We conclude that the MITS algorithm holds potential in a variety of applications to improve three-dimensional image reconstruction.
Matrix Representation of Symmetry Operators in Elementary Crystallography
ERIC Educational Resources Information Center
Cody, R. D.
1972-01-01
Presents the derivation of rotation and reflection matrix representation of symmetry operators as used in the initial discussion of crystal symmetry in elementary mineralogy at Iowa State University. Includes references and an appended list of matrix representations of the important crystallographic symmetry operators, excluding the trigonal and…
Matrix preconditioning: a robust operation for optical linear algebra processors.
Ghosh, A; Paparao, P
1987-07-15
Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.
An efficient matrix product operator representation of the quantum chemical Hamiltonian.
Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus
2015-12-28
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries - abelian and non-abelian - and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.
An efficient matrix product operator representation of the quantum chemical Hamiltonian
Keller, Sebastian Reiher, Markus; Dolfi, Michele Troyer, Matthias
2015-12-28
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.
R&D of MCFC matrix for long term operation
Nishimura, Takashi; Fujita, Yoji; Urushibata, Hiroaki; Sasaki, Akira
1996-12-31
Long term operation is an essential subject in the commercialization of the Molten Carbonate Fuel Cell (MCFC). Material stability is important for the development of the MCFC. particularly for long term operation. In this paper, the specification and the stabilization of MCFC matrix arc investigated, with the aim of producing 40000 hours of operation. It is common knowledge that matrix thickness has a large influence on shorting time, as shorting is caused by the dissolution of the nickel oxide cathodes. Therefore, the optimum thickness of a matrix designed for 40000 hours operation without the nickel shorting was sought. The influences of different electrolytes and matrix specifications on the shorting time were measured with accelerated cell tests. The internal resistance of the matrix was also estimated. Gamma( {gamma} )-lithium aluminate (LiAlO{sub 2}) powder with a sub-micron particle diameter is commonly used for a raw material of matrix to retain molten carbonate electrolytes. This is because most researchers found that {gamma}-LiA1O{sub 2} was the most stable material in the MCFC environment among the three allotropic forms alpha ( {alpha} ), beta ( {beta} ), and {gamma}. However. two problems with the stability of {gamma} -LiAlO{sub 2} are being vigorously discussed. especially in Japan: particle growth causes decreasing electrolyte retention, and the transformation of {gamma} to {alpha}. This transformation contradicts the accepted opinion that {gamma} is the most stable form. In this paper, the particle growth and the phase transformation of LiAlO{sub 2} are examined with post-test analyses. The influence of matrix degradation on cell performance is also considered.
NASA Astrophysics Data System (ADS)
Chang, Phang; Isah, Abdulnasir
2016-02-01
In this paper we propose the wavelet operational method based on shifted Legendre polynomial to obtain the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. The operational matrices of fractional derivative and collocation method turn the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques.
Matrix Models from Operators and Topological Strings, 2
NASA Astrophysics Data System (ADS)
Kashaev, Rinat; Mariño, Marcos; Zakany, Szabolcs
2016-10-01
The quantization of mirror curves to toric Calabi--Yau threefolds leads to trace class operators, and it has been conjectured that the spectral properties of these operators provide a non-perturbative realization of topological string theory on these backgrounds. In this paper, we find an explicit form for the integral kernel of the trace class operator in the case of local P1xP1, in terms of Faddeev's quantum dilogarithm. The matrix model associated to this integral kernel is an O(2) model, which generalizes the ABJ(M) matrix model. We find its exact planar limit, and we provide detailed evidence that its 1/N expansion captures the all genus topological string free energy on local P1xP1.
Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix
NASA Technical Reports Server (NTRS)
Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.
1999-01-01
This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being, studied at Langley, it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission Flexibility restraints.
Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix
NASA Technical Reports Server (NTRS)
Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.
1999-01-01
This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being studied at Langley; it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission flexibility restraints.
Wavelet operational matrix method for solving the Riccati differential equation
NASA Astrophysics Data System (ADS)
Li, Yuanlu; Sun, Ning; Zheng, Bochao; Wang, Qi; Zhang, Yingchao
2014-03-01
A Haar wavelet operational matrix method (HWOMM) was derived to solve the Riccati differential equations. As a result, the computation of the nonlinear term was simplified by using the Block pulse function to expand the Haar wavelet one. The proposed method can be used to solve not only the classical Riccati differential equations but also the fractional ones. The capability and the simplicity of the proposed method was demonstrated by some examples and comparison with other methods.
Key Issues for Aerospace Applications of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Levine, S. R.
1998-01-01
Ceramic matrix composites (CMC) offer significant advantages for future aerospace applications including turbine engine and liquid rocket engine components, thermal protection systems, and "hot structures". Key characteristics which establish ceramic matrix composites as attractive and often enabling choices are strength retention at high temperatures and reduced weight relative to currently used metallics. However, due to the immaturity of this class of materials which is further compounded by the lack of experience with CMC's in the aerospace industry, there are significant challenges involved in the development and implementation of ceramic matrix composites into aerospace systems. Some of the more critical challenges are attachment and load transfer methodologies; manufacturing techniques, particularly scale up to large and thick section components; operational environment resistance; damage tolerance; durability; repair techniques; reproducibility; database availability; and the lack of validated design and analysis tools. The presentation will examine the technical issues confronting the application of ceramic matrix composites to aerospace systems and identify the key material systems having potential for substantial payoff relative to the primary requirements of light weight and reduced cost for future systems. Current programs and future research opportunities will be described in the presentation which will focus on materials and processes issues.
On integrable matrix product operators with bond dimension D = 4
NASA Astrophysics Data System (ADS)
Katsura, Hosho
2015-01-01
We construct and study a two-parameter family of matrix product operators of bond dimension D = 4. The operators M(x, y) act on ({\\Bbb{C}}_2)\\otimes N , i.e. the space of states of a spin-1/2 chain of length N. For the particular values of the parameters: x = 1/3 and y=1/\\sqrt{3} , the operator turns out to be proportional to the square root of the reduced density matrix of the valence-bond-solid state on a hexagonal ladder. We show that M(x, y) has several interesting properties when (x, y) lies on the unit circle centered at the origin: x2 + y2 = 1. In this case, we find that M(x, y) commutes with the Hamiltonian and all the conserved charges of the isotropic spin-1/2 Heisenberg chain. Moreover, M(x1, y1) and M(x2, y2) are mutually commuting if x^2i + y^2_i=1 for both i = 1 and 2. These remarkable properties of M(x, y) are proved as a consequence of the Yang-Baxter equation.
Applications of Polymer Matrix Syntactic Foams
NASA Astrophysics Data System (ADS)
Gupta, Nikhil; Zeltmann, Steven E.; Shunmugasamy, Vasanth Chakravarthy; Pinisetty, Dinesh
2013-11-01
A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.
Sharp Estimates in Ruelle Theorems for Matrix Transfer Operators
NASA Astrophysics Data System (ADS)
Campbell, J.; Latushkin, Y.
A matrix coefficient transfer operator , on the space of -sections of an m-dimensional vector bundle over n-dimensional compact manifold is considered. The spectral radius of is estimated bya; and the essential spectral radius by
Matrix operator theory of radiative transfer. 1: rayleigh scattering.
Plass, G N; Kattawar, G W; Catchings, F E
1973-02-01
An entirely rigorous method for the solution of the equations for radiative transfer based on the matrix operator theory is reviewed. The advantages of the present method are: (1) all orders of the reflection and transmission matrices are calculated at once; (2) layers of any thickness may be combined, so that a realistic model of the atmosphere can be developed from any arbitrary number of layers, each with different properties and thicknesses; (3) calculations can readily be made for large optical depths and with highly anisotropic phase functions; (4) results are obtained for any desired value of the surface albedo including the value unity and for a large number of polar and azimuthal angles including the polar angle theta = 0 degrees ; (5) all fundamental equations can be interpreted immediately in terms of the physical interactions appropriate to the problem; (6) both upward and downward radiance can be calculated at interior points from relatively simple expressions. Both the general theory and its history together with the method of calculation are discussed. As a first example of the method numerous curves are given for both the reflected and transmitted radiance for Rayleigh scattering from a homogeneous layer for a range of optical thicknesses from 0.0019 to 4096, surface albedo A = 0, 0.2, and 1, and cosine of solar zenith angle micro = 1, 0.5397, and 0.1882. It is shown that the matrix operator approach contains the doubling method as a special case.
NASA Astrophysics Data System (ADS)
Shizgal, Bernie D.; Dridi, Raouf
2010-09-01
A Maple code is provided which is used to compute the matrix elements of the collision operators in the Boltzmann equation for arbitrary differential elastic collision cross section. The present paper describes an efficient method for the calculation of the matrix elements of the collision operators in the Sonine basis set. The method employs the generating functions for these polynomials. The transport properties of gaseous mixtures of atoms and/or ions are generally determined from solutions of the Boltzmann equation. The solution of the Boltzmann equation for the velocity distribution functions requires a representation of the integral collision operators defined by the differential cross sections describing collisions between pairs of particles. Many applications have considered either the simple hard sphere cross section or the cross section corresponding to the inverse fourth power of the inter-particle distance ("Maxwell molecules"). There are a few applications where realistic quantum mechanical cross sections have been used. The basis set of Sonine (or Laguerre) polynomials is the basis set of choice used to represent the distribution functions. The Maple code provided is used to express the matrix elements of the collision operators in terms of a finite sum of the omega integrals of transport theory and defined by the differential cross section. Thus the matrix representations of the collision operators are applicable to arbitrary interaction potentials. Program summaryProgram title: MCBC Catalogue identifier: AEGJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2422 No. of bytes in distributed program, including test data, etc.: 48 653 Distribution format: tar.gz Programming language: Maple
Chiral condensate in the Schwinger model with matrix product operators
NASA Astrophysics Data System (ADS)
Bañuls, Mari Carmen; Cichy, Krzysztof; Jansen, Karl; Saito, Hana
2016-05-01
Tensor network (TN) methods, in particular the matrix product states (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the nonzero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chiral symmetry breaking in the massless and massive cases and show that the method works very well and gives good control over a broad range of temperatures, essentially from zero to infinite temperature.
Dense and Sparse Matrix Operations on the Cell Processor
Williams, Samuel W.; Shalf, John; Oliker, Leonid; Husbands,Parry; Yelick, Katherine
2005-05-01
The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. Therefore, the high performance computing community is examining alternative architectures that address the limitations of modern superscalar designs. In this work, we examine STI's forthcoming Cell processor: a novel, low-power architecture that combines a PowerPC core with eight independent SIMD processing units coupled with a software-controlled memory to offer high FLOP/s/Watt. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop an analytic framework to predict Cell performance on dense and sparse matrix operations, using a variety of algorithmic approaches. Results demonstrate Cell's potential to deliver more than an order of magnitude better GFLOP/s per watt performance, when compared with the Intel Itanium2 and Cray X1 processors.
Matrix operator theory of radiative transfer. I - Rayleigh scattering.
NASA Technical Reports Server (NTRS)
Plass, G. N.; Kattawar, G. W.; Catchings, F. E.
1973-01-01
An entirely rigorous method for the solution of the equations for radiative transfer based on the matrix operator theory is reviewed. The advantages of the present method are: (1) all orders of the reflection and transmission matrices are calculated at once; (2) layers of any thickness may be combined, so that a realistic model of the atmosphere can be developed from any arbitrary number of layers, each with different properties and thicknesses; (3) calculations can readily be made for large optical depths and with highly anisotropic phase functions; (4) results are obtained for any desired value of the surface albedo including the value unity and for a large number of polar and azimuthal angles; (5) all fundamental equations can be interpreted immediately in terms of the physical interactions appropriate to the problem; and (6) both upward and downward radiance can be calculated at interior points from relatively simple expressions.
Digraph matrix analysis applications to systems interactions
Alesso, H.P.; Altenbach, T.; Lappa, D.; Kimura, C.; Sacks, I.J.; Ashmore, B.C.; Fromme, D.; Smith, C.F.; Williams, W.
1984-01-01
Complex events such as Three Mile Island-2, Brown's Ferry-3 and Crystal River-3 have demonstrated that previously unidentified system interdependencies can be important to safety. A major aspect of these events was dependent faults (common cause/mode failures). The term systems interactions has been introduced by the Nuclear Regulatory Commission (NRC) to identify the concepts of spatial and functional coupling of systems which can lead to system interdependencies. Spatial coupling refers to dependencies resulting from a shared environmental condition; functional coupling refers to both dependencies resulting from components shared between safety and/or support systems, and to dependencies involving human actions. The NRC is currently developing guidelines to search for and evaluate adverse systems interactions at light water reactors. One approach utilizes graph theoretical methods and is called digraph matrix analysis (DMA). This methodology has been specifically tuned to the systems interaction problem. The objective of this paper is to present results from two DMA applications and to contrast them with the results from more traditional fault tree approaches.
Siminovitch, David; Untidt, Thomas; Nielsen, Niels Chr
2004-01-01
Our recent exact effective Hamiltonian theory (EEHT) for exact analysis of nuclear magnetic resonance (NMR) experiments relied on a novel entanglement of unitary exponential operators via finite expansion of the logarithmic mapping function. In the present study, we introduce simple alternant quotient expressions for the coefficients of the polynomial matrix expansion of these entangled operators. These expressions facilitate an extension of our previous closed solution to the Baker-Campbell-Hausdorff problem for SU(N) systems from N< or =4 to any N, and thereby the potential application of EEHT to more complex NMR spin systems. Similarity matrix transformations of the EEHT expansion are used to develop alternant quotient expressions, which are fully general and prove useful for evaluation of any smooth matrix function. The general applicability of these expressions is demonstrated by several examples with relevance for NMR spectroscopy. The specific form of the alternant quotients is also used to demonstrate the fundamentally important equivalence of Sylvester's theorem (also known as the spectral theorem) and the EEHT expansion.
Powell, B. P.; Azmy, Y. Y.
2013-07-01
The Integral Transport Matrix Method (ITMM) has been shown to be an effective method for solving the neutron transport equation in large domains on massively parallel architectures. In the limit of very large number of processors, the speed of the algorithm, and its suitability for unstructured meshes, i.e. other than an ordered Cartesian grid, is limited by the construction of four matrix operators required for obtaining the solution in each sub-domain. The existing algorithm used for construction of these matrix operators, termed the differential mesh sweep, is computationally expensive and was developed for a structured grid. This work proposes the use of a new algorithm for construction of these operators based on the construction of a single, fundamental matrix representing the transport of a particle along every possible path throughout the sub-domain mesh. Each of the operators is constructed by multiplying an element of this fundamental matrix by two factors dependent only upon the operator being constructed and on properties of the emitting and incident cells. The ITMM matrix operator construction time for the new algorithm is demonstrated to be shorter than the existing algorithm in all tested cases with both isotropic and anisotropic scattering considered. While also being a more efficient algorithm on a structured Cartesian grid, the new algorithm is promising in its geometric robustness and potential for being applied to an unstructured mesh, with the ultimate goal of application to an unstructured tetrahedral mesh on a massively parallel architecture. (authors)
Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A
2013-11-05
Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.
Children's Ability to Operate Within a Matrix: A Developmental Study.
ERIC Educational Resources Information Center
Siegel, Alexander W.; Kresh, Esther
Eight children from each of five age groups, 4, 5, 6, 7, and 8 years, were administered matrix tasks involving two nominal dimensions, color and shape. Nine stimulus cells and six attribute cells made up the apparatus. The attribute cells consisted of three colors and three geometric shapes; the stimulus cells made up a matrix consisting of the…
High performance SMC matrix for structural applications
NASA Astrophysics Data System (ADS)
Salard, T.; Lortie, F.; Gérard, J. F.; Peyre, C.
2016-07-01
Mechanical properties of a common SMC (Sheet Molding Compound) matrix constituted of a vinylester resin and a Low-Profile Additive (LPA) were compared to those of vinylester modified with core-shell rubber (CSR) particles. Valuable properties are brought by CSR, especially high impact strength, high fracture toughness with little loss in stiffness, in spite of the presence of CSR agglomerates in blends.
Matrix algebra routines for the Acorn Archimedes microcomputer: example applications.
Fielding, A
1988-08-01
A set of matrix algebra routines have been written, as BASICV procedures, for the Acorn Archimedes microcomputer. It is shown that these procedures are executed so quickly that programs, which require matrix algebra computations, can be written in interpreted BASIC. Two example applications, reciprocal averaging and principal components analysis, are demonstrated.
Matrix variate logistic regression model with application to EEG data.
Hung, Hung; Wang, Chen-Chien
2013-01-01
Logistic regression has been widely applied in the field of biomedical research for a long time. In some applications, the covariates of interest have a natural structure, such as that of a matrix, at the time of collection. The rows and columns of the covariate matrix then have certain physical meanings, and they must contain useful information regarding the response. If we simply stack the covariate matrix as a vector and fit a conventional logistic regression model, relevant information can be lost, and the problem of inefficiency will arise. Motivated from these reasons, we propose in this paper the matrix variate logistic (MV-logistic) regression model. The advantages of the MV-logistic regression model include the preservation of the inherent matrix structure of covariates and the parsimony of parameters needed. In the EEG Database Data Set, we successfully extract the structural effects of covariate matrix, and a high classification accuracy is achieved.
Efficient O(N) recursive computation of the operational space inertial matrix
Lilly, K.W.; Orin, D.E.
1993-09-01
The operational space inertia matrix {Lambda} reflects the dynamic properties of a robot manipulator to its tip. In the control domain, it may be used to decouple force and/or motion control about the manipulator workspace axes. The matrix {Lambda} also plays an important role in the development of efficient algorithms for the dynamic simulation of closed-chain robotic mechanisms, including simple closed-chain mechanisms such as multiple manipulator systems and walking machines. The traditional approach used to compute {Lambda} has a computational complexity of O(N{sup 3}) for an N degree-of-freedom manipulator. This paper presents the development of a recursive algorithm for computing the operational space inertia matrix (OSIM) that reduces the computational complexity to O(N). This algorithm, the inertia propagation method, is based on a single recursion that begins at the base of the manipulator and progresses out to the last link. Also applicable to redundant systems and mechanisms with multiple-degree-of-freedom joints, the inertia propagation method is the most efficient method known for computing {Lambda} for N {>=} 6. The numerical accuracy of the algorithm is discussed for a PUMA 560 robot with a fixed base.
Spaceborne application multiprocessor operating system
NASA Astrophysics Data System (ADS)
Grisbeck, Gary S.; Webber, Wesley D.
1992-03-01
The Operational Kernel (OK) system for the Spaceborne Processor Array-1 (SPA-1) software development environment is described. The OK system demonstration featured fully autonomous onboard control of data movement, fault detection, fault isolation, hardware reconfiguration, application restart, and load balancing. Random nodal or processing hardware was caused to fail by selection of switches on a fault injection panel. The SPA-1 based on the OK written in Ada detected that a failure had occurred, isolated it, redistributed the processing load, and continued with the application processing.
Application of sparse matrix solvers as effective preconditioners
Young, D.P.; Melvin, R.G.; Johnson, F.T.; Bussoletti, J.E.; Wigton, L.B.; Samant, S.S. )
1989-11-01
In this paper the use of a new out-of-core sparse matrix package for the numerical solution of partial differential equations involving complex geometries arising from aerospace applications is discussed. The sparse matrix solver accepts contributions to the matrix elements in random order and assembles the matrix using fast sort/merge routines. Fill-in is reduced through the use of a physically based nested dissection ordering. For very large problems a drop tolerance is used during the matrix decomposition phase. The resulting incomplete factorization is an effective preconditioner for Krylov subspace methods, such as GMRES. Problems involving 200,000 unknowns routinely are solved on the Cray X-MP using 64MW of solid-state storage device (SSD).
Matrix operator approach to the quantum evolution operator and the geometric phase
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo; Kim, Jewan; Soh, Kwang Sup
2013-11-01
The Moody-Shapere-Wilczek's adiabatic effective Hamiltonian and Lagrangian method is developed further into the matrix effective Hamiltonian (MEH) and Lagrangian (MEL) approach to a parameter-dependent quantum system. The matrix-operator approach formulated in the product integral (PI) provides not only a method to find the wave function efficiently in the MEH approach but also higher order corrections to the effective action systematically in the MEL approach, a la the Magnus expansion and the Kubo cumulant expansion. A coupled quantum system of a light particle of a harmonic oscillator is worked out, and as a by-product, a new kind of gauge potential (Berry's connection) is found even for nondegenerate cases (real eigenfunctions). Moreover, in the PI formulation the holonomy of the induced gauge potential is related to Schlesinger's exact formula for the gauge field tensor. A superadiabatic expansion is also constructed, and a generalized Dykhne formula, depending on the contour integrals of the homotopy class of complex degenerate points, is rephrased in the PI formulation.
Matrix field theory: Applications to superconductivity
NASA Astrophysics Data System (ADS)
Zhou, Lubo
In this thesis a systematic, functional matrix field theory is developed to describe both clean and disordered s-wave and d-wave superconductors and the quantum phase transitions associated with them. The thesis can be divided into three parts. The first part includes chapters 1 to 3. In chapter one a general physical introduction is given. In chapters two and three the theory is developed and used to compute the equation of state as well as the number-density susceptibility, spin-density susceptibility, the sound attenuation coefficient, and the electrical conductivity in both clean and disordered s-wave superconductors. The second part includes chapter four. In this chapter we use the theory to describe the disorder-induced metal - superconductor quantum phase transition. The key physical idea here is that in addition to the superconducting order-parameter fluctuations, there are also additional soft fermionic fluctuations that are important at the transition. We develop a local field theory for the coupled fields describing superconducting and soft fermionic fluctuations. Using simple renormalization group and scaling ideas, we exactly determine the critical behavior at this quantum phase transition. Our theory justifies previous approaches. The third part includes chapter five. In this chapter we study the analogous quantum phase transition in disordered d-wave superconductors. This theory should be related to high Tc superconductors. Surprisingly, we show that in both the underdoped and overdoped regions, the coupling of superconducting fluctuations to the soft disordered fermionic fluctuations is much weaker than that in the s-wave case. The net result is that the disordered quantum phase transition in this case is a strong coupling, or described by an infinite disordered fixed point, transition and cannot be described by the perturbative RG description that works so well in the s-wave case. The transition appears to be related to the one that occurs in
VML 3.0 Reactive Sequencing Objects and Matrix Math Operations for Attitude Profiling
NASA Technical Reports Server (NTRS)
Grasso, Christopher A.; Riedel, Joseph E.
2012-01-01
VML (Virtual Machine Language) has been used as the sequencing flight software on over a dozen JPL deep-space missions, most recently flying on GRAIL and JUNO. In conjunction with the NASA SBIR entitled "Reactive Rendezvous and Docking Sequencer", VML version 3.0 has been enhanced to include object-oriented element organization, built-in queuing operations, and sophisticated matrix / vector operations. These improvements allow VML scripts to easily perform much of the work that formerly would have required a great deal of expensive flight software development to realize. Autonomous turning and tracking makes considerable use of new VML features. Profiles generated by flight software are managed using object-oriented VML data constructs executed in discrete time by the VML flight software. VML vector and matrix operations provide the ability to calculate and supply quaternions to the attitude controller flight software which produces torque requests. Using VML-based attitude planning components eliminates flight software development effort, and reduces corresponding costs. In addition, the direct management of the quaternions allows turning and tracking to be tied in with sophisticated high-level VML state machines. These state machines provide autonomous management of spacecraft operations during critical tasks like a hypothetic Mars sample return rendezvous and docking. State machines created for autonomous science observations can also use this sort of attitude planning system, allowing heightened autonomy levels to reduce operations costs. VML state machines cannot be considered merely sequences - they are reactive logic constructs capable of autonomous decision making within a well-defined domain. The state machine approach enabled by VML 3.0 is progressing toward flight capability with a wide array of applicable mission activities.
Matrix Transfer Function Design for Flexible Structures: An Application
NASA Technical Reports Server (NTRS)
Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.
1985-01-01
The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.
Polymer, metal and ceramic matrix composites for advanced aircraft engine applications
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.
1985-01-01
Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.
Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications
Mc Daniels, D.L.; Serafini, T.T.; Di Carlo, J.A.
1986-06-01
Advanced aircraft engine research within NASA Lewis focuses on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.
Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A
2014-02-11
Mechanisms for performing a complex matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the complex matrix multiplication operation to a first target vector register. The first vector operand comprises a real and imaginary part of a first complex vector value. A complex load and splat operation is performed to load a second complex vector value of a second vector operand and replicate the second complex vector value within a second target vector register. The second complex vector value has a real and imaginary part. A cross multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the complex matrix multiplication operation. The partial product is accumulated with other partial products and a resulting accumulated partial product is stored in a result vector register.
Emerging Applications of Ceramic and Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Divya; Ramolina, Dheeyana; Sandou, Sherleena
2012-07-01
Almost 500 papers were presented during the 43 sessions of the 27th Annual Cocoa Beach Conference & Exposition on Advanced Ceramics & Composites, which was organized by the Engineering Ceramics Division of the American Ceramic Society and sponsored by several federal agencies: NASA Glenn Research Center, the Army Research Office, the Department of Energy, and the Air Force Office of Scientific Research. Many of these papers focused on composites, both ceramic and metal matrix, and discussed mechanical behavior, design, fibers/interfaces, processing, and applications. Potential applications under development include components for armor, nuclear energy, and automobiles. A few of these applications have reached commercialization.
A matrix safety frame approach to robot safety for space applications. Thesis
NASA Technical Reports Server (NTRS)
Montgomery, T. D.; Lauderbaugh, L. Ken
1988-01-01
The planned use of autonomous robots in space applications has generated many new safety problems. This thesis assesses safety of autonomous robot systems through the structure of a proposed three-dimensional matrix safety frame. By identifying the common points of accidents and fatalities involving terrestrial robots, reviewing terrestrial robot safety standards, and modifying and extending these results to space applications, hazards are identified and their associated risks assessed. Three components of the safeguarding dimension of the matrix safety frame, safeguarding through design and operation for intrinsic safety, and incorporation of add-on safety systems are explained through examples for both terrestrial and space robots. A space robot hazard identification checklist, a qualitative tool for robot systems designers, is developed using the structure imparted by the matrix safety frame. The development of an expert system from the contents of the checklist is discussed.
Wei, Jianing; Bouman, Charles A; Allebach, Jan P
2014-05-01
Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy. PMID:24710398
Thermosetting polymer-matrix composites for structural repair applications
NASA Astrophysics Data System (ADS)
Goertzen, William Kirby
2007-12-01
Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporation of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.
Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications
Goertzen, William Kirby
2007-12-01
Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.
Implementation Challenges for Ceramic Matrix Composites in High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2004-01-01
Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, electronics, nuclear, and transportation industries. In the aeronautics and space exploration systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, nozzle components, nose cones, leading edges of reentry vehicles and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters (DPFs), and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. There are a number of critical issues and challenges related to successful implementation of composite materials. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, microstructure and thermomechanical properties of composites fabricated by two techniques (chemical vapor infiltration and melt infiltration), will be presented. In addition, critical need for robust joining and assembly technologies in successful implementation of these systems will be discussed. Other implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.
Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, M.
2005-01-01
Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.
Encoding the structure of many-body localization with matrix product operators
NASA Astrophysics Data System (ADS)
Pekker, David; Clark, Bryan K.
2015-03-01
Anderson insulators are non-interacting disordered systems which have localized single particle eigenstates. The interacting analogue of Anderson insulators are the Many-Body Localized (MBL) phases. The natural language for representing the spectrum of the Anderson insulator is that of product states over the single-particle modes. We show that product states over Matrix Product Operators of small bond dimension is the corresponding natural language for describing the MBL phases. In this language all of the many-body eigenstates are encode by Matrix Product States (i.e. DMRG wave function) consisting of only two sets of low bond-dimension matrices per site: the Gi matrix corresponding to the local ground state on site i and the Ei matrix corresponding to the local excited state. All 2 n eigenstates can be generated from all possible combinations of these matrices.
Xie, Jiaquan; Huang, Qingxue; Yang, Xia
2016-01-01
In this paper, we are concerned with nonlinear one-dimensional fractional convection diffusion equations. An effective approach based on Chebyshev operational matrix is constructed to obtain the numerical solution of fractional convection diffusion equations with variable coefficients. The principal characteristic of the approach is the new orthogonal functions based on Chebyshev polynomials to the fractional calculus. The corresponding fractional differential operational matrix is derived. Then the matrix with the Tau method is utilized to transform the solution of this problem into the solution of a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via examples. It is shown that the proposed algorithm yields better results. Finally, error analysis shows that the algorithm is convergent.
Xie, Jiaquan; Huang, Qingxue; Yang, Xia
2016-01-01
In this paper, we are concerned with nonlinear one-dimensional fractional convection diffusion equations. An effective approach based on Chebyshev operational matrix is constructed to obtain the numerical solution of fractional convection diffusion equations with variable coefficients. The principal characteristic of the approach is the new orthogonal functions based on Chebyshev polynomials to the fractional calculus. The corresponding fractional differential operational matrix is derived. Then the matrix with the Tau method is utilized to transform the solution of this problem into the solution of a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via examples. It is shown that the proposed algorithm yields better results. Finally, error analysis shows that the algorithm is convergent. PMID:27504247
Probing the many-body localization transition with matrix elements of local operators
NASA Astrophysics Data System (ADS)
Serbyn, Maksym; Papic, Zlatko; Abanin, Dmitry
2015-03-01
We propose the statistics of matrix elements of local operators as a new probe of the many-body localized (MBL) phase. Matrix elements of a given local operator V encode many physical properties, such as the response of the system to a local perturbation induced by the action of V, spectral functions, and dynamics of the system. The distribution of matrix elements of a local operator between system's eigenstates exhibits qualitatively different behavior in the many-body localized and ergodic phases, allowing for an accurate determination of the two phases. To characterize this distribution, for a given system size L, we introduce a parameter g (L) = < log Vi,i+1/Δ >, which is a disorder-averaged ratio of the matrix element of operator V between adjacent eigenstates, and Δ is the level spacing. We find that g (L) decreases with L in the MBL phase, and grows in the ergodic phase. We propose that at the MBL-delocalization transition g (L) is independent of system size, g (L) =gc ~ 1 , and use this criterion to map out the phase diagram of a disordered 1D XXZ spin-1/2 chain. By studying the scaling of g (L) as a function of energy density, we locate the many-body mobility edge. We discuss implications for delocalization phase transition.
Erosion Resistant Coatings for Polymer Matrix Composites in Propulsion Applications
NASA Technical Reports Server (NTRS)
Sutter, James K.; Naik, Subhash K.; Horan, Richard; Miyoshi, Kazuhisa; Bowman, Cheryl; Ma, Kong; Leissler, George; Sinatra, Raymond; Cupp, Randall
2003-01-01
Polymer Matrix Composites (PMCs) offer lightweight and frequently low cost alternatives to other materials in many applications. High temperature PMCs are currently used in limited propulsion applications replacing metals. Yet in most cases, PMC propulsion applications are not in the direct engine flow path since particulate erosion degrades PMC component performance and therefore restricts their use in gas turbine engines. This paper compares two erosion resistant coatings (SANRES and SANPRES) on PMCs that are useful for both low and high temperature propulsion applications. Collaborating over a multi-year period, researchers at NASA Glenn Research Center, Allison Advanced Developed Company, and Rolls-Royce Corporation have optimized these coatings in terms of adhesion, surface roughness, and erosion resistance. Results are described for vigorous hot gas/particulate erosion rig and engine testing of uncoated and coated PMC fan bypass vanes from the AE 3007 regional jet gas turbine engine. Moreover, the structural durability of these coatings is described in long-term high cycle fatigue tests. Overall, both coatings performed well in all tests and will be considered for applications in both commercial and defense propulsion applications.
The Golden-Thompson inequality: Historical aspects and random matrix applications
Forrester, Peter J. Thompson, Colin J.
2014-02-15
The Golden-Thompson inequality, Tr (e{sup A+B}) ⩽ Tr (e{sup A}e{sup B}) for A, B Hermitian matrices, appeared in independent works by Golden and Thompson published in 1965. Both of these were motivated by considerations in statistical mechanics. In recent years the Golden-Thompson inequality has found applications to random matrix theory. In this article, we detail some historical aspects relating to Thompson's work, giving in particular a hitherto unpublished proof due to Dyson, and correspondence with Pólya. We show too how the 2 × 2 case relates to hyperbolic geometry, and how the original inequality holds true with the trace operation replaced by any unitarily invariant norm. In relation to the random matrix applications, we review its use in the derivation of concentration type lemmas for sums of random matrices due to Ahlswede-Winter, and Oliveira, generalizing various classical results.
Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications
NASA Astrophysics Data System (ADS)
Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil
2016-01-01
The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.
Dry borax applicator operator's manual.
Karsky, Richard, J.
1999-01-01
Annosum root rot affects conifers throughout the Northern Hemisphere, infecting their roots and eventually killing the trees. The fungus Heterobasidion annosum causes annosum root rot. The fungus colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps and potentially infect the neighboring trees. Wind and rain carry the annosum spores. Spores that land on freshly cut stumps grow down the stump's root system where they can infect living trees through root grafts or root contacts. Once annosum becomes established, it can remain active for many years in the Southern United States and for several decades in the north. About 7% of the trees that become infected die. When thinning, stumps can be treated successfully using a competing fungus, Phlebia gigantea, and with ''Tim-Bor'' in liquid formulations. These liquid products are no longer approved in the United States. Only the dry powder form is registered and approved by the EPA. Stumps can be treated with a dry formula of borax, (Sporax), significantly reducing one of the primary routes by which Heterobasidion annosum infects a stand of trees. Sporax is used by the USDA Forest Service to control annosum root rot. Sporax is now applied by hand, but once the felled trees are skidded it becomes very hard to locate the stumps. A stump applicator will reduce error, labor costs, and hazards to workers.
NASA Astrophysics Data System (ADS)
Dyukarev, Yu M.
2016-04-01
The ranks of the limit Weyl intervals are known to serve as the geometric measure of degeneracy of the solution set to a Stieltjes matrix moment problem. This paper puts forward the first operator measure of degeneracy for the solution set to a Stieltjes matrix moment problem in terms of the deficiency vectors of a pair of associated positive symmetric operators. A relationship between the geometric and operator measures of degeneracy for a Stieltjes matrix moment problem is established, from which some corollaries about the Stieltjes matrix moment problem are obtained.Bibliography 19 titles.
Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.
Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E
2013-01-01
Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.
Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications
Dassios, Konstantinos G.; Kordatos, Evangelos Z.; Aggelis, Dimitrios G.; Matikas, Theodore E.
2013-01-01
Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately. PMID:23935428
Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.
He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej
2011-12-01
Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
Tsai, Ko-Fan; Chu, Shu-Chun
2016-09-19
The one-time ray-tracing optimization method is a fast way to design LED illumination systems [Opt. Express22, 5357 (2014)10.1364/OE.22.005357]. The method optimizes the performance of LED illumination systems by modifying the LEDs' luminous intensity distribution curve (LIDC) with a freeform lens, instead of modifying the illumination system structure. In finding the LEDs' LIDC for optimizing the illumination system's performance, the LEDs' LIDC found by means of a general gradient descent method can be trapped in a local solution. This study develops a matrix operation method to directly find the global solution of the LEDs' LIDC for the optimization of the illumination system's performance for any initial design of an illumination system structure. As compared with the gradient descent method, using the proposed characteristic matrix operation method to find the best LEDs' LIDC reduces the cost in time by several orders of magnitude. The proposed characteristic matrix operation method ensures that the one-time ray-tracing optimization method is an efficient and reliable method for designing LED illumination systems. PMID:27661876
Tsai, Ko-Fan; Chu, Shu-Chun
2016-09-19
The one-time ray-tracing optimization method is a fast way to design LED illumination systems [Opt. Express22, 5357 (2014)10.1364/OE.22.005357]. The method optimizes the performance of LED illumination systems by modifying the LEDs' luminous intensity distribution curve (LIDC) with a freeform lens, instead of modifying the illumination system structure. In finding the LEDs' LIDC for optimizing the illumination system's performance, the LEDs' LIDC found by means of a general gradient descent method can be trapped in a local solution. This study develops a matrix operation method to directly find the global solution of the LEDs' LIDC for the optimization of the illumination system's performance for any initial design of an illumination system structure. As compared with the gradient descent method, using the proposed characteristic matrix operation method to find the best LEDs' LIDC reduces the cost in time by several orders of magnitude. The proposed characteristic matrix operation method ensures that the one-time ray-tracing optimization method is an efficient and reliable method for designing LED illumination systems.
Operational Experience with the Scattering Matrix Arc Detection System on the JET ITER-Like Antenna
Vrancken, M.; Lerche, E.; Dumortier, P.; Durodie, F.; Evrard, M.; Huygen, S.; Ongena, J.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Weynants, R.
2009-11-26
The Scattering Matrix Arc Detection System (SMAD) has been fully deployed on all 4 sets of Resonant Double Loop (RDL), Vacuum Transmission Line (VTL) and Antenna Pressurised Transmission Lines (APTL) of the JET ICRF ITER-Like Antenna (ILA) and this has been indispensable for operating at low (real) T-point impedance values to investigate ELM tolerance. This paper describes the necessity of the SMAD vs VSWR (Voltage Standing Wave Ratio) protection system, SMAD commissioning, problems and a number of typical events detected by the SMAD system during operation on plasma.
Trimpin, Sarah; Inutan, Ellen D
2013-05-01
An astonishingly simple new method to produce gas-phase ions of small molecules as well as proteins from the solid state under cold vacuum conditions is described. This matrix assisted ionization vacuum (MAIV) mass spectrometry (MS) method produces multiply charged ions similar to those that typify electrospray ionization (ESI) and uses sample preparation methods that are nearly identical to matrix-assisted laser desorption/ionization (MALDI). Unlike these established methods, MAIV does not require a laser or voltage for ionization, and unlike the recently introduced matrix assisted ionization inlet method, does not require added heat. MAIV-MS requires only introduction of a crystalline mixture of the analyte incorporated with a suitable small molecule matrix compound such as 3-nitrobenzonitrile directly to the vacuum of the mass spectrometer. Vacuum intermediate pressure MALDI sources and modified ESI sources successfully produce ions for analysis by MS with this method. As in ESI-MS, ion formation is continuous and, without a laser, little chemical background is observed. MAIV, operating from a surface offers the possibility of significantly improved sensitivity relative to atmospheric pressure ionization because ions are produced in the vacuum region of the mass spectrometer eliminating losses associated with ion transfer from atmospheric pressure to vacuum. Mechanistic aspects and potential applications for this new ionization method are discussed.
Spectral properties of the Wilson-Dirac operator and random matrix theory
NASA Astrophysics Data System (ADS)
Kieburg, Mario; Verbaarschot, Jacobus J. M.; Zafeiropoulos, Savvas
2013-11-01
Random matrix theory has been successfully applied to lattice quantum chromodynamics. In particular, a great deal of progress has been made on the understanding, numerically as well as analytically, of the spectral properties of the Wilson-Dirac operator. In this paper, we study the infrared spectrum of the Wilson-Dirac operator via random matrix theory including the three leading order a2 correction terms that appear in the corresponding chiral Lagrangian. A derivation of the joint probability density of the eigenvalues is presented. This result is used to calculate the density of the complex eigenvalues, the density of the real eigenvalues, and the distribution of the chiralities over the real eigenvalues. A detailed discussion of these quantities shows how each low-energy constant affects the spectrum. Especially we consider the limit of small and large (which is almost the mean field limit) lattice spacing. Comparisons with Monte Carlo simulations of the random matrix theory show a perfect agreement with the analytical predictions. Furthermore we present some quantities which can be easily used for comparison of lattice data and the analytical results.
Matrix elements of four-fermion operators with quenched Wilson fermions
NASA Astrophysics Data System (ADS)
Gupta, Rajan; Bhattacharya, Tanmoy; Sharpe, Stephen R.
1997-04-01
We present results for the matrix elements of a variety of four-fermion operators calculated using quenched Wilson fermions. Our simulations are done on 170 lattices of size 323×64 at β=6.0. We find BK=0.74+/-0.04+/-0.05, BD=0.78+/-0.01, B3/27=0.58+/-0.02+0.07-0.03, B3/28=0.81+/-0.03+0.03-0.02, with all results being in the NDR scheme at μ=2 GeV. We also calculate the B parameter for the operator Qs, which is needed in the study of the difference of B-meson lifetimes. Our best estimate is BS(NDR,μ=1/a=2.33 GeV) =0.80+/-0.01. This is given at the lattice scale since the required two-loop anomalous dimension matrix is not known. In all these estimates, the first error is statistical, while the second is due to the use of truncated perturbation theory to match continuum and lattice operators. Errors due to quenching and lattice discretization are not included. We also present new results for the perturbative matching coefficients, extending the calculation to all Lorentz scalar four-fermion operators, and using NDR as the continuum scheme.
NASA Astrophysics Data System (ADS)
Yan, Wang-Ji; Katafygiotis, Lambros S.
2016-10-01
The problem of stochastic system identification utilizing response measurements only is considered in this paper. A negative log-likelihood function utilized to determine the posterior most probable parameters and their associated uncertainties is formulated by incorporating transmissibility matrix concept, random matrix theory and Bayes’ theorem. A numerically iterative coupled method involving the optimization of the parameters in groups is proposed so as to reduce the dimension of the numerical optimization problem involved. The initial guess for the parameters to be optimized is also properly estimated through asymptotic analysis. One novel feature of the proposed method is to avoid repeated time-consuming evaluation of the determinant and inverse of the covariance matrix during optimization due to exploring the statistical properties of the trace of Wishart matrix. The proposed method requires no information about the model of the external input. The theory described in this work is illustrated with synthetic data and field data measured from a laboratory model installed with wireless sensors.
NASA Astrophysics Data System (ADS)
Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia
2016-04-01
We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.
Fuzzy geometry via the spinor bundle, with applications to holographic space-time and matrix theory
Banks, Tom; Kehayias, John
2011-10-15
We present a new framework for defining fuzzy approximations to geometry in terms of a cutoff on the spectrum of the Dirac operator, and a generalization of it that we call the Dirac-flux operator. This framework does not require a symplectic form on the manifold, and is completely rotation invariant on an arbitrary n-sphere. The framework is motivated by the formalism of holographic space-time, whose fundamental variables are sections of the spinor bundle over a compact Euclidean manifold. The strong holographic principle requires the space of these sections to be finite dimensional. We discuss applications of fuzzy spinor geometry to holographic space-time and to matrix theory.
Structural and functional polymer-matrix composites for electromagnetic applications
NASA Astrophysics Data System (ADS)
Wu, Junhua
This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES
Hanford Site air operating permit application
1995-05-01
The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.
Real time evolution at finite temperatures with operator space matrix product states
NASA Astrophysics Data System (ADS)
Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias
2014-07-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.
NASA Astrophysics Data System (ADS)
Monthus, Cécile
2016-07-01
For short-ranged disordered quantum models in one dimension, the many-body-localization is analyzed via the adaptation to the many-body context (Serbyn et al 2015 Phys. Rev. X 5 041047) of the Thouless point of view on the Anderson transition: the question is whether a local interaction between two long chains is able to reshuffle completely the eigenstates (delocalized phase with a volume-law entanglement) or whether the hybridization between tensor states remains limited (many-body-localized phase with an area-law entanglement). The central object is thus the level of hybridization induced by the matrix elements of local operators, as compared with the difference of diagonal energies. The multifractal analysis of these matrix elements of local operators is used to analyze the corresponding statistics of resonances. Our main conclusion is that the critical point is characterized by the strong-multifractality spectrum f(0≤slant α ≤slant 2)=\\fracα{2} , well known in the context of Anderson localization in spaces of effective infinite dimensionality, where the size of the Hilbert space grows exponentially with the volume. Finally, the possibility of a delocalized non-ergodic phase near criticality is discussed.
Centrifugal microfluidic platforms: advanced unit operations and applications.
Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N
2015-10-01
Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as
Centrifugal microfluidic platforms: advanced unit operations and applications.
Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N
2015-10-01
Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as
Menéndez, Javier
2013-12-30
We explore the theoretical uncertainties related to the transition operator of neutrinoless double-beta (0νββ) decay. The transition operator used in standard calculations is a product of one-body currents, that can be obtained phenomenologically as in Tomoda [1] or Šimkovic et al. [2]. However, corrections to the operator are hard to obtain in the phenomenological approach. Instead, we calculate the 0νββ decay operator in the framework of chiral effective theory (EFT), which gives a systematic order-by-order expansion of the transition currents. At leading orders in chiral EFT we reproduce the standard one-body currents of Refs. [1] and [2]. Corrections appear as two-body (2b) currents predicted by chiral EFT. We compute the effects of the leading 2b currents to the nuclear matrix elements of 0νββ decay for several transition candidates. The 2b current contributions are related to the quenching of Gamow-Teller transitions found in nuclear structure calculations.
NASA Astrophysics Data System (ADS)
Wozniak, Bartosz D.; Witherden, Freddie D.; Russell, Francis P.; Vincent, Peter E.; Kelly, Paul H. J.
2016-05-01
Matrix multiplication is a fundamental linear algebra routine ubiquitous in all areas of science and engineering. Highly optimised BLAS libraries (cuBLAS and clBLAS on GPUs) are the most popular choices for an implementation of the General Matrix Multiply (GEMM) in software. In this paper we present GiMMiK-a generator of bespoke matrix multiplication kernels for the CUDA and OpenCL platforms. GiMMiK exploits a prior knowledge of the operator matrix to generate highly performant code. The performance of GiMMiK's kernels is particularly apparent in a block-by-panel type of matrix multiplication, where the block matrix is typically small (e.g. dimensions of 96 × 64). Such operations are characteristic to our motivating application in PyFR-an implementation of Flux Reconstruction schemes for high-order fluid flow simulations on mixed unstructured meshes. GiMMiK fully unrolls the matrix-vector product and embeds matrix entries directly in the code to benefit from the use of the constant cache and compiler optimisations. Further, it reduces the number of floating-point operations by removing multiplications by zeros. Together with the ability of our kernels to avoid the poorly optimised cleanup code, executed by library GEMM, we are able to outperform cuBLAS on two NVIDIA GPUs: GTX 780 Ti and Tesla K40c. We observe speedups of our kernels over cuBLAS GEMM of up to 9.98 and 63.30 times for a 294×1029 99% sparse PyFR matrix in double precision on the Tesla K40c and GTX 780 Ti correspondingly. In single precision, observed speedups reach 12.20 and 13.07 times for a 4×8 50% sparse PyFR matrix on the two aforementioned cards. Using GiMMiK as the matrix multiplication kernel provider allows us to achieve a speedup of up to 1.70 (2.19) for a simulation of an unsteady flow over a cylinder executed with PyFR in double (single) precision on the Tesla K40c. All results were generated with GiMMiK version 1.0.
Structural and functional polymer-matrix composites for electromagnetic applications
NASA Astrophysics Data System (ADS)
Wu, Junhua
This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES
Parameter identification of fractional order linear system based on Haar wavelet operational matrix.
Li, Yuanlu; Meng, Xiao; Zheng, Bochao; Ding, Yaqing
2015-11-01
Fractional order systems can be more adequate for the description of dynamical systems than integer order models, however, how to obtain fractional order models are still actively exploring. In this paper, an identification method for fractional order linear system was proposed. This is a method based on input-output data in time domain. The input and output signals are represented by Haar wavelet, and then fractional order systems described by fractional order differential equations are transformed into fractional order integral equations. Taking use of the Haar wavelet operational matrix of the fractional order integration, the fractional order linear system can easily be converted into a system of algebraic equation. Finally, the parameters of the fractional order system are determined by minimizing the errors between the output of the real system and that of the identified system. Numerical simulations, involving integral and fractional order systems, confirm the efficiency of the above methodology.
Matrix operator theory of radiative transfer. II - Scattering from maritime haze.
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.; Catchings, F. E.
1973-01-01
Matrix operator theory is used to calculate the reflected and transmitted radiance of photons that have interacted with plane-parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo are tabulated. The forward peak and other features in the single-scattered phase function cause the radiance in many cases to be very different from that for Rayleigh scattering. In particular, the variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked and the relative limb darkening under very thick layers is greater for haze M than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = 0 is always greater and the cloud albedo is always less for haze M than for Rayleigh layers.
NASA Astrophysics Data System (ADS)
Ezz-Eldien, S. S.
2016-07-01
This manuscript presents a new numerical approach to approximate the solution of a class of fractional variational problems. The presented approach is consisting of using the shifted Legendre orthonormal polynomials as basis functions of the operational matrix of fractional derivatives (described in the Caputo sense) and that of fractional integrals (described in the sense of Riemann-Liouville) with the help of the Legendre-Gauss quadrature formula together with the Lagrange multipliers method for converting such fractional variational problems into easier problems that consist of solving an algebraic system in the unknown coefficients. The convergence of the proposed method is analyzed. Finally, in order to demonstrate the accuracy of the present method, some test problems are introduced with their approximate solutions and comparisons with other numerical approaches.
Development of Ceramic Matrix Composites For High Temperature Applications
NASA Technical Reports Server (NTRS)
Heimann, Paula
2004-01-01
The microstructure and mechanical properties of carbon fiber reinforced silicon carbide (C/SiC) composites that incorporated molecular-level oxidation inhibitors designed to increase the material s high temperature durability were characterized. The viability of a fiber-level inhibitor incorporated as part of a layered interface system as well as a molecularly-integrated matrix-level oxidation inhibitor that is co-deposited with the SiC matrix during Chemical Vapor Infiltration (CVI) was determined. It was expected that the inhibitor would act as a glass former that will getter the oxygen and form a crack sealant to reduce further ingress of oxygen into the composite. Three composites were examined. Composite A was a baseline C(sub f)/SiC(sub m) composite that incorporated a approx. 0.4 micron pyrolytic carbon (PyC) fiber coating to promote strength and toughness, and a CVI-derived SiC matrix. Composite B was a C(sub f)/SiC(sub m) composite incorporating a approx 0.4 micron pyrolytic carbon (PyC) fiber coating to promote strength and toughness, a approx. 0.6 micron B4C fiber-level oxidation barrier coating, and a CVI-derived SiC matrix. Composite C was a C(sub f) /SiC(sub m) composite that incorporated a approx. 0.4 micron pyrolytic carbon (PyC) fiber coating to promote strength and toughness, a approx. 0.6 micron B4C fiber-level oxidation barrier coating, and a BxC-SiC oxidation-inhibited matrix produced by CVI co-deposition. All composites were reinforced with 10 plies of T-300 balanced plain weave carbon fabric with 3K tows at 12.5 ends per inch.
Donnelly, T.W.; Haxton, W.C.
1980-01-01
We extend our previous harmonic oscillator analysis to a treatment of general single-particle matrix elements of the multipole operators arising in studies of semileptonic weak and electromagnetic interactions with nuclei. Together with the earlier harmonic oscillator tables the present work will allow the reader to express these general matrix elements compactly in terms of specific radial integrals, which then usually must be evaluated numerically.
Polydimethyl siloxane (PDMS) and zeolite incorporated mixed matrix materials are gaining importance in a variety of applications including membrane separation. PDMS based membranes are used in pervaporation (PV), a membrane technology, for the selective removal of organics such ...
Evaluating wilderness recreational opportunities: application of an impact matrix
Stohlgren, Thomas J.; Parsons, David J.
1992-01-01
An inventory of the severity and spatial distribution of wilderness campsite impacts in Sequoia and Kings Canyon National Parks identified a total of 273 distinct nodes of campsites or “management areas.” A campsite impact matrix was developed to evaluate management areas based on total impacts (correlated to the total area of campsite development) and the density, or concentration, of impacts relative to each area's potentially campable area. The matrix is used to quantify potential recreational opportunities for wilderness visitors in a spectrum from areas offering low impact-dispersed camping to those areas offering high impact-concentrated camping. Wilderness managers can use this type of information to evaluate use distribution patterns, identify areas to increase or decrease use, and to identify areas needing site-specific regulations (e.g., one-night camping limits) to preserve wilderness resources and guarantee outstanding opportunities for solitude.
Biomimetically enhanced demineralized bone matrix for bone regenerative applications
Ravindran, Sriram; Huang, Chun-Chieh; Gajendrareddy, Praveen; Narayanan, Raghuvaran
2015-01-01
Demineralized bone matrix (DBM) is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM) using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM) within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs) with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice. PMID:26557093
Michael A. Pope; Hans D. Gougar; John M. Ryskamp
2013-09-01
The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Originally operated primarily in support of the Offcie of Naval Reactors (NR), the mission has gradually expanded to cater to other customers, such as the DOE Office of Nuclear Energy (NE), private industry, and universities. Unforeseen circumstances may lead to the decommissioning of ATR, thus leaving the U.S. Government without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. This work can be viewed as an update to a project from the 1990’s called the Broad Application Test Reactor (BATR). In FY 2012, a survey of anticipated customer needs was performed, followed by analysis of the original BATR concepts with fuel changed to low-enriched uranium. Departing from these original BATR designs, four concepts were identified for further analysis in FY2013. The project informally adopted the acronym MATRIX (Multiple-Application Thermal Reactor for Irradiation eXperiments). This report discusses analysis of the four MATRIX concepts along with a number of variations on these main concepts. Designs were evaluated based on their satisfaction of anticipated customer requirements and the “Cylindrical” variant was selected for further analysis of options. This downselection should be considered preliminary and the backup alternatives should include the other three main designs. The baseline Cylindrical MATRIX design is expected to be capable of higher burnup than the ATR (or longer cycle length given a
Operator Reflection Positivity Inequalities and their Applications to Interacting Quantum Rotors
NASA Astrophysics Data System (ADS)
Wojtkiewicz, Jacek; Pusz, Wiesław; Stachura, Piotr
2016-04-01
In the Reflection Positivity theory and its application to statistical mechanical systems, certain matrix inequalities play a central role. The Dyson-Lieb-Simon [1] and Kennedy-Lieb-Shastry [2] inequalities constitute prominent examples. In this paper we extend the KLS inequality to the case where matrices are replaced by certain operators. As an application, we prove the occurrence of the long-range order in the ground state of two-dimensional quantum rotors.
47 CFR 1.83 - Applications for radio operator licenses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...
47 CFR 1.83 - Applications for radio operator licenses.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...
47 CFR 1.83 - Applications for radio operator licenses.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...
47 CFR 1.83 - Applications for radio operator licenses.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...
47 CFR 1.83 - Applications for radio operator licenses.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...
Organic matrix composite protective coatings for space applications
NASA Technical Reports Server (NTRS)
Dursch, Harry W.; George, Pete
1995-01-01
Successful use of composites in low earth orbit (LEO) depends on their ability to survive long-term exposure to atomic oxygen (AO), ultraviolet radiation, charged particle radiation, thermal cycling, and micrometeoroid and space debris. The AO environment is especially severe for unprotected organic matrix composites surfaces in LEO. Ram facing unprotected graphite/epoxy flown on the 69-month Long Duration Exposure Facility (LDEF) mission lost up to one ply of thickness (5 mils) resulting in decreased mechanical properties. The expected AO fluence of the 30 year Space Station Alpha mission is approximately 20 times that seen on LDEF. This exposure would result in significant material loss of unprotected ram facing organic matrix composites. Several protective coatings for composites were flown on LDEF including anodized aluminum, vacuum deposited coatings, a variety of thermal control coatings, metalized Teflon, and leafing aluminum. Results from the testing and analysis of the coated and uncoated composite specimens flown on LDEF's leading and trailing edges provide the baseline for determining the effectiveness of protectively coated composites in LEO. In addition to LDEF results, results from shuttle flight experiments and ground based testing will be discussed.
NASA Astrophysics Data System (ADS)
Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.
2016-05-01
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
NASA Astrophysics Data System (ADS)
Hollstein, André; Fischer, Jürgen
2012-05-01
Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.
The synthesis, compressive properties, and applications of metal matrix syntactic foams
NASA Astrophysics Data System (ADS)
Rohatgi, Pradeep K.; Gupta, Nikhil; Schultz, Benjamin F.; Luong, Dung D.
2011-02-01
Metal matrix syntactic foams are composites that incorporate hollow particles in a matrix, where enclosing porosity inside the thin shell of the particle leads to low density without large decreases in mechanical properties. Studies on Al, Mg, Pb, and Zn alloy matrix syntactic foams are available in the published literature. A large stress plateau region appears in the compressive stress-strain graphs of metal matrix syntactic foams. The height and length of stress plateau can be tailored by means of particle wall thickness, volume fraction, and size, and the total compressive energy absorption can be controlled. Metal matrix syntactic foams seem promising in various energy absorbing applications including automobile parts since their energy absorption capability per unit weight is better than other foams and lightweight materials.
Druskin, V.; Lee, Ping; Knizhnerman, L.
1996-12-31
There is now a growing interest in the area of using Krylov subspace approximations to compute the actions of matrix functions. The main application of this approach is the solution of ODE systems, obtained after discretization of partial differential equations by method of lines. In the event that the cost of computing the matrix inverse is relatively inexpensive, it is sometimes attractive to solve the ODE using the extended Krylov subspaces, originated by actions of both positive and negative matrix powers. Examples of such problems can be found frequently in computational electromagnetics.
Improved MALDI-TOF Microbial Mass Spectrometry Imaging by Application of a Dispersed Solid Matrix
NASA Astrophysics Data System (ADS)
Vergeiner, Stefan; Schafferer, Lukas; Haas, Hubertus; Müller, Thomas
2014-08-01
The key step in high quality microbial matrix-assisted laser desorption/ionization mass spectrometry imaging (microbial MALDI MSI) is the fabrication of a homogeneous matrix coating showing a fine-grained morphology. This application note addresses a novel method to apply solid MALDI matrices onto microbial cultures grown on thin agar media. A suspension of a mixture of 2,5-DHB and α-CHCA is sprayed onto the agar sample surface to form highly homogeneous matrix coatings. As a result, the signal intensities of metabolites secreted by the fungus Aspergillus fumigatus were found to be clearly enhanced.
Kuhlemann, Verena; Vassilevski, Panayot S.
2013-10-28
Matrix-vector multiplication is the key operation in any Krylov-subspace iteration method. We are interested in Krylov methods applied to problems associated with the graph Laplacian arising from large scale-free graphs. Furthermore, computations with graphs of this type on parallel distributed-memory computers are challenging. This is due to the fact that scale-free graphs have a degree distribution that follows a power law, and currently available graph partitioners are not efficient for such an irregular degree distribution. The lack of a good partitioning leads to excessive interprocessor communication requirements during every matrix-vector product. Here, we present an approach to alleviate this problem based on embedding the original irregular graph into a more regular one by disaggregating (splitting up) vertices in the original graph. The matrix-vector operations for the original graph are performed via a factored triple matrix-vector product involving the embedding graph. And even though the latter graph is larger, we are able to decrease the communication requirements considerably and improve the performance of the matrix-vector product.
Reduced density matrix hybrid approach: application to electronic energy transfer.
Berkelbach, Timothy C; Markland, Thomas E; Reichman, David R
2012-02-28
Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.
2015-01-01
The matrix application technique is critical to the success of a matrix-assisted laser desorption/ionization (MALDI) experiment. This work presents a systematic study aiming to evaluate three different matrix application techniques for MALDI mass spectrometric imaging (MSI) of endogenous metabolites from legume plant, Medicago truncatula, root nodules. Airbrush, automatic sprayer, and sublimation matrix application methods were optimized individually for detection of metabolites in the positive ionization mode exploiting the two most widely used MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA). Analytical reproducibility and analyte diffusion were examined and compared side-by-side for each method. When using DHB, the optimized method developed for the automatic matrix sprayer system resulted in approximately double the number of metabolites detected when compared to sublimation and airbrush. The automatic sprayer method also showed more reproducible results and less analyte diffusion than the airbrush method. Sublimation matrix deposition yielded high spatial resolution and reproducibility but fewer analytes in the higher m/z range (500–1000 m/z). When the samples were placed in a humidity chamber after sublimation, there was enhanced detection of higher mass metabolites but increased analyte diffusion in the lower mass range. When using CHCA, the optimized automatic sprayer method and humidified sublimation method resulted in double the number of metabolites detected compared to standard airbrush method. PMID:25331774
46 CFR 298.12 - Applicant and operator's qualifications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 8 2013-10-01 2013-10-01 false Applicant and operator's qualifications. 298.12 Section 298.12 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VESSEL FINANCING ASSISTANCE OBLIGATION GUARANTEES Eligibility § 298.12 Applicant and operator's qualifications. (a) Operator's qualifications. We will not issue a Letter...
The labour force matrix of Pakistan: selected applications.
Cohen, S I
1985-01-01
This paper develops and estimates a labor force matrix (LFM) for Pakistan, which is shown to be a new and very useful tool in describing the multi-dimensional nature of the work force and its dynamic characteristics over time. The paper then uses the LFM as a guideline in the simulation of the labor force in the 6th Five-Year Plan. The LFM allows one to read the number of persons who belong to a specific combination of location, status, sector, occupation, and education, and is, therefore, superior to 2-dimensional cross-tabulations. Under plausible assumptions, such matrices have been constructed from published data of the labor surveys of 1977-1978 and 1982-1983 and projected to 1988. The authors simulated the 6th Plan by means of a model which forecasts demand and supply and generates a planned LFM for 1988. A comparison between the 2 matrices shows that on the whole the plan does not predict major surprises in the structure of the labor force. Concurrently, the results suggest some future unresolved shortage-imbalances for production workers and the lowest educational levels and some surpluses of a frictional nature in the upper skills and educational levels. Even though the apparent recommendations for balancing the labor force may be more vocational training, a higher rate of primary school enrollment and fewer primary school dropouts, and job upgrading at the higher end of skills and education, a complementary analysis is required before sensible conclusions can be drawn. Besides, a disaggregation into many more occupations and short-term labor market signals as regards trends in vacancies and relative earnings are indispensable in complementing the obtained picture.
Magnet operating experience review for fusion applications
Cadwallader, L.C.
1991-11-01
This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.
Space Operations Learning Center Facebook Application
NASA Technical Reports Server (NTRS)
Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng
2012-01-01
The proposed Space Operations Learning Center (SOLC) Facebook module, initially code-named Spaceville, is intended to be an educational online game utilizing the latest social networking technology to reach a broad audience base and inspire young audiences to be interested in math, science, and engineering. Spaceville will be a Facebook application/ game with the goal of combining learning with a fun game and social environment. The mission of the game is to build a scientific outpost on the Moon or Mars and expand the colony. Game activities include collecting resources, trading resources, completing simple science experiments, and building architectures such as laboratories, habitats, greenhouses, machine shops, etc. The player is awarded with points and achievement levels. The player s ability increases as his/her points and levels increase. A player can interact with other players using multiplayer Facebook functionality. As a result, a player can discover unexpected treasures through scientific missions, engineering, and working with others. The player creates his/her own avatar with his/her selection of its unique appearance, and names the character. The player controls the avatar to perform activities such as collecting oxygen molecules or building a habitat. From observations of other successful social online games such as Farmville and Restaurant City, a common element of these games is having eye-catching and cartoonish characters, and interesting animations for all activities. This will create a fun, educational, and rewarding environment. The player needs to accumulate points in order to be awarded special items needed for advancing to higher levels. Trophies will be awarded to the player when certain goals are reached or tasks are completed. In order to acquire some special items needed for advancement in the game, the player will need to visit his/her neighboring towns to discover the items. This is the social aspect of the game that requires the
Autonomous Operations System: Development and Application
NASA Technical Reports Server (NTRS)
Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.
2016-01-01
Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.
Robust Joining and Assembly of Ceramic Matrix Composites for High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2003-01-01
Advanced ceramic matrix composites (CMCs) are under active consideration for use in a wide variety of high temperature applications within the aerospace, energy, and nuclear industries. The engineering designs of CMC components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. A wide variety of ceramic composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and mechanical properties of joints in melt infiltrated and CVI Sic matrix composites will be reported. Various joint design philosophies and design issues in joining of composites will be discussed.
PCOS - An operating system for modular applications
NASA Technical Reports Server (NTRS)
Tharp, V. P.
1986-01-01
This paper is an introduction to the PCOS operating system for the MC68000 family processors. Topics covered are: development history; development support; rational for development of PCOS and salient characteristics; architecture; and a brief comparison of PCOS to UNIX.
Generalized polynomials, operational identities and their applications
NASA Astrophysics Data System (ADS)
Dattoli, G.
2000-06-01
It is shown that an appropriate combination of methods, relevant to generalized operational calculus and to special functions, can be a very useful tool to treat a large body of problems both in physics and mathematics. We discuss operational methods associated with multivariable Hermite, Laguerre, Legendre, and other polynomials to derive a wealth of identities useful in quantum mechanics, electromagnetism, optics, etc., or to derive new identities between special functions as, e.g., Mehler- or mixed-type generating functions.
Dexterous Operations on ISS and Future Applications
NASA Technical Reports Server (NTRS)
Keenan, P. Andrew; Read, David A.
2011-01-01
The Mobile Servicing System (MSS) is a complex robotics system used extensively in the assembly, inspection and maintenance of the International Space Station (ISS). Its external components are comprised of the Space Station Remote Manipulator System (SSRMS), the Mobile Base System (MBS), and the Special Purpose Dexterous Manipulator (SPDM or "Dextre"). Dexterous robotic maintenance operations on the ISS are now enabled with the launch and deployment of "Dextre" in March 2008 and the recently completed commissioning to support nominal operations. These operations include allowing for maintenance of the MSS capability to be executed uniquely via robotic means. Examples are detailed inspection and the removal and replacement of On-orbit Replaceable Units (ORUs) located outside the pressurized volume of the ISS, alleviating astronauts from performing numerous risky and time-consuming extra-vehicular activities (EVAs). In light of the proposed extension of the ISS to 2020 and beyond, "Dextre" can also be seen as a resource for the support and conduct of external ISS experiments. "Dextre" can be utilized to move experiments around ISS, as test bed for more elaborate experiments outside the original design intent, and as a unique platform for external experiments. This paper summarizes the status of "Dextre", its planned use, and future potential for dexterous operations on the ISS. Lessons learned from the planning and execution of SPDM commissioning are first introduced, and significant differences between "Dextre" and SSRMS operations are discussed. The use of ground control as the predominant method for operating "Dextre" is highlighted, along with the benefits and challenges that this poses. Finally, the latest plans for dexterous operations on ISS are summarized including visiting vehicle unloading, nominal maintenance, and operations of a more experimental flavor.
NASA Astrophysics Data System (ADS)
Haxton, Wick; Lunardini, Cecilia
2008-09-01
Semi-leptonic electroweak interactions in nuclei—such as β decay, μ capture, charged- and neutral-current neutrino reactions, and electron scattering—are described by a set of multipole operators carrying definite parity and angular momentum, obtained by projection from the underlying nuclear charge and three-current operators. If these nuclear operators are approximated by their one-body forms and expanded in the nucleon velocity through order |p→|/M, where p→ and M are the nucleon momentum and mass, a set of seven multipole operators is obtained. Nuclear structure calculations are often performed in a basis of Slater determinants formed from harmonic oscillator orbitals, a choice that allows translational invariance to be preserved. Harmonic-oscillator single-particle matrix elements of the multipole operators can be evaluated analytically and expressed in terms of finite polynomials in q, where q is the magnitude of the three-momentum transfer. While results for such matrix elements are available in tabular form, with certain restriction on quantum numbers, the task of determining the analytic form of a response function can still be quite tedious, requiring the folding of the tabulated matrix elements with the nuclear density matrix, and subsequent algebra to evaluate products of operators. Here we provide a Mathematica script for generating these matrix elements, which will allow users to carry out all such calculations by symbolic manipulation. This will eliminate the errors that may accompany hand calculations and speed the calculation of electroweak nuclear cross sections and rates. We illustrate the use of the new script by calculating the cross sections for charged- and neutral-current neutrino scattering in 12C. Program summaryProgram title: SevenOperators Catalogue identifier: AEAY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland
Applications and comparisons of methods of computing the S Matrix of 2-ports
Jones, R.M.; Ko, Kwok; Tantawi, S.; Kroll, N. |; Yu, D.
1993-05-01
We report on the application of three different methods of computing the S Matrix for 2-port microwave circuits. The four methods are modal expansions with field matching across boundaries, time domain integration of Maxwell`s equations as implemented in MAFIA, HFSS (high frequency structure simulator), and the KKY frequency domain method. Among the applications to be described are steps in rectangular waveguides and irises in waveguides.
Operational Applications of Satellite Snowcover Observations
NASA Technical Reports Server (NTRS)
Rango, A. (Editor); Peterson, R. (Editor)
1980-01-01
The history of remote sensing of snow cover is reviewed and the following topics are covered: various techniques for interpreting LANDSAT and NOAA satellite data; the status of future systems for continuing snow hydrology applications; the use of snow cover observations in streamflow forecasts by Applications Systems Verification and Transfer participants and selected foreign investigators; and the benefits of using satellite snow cover data in runoff prediction.
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.
1988-01-01
This report advances a linear operator approach for analyzing the dynamics of systems of joint-connected rigid bodies.It is established that the mass matrix M for such a system can be factored as M=(I+H phi L)D(I+H phi L) sup T. This yields an immediate inversion M sup -1=(I-H psi L) sup T D sup -1 (I-H psi L), where H and phi are given by known link geometric parameters, and L, psi and D are obtained recursively by a spatial discrete-step Kalman filter and by the corresponding Riccati equation associated with this filter. The factors (I+H phi L) and (I-H psi L) are lower triangular matrices which are inverses of each other, and D is a diagonal matrix. This factorization and inversion of the mass matrix leads to recursive algortihms for forward dynamics based on spatially recursive filtering and smoothing. The primary motivation for advancing the operator approach is to provide a better means to formulate, analyze and understand spatial recursions in multibody dynamics. This is achieved because the linear operator notation allows manipulation of the equations of motion using a very high-level analytical framework (a spatial operator algebra) that is easy to understand and use. Detailed lower-level recursive algorithms can readily be obtained for inspection from the expressions involving spatial operators. The report consists of two main sections. In Part 1, the problem of serial chain manipulators is analyzed and solved. Extensions to a closed-chain system formed by multiple manipulators moving a common task object are contained in Part 2. To retain ease of exposition in the report, only these two types of multibody systems are considered. However, the same methods can be easily applied to arbitrary multibody systems formed by a collection of joint-connected regid bodies.
Integrated Launch Operations Applications Remote Display Developer
NASA Technical Reports Server (NTRS)
Flemming, Cedric M., II
2014-01-01
This internship provides the opportunity to support the creation and use of Firing Room Displays and Firing Room Applications that use an abstraction layer called the Application Control Language (ACL). Required training included video watching, reading assignments, face-to-face instruction and job shadowing other Firing Room software developers as they completed their daily duties. During the training period various computer and access rights needed for creating the applications were obtained. The specific ground subsystems supported are the Cryogenics Subsystems, Liquid Hydrogen (LH2) and Liquid Oxygen (LO2). The cryogenics team is given the task of finding the best way to handle these very volatile liquids that are used to fuel the Space Launch System (SLS) and the Orion flight vehicles safely.
Jones, R.H. ); Lucas, G.E. )
1990-11-01
A workshop to assess the potential application of ceramic matrix composites (CMCs) for structural applications in fusion reactors was held on May 21--22, 1990, at University of California, Santa Barbara. Participants included individuals familiar with materials and design requirements in fusion reactors, ceramic composite processing and properties and radiation effects. The primary focus was to list the feasibility issues that might limit the application of these materials in fusion reactors. Clear advantages for the use of CMCs are high-temperature operation, which would allow a high-efficiency Rankine cycle, and low activation. Limitations to their use are material costs, fabrication complexity and costs, lack of familiarity with these materials in design, and the lack of data on radiation stability at relevant temperatures and fluences. Fusion-relevant feasibility issues identified at this workshop include: hermetic and vacuum properties related to effects of matrix porosity and matrix microcracking; chemical compatibility with coolant, tritium, and breeder and multiplier materials, radiation effects on compatibility; radiation stability and integrity; and ability to join CMCs in the shop and at the reactor site, radiation stability and integrity of joints. A summary of ongoing CMC radiation programs is also given. It was suggested that a true feasibility assessment of CMCs for fusion structural applications could not be completed without evaluation of a material tailored'' to fusion conditions or at least to radiation stability. It was suggested that a follow-up workshop be held to design a tailored composite after the results of CMC radiation studies are available and the critical feasibility issues are addressed.
A creep model for metallic composites based on matrix testing: Application to Kanthal composites
NASA Technical Reports Server (NTRS)
Binienda, W. K.; Robinson, D. N.; Arnold, S. M.; Bartolotta, Paul A.
1990-01-01
An anisotropic creep model is formulated for metallic composites with strong fibers and low to moderate fiber volume percent (less than 40 percent). The idealization admits no creep in the local fiber direction and assumes equal creep strength in longitudinal and transverse shear. Identification of the matrix behavior with that of the isotropic limit of the theory permits characterization of the composite through uniaxial creep tests on the matrix material. Constant and step-wise creep tests are required as a data base. The model provides an upper bound on the transverse creep strength of a composite having strong fibers embedded in a particular matrix material. Comparison of the measured transverse strength with the upper bound gives an assessment of the integrity of the composite. Application is made to a Kanthal composite, a model high-temperature composite system. Predictions are made of the creep response of fiber reinforced Kanthal tubes under interior pressure.
Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications.
Schwarz, Silke; Koerber, Ludwig; Elsaesser, Alexander F; Goldberg-Bockhorn, Eva; Seitz, Andreas M; Dürselen, Lutz; Ignatius, Anita; Walther, Paul; Breiter, Roman; Rotter, Nicole
2012-11-01
Damage of cartilage structures in the head and neck region as well as in orthopedic sites are frequently caused by trauma, tumor resection, or congenital defects. Despite a high demand in many clinical fields, until today, no adequate cartilage replacement matrix is available for these fields of application. Materials that are clinically applied for joint cartilage repair still need optimization due to difficult intraoperative handling and risk of early mechanical damage. We have developed and applied a novel chemical process to completely decellularize and sterilize human and porcine cartilage tissues (meniscus cartilage and nasal septum) to generate a new type of bioimplant matrix. To characterize this matrix and to determine the effect of the decellularization process, the content of denatured collagen (w(D)) and the content of glycosaminoglycans (GAGs) (w(G)) were determined. Possible cytotoxic effects and cellular compatibility of the matrix in vitro have been examined by seeding processed cartilage biomatrices with human primary chondrocytes as well as murine fibroblasts (L929). Vitality and state of metabolism of cells were measured using MTS assays. Both cell types adhered to scaffold surfaces and proliferated. No areas of growth inhibition or cytotoxic effects were detected. New synthesis of cartilage-specific extracellular matrix was observed. By histological staining, electron microscopy, and μCT analysis, an increase of matrix porosity, complete cell elimination, and high GAG removal were demonstrated. Being from natural-origin, processed xenogenic and allogeneic cartilage biomatrices are highly versatile with regard to shape, size, and biomechanics, making them promising candidates for various biomedical applications.
Liu, Xiaoji; Qin, Xiaolan
2015-01-01
We investigate additive properties of the generalized Drazin inverse in a Banach algebra A. We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new conditions on a, b ∈ A. As an application we give some new representations for the generalized Drazin inverse of an operator matrix. PMID:25729767
Liu, Xiaoji; Qin, Xiaolan
2015-01-01
We investigate additive properties of the generalized Drazin inverse in a Banach algebra A. We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new conditions on a, b ∈ A. As an application we give some new representations for the generalized Drazin inverse of an operator matrix.
Application of adjoint operators to neural learning
NASA Technical Reports Server (NTRS)
Barhen, J.; Toomarian, N.; Gulati, S.
1990-01-01
A technique for the efficient analytical computation of such parameters of the neural architecture as synaptic weights and neural gain is presented as a single solution of a set of adjoint equations. The learning model discussed concentrates on the adiabatic approximation only. A problem of interest is represented by a system of N coupled equations, and then adjoint operators are introduced. A neural network is formalized as an adaptive dynamical system whose temporal evolution is governed by a set of coupled nonlinear differential equations. An approach based on the minimization of a constrained neuromorphic energylike function is applied, and the complete learning dynamics are obtained as a result of the calculations.
HTGR Industrial Application Functional and Operational Requirements
L. E. Demick
2010-08-01
This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.
Generic Uniqueness of a Structured Matrix Factorization and Applications in Blind Source Separation
NASA Astrophysics Data System (ADS)
Domanov, Ignat; Lathauwer, Lieven De
2016-06-01
Algebraic geometry, although little explored in signal processing, provides tools that are very convenient for investigating generic properties in a wide range of applications. Generic properties are properties that hold "almost everywhere". We present a set of conditions that are sufficient for demonstrating the generic uniqueness of a certain structured matrix factorization. This set of conditions may be used as a checklist for generic uniqueness in different settings. We discuss two particular applications in detail. We provide a relaxed generic uniqueness condition for joint matrix diagonalization that is relevant for independent component analysis in the underdetermined case. We present generic uniqueness conditions for a recently proposed class of deterministic blind source separation methods that rely on mild source models. For the interested reader we provide some intuition on how the results are connected to their algebraic geometric roots.
The application of CRM to military operations
NASA Technical Reports Server (NTRS)
Cavanagh, Dale E.; Williams, Kenneth R.
1987-01-01
The detailed content of the CRM training component of the C-5 Aircrew Training System (ATS) was left to the discretion of the contractor. As a part of determining what the content should be, United Airlines Services Corporation has made an effort to understand how the needs of MAC crews compare with those of civilian airline crews. There are distinct similarities between the crew roles in the cockpits of civilian airliners and military air transports. Many of the attitudes and behaviors exhibited by civil and military crew members are comparable, hence much of the training in the field referred to as Cockpit Resource Management (CRM) is equally appropriate to civil or military aircrews. At the same time, there are significant differences which require assessment to determine if modifications to what might be termed generic CRM are necessary. The investigation enabled the definition and specification of CRM training which is believed to address the needs of the C-5 operational community. The study has concentrated largely on military airlift, but the training objectives and course content of the CRM training are readily adaptable to a wider range of military cockpits than are found in strategic airlift. For instance, CRM training focusing on communication, leadership, situational awareness, and crew coordination is just as appropriate, with some modification, to the pilots manning a flight to Tactical Airlift Command A-7's as it is to the pilots, flight engineers, and loadmasters crewing a C-5.
Pollution prevention applications in batch manufacturing operations
NASA Astrophysics Data System (ADS)
Sykes, Derek W.; O'Shaughnessy, James
2004-02-01
Older, "low-tech" batch manufacturing operations are often fertile grounds for gains resulting from pollution prevention techniques. This paper presents a pollution prevention technique utilized for wastewater discharge permit compliance purposes at a batch manufacturer of detergents, deodorants, and floor-care products. This manufacturer generated industrial wastewater as a result of equipment rinses required after each product batch changeover. After investing a significant amount of capital on end of pip-line wastewater treatment technology designed to address existing discharge limits, this manufacturer chose to investigate alternate, low-cost approaches to address anticipated new permit limits. Mass balances using spreadsheets and readily available formulation and production data were conducted on over 300 products to determine how each individual product contributed to the total wastewater pollutant load. These mass balances indicated that 22 products accounted for over 55% of the wastewater pollutant. Laboratory tests were conducted to determine whether these same products could accept their individual changeover rinse water as make-up water in formulations without sacrificing product quality. This changeover reuse technique was then implement at the plant scale for selected products. Significant reductions in wastewater volume (25%) and wastewater pollutant loading (85+%) were realized as a direct result of this approach.
Hypermedia and intelligent tutoring applications in a mission operations environment
NASA Technical Reports Server (NTRS)
Ames, Troy; Baker, Clifford
1990-01-01
Hypermedia, hypertext and Intelligent Tutoring System (ITS) applications to support all phases of mission operations are investigated. The application of hypermedia and ITS technology to improve system performance and safety in supervisory control is described - with an emphasis on modeling operator's intentions in the form of goals, plans, tasks, and actions. Review of hypermedia and ITS technology is presented as may be applied to the tutoring of command and control languages. Hypertext based ITS is developed to train flight operation teams and System Test and Operation Language (STOL). Specific hypermedia and ITS application areas are highlighted, including: computer aided instruction of flight operation teams (STOL ITS) and control center software development tools (CHIMES and STOL Certification Tool).
IBM Applications and Techniques of Operations Research. A Selected Bibliography.
ERIC Educational Resources Information Center
International Business Machines Corp., White Plains, NY. Data Processing Div.
This bibliography on the tools and applications of operations research, management science, industrial engineering, and systems engineering lists many entries which appeared between 1961 and 1966 in 186 periodicals and trade journals. Twenty-six texts in operations research are also listed along with an indication as to which of 37 techniques or…
NASA Technical Reports Server (NTRS)
Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.
1986-01-01
Five black electrically conductive thermal-control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consisted of organic and inorganic systems applied on titanium and aluminum surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation and convective and conductive heating from -196 to 538 C. Mechanical, physical, thermal, electrical, and optical characteristics, formulation, mixing, application, surface preparation of substrates, and a method of determining electrical resistance are presented for the silicone matrix formulation designated as GF-580.
Large size SiPM matrix for Imaging Atmospheric Cherenkov Telescopes applications
NASA Astrophysics Data System (ADS)
Ambrosi, G.; Corti, D.; Ionica, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Schultz, C.
2016-07-01
SiPM photo detectors are nowadays commonly used in many applications. For large size telescopes like MAGIC or the future Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) project, a pixel size of some square centimeters is needed. An analog amplifier and sum stage was built and characterized. A large and compact SiPM matrix prototype, with the associated focusing optics, was assembled into a monolithic light detector with an active area of 3 cm2. The performance of the electronics is tailored for Imaging Atmospheric Cherenkov Telescopes (IACT) applications, with fast signal and adequate signal-to-noise (S/N) ratio.
NASA Technical Reports Server (NTRS)
Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.; Jordan, Kevin
2008-01-01
Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.
NASA Astrophysics Data System (ADS)
Kun, David William
Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external
36 CFR 1194.21 - Software applications and operating systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Software applications and... Standards § 1194.21 Software applications and operating systems. (a) When software is designed to run on a...) Software shall not use flashing or blinking text, objects, or other elements having a flash or...
36 CFR 1194.21 - Software applications and operating systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Software applications and... Standards § 1194.21 Software applications and operating systems. (a) When software is designed to run on a...) Software shall not use flashing or blinking text, objects, or other elements having a flash or...
36 CFR 1194.21 - Software applications and operating systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Software applications and... Standards § 1194.21 Software applications and operating systems. (a) When software is designed to run on a...) Software shall not use flashing or blinking text, objects, or other elements having a flash or...
36 CFR 1194.21 - Software applications and operating systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Software applications and... Standards § 1194.21 Software applications and operating systems. (a) When software is designed to run on a...) Software shall not use flashing or blinking text, objects, or other elements having a flash or...
Operation and Applications of the Boron Cathodic Arc Ion Source
Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.
2008-11-03
The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.
Artificial intelligence program in a computer application supporting reactor operations
Stratton, R.C.; Town, G.G.
1985-01-01
Improving nuclear reactor power plant operability is an ever-present concern for the nuclear industry. The definition of plant operability involves a complex interaction of the ideas of reliability, safety, and efficiency. This paper presents observations concerning the issues involved and the benefits derived from the implementation of a computer application which combines traditional computer applications with artificial intelligence (AI) methodologies. A system, the Component Configuration Control System (CCCS), is being installed to support nuclear reactor operations at the Experimental Breeder Reactor II.
Application of AI technology to nuclear plant operations
Sackett, J.I.
1988-01-01
In this paper, applications of Artificial Intelligence (AI) Technology to nuclear-power plant operation are reviewed. AI Technology is advancing rapidly and in the next five years is expected to enjoy widespread application to operation, maintenance, management and safety. Near term emphasis on a sensor validation, scheduling, alarm handling, and expert systems for procedural assistance. Ultimate applications are envisioned to culminate in autonomous control such as would be necessary for a power system in space, where automatic control actions are taken based upon reasoned conclusions regarding plant conditions, capability and control objectives.
Iqbal, Hafiz Muhammad Nasir; Asgher, Muhammad
2013-05-01
A novel manganese peroxidase (MnP) isolated from solid state culture of Trametes versicolor IBL-04 was immobilized using xerogel matrix composed of trimethoxysilane (TMOS) and propyltetramethoxysilane (PTMS). FTIR spectroscopy confirmed the successful entrapment of MnP into the xerogel matrix. An immobilization efficiency of 92.2% was achieved with a purified active fraction containing 2 mg/mL MnP. After 24 h incubation at varying pH and temperatures, the immobilized MnP retained 82 and 75% activity at pH 4 and 80°C, respectively. Xerogel matrix immobilization enhanced the catalytic efficiency of entrapped MnP. Metal ions including Cu2+, Mn2+ and Fe2+ stimulated enzyme activity while cysteine, EDTA and Ag+ inhibited the activity. MnP preserved 82% of its initial activity during oxidation of MnSO4 in 10 consecutive cycles, demonstrating the reusability of xerogel entrapped MnP. The immobilized MnP could be stored for up to 75 days at 4°C without significant activity loss. To explore the industrial applicability of MnP, the immobilized MnP was tested for decolorization of textile industry effluent in a Packed Bed Reactor System (PBRS). After five consecutive cycles, 98.8% decolorization of effluent was achieved within 5 h. The kinetic properties, storage stability and reusability of entrapped MnP from T. versicolor IBL-04 reflect its prospects as biocatalyst for bioremediation and other industrial applications.
[Applicability of a natural swelling matrix as the propellant of osmotic pump tablets].
Wu, Li; Li, Hai-Yan; Yin, Xian-Zhen; Li, Ying; Chen, Jian-Xiu; Hu, Rong-feng; Zhang, Ji-Wen
2013-08-01
The purpose of this study is to investigate the applicability of a natural swelling matrix derived from boat-fruited sterculia seed (SMS) as the propellant of osmotic pump tablets. The sugar components, static swelling, water uptake and viscosity of SMS were determined and compared with that of polythylene oxide (WSR-N10 and WSR-303). Both ribavirin and glipizide were used as water-soluble and water-insoluble model drugs. Then, the monolayer osmotic pump tablets of ribavirin and the bilayer osmotic pump tablets of glipizide were prepared using SMS as the osmotically active substance and propellant. SMS was mainly composed of rhamnose, arabinose, xylose and galactose and exhibited relatively high swelling ability. The area of the disintegrated matrix tablet was 20.1 times as that at initial after swelling for 600 s. SMS swelled rapidly and was fully swelled (0.5%) in aqueous solution with relative low viscosity (3.66 +/- 0.03) mPa x s at 25 degrees C. The monolayer osmotic pump tablets of ribavirin and the bilayer osmotic pump tablets of glipizide using SMS as propellant exhibited typical drug release features of osmotic pumps. In conclusion, the swelling matrix derived from boat-fruited sterculia seed, with low viscosity and high swelling, is a potential propellant in the application of osmotic pump tablets.
Design Studies for a Multiple Application Thermal Reactor for Irradiation Experiments (MATRIX)
Pope, Michael A.; Gougar, Hans D.; Ryskamp, J. M.
2015-03-01
The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Should unforeseen circumstances lead to the decommissioning of ATR, the U.S. Government would be left without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. A survey was conducted in order to catalogue the anticipated needs of potential customers. Then, concepts were evaluated to fill the role for this reactor, dubbed the Multi-Application Thermal Reactor Irradiation eXperiments (MATRIX). The baseline MATRIX design is expected to be capable of longer cycle lengths than ATR given a particular batch scheme. The volume of test space in In-Pile-Tubes (IPTs) is larger in MATRIX than in ATR with comparable magnitude of neutron flux. Furthermore, MATRIX has more locations of greater volume having high fast neutron flux than ATR. From the analyses performed in this work, it appears that the lead MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design is developed further.
