Mars mission science operations facilities design
NASA Technical Reports Server (NTRS)
Norris, Jeffrey S.; Wales, Roxana; Powell, Mark W.; Backes, Paul G.; Steinke, Robert C.
2002-01-01
A variety of designs for Mars rover and lander science operations centers are discussed in this paper, beginning with a brief description of the Pathfinder science operations facility and its strengths and limitations. Particular attention is then paid to lessons learned in the design and use of operations facilities for a series of mission-like field tests of the FIDO prototype Mars rover. These lessons are then applied to a proposed science operations facilities design for the 2003 Mars Exploration Rover (MER) mission. Issues discussed include equipment selection, facilities layout, collaborative interfaces, scalability, and dual-purpose environments. The paper concludes with a discussion of advanced concepts for future mission operations centers, including collaborative immersive interfaces and distributed operations. This paper's intended audience includes operations facility and situation room designers and the users of these environments.
Designing Facilities for Collaborative Operations
NASA Technical Reports Server (NTRS)
Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana
2003-01-01
A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized; at worst, operational performance would deteriorate. Elements of this methodology were applied to the design of three operations facilities for a series of rover field tests. These tests were observed by human-factors researchers and their conclusions are being used to refine and extend the methodology to be used in the final design of the MER operations facility. Further work is underway to evaluate the use of personal digital assistant (PDA) units as portable input interfaces and communication devices in future mission operations facilities. A PDA equipped for wireless communication and Ethernet, Bluetooth, or another networking technology would cost less than a complete computer system, and would enable a collaborator to communicate electronically with computers and with other collaborators while moving freely within the virtual environment created by a shared immersive graphical display.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Exhibit G—Flow diagrams showing daily design capacity and reflecting operation with and without proposed facilities added. A flow diagram showing daily design capacity and reflecting operating conditions with only existing facilities in operation. A second flow diagram showing daily design capacity and reflecting...
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Exhibit G—Flow diagrams showing daily design capacity and reflecting operation with and without proposed facilities added. A flow diagram showing daily design capacity and reflecting operating conditions with only existing facilities in operation. A second flow diagram showing daily design capacity and reflecting...
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Exhibit G—Flow diagrams showing daily design capacity and reflecting operation with and without proposed facilities added. A flow diagram showing daily design capacity and reflecting operating conditions with only existing facilities in operation. A second flow diagram showing daily design capacity and reflecting...
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Exhibit G—Flow diagrams showing daily design capacity and reflecting operation with and without proposed facilities added. A flow diagram showing daily design capacity and reflecting operating conditions with only existing facilities in operation. A second flow diagram showing daily design capacity and reflecting...
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Exhibit G—Flow diagrams showing daily design capacity and reflecting operation with and without proposed facilities added. A flow diagram showing daily design capacity and reflecting operating conditions with only existing facilities in operation. A second flow diagram showing daily design capacity and reflecting...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoesen, S.D.; Bolinsky, J.
1989-08-02
The Martin Marietta Energy Systems, Inc., Team, consisting of representatives of the Engineering Division and Oak Ridge National Laboratory (ORNL), participated in a technology exchange program on French and US low-level radioactive waste (LLW) management facility design, construction, and operation. Meetings were held at the Agence National pour la Gestion des Dechets Radioactif (ANDRA) offices in Paris to review the designs for the new French LLW disposal facility, the Cente de Stockage de l'Aube (CSA), and the new ORNL LLW disposal project, the Interim Waste Management Facility (IWMF), and the results of the French LLW disposal facility cover experiment atmore » St. Sauveur. Visits were made to the operating LLW disposal facility, the Centre de Stockage de la Manche (CSM), the LLW conditioning facilities at the La Hague Reprocessing Facility, and the St. Saueveur Disposal Cap Experiment to discuss design, construction, and operating experience. A visit was also made to the CSA site to view the progress made in construction of the new facility.« less
Development of Army Facility Functionality Assessment Criteria and Procedures
2010-09-01
critical facility types: the Tactical Equipment Main- tenance Facility (TEMF), the Company Operations Facility (COF), the Bat- talion Headquarters...Criteria for Company Operations Facilities (COF) ................ 56 Appendix G: Army Standard Design Criteria for Tactical Equipment Maintenance...1 mission-critical facility types: the Tactical Equipment Mainten- ance Facility (TEMF), the Company Operations Facility (COF), the Batta- lion
Lunar base launch and landing facility conceptual design, 2nd edition
NASA Technical Reports Server (NTRS)
1988-01-01
This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.
Code of Federal Regulations, 2010 CFR
2010-01-01
... geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository Operations Area § 60.132 Additional design criteria for surface facilities in...
Spent nuclear fuel project cold vacuum drying facility operations manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
IRWIN, J.J.
This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of themore » CVDF until the CVDF final ORR is approved.« less
Code of Federal Regulations, 2011 CFR
2011-04-01
... showing daily design capacity and reflecting operation with proposed transmission facilities. A flow diagram showing daily design capacity of all transmission facilities proposed to be installed and operated... engineering design data in explanation and support of the diagrams and the proposed project, setting forth: (i...
Code of Federal Regulations, 2012 CFR
2012-04-01
... showing daily design capacity and reflecting operation with proposed transmission facilities. A flow diagram showing daily design capacity of all transmission facilities proposed to be installed and operated... engineering design data in explanation and support of the diagrams and the proposed project, setting forth: (i...
Code of Federal Regulations, 2010 CFR
2010-04-01
... showing daily design capacity and reflecting operation with proposed transmission facilities. A flow diagram showing daily design capacity of all transmission facilities proposed to be installed and operated... engineering design data in explanation and support of the diagrams and the proposed project, setting forth: (i...
Code of Federal Regulations, 2014 CFR
2014-04-01
... showing daily design capacity and reflecting operation with proposed transmission facilities. A flow diagram showing daily design capacity of all transmission facilities proposed to be installed and operated... engineering design data in explanation and support of the diagrams and the proposed project, setting forth: (i...
Code of Federal Regulations, 2013 CFR
2013-04-01
... showing daily design capacity and reflecting operation with proposed transmission facilities. A flow diagram showing daily design capacity of all transmission facilities proposed to be installed and operated... engineering design data in explanation and support of the diagrams and the proposed project, setting forth: (i...
40 CFR 264.1 - Purpose, scope and applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... owner/operator must design, construct, operate, and maintain a unit within a 100-year floodplain to... procedures must address proper design, construction, maintenance, and operation of remediation waste..., the location of all records within the facility, and the facility layout. In addition, this person...
40 CFR 264.1 - Purpose, scope and applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... owner/operator must design, construct, operate, and maintain a unit within a 100-year floodplain to... procedures must address proper design, construction, maintenance, and operation of remediation waste..., the location of all records within the facility, and the facility layout. In addition, this person...
40 CFR 264.1 - Purpose, scope and applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... owner/operator must design, construct, operate, and maintain a unit within a 100-year floodplain to... procedures must address proper design, construction, maintenance, and operation of remediation waste..., the location of all records within the facility, and the facility layout. In addition, this person...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schanfein, Mark J.; Mladineo, Stephen V.
2015-07-07
Over the last few years, significant attention has been paid to both encourage application and provide domestic and international guidance for designing in safeguards and security in new facilities.1,2,3 However, once a facility is operational, safeguards, security, and safety often operate as separate entities that support facility operations. This separation is potentially a serious weakness should insider or outsider threats become a reality.Situations may arise where safeguards detects a possible loss of material in a facility. Will they notify security so they can, for example, check perimeter doors for tampering? Not doing so might give the advantage to an insidermore » who has already, or is about to, move nuclear material outside the facility building. If outsiders break into a facility, the availability of any information to coordinate the facility’s response through segregated alarm stations or a failure to include all available radiation sensors, such as safety’s criticality monitors can give the advantage to the adversary who might know to disable camera systems, but would most likely be unaware of other highly relevant sensors in a nuclear facility.This paper will briefly explore operational safeguards, safety, and security by design (3S) at a high level for domestic and State facilities, identify possible weaknesses, and propose future administrative and technical methods, to strengthen the facility system’s response to threats.« less
Description and Operation of the A3 Subscale Facility
NASA Technical Reports Server (NTRS)
Saunders, G. P.; Varner, D. G.; Grover, J. B.
2010-01-01
The purpose of this paper is to give an overview of the general design and operation of the A3 Subscale test facility. The goal is to provide the reader with a general understanding of what the major facility systems are, where they are located, and how they are used to meet the objectives supporting the design of the A3 altitude rocket test facility. This paper also provides the reader with the background information prior to reading the subsequent papers detailing the design and test results of the various systems described herein.
Operator Interface for the ALMA Observing System
NASA Astrophysics Data System (ADS)
Grosbøl, P.; Schilling, M.
2009-09-01
The Atacama Large Millimeter/submillimeter Array (ALMA) is a major new ground-based radio-astronomical facility being constructed in Chile in an international collaboration between Europe, Japan and North America in cooperation with the Republic of Chile. The facility will include 54 12m and 12 7m antennas at the Altiplano de Chajnantor and be operated from the Operations Support Facilities (OSF) near San Pedro. This paper describes design and baseline implementation of the Graphical User Interface (GUI) used by operators to monitor and control the observing facility. It is written in Java and provides a simple plug-in interface which allows different subsystems to add their own panels to the GUI. The design is based on a client/server concept and supports multiple operators to share or monitor operations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... facilities by removing the designation of the Monsanto Chemical Company in Dayton, Ohio, and the United Lead... facilities by removing the designation of the Monsanto Chemical Company in Dayton, Ohio, and the United Lead... Company was the operator. A second facility operated by the Monsanto Chemical Company in Dayton, Ohio, was...
Design philosophy and operating experience with the WNRE Hot Cell Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, R.G.; Seymour, C.G.; Ryz, M.A.
1969-10-15
The objective of radiation safety and operating efficiency often conflict. The key to preventing this conflict is proper design. In this paper we discuss how both objectives have been met in the Whiteshell Nuclear Research Establishment (WNRE) Hot Cell Facilities.
ERIC Educational Resources Information Center
Stoakes, K. C.; And Others
This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…
ERIC Educational Resources Information Center
Stoakes, K. C.; And Others
This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…
ERIC Educational Resources Information Center
Stoakes, K. C.; And Others
This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…
ERIC Educational Resources Information Center
Stoakes, K. C.; And Others
This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…
ERIC Educational Resources Information Center
Stoakes, K. C.; And Others
This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…
Operation and Maintenance of Water Pollution Control Facilities: A WPCF White Paper.
ERIC Educational Resources Information Center
Hill, William R.; And Others
1979-01-01
Presented are the recommendations of the Water Pollution Control Federation for operation and maintenance consideration during the planning design, construction, and operation of wastewater treatment facilities. (CS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1968-12-12
The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.
Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard
2007-01-01
A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.
Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, L. B.; Kolb, J. O.
1970-01-01
Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.
Implications of system usability on intermodal facility design.
DOT National Transportation Integrated Search
2010-08-01
Ensuring good design of intermodal transportation facilities is critical for effective and : satisfactory operation. Passenger use of the facilities is often hindered by inadequate space, a poor : layout, or lack of signage. This project aims to impr...
Healthy Swimming/Recreational Water
... the Pool Raccoons & Pools Birds & Pools Aquatics Professionals Design & Construction Designing Public Swimming Facilities Historic CDC Design & Operation Manuals Operation & Maintenance 12 Steps for Prevention ...
DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.
1979-07-13
A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using airmore » or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.« less
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Design and operation of facility. 264.31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
Design, construction and operation features of high-rise structures
NASA Astrophysics Data System (ADS)
Mylnik, Alexey; Mylnik, Vladimir; Zubeeva, Elena; Mukhamedzhanova, Olga
2018-03-01
The article considers design, construction and operation features of high-rise facilities. The analysis of various situations, that come from improper designing, construction and operation of unique facilities, is carried out. The integrated approach is suggested, when the problems of choosing acceptable constructional solutions related to the functional purpose, architectural solutions, methods of manufacturing and installation, operating conditions for unique buildings and structures are being tackled. A number of main causes for the emergency destruction of objects under construction and operation is considered. A number of measures are proposed on the basis of factor classification in order to efficiently prevent the situations, when various negative options of design loads and emergency impacts occur.