Starkov, A. S.; Starkov, I. A.
2014-11-15
It is proposed to use a generalized matrix averaging (GMA) method for calculating the parameters of an effective medium with physical properties equivalent to those of a set of thin multiferroic layers. This approach obviates the need to solve a complex system of magnetoelectroelasticity equations. The required effective characteristics of a system of multiferroic layers are obtained using only operations with matrices, which significantly simplifies calculations and allows multilayer systems to be described. The proposed approach is applicable to thin-layer systems, in which the total thickness is much less than the system length, radius of curvature, and wavelengths of waves that can propagate in the system (long-wave approximation). Using the GMA method, it is also possible to obtain the effective characteristics of a periodic structure with each period comprising a number of thin multiferroic layers.
Protein crystallization with microseed matrix screening: application to human germline antibody Fabs
Obmolova, Galina Malia, Thomas J.; Teplyakov, Alexey; Sweet, Raymond W.; Gilliland, Gary L.
2014-07-23
The power of microseed matrix screening is demonstrated in the crystallization of a panel of antibody Fab fragments. The crystallization of 16 human antibody Fab fragments constructed from all pairs of four different heavy chains and four different light chains was enabled by employing microseed matrix screening (MMS). In initial screening, diffraction-quality crystals were obtained for only three Fabs, while many Fabs produced hits that required optimization. Application of MMS, using the initial screens and/or refinement screens, resulted in diffraction-quality crystals of these Fabs. Five Fabs that failed to give hits in the initial screen were crystallized by cross-seeding MMS followed by MMS optimization. The crystallization protocols and strategies that resulted in structure determination of all 16 Fabs are presented. These results illustrate the power of MMS and provide a basis for developing future strategies for macromolecular crystallization.
Polynorbornene as a low loss matrix material for IR metamaterial applications.
Arrington, Christian Lew; Sinclair, Michael B.; Ginn, James Cleveland, III; Lee, Yun-Ju; Sanchez, Andrea E.; Clem, Paul Gilbert; Hines, Paul; Dirk, Shawn M.; Rasberry, Roger D.
2010-11-01
Novel low loss photopatternable matrix materials for IR metamaterial applications were synthesized using the ring opening metathesis polymerization reaction (ROMP) of norbornene followed by a partial hydrogenation to remove most of the IR absorbing olefin groups which absorb in the 8-12 {micro}m range. Photopatterning was achieved via crosslinking of the remaining olefin groups with alpha, omega-dithiols via the thiol-ene coupling reaction. Since ROMP is a living polymerization the molecular weight of the polymer can be controlled simply by varying the ratio of catalyst to monomer. In order to determine the optimum photopattenable IR matrix material we varied the amount of olefin remaining after the partial hydrogenation. Hydrogenation was accomplished using tosyl hydrazide. The degree of hydrogenation can be controlled by altering the reaction time or reaction stoichiometry and the by-products can be easily removed during workup by precipitation into ethanol. Several polymers have been prepared using this reduction scheme including two polymers which had 54% and 68% olefin remaining. Free standing films (approx. 12 {micro}m) were prepared from the 68% olefin material using draw-down technique and subsequently irradiated with a UV lamp (365 nm) for thirty minutes to induce crosslinking via thiol-ene reaction. After crosslinking, the olefin IR-absorption band disappeared and the Tg of the matrix material increased; both desirable properties for IR metamaterial applications. The polymer system has inherent photopatternable behavior primarily because of solubility differences between the pre-polymer and cross-linked matrix. Photopatterned structures using the 54% as well as the 68% olefin material were easily obtained. The synthesis, processing, and IR absorption data and the ramifications to dielectric metamaterials will be discussed.
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Kelley, Gary W.
2012-01-01
The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.
Hewett, P. L., Jr.; Mitrani, J. E.; Metz, W. C.; Vercellone, J. J.; Decision and Information Sciences
2001-11-01
The Chemical Stockpile Emergency Preparedness (CSEP) Program is a wide-ranging activity in support of a national initiative involving the U.S. Army Chemical Materiel Command (CMA), the Federal Emergency Management Agency (FEMA), 9 states, and 37 counties. Established in 1988, the CSEP Program enhances emergency planning for the unlikely event of a release of hazardous chemical weapons agent from one of the Army's chemical weapons storage installations currently storing chemical weapons. These obsolete weapons are scheduled to be destroyed; meanwhile, however, they pose a threat to installation workers and residents of the surrounding communities. Argonne's CSEP Program includes a variety of components that serve the needs of multiple program participants. Among the major activities are: (1) Development of the Emergency Planning Synchronization Matrix to facilitate integration of multi-jurisdictional emergency plans: (a) Coordinating, Integrating, and Synchronizing Disaster Response: Use of an Emergency Response Synchronization Matrix in Emergency Planning, Exercises, and Operations. A graphical depiction of the entire emergency response process via a synchronization matrix is an effective management tool for optimizing the design, exercise, and real-life implementation of emergency plans. This system-based approach to emergency planning depicts how a community organizes its response tasks across space and time. It gives responders the opportunity to make real-time adjustments to maximizing the often limited resources in protecting area residents. An effective response to any natural or technological hazard must involve the entire community and must not be limited by individual jurisdictions and organizations acting on their own without coordination, integration, and synchronization. An emergency response to an accidental release of chemical warfare agents from one of this nation's eight chemical weapons stockpile sites, like any other disaster response, is complex
NASA Astrophysics Data System (ADS)
Rudowicz, C.; Chung, C. Y.
2004-08-01
Spherical (S) and tesseral (T) tensor operators (TOs) have been extensively used in, for example, EMR and optical spectroscopy of transition ions. To enable a systematic review of the published tables of the operators and their matrix elements (MEs) we have generated the relevant tables by computer, using Mathematica programs. Our review reveals several misprints/errors in the major sources of TTOs—the conventional Stevens operators (CSOs—components q\\ge 0 ) and the extended ones (ESOs—all q) for rank k = 2,4, and 6—as well as of some STOs with k\\le 8 . The implications of using incorrect operators and/or MEs for the reliability of EMR-related programs and interpretation of experimental data are discussed. Studies of high-spin complexes like Mn12 (S = 10) and Fe19 (S = 33/2) require operator and ME listings up to k = 2S, which are not presently available. Using the algorithms developed recently by Ryabov, the generalized ESOs and their MEs for arbitrary rank k and spin S are generated by computer, using Mathematica. The extended tables enable simulation of the energy levels for arbitrary spin systems and symmetry cases. Tables are provided for the ESOs not available in the literature, with odd k = 3,5, and 7 for completeness; however, for the newly generalized ESOs with the most useful even rank k = 8,10, and 12 only, in view of the large listings sizes. General source codes for the generation of the ESO listings and their ME tables are available from the authors.
InkTag: Secure Applications on an Untrusted Operating System
Hofmann, Owen S.; Kim, Sangman; Dunn, Alan M.; Lee, Michael Z.; Witchel, Emmett
2014-01-01
InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification, a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes. PMID:24429939
NASA Astrophysics Data System (ADS)
Rasheed, A.; Khalid, F. A.
2014-06-01
The polymeric matrix composites have found extensive applications in sports because of high strength to weight ratio, ease of processing, and longer life. This work was carried out to study the properties of different sections of composite field hockey sticks and the influence of carbon nanotubes on their properties. The samples were fabricated by compression molding process. The increase in mechanical properties by the incorporation of carbon nanotubes is correlated with the process parameters to consider enhancement in the overall performance of the stick sections.
Applications of platelet-rich fibrin matrix in facial plastic surgery.
Sclafani, Anthony P
2009-11-01
Platelet concentrates enjoyed some clinical popularity in facial plastic surgery several years ago. However, interest waned due to expense, amount of blood required, equipment, space, and staff needed, and lack of clinically significant benefit. A novel, simple method of preparing an autologous platelet derivative (Selphyl; Aesthetic Factors, Princeton, NJ) allows rapid and inexpensive generation of a platelet-rich fibrin matrix (PRFM) that can be used to enhance healing after facial procedures as well as to rejuvenate the face without tissue manipulation. PRFM provides autologous, natural, but concentrated platelet growth factor release and stimulation of surrounding tissue. This article describes its use for cosmetic facial applications.
Evaluation of the Trajectory Operations Applications Software Task (TOAST)
NASA Technical Reports Server (NTRS)
Perkins, Sharon; Martin, Andrea; Bavinger, Bill
1990-01-01
The Trajectory Operations Applications Software Task (TOAST) is a software development project under the auspices of the Mission Operations Directorate. Its purpose is to provide trajectory operation pre-mission and real-time support for the Space Shuttle program. As an Application Manager, TOAST provides an isolation layer between the underlying Unix operating system and the series of user programs. It provides two main services: a common interface to operating system functions with semantics appropriate for C or FORTRAN, and a structured input and output package that can be utilized by user application programs. In order to evaluate TOAST as an Application Manager, the task was to assess current and planned capabilities, compare capabilities to functions available in commercially-available off the shelf (COTS) and Flight Analysis Design System (FADS) users for TOAST implementation. As a result of the investigation, it was found that the current version of TOAST is well implemented and meets the needs of the real-time users. The plans for migrating TOAST to the X Window System are essentially sound; the Executive will port with minor changes, while Menu Handler will require a total rewrite. A series of recommendations for future TOAST directions are included.
Fire protection system operating experience review for fusion applications
Cadwallader, L.C.
1995-12-01
This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.
Small-energy analysis for the selfadjoint matrix Schrödinger operator on the half line. II
Aktosun, Tuncay; Klaus, Martin; Weder, Ricardo
2014-03-15
The matrix Schrödinger equation with a selfadjoint matrix potential is considered on the half line with the most general selfadjoint boundary condition at the origin. When the matrix potential is integrable and has a second moment, it is shown that the corresponding scattering matrix is differentiable at zero energy. An explicit formula is provided for the derivative of the scattering matrix at zero energy. The previously established results when the potential has only the first moment are improved when the second moment exists, by presenting the small-energy asymptotics for the related Jost matrix, its inverse, and various other quantities relevant to the corresponding direct and inverse scattering problems.
Web Application Software for Ground Operations Planning Database (GOPDb) Management
NASA Technical Reports Server (NTRS)
Lanham, Clifton; Kallner, Shawn; Gernand, Jeffrey
2013-01-01
A Web application facilitates collaborative development of the ground operations planning document. This will reduce costs and development time for new programs by incorporating the data governance, access control, and revision tracking of the ground operations planning data. Ground Operations Planning requires the creation and maintenance of detailed timelines and documentation. The GOPDb Web application was created using state-of-the-art Web 2.0 technologies, and was deployed as SaaS (Software as a Service), with an emphasis on data governance and security needs. Application access is managed using two-factor authentication, with data write permissions tied to user roles and responsibilities. Multiple instances of the application can be deployed on a Web server to meet the robust needs for multiple, future programs with minimal additional cost. This innovation features high availability and scalability, with no additional software that needs to be bought or installed. For data governance and security (data quality, management, business process management, and risk management for data handling), the software uses NAMS. No local copy/cloning of data is permitted. Data change log/tracking is addressed, as well as collaboration, work flow, and process standardization. The software provides on-line documentation and detailed Web-based help. There are multiple ways that this software can be deployed on a Web server to meet ground operations planning needs for future programs. The software could be used to support commercial crew ground operations planning, as well as commercial payload/satellite ground operations planning. The application source code and database schema are owned by NASA.
NASA Technical Reports Server (NTRS)
Schmidt, H.; Tango, G. J.; Werby, M. F.
1985-01-01
A new matrix method for rapid wave propagation modeling in generalized stratified media, which has recently been applied to numerical simulations in diverse areas of underwater acoustics, solid earth seismology, and nondestructive ultrasonic scattering is explained and illustrated. A portion of recent efforts jointly undertaken at NATOSACLANT and NORDA Numerical Modeling groups in developing, implementing, and testing a new fast general-applications wave propagation algorithm, SAFARI, formulated at SACLANT is summarized. The present general-applications SAFARI program uses a Direct Global Matrix Approach to multilayer Green's function calculation. A rapid and unconditionally stable solution is readily obtained via simple Gaussian ellimination on the resulting sparsely banded block system, precisely analogous to that arising in the Finite Element Method. The resulting gains in accuracy and computational speed allow consideration of much larger multilayered air/ocean/Earth/engineering material media models, for many more source-receiver configurations than previously possible. The validity and versatility of the SAFARI-DGM method is demonstrated by reviewing three practical examples of engineering interest, drawn from ocean acoustics, engineering seismology and ultrasonic scattering.
Response of microscale cell/matrix constructs to successive force application in a 3D environment
NASA Astrophysics Data System (ADS)
Liu, Alan; Chen, Christopher; Reich, Daniel
2014-03-01
Mechanical dilation of arteries by pulsatile blood flow is directly opposed by coordinated contraction of a band of smooth muscle tissue that envelops the vessels. This mechanical adaptation of smooth muscle cells to external loading is a critical feature of normal blood vessel function. While most previous studies on biomechanical systems have focused on single cells or large excised tissue, we utilize a device to apply forces to engineered smooth muscle microtissues. This device consists of arrayed pairs of elastomeric micro-cantilevers capable of magnetic actuation. Tissues are formed through self-assembly following the introduction of cell-infused collagen gel to the array. With this system, we are able to dynamically stretch and relax these sub-millimeter sized tissues. The timing and magnitude of the force application can be precisely controlled and thus can be used to mimic a wide range of physiological behavior. In particular, we will discuss results that show that the interval between successive force applications mediates the both the subsequent mechanical and active dynamics of the cell/matrix composite system. Understanding this process will lead to better understanding of the interplay between cell and extracellular matrix responses to mechanical stimulus at a novel length scale.
An Overview of the Medical Applications of Marine Skeletal Matrix Proteins
Rahman, M. Azizur
2016-01-01
In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery. PMID:27626432
An Overview of the Medical Applications of Marine Skeletal Matrix Proteins.
Rahman, M Azizur
2016-01-01
In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery. PMID:27626432
An Overview of the Medical Applications of Marine Skeletal Matrix Proteins.
Rahman, M Azizur
2016-09-12
In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery.
Saliva as an analytical matrix: state of the art and application for biomonitoring.
Caporossi, Lidia; Santoro, Alessia; Papaleo, Bruno
2010-09-01
Analytical tests to measure chemicals in saliva can be employed for numerous analytes, endogenous compounds or xenobiotics. The objective was to determine which chemicals can be analysed with this matrix, which analytical methods are applicable, and what application is possible for biomonitoring. We reviewed the literature using three databases, MEDLINE, PubMed and Scopus, collecting articles on different kinds of analysis in saliva. Studies were principally about molecules of clinical interest, xenobiotics, especially drugs of abuse, and chemicals used at workplaces; some substances show no relevant correlation with exposure data while others seems to be of particular interest for systematic use for biomonitoring. Currently, saliva is used far less than other biological fluids but its use for biomonitoring of exposure to chemicals might open up new areas for research and would certainly simplify the collection of biological samples.
Ellingson, W. A.
1999-05-21
Monolithic structural ceramics and continuous fiber ceramic matrix composites (CMCs) are being developed for application in many thermally and chemically aggressive environments where structural reliability is paramount. We have recently developed advanced nondestructive evaluation (NDE) methods that can detect distributed ''defects'' such as density gradients and machining-induced damage in monolithic materials, as well as delamination, porosity, and throughwall cracks, in CMC materials. These advanced NDE methods utilize (a) high-resolution, high-sensitivity thermal imaging; (b) high-resolution X-ray imaging; (c) laser-based elastic optical scattering; (d) acoustic resonance; (e) air-coupled ultrasonic methods; and (f) high-sensitivity fluorescent penetrant technology. This paper discusses the development and application of these NDE methods relative to ceramic processing and ceramic components used in large-scale industrial gas turbines and hot gas filters for gas stream particulate cleanup.
Applications of multiple-constraint matrix updates to the optimal control of large structures
NASA Technical Reports Server (NTRS)
Smith, S. W.; Walcott, B. L.
1992-01-01
Low-authority control or vibration suppression in large, flexible space structures can be formulated as a linear feedback control problem requiring computation of displacement and velocity feedback gain matrices. To ensure stability in the uncontrolled modes, these gain matrices must be symmetric and positive definite. In this paper, efficient computation of symmetric, positive-definite feedback gain matrices is accomplished through the use of multiple-constraint matrix update techniques originally developed for structural identification applications. Two systems were used to illustrate the application: a simple spring-mass system and a planar truss. From these demonstrations, use of this multiple-constraint technique is seen to provide a straightforward approach for computing the low-authority gains.
30 CFR 778.11 - Providing applicant and operator information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... organizational structure, up to and including the ultimate parent entity of the applicant and operator; for every... title and relationship to you, including percentage of ownership and location in the organizational structure. (3) The date the person began functioning in that position. (e) We need not make a finding...
30 CFR 778.11 - Providing applicant and operator information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... organizational structure, up to and including the ultimate parent entity of the applicant and operator; for every... title and relationship to you, including percentage of ownership and location in the organizational structure. (3) The date the person began functioning in that position. (e) We need not make a finding...
Arbitrarily Applicable Comparative Relations: Experimental Evidence for a Relational Operant
ERIC Educational Resources Information Center
Berens, Nicholas M.; Hayes, Steven C.
2007-01-01
Arbitrarily applicable derived relational responding has been argued by relational frame theorists to be a form of operant behavior. The present study examined this idea with 4 female participants, ages 4 to 5 years old, who could not perform a series of problem-solving tasks involving arbitrary more than and less than relations. In a combined…
77 FR 58822 - Alliant Techsystems Operations LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-24
..., Virginia 22209 filed an application in the above referenced docket pursuant to section 7(c) of the Natural Gas Act (NGA) to construct and operate new pipeline to transport natural gas from an interconnection with Columbia Gas of Maryland, Inc. (CMD) at the Maryland/West Virginia border to a regulating...
49 CFR 392.2 - Applicable operating rules.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 5 2013-10-01 2013-10-01 false Applicable operating rules. 392.2 Section 392.2 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL...
Interactive intelligent remote operations: application to space robotics
NASA Astrophysics Data System (ADS)
Dupuis, Erick; Gillett, G. R.; Boulanger, Pierre; Edwards, Eric; Lipsett, Michael G.
1999-11-01
A set of tolls addressing the problems specific to the control and monitoring of remote robotic systems from extreme distances has been developed. The tools include the capability to model and visualize the remote environment, to generate and edit complex task scripts, to execute the scripts to supervisory control mode and to monitor and diagnostic equipment from multiple remote locations. Two prototype systems are implemented for demonstration. The first demonstration, using a prototype joint design called Dexter, shows the applicability of the approach to space robotic operation in low Earth orbit. The second demonstration uses a remotely controlled excavator in an operational open-pit tar sand mine. This demonstrates that the tools developed can also be used for planetary exploration operations as well as for terrestrial mining applications.
Schwinger-Dyson operators as invariant vector fields on a matrix model analog of the group of loops
Krishnaswami, Govind S.
2008-06-15
For a class of large-N multimatrix models, we identify a group G that plays the same role as the group of loops on space-time does for Yang-Mills theory. G is the spectrum of a commutative shuffle-deconcatenation Hopf algebra that we associate with correlations. G is the exponential of the free Lie algebra. The generating series of correlations is a function on G and satisfies quadratic equations in convolution. These factorized Schwinger-Dyson or loop equations involve a collection of Schwinger-Dyson operators, which are shown to be right-invariant vector fields on G, one for each linearly independent primitive of the Hopf algebra. A large class of formal matrix models satisfying these properties are identified, including as special cases, the zero momentum limits of the Gaussian, Chern-Simons, and Yang-Mills field theories. Moreover, the Schwinger-Dyson operators of the continuum Yang-Mills action are shown to be right-invariant derivations of the shuffle-deconcatenation Hopf algebra generated by sources labeled by position and polarization.
Statistical Scalability Analysis of Communication Operations in Distributed Applications
Vetter, J S; McCracken, M O
2001-02-27
Current trends in high performance computing suggest that users will soon have widespread access to clusters of multiprocessors with hundreds, if not thousands, of processors. This unprecedented degree of parallelism will undoubtedly expose scalability limitations in existing applications, where scalability is the ability of a parallel algorithm on a parallel architecture to effectively utilize an increasing number of processors. Users will need precise and automated techniques for detecting the cause of limited scalability. This paper addresses this dilemma. First, we argue that users face numerous challenges in understanding application scalability: managing substantial amounts of experiment data, extracting useful trends from this data, and reconciling performance information with their application's design. Second, we propose a solution to automate this data analysis problem by applying fundamental statistical techniques to scalability experiment data. Finally, we evaluate our operational prototype on several applications, and show that statistical techniques offer an effective strategy for assessing application scalability. In particular, we find that non-parametric correlation of the number of tasks to the ratio of the time for individual communication operations to overall communication time provides a reliable measure for identifying communication operations that scale poorly.
NASA Astrophysics Data System (ADS)
Haslam, Jeffery John
1998-12-01
The need for improved fuel economy and reduced environmental emissions from power turbines has prompted the development of high temperature fiber composite materials. One use of these materials is for liners of the hot combustion regions of jet engines and land based power turbines. Stability of the composite materials against oxidative damage during long term use at high temperatures has motivated recent research into fiber composite materials composed entirely of oxide ceramics. All-oxide fiber reinforced composites containing porous, strongly bonded matrices have become of interest. The porosity provides for crack deflection along the fibers to prevent catastrophic failure of the fiber reinforcements. A new application of a processing method that produces evaporation/condensation sintering was employed to prevent shrinkage of the matrix. This processing method and the properties of the matrix, fibers, and composite were evaluated in this work. Producing a matrix without shrinkage is important to prevent undesirable crack-like voids from forming in the matrix. These voids are caused by constraint against shrinkage by the fiber reinforcements. Dry hydrogen chloride gas produced a reactive gas atmosphere that was used to sinter the zirconia particles with minimal shrinkage because the gas promotes evaporation/condensation sintering with zirconia. Sintering of samples that did not contain fiber reinforcements was studied to evaluate the properties of the matrix material. The sintering of monoclinic, tetragonal, and cubic zirconias in the reactive gas atmosphere was compared. Additions of mullite (which did not sinter significantly at processing temperatures) further reduced the shrinkage. The effects of the processing conditions on the sintering shrinkage, microstructure development, and mechanical properties were studied. Cubic and monoclinic zirconia coarsened significantly in the HCl gas sintering atmosphere. The coarsening of the particles during the sintering
LBB application in the US operating and advanced reactors
Wichman, K.; Tsao, J.; Mayfield, M.
1997-04-01
The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.
NASA Astrophysics Data System (ADS)
Issoupov, V.; Viel-Inguimbert, V.; Dinguirard, M.; Startsev, O. V.; Nikishin, E. F.
2003-09-01
Thermal ageing of polymer-matrix composite materials of any long-life spacecraft in LEO involves evolution of mechanical, thermophysical and morphological properties, especially if the structure operates under external mechanical stress like bending. Behavior of KMU-4l carbon/epoxy composite material under combined effect of thermal profiles and static mechanical loading has been studied in a simulated LEO space environment. Thermal cycling was performed on specimens under bending stress reaching 30.4% of the material ultimate strength. Specimens subjected to combined thermal and mechanical fatigue were examined in a series of 4 intermediate points with a maximum of 120 cycles. The DMTA technique has been employed to follow the global thermomechanical response of KMU-4l composite. The degradation produced was detected by moisture diffusion analysis, the crack density was estimated at the edges of the specimens using a scanning electron microscope. Effects such as the temperature dependence of material properties and matrix post-curing phenomena are also discussed. The results are compared with the appropriate data obtained on specimens of KMU-4l exposed for up to 1501 days to LEO space environments onboard SALYUT and MIR space stations.
Bannwart, Flávio C; Penelet, Guillaume; Lotton, Pierrick; Dalmont, Jean-Pierre
2013-05-01
The successful design of a thermoacoustic engine depends on the appropriate description of the processes involved inside the thermoacoustic core (TAC). This is a difficult task when considering the complexity of both the heat transfer phenomena and the geometry of the porous material wherein the thermoacoustic amplification process occurs. An attempt to getting round this difficulty consists in measuring the TAC transfer matrix under various heating conditions, the measured transfer matrices being exploited afterward into analytical models describing the complete apparatus. In this paper, a method based on impedance measurements is put forward, which allows the accurate measurement of the TAC transfer matrix, contrarily to the classical two-load method. Four different materials are tested, each one playing as the porous element allotted inside the TAC, which is submitted to different temperature gradients to promote thermoacoustic amplification. The experimental results are applied to the modeling of basic standing-wave and traveling-wave engines, allowing the prediction of the engine operating frequency and thermoacoustic amplification gain, as well as the optimum choice of the components surrounding the TAC.
Microcomputer applications for concurrent aggregate mine operation and reclamation planning
Culp, B.K.
1990-02-01
As ever increasing need exists for the planning of aggregate mine operations and reclamation. The purpose of this thesis is to investigate microcomputer applications to assist in the development of a concurrent aggregate mine operation and reclamation plan. The thesis is divided into sections that encompassed three aspects. The first, Section 1 -- concurrent Aggregate Mine Operation and Reclamation Planning, examines the possibility of organizing the operation and reclamation of aggregate mining into a single plan or set of plans. The second section of the thesis, Section 2 -- Microcomputer Applications, describes the use of microcomputers within the mining industry and the landscape architecture profession. This section contains a review of the current types of programs and how they are used. The programs that were used for the case study and their applications and characteristics are also explored. The third and final section of the thesis, Section 3 -- Alden Quarry Case Study, applies the concepts of the first two sections to a practical situation. 35 refs., 49 figs., 7 tabs.
Application of AI techniques to blast furnace operations
Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro
1995-10-01
It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.
NASA Astrophysics Data System (ADS)
Shan, Ying
Flexible matrix composites (FMCs) utilize the high elongation capability of elastomers such as polyurethane to withstand large strains in the direction transverse to the fiber reinforcement while retaining strength and stiffness in the longitudinal direction. FMCs are highly anisotropic and can therefore be tailored to achieve distinctive mechanical characteristics that are difficult to obtain using conventional rigid matrix composites. In the current study, the potential of using an FMC to construct a flexurally-soft, torsionally-stiff driveshaft is examined. The FMC selected for the current investigation is a carbon fiber/polyurethane matrix material system. Both quasi-static and dynamic tests have been performed to characterize the properties of the FMC material. By modeling viscoelastic FMC lamina properties with a fractional derivative approach, a novel damping model that accounts for the frequency and temperature dependence of the FMC material is developed. This is the first time fractional derivative model has been applied to a fiber composite. Good agreement between the damping model and experimental data for angle-ply tubes was obtained. Based on the validated damping model, a self-heating model to predict the temperature increase caused by internal damping of a FMC shaft under misaligned rotation is also proposed. A laboratory-scale, misaligned FMC shaft rotation test stand was built to validate the proposed model. Good agreement is shown between the self-heating model predictions and experiment results. This model can be valuable in the selection of constituent materials for FMCs and also in the design of FMC shafts. Preliminary fatigue test results show that FMC materials have potentially good fatigue performance in shaft applications.
Properties of Graphite Fiber Reinforced Copper Matrix Composites for Space Power Applications
NASA Technical Reports Server (NTRS)
Ellis, David L.
1992-01-01
The thermal and mechanical properties of pitch-based graphite fiber reinforced copper matrix (Gr/Cu) composites usable for space applications such as radiator fins were investigated. Thermal conductivity was measured as a function of fiber volume fraction and architecture. Results showed for unidirectional P-100 Gr/Cu composites, the longitudinal thermal conductivity was nearly independent of fiber volume fraction. Transverse thermal conductivities (perpendicular to the fibers) were strongly affected by the fiber volume fraction with higher volume fractions resulting in lower thermal conductivities. The effect of architecture on thermal conductivity followed the cosine squared law for simple architectures. Insufficient data are available currently to model more complex architectures, but adding fibers in the direction of the heat flow increases the thermal conductivity as low conductivity plies are supplemented by high conductivity plies. Thermal expansion tests were conducted on the Gr fibers and Gr/Cu composites. The results show a considerable thermal expansion mismatch between the fibers and the Cu matrix. The longitudinal thermal expansion showed a strong dependence on the architecture of the Gr/Cu composites. The composites also show a thermal expansion hysteresis. The hysteresis was eliminated by an engineered interface. Mechanical testing concentrated on the dynamic modulus and strength of the composites. The dynamic modulus of the Gr/Cu composites was 305 GPa up to 400 C, a value equivalent to Be. The strengths of the composites were less than expected, but this is attributed to the poor bond across the interface between the Gr fibers and Cu matrix. Testing of composites with an engineered interface is expected to yield strengths nearer the values predicted by the rule of mixtures.
Application of Absorbable Hemostatic Materials Observed in Thyroid Operation
NASA Astrophysics Data System (ADS)
Li, Yan-Ming; Liang, Zhen-Zhen; Song, Yan
2016-05-01
To observe the application effects of the absorbable hemostatic materials in thyroid operation. Methods: From May 2014 to January 2015, 100 patients with thyroid surgery in our university affiliated hospital were selected as the research object. Randomly divided into experimental group and control group, 50 cases in each group. Application of absorbable hemostatic hemostatic materials in the experimental group during the operation, the control group using the traditional mechanical methods of hemostasis hemostasis to observe the operation time, bleeding volume, postoperative drainage volume, complications and hospital stay of the two groups. Results: The operation time, bleeding volume, postoperative drainage and hospital stay in the experimental group were significantly lower in the study group than in the control group, and the difference between the two groups was statistically significant (P< 0.05); The satisfaction of patients in the experimental group was significantly higher than that in the control group, the difference was statistically significant in the two groups (P < 0.05); There was no significant difference in the incidence of wound bleeding complications between the study group and the control group (P > 0.05). Conclusion: Absorbable hemostatic materials can effectively shorten the operation time, reduce intraoperative blood loss and postoperative drainage, reduce the length of hospital stay and improve the success rate of surgery and patient satisfaction, which is worthy to be popularized in clinical thyroid surgery.
NASA Astrophysics Data System (ADS)
Sanghavi, Suniti; Davis, Anthony B.; Eldering, Annmarie
2014-01-01
In this paper, we build up on the scalar model smartMOM to arrive at a formalism for linearized vector radiative transfer based on the matrix operator method (vSmartMOM). Improvements have been made with respect to smartMOM in that a novel method of computing intensities for the exact viewing geometry (direct raytracing) without interpolation between quadrature points has been implemented. Also, the truncation method employed for dealing with highly peaked phase functions has been changed to a vector adaptation of Wiscombe's delta-m method. These changes enable speedier and more accurate radiative transfer computations by eliminating the need for a large number of quadrature points and coefficients for generalized spherical functions. We verify our forward model against the benchmarking results of Kokhanovsky et al. (2010) [22]. All non-zero Stokes vector elements are found to show agreement up to mostly the seventh significant digit for the Rayleigh atmosphere. Intensity computations for aerosol and cloud show an agreement of well below 0.03% and 0.05% at all viewing angles except around the solar zenith angle (60°), where most radiative models demonstrate larger variances due to the strongly forward-peaked phase function. We have for the first time linearized vector radiative transfer based on the matrix operator method with respect to aerosol optical and microphysical parameters. We demonstrate this linearization by computing Jacobian matrices for all Stokes vector elements for a multi-angular and multispectral measurement setup. We use these Jacobians to compare the aerosol information content of measurements using only the total intensity component against those using the idealized measurements of full Stokes vector [I,Q,U,V] as well as the more practical use of only [I,Q,U]. As expected, we find for the considered example that the accuracy of the retrieved parameters improves when the full Stokes vector is used. The information content for the full Stokes
Underwater application of nasal decongestants: method for special operations.
Mutzbauer, T S; Mueller, P H; Sigg, O; Tetzlaff, K; Neubauer, B
2000-11-01
A simple method of emergency underwater application of a nasal decongestant in divers to prevent diving-related accidents or even fatalities attributable to sequelae of middle-ear and sinus barotrauma of ascent was evaluated. Eleven military divers had to inject 1 mL of 0.02% methylene blue into a central venous catheter after having inserted the tip between their upper lip and the mask at 1 m depth in a pool. After injection, the head had to be reclined. Blue liquid flowing from a diver's nostril and a "bitter" taste sensation reported immediately after surfacing indicated successful application. All divers were observed to have had blue liquid flowing from the nostril of application, and one diver could not describe the taste. This method of underwater application of nasal decongestants may be useful for emergency prevention in divers, especially during covert operations. Underwater availability of the system in a special kit carried by divers would be required.
Cryogenic system operating experience review for fusion applications
Cadwallader, L.C.
1992-01-01
This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design.
Hydrologic ensemble prediction: enhancing science, operation and application through HEPEX
NASA Astrophysics Data System (ADS)
Wetterhall, Fredrik; Ramos, Maria-Helena; Wang, Qj; Wood, Andy
2016-04-01
HEPEX (Hydrologic Ensemble Prediction Experiment) was established in March 2004 at a workshop hosted by the European Centre for Medium Range Weather Forecasts (ECMWF), co-sponsored by the US National Weather Service (NWS) and the European Commission (EC). HEPEX and the community it represents has over its more than 10 years of existence continuously worked to promote and advance the science of hydrologic ensemble prediction as well as operational systems and water management applications. Through workshops and conference sessions, HEPEX has connected the research community, forecasters and forecast users and facilitated the exchange of ideas, data, methods and experience. In particular, the establishment of an online blog portal has greatly enhanced community interaction and knowledge sharing (www.hepex.org). HEPEX has now a strong and active community of nearly 400 researchers and practitioners around the world. In this poster, we present an overview of recent and planned HEPEX activities, and highlight opportunities to further progress ensemble prediction science, operation and application.
ZnO:H indium-free transparent conductive electrodes for active-matrix display applications
NASA Astrophysics Data System (ADS)
Chen, Shuming; Wang, Sisi
2014-12-01
Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.
Protein crystallization with microseed matrix screening: application to human germline antibody Fabs
Obmolova, Galina; Malia, Thomas J.; Teplyakov, Alexey; Sweet, Raymond W.; Gilliland, Gary L.
2014-01-01
The crystallization of 16 human antibody Fab fragments constructed from all pairs of four different heavy chains and four different light chains was enabled by employing microseed matrix screening (MMS). In initial screening, diffraction-quality crystals were obtained for only three Fabs, while many Fabs produced hits that required optimization. Application of MMS, using the initial screens and/or refinement screens, resulted in diffraction-quality crystals of these Fabs. Five Fabs that failed to give hits in the initial screen were crystallized by cross-seeding MMS followed by MMS optimization. The crystallization protocols and strategies that resulted in structure determination of all 16 Fabs are presented. These results illustrate the power of MMS and provide a basis for developing future strategies for macromolecular crystallization. PMID:25084393
SiC/SiC Ceramic Matrix Composites Developed for High-Temperature Space Transportation Applications
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Bhatt, Ramakrishna, T.; Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.; Petko, Jeanne F.
2005-01-01
Researchers at the NASA Glenn Research Center have been developing durable, high-temperature ceramic matrix composites (CMCs) with silicon carbide (SiC) matrices and SiC or carbon fibers for use in advanced reusable launch vehicle propulsion and airframe applications in the Next Generation Launch Technology (NGLT) Program. These CMCs weigh less and are more durable than competing metallic alloys, and they are tougher than silicon-based monolithic ceramics. Because of their high specific strength and durability at high temperatures, CMCs such as C/SiC (carbon- fiber-reinforced silicon carbide) and SiC/SiC (silicon-carbide-fiber-reinforced silicon carbide) may increase vehicle performance and safety significantly and reduce the cost of transporting payloads to orbit.
ZnO:H indium-free transparent conductive electrodes for active-matrix display applications
Chen, Shuming Wang, Sisi
2014-12-01
Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.
Youngstrom, Daniel W; Barrett, Jennifer G; Jose, Rod R; Kaplan, David L
2013-01-01
Natural extracellular matrix provides a number of distinct advantages for engineering replacement orthopedic tissue due to its intrinsic functional properties. The goal of this study was to optimize a biologically derived scaffold for tendon tissue engineering using equine flexor digitorum superficialis tendons. We investigated changes in scaffold composition and ultrastructure in response to several mechanical, detergent and enzymatic decellularization protocols using microscopic techniques and a panel of biochemical assays to evaluate total protein, collagen, glycosaminoglycan, and deoxyribonucleic acid content. Biocompatibility was also assessed with static mesenchymal stem cell (MSC) culture. Implementation of a combination of freeze/thaw cycles, incubation in 2% sodium dodecyl sulfate (SDS), trypsinization, treatment with DNase-I, and ethanol sterilization produced a non-cytotoxic biomaterial free of appreciable residual cellular debris with no significant modification of biomechanical properties. These decellularized tendon scaffolds (DTS) are suitable for complex tissue engineering applications, as they provide a clean slate for cell culture while maintaining native three-dimensional architecture.
Recent Applications Of Metal Matrix Composites In Precision Instruments And Optical Systems
NASA Astrophysics Data System (ADS)
Mohn, Walter R.; Vukobratovich, Daniel
1988-02-01
This paper describes three unique metal matrix composite (MMC) material systems that have been developed for use in dimensionally stable platforms, precision mechanical systems, and lightweight reflective optics. These engineered materials, consisting of aluminum alloys reinforced with fine particles of silicon carbide, offer distinctive performance advantages over conventional metals, including greater specific stiffness, higher strength, and better resistance to compressive microcreep. Weighing about the same as aluminum, certain grades of these MMC materials are isotropic and have excellent thermal conductivity, and they can be tailored to match the coefficients of thermal expansion of other materials, including beryllium, stainless steel, and electroless nickel. Such flexibilities in establishing material properties and characteristics present new opportunities to the designer in producing weight-critical, precision hardware. Practical applications of MMC materials in advanced guidance equipment and lightweight optical assemblies are presented and discussed.
Improvements in sparse matrix/vector technique applications for on-line load flow calculation
Ristanovic, P.; Bjelogrlic, M.; Babic, B.S.
1989-02-01
Sparsity technique is applied to a wide range of problems in power systems analysis. In this paper the authors propose several analytical and computational improvements in sparsity applications. The new partial matrix refactorization method and ordering algorithm are presented. The proposed method is very efficient when applied to various kinds of programs, such as: on-line load flow, optimal power flow and steady-state security analysis. The proposed methodology is applied in a fast decoupled load flow program which include the treatment of tap violations on under-load tap changing (ULTC) transformers and reactive power generation on PV buses. Effects of proposed improvements are well tested and documented on the three networks: 118 bus IEEE test network and two utility networks with 209 and 519 buses, respectively. Keywords: sparsity technique, load flow analysis, security analysis.
NASA Astrophysics Data System (ADS)
Philen, M.
2009-10-01
The applicability of variable impedance fluidic flexible matrix composites (F2MC) is investigated for development of prosthetic and orthotic devices. The F2MC material is an innovative combination of high performance composite tubes containing high bulk modulus fluids. The new material system can potentially achieve a change in stiffness of several orders of magnitude through valve control. The F2MC material system is investigated in this research through analytical studies for active impedance control for load transfer reduction in transtibial prosthetic sockets and impedance joint control for ankle-foot orthoses (AFO). Preliminary analysis results indicate that the variable modulus system can reduce the load transfer between the limb and transtibial socket and can provide impedance tailoring for improving foot-slap in an AFO.
Othman, Faridah; Taghieh, Mahmood
2016-01-01
Optimal operation of water resources in multiple and multipurpose reservoirs is very complicated. This is because of the number of dams, each dam’s location (Series and parallel), conflict in objectives and the stochastic nature of the inflow of water in the system. In this paper, performance optimization of the system of Karun and Dez reservoir dams have been studied and investigated with the purposes of hydroelectric energy generation and providing water demand in 6 dams. On the Karun River, 5 dams have been built in the series arrangements, and the Dez dam has been built parallel to those 5 dams. One of the main achievements in this research is the implementation of the structure of production of hydroelectric energy as a function of matrix in MATLAB software. The results show that the role of objective function structure for generating hydroelectric energy in weighting method algorithm is more important than water supply. Nonetheless by implementing ε- constraint method algorithm, we can both increase hydroelectric power generation and supply around 85% of agricultural and industrial demands. PMID:27248152
Heydari, Mohammad; Othman, Faridah; Taghieh, Mahmood
2016-01-01
Optimal operation of water resources in multiple and multipurpose reservoirs is very complicated. This is because of the number of dams, each dam's location (Series and parallel), conflict in objectives and the stochastic nature of the inflow of water in the system. In this paper, performance optimization of the system of Karun and Dez reservoir dams have been studied and investigated with the purposes of hydroelectric energy generation and providing water demand in 6 dams. On the Karun River, 5 dams have been built in the series arrangements, and the Dez dam has been built parallel to those 5 dams. One of the main achievements in this research is the implementation of the structure of production of hydroelectric energy as a function of matrix in MATLAB software. The results show that the role of objective function structure for generating hydroelectric energy in weighting method algorithm is more important than water supply. Nonetheless by implementing ε- constraint method algorithm, we can both increase hydroelectric power generation and supply around 85% of agricultural and industrial demands.
Generalized complement operators and applications in some semirings
Bijev, G.
2013-12-18
Generalized complement operators on the semiring of all Boolean matrices as semilattice homomorphisms are considered. Some applications in solving equations on the set Bn of all binary relations are developed. In particular the structure of B3 is investigated by computer methods. Specific properties of the subsemigroup generated by all irregular relations in B3 are found. Stochastic experiments on the monoid Bn were made. The frequency of irregular elements as well as those of solvable equations depending on n is examined.
The Application of Metal Matrix Composite Materials in Propulsion System Valves
NASA Technical Reports Server (NTRS)
Laszar, John; Shah, Sandeep; Kashalikar, Uday; Rozenoyer, Boris
2003-01-01
Metal Matrix Composite (MMC) materials have been developed and used in many applications to reduce the weight of components where weight and deflection are the driving design requirement. MMC materials are being developed for use in some propulsion system components, such as turbo-pumps and thrust chambers. However, to date, no propulsion system valves have been developed that take advantage of the materials unique properties. The stiffness of MMC's could help keep valves light or improve life where deflection is the design constraint (such as seal and bearing locations). The low CTE of the materials might allow the designer to reduce tolerances and clearances producing better performance and lighter weight valves. Using unique manufacturing processes allow parts to be plated/coated for longer life and allow joining either by welding or threading/bolting. Additionally, casting of multi part pre-forms to form a single part can lead to designs that would be hard or impossible to manufacture with other methods. Therefore, NASA's Marshall Space Flight Center (MSFC) has developed and tested a prototype propulsion system valve that utilizes these materials to demonstrate these advantages. Through design and testing, this effort will determine the best use of these materials in valves designed to achieve the goal of a highly reliable and lightweight propulsion system. This paper is a continuation of the paper, The Application of Metal Matrix Composite Materials In Propulsion System Valves, presented at the JANNAF Conference held in April, 2002. Fabrication techniques employed, valve development, and valve test results will be discussed in this paper.
Application of solid state lighting in aerial refueling operations
NASA Astrophysics Data System (ADS)
Mangum, Scott; Singer, Jeffrey; Walker, Richard; Ferguson, Joseph; Kemp, Richard
2005-09-01
Operating at altitude and often in turbulent, low visibility conditions, in-flight refueling of aircraft is a challenging endeavor, even for seasoned aviators. The receiving aircraft must approach a large airborne tanker; take position within a "reception window" beneath and/or behind the tanker and, dependent upon the type of receiving aircraft, mate with an extended refueling boom or hose and drogue. Light is used to assist in the approach, alignment and refuel process of the aircraft. Robust solid state light emitting diodes (LEDs) are an appropriate choice for use in the challenging environments that these aircraft operate within. This paper examines how LEDs are incorporated into several unique lighting applications associated with such aerial refueling operations. We will discuss the design requirements, both environmental and photometric that defined the selection of different LED packages for use in state-of-the-art airborne refueling aircraft Formation Lights, Hose Drum/Drogue Unit lights and Pilot Director Lights.
Ventilation Systems Operating Experience Review for Fusion Applications
Cadwallader, Lee Charles
1999-12-01
This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.
Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming
2013-01-01
The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).
An Empirically Based Method of Q-Matrix Validation for the DINA Model: Development and Applications
ERIC Educational Resources Information Center
de la Torre, Jimmy
2008-01-01
Most model fit analyses in cognitive diagnosis assume that a Q matrix is correct after it has been constructed, without verifying its appropriateness. Consequently, any model misfit attributable to the Q matrix cannot be addressed and remedied. To address this concern, this paper proposes an empirically based method of validating a Q matrix used…
NASA Astrophysics Data System (ADS)
Raychev, P. P.; Roussev, R. P.; Terziev, P. A.; Bonatsos, D.; Iudice, N. Lo
1997-04-01
A simplified boson realization of the soq subalgebra of u_q(3) is constructed. A simplified form of the corresponding so_q(3) basis states is obtained. The reduced matrix elements of a special second-rank tensor operator (quadrupole operator) are calculated in the so_q(3) basis (P. P. Raychev, R. P. Roussev, P. A. Terziev, D. Bonatsos and N. Lo Iudice, J. Phys. A (1996) in press).
SMES application for frequency control during islanded microgrid operation
NASA Astrophysics Data System (ADS)
Kim, A.-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man
2013-01-01
This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.
Matrix Fatigue Cracking Mechanisms of Alpha(2) TMC for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Gayda, John
1994-01-01
The objective of this work was to understand matrix cracking mechanisms in a unidirectional alpha(sub 2) TMC in possible hypersonic applications. A (0)(sub 8) SCS-6/Ti-24Al-11Nb (at. percent) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.
NASA Astrophysics Data System (ADS)
Upadhyaya, Priyank
A multi-scale mechanism-based life prediction model is developed for high-temperature polymer matrix composites (HTPMC) for high temperature airframe applications. In the first part of this dissertation the effect of Cloisite 20A (C20A) nano-clay compounding on the thermo-oxidative weight loss and the residual stresses due to thermal oxidation for a thermoset polymer bismaleimide (BMI) are investigated. A three-dimensional (3-D) micro-mechanics based finite element analysis (FEA) was conducted to investigate the residual stresses due to thermal oxidation using an in-house FEA code (NOVA-3D). In the second part of this dissertation, a novel numerical-experimental methodology is outlined to determine cohesive stress and damage evolution parameters for pristine as well as isothermally aged (in air) polymer matrix composites. A rate-dependent viscoelastic cohesive layer model was implemented in an in-house FEA code to simulate the delamination initiation and propagation in unidirectional polymer composites before and after aging. Double cantilever beam (DCB) experiments were conducted (at UT-Dallas) on both pristine and isothermally aged IM-7/BMI composite specimens to determine the model parameters. The J-Integral based approach was adapted to extract cohesive stresses near the crack tip. Once the damage parameters had been characterized, the test-bed FEA code employed a micromechanics based viscoelastic cohesive layer model to numerically simulate the DCB experiment. FEA simulation accurately captures the macro-scale behavior (load-displacement history) simultaneously with the micro-scale behavior (crack-growth history).
Gloved hand as applicator of antiseptic to operation sites.
Lowbury, E J; Lilly, H A
1975-07-26
A 95% ethanol solution containing 0-5% chlorhexidine digluconate caused a significantly greater mean reduction in skin bacteria (99-9% plus or minus 0-024) when rubbed by a gloved hand on to the skin of one hand for two minutes than when applied to the same area for the same time with the traditional gauze applicator for operation sites (90-7% plus or minus 2-12). The latter reduction, however, was greater than that reported in five previous experiments in which application of the same solution for the same time to two hands gave mean reductions varying from 79% to 84%. An aqueous solution and a 70% alcoholic solution of chlorhexidine also gave significantly greater reduction (and alcoholic povidone iodine almost significantly greater reduction) when applied by a gloved hand than on gauze. It is inferred that the effectiveness of skin disinfection depends both on the antiseptic used and on the manner of application, and varies with the amount of friction used in applying the antiseptic. Further studies on disinfection of the surgeon's hands with 0-5% chlorhexidine in 95% alcohol rubbed on and allowed to dry have supported its value and acceptability; the mean bacterial counts of washings from gloves of surgeons after operations were lower after the use of this method than after other preoperative preparations of the hands.
Roemelt, Michael
2015-07-28
Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.
Vacuum system operating experience review for fusion applications
Cadwallader, L.C.
1994-03-01
This report presents a review of vacuum system operating experiences from particle accelerator, fusion experiment, space simulation chamber, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of vacuum system component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with vacuum systems are discussed, including personnel safety, foreign material intrusion, and factors relevant to vacuum systems being the primary confinement boundary for tritium and activated dusts. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.
Test Waveform Applications for JPL STRS Operating Environment
NASA Technical Reports Server (NTRS)
Lux, James P.; Peters, Kenneth J.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.; Duncan, Courtney B.
2013-01-01
This software demonstrates use of the JPL Space Telecommunications Radio System (STRS) Operating Environment (OE), tests APIs (application programming interfaces) presented by JPL STRS OE, and allows for basic testing of the underlying hardware platform. This software uses the JPL STRS Operating Environment ["JPL Space Tele com - munications Rad io System Operating Environment,"(NPO-4776) NASA Tech Briefs, commercial edition, Vol. 37, No. 1 (January 2013), p. 47] to interact with the JPL-SDR Software Defined Radio developed for the CoNNeCT (COmmunications, Navigation, and Networking rEconfigurable Testbed) Project as part of the SCaN Testbed installed on the International Space Station (ISS). These are the first applications that are compliant with the new NASA STRS Architecture Standard. Several example waveform applications are provided to demonstrate use of the JPL STRS OE for the JPL-SDR platform used for the CoNNeCT Project. The waveforms provide a simple digitizer and playback capability for the SBand RF slice, and a simple digitizer for the GPS slice [CoNNeCT Global Positioning System RF Module, (NPO-47764) NASA Tech Briefs, commercial edition, Vol. 36, No. 3 (March 2012), p. 36]. These waveforms may be used for hardware test, as well as for on-orbit or laboratory checkout. Additional example waveforms implement SpaceWire and timer modules, which can be used for time transfer and demonstration of communication between the two Xilinx FPGAs in the JPLSDR. The waveforms are also compatible with ground-based use of the JPL STRS OE on radio breadboards and Linux.
Application of human error analysis to aviation and space operations
Nelson, W.R.
1998-03-01
For the past several years at the Idaho National Engineering and Environmental Laboratory (INEEL) the authors have been working to apply methods of human error analysis to the design of complex systems. They have focused on adapting human reliability analysis (HRA) methods that were developed for Probabilistic Safety Assessment (PSA) for application to system design. They are developing methods so that human errors can be systematically identified during system design, the potential consequences of each error can be assessed, and potential corrective actions (e.g. changes to system design or procedures) can be identified. The primary vehicle the authors have used to develop and apply these methods has been a series of projects sponsored by the National Aeronautics and Space Administration (NASA) to apply human error analysis to aviation operations. They are currently adapting their methods and tools of human error analysis to the domain of air traffic management (ATM) systems. Under the NASA-sponsored Advanced Air Traffic Technologies (AATT) program they are working to address issues of human reliability in the design of ATM systems to support the development of a free flight environment for commercial air traffic in the US. They are also currently testing the application of their human error analysis approach for space flight operations. They have developed a simplified model of the critical habitability functions for the space station Mir, and have used this model to assess the affects of system failures and human errors that have occurred in the wake of the collision incident last year. They are developing an approach so that lessons learned from Mir operations can be systematically applied to design and operation of long-term space missions such as the International Space Station (ISS) and the manned Mars mission.
Chang, Chia Wei; Petrie, Tye; Clark, Alycia; Lin, Xin; Sondergaard, Claus S.; Griffiths, Leigh G.
2016-01-01
In this study, we investigate the translational potential of a novel combined construct using an FDA-approved decellularized porcine small intestinal submucosa extracellular matrix (SIS-ECM) seeded with human or porcine mesenchymal stem cells (MSCs) for cardiovascular indications. With the emerging success of individual component in various clinical applications, the combination of SIS-ECM with MSCs could provide additional therapeutic potential compared to individual components alone for cardiovascular repair. We tested the in vitro effects of MSC-seeding on SIS-ECM on resultant construct structure/function properties and MSC phenotypes. Additionally, we evaluated the ability of porcine MSCs to modulate recipient graft-specific response towards SIS-ECM in a porcine cardiac patch in vivo model. Specifically, we determined: 1) in vitro loading-capacity of human MSCs on SIS-ECM, 2) effect of cell seeding on SIS-ECM structure, compositions and mechanical properties, 3) effect of SIS-ECM seeding on human MSC phenotypes and differentiation potential, and 4) optimal orientation and dose of porcine MSCs seeded SIS-ECM for an in vivo cardiac application. In this study, histological structure, biochemical compositions and mechanical properties of the FDA-approved SIS-ECM biomaterial were retained following MSCs repopulation in vitro. Similarly, the cellular phenotypes and differentiation potential of MSCs were preserved following seeding on SIS-ECM. In a porcine in vivo patch study, the presence of porcine MSCs on SIS-ECM significantly reduced adaptive T cell response regardless of cell dose and orientation compared to SIS-ECM alone. These findings substantiate the clinical translational potential of combined SIS-ECM seeded with MSCs as a promising therapeutic candidate for cardiac applications. PMID:27070546
Stochastic determination of matrix determinants.
Dorn, Sebastian; Ensslin, Torsten A
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.
Leak before break application in French PWR plants under operation
Faidy, C.
1997-04-01
Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.
Ground Operations Aerospace Language (GOAL). Volume 5: Application Studies
NASA Technical Reports Server (NTRS)
1973-01-01
The Ground Operations Aerospace Language (GOAL) was designed to be used by test oriented personnel to write procedures which would be executed in a test environment. A series of discussions between NASA LV-CAP personnel and IBM resulted in some peripheral tasks which would aid in evaluating the applicability of the language in this environment, and provide enhancement for future applications. The results of these tasks are contained within this volume. The GOAL vocabulary provides a high degree of readability and retainability. To achieve these benefits, however, the procedure writer utilizes words and phrases of considerable length. Brief form study was undertaken to determine a means of relieving this burden. The study resulted in a version of GOAL which enables the writer to develop a dialect suitable to his needs and satisfy the syntax equations. The output of the compiler would continue to provide readability by printing out the standard GOAL language. This task is described.
NASA Technical Reports Server (NTRS)
Packard, A. K.; Sastry, S. S.
1986-01-01
A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.
NASA Astrophysics Data System (ADS)
Abidin, Zaenal; Anompa, Muhammad Angger; Muhtadan
2013-09-01
Development of Welding Defect Identifiers for application in Radiographic Film by using Gray Level Co-Occurrence Matrix and Back-Propagation. A research on the application development to interpret the welding defects in industrial radiographic films by using neural networks has been conducted. This research is aimed to produce an application that implement the digital image processing, feature extraction and pattern recognition using artificial neural networks. Digital image processing applied in the development is the technique of noise removal using median filter, contrast stretching and image sharpening by Laplacian filter. Method of Grey level co-occurrence matrix (GLCM) is applied to extract features from digital images radiographic films. Back-propagation artificial neural network method is used for defect classification and interpretation of welding defect in radiographic films. The result of this research is an application of back-propagation neural networks with classification results for 60 simulated data with 95% of classification successful rate.
Matrix elements in the coupled-cluster approach - With application to low-lying states in Li
NASA Technical Reports Server (NTRS)
Martensson-Pendrill, Ann-Marie; Ynnerman, Anders
1990-01-01
A procedure is suggested for evaluating matrix elements of an operator between wavefunctions in the coupled-cluster form. The use of the exponential ansatz leads to compact exponential expressions also for matrix elements. Algorithms are developed for summing all effects of one-particle clusters and certain chains of two-particle clusters (containing the well-known random-phase approximation as a subset). The treatment of one-particle perturbations in single valence states is investigated in detail. As examples the oscillator strength for the 2s-2p transition in Li as well as the hyperfine structure for the two states are studied and compared to earlier work.
The application of a job exposure matrix in the natural gas industry.
Maher, Nora
2003-01-01
A questionnaire was designed, implemented, and analyzed, using a job exposure matrix format, to profile jobs in the Pipeline Division of a natural gas company with respect to possible hazardous exposures. The categories of chemical, physical, ergonomic, biological, and psychological hazards were surveyed. The first stage was to formulate and confirm a list of hazardous agents extant within the Pipeline Operations. This was done by making on-site observations and interviewing safety supervisors and workers, as well as by exploring the literature on the natural gas industry. The second stage of the project entailed the collection of data about whether a particular hazardous agent was present at a location, and if so, which workers were exposure to it, and at what intensity and frequency they were exposed. This assessment was made by groups identified as expert assessors, senior workers who were familiar with the processes and range of job titles at their locations. These experienced workers rated all job titles for workers at that site. The final stage of the project was to critically examine and validate the data collected. Three analyses were performed. The first was a comparison of the assessments with known outcomes of the medical surveillance testing that was completed in 1995. Secondly, the agreement between the assessments done by the expert assessor group, and a rating done by the jobholder, was examined. Finally, consideration was given to the sureness expressed by each of the rating groups about the analysis they had provided.
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.
1992-01-01
Several fiber bridging models were reviewed and applied to study the matrix fatigue crack growth behavior in center notched (0)(sub 8) SCS-6/Ti-15-3 and (0)(sub 4) SCS-6/Ti-6Al-4V laminates. Observations revealed that fatigue damage consisted primarily of matrix cracks and fiber matrix interfacial failure in the (0)(sub 8) SCS-6/Ti-15-3 laminates. Fiber-matrix interface failure included fracture of the brittle reaction zone and cracking between the two carbon rich fiber coatings. Intact fibers in the wake of the matrix cracks reduce the stress intensity factor range. Thus, an applied stress intensity factor range is inappropriate to characterize matrix crack growth behavior. Fiber bridging models were used to determine the matrix stress intensity factor range in titanium metal matrix composites. In these models, the fibers in the wake of the crack are idealized as a closure pressure. An unknown constant frictional shear stress is assumed to act along the debond or slip length of the bridging fibers. The frictional shear stress was used as a curve fitting parameter to available data (crack growth data, crack opening displacement data, and debond length data). Large variations in the frictional shear stress required to fit the experimental data indicate that the fiber bridging models in their present form lack predictive capabilities. However, these models provide an efficient and relatively simple engineering method for conducting parametric studies of the matrix growth behavior based on constituent properties.
NASA Astrophysics Data System (ADS)
Halder, P.; Chakraborty, A.; Deb Roy, P.; Das, H. S.
2014-09-01
, including test data, etc.: 120226886 Distribution format: tar.gz Programming language: Java, Fortran95. Computer: Any Windows or Linux systems capable of hosting a java runtime environment, java3D and fortran95 compiler; Developed on 2.40 GHz Intel Core i3. Operating system: Any Windows or Linux systems capable of hosting a java runtime environment, java3D and fortran95 compiler. RAM: Ranging from a few Mbytes to several Gbytes, depending on the input parameters. Classification: 1.3. External routines: jfreechart-1.0.14 [1] (free plotting library for java), j3d-jre-1.5.2 [2] (3D visualization). Nature of problem: Optical properties of cosmic dust aggregates. Solution method: Java application based on Mackowski and Mischenko's Superposition T-Matrix code. Restrictions: The program is designed for single processor systems. Additional comments: The distribution file for this program is over 120 Mbytes and therefore is not delivered directly when Download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Ranging from few minutes to several hours, depending on the input parameters. References: [1] http://www.jfree.org/index.html [2] https://java3d.java.net/
Zhang, Weixiang; Zhu, Yun; Li, Jia; Guo, Quanyi; Peng, Jiang; Liu, Shichen; Yang, Jianhua; Wang, Yu
2016-06-01
The extracellular matrix (ECM) is a dynamic and intricate microenvironment with excellent biophysical, biomechanical, and biochemical properties, which can directly or indirectly regulate cell proliferation, adhesion, migration, and differentiation, as well as plays key roles in homeostasis and regeneration of tissues and organs. The ECM has attracted a great deal of attention with the rapid development of tissue engineering in the field of regenerative medicine. Tissue-derived ECM scaffolds (also referred to as decellularized tissues and whole organs) are considered a promising therapy for the repair of musculoskeletal defects, including those that are widely used in orthopedics, although there are a few shortcomings. Similar to tissue-derived ECM scaffolds, cell-derived ECM scaffolds also have highly advantageous biophysical and biochemical properties, in particular their ability to be produced in vitro from a number of different cell types. Furthermore, cell-derived ECM scaffolds more closely resemble native ECM microenvironments. The products of cell-derived ECM have a wide range of biomedical applications; these include reagents for cell culture substrates and biomaterials for scaffolds, hybrid scaffolds, and living cell sheet coculture systems. Although cell-derived ECM has only just begun to be investigated, it has great potential as a novel approach for cell-based tissue repair in orthopedic tissue engineering. This review summarizes and analyzes the various types of cell-derived ECM products applied in cartilage, bone, and nerve tissue engineering in vitro or in vivo and discusses future directions for investigation of cell-derived ECM.
Turner, Andrew D; Powell, Andy L; Burrell, Stephen
2014-11-01
The production of homogeneous and stable matrix reference materials for marine biotoxins is important for the validation and implementation of instrumental methods of analysis. High pressure processing was investigated to ascertain potential advantages this technique may have in stabilising paralytic shellfish poisoning toxins in shellfish tissues compared to untreated materials. Oyster tissues were subjected to a range of different temperatures and pressures, with results showing a significant reduction in biological activity in comparison to control samples, without significantly altering toxin profiles. Tissue subjected to pressures >600 MPa at 50 °C was assessed for homogeneity and stability. The sample homogeneity was determined using a pre-column oxidation LC-FLD method and shown to be within accepted levels of within batch repeatability. Short and long-term stability studies were conducted over a range of temperatures, with analysis by pre and post column oxidation LC-FLD demonstrating improved stability of toxins compared to the untreated materials and with epimerisation of toxins also notably reduced in treated materials. This study confirmed the technique of high pressure processing to improve the stability of PSP toxins compared to untreated wet tissues and highlighted its applicability in reference material preparation where removal of biological activity is of importance.
Application of Laser Induced Breakdown Spectroscopy to Monitor Rare Earth Ions in Glass Matrix
NASA Astrophysics Data System (ADS)
Sharma, Prakash; Carter, Michael; Kumar, Akshaya
2013-05-01
The Laser Induced breakdown spectroscopy (LIBS) is a real time online technique that can be used to monitor the concentration of rare earth ions in amorphous glass matrix. This study has significant application in the glass industry where the composition of the glass can be monitored in real time using LIBS technology for quality control. The Eu3 + ions doped silicate glasses were developed via sol gel method. The glasses of varying molar percentages of Eu3 + (0.02, 0.05 and 0.08 mole percent), were prepared to study the effect of variation in concentration of Eu3 + ions on the LIBS signal and to calculate its limit of detection (LOD). The spectral assignment of the observed LIBS spectrum has been made. In order to find the maximum signal to noise ratio, we also recorded the intensity of LIBS signal for various integration start delay (ISD) time at a constant power of (pulsed Nd: YAG) laser. The ocean optics LIBS 2500plus spectrometer along with a Q switched Nd:YAG laser (Quantel, Big Sky) were used to record the LIBS spectrum.
NASA Astrophysics Data System (ADS)
Mohammadi, Teymoor
For high temperature applications two novel ceramic-matrix composite (CMC) materials are manufactured, by embedding molybdenum (Mo) and Hastelloy X (HX) wire meshes in 7YSZ ceramic. The mechanical properties and oxidizing behaviour at 1050°C were investigated. The designs, fabrication, assessment of the mechanical strength, cyclic and isothermal oxidation of the CMCs are described in this thesis. After manufacturing meshes, NiCrA1Y bond coats and 7YSZ were applied via plasma spraying. Bonding strength in some CMC samples are improved by vacuum heat treating, then as-sprayed and heat treated CMCs are subjected to three-point bend and impact tests. Mo and HX wire mesh incorporation in 7YSZ increase the strength and the elongation to failure. In particular, Mo wire increases yield load of 7YSZ by at least 3 times and HX wire increases yield by 9 times. Mo/7YSZ CMC degrades and oxidizes after 330 hours at 1050°C tests, but HX/7YSZ shows higher oxidation resistance. The metallographic analysis shows NiCrA1Y bond coat cracks and delaminates from the wires during isothermal tests. Cyclic test, creating larger thermal stresses, worsens the damage. To increase the oxidation and mechanical properties of these composites, a more effective ceramic coating method is recommended. Overall, the advantages of HX/7YSZ composite suggest further testing and investigation.
Human fibroblast-derived extracellular matrix constructs for bone tissue engineering applications.
Tour, Gregory; Wendel, Mikael; Tcacencu, Ion
2013-10-01
We exploited the biomimetic approach to generate constructs composed of synthetic biphasic calcium phosphate ceramic and extracellular matrix (SBC-ECM) derived from adult human dermal fibroblasts in complete xeno-free culture conditions. The construct morphology and composition were assessed by scanning electron microscopy, histology, immunohistochemistry, Western blot, glycosaminoglycan, and hydroxyproline assays. Residual DNA quantification, endotoxin testing, and local inflammatory response after implantation in a rat critical-sized calvarial defect were used to access the construct biocompatibility. Moreover, in vitro interaction of human mesenchymal stem cells (hMSCs) with the constructs was studied. The bone marrow- and adipose tissue-derived mesenchymal stem cells were characterized by flow cytometry and tested for osteogenic differentiation capacity prior seeding onto SBC-ECM, followed by alkaline phosphatase, 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and real-time quantitative polymerase chain reaction to assess the osteogenic differentiation of hMSCs after seeding onto the constructs at different time intervals. The SBC-ECM constructs enhanced osteogenic differentiation of hMSCs in vitro and exhibited excellent handling properties and high biocompatibility in vivo. Our results highlight the ability to generate in vitro fibroblast-derived ECM constructs in complete xeno-free conditions as a step toward clinical translation, and the potential use of SBC-ECM in craniofacial bone tissue engineering applications.
Algorithms and Application of Sparse Matrix Assembly and Equation Solvers for Aeroacoustics
NASA Technical Reports Server (NTRS)
Watson, W. R.; Nguyen, D. T.; Reddy, C. J.; Vatsa, V. N.; Tang, W. H.
2001-01-01
An algorithm for symmetric sparse equation solutions on an unstructured grid is described. Efficient, sequential sparse algorithms for degree-of-freedom reordering, supernodes, symbolic/numerical factorization, and forward backward solution phases are reviewed. Three sparse algorithms for the generation and assembly of symmetric systems of matrix equations are presented. The accuracy and numerical performance of the sequential version of the sparse algorithms are evaluated over the frequency range of interest in a three-dimensional aeroacoustics application. Results show that the solver solutions are accurate using a discretization of 12 points per wavelength. Results also show that the first assembly algorithm is impractical for high-frequency noise calculations. The second and third assembly algorithms have nearly equal performance at low values of source frequencies, but at higher values of source frequencies the third algorithm saves CPU time and RAM. The CPU time and the RAM required by the second and third assembly algorithms are two orders of magnitude smaller than that required by the sparse equation solver. A sequential version of these sparse algorithms can, therefore, be conveniently incorporated into a substructuring for domain decomposition formulation to achieve parallel computation, where different substructures are handles by different parallel processors.
Turner, Andrew D; Powell, Andy L; Burrell, Stephen
2014-11-01
The production of homogeneous and stable matrix reference materials for marine biotoxins is important for the validation and implementation of instrumental methods of analysis. High pressure processing was investigated to ascertain potential advantages this technique may have in stabilising paralytic shellfish poisoning toxins in shellfish tissues compared to untreated materials. Oyster tissues were subjected to a range of different temperatures and pressures, with results showing a significant reduction in biological activity in comparison to control samples, without significantly altering toxin profiles. Tissue subjected to pressures >600 MPa at 50 °C was assessed for homogeneity and stability. The sample homogeneity was determined using a pre-column oxidation LC-FLD method and shown to be within accepted levels of within batch repeatability. Short and long-term stability studies were conducted over a range of temperatures, with analysis by pre and post column oxidation LC-FLD demonstrating improved stability of toxins compared to the untreated materials and with epimerisation of toxins also notably reduced in treated materials. This study confirmed the technique of high pressure processing to improve the stability of PSP toxins compared to untreated wet tissues and highlighted its applicability in reference material preparation where removal of biological activity is of importance. PMID:25086341
Xu, Dingfeng; Fan, Lin; Gao, Lingfeng; Xiong, Yan; Wang, Yanfeng; Ye, Qifa; Yu, Aixi; Dai, Honglian; Yin, Yixia; Cai, Jie; Zhang, Lina
2016-07-13
Conducting polymers have emerged as frontrunners to be alternatives for nerve regeneration, showing a possibility of the application of polyaniline (PANI) as the nerve guidance conduit. In the present work, the cellulose hydrogel was used as template to in situ synthesize PANI via the limited interfacial polymerization method, leading to one conductive side in the polymer. PANI sub-micrometer dendritic particles with mean diameter of ∼300 nm consisting of the PANI nanofibers and nanoparticles were uniformly assembled into the cellulose matrix. The hydrophobic PANI nanoparticles were immobilized in the hydrophilic cellulose via the phytic acid as "bridge" at presence of water through hydrogen bonding interaction. The PANI/cellulose composite hydrogels exhibited good mechanical properties and biocompatibility as well as excellent guiding capacity for the sciatic nerve regeneration of adult Sprague-Dawley rats without any extra treatment. On the basis of the fact that the pure cellulose hydrogel was an inert material for the neural repair, PANI played an indispensable role on the peripheral nerve regeneration. The hierarchical micro-nanostructure and electrical conductivity of PANI could remarkably induce the adhesion and guiding extension of neurons, showing its great potential in biomedical materials.
Operational and design aspects of accelerators for medical applications
NASA Astrophysics Data System (ADS)
Schippers, Jacobus Maarten; Seidel, Mike
2015-03-01
Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.
Particulate Titanium Matrix Composites Tested--Show Promise for Space Propulsion Applications
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Ellis, J. Rodney; Arnold. Steven M.
2004-01-01
Uniformly distributed particle-strengthened titanium matrix composites (TMCs) can be manufactured at lower cost than many types of continuous-fiber composites. The innovative manufacturing technology combines cold and hot isostatic pressing procedures to produce near-final-shape components. Material stiffness is increased up to 26-percent greater than that of components made with conventional titanium materials at no significant increase in the weight. The improved mechanical performance and low-cost manufacturing capability motivated an independent review to assess the improved properties of ceramic titanium carbide (TiC) particulate-reinforced titanium at elevated temperature. Researchers at the NASA Glenn Research Center creatively designed and executed deformation and durability tests to reveal operating regimes where these materials could lower the cost and weight of space propulsion systems. The program compares the elevated-temperature performance of titanium alloy Ti-6Al-4V matrix material to an alloy containing 10 wt% of TiC particles. Initial experiments showed that at these relatively low particle concentrations the material stiffness of the TMC was improved 20 percent over that of the plain Ti-6Al-4V alloy when tested at 427 C. The proportional limit and ultimate strength of the composite in tension are 21- and 14-percent greater than those of the plain alloy. Compression tests showed that the proportional limit is about 30 percent greater for TMC than for the plain alloy. The enhanced deformation resistance of the TMC was also evident in a series of tensile and compressive stress relaxation tests that were made. Specimens were subjected to tensile or compressive strain amplitudes of 0.75 percent for 24 hr followed by a return to zero strain imposed for 24 hr. The stress relaxation data were normalized with respect to the maximum stress for each case and plotted as a function of time in the following graph. Tensile stresses relaxed 19 percent for the
Novel Vibration Damping of Ceramic Matrix Composite Turbine Blades Developed for RLV Applications
NASA Technical Reports Server (NTRS)
Min, James B.
2000-01-01
The Reusable Launch Vehicle (RLV) represents the next generation of space transportation for the U.S. space program. The goal for this vehicle is to lower launch costs by an order of magnitude from $10,000/lb to $1,000/lb. Such a large cost reduction will require a highly efficient operation, which naturally will require highly efficient engines. The RS-2200 Linear Aerospike Engine is being considered as the main powerplant for the RLV. Strong, lightweight, temperature-resistant ceramic matrix composite (CMC) materials such as C/SiC are critical to the development of the RS-2200. Preliminary engine designs subject turbopump components to extremely high frequency dynamic excitation, and ceramic matrix composite materials are typically lightly damped, making them vulnerable to high-cycle fatigue. The combination of low damping and high-frequency excitation creates the need for enhanced damping. Thus, the goal of this project has been to develop well-damped C/SiC turbine components for use in the RLV. Foster-Miller and Boeing Rocketdyne have been using an innovative, low-cost process to develop light, strong, highly damped turbopump components for the RS-2200 under NASA s Small Business Innovation Research (SBIR) program. The NASA Glenn Research Center at Lewis Field is managing this work. The process combines three-dimensionally braided fiber reinforcement with a pre-ceramic polymer. The three-dimensional reinforcement significantly improves the structure over conventional two-dimensional laminates, including high through-the-thickness strength and stiffness. Phase I of the project successfully applied the Foster-Miller pre-ceramic polymer infiltration and pyrolysis (PIP) process to the manufacture of dynamic specimens representative of engine components. An important aspect of the program has been the development of the manufacturing process. Results show that the three-dimensionally braided carbon-fiber reinforcement provides good processability and good mechanical
Hybrid matrix fiber composites
Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.
2003-07-15
Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
Application of the Finite-Element Z-Matrix Method to e-H2 Collisions
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Brown, David; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
The present study adapts the Z-matrix formulation using a mixed basis of finite elements and Gaussians. This is a energy-independent basis which allows flexible boundary conditions and is amenable to efficient algorithms for evaluating the necessary matrix elements with molecular targets.
GIS applications for military operations in coastal zones
NASA Astrophysics Data System (ADS)
Fleming, S.; Jordan, T.; Madden, M.; Usery, E. L.; Welch, R.
In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large
Heydari, M.H.; Hooshmandasl, M.R.; Maalek Ghaini, F.M.; Cattani, C.
2014-08-01
In this paper, a new computational method based on the generalized hat basis functions is proposed for solving stochastic Itô–Volterra integral equations. In this way, a new stochastic operational matrix for generalized hat functions on the finite interval [0,T] is obtained. By using these basis functions and their stochastic operational matrix, such problems can be transformed into linear lower triangular systems of algebraic equations which can be directly solved by forward substitution. Also, the rate of convergence of the proposed method is considered and it has been shown that it is O(1/(n{sup 2}) ). Further, in order to show the accuracy and reliability of the proposed method, the new approach is compared with the block pulse functions method by some examples. The obtained results reveal that the proposed method is more accurate and efficient in comparison with the block pule functions method.
Mazumdar, Atmadeep; Sen, Krishna Nirmalya; Lahiri, Balendra Nath
2007-01-01
The Haddon matrix is a potential tool for recognizing hazards in any operating engineering system. This paper presents a case study of operational hazards at a large construction site. The fish bone structure helps to visualize and relate the chain of events, which led to the failure of the system. The two-tier Haddon matrix approach helps to analyze the problem and subsequently prescribes preventive steps. The cybernetic approach has been undertaken to establish the relationship among event variables and to identify the ones with most potential. Those event variables in this case study, based on the cybernetic concepts like control responsiveness and controllability salience, are (a) uncontrolled swing of sheet contributing to energy, (b) slippage of sheet from anchor, (c) restricted longitudinal and transverse swing or rotation about the suspension, (d) guilt or uncertainty of the crane driver, (e) safe working practices and environment.
NASA Astrophysics Data System (ADS)
Alpert, J. C.; Wang, J.
2009-12-01
To reduce the impact of natural hazards and environmental changes, the National Centers for Environmental Prediction (NCEP) provide first alert and a preferred partner for environmental prediction services, and represents a critical national resource to operational and research communities affected by climate, weather and water. NOMADS is now delivering high availability services as part of NOAA’s official real time data dissemination at its Web Operations Center (WOC) server. The WOC is a web service used by organizational units in and outside NOAA, and acts as a data repository where public information can be posted to a secure and scalable content server. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development efforts aimed at advancing modeling and GEO-related tasks. The user (client) executes what is efficient to execute on the client and the server efficiently provides format independent access services. Client applications can execute on the server, if it is desired, but the same program can be executed on the client side with no loss of efficiency. In this way this paradigm lends itself to aggregation servers that act as servers of servers listing, searching catalogs of holdings, data mining, and updating information from the metadata descriptions that enable collections of data in disparate places to be simultaneously accessed, with results processed on servers and clients to produce a needed answer. The services used to access the operational model data output are the Open-source Project for a Network Data Access Protocol (OPeNDAP), implemented with the Grid Analysis and Display System (GrADS) Data Server (GDS), and applications for slicing, dicing and area sub-setting the large matrix of real time model data holdings. This approach insures an efficient use of computer resources because users transmit/receive only the data necessary for their tasks including
Kim, Yong Ho; Lim, Young-Woo; Kim, Yun Hyeok; Bae, Byeong-Soo
2016-04-01
We report vinyl-phenyl siloxane hybrid material (VPH) that can be used as a matrix for copper-clad laminates (CCLs) for high-frequency applications. The CCLs, with a VPH matrix fabricated via radical polymerization of resin blend consisting of sol-gel-derived linear vinyl oligosiloxane and bulky siloxane monomer, phenyltris(trimethylsiloxy)silane, achieve low dielectric constant (Dk) and dissipation factor (Df). The CCLs with the VPH matrix exhibit excellent dielectric performance (Dk = 2.75, Df = 0.0015 at 1 GHz) with stability in wide frequency range (1 MHz to 10 GHz) and at high temperature (up to 275 °C). Also, the VPH shows good flame resistance without any additives. These results suggest the potential of the VPH for use in high-speed IC boards. PMID:26982015
NASA Technical Reports Server (NTRS)
Min, James B.; Harris, Donald L.; Ting, J. M.
2011-01-01
For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.
A scalable, parallel matrix-free Stokes solver for geodynamic applications
NASA Astrophysics Data System (ADS)
May, D.
2013-12-01
Here I describe a numerical method suitable for studying non-linear, large deformation processes in crustal and lithopspheric dynamics. The method utilizes a hybrid spatial discretisation which consists of mixed finite elements for the Stokes flow problem, coupled to a Lagrangian marker based discretisation to represent the material properties (viscosity and density). This approach is akin to the classical Marker-And-Cell (MAC) scheme of Harlow and the subsequently developed Material Point Method (MPM) of Sulsky and co-workers. The geometric flexibility and ease of modelling large deformation processes afforded by such mesh-particle methods has been exploited by the lithospheric dynamics community over the last 20 years. The strength of the Stokes preconditioner fundamentally controls the scientific throughput achievable and represents the largest bottleneck in the development of our understanding of geodynamic processes. The possibility to develop a 'cheap' and efficient preconditioning methodology which is suitable for the mixed Q2-P1 element is explored here. I describe a flexible strategy, which aims to address the Stokes preconditioning issue using an upper block triangular preconditioner, together with a geometric multi-grid preconditioner for the viscous block. The key to the approach is to utilize algorithms and data-structures that exploit current multi-core hardware and avoid the need for excessive global reductions. In order to develop a scalable method, special consideration is given to; the definition of the coarse grid operator, the smoother and the coarse grid solver. The performance characteristics of this hybrid matrix-free / partially assembled multi-level preconditioning strategy is examined. The robustness of the preconditioner with respect to the viscosity contrast and the topology of the viscosity field, together with the parallel scalability is demonstrated.
Application of diagnostics to determine motor-operated valve operational readiness
Eissenberg, D.M.
1986-01-01
ORNL has been carrying out an aging assessment of motor-operated valves (MOVs) with the primary objective of recommending diagnostic methods for detecting and trending aging. As a result of experimental investigations at ORNL, it was discovered that the motor current during a valve stroke was a very useful diagnostic parameter for detecting and trending many MOV drive train load variations. The motor curent signatures were analyzed at four levels: mean value for a stroke, gross trends during a stroke, transients, and noise frequency spectra. Examples illustrating the use of this technique are presented. The use of motor current signature analysis was also shown to apply to other electric motor driven equipment. Future work includes developing a data base of MOV diagnostics, including criteria for determining the extent of degradation and application of the technique to other LWR motor driven safety equipment.
Personal computer applications in DIII-D neutral beam operation
Glad, A.S.
1986-08-01
An IBM PC AT has been implemented to improve operation of the DIII-D neutral beams. The PC system provides centralization of all beam data with reasonable access for on-line shot-to-shot control and analysis. The PC hardware was configured to interface all four neutral beam host minicomputers, support multitasking, and provide storage for approximately one month's accumulation of beam data. The PC software is composed of commercial packages used for performance and statistical analysis (i.e., LOTUS 123, PC PLOT, etc.), host communications software (i.e., PCLink, KERMIT, etc.), and applications developed software utilizing f-smcapso-smcapsr-smcapst-smcapsr-smcapsa-smcapsn-smcaps and b-smcapsa-smcapss-smcapsIc-smcaps. The objectives of this paper are to describe the implementation of the PC system, the methods of integrating the various software packages, and the scenario for on-line control and analysis.
An operational global ocean forecast system and its applications
NASA Astrophysics Data System (ADS)
Mehra, A.; Tolman, H. L.; Rivin, I.; Rajan, B.; Spindler, T.; Garraffo, Z. D.; Kim, H.
2012-12-01
A global Real-Time Ocean Forecast System (RTOFS) was implemented in operations at NCEP/NWS/NOAA on 10/25/2011. This system is based on an eddy resolving 1/12 degree global HYCOM (HYbrid Coordinates Ocean Model) and is part of a larger national backbone capability of ocean modeling at NWS in strong partnership with US Navy. The forecast system is run once a day and produces a 6 day long forecast using the daily initialization fields produced at NAVOCEANO using NCODA (Navy Coupled Ocean Data Assimilation), a 3D multi-variate data assimilation methodology. As configured within RTOFS, HYCOM has a horizontal equatorial resolution of 0.08 degrees or ~9 km. The HYCOM grid is on a Mercator projection from 78.64 S to 47 N and north of this it employs an Arctic dipole patch where the poles are shifted over land to avoid a singularity at the North Pole. This gives a mid-latitude (polar) horizontal resolution of approximately 7 km (3.5 km). The coastline is fixed at 10 m isobath with open Bering Straits. This version employs 32 hybrid vertical coordinate surfaces with potential density referenced to 2000 m. Vertical coordinates can be isopycnals, often best for resolving deep water masses, levels of equal pressure (fixed depths), best for the well mixed unstratified upper ocean and sigma-levels (terrain-following), often the best choice in shallow water. The dynamic ocean model is coupled to a thermodynamic energy loan ice model and uses a non-slab mixed layer formulation. The forecast system is forced with 3-hourly momentum, radiation and precipitation fluxes from the operational Global Forecast System (GFS) fields. Results include global sea surface height and three dimensional fields of temperature, salinity, density and velocity fields used for validation and evaluation against available observations. Several downstream applications of this forecast system will also be discussed which include search and rescue operations at US Coast Guard, navigation safety information
NASA Astrophysics Data System (ADS)
Casimir, J. B.; Kevorkian, S.; Vinh, T.
2005-10-01
This paper describes a procedure for building the dynamic stiffness matrix of two-dimensional elements with free edge boundary conditions. The dynamic stiffness matrix is the basis of the continuous element method. Then, the formulation is used to build a Kirchhoff rectangular plate element. Gorman's method of boundary condition decomposition and Levy's series are used to obtain the strong solution of the elementary problem. A symbolic computation software partially performs the construction of the dynamic stiffness matrix from this solution. The performances of the element are evaluated from comparisons with harmonic responses of plates obtained by the finite element method.
NASA Astrophysics Data System (ADS)
Caddemi, S.; Caliò, I.
2013-06-01
In this paper the closed form expression of the exact dynamic stiffness matrix of an Euler-Bernoulli beam in the presence of an arbitrary number of concentrated cracks is derived. The procedure adopted for the evaluation of the dynamic stiffness matrix is based on the availability of the exact closed form solution of the vibration modes of the multi-cracked beam, derived by the same authors in a previous paper. The knowledge of the exact explicit dynamic stiffness matrix of the multi-cracked beam makes the direct evaluation of the exact global dynamic stiffness matrix of damaged frame structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, consistent with the distributed parameter model, through the application of the well-known Wittrick-Williams algorithm. Some numerical applications, relative to the evaluation of frequencies and the corresponding mode shapes of multi-cracked framed structure, are reported. Furthermore, the closed-form solution has been validated by comparing with some exact results available in the literature, for a simple single cracked frame. Finally, further new results for a multi-cracked frame have been compared with those obtained by a finite element simulation.
NASA Technical Reports Server (NTRS)
Welhart, E. K.
1976-01-01
This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Lauer, Howard V., Jr.
1990-01-01
The effect of the matrix on the reflectivity spectra of nanophase (superparamagnetic) hematite (np-Hm) dispersed within the matrix was investigated in four series of powder samples containing np-Hm dispersed within discrete powder particles (of two size ranges) of silica gel and activated alumina. The spectral data show that matrix effects are large. Samples with the same Fe2O3 content can have np-Hm absorption edges characterized by very different positions and curvature and slope indices, while samples with equivalent absorption edges can have very different Fe2O3 concentrations. Thus, quantitative relationships between the positions of ferric absorption edges and Fe2O3 concentrations are unreliable without knowledge of matrix properties of the system. It is shown that it was possible to match the Fe2O3 concentration, magnetic properties, and spectral data for Martian surface material with a laboratory mixture whose only ferric-bearing phase was hematite.
ERIC Educational Resources Information Center
Grimaldi, Ralph P.
This material was developed to provide an application of matrix mathematics in chemistry, and to show the concepts of linear independence and dependence in vector spaces of dimensions greater than three in a concrete setting. The techniques presented are not intended to be considered as replacements for such chemical methods as oxidation-reduction…
Damage Mechanisms of a TiB2-Reinforced Steel Matrix Composite for Lightweight Automotive Application
NASA Astrophysics Data System (ADS)
Li, Y. Z.; Luo, Z. C.; Yi, H. L.; Huang, M. X.
2016-09-01
The microscopic strain-and-stress fields related to primary and eutectic particles in a lightweight steel matrix composite (SMC) produced by in situ precipitation of TiB2 particles during solidification were investigated by means of microscale digital image correlation and finite element method. The damage process in this SMC is a sequential process of primary particles cracking, the fracture of the surrounding eutectic particles, and finally the growth and coalescence of voids in the ferrite matrix.
Damage Mechanisms of a TiB2-Reinforced Steel Matrix Composite for Lightweight Automotive Application
NASA Astrophysics Data System (ADS)
Li, Y. Z.; Luo, Z. C.; Yi, H. L.; Huang, M. X.
2016-05-01
The microscopic strain-and-stress fields related to primary and eutectic particles in a lightweight steel matrix composite (SMC) produced by in situ precipitation of TiB2 particles during solidification were investigated by means of microscale digital image correlation and finite element method. The damage process in this SMC is a sequential process of primary particles cracking, the fracture of the surrounding eutectic particles, and finally the growth and coalescence of voids in the ferrite matrix.