SNL/CA Facilities Management Design Standards Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabb, David; Clark, Eva
2014-12-01
At Sandia National Laboratories in California (SNL/CA), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/CA applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. The safetymore » and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule.« less
Facility design, construction, and operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
France has been disposing of low-level radioactive waste (LLW) at the Centre de Stockage de la Manche (CSM) since 1969 and now at the Centre de Stockage de l`Aube (CSA) since 1992. In France, several agencies and companies are involved in the development and implementation of LLW technology. The Commissariat a l`Energie Atomic (CEA), is responsible for research and development of new technologies. The Agence National pour la Gestion des Dechets Radioactifs is the agency responsible for the construction and operation of disposal facilities and for wastes acceptance for these facilities. Compagnie Generale des Matieres Nucleaires provides fuel services, includingmore » uranium enrichment, fuel fabrication, and fuel reprocessing, and is thus one generator of LLW. Societe pour les Techniques Nouvelles is an engineering company responsible for commercializing CEA waste management technology and for engineering and design support for the facilities. Numatec, Inc. is a US company representing these French companies and agencies in the US. In Task 1.1 of Numatec`s contract with Martin Marietta Energy Systems, Numatec provides details on the design, construction and operation of the LLW disposal facilities at CSM and CSA. Lessons learned from operation of CSM and incorporated into the design, construction and operating procedures at CSA are identified and discussed. The process used by the French for identification, selection, and evaluation of disposal technologies is provided. Specifically, the decisionmaking process resulting in the change in disposal facility design for the CSA versus the CSM is discussed. This report provides` all of the basic information in these areas and reflects actual experience to date.« less
Health Benefits of Water-based Exercise
... the Pool Raccoons & Pools Birds & Pools Aquatics Professionals Design & Construction Designing Public Swimming Facilities Historic CDC Design & Operation Manuals Operation & Maintenance 12 Steps for Prevention ...
34 CFR 395.31 - Acquisition and occupation of Federal property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... design for such construction, substantial alteration, or renovation includes a satisfactory site or sites for the location and operation of a vending facility by a blind vendor. In those cases where a design... facility to be operated by a blind vendor prior to the completion of the final space layout of the building...
34 CFR 395.31 - Acquisition and occupation of Federal property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... design for such construction, substantial alteration, or renovation includes a satisfactory site or sites for the location and operation of a vending facility by a blind vendor. In those cases where a design... facility to be operated by a blind vendor prior to the completion of the final space layout of the building...
34 CFR 395.31 - Acquisition and occupation of Federal property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... design for such construction, substantial alteration, or renovation includes a satisfactory site or sites for the location and operation of a vending facility by a blind vendor. In those cases where a design... facility to be operated by a blind vendor prior to the completion of the final space layout of the building...
34 CFR 395.31 - Acquisition and occupation of Federal property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... design for such construction, substantial alteration, or renovation includes a satisfactory site or sites for the location and operation of a vending facility by a blind vendor. In those cases where a design... facility to be operated by a blind vendor prior to the completion of the final space layout of the building...
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...
Lunar launch and landing facilities and operations
NASA Technical Reports Server (NTRS)
1987-01-01
The Florida Institute of Technology established an Interdisciplinary Design Team to design a lunar based facility whose primary function involves launch and landing operations for future moon missions. Both manned and unmanned flight operations were considered in the study with particular design emphasis on the utilization (or reutilization) of all materials available on the moon. This resource availability includes man-made materials which might arrive in the form of expendable landing vehicles as well as in situ lunar minerals. From an engineering standpoint, all such materials are considered as to their suitability for constructing new lunar facilities and/or repairing or expanding existing structures. Also considered in this design study was a determination of the feasibility of using naturally occurring lunar materials to provide fuel components to support lunar launch operations. Conventional launch and landing operations similar to those used during the Apollo Program were investigated as well as less conventional techniques such as rail guns and electromagnetic mass drivers. The Advanced Space Design team consisted of students majoring in Physics and Space Science as well as Electrical, Mechanical, Chemical and Ocean Engineering.
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.
Design data package and operating procedures for MSFC solar simulator test facility
NASA Technical Reports Server (NTRS)
1981-01-01
Design and operational data for the solar simulator test facility are reviewed. The primary goal of the facility is to evaluate the performance capacibility and worst case failure modes of collectors, which utilize either air or liquid transport media. The facility simulates environmental parameters such as solar radiation intensity, solar spectrum, collimation, uniformity, and solar attitude. The facility also simulates wind conditions of velocity and direction, solar system conditions imposed on the collector, collector fluid inlet temperature, and geometric factors of collector tilt and azimuth angles. Testing the simulator provides collector efficiency data, collector time constant, incident angle modifier data, and stagnation temperature values.
Electromagnetic propulsion test facility
NASA Technical Reports Server (NTRS)
Gooder, S. T.
1984-01-01
A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
A Facilities Manager's Guide to Green Building Design.
ERIC Educational Resources Information Center
Simpson, Walter
2001-01-01
Explains how the "green building" approach to educational facilities design creates healthy, naturally lit, attractive buildings with lower operating and life cycle costs. Tips on getting started on a green design and overcoming the barriers to the green design concept are discussed. (GR)
JSC Metal Finishing Waste Minimization Methods
NASA Technical Reports Server (NTRS)
Sullivan, Erica
2003-01-01
THe paper discusses the following: Johnson Space Center (JSC) has achieved VPP Star status and is ISO 9001 compliant. The Structural Engineering Division in the Engineering Directorate is responsible for operating the metal finishing facility at JSC. The Engineering Directorate is responsible for $71.4 million of space flight hardware design, fabrication and testing. The JSC Metal Finishing Facility processes flight hardware to support the programs in particular schedule and mission critical flight hardware. The JSC Metal Finishing Facility is operated by Rothe Joint Venture. The Facility provides following processes: anodizing, alodining, passivation, and pickling. JSC Metal Finishing Facility completely rebuilt in 1998. Total cost of $366,000. All new tanks, electrical, plumbing, and ventilation installed. Designed to meet modern safety, environmental, and quality requirements. Designed to minimize contamination and provide the highest quality finishes.
Understanding facilities design parameters for a remanufacturing system
NASA Astrophysics Data System (ADS)
Topcu, Aysegul; Cullinane, Thomas
2005-11-01
Remanufacturing is rapidly becoming a very important element in the economies of the world. Products such as washing machines, clothes driers, automobile parts, cell phones and a wide range of consumer durable goods are being reclaimed and sent through processes that restore these products to levels of operating performance that are as good or better than their new product performance. The operations involved in the remanufacturing process add several new dimensions to the work that must be performed. Disassembly is an operation that rarely appears on the operations chart of a typical production facility. The inspection and test functions in remanufacturing most often involve several more tasks than those involved in the first time manufacturing cycle. A close evaluation of most any remanufacturing operation reveals several points in the process in which parts must be cleaned, tested and stored. Although several researchers have focused their work on optimizing the disassembly function and the inspection, test and store functions, very little research has been devoted to studying the impact of the facilities design on the effectiveness of the remanufacturing process. The purpose of this paper will be to delineate the differences between first time manufacturing operations and remanufacturing operations for durable goods and to identify the features of the facilities design that must be considered if the remanufacturing operations are to be effective.
Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina
2009-01-01
The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2014-01-01 2014-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2012 CFR
2012-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2012-01-01 2012-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2013 CFR
2013-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2013-01-01 2013-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2011 CFR
2011-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2011-01-01 2011-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
DOT National Transportation Integrated Search
1999-12-01
This project assessed the feasibility of high-occupancy vehicle (HOV) and high-occupancy vehicle/toll (HOT) facilities. In the first report of this project, current operational facilities were described and guidelines for the operation, design, agenc...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., architectural, legal, fiscal, or economic investigations or studies, surveys, designs, plans, working drawings... such works were designed and constructed. The term operation and maintenance includes replacement...” fittings designed for connection with those facilities. The facilities which convey waste water from...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., architectural, legal, fiscal, or economic investigations or studies, surveys, designs, plans, working drawings... such works were designed and constructed. The term operation and maintenance includes replacement...” fittings designed for connection with those facilities. The facilities which convey waste water from...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., architectural, legal, fiscal, or economic investigations or studies, surveys, designs, plans, working drawings... such works were designed and constructed. The term operation and maintenance includes replacement...” fittings designed for connection with those facilities. The facilities which convey waste water from...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., architectural, legal, fiscal, or economic investigations or studies, surveys, designs, plans, working drawings... such works were designed and constructed. The term operation and maintenance includes replacement...” fittings designed for connection with those facilities. The facilities which convey waste water from...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., architectural, legal, fiscal, or economic investigations or studies, surveys, designs, plans, working drawings... such works were designed and constructed. The term operation and maintenance includes replacement...” fittings designed for connection with those facilities. The facilities which convey waste water from...
40 CFR 265.254 - Design and operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and operating requirements. 265.254 Section 265.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each...
Yun, Lifen; Wang, Xifu; Fan, Hongqiang; Li, Xiaopeng
2017-01-01
This paper proposes a reliable facility location design model under imperfect information with site-dependent disruptions; i.e., each facility is subject to a unique disruption probability that varies across the space. In the imperfect information contexts, customers adopt a realistic “trial-and-error” strategy to visit facilities; i.e., they visit a number of pre-assigned facilities sequentially until they arrive at the first operational facility or give up looking for the service. This proposed model aims to balance initial facility investment and expected long-term operational cost by finding the optimal facility locations. A nonlinear integer programming model is proposed to describe this problem. We apply a linearization technique to reduce the difficulty of solving the proposed model. A number of problem instances are studied to illustrate the performance of the proposed model. The results indicate that our proposed model can reveal a number of interesting insights into the facility location design with site-dependent disruptions, including the benefit of backup facilities and system robustness against variation of the loss-of-service penalty. PMID:28486564
An Artificial-Gravity Space-Settlement Ground-Analogue Design Concept
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.
2016-01-01
The design concept of a modular and extensible hypergravity facility is presented. Several benefits of this facility are described including that the facility is suitable as a full-scale artificial-gravity space-settlement ground analogue for humans, animals, and plants for indefinite durations. The design is applicable as an analogue for on-orbit settlements as well as those on moons, asteroids, and Mars. The design creates an extremely long-arm centrifuge using a multi-car hypergravity vehicle travelling on one or more concentric circular tracks. This design supports the simultaneous generation of multiple-gravity levels to explore the feasibility and value of and requirements for such space-settlement designs. The design synergizes a variety of existing technologies including centrifuges, tilting trains, roller coasters, and optionally magnetic levitation. The design can be incrementally implemented such that the facility can be operational for a small fraction of the cost and time required for a full implementation. Brief concept of operation examples are also presented.
Low thrust rocket test facility
NASA Technical Reports Server (NTRS)
Arrington, Lynn A.; Schneider, Steven J.
1990-01-01
A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.
Network Performance Evaluation Model for assessing the impacts of high-occupancy vehicle facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janson, B.N.; Zozaya-Gorostiza, C.; Southworth, F.
1986-09-01
A model to assess the impacts of major high-occupancy vehicle (HOV) facilities on regional levels of energy consumption and vehicle air pollution emissions in urban aeas is developed and applied. This model can be used to forecast and compare the impacts of alternative HOV facility design and operation plans on traffic patterns, travel costs, model choice, travel demand, energy consumption and vehicle emissions. The model is designed to show differences in the overall impacts of alternative HOV facility types, locations and operation plans rather than to serve as a tool for detailed engineering design and traffic planning studies. The Networkmore » Performance Evaluation Model (NETPEM) combines several urban transportation planning models within a multi-modal network equilibrium framework including modules with which to define the type, location and use policy of the HOV facility to be tested, and to assess the impacts of this facility.« less
Technical and design update in the AUBE French low-level radioactive waste disposal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marque, Y.
1989-01-01
Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less
DOE LeRC photovoltaic systems test facility
NASA Technical Reports Server (NTRS)
Cull, R. C.; Forestieri, A. F.
1978-01-01
The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.
Defining Special-Use Lanes: Case Studies and Guidelines
DOT National Transportation Integrated Search
2000-10-01
This research assesses the feasibility of high-occupancy vehicle (HOV)and high-occupancy vehicle/toll (HOT) facilities. In this report, current operational facilities are described and guidelines for the operation, design, agency involvement, and mon...
Waste Handeling Building Conceptual Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.W. Rowe
2000-11-06
The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable,more » and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.« less
NASA Technical Reports Server (NTRS)
Morse, S. F.; Roper, A. T.
1975-01-01
The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.
Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy
2013-07-01
Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.
2010-10-14
Water regarding potential sources of t practices to ensure drinking water source protection. u ity design and operating standards would be based...center would not be constructed, and adequate facilities would not be provided. The existing facility would operate as it currently exists...would be properly handled during the construction process. Operational activities would generate the same types of waste as the existing facility
28 CFR 91.3 - General eligibility requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...
28 CFR 91.3 - General eligibility requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...
28 CFR 91.3 - General eligibility requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...
28 CFR 91.3 - General eligibility requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...
28 CFR 91.3 - General eligibility requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...
SP-100 GES/NAT radiation shielding systems design and development testing
NASA Astrophysics Data System (ADS)
Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank
1991-01-01
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.
NASA Technical Reports Server (NTRS)
Macdonald, G.
1983-01-01
A prototype Air Traffic Control facility and multiman flight simulator facility was designed and one of the component simulators fabricated as a proof of concept. The facility was designed to provide a number of independent simple simulator cabs that would have the capability of some local, stand alone processing that would in turn interface with a larger host computer. The system can accommodate up to eight flight simulators (commercially available instrument trainers) which could be operated stand alone if no graphics were required or could operate in a common simulated airspace if connected to the host computer. A proposed addition to the original design is the capability of inputing pilot inputs and quantities displayed on the flight and navigation instruments to the microcomputer when the simulator operates in the stand alone mode to allow independent use of these commercially available instrument trainers for research. The conceptual design of the system and progress made to date on its implementation are described.
Facility Management as Part of an Integrated Design of Civil Engineering Structures
NASA Astrophysics Data System (ADS)
Hyben, Ivan; Podmanický, Peter
2014-11-01
The present article deals about facility management, as still relatively young component of an integrated planning and design of buildings. Attention is focused on the area of the proposal, which can greatly affect to amount of future operating costs. Operational efficiency has been divided into individual components and satisfaction with the solution of buildings already constructed was assessed by workers, who are actually dedicated facility management in these organizations. The results were then assessed and evaluated through regression analysis. The aim of this paper is to determine to what extent is desired update project documentation of new buildings from the perspective of facility management.
The NASA Lewis Research Center Internal Fluid Mechanics Facility
NASA Technical Reports Server (NTRS)
Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.
1991-01-01
An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.
NASA Astrophysics Data System (ADS)
Thompson, W. T.; Stinton, L. H.
1980-04-01
Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.
Health and Safety Management for Small-scale Methane Fermentation Facilities
NASA Astrophysics Data System (ADS)
Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko
In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.
2005-09-01
Facilities Layout o Scope problem with client in terms of options for M&S facilities layouts with regards to infrastructure, personnel... Facilities Layout o Develop M&S Installation Facilities Layout Design(s) Requirements and Milestones: • Scope problem with client (systems on which...objectives of this study are to (a) identify the desired technology and facilities layouts which would enhance inter-installation simulation
Improving Management of Military Construction Planning and Design
1991-10-01
waterfront facilities and operations and its transportation systems, owns and operates JFK Airport . The Port Authority has an extremely capable and...restructured, and many projects are being deferred until the economic picture brightens. Airline user fees are the principal source of income for the JFK ... Airport . This "downsizing" has caused major schedule readjustment and sequencing of designs to ensure compatibility with existing facilities. In managing
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-01-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter. Initial pilot facility shakedown was completed during the fourth quarter. During pilot plant shakedown operations, several production batch test runs were performed. These pilot tests were coupled with laboratory testing to confirm pilot results. In initial batches of operations, cellulose to glucose conversionsmore » of 62.5% and 64.8% were observed in laboratory hydrolysis. As part of this testing, lignin dewatering was tested using laboratory and vendor-supplied filtration equipment. Dewatering tests reported moisture contents in the lignin of between 50% and 60%. Dewatering parameters and options will continue to be investigated during lignin production. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. Shredding of the feed material was completed and final drying of the feed is expected to be completed by late January. Once feed drying is completed, pilot facility production will begin to produce lignin for co-fire testing. Facility modifications are expected to continue to improve facility operations and performance during the first quarter of 2001. The TVA-Colbert facility continues to make progress in evaluating the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system continues.« less
Ames Hybrid Combustion Facility
NASA Technical Reports Server (NTRS)
Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)
2003-01-01
The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.
40 CFR 60.740 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fraction; (3) Web coating operations that print an image on the surface of the substrate or any coating... coating operation and any onsite coating mix preparation equipment used to prepare coatings for the... coatings at one plant for shipment to another plant for use in an affected facility (coating operation) or...
ERIC Educational Resources Information Center
California State Univ., Sacramento. Dept. of Civil Engineering.
Proper installations, inspections, operations, maintenance and repairs of wastewater collection, conveyance and treatment facilities have a significant impact on the operation and maintenance costs, and the effectiveness of these facilities. This manual is the first volume of a two-part program designed to provide wastewater collection system…
NIF ICCS network design and loading analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tietbohl, G; Bryant, R
The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow providemore » operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738).« less
40 CFR 265.254 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
....254 Section 265.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each...
40 CFR 60.634 - Alternative means of emission limitation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... any design, equipment, work practice or operational standard, the Administrator will publish, in the... the design, equipment, work practice or operational standard. ... applications under this section from either owners or operators of affected facilities, or manufacturers of...
Preliminary design for a maglev development facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, H.T.; He, J.L.; Chang, S.L.
1992-04-01
A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable ofmore » powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.« less
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-04-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of municipal solid waste (MSW) feed material was procured. During this quarter (first quarter of 2001), shredding of the feed material was completedmore » and final feed conditioning was completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. Pilot facility modifications continued to improve facility operations and performance during the first quarter of 2001. Samples of the co-fire fuel material were sent to the co-fire facility for evaluation. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system is being developed.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... means testing conducted to verify a simulation facility's performance as compared to actual or predicted... which a simulation facility's control room configuration, system control arrangement, and design data... of a facility and to direct the licensed activities of licensed operators. Simulation facility means...
Code of Federal Regulations, 2012 CFR
2012-01-01
... means testing conducted to verify a simulation facility's performance as compared to actual or predicted... which a simulation facility's control room configuration, system control arrangement, and design data... of a facility and to direct the licensed activities of licensed operators. Simulation facility means...
Code of Federal Regulations, 2011 CFR
2011-01-01
... means testing conducted to verify a simulation facility's performance as compared to actual or predicted... which a simulation facility's control room configuration, system control arrangement, and design data... of a facility and to direct the licensed activities of licensed operators. Simulation facility means...
SP-100 GES/NAT radiation shielding systems design and development testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.
1991-01-10
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less
The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for mun...
NASA Technical Reports Server (NTRS)
Jordan, Lee P.
2013-01-01
The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 14500 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The investigative Payload Integration Manager (iPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of video and biological upgrades.
Lunar base launch and landing facilities conceptual design
NASA Technical Reports Server (NTRS)
Phillips, Paul G.; Simonds, Charles H.; Stump, William R.
1992-01-01
The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.
Integrated exhaust gas analysis system for aircraft turbine engine component testing
NASA Technical Reports Server (NTRS)
Summers, R. L.; Anderson, R. C.
1985-01-01
An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.
The National Ignition Facility: alignment from construction to shot operations
NASA Astrophysics Data System (ADS)
Burkhart, S. C.; Bliss, E.; Di Nicola, P.; Kalantar, D.; Lowe-Webb, R.; McCarville, T.; Nelson, D.; Salmon, T.; Schindler, T.; Villanueva, J.; Wilhelmsen, K.
2010-08-01
The National Ignition Facility in Livermore, California, completed it's commissioning milestone on March 10, 2009 when it fired all 192 beams at a combined energy of 1.1 MJ at 351nm. Subsequently, a target shot series from August through December of 2009 culminated in scale ignition target design experiments up to 1.2 MJ in the National Ignition Campaign. Preparations are underway through the first half of of 2010 leading to DT ignition and gain experiments in the fall of 2010 into 2011. The top level requirement for beam pointing to target of 50μm rms is the culmination of 15 years of engineering design of a stable facility, commissioning of precision alignment, and precise shot operations controls. Key design documents which guided this project were published in the mid 1990's, driving systems designs. Precision Survey methods were used throughout construction, commissioning and operations for precision placement. Rigorous commissioning processes were used to ensure and validate placement and alignment throughout commissioning and in present day operations. Accurate and rapid system alignment during operations is accomplished by an impressive controls system to align and validate alignment readiness, assuring machine safety and productive experiments.
9 CFR 3.1 - Housing facilities, general.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Transportation of Dogs and Cats 1 Facilities and Operating Standards § 3.1 Housing facilities, general. (a) Structure; construction. Housing facilities for dogs and cats must be designed and constructed so that they... apply only to live dogs and cats, unless stated otherwise. (b) Condition and site. Housing facilities...
9 CFR 3.1 - Housing facilities, general.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Transportation of Dogs and Cats 1 Facilities and Operating Standards § 3.1 Housing facilities, general. (a) Structure; construction. Housing facilities for dogs and cats must be designed and constructed so that they... apply only to live dogs and cats, unless stated otherwise. (b) Condition and site. Housing facilities...
Reliability Considerations for the Operation of Large Accelerator User Facilities
Willeke, F. J.
2016-01-29
The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. Finally, the article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.
ERIC Educational Resources Information Center
Long, David A.
Local communities must be willing to spend funds to assure the proper operation and management of wastewater treatment facilities. Designed for citizen advisory groups, the one-hour learning session described in this instructor's manual covers problem areas, federal requirements, and responsibilities for wastewater plant operations and management.…
Code of Federal Regulations, 2013 CFR
2013-04-01
... applicant's existing facilities; (5) A flow diagram or comparative study showing daily design capacity... designed to meet the goal of limiting the perceived noise at NSAs to an Ldn of 55 dBA or what mitigation...
Code of Federal Regulations, 2012 CFR
2012-04-01
... applicant's existing facilities; (5) A flow diagram or comparative study showing daily design capacity... designed to meet the goal of limiting the perceived noise at NSAs to an Ldn of 55 dBA or what mitigation...
Code of Federal Regulations, 2011 CFR
2011-04-01
... applicant's existing facilities; (5) A flow diagram or comparative study showing daily design capacity... designed to meet the goal of limiting the perceived noise at NSAs to an Ldn of 55 dBA or what mitigation...
Code of Federal Regulations, 2010 CFR
2010-04-01
... applicant's existing facilities; (5) A flow diagram or comparative study showing daily design capacity... designed to meet the goal of limiting the perceived noise at NSAs to an Ldn of 55 dBA or what mitigation...
Code of Federal Regulations, 2014 CFR
2014-04-01
... applicant's existing facilities; (5) A flow diagram or comparative study showing daily design capacity... designed to meet the goal of limiting the perceived noise at NSAs to an Ldn of 55 dBA or what mitigation...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
Safety analysis, 200 Area, Savannah River Plant: Separations area operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, W.C.; Lee, R.; Allen, P.M.
1991-07-01
The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutoniummore » Oxide Facility, will convert nitrate solutions of {sup 238}Pu to plutonium oxide (PuO{sub 2}) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.« less
10 CFR 60.130 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository Operations Area § 60.130 General... for a high-level radioactive waste repository at a geologic repository operations area, and an... geologic repository operations area, must include the principal design criteria for a proposed facility...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
Hise, Adam M; Characklis, Gregory W; Kern, Jordan; Gerlach, Robin; Viamajala, Sridhar; Gardner, Robert D; Vadlamani, Agasteswar
2016-11-01
Algal biofuels are becoming more economically competitive due to technological advances and government subsidies offering tax benefits and lower cost financing. These factors are linked, however, as the value of technical advances is affected by modeling assumptions regarding the growth conditions, process design, and financing of the production facility into which novel techniques are incorporated. Two such techniques, related to algal growth and dewatering, are evaluated in representative operating and financing scenarios using an integrated techno-economic model. Results suggest that these techniques can be valuable under specified conditions, but also that investment subsidies influence cost competitive facility design by incentivizing development of more capital intensive facilities (e.g., favoring hydrothermal liquefaction over transesterification-based facilities). Evaluating novel techniques under a variety of operational and financial scenarios highlights the set of site-specific conditions in which technical advances are most valuable, while also demonstrating the influence of subsidies linked to capital intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.
USING A CONTAINMENT VESSEL LIFTING APPARATUS FOR REMOTE OPERATIONS OF SHIPPING PACKAGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loftin, Bradley; Koenig, Richard
2013-08-08
The 9977 and the 9975 shipping packages are used in various nuclear facilities within the Department of Energy. These shipping packages are often loaded in designated areas with designs using overhead cranes or A-frames with lifting winches. However, there are cases where loading operations must be performed in remote locations where these facility infrastructures do not exist. For these locations, a lifting apparatus has been designed to lift the containment vessels partially out of the package for unloading operations to take place. Additionally, the apparatus allows for loading and closure of the containment vessel and subsequent pre-shipment testing. This papermore » will address the design of the apparatus and the challenges associated with the design, and it will describe the use of the apparatus.« less
Man-vehicle systems research facility: Design and operating characteristics
NASA Technical Reports Server (NTRS)
1983-01-01
The Man-Vehicle Systems Research Facility (MVSRF) provides the capability of simulating aircraft (two with full crews), en route and terminal air traffic control and aircrew interactions, and advanced cockpit (1995) display representative of future generations of aircraft, all within the full mission context. The characteristics of this facility derive from research, addressing critical human factors issues that pertain to: (1) information requirements for the utilization and integration of advanced electronic display systems, (2) the interaction and distribution of responsibilities between aircrews and ground controllers, and (3) the automation of aircrew functions. This research has emphasized the need for high fidelity in simulations and for the capability to conduct full mission simulations of relevant aircraft operations. This report briefly describes the MVSRF design and operating characteristics.
Space Habitat, assembly and repair facility
NASA Technical Reports Server (NTRS)
Colangelo, Todd A.; Hoetger, Debora C.; Kuo, Addison C.; Lo, Michael C.; Marcus, Leland R.; Tran, Phillip P.; Tutt, Chris J.; Wassmuth, Chad M.; Wildgrube, Gregory M.