NASA Astrophysics Data System (ADS)
Lai, Jing
The study presented in this thesis focuses on developing castable, precipitation-strengthened Al--B4C metal matrix composites (MMCs) for high temperature applications. In the first part, B4C plates were immersed in liquid aluminum alloyed with Sc, Zr and Ti to investigate the interfacial reactions between B4C and liquid aluminum The influences of Sc, Zr and Ti on the interfacial microstructure in terms of individual and combined additions were examined. Results reveal that all three elements reacted with B4C and formed interfacial layers that acted as a diffusion barrier to limit the decomposition of B4C in liquid aluminum. The interfacial reactions and the reaction products in each system were identified. With the combined addition of Sc, Zr and Ti, most of the Ti was found to enrich at the interface, which not only offered appropriate protection of the B4C but also reduced the consumption of Sc and Zr at the interface. In the second part, Sc and Zr were introduced into Al-15vol.% B 4C composites presaturated by Ti, and eight experimental composites with different Sc and Zr levels were prepared via a conventional casting technique. It was found that Sc was involved in the interfacial reactions with B 4C that partially consume Sc. The Sc addition yielded considerable precipitation strengthening in the as-cast and peak aged conditions. To achieve an equivalent strengthening effect of Sc in binary Al-Sc alloys, approximately double the amount of Sc is required in Al-B4C composites. On the contrary, no major Zr reaction products were found at the interfaces and the major part of Zr remained in the matrix for the precipitation strengthening. The combination of Sc and Zr enhanced sthe precipitation strengthening. Two kinds of nanoscale precipitates, Al3Sc and Al3(Sc, Zr), were found in the as-cast microstructure and contributed to the increase in the matrix hardness. In the third part, all the experimental composites were isothermally aged at 300, 350, 400 and 450
Operational Applications from the Suomi Npp and Jpss Satellites
NASA Astrophysics Data System (ADS)
Goldberg, M.; Furgerson, J.; Sjoberg, W.; Weng, F.; Csiszar, I. A.; Kilcoyne, H.; Gleason, J. F.
2012-12-01
relay distress signals from aviators, mariners or land-based users in distress. This system assists in the rescue of hundreds on an annual basis. At the AGU conference, we will discuss in detail the operational applications of JPSS data and early demonstrations provided by SUOMI NPP. Examples will include improvements in weather forecasting, monitoring of coastal water quality (e.g. harmful algal blooms), marine resources, forest fires, volcanic eruptions and smoke/dust plumes, and monitoring of droughts, snow and ice cover. The quality of JPSS data for climate monitoring will also be discussed.
GIS applications for military operations in coastal zones
Fleming, S.; Jordan, T.; Madden, M.; Usery, E.L.; Welch, R.
2009-01-01
In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large
NASA Astrophysics Data System (ADS)
Varney, Philip; Green, Itzhak
2014-11-01
Numerous methods are available to calculate rotordynamic whirl frequencies, including analytic methods, finite element analysis, and the transfer matrix method. The typical real-valued transfer matrix (RTM) suffers from several deficiencies, including lengthy computation times and the inability to distinguish forward and backward whirl. Though application of complex coordinates in rotordynamic analysis is not novel per se, specific advantages gained from using such coordinates in a transfer matrix analysis have yet to be elucidated. The present work employs a complex coordinate redefinition of the transfer matrix to obtain reduced forms of the elemental transfer matrices in inertial and rotating reference frames, including external stiffness and damping. Application of the complex-valued state variable redefinition results in a reduction of the 8×8 RTM to the 4×4 Complex Transfer Matrix (CTM). The CTM is advantageous in that it intrinsically separates forward and backward whirl, eases symbolic manipulation by halving the transfer matrices’ dimension, and provides significant improvement in computation time. A symbolic analysis is performed on a simple overhung rotor to demonstrate the mathematical motivation for whirl frequency separation. The CTM's utility is further shown by analyzing a rotordynamic system supported by viscoelastic elastomer rings. Viscoelastic elastomer ring supports can provide significant damping while reducing the cost and complexity associated with conventional components such as squeeze film dampers. The stiffness and damping of a viscoelastic damper ring are determined herein as a function of whirl frequency using the viscoelastic correspondence principle and a constitutive fractional calculus viscoelasticity model. The CTM is then employed to obtain the characteristic equation, where the whirl frequency dependent stiffness and damping of the elastomer supports are included. The Campbell diagram is shown, demonstrating the CTM
14 CFR 135.4 - Applicability of rules for eligible on-demand operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-demand operations. 135.4 Section 135.4 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT General § 135.4 Applicability of rules for eligible on-demand operations. (a)...
Mohsenkhani, Sadaf; Jahanshahi, Mohsen; Rahimpour, Ahmad
2015-08-21
of KC-Zn matrix confirm good potential for possible use in high flow rate expanded bed operations. PMID:26187763
Operational forecast products and applications based on WRF/Chem
NASA Astrophysics Data System (ADS)
Hirtl, Marcus; Flandorfer, Claudia; Langer, Matthias; Mantovani, Simone; Olefs, Marc; Schellander-Gorgas, Theresa
2015-04-01
The responsibilities of the national weather service of Austria (ZAMG) include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The ZAMG conducts daily Air-Quality forecasts using the on-line coupled model WRF/Chem. The mother domain expands over Europe, North Africa and parts of Russia. The nested domain includes the alpine region and has a horizontal resolution of 4 km. Local emissions (Austria) are used in combination with European inventories (TNO and EMEP) for the simulations. The modeling system is presented and the results from the evaluation of the assimilation of pollutants using the 3D-VAR software GSI is shown. Currently observational data (PM10 and O3) from the Austrian Air-Quality network and from European stations (EEA) are assimilated into the model on an operational basis. In addition PM maps are produced using Aerosol Optical Thickness (AOT) observations from MODIS in combination with model data using machine learning techniques. The modeling system is operationally evaluated with different data sets. The emphasis of the application is on the forecast of pollutants which are compared to the hourly values (PM10, O3 and NO2) of the Austrian Air-Quality network. As the meteorological conditions are important for transport and chemical processes, some parameters like wind and precipitation are automatically evaluated (SAL diagrams, maps, …) with other models (e.g. ECMWF, AROME, …) and ground stations via web interface. The prediction of the AOT is also important for operators of solar power plants. In the past Numerical Weather Prediction (NWP) models were used to predict the AOT based on cloud forecasts at the ZAMG. These models do not consider the spatial and temporal variation of the aerosol distribution in the atmosphere with a consequent impact on the accuracy of forecasts especially during clear-sky days
Ablinger, J.; Blümlein, J.; Klein, S.; Schneider, C.; Wißbrock, F.
2011-01-01
The contributions ∝nf to the O(αs3) massive operator matrix elements describing the heavy flavor Wilson coefficients in the limit Q2≫m2 are computed for the structure function F2(x,Q2) and transversity for general values of the Mellin variable N. Here, for two matrix elements, Aqq,QPS(N) and Aqg,Q(N), the complete result is obtained. A first independent computation of the contributions to the 3-loop anomalous dimensions γqg(N), γqqPS(N), and γqqNS,(TR)(N) is given. In the computation advanced summation technologies for nested sums over products of hypergeometric terms with harmonic sums have been used. For intermediary results generalized harmonic sums occur, while the final results can be expressed by nested harmonic sums only. PMID:27293308
Measurement matrix optimization method based on matrix orthogonal similarity transformation
NASA Astrophysics Data System (ADS)
Pan, Jinfeng
2016-05-01
Optimization of the measurement matrix is one of the important research aspects of compressive sensing theory. A measurement matrix optimization method is presented based on the orthogonal similarity transformation of the information operator's Gram matrix. In terms of the fact that the information operator's Gram matrix is a singular symmetric matrix, a simplified orthogonal similarity transformation is deduced, and thus the simplified diagonal matrix that is orthogonally similar to it is obtained. Then an approximation of the Gram matrix is obtained by letting all the nonzero diagonal entries of the simplified diagonal matrix equal their average value. Thus an optimized measurement matrix can be acquired according to its relationship with the information operator. Results of experiments show that the optimized measurement matrix compared to the random measurement matrix is less coherent with dictionaries. The relative signal recovery error also declines when the proposed measurement matrix is utilized.
Arnetz, Judith E.; Hamblin, Lydia; Ager, Joel; Aranyos, Deanna; Upfal, Mark J.; Luborsky, Mark; Russell, Jim; Essenmacher, Lynnette
2016-01-01
Background A key barrier to preventing workplace violence injury is the lack of methodology for prioritizing the allocation of limited prevention resources. The hazard risk matrix was used to categorize the probability and severity of violence in hospitals to enable prioritization of units for safety intervention. Methods Probability of violence was based on violence incidence rates; severity was based on lost time management claims for violence-related injuries. Cells of the hazard risk matrix were populated with hospital units categorized as low, medium, or high probability and severity. Hospital stakeholders reviewed the matrix after categorization to address the possible confounding of underreporting. Results Forty-one hospital units were categorized as medium or high on both severity and probability and were prioritized for forthcoming interventions. Probability and severity were highest in psychiatric care units. Conclusions This risk analysis tool may be useful for hospital administrators in prioritizing units for violence injury prevention efforts. PMID:25223739
Applications For Real Time NOMADS At NCEP To Disseminate NOAA's Operational Model Data Base
NASA Astrophysics Data System (ADS)
Alpert, J. C.; Wang, J.; Rutledge, G.
2007-05-01
A wide range of environmental information, in digital form, with metadata descriptions and supporting infrastructure is contained in the NOAA Operational Modeling Archive Distribution System (NOMADS) and its Real Time (RT) project prototype at the National Centers for Environmental Prediction (NCEP). NOMADS is now delivering on its goal of a seamless framework, from archival to real time data dissemination for NOAA's operational model data holdings. A process is under way to make NOMADS part of NCEP's operational production of products. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development. In the National Research Council's "Completing the Forecast", Recommendation 3.4 states: "NOMADS should be maintained and extended to include (a) long-term archives of the global and regional ensemble forecasting systems at their native resolution, and (b) re-forecast datasets to facilitate post-processing." As one of many participants of NOMADS, NCEP serves the operational model data base using data application protocol (Open-DAP) and other services for participants to serve their data sets and users to obtain them. Using the NCEP global ensemble data as an example, we show an Open-DAP (also known as DODS) client application that provides a request-and-fulfill mechanism for access to the complex ensemble matrix of holdings. As an example of the DAP service, we show a client application which accesses the Global or Regional Ensemble data set to produce user selected weather element event probabilities. The event probabilities are easily extended over model forecast time to show probability histograms defining the future trend of user selected events. This approach insures an efficient use of computer resources because users transmit only the data necessary for their tasks. Data sets are served by OPeN-DAP allowing commercial clients such as MATLAB or IDL as well as freeware clients
Matrix differentiation formulas
NASA Technical Reports Server (NTRS)
Usikov, D. A.; Tkhabisimov, D. K.
1983-01-01
A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.
A Delphi-matrix approach to SEA and its application within the tourism sector in Taiwan
Kuo, N.-W. . E-mail: ibis@ntcn.edu.tw; Hsiao, T.-Y.; Yu, Y.-H.
2005-04-15
Strategic Environmental Assessment (SEA) is a procedural tool and within the framework of SEA, several different types of analytical methods can be used in the assessment. However, the impact matrix used currently in Taiwan has some disadvantages. Hence, a Delphi-matrix approach to SEA is proposed here to improve the performance of Taiwan's SEA. This new approach is based on the impact matrix combination with indicators of sustainability, and then the Delphi method is employed to collect experts' opinions. In addition, the assessment of National Floriculture Park Plan and Taiwan Flora 2008 Program is taken as an example to examine this new method. Although international exhibition is one of the important tourism (economic) activities, SEA is seldom about tourism sector. Finally, the Delphi-matrix approach to SEA for tourism development plan is established containing eight assessment topics and 26 corresponding categories. In summary, three major types of impacts: resources' usages, pollution emissions, and local cultures change are found. Resources' usages, such as water, electricity, and natural gas demand, are calculated on a per capita basis. Various forms of pollution resulting from this plan, such as air, water, soil, waste, and noise, are also identified.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Travis, Larry D.; Mackowski, Daniel W.
2010-01-01
This note serves as a short introduction to the reprint of our article "T-matrix computations of light scattering by nonspherical particles: a review" (JQSRT 1996; 55:535:75). We first discuss the motivation for writing that article and explain its historical context. This is followed by a short overview of more recent developments.
[The clinical application of Coblation in operations of the pharynx and larynx].
Sun, Yanan; Li, Huijun; Liu, Jiangtao
2014-12-01
The aticle briefly introduced the working principle and clinical applicability of Coblation. The application of Coblation promoted the improvement of traditional surgery and the generation of new operation, it is the most important to hold the indication of the operation strictly. This review summarized that and discussed the advantages and the notes of Coblation in operations of the pharynx and larynx.
NASA Astrophysics Data System (ADS)
Nemnes, G. A.; Palici, Alexandra; Manolescu, A.
2016-11-01
Transparent boundary conditions for the time-dependent Schrödinger equation are implemented using the R-matrix method. The employed scattering formalism is suitable for describing open quantum systems and provides the framework for the time-dependent coherent transport. Transmission and reflection of wave functions at the edges of a finite quantum system are essential for an accurate and efficient description of the time-dependent processes on large time scales. We detail the computational method and point out the numerical advantages stemming from the open system approach based on the R-matrix formalism. The approach is used here to describe time-dependent transport across nanostructured interfaces relevant for photovoltaic applications.
47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....
47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....
47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....
47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....
47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....
NASA Astrophysics Data System (ADS)
Mason, A. J.
Multichannel sound systems are being studied as part of the Eureka 95 and Radio-communication Bureau TG10-1 investigations into high definition television. One emerging sound system has five channels; three at the front and two at the back. This raises some compatibility issues. The listener might have only, say, two loudspeakers or the material to be broadcast may have fewer than five channels. The problem is how best to produce a set of signals to be broadcast, which is suitable for all listeners, from those that are available. To investigate this area, a device has been designed and built which has six input channels and six output channels. Each output signal is a linear combination of the input signals. The inputs and outputs are in AES/EBU digital audio format using BBC-designed AESIC chips. The matrix operation, to produce the six outputs from the six inputs, is performed by a Motorola DSP56001. The user interface and 'housekeeping' is managed by a T222 transputer. The operator of the matrix uses a VDU to enter sets of coefficients and a rotary switch to select which set to use. A set of analog controls is also available and is used to control operations other than the simple compatibility matrixing. The matrix has been very useful for simple tasks: mixing a stereo signal into mono, creating a stereo signal from a mono signal, applying a fixed gain or attenuation to a signal, exchanging the A and B channels of an AES/EBU bitstream, and so on. These are readily achieved using simple sets of coefficients. Additions to the user interface software have led to several more sophisticated applications which still consist of a matrix operation. Different multichannel panning laws have been evaluated. The analog controls adjust the panning; the audio signals are processed digitally using a matrix operation. A digital SoundField microphone decoder has also been implemented.
A mobile App for military operational entomology pesticide applications
Technology Transfer Automated Retrieval System (TEKTRAN)
Multiple field studies conducted for the Deployed War Fighter Protection (DWFP) research program have generated over 80 specific guidance points for innovative combinations of pesticide application equipment, pesticide formulations, and application techniques for aerosol and residual pesticide treat...
Finding Nonoverlapping Substructures of a Sparse Matrix
Pinar, Ali; Vassilevska, Virginia
2005-08-11
Many applications of scientific computing rely on computations on sparse matrices. The design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of nonoverlapping dense blocks in a sparse matrix, which is previously not studied in the sparse matrix community. We show that the maximum nonoverlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm that runs in linear time in the number of nonzeros in the matrix. This extended abstract focuses on our results for 2x2 dense blocks. However we show that our results can be generalized to arbitrary sized dense blocks, and many other oriented substructures, which can be exploited to improve the memory performance of sparse matrix operations.
Heinstein, M.W.
1997-10-01
A contact enforcement algorithm has been developed for matrix-free quasistatic finite element techniques. Matrix-free (iterative) solution algorithms such as nonlinear Conjugate Gradients (CG) and Dynamic Relaxation (DR) are distinctive in that the number of iterations required for convergence is typically of the same order as the number of degrees of freedom of the model. From iteration to iteration the contact normal and tangential forces vary significantly making contact constraint satisfaction tenuous. Furthermore, global determination and enforcement of the contact constraints every iteration could be questioned on the grounds of efficiency. This work addresses this situation by introducing an intermediate iteration for treating the active gap constraint and at the same time exactly (kinematically) enforcing the linearized gap rate constraint for both frictionless and frictional response.
Compression of Hamiltonian matrix: Application to spin-1/2 Heisenberg square lattice
NASA Astrophysics Data System (ADS)
Choi, Seongsoo; Kim, Woohyun; Kim, Jongho
2016-09-01
We introduce a simple algorithm providing a compressed representation (∈ℝNorbits×Norbits×ℕNorbits ) of an irreducible Hamiltonian matrix (number of magnons M constrained, dimension: N/spins!M ! (N spins-M ) ! >Norbits ) of the spin-1/2 Heisenberg antiferromagnet on the L ×L non-periodic lattice, not looking for a good basis. As L increases, the ratio of the matrix dimension to Norbits converges to 8 (order of the symmetry group of square) for the exact ground state computation. The sparsity of the Hamiltonian is retained in the compressed representation. Thus, the computational time and memory consumptions are reduced in proportion to the ratio.
Application of random matrix theory to microarray data for discovering functional gene modules
Luo, F.; Zhong, Jianxin; Yang, Y. F.; Zhou, Jizhong
2006-03-01
We show that spectral fluctuation of coexpression correlation matrices of yeast gene microarray profiles follows the description of the Gaussian orthogonal ensemble (GOE) of the random matrix theory (RMT) and removal of small values of the correlation coefficients results in a transition from the GOE statistics to the Poisson statistics of the RMT. This transition is directly related to the structural change of the gene expression network from a global network to a network of isolated modules.
Superelement methods applications to micromechanics of high temperature metal matrix composites
NASA Technical Reports Server (NTRS)
Caruso, J. J.; Chamis, C. C.
1988-01-01
Adaptation of the superelement finite-element method for micromechanics of continuous fiber high temperature metal matrix composites (HT-MMC) is described. The method is used to predict the thermomechanical behavior of P100-graphite/copper composites using MSC/NASTRAN and it is also used to validate those predicted by using an in-house computer program designed to perform micromechanics for HT-MMC. Typical results presented in the paper include unidirectional composite thermal properties, mechanical properties, and microstresses.
An improved Newton iteration for the generalized inverse of a matrix, with applications
NASA Technical Reports Server (NTRS)
Pan, Victor; Schreiber, Robert
1990-01-01
The purpose here is to clarify and illustrate the potential for the use of variants of Newton's method of solving problems of practical interest on highly personal computers. The authors show how to accelerate the method substantially and how to modify it successfully to cope with ill-conditioned matrices. The authors conclude that Newton's method can be of value for some interesting computations, especially in parallel and other computing environments in which matrix products are especially easy to work with.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... COMMISSION Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards... significant hazards consideration, notwithstanding the pendency before the Commission of a request for a... FR 37471). Notice of Consideration of Issuance of Amendments to Facility Operating Licenses,...
Application of the transfer matrix for tuning the CSNS-DTL
NASA Astrophysics Data System (ADS)
Li, A.-Hong; Yin, Xue-Jun; Fu, Shi-Nian; Sun, Zhi-Rui
2011-10-01
In the construction of a drift tube LINAC (DTL), many factors caused during the fabrication and assembly of the structure cells cause the electric field distribution not as the same as the design curve. To solve this problem, the traditional way is to solve the equation of Slater's perturbation theorem to obtain the electrical field variation due to local frequency shift. However, that is very difficult under complicated conditions. Since the field perturbation equation is similar to the particle's transverse motion equation, which can be simply solved by using the transfer matrix method, we thus propose to apply a transfer matrix method in tuning the DTL. We demonstrate the availability and advantages of this method with 3D microwave code simulation and the LabVIEW calculation program. After two iterations, the initial error of the electric field of 19.5% has been improved greatly down to 1.3%-4.5%. This indicates that the transfer matrix method is very useful and convenient for the simplification of tuning procedures.
Grcar, Joseph F.
2002-02-04
A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.
Preparing the CAA Title V operating permit application
Wyles, T.R. )
1994-01-01
The CAA amendments contain 11 new and amended titles, including enhanced non-attainment area provisions, additional conditions for controlling hazardous air pollutants, expanded monitoring and record keeping requirements, and increased enforcement authority. The cornerstone of the regulation is the operating permits program (Title V). In the past, permits have been issued to construct or modify sources, and some sources have been permitted in states with operating permit programs. Such programs will remain in effect. However, under the new CAA, most emissions sources will be required to have an operating permit. Title V's permit provision initially affects about 34,000 major facilities and may affect another 350,000 smaller sources in the future. The amendments also increase the number of regulated pollutants from 21 to about 200. Operating permits limit emissions from manufacturing operations, and place further restrictions on raw materials and products.
RoboCon: Operator interface for robotic applications
Schempf, H.; Warwick, J.; Fung, M.; Chemel, B.; Blackwell, M.
1996-12-31
Carnegie Mellon U. and ORNL`s Robotics and Process Systems Division are developing a state-of-the-art robot operator control station (RoboCon) with standardized hardware and software control interfaces to be adaptable to a variety of remote and robotic equipment currently funded by DOE`s Office of Science & Technology Robotics Technology Development Program. The human operation and telerobotic and supervisory control of sophisticated and remote and robotic systems is a complex, tiring, and non-intuitive activity. Since decontamination & decommissioning, selective equipment removal, mixed waste operations, and in-tank cleanup are going to be a major future activity in DOE environmental restoration and waste management cleanup agenda, it seems necessary to utilize an operator control station and interface which maximizes operator comfort and productivity.
A mobile app for military operational entomology pesticide applications.
Britch, Seth C; Linthicum, Kenneth J; Aldridge, Robert L; Yans, Matthew W; Hill, David W; Obenauer, Peter J; Hoffman, Eric R
2014-09-01
Multiple field studies conducted for the Deployed War-Fighter Protection (DWFP) research program have generated more than 80 specific guidance points for innovative combinations of pesticide application equipment, pesticide formulations, and application techniques for aerosol and residual pesticide treatments in 6 ecological regions against a range of mosquito, sand fly, and filth fly nuisance and disease-vector threats. To synthesize and operationalize these DWFP field and laboratory efficacy data we developed an interactive iOS and Android mobile software application, the Pesticide App, consisting of specific pesticide application guidance organized by environment and target insect vector species. PMID:25843102
L. J. Pekot; S. R. Reeves
2002-03-31
Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for
Department of Defense operational applications of wind measurements
NASA Technical Reports Server (NTRS)
Ramsay, Allan C.
1985-01-01
A stated objective for this symposium is to identify requirements for global wind measurements. This paper will draw from recent reports which considered the impact of over 100 environmental factors known to affect military operations. A conclusion that can be drawn from those analyses is that one environmental factor, atmospheric wind, has an operational impact on each of the 48 mission areas examined. This paper will characterize the impact of wind on the various mission areas and will define and summarize both 'technical' and 'operational' requirements for wind intelligence.
The application of image enhancement techniques to remote manipulator operation
NASA Technical Reports Server (NTRS)
Gonzalez, R. C.
1974-01-01
Methods of image enhancement which can be used by an operator who is not experienced with the mechanisms of enhancement to obtain satisfactory results were designed and implemented. Investigation of transformations which operate directly on the image domain resulted in a new technique of contrast enhancement. Transformations on the Fourier transform of the original image, including such techniques as homomorphic filtering, were also investigated. The methods of communication between the enhancement system and the computer operator were analyzed, and a language was developed for use in image enhancement. A working enhancement system was then created, and is included.
NASA Astrophysics Data System (ADS)
Fukasawa, Hirotoshi; Horiuchi, Toshiyuki
2009-08-01
The patterning characteristics of matrix projection exposure using an analog liquid crystal display (LCD) panel in place of a reticle were investigated, in particular for oblique patterns. In addition, a new method for fabricating practical thick resist molds was developed. At first, an exposure system fabricated in past research was reconstructed. Changes in the illumination optics and the projection lens were the main improvements. Using fly's eye lenses, the illumination light intensity distribution was homogenized. The projection lens was changed from a common camera lens to a higher-grade telecentric lens. In addition, although the same metal halide lamp was used as an exposure light source, the central exposure wavelength was slightly shortened from 480 to 450 nm to obtain higher resist sensitivity while maintaining almost equivalent contrast between black and white. Circular and radial patterns with linewidths of approximately 6 µm were uniformly printed in all directions throughout the exposure field owing to these improvements. The patterns were smoothly printed without accompanying stepwise roughness caused by the cell matrix array. On the bases of these results, a new method of fabricating thick resist molds for electroplating was investigated. It is known that thick resist molds fabricated using the negative resist SU-8 (Micro Chem) are useful because very high aspect patterns are printable and the side walls are perpendicular to the substrate surfaces. However, the most suitable exposure wavelength of SU-8 is 365 nm, and SU-8 is insensitive to light of 450 nm wavelength, which is most appropriate for LCD matrix exposure. For this reason, a novel multilayer resist process was proposed, and micromolds of SU-8 of 50 µm thickness were successfully obtained. As a result, feasibility for fabricating complex resist molds including oblique patterns was demonstrated.
Assessment of Erosion Resistance of Coated Polymer Matrix Composites for Propulsion Applications
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Sutter, James K.; Horan, Richard A.; Naik, Subhash K.; Cupp, Randall J.
2004-01-01
The erosion behavior of tungsten carbide-cobalt (WC-Co) coated and uncoated polymer matrix composites (PMCs) was examined with solid particle impingement using air jets. Erosion tests were conducted with Arizona road dust impinging at 20 degrees, 60 degrees, and 90 degrees angles at a velocity of 229 meters per second at both 294 and 366 K. Noncontact optical profilometry was used to measure the wear volume loss. Results indicate that the WC-Co coating enhanced erosion resistance and reduced erosion wear volume loss by a factor of nearly 2. This should contribute to longer wear lives, reduced related breakdowns, decreased maintenance costs, and increased product reliability.
Remapping algorithms: application to trimming operations in sheet metal forming
NASA Astrophysics Data System (ADS)
Neto, D. M.; Diogo, C. M. A.; Neves, T. F.; Oliveira, M. C.; Alves, J. L.; Menezes, L. F.
2016-08-01
Most of sheet metal forming processes comprise intermediate trimming operations to remove superfluous material. These operations are required for subsequent forming operations. On the other hand, the springback is strongly influenced by the trimming operations that change the part stiffness and the stress field. From the numerical point of view, this involves the geometrical trimming of the finite element mesh and subsequent remapping of the state variables. This study presents a remapping method based on Dual Kriging interpolation, specifically developed for hexahedral finite elements, which has been implemented in DD3TRIM in-house code. Its performance is compared with the one of the Incremental Volumetric Remapping method, using the split-ring test to highlight their advantages and limitations. The numerical simulation of the forming processes is performed with DD3IMP finite element solver.
Residual energy applications program test and operations report
Zander, F.H.
1980-10-01
Objective of REAP in the recovery of waste heat at US gaseous diffusion plants by 1984. This report contains policy, objective, and guideline suggestions for utilizing the proposed Energy applied Systems Test (EAST) Facility and for managing EAST operations; preliminary design information on facility support equipment and physical plant; and estimates of initial construction costs and staffing requirements for a two-bay, three-shift operation. (DCL)
Fabrication of nanocrystallites in the SiOx matrix applicable in microelectronics
NASA Astrophysics Data System (ADS)
Kolodziej, Tomasz
2013-07-01
The development of the technology of fabricating hydrogenated amorphous silicon (a-Si:H) or silicon oxide (SiOx) matrix with nanocrystalline inclusions (nc-Si:H) is the next step in improving the properties of electronic devices, such as solar cells, thin film transistors (TFT), floating gate transistors and others. Those films exhibit increased stability, absorption and carrier mobility. This paper is focused on the technology of manufacturing such films by means of Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF PECVD), which is use to fabricate electronic devices. The technology was developed in the Semiconductor Thin Films and Solar Cells Laboratory at the Department of Electronics at the AGH University of Science and Technology. The author describes the manufacturing process based on periodical variation of the process parameters, such as hydrogen to silane ratio (Rh), gas flows, RF power and pressure in the process chamber, during the deposition process. The author also presents the results of the measurements of typical samples with High Resolution Transmission Electron Microscopy (HRTEM), which confirms the existence of the nanocrystallites in the a-Si:H/SiOx matrix.
NASA Astrophysics Data System (ADS)
Taukeer Khan, Mohd; Kaur, Amarjeet; Dhawan, S. K.; Chand, Suresh
2011-08-01
In the present study, nanocrystals of cadmium telluride (CdTe) have been directly synthesized in poly(3-hexylthiophene) (P3HT) matrix without use of any surfactant. In situ synthesis of nanoparticles in polymer matrix improves the polymer-nanoparticles interface, which facilitates efficient electronic interaction between them. Spectral results suggest that CdTe nanocrystals are bound with P3HT via dipole-dipole interaction and form a charge transfer complex. Structural and morphological studies reveal that CdTe works as transport media along/between the polymer chains, which facilitate percolation pathways for charge transport. Therefore, enhancement in current density has been observed for the bulk heterojunction (BHJ) device of P3HT-CdTe nanocomposites blended with PCBM. An open circuit voltage (VOC) of 0.80 V was obtained from the BHJ device due to the increase in the energy level offset between the donor and acceptor. This new photovoltaic element could provide a new nanoscale criterion for the investigation of photoinduced energy/charge transport in organic-inorganic interfaces.
Particulate Titanium Matrix Composites Tested-Show Promise for Space Propulsion Applications
NASA Technical Reports Server (NTRS)
Thesken, John C.; Lerch, Bradley A.; Arnold, Steven M.
2003-01-01
New manufacturing technologies can now produce uniformly distributed particle strengthened titanium matrix composites (TMCs) at lower cost than many types of continuous-fiber composites. The innovative process results in near-final-shape components having a material stiffness up to 26-percent greater than that of components made with conventional titanium materials. This benefit is achieved with no significant increase in the weight of the component. The improved mechanical performance and low-cost manufacturing capability motivated a review of particulate-reinforced metal composite technology as a way to lower the cost and weight of space-access propulsion systems. Focusing on the elevated-temperature properties of titanium alloy Ti-6Al-4V as the matrix material, researchers at the NASA Glenn Research Center conducted experiments to verify the improved performance of the alloy containing 10 wt% of ceramic titanium carbide (TiC) particles. The appropriate blend of metal and ceramic powder underwent a series of cold and hot isostatic pressing procedures to yield bar stock. A set of round dogbone specimens was manufactured from a small sample of the bars. The TMC material proved to have good machinability at this particle concentration as there was no difficulty in producing high-quality specimens.
Sharma, Archana; Bhat, Sumrita; Vishnoi, Tanushree; Nayak, Vijayashree; Kumar, Ashok
2013-01-01
A tissue-engineered polymeric scaffold should provide suitable macroporous structure similar to that of extracellular matrix which can induce cellular activities and guide tissue regeneration. Cryogelation is a technique in which appropriate monomers or polymeric precursors frozen at sub-zero temperature leads to the formation of supermacroporous cryogel matrices. In this study carrageenan-gelatin (natural polymers) cryogels were synthesized by using glutaraldehyde and 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride and N-hydroxysuccinimide (EDC-NHS) as crosslinking agent at optimum concentrations. Matrices showed large and interconnected pores which were in the range of 60–100 μm diameter. Unconfined compression analysis showed elasticity and physical integrity of all cryogels, as these matrices regained their original length after 90% compressing from the original size. Moreover Young's modulus was found to be in the range of 4–11 kPa for the dry cryogel sections. These cryogels also exhibited good in vitro degradation capacity at 37 °C within 4 weeks of incubation. Supermacroporous carrageenan-gelatin cryogels showed efficient cell adherence and proliferation of Cos-7 cells which was examined by SEM. PI nuclear stain was used to observe cell-matrix interaction. Cytotoxicity of the scaffolds was checked by MTT assay which showed that cryogels are biocompatible and act as a potential material for tissue engineering and regenerative medicine. PMID:23936806
NASA Astrophysics Data System (ADS)
Liang, Jinyou; Fairley, David
Positive matrix factorization (PMF) techniques have been applied in many environmental studies. The commercial version of the PMF method has a relatively moderate practical limit for the size of the input data matrix, since the computer memory and time needed for the commercial method increases quadratically with the number of elements of solution matrices. To extend the applications of the PMF techniques to large datasets, we exercised alternative methods that demand less computer memory and time. One such method, called non-negative matrix factorization (NMF) here, is extremely memory efficient, compared with the commercial PMF method. Both NMF and PMF methods are sensitive to the initialization of solution matrices, and the use of random numbers in the initialization usually starts with a large prediction error, and requires a number of model runs with different random seeds. A novel, chemical mass balance method (ROC) is introduced here to provide a reasonable initialization for the NMF method for large data sets. Both NMF and ROC methods were validated with an ideal Cross example and the benchmark example of the commercial PMF method. The NMF-ROC method was further evaluated, in terms of computer time and the prediction error, in the preliminary application to a data set that contains particle-phase polar organic compounds analyzed for a number of samples collected in Central California during the California Regional PM 10/PM 2.5 air quality study (CRPAQS, 1999-2001). The NMF-ROC method was demonstrated to perform better than the NMF, PMF and PMF-ROC methods in the CRPAQS data set. This performance enhancement is expected to be magnified for larger data sets.
Barbizam, Joao V B; Massarwa, Rasha; da Silva, Lea Assed Bezerra; da Silva, Raquel Assed Bezerra; Nelson-Filho, Paulo; Consolaro, Alberto; Cohenca, Nestor
2015-02-01
The extra-alveolar dry period and storage medium in which the tooth was kept prior to replantation remain the critical factors affecting the survival and regeneration of the damaged periodontium. When the replantation is delayed, replacement root resorption is the most common complication following replantation of an avulsed tooth. The aim of this histological study was to evaluate the periodontal healing of replanted dogs' teeth after 20 min (short) and 60 min (long) extraoral dry time with and without the application of enamel matrix proteins. Eighty mature premolar roots (40 teeth) maxillary and mandibular premolars were extracted, the root canals were accessed, instrumented, and filled using a lateral condensation technique, and the access cavity was restored with amalgam. Each root was randomly assigned to one of experimental groups: Groups I and II: Roots were replanted after an extraoral dry time of 20 min. In group II, Emdogain(®) (Biora, Malmo, Sweden) was applied directly to the external root surface with complete coverage. Groups III and IV: Roots were replanted after an extraoral dry time of 60 min. In group IV, Emdogain(®) was applied to the whole external root surface before replantation. Roots that replanted within a total extraoral dry time of 10 min were used as negative controls, while those replanted after 90 min of extraoral dry time were assigned as positive controls. After 4 months, the dogs were euthanized, and the maxillary and mandibular processes were processed for histology and microscopically evaluated. Statistical analysis showed no significant differences (P = 0.1075) among the experimental groups. The results of this study show that 20 min of extraoral dry time is as detrimental to the PDL cells as 60 or 90 min of extraoral dry time, with avulsed dogs' teeth, even when replanted with an inductive material such as EMD. This study provides strong evidence in relation to the threshold of the extraoral dry time of avulsed teeth
Research and operational applications in multi-center ensemble forecasting
NASA Astrophysics Data System (ADS)
Zhu, Y.; Toth, Z.
2009-05-01
The North American Ensemble Forecast System (NAEFS) was built up in 2004 by the Meteorological Service of Canada (MSC), the National Meteorological Service of Mexico (NMSM), and the US National Weather Service (NWS) as an operational multi-center ensemble forecast system. Currently it combines the 20-member MSC and NWS ensembles to form a joint ensemble of 40 members twice a day. The joint ensemble forecast, after bias correction and statistical downscaling, is used to generate a suite of products for CONUS, North America and for other regions of the globe. The THORPEX Interactive Grand Global Ensemble (TIGGE) project has been established a few years ago to collect operational global ensemble forecasts from world centers, and distribute to the scientific community, to encourage research leading to the acceleration of improvements in the skill and utility of high impact weather forecasts. TIGGE research is expected to advise the development of the operational NAEFS system and eventually the two projects are expected to converge into a single operational system, the Global Interactive Forecast System (GIFS). This presentation will review recent developments, the current status, and plans related to the TIGGE research and NAEFS operational multi-center ensemble projects.
The OCLC Network: Its Architecture, Application, and Operation.
ERIC Educational Resources Information Center
Learn, Larry L.; Carpenter, George L.
1988-01-01
This overview of the OCLC telecommunications network discusses: its scope and applications, user demographics, the system architecture, access, costs, protocols, maintenance, vendor relationships, performance data, and network engineering. (13 references) (MES)
27 CFR 19.92 - Information required in application for operating permit.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Information required in application for operating permit. 19.92 Section 19.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND... § 19.92 Information required in application for operating permit. (a) In order to obtain an...
The gas electron multiplier (GEM): Operating principles and applications
NASA Astrophysics Data System (ADS)
Sauli, Fabio
2016-01-01
Introduced by the author in 1997, The Gas Electron Multiplier (GEM) constitutes a powerful addition to the family of fast radiation detectors; originally developed for particle physics experiments, the device and has spawned a large number of developments and applications; a web search yields more than 400 articles on the subject. This note is an attempt to summarize the status of the design, developments and applications of the new detector.
Operator assistant systems - An experimental approach using a telerobotics application
NASA Technical Reports Server (NTRS)
Boy, Guy A.; Mathe, Nathalie
1993-01-01
This article presents a knowledge-based system methodology for developing operator assistant (OA) systems in dynamic and interactive environments. This is a problem both of training and design, which is the subject of this article. Design includes both design of the system to be controlled and design of procedures for operating this system. A specific knowledge representation is proposed for representing the corresponding system and operational knowledge. This representation is based on the situation recognition and analytical reasoning paradigm. It tries to make explicit common factors involved in both human and machine intelligence, including perception and reasoning. An OA system based on this representation has been developed for space telerobotics. Simulations have been carried out with astronauts and the resulting protocols have been analyzed. Results show the relevance of the approach and have been used for improving the knowledge representation and the OA architecture.
MIL-H-8501B: Application to shipboard terminal operations
NASA Technical Reports Server (NTRS)
Cappetta, A. N.; Johns, J. B.
1993-01-01
The philosophy and structure of the proposed U.S. Military Specification for Handling Qualities Requirements for Military Rotorcraft, MIL-H-8501B, are presented with emphasis on shipboard terminal operations. The impact of current and future naval operational requirements on the selection of appropriate combinations of basic vehicle dynamics and usable cue environments are identified. An example 'walk through' of MIL-H-8501B is conducted from task identification to determination of stability and control requirements. For selected basic vehicle dynamics, criteria as a function of input/response magnitude are presented. Additionally, rotorcraft design development implications are discussed.
Operational approach to Bell inequalities: Application to qutrits
NASA Astrophysics Data System (ADS)
Alsina, Daniel; Cervera, Alba; Goyeneche, Dardo; Latorre, José I.; Życzkowski, Karol
2016-09-01
In this work we develop two methods to construct Bell inequalities for multipartite systems. By considering non-Hermitian operators we study Bell inequalities for the cases of three settings, three outcomes, and three to six parties. The maximal value achieved in the framework of quantum theory is computed for subsystems with three levels each. The other technique, based on a mapping from pure entangled states to Bell operators, allows us to construct further multipartite Bell inequalities. As a consequence, we reproduce some known results in a different way and find some multipartite Bell inequalities for systems having three settings and three outcomes per party.
Erementchouk, Mikhail; Mazumder, Pinaki; Khan, M A; Leuenberger, Michael N
2016-03-23
Scattering of 2D Dirac electrons on a rectangular matrix potential barrier is considered using the formalism of spinor transfer matrices. It is shown, in particular, that in the absence of the mass term, the Klein tunneling is not necessarily suppressed but occurs at oblique incidence. The formalism is applied to studying waveguiding modes of the barrier, which are supported by the edge and bulk states. The condition of the existence of the uni-directionality property is found. We show that the band of edge states is always finite with massless excitations, while the spectrum of the bulk states, depending on the parameters of the barrier, may consist of the infinite or finite band with both, massive and massless, low-energy excitations. The effect of the Zeeman term is considered and the condition of the appearance of two distinct energy-dependent directions corresponding to the Klein tunneling is found. PMID:26902304
NASA Astrophysics Data System (ADS)
Erementchouk, Mikhail; Mazumder, Pinaki; Khan, M. A.; Leuenberger, Michael N.
2016-03-01
Scattering of 2D Dirac electrons on a rectangular matrix potential barrier is considered using the formalism of spinor transfer matrices. It is shown, in particular, that in the absence of the mass term, the Klein tunneling is not necessarily suppressed but occurs at oblique incidence. The formalism is applied to studying waveguiding modes of the barrier, which are supported by the edge and bulk states. The condition of the existence of the uni-directionality property is found. We show that the band of edge states is always finite with massless excitations, while the spectrum of the bulk states, depending on the parameters of the barrier, may consist of the infinite or finite band with both, massive and massless, low-energy excitations. The effect of the Zeeman term is considered and the condition of the appearance of two distinct energy-dependent directions corresponding to the Klein tunneling is found.
NASA Technical Reports Server (NTRS)
Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea
2015-01-01
This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.
NASA Astrophysics Data System (ADS)
Theodore, Zachary B.
A robust proportional-integral (PI) controller was synthesized for the F-16 VISTA (Variable stability In-flight Simulator Test Aircraft) using a linear matrix inequality (LMI) approach, with the goal of eventually designing and implementing a linear parameter-varying PI controller on high performance aircraft. The combination of classical and modern control theory provides theoretically guaranteed stability and performance throughout the flight envelope and ease of implementation due to the simplicity of the PI controller structure. The controller is designed by solving a set of LMIs with pole placement constraints. This closed-loop system was simulated in MATLAB/Simulink to analyze the performance of the controller. A robust Hinfinity controller was also developed to compare performance with PI controller. The simulation results showed stability, albeit with poor performance compared to the Hinfinity controlle.
Concerning an application of the method of least squares with a variable weight matrix
NASA Technical Reports Server (NTRS)
Sukhanov, A. A.
1979-01-01
An estimate of a state vector for a physical system when the weight matrix in the method of least squares is a function of this vector is considered. An iterative procedure is proposed for calculating the desired estimate. Conditions for the existence and uniqueness of the limit of this procedure are obtained, and a domain is found which contains the limit estimate. A second method for calculating the desired estimate which reduces to the solution of a system of algebraic equations is proposed. The question of applying Newton's method of tangents to solving the given system of algebraic equations is considered and conditions for the convergence of the modified Newton's method are obtained. Certain properties of the estimate obtained are presented together with an example.
Applications of matrix optics to acceptance studies in low-beta ion linacs
Joh, K.; Nolen, J.A.
1993-07-01
Four-gap superconducting resonators have been developed at Argonne for use in the low-beta positive ion injector (PII) for ATLAS. These structures have been used successfully for ion velocities as low as 0.007c with q/m = 0.1. First order matrix optics and linear theory for the phase space transformations in accelerating systems are applied to the PII linac which includes low-beta heavy ion rf resonators and magnetic solenoids. These provide a new method to match initial phase space ellipses when used with higher order transfer maps or ray-tracing calculations. And also we present a quantitative measure of nonlinearities using the concept of rms emittances and deviations of phase space coordinates between linear and nonlinear transformations. As a byproduct a way of identifying the dominant source of nonlinearity of system is indicated.
The application of Positive Matrix Factorization (PMF) to eco-efficiency analysis.
Wu, Jiaying; Wu, Zhijun; Holländer, Robert
2012-05-15
A new method for weighting and aggregating eco-efficiency indicators is of the utmost importance, if researchers in the field are to provide simplified and physically meaningful information to policy makers. To date, there is still considerable debate over which weighting and aggregating methods to use in this context. We apply a new variant of factor analysis, Positive Matrix Factorization (PMF), to a simple eco-efficiency analysis case study. PMF constrains its solutions to be non-negative, providing two important advantages over traditional factor analysis (FA) or principal component analysis (PCA): the rotational ambiguity of the solution space is reduced, and all the results are guaranteed to be physically meaningful. We suggest that PMF is better choice than either FA or PCA for eco-efficiency indicators, especially when dealing with complex social-economic and environmental data.