1992-01-01
Integrated Space Systems (ISS) has designed a Low Earth Orbit Assembly Facility for submission in the 1992 AIAA/LORAL Team Space Design Competition. This facility, the Space Habitat, Assembly, and Repair Center (SHARC), will be used to construct, assemble, and service space vehicles. SHARC's primary mission will be the construction of interplanetary vehicles, but it will also be able to perform repair and refueling operations of craft which are in an Earth orbit. This facility has been designed using only present and near-present technology. The emphasis is on minimizing cost.
40 CFR 403.16 - Upset provision.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of... usual exercise of prosecutorial discretion, Agency enforcement personnel should review any claims that...
40 CFR 60.540 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Performance for the Rubber Tire Manufacturing Industry § 60.540 Applicability and designation of affected... each of the following affected facilities in rubber tire manufacturing plants that commence... cementing operation in rubber tire manufacturing plants that commenced construction, modification, or...
Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.
NASA Technical Reports Server (NTRS)
Hinners, A. H., Jr.; Correale, J. V.
1973-01-01
This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.
40 CFR 60.670 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mineral processing plants: each crusher, grinding mill, screening operation, bucket elevator, belt... grinding mills at hot mix asphalt facilities that reduce the size of nonmetallic minerals embedded in... or grinding mills above ground; and wet material processing operations (as defined in § 60.671). (b...
Lin, Jwu-Rong; Chen, Ching-Yu; Peng, Tso-Kwei
2017-09-11
The purpose of this research is to examine the relation between operating efficiency and the quality of care of senior care facilities. We designed a data envelopment analysis, combining epsilon-based measure and metafrontier efficiency analyses to estimate the operating efficiency for senior care facilities, followed by an iterative seemingly unrelated regression to evaluate the relation between the quality of care and operating efficiency. In the empirical studies, Taiwan census data was utilized and findings include the following: Despite the greater operating scale of the general type of senior care facilities, their average metafrontier technical efficiency is inferior to that of nursing homes. We adopted senior care facility accreditation results from Taiwan as a variable to represent the quality of care and examined the relation of accreditation results and operating efficiency. We found that the quality of care of general senior care facilities is negatively related to operating efficiency; however, for nursing homes, the relationship is not significant. Our findings show that facilities invest more in input resources to obtain better ratings in the accreditation report. Operating efficiency, however, does not improve. Quality competition in the industry in Taiwan is inefficient, especially for general senior care facilities.
Lin, Jwu-Rong; Chen, Ching-Yu; Peng, Tso-Kwei
2017-01-01
The purpose of this research is to examine the relation between operating efficiency and the quality of care of senior care facilities. We designed a data envelopment analysis, combining epsilon-based measure and metafrontier efficiency analyses to estimate the operating efficiency for senior care facilities, followed by an iterative seemingly unrelated regression to evaluate the relation between the quality of care and operating efficiency. In the empirical studies, Taiwan census data was utilized and findings include the following: Despite the greater operating scale of the general type of senior care facilities, their average metafrontier technical efficiency is inferior to that of nursing homes. We adopted senior care facility accreditation results from Taiwan as a variable to represent the quality of care and examined the relation of accreditation results and operating efficiency. We found that the quality of care of general senior care facilities is negatively related to operating efficiency; however, for nursing homes, the relationship is not significant. Our findings show that facilities invest more in input resources to obtain better ratings in the accreditation report. Operating efficiency, however, does not improve. Quality competition in the industry in Taiwan is inefficient, especially for general senior care facilities. PMID:28892019
Code of Federal Regulations, 2010 CFR
2010-04-01
... furnishing of terminal trackage, the operation of stockyards or a union passenger or freight station, and the operation of railroad bridges and ferries. The providing of the designated facilities includes the leasing... which is designated in this subparagraph. Thus, although income from the operation of a commuter...
Safeguards-by-Design:Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Schanfein; Casey Durst
2012-11-01
Introduction and Purpose The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA)more » time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on prismatic fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC. For the nuclear industry to reap the benefits of SBD (i.e. avoid cost overruns and construction schedule slippages), nuclear facility designers and operators should work closely with the State Regulatory Authority and IAEA as soon as a decision is taken to build a new nuclear facility. Ideally, this interaction should begin during the conceptual design phase and continue throughout construction and start-up of a nuclear facility. Such early coordination and planning could influence decisions on the design of the nuclear material processing flow-sheet, material storage and handling arrangements, and facility layout (including safeguards equipment), etc.« less
49 CFR 37.61 - Public transportation programs and activities in existing facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... existing facilities. 37.61 Section 37.61 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a designated...
Planning Requirements for Small School Facilities.
ERIC Educational Resources Information Center
Davis, J. Clark; McQueen, Robert
The unique requirements of small school facilities, designed to handle multiple curricular functions within the same operational space, necessitate the creation of educational specifications tying the curriculum to that portion of the facility in which each curriculum component will be implemented. Thus, in planning the facility the major concern…
Ground test facility for SEI nuclear rocket engines
NASA Astrophysics Data System (ADS)
Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.
1992-07-01
Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...
40 CFR 264.1089 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... facility. Except for air emission control equipment design documentation and information required by... record for a minimum of 3 years. Air emission control equipment design documentation shall be maintained... the owner or operator stating that the control device is designed to operate at the performance level...
40 CFR 264.1089 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... facility. Except for air emission control equipment design documentation and information required by... record for a minimum of 3 years. Air emission control equipment design documentation shall be maintained... the owner or operator stating that the control device is designed to operate at the performance level...
40 CFR 264.1089 - Recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facility. Except for air emission control equipment design documentation and information required by... record for a minimum of 3 years. Air emission control equipment design documentation shall be maintained... the owner or operator stating that the control device is designed to operate at the performance level...
Sandia National Laboratories Facilities Management and Operations Center Design Standards Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Timothy L.
2014-09-01
At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. Themore » safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural, fire protection, mechanical, electrical, telecommunications, and security features is expected to ensure compatibility with planned functional equipment and to facilitate constructability. If portions of the design are subcontracted to specialists, delivery of the finished design documents must not be considered complete until the subcontracted portions are also submitted for review. You must, along with support consultants, perform functional analyses and programming in developing design solutions. These solutions must reflect coordination of the competing functional, budgetary, and physical requirements for the project. During design phases, meetings between you and the SNL/NM Project Team to discuss and resolve design issues are required. These meetings are a normal part of the design process. For specific design-review requirements, see the project-specific Design Criteria. In addition to the design requirements described in this manual, instructive information is provided to explain the sustainable building practice goals for design, construction, operation, and maintenance of SNL/NM facilities. Please notify SNL/NM personnel of design best practices not included in this manual, so they can be incorporated in future updates. You must convey all documents describing work to the SNL/NM Project Manager in both hard copy and in an electronic format compatible with the SNL/NM-prescribed CADD and other software packages, and in accordance with a SNL/NM approved standard format. Print all hard copy versions of submitted documents (excluding drawings and renderings) double-sided when practical.« less
ENGINEERING AND CONSTRUCTING THE HALLAM NUCLEAR POWER FACILITY REACTOR STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahlmeister, J E; Haberer, W V; Casey, D F
1960-12-15
The Hallam Nuclear Power Facility reactor structure, including the cavity liner, is described, and the design philosophy and special design requirements which were developed during the preliminary and final engineering phases of the project are explained. The structure was designed for 600 deg F inlet and 1000 deg F outlet operating sodium temperatures and fabricated of austenitic and ferritic stainless steels. Support for the reactor core components and adequate containment for biological safeguards were readily provided even though quite conservative design philosophy was used. The calculated operating characteristics, including heat generation, temperature distributions and stress levels for full-power operation, aremore » summarized. Ship fabrication and field installation experiences are also briefly related. Results of this project have established that the sodium graphite reactor permits practical and economical fabrication and field erection procedures; considerably higher operating design temperatures are believed possible without radical design changes. Also, larger reactor structures can be similarly constructed for higher capacity (300 to 1000 Mwe) nuclear power plants. (auth)« less
Man-Vehicle Systems Research Facility - Design and operating characteristics
NASA Technical Reports Server (NTRS)
Shiner, Robert J.; Sullivan, Barry T.
1992-01-01
This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.
Preliminary study for a numerical aerodynamic simulation facility. Phase 1: Extension
NASA Technical Reports Server (NTRS)
Lincoln, N. R.
1978-01-01
Functional requirements and preliminary design data were identified for use in the design of all system components and in the construction of a facility to perform aerodynamic simulation for airframe design. A skeleton structure of specifications for the flow model processor and monitor, the operating system, and the language and its compiler is presented.
A skyshine study for a low-level radwaste storage facility for state compacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoemaker, D.C.; Hopkins, W.C.; Jha, S.
1989-11-01
The Central Interstate Compact Facility, to be located in Nebraska, is designed to utilize above-grade concrete vaults for disposal of all classes of waste. Such a low-level radwaste facility (LLRWF) must meet many, and at times competing, design conditions. One of the more rigorous design conditions is to limit the yearly effluent dose and direct radiation dose to the closest resident to the facility to < 0.25 mSv (25 mrem). Thus, a shield designer must assure that the proposed design will not only be cost-effective and provide for the conventional maintenance and operations of the facility, but will also meetmore » the performance criteria. During the operational phase of the facility, the dominant dose quickly becomes the air-scattered dose (skyshine) from the photons emerging from the roofs and walls of the facility. To investigate the sensitivity to skyshine of a preliminary design for an LLRWF, a study was undertaken using a version of the MORSE Monte Carlo program that runs on a PC/386. The effects of source energy were also examined by modeling two difference sources--{sup 60}Co and {sup 137}Cs. It was felt that these two isotopes are representative of the predominant high-energy gamma emitters for the projected waste inventory in the LLRWF. At the end of the design life of the LLRWF (i.e., full capacity at 30 yr), it was found that the difference in the yearly dose between assuring all {sup 60}Co and all {sup 137}Cs was a factor of < 2.« less
Life science payloads planning study integration facility survey results
NASA Technical Reports Server (NTRS)
Wells, G. W.; Brown, N. E.; Nelson, W. G.
1976-01-01
The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported.
Simulation of mass storage systems operating in a large data processing facility
NASA Technical Reports Server (NTRS)
Holmes, R.
1972-01-01
A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.
NASA Astrophysics Data System (ADS)
Cordova, Martin; Serio, Andrew; Meza, Francisco; Arriagada, Gustavo; Swett, Hector; Ball, Jesse; Collins, Paul; Masuda, Neal; Fuentes, Javier
2016-07-01
In 2014 Gemini Observatory started the base facility operations (BFO) project. The project's goal was to provide the ability to operate the two Gemini telescopes from their base facilities (respectively Hilo, HI at Gemini North, and La Serena, Chile at Gemini South). BFO was identified as a key project for Gemini's transition program, as it created an opportunity to reduce operational costs. In November 2015, the Gemini North telescope started operating from the base facility in Hilo, Hawaii. In order to provide the remote operator the tools to work from the base, many of the activities that were normally performed by the night staff at the summit were replaced with new systems and tools. This paper describes some of the key systems and tools implemented for environmental monitoring, and the design used in the implementation at the Gemini North telescope.
Numerical aerodynamic simulation facility preliminary study: Executive study
NASA Technical Reports Server (NTRS)
1977-01-01
A computing system was designed with the capability of providing an effective throughput of one billion floating point operations per second for three dimensional Navier-Stokes codes. The methodology used in defining the baseline design, and the major elements of the numerical aerodynamic simulation facility are described.
10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... explosions. (4) Environmental and dynamic effects. The design must provide for adequate protection from environmental conditions and dynamic effects associated with normal operations, maintenance, testing, and... design must provide for inclusion of instrumentation and control systems to monitor and control the...
ERIC Educational Resources Information Center
Lowe, Jason; Noyes, Brad
1999-01-01
Explains how proper athletic facility locker-room design can save time and money. Design factors that address who will be using the facility are discussed as are user requirements, such as preparation areas, total storage area per user, grooming area, and security areas. Final comments address maintenance and operations issues. (GR)
The automatic control system and stand-by facilities of the TDMA-40 equipment
NASA Astrophysics Data System (ADS)
Gudenko, D. V.; Pankov, G. Kh.; Pauk, A. G.; Tsirlin, V. M.
1980-10-01
When a controlling station in a satellite communications system is out of order, a complex algorithm must be carried out for automatic operation of the stand-by equipment. A processor has been developed to perform this algorithm, as well as operations involving the stand-by facilities of the receiving-transmitting equipment of the station. The design principles and solutions to problems in developing the equipment for the monitoring and controlling systems are described. These systems are based on multistation access using time division multiplexing. Algorithms are presented for the operation of the synchronizing processor and the control processor of the equipment. The automatic control system and stand-by facilities make it possible to reduce the service personnel and to design an unattended station.
Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG
NASA Technical Reports Server (NTRS)
Jordan, Lee
2016-01-01
The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of direct current power via a versatile supply interface (120, 28, plus or minus 12, and 5 volts direct current), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 27,000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, biological studies and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space Flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This poster will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of video and biological upgrades. The author would like to acknowledge Teledyne Brown Engineering and the entire MSG Team for their inputs into this poster.
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2011 CFR
2011-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2012 CFR
2012-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2010 CFR
2010-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2014 CFR
2014-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
40 CFR 265.254 - Design and operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each new waste pile on which construction commences after January 29, 1992, each lateral expansion of a waste pile unit on which construction commences after July 29, 1992, and each such replacement of an...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirro, G.A.
1997-02-01
This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FACILITIES Pt. 50, App.N Appendix N to Part 50—Standardization of Nuclear Power Plant Designs: Permits To..., apply to construction permits and operating licenses subject to this appendix N. 2. Applications for...
Ergonomics and simulation-based approach in improving facility layout
NASA Astrophysics Data System (ADS)
Abad, Jocelyn D.
2018-02-01
The use of the simulation-based technique in facility layout has been a choice in the industry due to its convenience and efficient generation of results. Nevertheless, the solutions generated are not capable of addressing delays due to worker's health and safety which significantly impact overall operational efficiency. It is, therefore, critical to incorporate ergonomics in facility design. In this study, workstation analysis was incorporated into Promodel simulation to improve the facility layout of a garment manufacturing. To test the effectiveness of the method, existing and improved facility designs were measured using comprehensive risk level, efficiency, and productivity. Results indicated that the improved facility layout generated a decrease in comprehensive risk level and rapid upper limb assessment score; an increase of 78% in efficiency and 194% increase in productivity compared to existing design and thus proved that the approach is effective in attaining overall facility design improvement.
40 CFR 98.4 - Authorization and responsibilities of the designated representative.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Administrator of a complete certificate of representation under this section for a facility or supplier, the designated representative identified in such certificate of representation shall represent and, by his or her representations, actions, inactions, or submissions, legally bind each owner and operator of such facility or...
40 CFR 62.1100 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS California Plan for the... of plan. (a) State of California Designated Facility Plan (Section 111(d) Plan). (b) The plan was... Pollution Control District Regulation 1; Rule 130—Definitions, Rule 240—Permit to Operate, Rule 450—Sulfide...
40 CFR 62.1100 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS California Plan for the... of plan. (a) State of California Designated Facility Plan (Section 111(d) Plan). (b) The plan was... Pollution Control District Regulation 1; Rule 130—Definitions, Rule 240—Permit to Operate, Rule 450—Sulfide...
40 CFR 62.1100 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS California Plan for the... of plan. (a) State of California Designated Facility Plan (Section 111(d) Plan). (b) The plan was... Pollution Control District Regulation 1; Rule 130—Definitions, Rule 240—Permit to Operate, Rule 450—Sulfide...
40 CFR 62.1100 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS California Plan for the... of plan. (a) State of California Designated Facility Plan (Section 111(d) Plan). (b) The plan was... Pollution Control District Regulation 1; Rule 130—Definitions, Rule 240—Permit to Operate, Rule 450—Sulfide...
40 CFR 62.1100 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS California Plan for the... of plan. (a) State of California Designated Facility Plan (Section 111(d) Plan). (b) The plan was... Pollution Control District Regulation 1; Rule 130—Definitions, Rule 240—Permit to Operate, Rule 450—Sulfide...
Jennings, T A; Scheer, A; Emodi, A; Puderbach, L; King, S; Norton, T
1996-01-01
This paper demonstrates the importance of the inspection qualification (IQ). It was shown that the facilities were adequate to house the dryer and its associated instrumentation, and that the facilities had sufficient utilities to operate the dryer. The IQ established that the design and construction of the dryer was in agreement with the proposed hardware and design specifications. It was verified that the dryer was constructed in accordance with specifications set-forth by the equipment manufacturer.
Draft environmental impact statement: Space Shuttle Advanced Solid Rocket Motor Program
NASA Technical Reports Server (NTRS)
1988-01-01
The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site.
75 FR 65151 - Marine Vapor Control Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
...The Coast Guard proposes to increase maritime domain safety by revising existing safety regulations for facility and vessel vapor control systems (VCSs). The proposed changes would make VCS requirements more compatible with new Federal and State environmental requirements, reflect industry advancements in VCS technology, and codify the standards for the design and operation of a VCS at tank barge cleaning facilities. These changes would increase the safety of operations by regulating the design, installation, and use of VCSs, but would not require anyone to install or use VCSs.
Space Station services and design features for users
NASA Technical Reports Server (NTRS)
Kurzhals, Peter R.; Mckinney, Royce L.
1987-01-01
The operational design features and services planned for the NASA Space Station will furnish, in addition to novel opportunities and facilities, lower costs through interface standardization and automation and faster access by means of computer-aided integration and control processes. By furnishing a basis for large-scale space exploitation, the Space Station will possess industrial production and operational services capabilities that may be used by the private sector for commercial ventures; it could also ultimately support lunar and planetary exploration spacecraft assembly and launch facilities.
An Astrometric Facility For Planetary Detection On The Space Station
NASA Astrophysics Data System (ADS)
Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.
1987-09-01
An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential Space Station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distances within the Milky Way Galaxy. This paper summarizes the results of a recently completed ATF preliminary systems definition study. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objectives without the development of any new technologies. This preliminary systems study started with the following basic assumptions: 1) the facility will be placed in orbit by a single Shuttle launch, 2) the Space Station will provide a coarse pointing system , electrical power, communications, assembly and checkout, maintenance and refurbishment services, and 3) the facility will be operated from a ground facility. With these assumptions and the science performance requirements a preliminary "strawman" facility was designed. The strawman facility design with a prime-focus telescope of 1.25-m aperture, f-ratio of 13 and a single prime-focus instrument was chosen to minimize random and systemmatic errors. Total facility mass is 5100 kg and overall dimensions are 1.85-m diam by 21.5-m long. A simple straightforward operations approach has been developed for ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the Space Station crew with ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.
Maintaining Sustainability for Green Schools
ERIC Educational Resources Information Center
Kennedy, Mike
2011-01-01
The promise of sustainably designed school facilities is that they will operate more efficiently and last longer than buildings constructed in more traditional ways. But that promise comes with a big if. The payoff is delivered only if the facility managers operate and maintain the buildings in ways that adhere to sustainable strategies called for…
Educational Trends Shaping School Planning, Design, Construction, Funding and Operation
ERIC Educational Resources Information Center
Stevenson, Kenneth R.
2010-01-01
What does the future hold for educators and facilities professionals when it comes to planning, building, funding, and operating school facilities? No one can absolutely know beforehand. However, there are many, many indicators of where public education in the United States may well be destined. These indicators take the form of already occurring…
Authorization basis supporting documentation for plutonium finishing plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.P., Fluor Daniel Hanford
1997-03-05
The identification and definition of the authorization basis for the Plutonium Finishing Plant (PFP) facility and operations are essential for compliance to DOE Order 5480.21, Unreviewed Safety Questions. The authorization basis, as defined in the Order, consists of those aspects of the facility design basis, i.e., the structures, systems and components (SSCS) and the operational requirements that are considered to be important to the safety of operations and are relied upon by DOE to authorize operation of the facility. These facility design features and their function in various accident scenarios are described in WHC-SD-CP-SAR-021, Plutonium Finishing Plant Final Safety Analysismore » Report (FSAR), Chapter 9, `Accident Analysis.` Figure 1 depicts the relationship of the Authorization Basis to its components and other information contained in safety documentation supporting the Authorization Basis. The PFP SSCs that are important to safety, collectively referred to as the `Safety Envelope` are discussed in various chapters of the FSAR and in WHC-SD-CP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements. Other documents such as Criticality Safety Evaluation Reports (CSERS) address and support some portions of the Authorization Basis and Safety Envelope.« less
Center for the Built Environment: About Us
technologies and design and operation techniques. Our projects fall into two broad program areas. First, we environmental quality. This feedback is directed variously at those who manage, operate, and design buildings product offerings, and facility management and design partners to apply these new technologies effectively
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... designed, on an RAS. Basis for proposed no significant hazards consideration determination: As required by...], Time Response Design Criteria for Safety- Related Operator Actions, 1984 guidance. Although the change... changes to the RAS Allowable Values and RWT minimum required level on the RWT structural design...
47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.
Code of Federal Regulations, 2010 CFR
2010-10-01
... device that is in the conceptual, developmental, design or pre-production stage is permitted prior to... operation takes place at the manufacturer's facilities during developmental, design, or pre-production... development, design or pre-production stages. A product operated under this provision shall be labelled, in a...
47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.
Code of Federal Regulations, 2012 CFR
2012-10-01
... device that is in the conceptual, developmental, design or pre-production stage is permitted prior to... operation takes place at the manufacturer's facilities during developmental, design, or pre-production... development, design or pre-production stages. A product operated under this provision shall be labelled, in a...
47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.
Code of Federal Regulations, 2011 CFR
2011-10-01
... device that is in the conceptual, developmental, design or pre-production stage is permitted prior to... operation takes place at the manufacturer's facilities during developmental, design, or pre-production... development, design or pre-production stages. A product operated under this provision shall be labelled, in a...
Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soli Khericha; Edwin Harvego; John Svoboda
2012-01-01
The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstratemore » Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.« less
A stochastic discrete optimization model for designing container terminal facilities
NASA Astrophysics Data System (ADS)
Zukhruf, Febri; Frazila, Russ Bona; Burhani, Jzolanda Tsavalista
2017-11-01
As uncertainty essentially affect the total transportation cost, it remains important in the container terminal that incorporates several modes and transshipments process. This paper then presents a stochastic discrete optimization model for designing the container terminal, which involves the decision of facilities improvement action. The container terminal operation model is constructed by accounting the variation of demand and facilities performance. In addition, for illustrating the conflicting issue that practically raises in the terminal operation, the model also takes into account the possible increment delay of facilities due to the increasing number of equipment, especially the container truck. Those variations expectantly reflect the uncertainty issue in the container terminal operation. A Monte Carlo simulation is invoked to propagate the variations by following the observed distribution. The problem is constructed within the framework of the combinatorial optimization problem for investigating the optimal decision of facilities improvement. A new variant of glow-worm swarm optimization (GSO) is thus proposed for solving the optimization, which is rarely explored in the transportation field. The model applicability is tested by considering the actual characteristics of the container terminal.
Vibrational impacts of hush house operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witten, A.J.
1988-01-01
United States Air Force (USAF) facilities are required to test turboprop and turbojet engines before or after maintenance or repair and prior to installation on aircraft to ensure that no problems were introduced or remain uncorrected. This requirement prevents the installation of engines in aircraft which require further maintenance. There are a number of facilities in use by USAF for conducting engine diagnostic tests. The most modern of these facilities is the hush house which is a hangar-like structure designed to isolate the noise associated with extended engine operations from the surrounding environment. One type of hush house, the T-10,more » is of particular concern because of vibrational impacts to surrounding structures induced by subaudible sound (infrasound) emitted during operation. While these facilities fulfill the design requirement of reducing audible noise, serious siting problems have been reported at several installations because of infrasound-induced vibrations. The worst of these include the abandonment of an avionics laboratory because induced vibrations interfered with this facilities function and structural damage to a concrete block maintenance facility. This paper describes a predictive method for assessing vibration-driven structural impacts. 9 refs., 2 figs.« less
Development of cloud-operating platform for detention facility design
NASA Astrophysics Data System (ADS)
Tun Lee, Kwan; Hung, Meng-Chiu; Tseng, Wei-Fan; Chan, Yi-Ping
2017-04-01
In the past 20 years, the population of Taiwan has accumulated in urban areas. The land development has changed the hydrological environment and resulted in the increase of surface runoff and shortened the time to peak discharge. The change of runoff characteristics increases the flood risk and reduces resilient ability of the city during flood. Considering that engineering measures may not be easy to implement in populated cities, detention facilities set on building basements have been proposed to compromise the increase of surface runoff resulting from development activities. In this study, a web-based operational platform has been developed to integrate the GIS technologies, hydrological analyses, as well as relevant regulations for the design of detention facilities. The design procedure embedded in the system includes a prior selection of type and size of the detention facility, integrated hydrological analysis for the developing site, and inspection of relevant regulations. After login the platform, designers can access the system database to retrieve road maps, land use coverages, and storm sewer information. Once the type, size, inlet, and outlet of the detention facility are assigned, the system can acquire the rainfall intensity-duration-frequency information from adjacent rain gauges to perform hydrological analyses for the developing site. The increase of the runoff volume due to the development and the reduction of the outflow peak through the construction of the detention facility can be estimated. The outflow peak at the target site is then checked with relevant regulations to confirm the suitability of the detention facility design. The proposed web-based platform can provide a concise layout of the detention facility and the drainageway of the developing site on a graphical interface. The design information can also be delivered directly through a web link to authorities for inspecting to simplify the complex administrative procedures.