Narwal, Rajesh Kumari; Bhushan, Bharat; Pal, Ajay; Malhotra, Sarla Popli; Kumar, Satish; Saharan, Vinod
2016-10-01
Milk clotting enzyme (MCE) was immobilized in alginate-pectate interwoven gel with the yield of 73%. The encapsulated enzyme retained most of the protein load while soluble enzyme lost major proportion of activity after few hours. The immobilized enzyme showed high operational stability by retaining 40% activity even after 10 uses. The narrow optimal working pH of soluble enzyme changed to a broader range after encapsulation and a shift in optimum temperature from 45 to 50°C was also recorded for encapsulated enzyme. Studies on isokinetic temperature showed that immobilized enzyme is more thermo-stable at higher temperature. Immobilization, therefore, not only improved the catalytic properties and stability but also its suitability in food processes like cheese preparation with reduced cost and time. PMID:27174906
Radiographic and histological evaluation of ectopic application of deproteinized bovine bone matrix
da Silva, Rodrigo Carlos; Crivellaro, Viviane Rozeira; Giovanini, Allan Fernando; Scariot, Rafaela; Gonzaga, Carla Castiglia; Zielak, João César
2016-01-01
Objective: To evaluate, through radiographic and histological analysis, the tissue reaction induced by a biomaterial based on deproteinized bovine bone matrix (DBBM) in the muscle of sheep. Materials and Methods: Sixteen sheep were used. The animals underwent surgery to insert polyethylene tubes containing the biomaterial in the muscle of the lower back (ectopic site) and were euthanized after 3 and 6 months. Each sheep received three tubes: Group 1 - sham group (negative control - tube without biomaterial), Group 2 - particulate autogenous bone (positive control), and Group 3 - DBBM biomaterial (GenOx Inorg). The material removed was evaluated by radiographic, macroscopic, and microscopic analysis, descriptively. Results: Macroscopic analysis showed that Group 3 had a greater tissue volume maintenance. Microscopic analysis indicated that Group 1 had a higher concentration of dense, thin collagen fibers (3 and 6 months); in Group 2, there was a decrease in the inflammatory process and the deposition of dense, thin collagen fibers (3 and 6 months); in Group 3, the presence of a dense connective tissue was noted, in which the DBBM particles (3 months) were found. On the periphery of these particles, a deposition of basophilic material was found, indicating the formation of mineral particles and the formation of tissues with osteoid characteristics (6 months). Conclusion: Based on the results obtained, it can be concluded that the biomaterial based on DBBM led to the formation of tissue with similar characteristics to an osteoid matrix in a postoperative period of 6 months. However, none of the groups evaluated showed ectopic bone neoformation. PMID:27563599
Application and Operation of Audiovisual Equipment in Education.
ERIC Educational Resources Information Center
Pula, Fred John
Interest in audiovisual aids in education has been increased by the shortage of classrooms and good teachers and by the modern predisposition toward learning by visual concepts. Effective utilization of audiovisual materials and equipment depends most importantly, on adequate preparation of the teacher in operating equipment and in coordinating…
Selected Mathematics Applications (Level A): Operating A Store.
ERIC Educational Resources Information Center
Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.
Presented is one of a series of resource guides designed to provide students with an improved mathematics program. This guide emphasizes real-life situations focusing on the operation of a store. Classes are divided into grocery, meat, produce, drugs, and hardware sections at the beginning of the course. Students learn how to organize, collect,…
The application of NAVSTAR Differential GPS to civil helicopter operations
NASA Technical Reports Server (NTRS)
Beser, J.; Parkinson, B. W.
1981-01-01
Principles concerning the operation of the NAVSTAR Global Positioning Systems (GPS) are discussed. Selective availability issues concerning NAVSTAR GPS and differential GPS concepts are analyzed. Civil support and market potential for differential GPS are outlined. It is concluded that differential GPS provides a variation on the baseline GPS system, and gives an assured, uninterrupted level of accuracy for the civilian community.
Operational excellence (six sigma) philosophy: Application to software quality assurance
Lackner, M.
1997-11-01
This report contains viewgraphs on operational excellence philosophy of six sigma applied to software quality assurance. This report outlines the following: goal of six sigma; six sigma tools; manufacturing vs administrative processes; Software quality assurance document inspections; map software quality assurance requirements document; failure mode effects analysis for requirements document; measuring the right response variables; and questions.
36 CFR 1194.21 - Software applications and operating systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... elements as the input focus changes. The focus shall be programmatically exposed so that assistive technology can track focus and focus changes. (d) Sufficient information about a user interface element including the identity, operation and state of the element shall be available to assistive technology....
Applications of Optimal Building Energy System Selection and Operation
Marnay, Chris; Stadler, Michael; Siddiqui, Afzal; DeForest, Nicholas; Donadee, Jon; Bhattacharya, Prajesh; Lai, Judy
2011-04-01
Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated by description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.
40 CFR 63.747 - Standards: Chemical milling maskant application operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Standards: Chemical milling maskant... Standards: Chemical milling maskant application operations. (a) Each owner or operator of a new or existing chemical milling maskant operation subject to this subpart shall comply with the requirements specified...
Application of generalized operator representation in the time evolution of quantum systems
NASA Astrophysics Data System (ADS)
He, Rui; Liu, Xiangyuan; Song, Jun
2016-10-01
We have systematically explored the application of generalized operator representation including P-, W-, and Husimi representation in the time evolution of quantum systems. In particular, by using the method of differentiation within an ordered product of operators, we give the normally and antinormally ordered forms of the integral kernels of Husimi operator representations and its corresponding formulations. By making use of the generalized operator representation, we transform exponentially complex operator equations into tractable phase-space equations. As a simple application, the time evolution equation of Husimi function in the amplitude dissipative channel is clearly obtained.
Application of generalized operator representation in the time evolution of quantum systems
NASA Astrophysics Data System (ADS)
He, Rui; Liu, Xiangyuan; Song, Jun
2016-07-01
We have systematically explored the application of generalized operator representation including P-, W-, and Husimi representation in the time evolution of quantum systems. In particular, by using the method of differentiation within an ordered product of operators, we give the normally and antinormally ordered forms of the integral kernels of Husimi operator representations and its corresponding formulations. By making use of the generalized operator representation, we transform exponentially complex operator equations into tractable phase-space equations. As a simple application, the time evolution equation of Husimi function in the amplitude dissipative channel is clearly obtained.
Design, fabrication, and operation of hybrid bionanodevices for biomedical applications
NASA Astrophysics Data System (ADS)
Tucker, Robert Matthew
Cells are the fundamental building blocks of life. Despite their simplicity, cells are extremely versatile, performing a variety of functions including detection, signaling, and repair. While current biomedical devices operate at the organ level, the next generation will operate at the cellular level, combining the nanoscale machinery of cells with the mechanical robustness of synthetic materials in the form of new hybrid devices. This thesis presents advances in four topics concerning the development of nanomedical devices: fabrication, stabilization, control, and operation. First, as feature sizes decrease from the milli- and microscale towards the nanoscale, new fabrication methods must be developed. A new rapid prototyping technique using confocal microscopy was used to produce freely-programmable high-resolution protein patterns of functional motor proteins on thermo-responsive polymer surfaces. Second, hybrid device operation should be temperature-independent, but most biological components have strong responses to temperature fluctuations. To counter operational fluctuations, the temperature-dependent enzymatic activity was characterized for two types of molecular motors with the goal of developing a bionanosystem which is stabilized against temperature fluctuations. Third, replacing electromechanical systems consisting of pumps and batteries with proteins that directly convert chemical potential into mechanical energy increases the efficiency and decreases the size of the bionanodevice, but requires new control methods. An enzymatic network was developed in which fuel was photolytically released to activate molecular shuttles, excess fuel was sequestered using an enzyme, and spatial and temporal control of the system was achieved. Finally, chemically powered bionanodevices will require high-precision nano- and microscale actuators. A two-part hybrid actuator was designed, which consists of a molecular motor-coated synthetic macroscale forcer and a
Zhai, Peng-Wang; Kattawar, George W; Yang, Ping
2008-03-10
A hybrid method is developed to solve the vector radiative transfer equation (VRTE) in a three-dimensional atmosphere-ocean system (AOS). The system is divided into three parts: the atmosphere, the dielectric interface, and the ocean. The Monte Carlo method is employed to calculate the impulse response functions (Green functions) for the atmosphere and ocean. The impulse response function of the dielectric interface is calculated by the Fresnel formulas. The matrix operator method is then used to couple these impulse response functions to obtain the vector radiation field for the AOS. The primary advantage of this hybrid method is that it solves the VRTE efficiently in an AOS with different dielectric interfaces while keeping the same atmospheric and oceanic conditions. For the first time, we present the downward radiance field in an ocean with a sinusoidal ocean wave.
Securing Ground Data System Applications for Space Operations
NASA Technical Reports Server (NTRS)
Pajevski, Michael J.; Tso, Kam S.; Johnson, Bryan
2014-01-01
The increasing prevalence and sophistication of cyber attacks has prompted the Multimission Ground Systems and Services (MGSS) Program Office at Jet Propulsion Laboratory (JPL) to initiate the Common Access Manager (CAM) effort to protect software applications used in Ground Data Systems (GDSs) at JPL and other NASA Centers. The CAM software provides centralized services and software components used by GDS subsystems to meet access control requirements and ensure data integrity, confidentiality, and availability. In this paper we describe the CAM software; examples of its integration with spacecraft commanding software applications and an information management service; and measurements of its performance and reliability.
NASA Astrophysics Data System (ADS)
Iannone, Michele; Esposito, Floriana; Cammarano, Aniello
2014-05-01
Blends obtained by mixing high temperature applications thermoplastics have been investigated. Namely the blends considered in this work are made by semi-crystalline thermoplastics PEEK with amorphous PEI. The final goal is to analyse the mechanical, chemical-physical and environmental resistance characteristics of these blends to evaluate their suitability as matrices of carbon reinforced composites for aeronautical structural applications. The first collected results are very promising.
NASA Astrophysics Data System (ADS)
1982-02-01
A matrix representation of the ion optics of the analyzing stage has been used in a computer model of a tandem mass spectrometer with simultaneous detection for CAD. The matrix algorithm of this model is discussed here as an elegant way of describing the ion optics in a first-order approximation. The accuracy of the calculations is illustrated by comparing calculated and measured adjustments of the instrument under normal experiment conditions. The ion-optical possibilities with respect to transmission, mass resolution influence of several ion optical parameters on the shape and position of the mass focal plane is discussed. The experimental values of mass range, mass resolution and ion transmission agree very well with the calculations. Moreover, the computer model appears to be a useful tool for giving clear insight into the operation of the rather complex ion optics of the instrument. The calculations have been further developed towards higher accuracy, making possible automatic focusing of the mass focal plane onto the detector.
Risk and safety analysis for Florida commercial aerial application operations
NASA Astrophysics Data System (ADS)
Robbins, John Michael
The purpose of this study was to determine self-reported perceptions in the areas of agroterrorism, bioterrorism, chemical exposure and Federal Aviation Administration (FAA) oversight. The aerial application industry has been in existence since the 1920's with a gamut of issues ranging from pesticide drift to counterterrorism. The attacks of September 11th, 2001, caused a paradigm shift in the way the United States views security and, more importantly, the prevention of malicious activity. Through the proper implementation and dissemination of educational materials dealing with industry specific concerns, it is imperative that everyone has the proper level of resources and training to effectively manage terrorist threats. This research study was designed to interpret how aerial applicators view these topics of concern and how they perceive the current threat level of terrorism in the industry. Research results were consistent, indicating that a high number of aerial applicators in the state of Florida are concerned with these topics. As a result, modifications need to be made with respect to certain variables. The aerial application industry works day in and day out to provide a professional service that helps maintain the integrity of the food and commodities that we need to survive. They are a small percentage of the aviation community that we all owe a great deal for the vital and necessary services they provide.
7 CFR 273.2 - Office operations and application processing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... cooperation. (1) To determine eligibility, the application form must be completed and signed, the household or... nonhousehold members under § 273.1(b)(2) as individuals outside the household. (2) Cooperation with QC Reviewer.... Where the Interim Guidance and the DOJ final rule conflict, the latter should control the...
46 CFR 298.12 - Applicant and operator's qualifications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with all requirements of this part. (b) Identity and ownership of applicant. In order for us to assess... America, or is currently delinquent on any Federal debt, and if so, provide explanatory information. (7) A..., indicate the names of these entities and whether such entities have defaulted on any U.S. Government...
46 CFR 298.12 - Applicant and operator's qualifications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with all requirements of this part. (b) Identity and ownership of applicant. In order for us to assess... America, or is currently delinquent on any Federal debt, and if so, provide explanatory information. (7) A..., indicate the names of these entities and whether such entities have defaulted on any U.S. Government...
46 CFR 298.12 - Applicant and operator's qualifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... company; (ii) Address of principal place of business; and (iii) Certified copy of certificate of... of business; and (iii) Certified copy of certificate of formation, partnership agreement or other... whether voting or non-voting). (c) Business and affiliations of applicants. You must include: (1) A...
Options for organization and operation of space applications transfer centers
NASA Technical Reports Server (NTRS)
Robinson, A. C.; Madigan, J. A.
1976-01-01
The benefits of developing regional facilities for transfer of NASA developed technology are discussed. These centers are designed to inform, persuade, and serve users. Included will be equipment for applications and demonstrations of the processes, a library, training facilities, and meeting rooms. The staff will include experts in the various techniques, as well as personnel involved in finding and persuading potential users.
Applications of Genetic Methods to NASA Design and Operations Problems
NASA Technical Reports Server (NTRS)
Laird, Philip D.
1996-01-01
We review four recent NASA-funded applications in which evolutionary/genetic methods are important. In the process we survey: the kinds of problems being solved today with these methods; techniques and tools used; problems encountered; and areas where research is needed. The presentation slides are annotated briefly at the top of each page.
U.S. Forward Operating Base Applications of Nuclear Power
Griffith, George W.
2015-01-01
This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.
The application of automated operations at the Institutional Processing Center
NASA Technical Reports Server (NTRS)
Barr, Thomas H.
1993-01-01
The JPL Institutional and Mission Computing Division, Communications, Computing and Network Services Section, with its mission contractor, OAO Corporation, have for some time been applying automation to the operation of JPL's Information Processing Center (IPC). Automation does not come in one easy to use package. Automation for a data processing center is made up of many different software and hardware products supported by trained personnel. The IPC automation effort formally began with console automation, and has since spiraled out to include production scheduling, data entry, report distribution, online reporting, failure reporting and resolution, documentation, library storage, and operator and user education, while requiring the interaction of multi-vendor and locally developed software. To begin the process, automation goals are determined. Then a team including operations personnel is formed to research and evaluate available options. By acquiring knowledge of current products and those in development, taking an active role in industry organizations, and learning of other data center's experiences, a forecast can be developed as to what direction technology is moving. With IPC management's approval, an implementation plan is developed and resources identified to test or implement new systems. As an example, IPC's new automated data entry system was researched by Data Entry, Production Control, and Advance Planning personnel. A proposal was then submitted to management for review. A determination to implement the new system was made and elements/personnel involved with the initial planning performed the implementation. The final steps of the implementation were educating data entry personnel in the areas effected and procedural changes necessary to the successful operation of the new system.
Suhr, Anna Catharina; Vogeser, Michael; Grimm, Stefanie H
2016-05-30
For quotable quantitative analysis of endogenous analytes in complex biological samples by isotope dilution LC-MS/MS, the creation of appropriate calibrators is a challenge, since analyte-free authentic material is in general not available. Thus, surrogate matrices are often used to prepare calibrators and controls. However, currently employed validation protocols do not include specific experiments to verify the suitability of a surrogate matrix calibration for quantification of authentic matrix samples. The aim of the study was the development of a novel validation experiment to test whether surrogate matrix based calibrators enable correct quantification of authentic matrix samples. The key element of the novel validation experiment is the inversion of nonlabelled analytes and their stable isotope labelled (SIL) counterparts in respect to their functions, i.e. SIL compound is the analyte and nonlabelled substance is employed as internal standard. As a consequence, both surrogate and authentic matrix are analyte-free regarding SIL analytes, which allows a comparison of both matrices. We called this approach Isotope Inversion Experiment. As figure of merit we defined the accuracy of inverse quality controls in authentic matrix quantified by means of a surrogate matrix calibration curve. As a proof-of-concept application a LC-MS/MS assay addressing six corticosteroids (cortisol, cortisone, corticosterone, 11-deoxycortisol, 11-deoxycorticosterone, and 17-OH-progesterone) was chosen. The integration of the Isotope Inversion Experiment in the validation protocol for the steroid assay was successfully realized. The accuracy results of the inverse quality controls were all in all very satisfying. As a consequence the suitability of a surrogate matrix calibration for quantification of the targeted steroids in human serum as authentic matrix could be successfully demonstrated. The Isotope Inversion Experiment fills a gap in the validation process for LC-MS/MS assays
Application of Mimetic Operators to Tetrahedral Mesh MHD Codes
NASA Astrophysics Data System (ADS)
Marklin, George; Jarboe, Tom
2008-11-01
Mimetic operators are numerical approximations to the grad, div and curl operators that 'mimic' the orthogonality properties of their analytic counterparts, div(curl)=0 and curl(grad)=0. They define different components of vector fields at different parts of the mesh and can be viewed as a special type of finite element basis and can be defined to arbitrarily high order. They have been used in electromagnetic simulation codes for many years. This poster will show how they can be defined to lowest order on a tetrahedral mesh and applied to Taylor state computations and to the induction equation in an MHD simulation. They have the advantage of being able to exactly maintain zero divergence in both the magnetic field and current density and to make an exact separation of static and inductive electric fields. Mimetic Operators can also be used in the momentum equation and the results will be compared to other commonly used methods like the finite volume and discontinuous Galerkin methods. The new code will be used to run simulations of the HIT-SI experiment with insulated conductor boundary conditions and different injector configurations and results compared to the experiment and to simulations done with the NIMROD code.
Mishra, Abhijeet; Sardar, Meryam
2015-01-01
In the present study, we report in vitro synthesis of silver and gold nanoparticles (NPs) using cellulase enzyme in a single step reaction. Synthesized nanoparticles were characterized by UV-VIS spectroscopy, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Circular Dichroism (CD) and Fourier Transform Infrared Spectroscopy (FTIR). UV-visible studies shows absorption band at 415nm and 520nm for silver and gold NPs respectively due to surface plasmon resonance. Sizes of NPs as shown by TEM are 5-25nm for silver and 5-20nm for gold. XRD peaks confirmed about phase purity and crystallinity of silver and gold NPs. FTIR data shows presence of amide I peak on both the NPs. The cellulase assisted synthesized NPs were further exploited as immobilization matrix for cellulase enzyme. Thermal stability analysis reveals that the immobilized cellulase on synthesized NPs retained 77-80% activity as compared to free enzyme. While reusability data suggests immobilized cellulase can be efficiently used up to sixth cycles with minimum loss of enzyme activity. The secondary structural analysis of cellulase enzyme during the synthesis of NPs and also after immobilization of cellulase on these NPs was carried out by CD spectroscopy.
Dera, Dimah; Bouaynaya, Nidhal; Fathallah-Shaykh, Hassan M
2016-07-01
We address the problem of fully automated region discovery and robust image segmentation by devising a new deformable model based on the level set method (LSM) and the probabilistic nonnegative matrix factorization (NMF). We describe the use of NMF to calculate the number of distinct regions in the image and to derive the local distribution of the regions, which is incorporated into the energy functional of the LSM. The results demonstrate that our NMF-LSM method is superior to other approaches when applied to synthetic binary and gray-scale images and to clinical magnetic resonance images (MRI) of the human brain with and without a malignant brain tumor, glioblastoma multiforme. In particular, the NMF-LSM method is fully automated, highly accurate, less sensitive to the initial selection of the contour(s) or initial conditions, more robust to noise and model parameters, and able to detect as small distinct regions as desired. These advantages stem from the fact that the proposed method relies on histogram information instead of intensity values and does not introduce nuisance model parameters. These properties provide a general approach for automated robust region discovery and segmentation in heterogeneous images. Compared with the retrospective radiological diagnoses of two patients with non-enhancing grade 2 and 3 oligodendroglioma, the NMF-LSM detects earlier progression times and appears suitable for monitoring tumor response. The NMF-LSM method fills an important need of automated segmentation of clinical MRI. PMID:27417984
Bayat, M.; Momen Heravi, F.; Mahmoudi, M.; Bahrami, N.
2015-01-01
Background: Conventional dentoalveolar osseous reconstruction often involves the use of graft materials with or without barrier membranes. Objective: To evaluate the efficacy of bone induction by bone matrix gelatin (BMG), delivered on an absorbable collagen sponge (ACS), compared to a placebo (ACS alone) in human alveolar socket defects. Methods: 20 alveolar sockets from 10 healthy adults were studied. In all cases, both the mandibular premolar area and the contralateral premolar area (as the control site) were involved. In each of the 10 patients, the extraction sites were filled randomly with BMG and ACS. The repair response was examined on day 90. Qualitative histological and quantitative histometric analysis, including the percentage of new-formed bone fill and density were done. Results: Assessment of the alveolar bone indicated that patients treated with BMG had significantly (p<0.05) better bone quality and quantity compared to the controls. In addition, bone density and histology revealed no differences between the newly induced and native bone. Conclusion: The data from this single-blind clinical trial demonstrated that the novel combination of BMG had a striking effect on de novo osseous formation for the bone regeneration. PMID:26576263
The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire
NASA Astrophysics Data System (ADS)
Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.
2016-02-01
The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.
Matsumoto, Ken-ichi
2015-05-01
We previously disclosed a novel extracellular matrix tenascin-X (TNX) , the largest member of the tenascin family. So far, we have made efforts to elucidate the roles of TNX. TNX is involved in collagen deposition, collagen fibrillogenesis, and modulation of collagen stiffness. Homozygous mutations in TNXB, the gene encoding TNX, cause a classic-type Ehlers-Danlos syndrome (EDS) , a heritable connective tissue disorder, whereas haploinsufficiency of TNXB and heterozygous mutations in TNXB are associated with hypermobility-type EDS. Recently, we performed proteomic analyses of calcific aortic valves (CAVs) compared with relatively adjacent normal tissues to understand the underlying molecular mechanisms of dystrophic valvular calcification. Interestingly, we found that TNX was the protein with the greatest decrease in expression among the differentially expressed proteins and that expression levels of proteins modulating collagen structure and function, such as type I collagen and decorin, were also decreased in CAVs. In this review, I will discuss about the decreased level of collagen due to the reduction of expression levels of proteins that play regulatory roles in collagen functions such as fibril organization and fibrillogenesis in CAVs. PMID:25926574
Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Parikh, Ankur H.; Nagpal, Vinod K.; Halbig, Michael C.
2013-01-01
Issues associated with replacing conventional metallic vanes with Ceramic Matrix Composite (CMC) vanes in the first stage of the High Pressure Turbine (HPT) are explored. CMC materials have higher temperature capability than conventional HPT vanes, and less vane cooling is required. The benefits of less vane coolant are less NOx production and improved vane efficiency. Comparisons between CMC and metal vanes are made at current rotor inlet temperatures and at an vane inlet pressure of 50 atm.. CMC materials have directionally dependent strength characteristics, and vane designs must accommodate these characteristics. The benefits of reduced NOx and improved cycle efficiency obtainable from using CMC vanes. are quantified Results are given for vane shapes made of a two dimensional CMC weave. Stress components due to thermal and pressure loads are shown for all configurations. The effects on stresses of: (1) a rib connecting vane pressure and suction surfaces; (2) variation in wall thickness; and (3) trailing edge region cooling options are discussed. The approach used to obtain vane temperature distributions is discussed. Film cooling and trailing edge ejection were required to avoid excessive vane material temperature gradients. Stresses due to temperature gradients are sometimes compressive in regions where pressure loads result in high tensile stresses.
NASA Astrophysics Data System (ADS)
Espinoza, D. N.; Vandamme, M.; Dangla, P.; Pereira, J.-M.; Vidal-Gilbert, S.
2013-12-01
Understanding the adsorption-induced swelling in coal is critical for predictable and enhanced coal bed methane production. The coal matrix is a natural anisotropic disordered microporous solid. We develop an elastic transverse isotropic poromechanical model for microporous solids which couples adsorption and strain through adsorption stress functions and expresses the adsorption isotherm as a multivariate function depending on fluid pressure and solid strains. Experimental data from the literature help invert the anisotropic adsorptive-mechanical properties of Brzeszcze coal samples exposed to CO2. The main findings include the following: (1) adsorption-induced swelling can be modeled by including fluid-specific and pressure-dependent adsorption stress functions into equilibrium equations, (2) modeling results suggest that swelling anisotropy is mostly caused by anisotropy of the solid mechanical properties, and (3) the total amount of adsorbed gas measured by immersing coal in the adsorbate overestimates adsorption amount compared to in situ conditions up to ˜20%. The developed fully coupled model can be upscaled to determine the coal seam permeability through permeability-stress relationships.
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Pipe line pigs have varied applications in operations. Part 2
Vernooy, B.
1980-10-01
In the early days of pipelining, it was discovered that running a swab equipped with leather disks through the line removed paraffin deposited on the pipe wall increasing the flow without increasing the power input. Blades were added to the device later to improve the efficiency of wax removal, which also decreased the number of runs and the cost of pigging. Pig developers learned from their successes as well as their failures. Part 1 of this work focused on the construction and kaliper pigs, and the second part describes the general form and function of the different operational pigs, i.e., calipers, cleaners, and spheres.
NASA Astrophysics Data System (ADS)
Gall, H. E.; Rao, P.; O'Connor, G.
2013-12-01
The land-application of biosolids and animal manure to agricultural fields has the potential to negatively impact the quality of nearby surface and subsurface water due to the presence of emerging contaminants in these residuals. We investigated the extent to which the vadose zone acts as a hydrologic and biogeochemical filter of two emerging contaminants, Triclosan (TCS) and estrone (E1) using a coupled source zone and vadose zone modeling approach. Monte Carlo simulations were run for a year following residual applications to explore the following research questions: (1) how does the application matrix (e.g., de-watered solids, liquid lagoon effluent, etc.) affect PPCP mass fluxes?; (2) how do hydro-climatic conditions and soil type affect PPCP mass fluxes?; (3) what role does the presence of macropore pathways play in PPCP export from the vadose zone; and (4) does the long-term, repeated application of residuals affect the ability of the vadose zone to act as an effective biogeochemical filter? The simulations were conducted for a sub-tropical climate with sand (e.g., Florida) and a humid climate with a silty clay loam (e.g., Midwestern United States). Simulation results suggest that the potential mobility of emerging contaminants increases linearly with increasing fraction applied to the mobile phase of the source zone (i.e., higher PPCP mass fraction in the dissolved phase during application). Following a single application, the total amount of PPCP mass exported from the source zone over the course of a year can be as high as 70% in a sub-tropical climate with sand soil. However, these types of soils do not have macropore flow pathways and the annual PPCP mass exported from the vadose zone is less than 1% of the mass applied. The higher organic carbon content in a silty clay loam reduces the amount of PPCP mass released from the source zone to less than 5% of the mass applied. In the presence of macropore pathways, the silty clay loam's vadose zone acts as a
The impact of LDEF results on the space application of metal matrix composites
NASA Technical Reports Server (NTRS)
Steckel, Gary L.; Le, Tuyen D.
1993-01-01
Over 200 graphite/aluminum and graphite/magnesium composites were flown on the leading and trailing edges of LDEF on the Advanced Composites Experiment. The performance of these composites was evaluated by performing scanning electron microscopy and x-ray photoelectron spectroscopy of exposed surfaces, optical microscopy of cross sections, and on-orbit and postflight thermal expansion measurements. Graphite/aluminum and graphite/magnesium were found to be superior to graphite/polymer matrix composites in that they are inherently resistant to atomic oxygen and are less susceptible to thermal cycling induced microcracking. The surface foils on graphite/aluminum and graphite/magnesium protect the graphite fibers from atomic oxygen and from impact damage from small micrometeoroid or space debris particles. However, the surface foils were found to be susceptible to thermal fatigue cracking arising from contamination embrittlement, surface oxidation, or stress risers. Thus, the experiment reinforced requirements for carefully protecting these composites from prelaunch oxidation or corrosion, avoiding spacecraft contamination, and designing composite structures to minimize stress concentrations. On-orbit strain measurements demonstrated the importance of through-thickness thermal conductivity in composites to minimize thermal distortions arising from thermal gradients. Because of the high thermal conductivity of aluminum, thermal distortions were greatly reduced in the LDEF thermal environment for graphite/aluminum as compared to graphite/magnesium and graphite/polymer composites. The thermal expansion behavior of graphite/aluminum and graphite/magnesium was stabilized by on-orbit thermal cycling in the same manner as observed in laboratory tests.
Cwik, T.; Jamnejad, V.; Zuffada, C.
1994-12-31
The usefulness of finite element modeling follows from the ability to accurately simulate the geometry and three-dimensional fields on the scale of a fraction of a wavelength. To make this modeling practical for engineering design, it is necessary to integrate the stages of geometry modeling and mesh generation, numerical solution of the fields-a stage heavily dependent on the efficient use of a sparse matrix equation solver, and display of field information. The stages of geometry modeling, mesh generation, and field display are commonly completed using commercially available software packages. Algorithms for the numerical solution of the fields need to be written for the specific class of problems considered. Interior problems, i.e. simulating fields in waveguides and cavities, have been successfully solved using finite element methods. Exterior problems, i.e. simulating fields scattered or radiated from structures, are more difficult to model because of the need to numerically truncate the finite element mesh. To practically compute a solution to exterior problems, the domain must be truncated at some finite surface where the Sommerfeld radiation condition is enforced, either approximately or exactly. Approximate methods attempt to truncate the mesh using only local field information at each grid point, whereas exact methods are global, needing information from the entire mesh boundary. In this work, a method that couples three-dimensional finite element (FE) solutions interior to the bounding surface, with an efficient integral equation (IE) solution that exactly enforces the Sommerfeld radiation condition is developed. The bounding surface is taken to be a surface of revolution (SOR) to greatly reduce computational expense in the IE portion of the modeling.
Ahearne, Mark; Coyle, Aron
2016-02-01
Hydrogels derived from extracellular matrix (ECM) have become increasing popular in recent years, particularly for use in tissue engineering. One limitation with ECM hydrogels is that they tend to have poor mechanical properties compared to native tissues they are trying to replicate. To address this problem, a UVA (ultraviolet-A) riboflavin crosslinking technique was applied to ECM hydrogels to determine if it could be used to improve their elastic modulus. Hydrogels fabricated from corneal, cardiac and liver ECM were used in this study. The mechanical properties of the hydrogels were characterized using a spherical indentation technique. The microstructure of the hydrogels and the cytotoxic effect of crosslinking on cell seeded hydrogels were also evaluated. The combination of UVA light and riboflavin solution led to a significant increase in elastic modulus from 6.8kPa to 24.7kPa, 1.4kPa to 6.9kPa and 0.9kPa to 1.6kPa for corneal, cardiac and liver ECM hydrogels respectively. The extent of this increase was dependent on a number of factors including the UVA exposure time and the initial hydrogel concentration. There were also a high percentage of viable cells within the cell seeded hydrogels with 94% of cells remaining viable after 90min exposure to UVA light. These results suggest that UVA-riboflavin crosslinking is an effective approach for improving the mechanical properties of ECM hydrogels without resulting in a significant reduction of cell viability.
NASA Astrophysics Data System (ADS)
Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.
2004-08-01
Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley W.
2009-01-01
Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed
Multimegabit Operation Multiplexer System. [PCM telemetry unit for space applications
NASA Technical Reports Server (NTRS)
Giri, R. R.; Maxwell, M. S.
1973-01-01
The Multimegabit Operation Multiplexer System (MOMS) is a high-data-rate PCM telemetry unit capable of sampling and encoding 60 scanning radiometer and four vidicon channels at 250 kilosamples/second and 5 megasamples/second, respectively. This sampling capacity plus the seven-bit quantization requires a total throughput rate of 40 megasamples/second and 280 megabits/second. To produce these rates efficiently, the system was divided into a pair of identical 140-megabit blocks. A low-power 20-MHz analog multiplexer and analog-to-digital converter were developed together with a video sample-and-hold that features an aperture time error of less than 50 psec. Breadboard testing of these basic building blocks confirmed the design prediction that the total system would consume 27 watts of power. Two 140-megabit output parts are suitable for quadriphase modulation.
MOCAGE-accident: From research to operational applications
NASA Astrophysics Data System (ADS)
Martet, M.; Josse, M.; Peuch, Mr.; Peuch, M.; Bonnardot, Mr.
2009-09-01
MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) is the multi-scale 3D Chemistry and Transport Model of Météo-France. From air quality forecasting to the study of interactions between climate and chemistry, MOCAGE is a flexible tool that is currently used for both research on atmospheric composition (over 35 publications in the international literature) and operations in Météo-France and at several collaborating institutes. In particular, MOCAGE products are used for the French operational Air Quality platform Prév'Air as well as in projects building up the GMES Atmospheric Service. Here, we present a new specific configuration "MOCAGE-accident”, currently used in pre-operations trial by Météo-France forecasters, in support of our international responsibilities as RSMC (Regional Meteorological Specialized Centre) and VAAC (Volcanic Ash Advisory Centre). Briefly, a semi-lagrangian scheme is used for advection (Williamson and Rash, 1989), while turbulent diffusion, using the Louis scheme (Louis, 1979) and convection, using the Bechtold scheme (Kain and Fritsch, 1990 and Bechtold, 2001) are parameterized. In the specific "accident” configuration, no chemical reactions are considered and a module allows to specify the temporal and geometrical characteristics of the release. Three types of pollutants can be considered : - tracers: no interactions between this tracer and the other atmospheric components are considered ; only transport, wet and dry deposition are taken into account. - radionucleides: in this case, radioactive disintegration is treated following the type of radionuclide and its lifetime. - volcanic ashes: solid materials are considered and sedimentation of the particles is also considered. Concerning the current pre-operations trial, the horizontal resolution of MOCAGE-accident is 0,5° all over the globe, with 47 levels from surface to 5 hPa. This model is thus able to represent accidental emissions on every place of the world, in
UTOPIA-User-Friendly Tools for Operating Informatics Applications.
Pettifer, S R; Sinnott, J R; Attwood, T K
2004-01-01
Bioinformaticians routinely analyse vast amounts of information held both in large remote databases and in flat data files hosted on local machines. The contemporary toolkit available for this purpose consists of an ad hoc collection of data manipulation tools, scripting languages and visualization systems; these must often be combined in complex and bespoke ways, the result frequently being an unwieldy artefact capable of one specific task, which cannot easily be exploited or extended by other practitioners. Owing to the sizes of current databases and the scale of the analyses necessary, routine bioinformatics tasks are often automated, but many still require the unique experience and intuition of human researchers: this requires tools that support real-time interaction with complex datasets. Many existing tools have poor user interfaces and limited real-time performance when applied to realistically large datasets; much of the user's cognitive capacity is therefore focused on controlling the tool rather than on performing the research. The UTOPIA project is addressing some of these issues by building reusable software components that can be combined to make useful applications in the field of bioinformatics. Expertise in the fields of human computer interaction, high-performance rendering, and distributed systems is being guided by bioinformaticians and end-user biologists to create a toolkit that is both architecturally sound from a computing point of view, and directly addresses end-user and application-developer requirements.
Military applications of hypoxic training for high-altitude operations.
Muza, Stephen R
2007-09-01
Rapid deployment of unacclimatized soldiers to high mountainous environments causes debilitating effects on operational capabilities (physical work performance), and force health (altitude sickness). Most of these altitude-induced debilitations can be prevented or ameliorated by a wide range of physiological responses collectively referred to as altitude acclimatization. Acclimatization to a target altitude can be induced by slow progressive ascents or continuous sojourns at intermediate altitudes. However, this "altitude residency" requirement reduces their utilization in rapid response military missions that exploit the air mobility capability of modern military forces to quickly deploy to an area of operations on short notice. A more recent approach to induce altitude acclimatization is the use of daily intermittent hypoxic exposures (IHE) in lieu of continuous residence at high altitudes. IHE treatments consist of three elements: 1) IHE simulated altitude (inspired oxygen partial pressure: PIO2), 2) IHE session duration, and 3) total number of IHE sessions over the treatment period. This paper reviews and summarizes the results of 25 published IHE studies. This review finds that an IHE altitude>or=4000 m, and daily exposure duration of at least 1.5 h repeated over a week or more are required to have a high probability of developing altitude acclimatization. The efficacy of shorter duration (<1.5 h) hypoxic exposures at >or=4000 m simulated altitudes, and longer exposures (>4 h) at moderate altitudes (2500-3500 m) is not well documented. The predominate IHE-induced altitude acclimatization response appears to be increased arterial oxygen content through ventilatory acclimatization. Thus, IHE is a promising approach to provide the benefits of altitude acclimatization to low-altitude-based soldiers before their deployment to high mountainous regions.
Ceramic fibers for matrix composites in high-temperature engine applications
Baldus; Jansen; Sporn
1999-07-30
High-temperature engine applications have been limited by the performance of metal alloys and carbide fiber composites at elevated temperatures. Random inorganic networks composed of silicon, boron, nitrogen, and carbon represent a novel class of ceramics with outstanding durability at elevated temperatures. SiBN(3)C was synthesized by pyrolysis of a preceramic N-methylpolyborosilazane made from the single-source precursor Cl(3)Si-NH-BCl(2). The polymer can be processed to a green fiber by melt-spinning, which then undergoes an intermediate curing step and successive pyrolysis. The ceramic fibers, which are presently produced on a semitechnical scale, combine several desired properties relevant for an application in fiber-reinforced ceramic composites: thermal stability, mechanical strength, high-temperature creep resistivity, low density, and stability against oxidation or molten silicon. PMID:10426985
2013-01-01
Background An eco-friendly treatment of industrial effluents is a major environmental concern of the modern world in the face of stringent environmental legislations. By keeping in mind the extensive industrial applications of ligninolytic enzymes, this study was performed to purify, and immobilize the manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum. The present study was also focused on investigating the capability of immobilized MnP for decolorization of dye containing textile effluents. Results A large magnitude of an indigenous MnP (882±13.3 U/mL) was obtained from white rot fungal strain G. lucidum in solid state bio-processing of wheat straw under optimized fermentation conditions (moisture, 50%; substrate, 5 g; pH, 5.5; temperature, 30°C; carbon source, 2% fructose; nitrogen source, 0.02% yeast extract; C: N ratio, 25:1; fungal spore suspension, 5 mL and fermentation time period, 4 days). After ammonium sulfate fractionation and Sephadex-G-100 gel filtration chromatography, MnP was 4.7-fold purified with specific activity of 892.9 U/mg. G. lucidum MnP was monomeric protein as evident by single band corresponding to 48 kDa on native and denaturing SDS-PAGE. The purified MnP (2 mg/mL) was immobilized using a sol–gel matrix of tetramethoxysilane (TMOS) and proplytrimethoxysilane (PTMS). The oxidation of MnSO4 for up to 10 uninterrupted cycles demonstrated the stability and reusability of the immobilized MnP. Shelf life profile revealed that enzyme may be stored for up to 60 days at 25°C without losing much of its activity. To explore the industrial applicability of MnP produced by G. lucidum, the immobilized MnP was tested against different textile effluents. After 4 h reaction time, the industrial effluents were decolorized to different extents (with a maximum of 99.2%). The maximally decolorized effluent was analyzed for formaldehyde and nitroamines and results showed that the toxicity parameters were below the
Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan
2010-01-12
Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
Development of RGB Composite Imagery for Operational Weather Forecasting Applications
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Fuell, Kevin K.; Oswald, Hayden, K; Knaff, John A.
2012-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center, in collaboration with the Cooperative Institute for Research in the Atmosphere (CIRA), is providing red-green-blue (RGB) color composite imagery to several of NOAA s National Centers and National Weather Service forecast offices as a demonstration of future capabilities of the Advanced Baseline Imager (ABI) to be implemented aboard GOES-R. Forecasters rely upon geostationary satellite imagery to monitor conditions over their regions of responsibility. Since the ABI will provide nearly three times as many channels as the current GOES imager, the volume of data available for analysis will increase. RGB composite imagery can aid in the compression of large data volumes by combining information from multiple channels or paired channel differences into single products that communicate more information than provided by a single channel image. A standard suite of RGB imagery has been developed by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), based upon the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The SEVIRI instrument currently provides visible and infrared wavelengths comparable to the future GOES-R ABI. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the NASA Terra and Aqua satellites can be used to demonstrate future capabilities of GOES-R. This presentation will demonstrate an overview of the products currently disseminated to SPoRT partners within the GOES-R Proving Ground, and other National Weather Service forecast offices, along with examples of their application. For example, CIRA has used the channels of the current GOES sounder to produce an "air mass" RGB originally designed for SEVIRI. This provides hourly imagery over CONUS for looping applications while demonstrating capabilities similar to the future ABI instrument. SPoRT has developed similar "air mass" RGB imagery from MODIS, and through
An assessment of nitrogen-based manure application rates on 39 U.S. swine operations.
Lory, John A; Massey, Raymond E; Zulovich, Joseph M; Hoehne, John A; Schmidt, Amy M; Carlson, Marcia S; Fulhage, Charles D
2004-01-01
Water quality concerns and revised regulations are changing how confined animal feeding operations manage manure. Devising acceptable and feasible changes in manure practices requires a full understanding of the forces shaping current manure management decisions. Previous theoretical models have shown that a wide range of factors influence the lowest cost solution for manure management. We used a mechanistic model to characterize the manure management practices on 39 swine operations (20 unagitated lagoon and 19 slurry operations) in five states (Iowa, Missouri, North Carolina, Oklahoma, and Pennsylvania). Information was collected from each operation about animal numbers, feed and water use, manure handling and storage characteristics, field locations, crop rotation, fertilizer need, and equipment inventory and usage. Collected data were used as input and to validate results from a mechanistic model that determined acres required for manure application, manure application rate, time required for manure application, value of manure, and costs of manure management. The 39 farms had a mean of 984 animal units (AU) per operation, 18.2 AU ha(-1) (7.4 AU acre(-1)), and manure application costs of dollar 10.49 AU(-1) yr(-1). Significant factors affecting manure management included operation size, manure handling system, state, and ownership structure. Larger operations had lower manure management costs (r2 = 0.32). Manure value potentially exceeded manure application costs on 58% of slurry and 15% of lagoon operations. But 38% of slurry operations needed to apply manure off the farm whereas all lagoon operations had sufficient land for N-based manure management. Manure management was a higher percentage of gross income on contract operations compared with independents (P < 0.01). This research emphasized the importance of site-specific factors affecting manure management decisions and the economics of U.S. swine operations. PMID:15224950
Uchida, Noriyuki; Sivaraman, Srikanth; Amoroso, Nicholas J; Wagner, William R; Nishiguchi, Akihiro; Matsusaki, Michiya; Akashi, Mitsuru; Nagatomi, Jiro
2016-01-01
Surface modification can play a crucial role in enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering applications. Here, we report a novel approach for layer-by-layer (LbL) fabrication of nanometer-size fibronectin and gelatin (FN-G) layers on electrospun fibrous poly(carbonate urethane)urea (PCUU) scaffolds. Alternate immersions into the solutions of fibronectin and gelatin provided thickness-controlled FN-G nano-layers (PCUU(FN-G) ) which maintained the scaffold's 3D structure and width of fibrous bundle of PCUU as evidenced by scanning electron miscroscopy. The PCUU(FN-G) scaffold improved cell adhesion and proliferation of bladder smooth muscles (BSMCs) when compared to uncoated PCUU. The high affinity of PCUU(FN-G) for cells was further demonstrated by migration of adherent BSMCs from culture plates to the scaffold. Moreover, the culture of UROtsa cells, human urothelium-derived cell line, on PCUU(FN-G) resulted in an 11-15 μm thick multilayered cell structure with cell-to-cell contacts although many UROtsa cells died without forming cell connections on PCUU. Together these results indicate that this approach will aid in advancing the technology for engineering bladder tissues in vitro. Because FN-G nano-layers formation is based on nonspecific physical adsorption of fibronectin onto polymer and its subsequent interactions with gelatin, this technique may be applicable to other polymer-based scaffold systems for various tissue engineering/regenerative medicine applications. PMID:26194176
Verification of operating software for cooperative monitoring applications
Tolk, K.M.; Rembold, R.K.