Zadeh, Rana; Sadatsafavi, Hessam; Xue, Ryan
2015-01-01
This study describes a vision and framework that can facilitate the implementation of evidence-based design (EBD), scientific knowledge base into the process of the design, construction, and operation of healthcare facilities and clarify the related safety and quality outcomes for the stakeholders. The proposed framework pairs EBD with value-driven decision making and aims to improve communication among stakeholders by providing a common analytical language. Recent EBD research indicates that the design and operation of healthcare facilities contribute to an organization's operational success by improving safety, quality, and efficiency. However, because little information is available about the financial returns of evidence-based investments, such investments are readily eliminated during the capital-investment decision-making process. To model the proposed framework, we used engineering economy tools to evaluate the return on investments in six successful cases, identified by a literature review, in which facility design and operation interventions resulted in reductions in hospital-acquired infections, patient falls, staff injuries, and patient anxiety. In the evidence-based cases, calculated net present values, internal rates of return, and payback periods indicated that the long-term benefits of interventions substantially outweighed the intervention costs. This article explained a framework to develop a research-based and value-based communication language on specific interventions along the planning, design and construction, operation, and evaluation stages. Evidence-based and value-based design frameworks can be applied to communicate the life-cycle costs and savings of EBD interventions to stakeholders, thereby contributing to more informed decision makings and the optimization of healthcare infrastructures. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities. This Part 2 includes chapters on implementation guidance for operational configuration management, implementation guidance for design reconstitution, and implementation guidance for material condition and aging management. Appendices are included on design control, examples of design information, conduct of walkdowns, and content of design information summaries.
VICS-120 - A tube-vehicle system test facility.
NASA Technical Reports Server (NTRS)
Marte, J. E.
1973-01-01
Description of a large test facility for carrying out research in support of the aerodynamic and ventilation section of a handbook on subway design. The facility described is vertically oriented and has a test section with a nominal inside diameter of 2 in. and a length of 109 ft. It is capable of operating at Reynolds numbers up to full-scale (60,000,000) under open-end tube conditions. The facility is distinguished by a high degree of flexibility in configuration and operational limits. Details are given concerning the plenum assembly, the test section tubes, the scaffold, the instrumentation, the model launcher, the model arrestor, and the models themselves. A step-by-step account is given of the operation of the facility, and a brief sample of the type of data obtained from the facility is presented.
Kistler reusable vehicle facility design and operational approach
NASA Astrophysics Data System (ADS)
Fagan, D.; McInerney, F.; Johnston, C.; Tolson, B.
Kistler Aerospace Corporation is designing and developing the K-1, the world's first fully reusable aerospace vehicle to deliver satellites into orbit. The K-1 vehicle test program will be conducted in Woomera, Australia, with commercial operations scheduled to begin shortly afterwards. Both stages of the K-1 will return to the launch site utilizing parachutes and airbags for a soft landing within 24 h after launch. The turnaround flow of the two stages will cycle from landing site to a maintenance/refurbishment facility and through the next launch in only 9 days. Payload processing will occur in a separate facility in parallel with recovery and refurbishment operations. The vehicle design and on-board checkout capability of the avionics system eliminates the need for an abundance of ground checkout equipment. Payload integration, vehicle assembly, and K-1 transport to the launch pad will be performed horizontally, simplifying processing and reducing infrastructure requirements. This simple, innovative, and cost-effective approach will allow Kistler to offer its customers flexible, low-cost, and on-demand launch services.
Hazard and operability study of the multi-function Waste Tank Facility. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, M.E.
1995-05-15
The Multi-Function Waste Tank Facility (MWTF) East site will be constructed on the west side of the 200E area and the MWTF West site will be constructed in the SW quadrant of the 200W site in the Hanford Area. This is a description of facility hazards that site personnel or the general public could potentially be exposed to during operation. A list of preliminary Design Basis Accidents was developed.
MAN-004 Design Standards Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Timothy L.
2014-07-01
At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. Themore » safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural, fire protection, mechanical, electrical, telecommunications, and security features is expected to ensure compatibility with planned functional equipment and to facilitate constructability. If portions of the design are subcontracted to specialists, delivery of the finished design documents must not be considered complete until the subcontracted portions are also submitted for review. You must, along with support consultants, perform functional analyses and programming in developing design solutions. These solutions must reflect coordination of the competing functional, budgetary, and physical requirements for the project. During design phases, meetings between you and the SNL/NM Project Team to discuss and resolve design issues are required. These meetings are a normal part of the design process. For specific design-review requirements, see the project-specific Design Criteria. In addition to the design requirements described in this manual, instructive information is provided to explain the sustainable building practice goals for design, construction, operation, and maintenance of SNL/NM facilities. Please notify SNL/NM personnel of design best practices not included in this manual, so they can be incorporated in future updates.« less
Robust telerobotics - an integrated system for waste handling, characterization and sorting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.
The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less
ETF Mission Statement document. ETF Design Center team
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-04-01
The Mission Statement document describes the results, activities, and processes used in preparing the Mission Statement, facility characteristics, and operating goals for the Engineering Test Facility (ETF). Approximately 100 engineers and scientists from throughout the US fusion program spent three days at the Knoxville Mission Workshop defining the requirements that should be met by the ETF during its operating life. Seven groups were selected to consider one major category each of design and operation concerns. Each group prepared the findings of the assigned area as described in the major sections of this document. The results of the operations discussed mustmore » provide the data, knowledge, experience, and confidence to continue to the next steps beyond the ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that required to design the EPR/DEMO devices.« less
Design and operation of an outdoor microalgae test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weissman, J.C.; Tillett, D.M.; Goebel, R.P.
The objective of the project covered in this report is to establish and operate a facility in the American Southwest to test the concept of producing microalgae on a large scale. This microalgae would then be used as a feedstock for producing liquid fuels. The site chosen for this project was an existing water research station in Roswell, New Mexico; the climate and water resources are representative of those in the Southwest. For this project, researchers tested specific designs, modes of operation, and strains of microalgae; proposed and evaluated modifications to technological concepts; and assessed the progress toward meeting costmore » objectives.« less
Safeguards Approaches for Black Box Processes or Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John
2013-09-25
The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. Thismore » analysis identified the necessary conditions for safeguardability of black box processes and facilities.« less
NASA Technical Reports Server (NTRS)
Killian, D. A.; Menninger, F. J.; Gorman, T.; Glenn, P.
1988-01-01
The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain.
Locomotive cab design development. volume 2 : operator's manual - Interim Report
DOT National Transportation Integrated Search
1976-10-01
Locomotive Cab 913 designed as a result of Contract DOT-TSC- 913 has been built as a hard mock-up. This Operator's Manual is to familiarize the user with the mock-up. Normal and emergency procedures and cab facilities are described.
An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard
Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space andmore » time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.« less
NASA Technical Reports Server (NTRS)
Klich, G. F.
1976-01-01
A description of the Langley thermal protection system test facility is presented. This facility was designed to provide realistic environments and times for testing thermal protection systems proposed for use on high speed vehicles such as the space shuttle. Products from the combustion of methane-air-oxygen mixtures, having a maximum total enthalpy of 10.3 MJ/kg, are used as a test medium. Test panels with maximum dimensions of 61 cm x 91.4 cm are mounted in the side wall of the test region. Static pressures in the test region can range from .005 to .1 atm and calculated equilibrium temperatures of test panels range from 700 K to 1700 K. Test times can be as long as 1800 sec. Some experimental data obtained while using combustion products of methane-air mixtures are compared with theory, and calibration of the facility is being continued to verify calculated values of parameters which are within the design operating boundaries.
ORATOS: ESA's future flight dynamics operations system
NASA Astrophysics Data System (ADS)
Dreger, Frank; Fertig, Juergen; Muench, Rolf
The Orbit and Attitude Operations System (ORATOS -- the European Space Agency's future orbit and attitude operations system -- will be in use from the mid-nineties until well beyond the year 2000. The ORATOS design is based on the experience from flight dynamics support to all past ESA missions. The ORATOS computer hardware consists of a network of powerful UNIX workstations. ORATOS resides on several hardware platforms, each comprising one or more fileservers, several client workstations and the associated communications interface hardware. The ORATOS software is structured into three layers. The flight dynamics applications layer, the support layer and the operating system layer. This architectural design separates the flight dynamics application software from the support tools and operating system facilities. It allows upgrading and replacement of operating system facilities with a minimum (or no) effect on the application layer.
DOT National Transportation Integrated Search
1999-02-01
This report contains selected information on toll facilities in the United States. The information is based on a survey of facilities in operation, financed, or under construction as of January 1, 1999. /Abstract from report, p. xiv/
Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina
2010-01-01
The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. An engineering unit, the ASRG engineering unit (EU), was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently under extended operation test at the NASA Glenn Research Center (GRC) to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for the ASRG EU. This paper summarizes details of the test facility design, including the mechanical mounting, heat-rejection system, argon system, control systems, and maintenance. The effort proceeded from requirements definition through design, analysis, build, and test. Initial testing and facility performance results are discussed.
The new design of final optics assembly on SG-III prototype facility
NASA Astrophysics Data System (ADS)
Li, Ping; Zhao, Runchang; Wang, Wei; Jia, Huaiting; Chen, Liangmin; Su, Jingqin
2014-09-01
To improve the performance of SG-III prototype facility (TIL-Technical Integration Line), final optics assembly (FOA) is re-designed. It contains that stray light and focusing ghosts are optimized, operational performance and environments are improved and the total thickness of optics is reduced. With the re-designed FOA, Some performance advantages are achieved. First, the optics damages are mitigated obviously, especially crystals and Focus lens; Second, stray light and focusing ghosts are controlled better that organic contamination sources inside FOA are eliminated; Third, maintenance and operation are more convenient for the atoms environment; Fourth, the focusable power on target is increased for lower B-integral.
Siting, design and operational controls for snow disposal sites.
Wheaton, S R; Rice, W J
2003-01-01
The Municipality of Anchorage (MOA), at 61 degrees north latitude, ploughs and hauls snow from urban streets throughout the winter, incorporating grit and chloride applied to street surfaces for traffic safety. Hauled snow is stored at snow disposal facilities, where it melts at ambient spring temperatures. MOA studies performed from 1998 through 2001 show that disposal site melt processes can be manipulated, through site design and operation practices, to control chloride and turbidity in meltwater. An experimental passive "V-swale" pad configuration tested by MOA investigators reduced site meltwater turbidity by an order of magnitude (to about 50 NTU from the 500 NTU typical of more conventional planar pad geometry). The MOA has developed new siting, design and operational criteria for snow disposal facilities to conform to the tested V-swale pad configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartashov,V.V.; Pratt,W.; Romanov, Y.A.
The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Departmentmore » of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.« less
Human factors engineering in oil and gas--a review of industry guidance.
Robb, Martin; Miller, Gerald
2012-01-01
Oil and gas exploration and production activities are carried out in hazardous environments in many parts of the world. Recent events in the Gulf of Mexico highlight those risks and underline the importance of considering human factors during facility design. Ergonomic factors such as machinery design, facility and accommodation layout and the organization of work activities have been systematically considered over the past twenty years on a limited number of offshore facility design projects to a) minimize the occupational risks to personnel, b) support operations and maintenance tasks and c) improve personnel wellbeing. During this period, several regulators and industry bodies such as the American Bureau of Shipping (ABS), the American Society of Testing and Materials (ASTM), the UK's Health and Safety Executive (HSE), Oil and Gas Producers (OGP), and Norway's Petroleum Safety Authority (PSA) have developed specific HFE design standards and guidance documents for the application of Human Factors Engineering (HFE) to the design and operation of Oil and Gas projects. However, despite the existence of these guidance and recommended design practise documents, and documented proof of their value in enhancing crew safety and efficiency, HFE is still not well understood across the industry and application across projects is inconsistent. This paper summarizes the key Oil and Gas industry bodies' HFE guidance documents, identifies recurring themes and current trends in the use of these standards, provides examples of where and how these HFE standards have been used on past major offshore facility design projects, and suggests criteria for selecting the appropriate HFE strategy and tasks for future major oil and gas projects. It also provides a short history of the application of HFE to the offshore industry, beginning with the use of ASTM F 1166 to a major operator's Deepwater Gulf of Mexico facility in 1990 and the application of HFE to diverse world regions. This latter point highlights the need to consider user populations when selecting HFE design criteria, an aspect strongly emphasized in current industry guidance.
Radiological considerations for bulk shielding calculations of national synchrotron light source-II
NASA Astrophysics Data System (ADS)
Job, Panakkal K.; Casey, William R.
2011-12-01
Brookhaven National Laboratory is designing a new electron synchrotron for scientific research using synchrotron radiation. This facility, called the “National Synchrotron Light Source II” (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster synchrotron operating from 200 MeV to 3.0 GeV, and the storage ring which stores a maximum of 500 mA current of electrons at an energy of 3.0 GeV. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to <1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be quite low, on the order of 2 h. Analysis of the bulk shielding for operating this facility and the input parameters used for this analysis have been discussed in this paper. The characteristics of each of the accelerators and their operating modes have been summarized with the input assumptions for the bulk shielding analysis.
Scaled centrifugal compressor, collector and running gear program
NASA Technical Reports Server (NTRS)
Kenehan, J. G.
1983-01-01
The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.
49 CFR 37.61 - Public transportation programs and activities in existing facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false Public transportation programs and activities in... TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a designated...
Does PDC Belong in Facilities Management?
ERIC Educational Resources Information Center
Dessoff, Alan
2012-01-01
Whether planning, design, and construction (PDC) of buildings should be part of facilities management, with its traditional operations and maintenance functions, or separated from it, has been a divisive question on many campuses for a long time. Now, although it is not happening everywhere, facilities managers at a number of institutions, public…
Leveraging Safety Programs to Improve and Support Security Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, Janice; Snell, Mark K.; Pratt, R.
2015-10-01
There has been a long history of considering Safety, Security, and Safeguards (3S) as three functions of nuclear security design and operations that need to be properly and collectively integrated with operations. This paper specifically considers how safety programmes can be extended directly to benefit security as part of an integrated facility management programme. The discussion will draw on experiences implementing such a programme at Sandia National Laboratories’ Annular Research Reactor Facility. While the paper focuses on nuclear facilities, similar ideas could be used to support security programmes at other types of high-consequence facilities and transportation activities.
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and documentation; refinement of the selected conceptual design through additional trades and analyses; design, fabrication, and test of the Development Model; and design, fabrication, and test of the Interrack Demonstration Unit; and support of the requirements definition review (RDR). The purpose of part 2 was to prove concept feasibility.
The George C. Marshall Space Flight Center High Reynolds Number Wind Tunnel Technical Handbook
NASA Technical Reports Server (NTRS)
Gwin, H. S.
1975-01-01
The High Reynolds Number Wind Tunnel at the George C. Marshall Space Flight Center is described. The following items are presented to illustrate the operation and capabilities of the facility: facility descriptions and specifications, operational and performance characteristics, model design criteria, instrumentation and data recording equipment, data processing and presentation, and preliminary test information required.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC.
This guide addresses contributions that school facility administrators and business officials can make in an effort to reduce operating costs and free up money for capital improvements. The guide explores opportunities available to utilize energy-saving strategies at any stage in a building's life, from its initial design phase through renovation.…
Moonport: A History of Apollo Launch Facilities and Operations
NASA Technical Reports Server (NTRS)
Benson, C. D.; Faherty, W. B.
1978-01-01
The development of the Apollo f launch facilities and launch operations is described from the beginning of design through the final launch. Management techniques, innovation in automation, and testing on the ground to avoid failures in space are among the topics covered. The impact of the Apollo program on the citrus groves and quiet beaches of Florida's east coast is included.
Risk management technique for liquefied natural gas facilities
NASA Technical Reports Server (NTRS)
Fedor, O. H.; Parsons, W. N.
1975-01-01
Checklists have been compiled for planning, design, construction, startup and debugging, and operation of liquefied natural gas facilities. Lists include references to pertinent safety regulations. Methods described are applicable to handling of other hazardous materials.
Storage and handling of aviation fuels at airports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
This standard covers the basic principles for the design of fuel handling facilities and equipment at airports. It provides a reference for the planning and operation of aviation fuel handling facilities and associated equipment.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... evaluated the construction and operation of a new 20,000-square-foot standard design Terminal Radar Approach Control Facility/Base Building conforming to the guidelines of the Terminal Facilities Design Standards... Airport Layout Plan. The Final EA has been prepared in accordance with the National Environmental Policy...
Quartz Crystal Fabrication Facility.
1980-05-01
controllers, cryopump compressors , and mass spectrometer indicator/controller were placed in cabinets. The frequency plating control equipment was designed ...contributions of J. F. Howell , GEND Manufacturing Engineering Operation, for his design of the electrical and electronics system and for his tireless...report describes the design and operation of a five chamber, interconnected vacuum system, which is capable of cleaning, plating, and sealing
Confinement of Radioactive Materials at Defense Nuclear Facilities
2004-10-01
The design of defense nuclear facilities includes systems whose reliable operation is vital to the protection of the public, workers, and the...final safety-class barrier to the release of hazardous materials with potentially serious public consequences. The Defense Nuclear Facilities Safety...the public at certain defense nuclear facilities . This change has resulted in downgrading of the functional safety classification of confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.
The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by themore » Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.« less
Purdue University National Biomedical Tracer Facility: Project definition phase. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, M.A.
The proposed National Biomedical Tracer Facility (NBTF) will house a high-current accelerator dedicated to production of short-lived radionuclides for biomedical and scientific research. The NBTF will play a vital role in repairing and maintaining the United States` research infrastructure for generation of essential accelerator-based radioisotopes. If properly designed and managed, the NBTF should also achieve international recognition as a Center-of-Excellence for research on radioisotope production methods and for associated education and training. The current report documents the results of a DOE-funded NBTF Project Definition Phase study carried out to better define the technical feasibility and projected costs of establishing andmore » operating the NBTF. This report provides an overview of recommended Facility Design and Specifications, including Accelerator Design, Building Design, and the associated Construction Cost Estimates and Schedule. It is recommended that the NBTF be established as an integrated, comprehensive facility for meeting the diverse production, research, and educational missions set forth in previous documents. Based on an analysis of the projected production demands that will be placed on the NBTF, it appears that a 70 MeV, 1 mA, negative ion cyclotron will offer a good balance between production capabilities and the costs of accelerator purchase and operation. A preliminary architectural plan is presented for a facility designed specifically to fulfill the functions of the NBTF in a cost-effective manner. This report also presents a detailed analysis of the Required Federal State, and Local Permits that may be needed to establish the NBTF, along with schedules and cost estimates for obtaining these permits. The Handling, Storage, and Disposal of Radioactive Waste will pose some significant challenges in the operation of the NBTF, but at this stage of planning the associated problems do not appear to be prohibitive.« less
30 CFR 285.405 - How do I designate an operator?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 285.405 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER... must provide written notice to MMS and identify the new designated operator within 72 hours on a form...
Design, Activation, and Operation of the J2-X Subscale Simulator (JSS)
NASA Technical Reports Server (NTRS)
Saunders, Grady P.; Raines, Nickey G.; Varner, Darrel G.
2009-01-01
The purpose of this paper is to give a detailed description of the design, activation, and operation of the J2-X Subscale Simulator (JSS) installed in Cell 1 of the E3 test facility at Stennis Space Center, MS (SSC). The primary purpose of the JSS is to simulate the installation of the J2-X engine in the A3 Subscale Rocket Altitude Test Facility at SSC. The JSS is designed to give aerodynamically and thermodynamically similar plume properties as the J2-X engine currently under development for use as the upper stage engine on the ARES I and ARES V spacecraft. The JSS is a scale pressure fed, LOX/GH fueled rocket that is geometrically similar to the J2-X from the throat to the nozzle exit plane (NEP) and is operated at the same oxidizer to fuel ratios and chamber pressures. This paper describes the heritage hardware used as the basis of the JSS design, the newly designed rocket hardware, igniter systems used, and the activation and operation of the JSS.
40 CFR 60.660 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... maximum production rate at which the affected facility will be operated, or 180 days after the initial... less methane and ethane. This emission limit reflects the performance of BDT.] [55 FR 26942, June 29...
40 CFR 60.660 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... maximum production rate at which the affected facility will be operated, or 180 days after the initial... less methane and ethane. This emission limit reflects the performance of BDT.] [55 FR 26942, June 29...
Water NSTF Design, Instrumentation, and Test Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, Darius D.; Gerardi, Craig D.; Hu, Rui
The following report serves as a formal introduction to the water-based Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne. Since 2005, this US Department of Energy (DOE) sponsored program has conducted large scale experimental testing to generate high-quality and traceable validation data for guiding design decisions of the Reactor Cavity Cooling System (RCCS) concept for advanced reactor designs. The most recent facility iteration, and focus of this report, is the operation of a 1/2 scale model of a water-RCCS concept. Several features of the NSTF prototype align with the conceptual design that has been publicly released formore » the AREVA 625 MWt SC-HTGR. The design of the NSTF also retains all aspects common to a fundamental boiling water thermosiphon, and thus is well poised to provide necessary experimental data to advance basic understanding of natural circulation phenomena and contribute to computer code validation. Overall, the NSTF program operates to support the DOE vision of aiding US vendors in design choices of future reactor concepts, advancing the maturity of codes for licensing, and ultimately developing safe and reliable reactor technologies. In this report, the top-level program objectives, testing requirements, and unique considerations for the water cooled test assembly are discussed, and presented in sufficient depth to support defining the program’s overall scope and purpose. A discussion of the proposed 6-year testing program is then introduced, which outlines the specific strategy and testing plan for facility operations. The proposed testing plan has been developed to meet the toplevel objective of conducting high-quality test operations that span across a broad range of single- and two-phase operating conditions. Details of characterization, baseline test cases, accident scenario, and parametric variations are provided, including discussions of later-stage test cases that examine the influence of geometric variations and off-normal configurations. The facility design follows, including as-built dimensions and specifications of the various mechanical and liquid systems, design choices for the test section, water storage tank, and network piping. Specifications of the instrumentation suite are then presented, along with specific information on performance windows, measurement uncertainties, and installation locations. Finally, descriptions of the control systems and heat removal networks are provided, which have been engineered to support precise quantification of energy balances and facilitate well-controlled test operations.« less
Okeke, Claudia C; Allen, Loyd V
2009-01-01
The standard operating procedures suggested in this article are presented to compounding pharmacies to ensure the quality of the environment in which a CSP is prepared. Since United States Pharmacopeia Chapter 797 provides minimum standards, each facility should aim for best practice gold standard. The standard operating procedures should be tailored to meet the expectations and design of each facility. Compounding personnel are expected to know and understand each standard operating procedure to allow for complete execution of the procedures.
A feasibility study of a hypersonic real-gas facility
NASA Technical Reports Server (NTRS)
Gully, J. H.; Driga, M. D.; Weldon, W. F.
1987-01-01
A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch.
Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility
NASA Technical Reports Server (NTRS)
Williams, Jeffrey P.; Rallo, Rosemary A.
1987-01-01
A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.
Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility
NASA Technical Reports Server (NTRS)
Williams, Jeffrey P.; Rallo, Rosemary A.
1987-01-01
A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.
Gas and water recycling system for IOC vivarium experiments
NASA Technical Reports Server (NTRS)
Nitta, K.; Otsubo, K.
1986-01-01
Water and gas recycling units designed as one of the common experiment support system for the life science experiment facilities used in the Japanese Experiment Module are discussed. These units will save transportation and operation costs for the life science experiments in the space station. These units are also designed to have interfaces so simple that the connection to another life science experiment facilities such as the Research Animal Holding Facility developed by the Rockheed Missiles and Space Company can be easily done with small modification.
The aerospace technology laboratory (a perspective, then and now)
NASA Technical Reports Server (NTRS)
Connors, J. F.; Hoffman, R. G.
1982-01-01
The physical changes that have taken place in aerospace facilities since the Wright brothers' accomplishment 78 years ago are highlighted. For illustrative purposes some of the technical facilities and operations of the NASA Lewis Research Center are described. These simulation facilities were designed to support research and technology studies in aerospace propulsion.
30 CFR 285.405 - How do I designate an operator?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 285.405 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Lease and Grant... identify the new designated operator within 72 hours on a form approved by MMS. The lessee(s) or grantee(s...
7 CFR 1131.10 - Producer-handler.
Code of Federal Regulations, 2011 CFR
2011-01-01
... care and management of the dairy animals and the other resources and facilities designated in paragraph... and management of the producer-handler and are operated as the producer-handler's own enterprise and its own risk. (2) The plant operation designated in paragraph (b)(2) of this section at which the...
7 CFR 1124.10 - Producer-handler.
Code of Federal Regulations, 2011 CFR
2011-01-01
... care and management of the dairy animals and the other resources and facilities designated in paragraph... and management of the producer-handler and are operated as the producer-handler's own enterprise and its own risk. (2) The plant operation designated in paragraph (b)(2) of this section at which the...
NASA Technical Reports Server (NTRS)
Schneider, Steven P.
1991-01-01
Laminar-turbulent transition in high speed boundary layers is a complicated problem which is still poorly understood, partly because of experimental ambiguities caused by operating in noisy wind tunnels. The NASA Langley experience with quiet tunnel design has been used to design a quiet flow tunnel which can be constructed less expensively. Fabrication techniques have been investigated, and inviscid, boundary layer, and stability computer codes have been adapted for use in the nozzle design. Construction of such a facility seems feasible, at a reasonable cost. Two facilities have been proposed: a large one, with a quiet flow region large enough to study the end of transition, and a smaller and less expensive one, capable of studying low Reynolds number issues such as receptivity. Funding for either facility remains to be obtained, although key facility elements have been obtained and are being integrated into the existing Purdue supersonic facilities.
Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, Merle Daniel; M. C. Swenson
2005-01-01
This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less
An integrated assessment of location-dependent scaling for microalgae biofuel production facilities
Coleman, André M.; Abodeely, Jared M.; Skaggs, Richard L.; ...