1997-08-01
Monitoring agencies often use computer based equipment to control instruments and to collect data at sites that are being monitored under international safeguards or other cooperative monitoring agreements. In order for this data to be used as an independent verification of data supplied by the host at the facility, the software used must be trusted by the monitoring agency. The monitoring party must be sure that the software has not be altered to give results that could lead to erroneous conclusions about nuclear materials inventories or other operating conditions at the site. The host might also want to verify that the software being used is the software that has been previously inspected in order to be assured that only data that is allowed under the agreement is being collected. A description of a method to provide this verification using keyed has functions and how the proposed method overcomes possible vulnerabilities in methods currently in use such as loading the software from trusted disks is presented. The use of public key data authentication for this purpose is also discussed.
Mason, J.H.; Livingston, B.K.; Clarke, E.J.
1988-01-01
During the past 10 yr, the US Navy has extended submarine operating cycles - the period between major ship overhauls - from 4 to > 15 yr. Major programs to extend submarine operating cycles have been the submarine extended operating cycle (SEOC) and the engineered SEOC programs. Currently, the navy is incorporating lessons learned from these programs, as well as new concepts, into its newest Seawolf (SSN-21) ship class. Major elements of these programs are a disciplined machinery condition assessment (MCA) program consisting of intrusive and nonintrusive elements, the use of rotatable equipment pools, and the engineering of maintenance periodicities to establish operating cycles. Many of the concepts and elements of these programs can be applied to two objectives for enhanced operation and maintenance: the increased availability of means of improved equipment performance and reduced outage durations and the extension of plant life. The objectives of this paper are to review the US Navy SEOC programs, to draw parallels between the US Navy programs and commercial nuclear power plant programs, and to suggest potential opportunities for application to commercial nuclear power plants.
NASA Astrophysics Data System (ADS)
Széplaky, Dávid; Varga, Augustín
2016-06-01
The contribution describes the principle of the FENIX program operation, which was designed to determine the temperature field of the transit pipeline for the transportation of natural gas. The program itself consists of several modules which are reciprocally linked. The basis of the program is the elementary balance method by means of which the unsteady heat transfer is assigned in several layers in different directions. The first step was to assess both the pressure and temperature of the natural gas mode, the second step is to determine the heat transfer through the walls of the pipes, and the last one is to determine the distribution of the temperature field in the surroundings of the pipeline.
Large bearing operation without retainer. [high speed ball bearings for space application
NASA Technical Reports Server (NTRS)
Kingsbury, E.
1978-01-01
The design and testing of large high-speed ball bearings for space application is described. A well-defined lubrication system to provide oil to both race contacts in zero g allows stable operation without ball retainer.
NASA Astrophysics Data System (ADS)
Chung, Yeong-Chul; Lee, Kyung-Won; Hong, Ic-Pyo; Oh, Kyung-Hyun; Yook, Jong-Gwan
In this letter, a new CCM material, adding Ni powder to a conventional CCM, for X-band applications is designed and analyzed to improve the SE. To obtain the SE of the fabricated CCM accurately, material constants of the CCM of the permittivity and permeability were extracted using transmission/reflection measurements. Using the material constants derived from the measurement, the SE was calculated and the results were verified using a commercial full-wave three-dimensional electromagnetic wave simulator. The SE of the proposed the CCM was improved by approximately 4dB in the X band compared to that of a conventional CCM. The CCM proposed in this paper can be applied as a shielding material as well as for housing of various communication systems and electrical instruments.
A Mission Management Application Suite for Airborne Science Operations
NASA Astrophysics Data System (ADS)
Goodman, H. M.; Meyer, P. J.; Blakeslee, R.; Regner, K.; Hall, J.; He, M.; Conover, H.; Garrett, M.; Harper, J.; Smith, T.; Grewe, A.; Real Time Mission Monitor Team
2011-12-01
Collection of data during airborne field campaigns is a critically important endeavor. It is imperative to observe the correct phenomena at the right time - at the right place to maximize the instrument observations. Researchers at NASA Marshall Space Flight Center have developed an application suite known as the Real Time Mission Monitor (RTMM). This suite is comprised of tools for mission design, flight planning, aircraft visualization and tracking. The mission design tool allows scientists to set mission parameters such as geographic boundaries and dates of the campaign. Based on these criteria, the tool intelligently selects potential data sets from a data resources catalog from which the scientist is able to choose the aircraft, instruments, and ancillary Earth science data sets to be provided for use in the remaining tool suite. The scientists can easily reconfigure and add data sets of their choosing for use during the campaign. The flight planning tool permits the scientist to assemble aircraft flight plans and to plan coincident observations with other aircraft, spacecraft or in situ observations. Satellite and ground-based remote sensing data and modeling data are used as background layers to aid the scientist in the flight planning process. Planning is crucial to successful collection of data and the ability to modify the plan and upload to aircraft navigators and pilots is essential for the agile collection of data. Most critical to successful and cost effective collection of data is the capability to visualize the Earth science data (airborne instruments, radiosondes, radar, dropsondes, etc.) and track the aircraft in real time. In some instances, aircraft instrument data is provided to ground support personnel in near-real time to visualize with the flight track. This visualization and tracking aspect of RTMM provides a decision support capability in conjunction with scientific collaboration portals to allow for scientists on the ground to communicate
Shtrichman, Ronit; Zeevi-Levin, Naama; Zaid, Rinat; Barak, Efrat; Fishman, Bettina; Ziskind, Anna; Shulman, Rita; Novak, Atara; Avrahami, Ron; Livne, Erella; Lowenstein, Lior; Zussman, Eyal; Itskovitz-Eldor, Joseph
2014-10-01
Extracellular matrix (ECM) has been utilized as a biological scaffold for tissue engineering applications in a variety of body systems, due to its bioactivity and biocompatibility. In the current study we developed a modified protocol for the efficient and reproducible derivation of mesenchymal progenitor cells (MPCs) from human embryonic stem cells as well as human induced pluripotent stem cells (hiPSCs) originating from hair follicle keratinocytes (HFKTs). ECM was produced from these MPCs and characterized in comparison to adipose mesenchymal stem cell ECM, demonstrating robust ECM generation by the excised HFKT-iPSC-MPCs. Exploiting the advantages of electrospinning we generated two types of electrospun biodegradable nanofiber layers (NFLs), fabricated from polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA), which provide mechanical support for cell seeding and ECM generation. Elucidating the optimized decellularization treatment we were able to generate an available "off-the-shelf" implantable product (NFL-ECM). Using rat subcutaneous transplantation model we demonstrate that this stem-cell-derived construct is biocompatible and biodegradable and holds great potential for tissue regeneration applications. PMID:25185111
Shtrichman, Ronit; Zeevi-Levin, Naama; Zaid, Rinat; Barak, Efrat; Fishman, Bettina; Ziskind, Anna; Shulman, Rita; Novak, Atara; Avrahami, Ron; Livne, Erella; Lowenstein, Lior; Zussman, Eyal; Itskovitz-Eldor, Joseph
2014-10-01
Extracellular matrix (ECM) has been utilized as a biological scaffold for tissue engineering applications in a variety of body systems, due to its bioactivity and biocompatibility. In the current study we developed a modified protocol for the efficient and reproducible derivation of mesenchymal progenitor cells (MPCs) from human embryonic stem cells as well as human induced pluripotent stem cells (hiPSCs) originating from hair follicle keratinocytes (HFKTs). ECM was produced from these MPCs and characterized in comparison to adipose mesenchymal stem cell ECM, demonstrating robust ECM generation by the excised HFKT-iPSC-MPCs. Exploiting the advantages of electrospinning we generated two types of electrospun biodegradable nanofiber layers (NFLs), fabricated from polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA), which provide mechanical support for cell seeding and ECM generation. Elucidating the optimized decellularization treatment we were able to generate an available "off-the-shelf" implantable product (NFL-ECM). Using rat subcutaneous transplantation model we demonstrate that this stem-cell-derived construct is biocompatible and biodegradable and holds great potential for tissue regeneration applications.
Acid-soluble magnesia cement; New applications in completion and workover operations
Sweatman, R.E.; Scoggins, W.C. )
1990-11-01
Acid-soluble magnesia cement (MC) was used in production zones to plug perforations temporarily to reduce brine losses during completion and workover operations. This has resulted in substantial savings for operators. The cement has also been used to reduce potential formation damage. This paper describes some of the characteristics of the cement, field applications, and results.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
... Issuance of Amendment published in the Federal Register on December 28, 2010 (75 FR 81673). However, by... COMMISSION Wolf Creek Nuclear Operating Corporation; Notice of Withdrawal of Application for Amendment to... of Wolf Creek Nuclear Operating Corporation (the licensee) to withdraw its September 22,...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
... published in the Federal Register on January 26, 2010 (75 FR 4121). However, by letter dated August 10, 2010... COMMISSION Wolf Creek Nuclear Operating Corporation; Notice of Withdrawal of Application for Amendment to... granted the request of Wolf Creek Nuclear Operating Corporation (the licensee) to withdraw its...
13 CFR 120.835 - Application to expand an Area of Operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... LOANS Development Company Loan Program (504) Extending A Cdc's Area of Operations § 120.835 Application to expand an Area of Operations. (a) General. A CDC that has been certified to participate in the 504... Program (ALP) CDC, as set forth in § 120.840(c), and demonstrates that it can competently fulfill its...
13 CFR 120.835 - Application to expand an Area of Operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... LOANS Development Company Loan Program (504) Extending A Cdc's Area of Operations § 120.835 Application to expand an Area of Operations. (a) General. A CDC that has been certified to participate in the 504... Program (ALP) CDC, as set forth in § 120.840(c), and demonstrates that it can competently fulfill its...
13 CFR 120.835 - Application to expand an Area of Operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... LOANS Development Company Loan Program (504) Extending A Cdc's Area of Operations § 120.835 Application to expand an Area of Operations. (a) General. A CDC that has been certified to participate in the 504... Program (ALP) CDC, as set forth in § 120.840(c), and demonstrates that it can competently fulfill its...
13 CFR 120.835 - Application to expand an Area of Operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... LOANS Development Company Loan Program (504) Extending A Cdc's Area of Operations § 120.835 Application to expand an Area of Operations. (a) General. A CDC that has been certified to participate in the 504... Program (ALP) CDC, as set forth in § 120.840(c), and demonstrates that it can competently fulfill its...
13 CFR 120.835 - Application to expand an Area of Operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... LOANS Development Company Loan Program (504) Extending A Cdc's Area of Operations § 120.835 Application to expand an Area of Operations. (a) General. A CDC that has been certified to participate in the 504... Program (ALP) CDC, as set forth in § 120.840(c), and demonstrates that it can competently fulfill its...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern Nuclear Operating Company; Notice of Availability of Application for a Combined License On March 28, 2008, Southern Nuclear Operating Company (SNC), acting on behalf of itself and Georgia Power Company, Oglethorpe Power Corporation...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern Nuclear Operating Company; Notice of Availability of Application for a Combined License On March 28, 2008, Southern Nuclear Operating Company (SNC), acting on behalf of itself and Georgia Power Company, Oglethorpe Power Corporation...
Processing and properties of ceramic matrix-polymer composites for dental applications
NASA Astrophysics Data System (ADS)
Huang, Hsuan Yao
The basic composite structure of natural hard tissue was used to guide the design and processing of dental restorative materials. The design incorporates the methodology of using inorganic minerals as the main structural phase reinforced with a more ductile but tougher organic phase. Ceramic-polymer composites were prepared by slip casting a porous ceramic structure, heating and chemical treating the porous preform, infiltrating with monomer and then curing. The three factors that determined the mechanical properties of alumina-polymer composites were the type of polymer used, the method of silane treatments, and the type of bond between particles in the porous preforms. Without the use of silane coupling agents, the composites were measured to have a lower strength. The composite with a more "flexible" porous alumina network had a greater ability to plastically dissipate the energy of propagating cracks. However, the aggressive nature of the alumina particles on opposing enamel requires that these alumina-polymer composites have a wear compatible coating for practical application. A route to dense bioactive apatite wollastonite glass ceramics (AWGC)-polymer composites was developed. The problems associated with glass dissolution into the aqueous medium for slip casting were overcome with the use of silane. The role of heating rate and development of ceramic compact microstructure on composite properties was explored. In general, if isothermal heating was not applied, decreasing heating rate increased glass crystallinity and particle-particle fusion, but decreased pore volume. Also composite strength and fracture toughness decreased while modulus and hardness increased with decreasing heating rate. If isothermal heating was applied, glass crystallinity, pore content, and composite mechanical properties showed relatively little change regardless of the initial heating rate. The potential of AWGC-polymer composites for dental and implant applications was explored
Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis.
Bai, Xiaolong; Niwas, Swamidoss Issac; Lin, Weisi; Ju, Bing-Feng; Kwoh, Chee Keong; Wang, Lipo; Sng, Chelvin C; Aquino, Maria C; Chew, Paul T K
2016-04-01
Classification of different mechanisms of angle closure glaucoma (ACG) is important for medical diagnosis. Error-correcting output code (ECOC) is an effective approach for multiclass classification. In this study, we propose a new ensemble learning method based on ECOC with application to classification of four ACG mechanisms. The dichotomizers in ECOC are first optimized individually to increase their accuracy and diversity (or interdependence) which is beneficial to the ECOC framework. Specifically, the best feature set is determined for each possible dichotomizer and a wrapper approach is applied to evaluate the classification accuracy of each dichotomizer on the training dataset using cross-validation. The separability of the ECOC codes is maximized by selecting a set of competitive dichotomizers according to a new criterion, in which a regularization term is introduced in consideration of the binary classification performance of each selected dichotomizer. The proposed method is experimentally applied for classifying four ACG mechanisms. The eye images of 152 glaucoma patients are collected by using anterior segment optical coherence tomography (AS-OCT) and then segmented, from which 84 features are extracted. The weighted average classification accuracy of the proposed method is 87.65 % based on the results of leave-one-out cross-validation (LOOCV), which is much better than that of the other existing ECOC methods. The proposed method achieves accurate classification of four ACG mechanisms which is promising to be applied in diagnosis of glaucoma.
Analytic system matrix resolution modeling in PET: an application to Rb-82 cardiac imaging
NASA Astrophysics Data System (ADS)
Rahmim, A.; Tang, J.; Lodge, M. A.; Lashkari, S.; Ay, M. R.; Lautamäki, R.; Tsui, B. M. W.; Bengel, F. M.
2008-11-01
This work explores application of a novel resolution modeling technique based on analytic physical models which individually models the various resolution degrading effects in PET (positron range, photon non-collinearity, inter-crystal scattering and inter-crystal penetration) followed by their combination and incorporation within the image reconstruction task. In addition to phantom studies, the proposed technique was particularly applied to and studied in the task of clinical Rb-82 myocardial perfusion imaging, which presently suffers from poor statistics and resolution properties in the reconstructed images. Overall, the approach is able to produce considerable enhancements in image quality. The reconstructed FWHM for a Discovery RX PET/CT scanner was seen to improve from 5.1 mm to 7.7 mm across the field-of-view (FoV) to ~3.5 mm nearly uniformly across the FoV. Furthermore, extended-source phantom studies indicated clearly improved images in terms of contrast versus noise performance. Using Monte Carlo simulations of clinical Rb-82 imaging, the resolution modeling technique was seen to significantly outperform standard reconstructions qualitatively, and also quantitatively in terms of contrast versus noise (contrast between the myocardium and other organs, as well as between myocardial defects and the left ventricle).
Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.; Talreja, R.; Weitsman, Y.J.
1995-07-01
A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role that nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.
NASA Astrophysics Data System (ADS)
Weiss, Brian A.; Fronczek, Lisa; Morse, Emile; Kootbally, Zeid; Schlenoff, Craig
2013-05-01
Transformative Apps (TransApps) is a Defense Advanced Research Projects Agency (DARPA) funded program whose goal is to develop a range of militarily-relevant software applications ("apps") to enhance the operational-effectiveness of military personnel on (and off) the battlefield. TransApps is also developing a military apps marketplace to facilitate rapid development and dissemination of applications to address user needs by connecting engaged communities of endusers with development groups. The National Institute of Standards and Technology's (NIST) role in the TransApps program is to design and implement evaluation procedures to assess the performance of: 1) the various software applications, 2) software-hardware interactions, and 3) the supporting online application marketplace. Specifically, NIST is responsible for evaluating 50+ tactically-relevant applications operating on numerous Android™-powered platforms. NIST efforts include functional regression testing and quantitative performance testing. This paper discusses the evaluation methodologies employed to assess the performance of three key program elements: 1) handheld-based applications and their integration with various hardware platforms, 2) client-based applications and 3) network technologies operating on both the handheld and client systems along with their integration into the application marketplace. Handheld-based applications are assessed using a combination of utility and usability-based checklists and quantitative performance tests. Client-based applications are assessed to replicate current overseas disconnected (i.e. no network connectivity between handhelds) operations and to assess connected operations envisioned for later use. Finally, networked applications are assessed on handhelds to establish baselines of performance for when connectivity will be common usage.
Martens, J.S.; Hietala, V.M.; Plut, T.A.
1995-01-03
The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.
Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.
1995-01-01
The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.
NASA Technical Reports Server (NTRS)
Lippiatt, Thomas F.; Waterman, Donald
1985-01-01
The applicability of operations research, artificial intelligence, and expert systems to logistics problems for the space station were assessed. Promising application areas were identified for space station logistics. A needs assessment is presented and a specific course of action in each area is suggested.
27 CFR 71.49a - Applications for operating permits and industrial use permits.
Code of Federal Regulations, 2014 CFR
2014-04-01
... permits and industrial use permits. 71.49a Section 71.49a Alcohol, Tobacco Products and Firearms ALCOHOL... and industrial use permits. If, on examination of an application for an operating permit or an industrial use permit, the appropriate TTB officer has reason to believe: (a) In case of an application...
27 CFR 71.49a - Applications for operating permits and industrial use permits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... permits and industrial use permits. 71.49a Section 71.49a Alcohol, Tobacco Products and Firearms ALCOHOL... and industrial use permits. If, on examination of an application for an operating permit or an industrial use permit, the appropriate TTB officer has reason to believe: (a) In case of an application...
27 CFR 71.49a - Applications for operating permits and industrial use permits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... permits and industrial use permits. 71.49a Section 71.49a Alcohol, Tobacco Products and Firearms ALCOHOL... and industrial use permits. If, on examination of an application for an operating permit or an industrial use permit, the appropriate TTB officer has reason to believe: (a) In case of an application...
27 CFR 71.49a - Applications for operating permits and industrial use permits.
Code of Federal Regulations, 2013 CFR
2013-04-01
... permits and industrial use permits. 71.49a Section 71.49a Alcohol, Tobacco Products and Firearms ALCOHOL... and industrial use permits. If, on examination of an application for an operating permit or an industrial use permit, the appropriate TTB officer has reason to believe: (a) In case of an application...
27 CFR 71.49a - Applications for operating permits and industrial use permits.
Code of Federal Regulations, 2012 CFR
2012-04-01
... permits and industrial use permits. 71.49a Section 71.49a Alcohol, Tobacco Products and Firearms ALCOHOL... and industrial use permits. If, on examination of an application for an operating permit or an industrial use permit, the appropriate TTB officer has reason to believe: (a) In case of an application...
12 CFR 7.4009 - Applicability of state law to national bank operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Federal law, including conducting any activity that is part of, or incidental to, the business of banking... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Applicability of state law to national bank... BANK ACTIVITIES AND OPERATIONS Preemption § 7.4009 Applicability of state law to national...
Role of carbonaceous materials in polymer matrix composites for friction applications
NASA Astrophysics Data System (ADS)
Lapping, Preston
The purpose of this research was to study the friction performance characteristics of a Copper, Antimony, and sulfide free environmentally automotive friction material using different allotropes of graphite as a replacement. Model brake friction materials were created and tested on a full scale brake dynamometer using the Society of Automotive Engineers J2430 test and Brake Effectiveness Evaluation Procedure. The dynamometer testing revealed the graphite replacement to have higher average effectiveness values when compared to the baseline friction material currently in production. The model samples generally had higher wear rates but some were comparable to the baseline and would be acceptable in real world applications. Some of the model samples displayed stable characteristics under varying load and linear braking velocity conditions, ultimately passing the criteria required. The model samples (RD18670A/B/C/D/E/F/G) displayed average effectiveness values of 0.425, 0.435, 0.4125, 0.425, 0.475, failed test, and 0.35 respectively, which is on average a substantial gain over the baseline effectiveness value average of 0.3125. Sample RD18670F proved to be the most promising replacement for the baseline 1999 Ford Crown Victoria friction lining. This is due to a higher average effectiveness value of 0.5, during both the high speed and low speed testing, than the baseline friction lining material of 0.325. Also, RD18670F displayed comparable wear rates to the baseline test, with 0.384mm lost inboard and 0.650 lost outboard, representing a difference of only 0.074mm and 0.2mm respectively from the baseline.
NASA Astrophysics Data System (ADS)
Evanoski-Cole, A.; Prenni, A. J.; Sive, B. C.; Zhou, Y.; Benedict, K. B.; Day, D.; Schurman, M. I.; Sullivan, A.; Li, Y.; Callahan, S. L.; Hand, J. L.; Gebhart, K. A.; Schichtel, B. A.; Fischer, E. V.; Collett, J. L., Jr.
2015-12-01
As the oil and natural gas industry expands into rural areas of the United States, it is becoming increasingly important to investigate its impact on air quality in nearby national parks and other protected federal lands. Data from two different field studies centered in Rocky Mountain National Park, Colorado and the north unit of Theodore Roosevelt National Park, North Dakota will be used to perform a comprehensive source apportionment study. Measurements at both locations include volatile organic compounds (VOCs), PM2.5 and their precursor gases, and meteorological variables. Both sites are located near concentrated oil and natural gas operations but other local and regional emission sources differ. Other potential sources near Theodore Roosevelt National Park include increased diesel truck traffic, coal fired power plants and road dust. Rocky Mountain National Park is impacted by the transport of emissions from urban centers and agriculture in eastern Colorado. Additionally, the study at Theodore Roosevelt National Park occurred over two consecutive winters and the measurements at Rocky Mountain National Park were collected during the summer. Using these field study data and the EPA positive matrix factorization (PMF) tool, the different source factors for each field site will be investigated. In particular, the differences in the oil and gas factor from each study location will be discussed.
NASA Astrophysics Data System (ADS)
Stoykov, S.; Atanassov, E.; Margenov, S.
2016-10-01
Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.
Application of LBB to high energy piping systems in operating PWR
Swamy, S.A.; Bhowmick, D.C.
1997-04-01
The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.
NASA Astrophysics Data System (ADS)
Abada, Ahmed
1990-01-01
Promising results for the development of a ceramic/ceramic composite to be used for structural applications in the ultra high temperature range (1650-1850^ circC) have been obtained for alumina reinforced with titanium or zirconium diboribe coated with molybdenum disilicide. Prior to this achievement, several theoretical and experimental studies of particulate composites with (TiB_2 or ZrB_2) imbedded in (ZrO_2, Y_2 O_3 or Al_2 O_3) were conducted. Calculations of the compatibility and stability of oxide matrices with the diborides in vacuum showed positive energies of formation, indicating suitability of reinforcement of alumina under vacuum conditions. Also, since the sublimation of vapor species at ultra high temperatures is very critical to the stability of substances still existing in their condensed states, a detailed thermodynamic analysis of the metal -oxygen systems, was carried out using elemental data of the TiB_2, ZrB_2 , ZrO_2, Y_2 O_3, Al_2 O_3, MoSi_2 and their combinations (TiB_2 or ZrB_2)/(ZrO_2 , Y_2O_3 or Al_2O_3) for comparison, at 1650, 1850 and 2050^ circC. A comparison of the combination TiB _2 and ZrB_2 in MoSi_2/(Al_2O _3 or ZrO_2) at 1650^circC was also made. A stability analysis using equilibrium oxygen partial pressures for the TiB_2 and ZrB_2 decomposition at 1650, 1850 and 2050^ circC was carried out. A detailed characterization of the powders used for the oxide matrices, the diborides and the molybdenum disilicide are presented. The effects of the powder characteristics and the vacuum hot pressing parameters on the densification of the composites are discussed. Stability and chemical compatibility of the particulate and ternary composites in their as hot pressed states and following their vacuum and air oxidation treatments were characterized. Interdiffusion of elemental species across diboride/disilicide and oxide/disilicide interfaces was studies by EDS dot mapping. It is proposed that the growth of the Mo _5Si_3 is interface
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... COMMISSION STP Nuclear Operating Company, South Texas Project, Units 1 and 2; Application for Amendment to Facility Operating License AGENCY: Nuclear Regulatory Commission. ACTION: License amendment application... of STP Nuclear Operating Company (the licensee) to withdraw its application dated June 2, 2011...
Normal forms of an abstract Dirac operator and applications to scattering theory
NASA Astrophysics Data System (ADS)
Thaller, Bernd
1988-01-01
The unitary transformations which convert an abstract Dirac operator into an ``even'' (resp. ``odd'') operator are determined. The problem is formulated and solved completely within the general setup of supersymmetric quantum mechanics. This leads to some apparently new applications in relativistic quantum mechanics, where the transformations are known as the Foldy-Wouthuysen (resp. Cini-Touschek) transformations. The scattering theory for abstract Dirac operators is discussed and the utility of the general theory is illustrated by proving existence of relativistic Mo/ller operators for scattering from long-range magnetic fields.
Li, Huiying; Hopke, Philip K; Liu, Xiande; Du, Xiaoming; Li, Fasheng
2015-03-01
Surface water monitoring networks play an important role in the stream water quality management. Since a time series of data is obtained from the monitoring network, multivariate statistical techniques can be used to identify important factors or pollution sources of water system. Positive matrix factorization (PMF) is an improved factor analysis tool that has had limited application to water systems. The objective was to apply PMF to monitoring data to apportion water pollution sources in the Daliao River (DLR) basin. The DLR basin includes the Hun and Taizi River catchments in northeast China. This basin is densely populated and heavily industrialized. Fourteen monitoring stations located on the two rivers were used for monitoring 13 physical and chemical parameters from 1990 to 2002. Results show that five sources/processes in the Hun River and four in the Taizi River were identified by marker species and spatial-temporal variations of resolved factors, including point and nonpoint sources for both rivers. In addition, the industrial pollution source emission inventory data were used to compare with the resolved industrial sources. Results reveal that chemical transformations have influenced some chemical species. However, this influence is small compared with observed seasonal variations. Therefore, identification of pollution point and nonpoint sources by their seasonal variations is possible, which will also aid in water quality management. The spatial variation of the industrial pollutants typically corresponded with the urban industrial pollution source inventories.
Akato, Kokouvi M.; Tran, Chau D.; Chen, Jihua; Naskar, Amit K.
2015-11-05
Here we report the compatibilization of biomass-derived lignin polymer in acrylonitrile butadiene styrene (ABS) thermoplastic matrix without loss of mechanical properties via poly(ethylene oxide) (PEO)-mediated macromolecular self-assembly. ABS was blended with lignin in different concentrations, and blends with 10 wt % PEO (relative to lignin) were prepared. The relative tensile strength improved slightly at low lignin content but diminished rapidly as the lignin content was increased. However, the inclusion of PEO as an interfacial adhesion promoter helped avoid deleterious effects. Dynamic mechanical analysis showed that PEO plasticized the hard phase and thus lowered the activation energy (Ea) for its relaxationmore » but caused stiffening of the soft phase and increased its Ea. Microscopy revealed that incorporating lignin in ABS led to the statistical dispersion of discrete lignin domains (300–1000 nm) which, after PEO addition, were reduced to smaller interconnected particles (200–500 nm). The lignin-extended partially renewable ABS resins showed shear-thinning behavior and reduced viscosity compared to neat ABS. The preferred lignin-loaded compositions reinforced with 20 vol % chopped carbon fibers exhibited mechanical performances (77–80 MPa) equivalent to those of reinforced ABS materials reportedly used in 3D printing applications. In conclusion, this approach could lower the cost of ABS while reducing its carbon footprint.« less
Akato, Kokouvi M.; Tran, Chau D.; Chen, Jihua; Naskar, Amit K.
2015-11-05
Here we report the compatibilization of biomass-derived lignin polymer in acrylonitrile butadiene styrene (ABS) thermoplastic matrix without loss of mechanical properties via poly(ethylene oxide) (PEO)-mediated macromolecular self-assembly. ABS was blended with lignin in different concentrations, and blends with 10 wt % PEO (relative to lignin) were prepared. The relative tensile strength improved slightly at low lignin content but diminished rapidly as the lignin content was increased. However, the inclusion of PEO as an interfacial adhesion promoter helped avoid deleterious effects. Dynamic mechanical analysis showed that PEO plasticized the hard phase and thus lowered the activation energy (E_{a}) for its relaxation but caused stiffening of the soft phase and increased its E_{a}. Microscopy revealed that incorporating lignin in ABS led to the statistical dispersion of discrete lignin domains (300–1000 nm) which, after PEO addition, were reduced to smaller interconnected particles (200–500 nm). The lignin-extended partially renewable ABS resins showed shear-thinning behavior and reduced viscosity compared to neat ABS. The preferred lignin-loaded compositions reinforced with 20 vol % chopped carbon fibers exhibited mechanical performances (77–80 MPa) equivalent to those of reinforced ABS materials reportedly used in 3D printing applications. In conclusion, this approach could lower the cost of ABS while reducing its carbon footprint.
Lee, Jiann-Fong; Chen, Hsuen-Li; Lee, Geneh-Siang; Tseng, Shao-Chin; Lin, Mei-Hsiang; Liau, Wen-Bin
2012-01-01
This study synthesized a europium (Eu3+) complex Eu(DBM)3Cl-MIP (DBM = dibenzoyl methane; Cl-MIP = 2-(2-chlorophenyl)-1-methyl-1H-imidazo[4,5-f][1,10]phenanthroline) dispersed in a benzyl methacrylate (BMA) monomer and treated with ultraviolet (UV) light for polymerization. Spectral results showed that the europium complex containing an antenna, Cl-MIP, which had higher triplet energy into the Eu3+ energy level, was an energetically enhanced europium emission. Typical stacking behaviors of π–π interactions between the ligands and the Eu3+-ion were analyzed using single crystal X-ray diffraction. Regarding the luminescence performance of this europium composite, the ligand/defect emission was suppressed by dispersion in a poly-BMA (PBMA) matrix. The underlying mechanism of the effective enhancement of the pure Eu3+ emission was attributed to the combined effects of structural modifications, defect emissions, and carrier charge transfer. Fluorescence spectra were compared to the composite of optimized Eu3+ emission where they were subsequently chelated to four metal ions via carboxylate groups on the BMA unit. The optical enhanced europium composite clearly demonstrated highly efficient optical responses and is, therefore a promising application as an optical detection material. PMID:22489178
Askari, Hesam A.; Zbib, Hussein M.; Sun, Xin
2013-06-30
In this study, the strengthening effect of inclusions and precipitates in metals is investigated within a multiscale approach that utilizes models at various length scales, namely, Molecular Mechanics (MM), discrete Dislocation Dynamics (DD), and an Eigenstrain Inclusion Method (EIM). Particularly, precipitates are modeled as hardsoft particles whose stress fields interact with dislocations. The stress field resulting from the elastic mismatch between the particles and the matrix is accounted for through the EIM. While the MM method is employed for the purpose of developing rules for DD for short range interaction between a single dislocation and an inclusion, the DD method is used to predict the strength of the composite resulting from the interaction between ensembles of dislocations and particles. As an application to this method, the mechanical behavior of Advanced High Strength Steel (AHSS) is investigated and the results are then compared to the experimental data. The results show that the finely dispersive precipitates can strengthen the material by pinning the dislocations up to a certain shear stress and retarding the recovery, as well as annihilation of dislocations. The DD results show that strengthening due to nano sized particles is a function of the density and size of the precipitates. This size effect is then explained using a mechanistic model developed based on dislocation-particle interaction.
The application of digital medical 3D printing technology on tumor operation
NASA Astrophysics Data System (ADS)
Chen, Jimin; Jiang, Yijian; Li, Yangsheng
2016-04-01
Digital medical 3D printing technology is a new hi-tech which combines traditional medical and digital design, computer science, bio technology and 3D print technology. At the present time there are four levels application: The printed 3D model is the first and simple application. The surgery makes use of the model to plan the processing before operation. The second is customized operation tools such as implant guide. It helps doctor to operate with special tools rather than the normal medical tools. The third level application of 3D printing in medical area is to print artificial bones or teeth to implant into human body. The big challenge is the fourth level which is to print organs with 3D printing technology. In this paper we introduced an application of 3D printing technology in tumor operation. We use 3D printing to print guide for invasion operation. Puncture needles were guided by printed guide in face tumors operation. It is concluded that this new type guide is dominantly advantageous.
Lee, Ja Bin; An, Gwang Guk; Yang, Seung Mo; Hong, Jin Pyo
2013-11-01
We describe the influence of inserted oxygen atoms on the structural and magnetic properties of a [Co/Pt]n multi-layer matrix. The correlation of magnetic properties with oxygen gas flow rate was studied as an alternative perpendicular medium in spin transfer torque magnetic random access memory applications. Experimental analysis suggests that the addition of a small amount of oxygen atoms into the [Co/Pt]n multi-layer matrix leads to a high coercivity and proper magnetization performance, together with high thermal stability. Finally, the nature of the improved perpendicular medium behaviors is also discussed.
NASA Astrophysics Data System (ADS)
Puhr, Matthias; Buividovich, Pavel
2016-11-01
We present a method for the numerical calculation of derivatives of functions of general complex matrices. The method can be used in combination with any algorithm that evaluates or approximates the desired matrix function, in particular with implicit Krylov-Ritz-type approximations. An important use case for the method is the evaluation of the overlap Dirac operator in lattice Quantum Chromodynamics (QCD) at finite chemical potential, which requires the application of the sign function of a non-Hermitian matrix to some source vector. While the sign function of non-Hermitian matrices in practice cannot be efficiently approximated with source-independent polynomials or rational functions, sufficiently good approximating polynomials can still be constructed for each particular source vector. Our method allows for an efficient calculation of the derivatives of such implicit approximations with respect to the gauge field or other external parameters, which is necessary for the calculation of conserved lattice currents or the fermionic force in Hybrid Monte-Carlo or Langevin simulations. We also give an explicit deflation prescription for the case when one knows several eigenvalues and eigenvectors of the matrix being the argument of the differentiated function. We test the method for the two-sided Lanczos approximation of the finite-density overlap Dirac operator on realistic SU(3) gauge field configurations on lattices with sizes as large as 14 ×143 and 6 ×183.
Variable speed operation of generators with rotor-speed feedback in wind power applications
Muljadi, E.; Butterfield, C.P.; Migliore, P.
1995-11-01
The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.
Variable speed operation of generators with rotor-speed feedback in wind power applications
Muljadi, E.; Butterfield, C.P.; Migliore, P.
1996-10-01
The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy analyzed uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.
Variable speed operation of generators with rotor-speed feedback in wind power applications
Muljadi, E.; Butterfield, C.P.; Migliore, P.
1996-11-01
The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up, and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy the authors analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.
NASA Astrophysics Data System (ADS)
Koshida, N.; Kojima, A.; Ikegami, N.; Suda, R.; Yagi, M.; Shirakashi, J.; Yoshida, T.; Miyaguchi, H.; Muroyama, M.; Nishino, H.; Yoshida, S.; Sugata, M.; Totsu, K.; Esashi, M.
2015-03-01
Making the best use of the characteristic features in nanocrystalline Si (nc-Si) ballistic hot electron source, the alternative lithographic technology is presented based on the two approaches: physical excitation in vacuum and chemical reduction in solutions. The nc-Si cold cathode is a kind of metal-insulator-semiconductor (MIS) diode, composed of a thin metal film, an nc-Si layer, an n+-Si substrate, and an ohmic back contact. Under a biased condition, energetic electrons are uniformly and directionally emitted through the thin surface electrodes. In vacuum, this emitter is available for active-matrix drive massive parallel lithography. Arrayed 100×100 emitters (each size: 10×10 μm2, pitch: 100 μm) are fabricated on silicon substrate by conventional planar process, and then every emitter is bonded with integrated complementary metal-oxide-semiconductor (CMOS) driver using through-silicon-via (TSV) interconnect technology. Electron multi-beams emitted from selected devices are focused by a micro-electro-mechanical system (MEMS) condenser lens array and introduced into an accelerating system with a demagnification factor of 100. The electron accelerating voltage is 5 kV. The designed size of each beam landing on the target is 10×10 nm2 in square. Here we discuss the fabrication process of the emitter array with TSV holes, implementation of integrated ctive-matrix driver circuit, the bonding of these components, the construction of electron optics, and the overall operation in the exposure system including the correction of possible aberrations. The experimental results of this mask-less parallel pattern transfer are shown in terms of simple 1:1 projection and parallel lithography under an active-matrix drive scheme. Another application is the use of this emitter as an active electrode supplying highly reducing electrons into solutions. A very small amount of metal-salt solutions is dripped onto the nc-Si emitter surface, and the emitter is driven without
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Thesken, John C.; Sutter, James K.; Chuang, Kathy; Juhas, John; Veverka, Adrienne; Inghram, Linda; Papadopoulos, Demetrios; Burke, Chris; Scheiman, Dan
2003-01-01
A lightweight sandwich support structure, for the combustor chamber of a new generation liquid propellant rocket engine, was designed and fabricated using a polymer matrix composite (PMC) facesheet on a Ti honeycomb core. The PMC facesheet consisted of high stiffness carbon fiber, M40JB, and high temperature Polyimides, such as PMR-II-50 and HFPE-II-52. Six different fiber architectures; four harness satin (4HS) woven fabric, uni-tape, woven-uni hybrid, stitched woven fabric, stitched uni-tape and triaxial braided structures have been investigated for optimum stiffness-thickness-weight-hygrothermal performance design criteria for the hygrothermal-mechanical propulsion service exposure conditions including rapid heating up to 200 F/sec, maximum operating temperature of 600 F, internal pressure up to 100 psi. One of the specific objectives in this study is to improve composite blistering resistance in z-direction at minimum expense of in-plane mechanical properties. An extensive property-performance database including dry-wet mechanical properties at various temperatures, thermal-physical properties, such as blistering onset condition was generated for fiber architecture down-selection and design guidelines. Various optimized process methods such as vacuum bag compression molding, solvent assistant resin transfer molding (SaRTM), resin film infusion (RFI) and autoclaving were utilized for PMC panel fabrication depending on the architecture type. In the case of stitched woven fabric architecture, the stitch pattern in terms of stitch density and yarn size was optimized based on both in-plane mechanical properties and blistering performance. Potential reduction of the in-plane properties transverse to the line of stitching was also evaluated. Efforts have been made to correlate the experimental results with theoretical micro-mechanics predictions. Changes in deformation mechanism and failure sequences in terms of fiber architecture will be discussed.
NASA Astrophysics Data System (ADS)
Tinti, S.; Graziani, L.; Brizuela, B.; Maramai, A.; Gallazzi, S.
2012-03-01
After the 2004 Indian Ocean tsunami catastrophe, UNESCO through the IOC (Intergovernmental Oceanographic Commission) sponsored the establishment of Intergovernmental Coordination Groups (ICG) with the aim to devise and implement Tsunami Warning Systems (TWSs) in all the oceans exposed to tsunamis, in addition to the one already in operation in the Pacific (PTWS). In this context, since 2005, efforts have begun for the establishment of TWSs in the Indian Ocean (IOTWS), in the Caribbean area (CARIBE EWS) and in the North Eastern Atlantic, the Mediterranean and Connected Seas (NEAMTWS). In this paper, we focus on a specific tool that was first introduced in the PTWS routine operations, i.e., the Decision Matrix (DM). This is an easy-to-use table establishing a link between the main parameters of an earthquake and the possible ensuing tsunami in order to make quick decision on the type of alert bulletins that a Tsunami Warning Center launches to its recipients. In the process of implementation of a regional TWS for the NEAM area, two distinct DMs were recently proposed by the ICG/NEAMTWS, one for the Atlantic and the other for the entire Mediterranean area. This work applies the Mediterranean NEAMTWS DM to the earthquakes recorded in Italy and compares the action predicted by the DM vs. the action that should be appropriate in view of the observed tsunami characteristics with the aim to establish how good the performance of the Italian TWS will be when it uses the DM for future events. To this purpose, we make use of the parametric catalogue of the Italian earthquakes (CPTI04) compiled in 2004 and the most recent compilation of the Italian tsunami, based on the Italian Tsunami Catalogue of 2004 and the subsequent revisions. In order to better compare the TWS actions, we have identified four different kinds of action coding them from 0 to 3 according to the tsunami severity and have further considered three different distance ranges where these actions apply, that is
Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia; Okamoto, Hajime
2012-12-17
A general view of the backscattering Mueller matrix for the quasi-horizontally oriented hexagonal ice crystals of cirrus clouds has been obtained in the case of tilted and scanning lidars. It is shown that the main properties of this matrix are caused by contributions from two qualitatively different components referred to the specular and corner-reflection terms. The numerical calculation of the matrix is worked out in the physical optics approximation. These matrices calculated for two wavelengths and two tilt angles (initial and present) of CALIPSO lidar are presented as a data bank. The depolarization and color ratios for these data have been obtained and discussed.
Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia; Okamoto, Hajime
2012-12-17
A general view of the backscattering Mueller matrix for the quasi-horizontally oriented hexagonal ice crystals of cirrus clouds has been obtained in the case of tilted and scanning lidars. It is shown that the main properties of this matrix are caused by contributions from two qualitatively different components referred to the specular and corner-reflection terms. The numerical calculation of the matrix is worked out in the physical optics approximation. These matrices calculated for two wavelengths and two tilt angles (initial and present) of CALIPSO lidar are presented as a data bank. The depolarization and color ratios for these data have been obtained and discussed. PMID:23263056
Space Environments and Effects Concept: Transitioning Research to Operations and Applications
NASA Technical Reports Server (NTRS)
Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects
Tsakirakis, Angelos N; Kasiotis, Konstantinos M; Charistou, Agathi N; Arapaki, Niki; Tsatsakis, Aristidis; Tsakalof, Andreas; Machera, Kyriaki
2014-02-01
In the present study the dermal and the inhalation exposure of five operators during fungicide applications in vineyards were determined. The produced exposure datasets can be used as surrogate for the estimation of the actual and the potential dermal as well as inhalation operator exposure levels for this application scenario. The dermal exposure was measured using the whole body dosimetry method while the inhalation exposure with the use of personal air sampling devices with XAD tubes located on the operator's breathing zone. Ten field trials were carried out by 5 different operators using a tractor assisted hand-held lance with spray gun at the Tanagra region of Viotia, Greece. An in-house GC-ECD analytical method was developed and validated for the determination of penconazole, which was the active substance (a.s.) of the fungicide formulation used in field trials. The mean recovery of field-fortified samples was 81%. The operator exposure results showed expected variability and were compared to those derived from the German model for prediction of operator exposure. The comparison of the 75th percentile values for an operator wearing personal protection equipment has shown that the measured levels were 2.2 times lower than those estimated by the German model. The levels of actual dermal exposure ranged from 2 to 19 mg/kg a.s. applied. The protection provided by the two types of coveralls was evaluated and in comparison to the existing reduction factors used for other types of PPE (coveralls) was found satisfactory for the operator under the conditions of the specific applications. PMID:24140699
Tsakirakis, Angelos N; Kasiotis, Konstantinos M; Charistou, Agathi N; Arapaki, Niki; Tsatsakis, Aristidis; Tsakalof, Andreas; Machera, Kyriaki
2014-02-01
In the present study the dermal and the inhalation exposure of five operators during fungicide applications in vineyards were determined. The produced exposure datasets can be used as surrogate for the estimation of the actual and the potential dermal as well as inhalation operator exposure levels for this application scenario. The dermal exposure was measured using the whole body dosimetry method while the inhalation exposure with the use of personal air sampling devices with XAD tubes located on the operator's breathing zone. Ten field trials were carried out by 5 different operators using a tractor assisted hand-held lance with spray gun at the Tanagra region of Viotia, Greece. An in-house GC-ECD analytical method was developed and validated for the determination of penconazole, which was the active substance (a.s.) of the fungicide formulation used in field trials. The mean recovery of field-fortified samples was 81%. The operator exposure results showed expected variability and were compared to those derived from the German model for prediction of operator exposure. The comparison of the 75th percentile values for an operator wearing personal protection equipment has shown that the measured levels were 2.2 times lower than those estimated by the German model. The levels of actual dermal exposure ranged from 2 to 19 mg/kg a.s. applied. The protection provided by the two types of coveralls was evaluated and in comparison to the existing reduction factors used for other types of PPE (coveralls) was found satisfactory for the operator under the conditions of the specific applications.
An Operational Safety and Certification Assessment of a TASAR EFB Application
NASA Technical Reports Server (NTRS)
Koczo, Stefan; Wing, David
2013-01-01
This paper presents an overview of a Traffic Aware Strategic Aircrew Requests (TASAR) Electronic Flight Bag application intended to inform the pilot of trajectory improvement opportunities while en route that result in operational benefits. The results of safety analyses and a detailed review of Federal Aviation Administration (FAA) regulatory documents that establish certification and operational approval requirements are presented for TASAR. The safety analyses indicate that TASAR has a likely Failure Effects Classification of “No Effect,” and at most, is no worse than “Minor Effect.” Based on this safety assessment and the detailed review of FAA regulatory documents that determine certification and operational approval requirements, this study concludes that TASAR can be implemented in the flight deck as a Type B software application hosted on a Class 2 Portable Electronic Device (PED) Electronic Flight Bag (EFB). This implementation approach would provide a relatively low-cost path to certification and operational approval for both retrofit and forward fit implementation, while at the same time facilitating the business case for early ADS-B IN equipage. A preliminary review by FAA certification and operational approvers of the analyses presented here confirmed that the conclusions are appropriate and that TASAR will be considered a Type B application.
The Application of Operant Principles to Mentally Retarded Children. (RIEEC Research Bulletin 1).
ERIC Educational Resources Information Center
Yamaguchi, Kaoru
Presented are six case studies demonstrating the application of operant conditioning principles to teaching self-care skills and modifying deviant behavior in six moderately to profoundly retarded children 5- to 15-years-old in Japan. Included in the case histories, such as that of a moderately retarded 12-year-old who was toilet trained, are…
Fifth Annual Workshop on Space Operations Applications and Research (SOAR 1991), volume 2
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor)
1992-01-01
Papers given at the Space Operations and Applications Symposium, host by the NASA Johnson Space Center on July 9-11, 1991 are given. The technical areas covered included intelligent systems, automation and robotics, human factors and life sciences, and environmental interactions.
14 CFR 331.25 - To what address must operators or providers send their applications?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false To what address must operators or providers send their applications? 331.25 Section 331.25 Aeronautics and Space OFFICE OF THE SECRETARY... Transportation, Office of Aviation Analysis (X-50)Aviation Relief Desk, 1200 New Jersey Avenue, SE.,...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
...)(6) as currently written could impede the interstate transport of natural gas transit buses and place... Operation; Application for Exemption From the Natural Gas Vehicles for America AGENCY: Federal Motor Carrier... natural gas vehicles that do not restrict the location of such fuel systems. NGVAmerica plans to file...
Code of Federal Regulations, 2011 CFR
2011-07-01
... performance test. 2. Carbon adsorber (regenerative) to which puncture sealant application spray booth emissions are ducted a. Maintain the total regeneration mass, volumetric flow, and carbon bed temperature at the operating range established during the performance test.b. Reestablish the carbon bed...
An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors
NASA Technical Reports Server (NTRS)
Parrish, E. A.; Mcvey, E. S.
1977-01-01
The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system.
20 CFR 726.104 - Action by the Office upon application of operator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Action by the Office upon application of operator. 726.104 Section 726.104 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...
20 CFR 726.104 - Action by the Office upon application of operator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Action by the Office upon application of operator. 726.104 Section 726.104 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...
20 CFR 726.104 - Action by the Office upon application of operator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Action by the Office upon application of operator. 726.104 Section 726.104 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... (75 FR 27825). Notice of Consideration of Issuance of Amendments to Facility Operating Licenses... that a genuine dispute exists with the applicant on a material issue of law or fact. Contentions shall... accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
..., 2010 (75 FR 33839). Notice of Consideration of Issuance of Amendments to Facility Operating Licenses... include sufficient information to show that a genuine dispute exists with the applicant on a material... be filed in accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... performance test. 2. Carbon adsorber (regenerative) to which puncture sealant application spray booth emissions are ducted a. Maintain the total regeneration mass, volumetric flow, and carbon bed temperature at the operating range established during the performance test.b. Reestablish the carbon bed...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
... Reactor designed by Babcock & Wilcox that is located near Toledo, Ohio. The acceptability of the tendered... addition, the application is available at http://www.nrc.gov/reactors/operating/licensing/renewal... Commission. Louise Lund, (A) Deputy Director, Division of License Renewal, Office of Nuclear...
Assistant Personal Robot (APR): Conception and Application of a Tele-Operated Assisted Living Robot.
Clotet, Eduard; Martínez, Dani; Moreno, Javier; Tresanchez, Marcel; Palacín, Jordi
2016-04-28
This paper presents the technical description, mechanical design, electronic components, software implementation and possible applications of a tele-operated mobile robot designed as an assisted living tool. This robotic concept has been named Assistant Personal Robot (or APR for short) and has been designed as a remotely telecontrolled robotic platform built to provide social and assistive services to elderly people and those with impaired mobility. The APR features a fast high-mobility motion system adapted for tele-operation in plain indoor areas, which incorporates a high-priority collision avoidance procedure. This paper presents the mechanical architecture, electrical fundaments and software implementation required in order to develop the main functionalities of an assistive robot. The APR uses a tablet in order to implement the basic peer-to-peer videoconference and tele-operation control combined with a tactile graphic user interface. The paper also presents the development of some applications proposed in the framework of an assisted living robot.
NASA Technical Reports Server (NTRS)
Benbenek, Daniel B.; Walsh, William
2010-01-01
This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol.
General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations
NASA Technical Reports Server (NTRS)
Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark
2010-01-01
Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.
Klein, Manuela P; Hackenhaar, Camila R; Lorenzoni, André S G; Rodrigues, Rafael C; Costa, Tania M H; Ninow, Jorge L; Hertz, Plinho F
2016-02-10
In order to develop safer processes for the food industry, we prepared a chitosan support with the naturally occurring crosslinking reagent, genipin, for enzyme. As application model, it was tested for the immobilization of β-D-galactosidase from Aspergillus oryzae. Chitosan particles were obtained by precipitation followed by adsorption of the enzyme and crosslinking with genipin. The particles were characterized by Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The immobilization of the enzyme by crosslinking with genipin provided biocatalysts with satisfactory activity retention and thermal stability, comparable with the ones obtained with the traditional methodology of immobilization using glutaraldehyde. β-D-Galactosidase-chitosan-genipin particles were applied to galactooligosaccharides synthesis, evaluating the initial lactose concentration, pH and temperature, and yields of 30% were achieved. Moreover, excellent operational stability was obtained, since the immobilized enzyme maintained 100% of its initial activity after 25 batches of lactose hydrolysis. Thus, the food grade chitosan-genipin particles seem to be a good alternative for application in food process.
Klein, Manuela P; Hackenhaar, Camila R; Lorenzoni, André S G; Rodrigues, Rafael C; Costa, Tania M H; Ninow, Jorge L; Hertz, Plinho F
2016-02-10
In order to develop safer processes for the food industry, we prepared a chitosan support with the naturally occurring crosslinking reagent, genipin, for enzyme. As application model, it was tested for the immobilization of β-D-galactosidase from Aspergillus oryzae. Chitosan particles were obtained by precipitation followed by adsorption of the enzyme and crosslinking with genipin. The particles were characterized by Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The immobilization of the enzyme by crosslinking with genipin provided biocatalysts with satisfactory activity retention and thermal stability, comparable with the ones obtained with the traditional methodology of immobilization using glutaraldehyde. β-D-Galactosidase-chitosan-genipin particles were applied to galactooligosaccharides synthesis, evaluating the initial lactose concentration, pH and temperature, and yields of 30% were achieved. Moreover, excellent operational stability was obtained, since the immobilized enzyme maintained 100% of its initial activity after 25 batches of lactose hydrolysis. Thus, the food grade chitosan-genipin particles seem to be a good alternative for application in food process. PMID:26686119
ERIC Educational Resources Information Center
Camasso, Michael J.; Jagannathan, Radha
1995-01-01
Compares the predictive performances of the Illinois CANTS 17B and the Washington State Risk Matrix on a sample of New Jersey child protective services cases using logistic regression and receiver operating characteristic curve analysis. Both instruments predict case recidivism, closings, and substantiation with probabilities greater than chance.…
Sharma, Sandeep
2015-01-14
We extend our previous work [S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)], which described a spin-adapted (SU(2) symmetry) density matrix renormalization group algorithm, to additionally utilize general non-Abelian point group symmetries. A key strength of the present formulation is that the requisite tensor operators are not hard-coded for each symmetry group, but are instead generated on the fly using the appropriate Clebsch-Gordan coefficients. This allows our single implementation to easily enable (or disable) any non-Abelian point group symmetry (including SU(2) spin symmetry). We use our implementation to compute the ground state potential energy curve of the C{sub 2} dimer in the cc-pVQZ basis set (with a frozen-core), corresponding to a Hilbert space dimension of 10{sup 12} many-body states. While our calculated energy lies within the 0.3 mE{sub h} error bound of previous initiator full configuration interaction quantum Monte Carlo and correlation energy extrapolation by intrinsic scaling calculations, our estimated residual error is only 0.01 mE{sub h}, much more accurate than these previous estimates. Due to the additional efficiency afforded by the algorithm, the excitation energies (T{sub e}) of eight lowest lying excited states: a{sup 3}Π{sub u}, b{sup 3}Σ{sub g}{sup −}, A{sup 1}Π{sub u}, c{sup 3}Σ{sub u}{sup +}, B{sup 1}Δ{sub g}, B{sup ′1}Σ{sub g}{sup +}, d{sup 3}Π{sub g}, and C{sup 1}Π{sub g} are calculated, which agree with experimentally derived values to better than 0.06 eV. In addition, we also compute the potential energy curves of twelve states: the three lowest levels for each of the irreducible representations {sup 1}Σ{sub g}{sup +}, {sup 1}Σ{sub u}{sup +}, {sup 1}Σ{sub g}{sup −}, and {sup 1}Σ{sub u}{sup −}, to an estimated accuracy of 0.1 mE{sub h} of the exact result in this basis.
NASA Astrophysics Data System (ADS)
Zhang, Gang; Yang, Jianhong
2013-11-01
The TiB2 matrix ceramics reinforced by aluminum borate whiskers (Al18B4O33 w) had been prepared by the pressureless sintering method. The mechanical properties and densification behavior of the TiB2 matrix ceramics were investigated. The results showed that Al18B4O33 w was in situ synthesized by the reaction of boehmite (AlOOH) and TiB2 powders during the sintering process. Increasing the sintering temperature had benefited for densification of the TiB2 matrix ceramics. Al18B4O33 w could increase the flexural strength and Vicker's hardness. It is obtained that the maximum value Vicker's hardness with 1.81 GPa and flexural strength with 82 MPa for samples sintered at 1600°C.
Requist, Ryan; Pankratov, Oleg
2011-05-15
We prove that if the two-body terms in the equation of motion for the one-body reduced density matrix are approximated by ground-state functionals, the eigenvalues of the one-body reduced density matrix (occupation numbers) remain constant in time. This deficiency is related to the inability of such an approximation to account for relative phases in the two-body reduced density matrix. We derive an exact differential equation giving the functional dependence of these phases in an interacting Landau-Zener model and study their behavior in short- and long-time regimes. The phases undergo resonances whenever the occupation numbers approach the boundaries of the interval [0,1]. In the long-time regime, the occupation numbers display correlation-induced oscillations and the memory dependence of the functionals assumes a simple form.
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-28
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.
NASA Astrophysics Data System (ADS)
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-01
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-28
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism. PMID:23635123
In situ applications of a new diver-operated motorized microsensor profiler.
Weber, Miriam; Faerber, Paul; Meyer, Volker; Lott, Christian; Eickert, Gabriele; Fabricius, Katharina E; De Beer, Dirk
2007-09-01
Microsensors are powerful tools for microenvironment studies, however their use has often been restricted to laboratory applications due to the lack of adequate equipment for in situ deployments. Here we report on new features, construction details, and examples of applications of an improved diver-operated motorized microsensor profiler for underwater field operation to a water depth of 25 m. The new motorized profiler has a final precision of 5 microm, and can accommodate amperometric Clark-type microsensors for oxygen and hydrogen sulfide, potentiometric microsensors (e.g., for pH, Ca2+), and fiber-optic irradiance microsensors. The profiler is interfaced by a logger with a signal display, and has pushbuttons for underwater operation. The system can be pre-programmed to autonomous operation or interactively operated by divers. Internal batteries supply power for up to 24 h of measurements and 36 h of data storage (max. 64 million data points). Two flexible stands were developed for deployment on uneven or fragile surfaces, such as coral reefs. Three experimental pilot studies are presented, where (1) the oxygen distribution in a sand ripple was 3-D-mapped, (2) the microenvironment of sediment accumulated on a stony coral was studied, and (3) oxygen dynamics during an experimental sedimentation were investigated. This system allows SCUBA divers to perform a wide array of in situ measurements, with deployment precision and duration similar to those possible in the laboratory.
In situ applications of a new diver-operated motorized microsensor profiler.
Weber, Miriam; Faerber, Paul; Meyer, Volker; Lott, Christian; Eickert, Gabriele; Fabricius, Katharina E; De Beer, Dirk
2007-09-01
Microsensors are powerful tools for microenvironment studies, however their use has often been restricted to laboratory applications due to the lack of adequate equipment for in situ deployments. Here we report on new features, construction details, and examples of applications of an improved diver-operated motorized microsensor profiler for underwater field operation to a water depth of 25 m. The new motorized profiler has a final precision of 5 microm, and can accommodate amperometric Clark-type microsensors for oxygen and hydrogen sulfide, potentiometric microsensors (e.g., for pH, Ca2+), and fiber-optic irradiance microsensors. The profiler is interfaced by a logger with a signal display, and has pushbuttons for underwater operation. The system can be pre-programmed to autonomous operation or interactively operated by divers. Internal batteries supply power for up to 24 h of measurements and 36 h of data storage (max. 64 million data points). Two flexible stands were developed for deployment on uneven or fragile surfaces, such as coral reefs. Three experimental pilot studies are presented, where (1) the oxygen distribution in a sand ripple was 3-D-mapped, (2) the microenvironment of sediment accumulated on a stony coral was studied, and (3) oxygen dynamics during an experimental sedimentation were investigated. This system allows SCUBA divers to perform a wide array of in situ measurements, with deployment precision and duration similar to those possible in the laboratory. PMID:17937304
Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 2
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor)
1994-01-01
This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) and cosponsored by NASA/JSC and U.S. Air Force Materiel Command. SOAR included NASA and USAF programmatic overviews, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations.
Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992), volume 2
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor)
1993-01-01
This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotics and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. Symposium proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry.
Using reactor operating experience to improve the design of a new Broad Application Test Reactor
Fletcher, C.D.; Ryskamp, J.M.; Drexler, R.L.; Leyse, C.F.
1993-07-01
Increasing regulatory demands and effects of plant aging are limiting the operation of existing test reactors. Additionally, these reactors have limited capacities and capabilities for supporting future testing missions. A multidisciplinary team of experts developed sets of preliminary safety requirements, facility user needs, and reactor design concepts for a new Broad Application Test Reactor (BATR). Anticipated missions for the new reactor include fuels and materials irradiation testing, isotope production, space testing, medical research, fusion testing, intense positron research, and transmutation doping. The early BATR design decisions have benefited from operating experiences with existing reactors. This paper discusses these experiences and highlights their significance for the design of a new BATR.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Newsom, J. R.
1982-01-01
A stability margin evaluation method in terms of simultaneous gain and phase changes in all loops of a multiloop system is presented. A universal gain-phase margin evaluation diagram is constructed by generalizing an existing method using matrix singular value properties. Using this diagram and computing the minimum singular value of the system return difference matrix over the operating frequency range, regions of guaranteed stability margins can be obtained. Singular values are computed for a wing flutter suppression and a drone lateral attitude control problem. The numerical results indicate that this method predicts quite conservative stability margins. In the second example if the eigenvalue magnitude is used instead of the singular value, as a measure of nearness to singularity, more realistic stability margins are obtained. However, this relaxed measure generally cannot guarantee global stability.
Washington, M.K.
2014-01-01
The Collaborative (formerly the Cooperative) Human Tissue Network (CHTN) is a federally funded service oriented grant that provides high-quality biospecimens and services to the research community. The CHTN consists of six institutions located throughout the United States to assist investigators in obtaining research specimens required for basic research. The CHTN divisions have similar operating goals: however, each division is responsible for maintaining operations at their local institutions. This requires the divisions to identify ways to maintain and sustain operations in a challenging federally funded environment, especially when the number of investigators requesting services drives the operation. Sustainability plans and goals are often times patched together out of necessity rather than taking a thoughtful approach by clearly defining and aligning activities with business strategy and priorities. The CHTN Western Division at Vanderbilt University Medical Center (CHTN-WD) has responded to this challenge of biospecimen resource sustainability in the face of diminished funding by continually identifying ways to innovate our processes through IT enhancements and requiring that the innovation produce measurable and relevant criteria for credibly reporting our operations progress and performance issues. With these overarching goals in mind, CHTN-WD underwent a Lean Six Sigma (LSS) series to identify operational inefficiencies that could be addressed with redesigning workflow and innovating the processes using IT solutions. The result of this internal collaborative innovation process was the implementation of an error-reporting module (ERM) hosted within our biorepository donor IT application, which allowed staff to report errors immediately; determine the operational area responsible; assess the severity of the error; determine course of action; determine if standard operating procedure (SOPs) revisions were required; and through automated e-mails, alert the
Wiles, Kerry R; Washington, M K
2014-12-01
The Collaborative (formerly the Cooperative) Human Tissue Network (CHTN) is a federally funded service oriented grant that provides high-quality biospecimens and services to the research community. The CHTN consists of six institutions located throughout the United States to assist investigators in obtaining research specimens required for basic research. The CHTN divisions have similar operating goals: however, each division is responsible for maintaining operations at their local institutions. This requires the divisions to identify ways to maintain and sustain operations in a challenging federally funded environment, especially when the number of investigators requesting services drives the operation. Sustainability plans and goals are often times patched together out of necessity rather than taking a thoughtful approach by clearly defining and aligning activities with business strategy and priorities. The CHTN Western Division at Vanderbilt University Medical Center (CHTN-WD) has responded to this challenge of biospecimen resource sustainability in the face of diminished funding by continually identifying ways to innovate our processes through IT enhancements and requiring that the innovation produce measurable and relevant criteria for credibly reporting our operations progress and performance issues. With these overarching goals in mind, CHTN-WD underwent a Lean Six Sigma (LSS) series to identify operational inefficiencies that could be addressed with redesigning workflow and innovating the processes using IT solutions. The result of this internal collaborative innovation process was the implementation of an error-reporting module (ERM) hosted within our biorepository donor IT application, which allowed staff to report errors immediately; determine the operational area responsible; assess the severity of the error; determine course of action; determine if standard operating procedure (SOPs) revisions were required; and through automated e-mails, alert the
NASA Astrophysics Data System (ADS)
Nikitin, Anatoly G.; Karadzhov, Yuri
2011-07-01
We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.
Not Available
1980-07-01
This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.
NASA Astrophysics Data System (ADS)
Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal; Chen, Zhangxin
2014-03-01
The complexity of mass transfer processes between the mobile and immobile zones in geohydrologic settings and the limitations that currently exist in the characterization of contaminated sites demand the development of improved models. In this work, we present a model that describes the mass transfer in structured porous media. This model considers divergent radial advective-dispersive transport in fractures and diffusive mass transfer inside rock matrix blocks. The heterogeneous nature of fractured formations is included with the integration of various distributions of rock matrix block sizes into the transport model. Breakthrough curves generated based on the developed model are analyzed to investigate the effects of the rate of injection, dispersivity and the immobile to mobile porosity ratio on mass transfer between mobile and immobile zones. It is shown that the developed model, in conjunction with tracer data collected from a monitoring well, can be used to estimate the dispersivity and fracture intensity. Results reveal that the dispersivity is independent of the rock matrix block size distribution for dispersion-dominant transport in fractures. These findings are used to develop a methodology to characterize rock matrix block size distribution in fractured aquifers and to estimate dispersivity based on a tracer test, which will improve our decisions concerning the remediation of contaminated sites.
Pizio; Trokhymchuk; Henderson; Labik
1997-07-01
A model of hard spheres adsorbed in disordered porous media is studied using the associative replica Ornstein-Zernike (ROZ) equations. Extending previous studies of adsorption in a hard sphere matrices, we investigate a polymerized matrix. We consider an associating fluid of hard spheres with two intracore attractive sites per particle; consequently chains consisting of overlapping hard spheres can be formed due to the chemical association. This is the generalization of the model with sites on the surface of Wertheim that has been studied in the bulk by Chang and Sandler. The matrix structure is obtained in the polymer Percus-Yevick approximation. We solve the ROZ equations in the associative hypernetted chain approximation. The pair distribution functions, the fluid compressibility, the equation of state and chemical potential of the adsorbed fluid are obtained and discussed. It is shown that the adsorption of a hard sphere fluid in a matrix at given density, but consisting of longer chains of overlapping hard spheres, is higher than the adsorption of this fluid in a hard sphere matrix.
ERIC Educational Resources Information Center
ten Berge, Jos M. F.; Kiers, Henk A. L.
1989-01-01
Centering a matrix row-wise and rescaling it column-wise to a unit sum of squares requires an iterative procedure. It is shown that this procedure converges to a stable solution that need not be centered row-wise. The results bear directly on several types of preprocessing methods in Parafac/Candecomp. (Author/TJH)
An application of timed Petri nets to S/C operations analysis: The Aristoteles autonomy concept
NASA Astrophysics Data System (ADS)
Barro, E.; Rossi, F.
1990-10-01
Petri nets as a methodology for the study and analysis of systems behavior are discussed. They can be tailored to timed approaches, to highlight all the system possible timing critical and deadlock conditions. As a consequence, it is valuable to apply a Petri nets-based methodology in the space environment. Spacecraft operations analysis during system definition is one area of possible application. The application of Petri nets, as a basis for an investigation methodology in the Aristoteles spacecraft autonomy concept definition is described. Significant results are obtained allowing the production of a consistent, formally clean and self explaining system description, to be used as an aid to design and a tool for system evaluation. Such positive achievements support the exploitation of Petri nets-based methodologies in spacecraft operations to describe and analyze the overall space system behavior.
Centner, Terence J; Feitshans, Theodore A
2006-06-01
In the United States, reducing pollution from agriculture has received attention due to data suggesting that this is the leading source of impairment of many waterbodies. The federal government revised its regulations governing concentrated animal feeding operations (CAFOs) to enhance governmental oversight over sources of pollution. For the application of manure resulting in pollutant discharges, CAFOs need to implement nutrient management plans. A federal court affirmed the ability of the US federal government to oversee the application of manure from CAFOs that have discharges. Simultaneously, owners and operators of CAFOs who have implemented an appropriate nutrient management plan may forgo securing a permit if their discharges qualify under the agricultural stormwater discharge exemption. PMID:16271814
NASA Technical Reports Server (NTRS)
Perkins, Sharon; Martin, Andrea; Bavinger, Bill
1990-01-01
The Trajectory Operations Applications Software Task (TOAST) is a software development project whose purpose is to provide trajectory operation pre-mission and real-time support for the Space Shuttle. The purpose of the evaluation was to evaluate TOAST as an Application Manager - to assess current and planned capabilities, compare capabilities to commercially-available off the shelf (COTS) software, and analyze requirements of MCC and Flight Analysis Design System (FADS) for TOAST implementation. As a major part of the data gathering for the evaluation, interviews were conducted with NASA and contractor personnel. Real-time and flight design users, orbit navigation users, the TOAST developers, and management were interviewed. Code reviews and demonstrations were also held. Each of these interviews was videotaped and transcribed as appropriate. Transcripts were edited and are presented chronologically.
Pickrell, M M; Rinard, P M
1992-01-01
The {sup 252}Cf shuffler assays fissile uranium and plutonium using active neutron interrogation and then counting the induced delayed neutrons. Using the shuffler, we conducted over 1700 assays of 55-gal. drums with 28 different matrices and several different fissionable materials. We measured the drums to dispose the matrix and position effects on {sup 252}Cf shuffler assays. We used several neutron flux monitors during irradiation and kept statistics on the count rates of individual detector banks. The intent of these measurements was to gauge the effect of the matrix independently from the uranium assay. Although shufflers have previously been equipped neutron monitors, the functional relationship between the flux monitor sepals and the matrix-induced perturbation has been unknown. There are several flux monitors so the problem is multivariate, and the response is complicated. Conventional regression techniques cannot address complicated multivariate problems unless the underlying functional form and approximate parameter values are known in advance. Neither was available in this case. To address this problem, we used a new technique called alternating conditional expectations (ACE), which requires neither the functional relationship nor the initial parameters. The ACE algorithm develops the functional form and performs a numerical regression from only the empirical data. We applied the ACE algorithm to the shuffler-assay and flux-monitor data and developed an analytic function for the matrix correction. This function was optimized using conventional multivariate techniques. We were able to reduce the matrix-induced-bias error for homogeneous samples to 12.7%. The bias error for inhomogeneous samples was reduced to 13.5%. These results used only a few adjustable parameters compared to the number of available data points; the data were not over fit,'' but rather the results are general and robust.
Joint Polar Satellite System's Operational and Research Applications from Suomi NPP
NASA Astrophysics Data System (ADS)
Goldberg, M.
2014-12-01
The Joint Polar Satellite System is NOAA's new operational satellite program and includes the Suomi National Polar-orbiting Partnership (S-NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. JPSS provides critical data for key operational and research applications, and includes: 1) Weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. 2) Environmental monitoring - data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. 3) Climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long-term observation of the environment; the records and products are critical to climate modelers, scientists, and decision makers concerned with advancing climate change understanding, prediction, mitigation and adaptation strategies, and policies. To bridge the gap between products and applications, the JPSS Program has established a proving ground program to optimize the use of JPSS data with other data sources to improve key products and services. A number of operational and research applications will be discussed, including the use of CrIS and ATMS for improved weather forecasting, the use of VIIRS for environmental monitoring of sea ice, smoke, fire, floods, droughts, coastal water quality (e.g. harmful algal blooms
NASA Technical Reports Server (NTRS)
Clancey, William J.
2004-01-01
This viewgraph presentation provides an overview of past and possible future applications for artifical intelligence (AI) in astronaut instruction and training. AI systems have been used in training simulation for the Hubble Space Telescope repair, the International Space Station, and operations simulation for the Mars Exploration Rovers. In the future, robots such as may work as partners with astronauts on missions such as planetary exploration and extravehicular activities.
Operator agency in process intervention: tampering versus application of tacit knowledge
NASA Astrophysics Data System (ADS)
Van Gestel, P.; Pons, D. J.; Pulakanam, V.
2015-04-01
Statistical process control (SPC) theory takes a negative view of adjustment of process settings, which is termed tampering. In contrast, quality and lean programmes actively encourage operators to acts of intervention and personal agency in the improvement of production outcomes. This creates a conflict that requires operator judgement: How does one differentiate between unnecessary tampering and needful intervention? Also, difficult is that operators apply tacit knowledge to such judgements. There is a need to determine where in a given production process the operators are applying tacit knowledge, and whether this is hindering or aiding quality outcomes. The work involved the conjoint application of systems engineering, statistics, and knowledge management principles, in the context of a case study. Systems engineering was used to create a functional model of a real plant. Actual plant data were analysed with the statistical methods of ANOVA, feature selection, and link analysis. This identified the variables to which the output quality was most sensitive. These key variables were mapped back to the functional model. Fieldwork was then directed to those areas to prospect for operator judgement activities. A natural conversational approach was used to determine where and how operators were applying judgement. This contrasts to the interrogative approach of conventional knowledge management. Data are presented for a case study of a meat rendering plant. The results identify specific areas where operators' tacit knowledge and mental model contribute to quality outcomes and untangles the motivations behind their agency. Also evident is how novice and expert operators apply their knowledge differently. Novices were focussed on meeting throughput objectives, and their incomplete understanding of the plant characteristics led them to inadvertently sacrifice quality in the pursuit of productivity in certain situations. Operators' responses to the plant are affected by
Brown, Jesslyn; Howard, Daniel M.; Wylie, Bruce K.; Frieze, Aaron; Ji, Lei; Gacke, Carolyn
2015-01-01
Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS) system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1), the eMODIS Normalized Difference Vegetation Index (NDVI) maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra) or afternoon (Aqua) orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.
From R&D to end users applications in operational oceanography: The navy's "SOAP" case study
NASA Astrophysics Data System (ADS)
Giraud Saint-Albin, S.; Jourdan, D.
2003-04-01
For the last ten years, the CMO/BRESM has conducted an operational program for Ocean Analysis and Prediction SOAP, whose goal has been to support sea activities with high resolution mesoscale ocean nowcast products. Successive prototypes have been generated, operated and improved in tandem with a continuous re-evaluation of Navy Needs. This strategy played a key-role in defining the concept of “real-time integrated oceanography” which relies on remote and in situ ocean observations, (a hierarchy of) ocean models and data assimilation methods. The paper focuses on the results of the latter feasability study for next SOAP prototype: the military motivation for developing new prototypes is to extend the application domain of SOAP operational products from the operative (~ a description of the synoptic scale) to the tactical ( ~ a tailored product to strategic needs) relevance. Current SOAP P2 system is as a transition system pulled by end-user’s requirements and designed by research oceanographers from existing tools and models. The development of SOAP P3 has just started and will benefit from the emergence of an increasing offer of ocean modelling results, pushed by the GODAE initiative. It will be based on MERCATOR high resolution prototypes. From that starting point future developments will have to address both issues of defense specific requirements for high resolution ocean modeling and computation of relevant acoustical products for military applications. Especially, the crucial needs for assessing the end-users’ products reliability should be explored.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... of Receipt of Application for a Presidential Permit To Operate and Maintain Pipeline Facilities on..., 2010 an updated application from Dome Petroleum Corp., a North Dakota corporation (``Dome Petroleum... Executive Order 13337 of April 30, 2004, to operate and maintain six (6) cross-border pipelines...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 12 2011-04-01 2011-04-01 false Consolidated net operating loss deduction generally applicable for consolidated return years beginning before January 1, 1997. 1.1502-21A Section 1...-21A Consolidated net operating loss deduction generally applicable for consolidated return...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Consolidated net operating loss deduction generally applicable for consolidated return years beginning before January 1, 1997. 1.1502-21A Section 1... Consolidated net operating loss deduction generally applicable for consolidated return years beginning...
NASA Astrophysics Data System (ADS)
Johansson, Björn
During recent years great attention has been paid to outsourcing as well as to the reverse, insourcing (Dibbern et al., 2004). There has been a strong focus on how the management of software applications and information and communication technology (ICT), expressed as ICT management versus ICT governance, should be carried out (Grembergen, 2004). The maintenance and operation of software applications and ICT use a lot of the resources spent on ICT in organizations today (Bearingpoint, 2004), and managers are asked to increase the business benefits of these investments (Weill & Ross, 2004). That is, they are asked to improve the usage of ICT and to develop new business critical solutions supported by ICT. It also means that investments in ICT and software applications need to be shown to be worthwhile. Basically there are two considerations to take into account with ICT usage: cost reduction and improving business value. How the governance and management of ICT and software applications are organized is important. This means that the improvement of the control of maintenance and operation may be of interest to executives of organizations. It can be stated that usage is dependent on how it is organized. So, if an increase of ICT governance is the same as having well-organized ICT resources, could this be seen as the first step in organizations striving for external provision of ICT? This question is dealt with to some degree in this paper.
Comments on the 1950s applications and extensions of Skinner's operant psychology
Morris, Edward K.
2003-01-01
These comments address Laties', Dewsbury's, and Rutherford's papers on the extension and application of Skinner's operant psychology during the 1950s. I begin by reflecting on the papers' overall theme—that the success of behavior analysis lies in its practical applications—and add some comments on Planck's principle. I then turn to the three papers and address such topics as (a) other applications and extensions (e.g., the U.S. space program), (b) relations between the research and researchers at the Yerkes Laboratories of Primate Biology (e.g., a Yerkes' researcher in Skinner's laboratory), and (c) human schedule performance (e.g., continuity and discontinuity with nonhuman behavior). I end with a discussion of the fundamental reason for the success of the extensions and applications of behavior analysis—the experimental analysis of behavior. PMID:22478408
Janwan, Penchom; Intapan, Pewpan M.; Yamasaki, Hiroshi; Laummaunwai, Porntip; Sawanyawisuth, Kittisak; Wongkham, Chaisiri; Tayapiwatana, Chatchai; Kitkhuandee, Amnat; Lulitanond, Viraphong; Nawa, Yukifumi; Maleewong, Wanchai
2013-01-01
Matrix metalloproteinase (MMPs) is the extracellular zinc-dependent endopeptidase and is secreted for degrading extracellular matrix molecules of host tissues. A cDNA encoding MMP-like protein of Gnathostoma spinigerum larvae was amplified by reverse transcription-polymerase chain reaction, and was cloned into a prokaryotic expression vector, and expressed in Escherichia coli. Total immunoglobulin G class (total IgG) antibody responses to the recombinant MMP-like protein were analyzed by immunoblot diagnosis of human gnathostomiasis. Serum samples from proven and clinically suspected cases of gnathostomiasis, other parasitic diseases patients, and from healthy volunteers were tested. The immunoblotting gave high sensitivity (100%) and specificity (94.7%). Positive and negative predictive values were 85.4% and 100%, respectively. Recombinant MMP-like protein can be used as a diagnostic antigen and potentially replace native parasite antigens to develop a gnathostomiasis diagnostic kit. PMID:23716413
Marc, J.L.; Granier, W.; Pradel, A.; Ribes, M.; Richard, T.; Allegre, J.; Lefebvre, P.
1994-12-31
A new route for preparing CdX (X = S, Se, Te, S+Se) nanocrystallites dispersed in a sodium borosilicate glass matrix from a hydrogel is proposed. Chalcogenizing complexing molecules -- for instance a mixture of NH{sub 4}SCN + H{sub 2}SeO{sub 3} -- introduced in the starting solution allowed an in situ crystallite preparation concomitant to gel densification. Prevention of crystallite oxidation is thus obtained. Moreover, coalescence is minimized because of the low gel-glass transition temperature. Low temperature absorption spectra have been interpreted in terms of exciton and electron-hole confinements, accounting for both an intrinsic broadening of energy states inside each nanocrystal and a Gaussian size distribution. Crystallite sizes and size dispersion can be adjusted by changing the initial Cd concentration. The crystallinity of the nanoparticles without change in dispersion is strongly improved by thermal treatment above the T{sub g} of the glass matrix.
NASA Astrophysics Data System (ADS)
Zhou, Feng-xi
2016-02-01
The method of the reverberation-ray matrix has been developed and successfully applied to analyse the wave propagation in a multibranched framed structure or in a layered medium. However, the method is confined to the case of mechanical loads applied at the medium until now. This paper aims to extend the formulation of the reverberation-ray matrix to cases of thermal propagation and diffusion. The thermal response in functionally graded materials (FGM) with the non-Fourier heat conduction model is analysed. In the present work, it is assumed that the material properties of an FG plate vary only in the thickness direction by following the power law function. The effect of non-Fourier and material inhomogeneity in the plate subjected to a periodic thermal disturbance is investigated. The present approach is validated by comparing it with the solutions obtained by other methods.
Zhang, Zhongzhi; Lin, Yuan; Guo, Xiaoye
2015-06-01
The eigenvalues of the transition matrix for random walks on a network play a significant role in the structural and dynamical aspects of the network. Nevertheless, it is still not well understood how the eigenvalues behave in small-world and scale-free networks, which describe a large variety of real systems. In this paper, we study the eigenvalues for the transition matrix of a network that is simultaneously scale-free, small-world, and clustered. We derive explicit simple expressions for all eigenvalues and their multiplicities, with the spectral density exhibiting a power-law form. We then apply the obtained eigenvalues to determine the mixing time and random target access time for random walks, both of which exhibit unusual behaviors compared with those for other networks, signaling discernible effects of topologies on spectral features. Finally, we use the eigenvalues to count spanning trees in the network.
NASA Astrophysics Data System (ADS)
Zhang, Zhongzhi; Lin, Yuan; Guo, Xiaoye
2015-06-01
The eigenvalues of the transition matrix for random walks on a network play a significant role in the structural and dynamical aspects of the network. Nevertheless, it is still not well understood how the eigenvalues behave in small-world and scale-free networks, which describe a large variety of real systems. In this paper, we study the eigenvalues for the transition matrix of a network that is simultaneously scale-free, small-world, and clustered. We derive explicit simple expressions for all eigenvalues and their multiplicities, with the spectral density exhibiting a power-law form. We then apply the obtained eigenvalues to determine the mixing time and random target access time for random walks, both of which exhibit unusual behaviors compared with those for other networks, signaling discernible effects of topologies on spectral features. Finally, we use the eigenvalues to count spanning trees in the network.
Application of Medical Intelligence Prep of the Environment: A Review of Operational Vignettes.
Caci, Jennifer B
2015-01-01
Medical intelligence is an underused or sometimes misapplied tool in the protection of our Soldiers and the execution of nonkinetic operations. The somewhat improved infrastructure of the operational environment in Iraq and Afghanistan led to an inevitable sense of complacency in regard to the threat of disease nonbattle injury (DNBI). The picture changed somewhat in 2010 with the advent of the village stability program and the establishment of SOF camps in austere locations with degraded living situations rife with exposure risks. In addition, the increasing deployments to unstable locations around the globe, reminiscent of typical Special Operations Forces (SOF) missions before the Global War on Terrorism, indicate a need for better preparation for deployment from the standpoint of disease risk and force health protection. A knowledge gap has developed because we simply did not need to apply as stringent an evaluation of DNBI risk in environments where improved life support mitigated the risk for us. The tools necessary to decrease or even eliminate the impact of DNBI exist but they must be shared and implemented. This article will present four vignettes from current and former SOF Force Health Protection personnel starting with a simple method of executing Medical Intelligence Prep of the Environment (MIPOE) and highlighting situations in which it either was or could have been implemented to mitigate risk and decrease the impact on mission accomplishment and individual operators. A follow-on article will present vignettes of the successful application of MIPOE to nonkinetic operations.
Application of Medical Intelligence Prep of the Environment: A Review of Operational Vignettes.
Caci, Jennifer B
2015-01-01
Medical intelligence is an underused or sometimes misapplied tool in the protection of our Soldiers and the execution of nonkinetic operations. The somewhat improved infrastructure of the operational environment in Iraq and Afghanistan led to an inevitable sense of complacency in regard to the threat of disease nonbattle injury (DNBI). The picture changed somewhat in 2010 with the advent of the village stability program and the establishment of SOF camps in austere locations with degraded living situations rife with exposure risks. In addition, the increasing deployments to unstable locations around the globe, reminiscent of typical Special Operations Forces (SOF) missions before the Global War on Terrorism, indicate a need for better preparation for deployment from the standpoint of disease risk and force health protection. A knowledge gap has developed because we simply did not need to apply as stringent an evaluation of DNBI risk in environments where improved life support mitigated the risk for us. The tools necessary to decrease or even eliminate the impact of DNBI exist but they must be shared and implemented. This article will present four vignettes from current and former SOF Force Health Protection personnel starting with a simple method of executing Medical Intelligence Prep of the Environment (MIPOE) and highlighting situations in which it either was or could have been implemented to mitigate risk and decrease the impact on mission accomplishment and individual operators. A follow-on article will present vignettes of the successful application of MIPOE to nonkinetic operations. PMID:26630107
NASA Astrophysics Data System (ADS)
Ajeti, Visar
The extracellular matrix plays a crucial role in tissue development, differentiation and homeostasis by providing the necessary biophysical and biochemical cues for the cells. In tumors, the composition and the structure of the microenvironment is thought to be manipulated by the cancers cells to support proliferative growth and enhanced migration as means of facilitated metastasis. Current in vitro tools to address these mechanistic events in tumor progression are lacking in part due to the difficulty in recapitulating the complexity of the composition and nanoarchitecture of the tumor microenvironment. In this thesis, we explore the feasibility of multiphoton-excited photochemistry as a fabrication tool for generating in vitro scaffolds that are highly repeatable, biologically relevant and relatively affordable in a research setting. The power of this technique lays in the capabilities of crosslinking whole extracellular matrix proteins in three dimensions (3D) to recreate key topographical features of the tissue with sub-micron resolution and high fidelity. The technological developments we present here enable direct translation of matrix topographies by using the high resolution image data of the tissue samples as a fabrication template. To this effect, we have applied the fabrication technique to generate gradients of crosslinked proteins as means of studying the role of haptotaxis in ovarian and breast cancers. Our findings show that cancer cells modulate their migration velocity and persistence in response to the changes in the composition of the extracellular matrix. In addition, we have examined structural features of the stroma in relation to cancer migration dynamics. We find that by recreating highly aligned nanoarchitectural features prevalent in cancer stroma, we see permissive and enhanced cell migration with cell morphologies similar to in vivo. We believe multiphoton fabrication to be an enabling tool in the next generation of tissue scaffolding
Code of Federal Regulations, 2014 CFR
2014-04-01
... this chapter to commodity pool operators and commodity trading advisors. 5.4 Section 5.4 Commodity and... Applicability of part 4 of this chapter to commodity pool operators and commodity trading advisors. Part 4 of... commodity pool operator or as a commodity trading advisor. Failure by any such person to comply with...
Code of Federal Regulations, 2011 CFR
2011-04-01
... this chapter to commodity pool operators and commodity trading advisors. 5.4 Section 5.4 Commodity and... Applicability of part 4 of this chapter to commodity pool operators and commodity trading advisors. Part 4 of... commodity pool operator or as a commodity trading advisor. Failure by any such person to comply with...
Code of Federal Regulations, 2013 CFR
2013-04-01
... this chapter to commodity pool operators and commodity trading advisors. 5.4 Section 5.4 Commodity and... Applicability of part 4 of this chapter to commodity pool operators and commodity trading advisors. Part 4 of... commodity pool operator or as a commodity trading advisor. Failure by any such person to comply with...
Code of Federal Regulations, 2012 CFR
2012-04-01
... this chapter to commodity pool operators and commodity trading advisors. 5.4 Section 5.4 Commodity and... Applicability of part 4 of this chapter to commodity pool operators and commodity trading advisors. Part 4 of... commodity pool operator or as a commodity trading advisor. Failure by any such person to comply with...
Code of Federal Regulations, 2011 CFR
2011-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control...
Code of Federal Regulations, 2012 CFR
2012-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control...
Code of Federal Regulations, 2010 CFR
2010-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control...
Code of Federal Regulations, 2013 CFR
2013-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control...