2014-06-19
Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting and design through processing and upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are partially addressed by applying the Integrated Assessment Framework (IAF) – an integrated multi-scale modeling, analysis, and data management suite – to address key issues in developing and operating an open-pond microalgae production facility.more » This is done by analyzing how variability and uncertainty over space and through time affect feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. To provide a baseline analysis, the IAF was applied in this paper to a set of sites in the southeastern U.S. with the potential to cumulatively produce 5 billion gallons per year. Finally, the results indicate costs can be reduced by scaling downstream processing capabilities to fit site-specific growing conditions, available and economically viable resources, and specific microalgal strains.« less
Engineering test facility design definition
NASA Technical Reports Server (NTRS)
Bercaw, R. W.; Seikel, G. R.
1980-01-01
The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.
Code of Federal Regulations, 2012 CFR
2012-07-01
... plan must be designed to operate in the conditions expected in the facility's geographic area. These... handling, storing, or transporting oil in more than one operating environment as indicated in Table 1 of... § 154.106), or other tests approved by the Coast Guard. 2.4Table 1 of this appendix lists criteria for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... plan must be designed to operate in the conditions expected in the facility's geographic area. These... handling, storing, or transporting oil in more than one operating environment as indicated in Table 1 of... § 154.106), or other tests approved by the Coast Guard. 2.4Table 1 of this appendix lists criteria for...
Design of the LBNF Beamline Target Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tariq, S.; Ammigan, K.; Anderson, K.
2016-10-01
The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding inmore » a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.« less
NASA Technical Reports Server (NTRS)
Spivey, Reggie; Flores, Ginger N.
2009-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG has been operating on the ISS since July 2002 and is currently located in the Columbus Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a workbench type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. In fact, the MSG has been used for over 5000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technologies. MSG is an ideal platform for science investigations and research required to advance the technology readiness levels (TRLs) applicable to the Constellation Program. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of future investigations currently planned for operation in the MSG, and potential applications of MSG investigations that can provide useful data to the Constellation Program. In addition, this paper will address the role of the MSG facility in the ISS National Lab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, Larry
1993-08-01
Rocky Reach Hatchery is located along the Columbia Paver, just downstream from Rocky Reach Dam. Site elevation is 800 feet above sea level. The Turtle Rock Island facility, located 2 miles upstream, is operated as a satellite facility (shared with the Washington Department of Wildlife). The facility is staffed with 2.75 FTE`S. The hatchery was originally designed as a mile-long spawning channel at Turtle Rock Island. Rearing units consist of eight vinyl raceways at Rocky Reach and four rearing ponds at Turtle Rock. Water rights are held by Chelan County PUD and total 3,613 gpm from the Columbia River. Watermore » available for use in the Turtle Rock rearing ponds averages 12,000 gpm from the Columbia River. Rocky Reach Hatchery and the Turtle Rock satellite facility are owned by Chelan County PUD. They are operated as mitigation facilities for the fishery impacts caused by the construction and operation of Rocky Reach Dam. Rocky Reach Hatchery is used for incubation and early rearing of upriver bright (URB) fall chinook. Fingerlings are later transferred to the Turtle Rock facility for final rearing and release.« less
NASA Technical Reports Server (NTRS)
Clark, Toni A.
2014-01-01
In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed Extra Vehicular Activities are mandatory to ensure safety to the crew and all others involved. Innovation in testing techniques is important as well. The advent of Solid State Lighting technology and the lack of stable national and international standards for its implementation pose new challenges on how to design, test and verify individual light fixtures and the environment that uses them. The ISS will soon be replacing its internal fluorescent lighting system to a solid state LED system. The Solid State Lighting Assembly will be used not only for general lighting, but also as a medical countermeasure to control the circadian rhythm of the crew. The new light source has performance criteria very specific to its spectral fingerprint, creating new challenges that were originally not as significant during the original design of the ISS. This presentation will showcase findings and toolsets our team is using to assist in the planning of tasks, and design of operational lighting environments on the International Space Station.
Power Lander for Support of Long-Term Lunar Presence
NASA Technical Reports Server (NTRS)
Joyner, Russ; Rodriguez, Gary
2004-01-01
Emerging industrial base and the consequent sustained manned Lunar presence will require consistent high power capacities. This paper proposes a first iteration design of a flyable electric power platform which could serve as an enabler of Lunar Development and Exploration. It is intended to support a small facility solo or an emerging industrial base as part of a grid. Lunar Missions, Habitats and Facilities stand to benefit from an expected decade of non-stop operation, the economics of scale, Commercial Off-The-Shelf (COTS) availability, standardization of design, and logistical support for Lunar encampments provided by this architecture. The unattended and unmanned vehicle design is to be man- and robotics-serviceable after delivery by current and proposed heavy-lift boosters. Design continuity within a family of systems will improve reliability through "lessons learned'' in the field. Further, various configurations of the proposed scalable architecture will provide reference platforms for the indigenous construction of similar power plant facilities from in-situ Lunar resources (ISRU). The baseline design should be directed towards those materials available on the Moon and expected to be manufacturable on-site within the first decade of operation.
Nuclotron-Based Ion Collider Facility (nica)
NASA Astrophysics Data System (ADS)
Meshkov, I.; Sissakian, A.; Sorin, A.
2008-09-01
The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).
The NASA Lewis Research Center Water Tunnel Facility
NASA Technical Reports Server (NTRS)
Wasserbauer, Charles A.
1997-01-01
A water tunnel facility specifically designed to investigate internal fluid duct flows has been built at the NASA Research Center. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints for future test hardware. The inlet chamber flow conditioning approach is also detailed. Instrumentation and data acquisition capabilities are discussed. The incoming flow quality has been documented for about one quarter of the current facility operating range. At that range, there is some scatter in the data in the turbulent boundary layer which approaches 10 percent of the duct radius leading to a uniform core.
Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres, Juan; Anderson, Art
The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations.more » This plan is a living document that will be updated and refined throughout the lifetime of the facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brueziere, J.; Chauvin, E.; Piroux, J.C.
2013-07-01
AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process wasmore » implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.« less
Using GREENSCOPE Indicators for Sustainable Computer-Aided Process Evaluation and Design
Manufacturing sustainability can be increased by educating those who design, construct, and operate facilities, and by using appropriate tools for process evaluation and design. The U.S. Environmental Protection Agency's GREENSCOPE methodology and tool, for evaluation and design ...
14 CFR 93.83 - Aircraft operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Aircraft operations. (a) North-South Corridor. Unless otherwise authorized by ATC (including the Eglin Radar Control Facility), no person may operate an aircraft in flight within the North-South Corridor designated in § 93.81(b)(1) unless— (1) Before operating within the corridor, that person obtains a clearance...
14 CFR 93.83 - Aircraft operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Aircraft operations. (a) North-South Corridor. Unless otherwise authorized by ATC (including the Eglin Radar Control Facility), no person may operate an aircraft in flight within the North-South Corridor designated in § 93.81(b)(1) unless— (1) Before operating within the corridor, that person obtains a clearance...
14 CFR 93.83 - Aircraft operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Aircraft operations. (a) North-South Corridor. Unless otherwise authorized by ATC (including the Eglin Radar Control Facility), no person may operate an aircraft in flight within the North-South Corridor designated in § 93.81(b)(1) unless— (1) Before operating within the corridor, that person obtains a clearance...
Remote-Handled Low-Level Waste Disposal Project Code of Record
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austad, S. L.; Guillen, L. E.; McKnight, C. W.
2015-04-01
The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by themore » Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.« less
Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.
1982-01-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Lewis pressurized, fluidized-bed combustion program. Data and calculated results
NASA Astrophysics Data System (ADS)
Rollbuhler, R. J.
1982-03-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.
Garcia, Fernando A; Vandiver, Michael W
2017-01-01
In order to operate profitably under different product demand scenarios, biopharmaceutical companies must design their facilities with mass output flexibility in mind. Traditional biologics manufacturing technologies pose operational challenges in this regard due to their high costs and slow equipment turnaround times, restricting the types of products and mass quantities that can be processed. Modern plant design, however, has facilitated the development of lean and efficient bioprocessing facilities through footprint reduction and adoption of disposable and continuous manufacturing technologies. These development efforts have proven to be crucial in seeking to drastically reduce the high costs typically associated with the manufacturing of recombinant proteins. In this work, mathematical modeling is used to optimize annual production schedules for a single-product commercial facility operating with a continuous upstream and discrete batch downstream platform. Utilizing cell culture duration and volumetric productivity as process variables in the model, and annual plant throughput as the optimization objective, 3-D surface plots are created to understand the effect of process and facility design on expected mass output. The model shows that once a plant has been fully debottlenecked it is capable of processing well over a metric ton of product per year. Moreover, the analysis helped to uncover a major limiting constraint on plant performance, the stability of the neutralized viral inactivated pool, which may indicate that this should be a focus of attention during future process development efforts. LAY ABSTRACT: Biopharmaceutical process modeling can be used to design and optimize manufacturing facilities and help companies achieve a predetermined set of goals. One way to perform optimization is by making the most efficient use of process equipment in order to minimize the expenditure of capital, labor and plant resources. To that end, this paper introduces a novel mathematical algorithm used to determine the most optimal equipment scheduling configuration that maximizes the mass output for a facility producing a single product. The paper also illustrates how different scheduling arrangements can have a profound impact on the availability of plant resources, and identifies limiting constraints on the plant design. In addition, simulation data is presented using visualization techniques that aid in the interpretation of the scientific concepts discussed. © PDA, Inc. 2017.
Yahoo! Compute Coop (YCC). A Next-Generation Passive Cooling Design for Data Centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robison, AD; Page, Christina; Lytle, Bob
The purpose of the Yahoo! Compute Coop (YCC) project is to research, design, build and implement a greenfield "efficient data factory" and to specifically demonstrate that the YCC concept is feasible for large facilities housing tens of thousands of heat-producing computing servers. The project scope for the Yahoo! Compute Coop technology includes: - Analyzing and implementing ways in which to drastically decrease energy consumption and waste output. - Analyzing the laws of thermodynamics and implementing naturally occurring environmental effects in order to maximize the "free-cooling" for large data center facilities. "Free cooling" is the direct usage of outside air tomore » cool the servers vs. traditional "mechanical cooling" which is supplied by chillers or other Dx units. - Redesigning and simplifying building materials and methods. - Shortening and simplifying build-to-operate schedules while at the same time reducing initial build and operating costs. Selected for its favorable climate, the greenfield project site is located in Lockport, NY. Construction on the 9.0 MW critical load data center facility began in May 2009, with the fully operational facility deployed in September 2010. The relatively low initial build cost, compatibility with current server and network models, and the efficient use of power and water are all key features that make it a highly compatible and globally implementable design innovation for the data center industry. Yahoo! Compute Coop technology is designed to achieve 99.98% uptime availability. This integrated building design allows for free cooling 99% of the year via the building's unique shape and orientation, as well as server physical configuration.« less
"Swimmer's Ear" (Otitis Externa) Prevention
... Swimming Facilities Historic CDC Design & Operation Manuals Operation & Maintenance 12 Steps for Prevention of Recreational Water Illnesses ... Privacy FOIA No Fear Act OIG 1600 Clifton Road Atlanta , GA 30329-4027 USA 800-CDC-INFO ( ...
NETL's Hybrid Performance, or Hyper, facility
None
2018-02-13
NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.
40 CFR 60.590a - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of process improvement which is accomplished without a capital expenditure shall not by itself be... process unit is an affected facility. (b) Any affected facility under paragraph (a) of this section that... operators are not required to comply with the definition of “process unit” in § 60.590 of this subpart until...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... facility for executing and routing standardized equity and index options, to amend Routing Fees. While... other persons using any facility or system which NASDAQ operates or controls, and is not designed to...
An effective combined environment test facility
NASA Technical Reports Server (NTRS)
Deitch, A.
1980-01-01
A critical missile component required operational verification while subjected to combined environments within and beyond flight parameters. The testing schedule necessitated the design and fabrication of a test facility in order to provide the specified temperatures combined with humidity, altitude and vibration.
Managing Inventory At A Transitional Facility
NASA Technical Reports Server (NTRS)
Hutchins, Henry A.
1993-01-01
Kennedy Inventory Management System, KIMS, geared to needs of facility in transition from research and development to manufacturing. Operated jointly by several contractors at Kennedy Space Center, KIMS designed to reduce cost and increase efficiency of fabrication and maintenance of spaceflight hardware.
40 CFR 270.20 - Specific part B information requirements for land treatment facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... field test that will be conducted, including: (i) The type of test (e.g., column leaching, degradation...: (1) The wastes to be land treated; (2) Design measures and operating practices necessary to maximize... treatment zone; (c) A description of how the unit is or will be designed, constructed, operated, and...
40 CFR 270.20 - Specific part B information requirements for land treatment facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... field test that will be conducted, including: (i) The type of test (e.g., column leaching, degradation...: (1) The wastes to be land treated; (2) Design measures and operating practices necessary to maximize... treatment zone; (c) A description of how the unit is or will be designed, constructed, operated, and...
40 CFR 270.20 - Specific part B information requirements for land treatment facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... field test that will be conducted, including: (i) The type of test (e.g., column leaching, degradation...: (1) The wastes to be land treated; (2) Design measures and operating practices necessary to maximize... treatment zone; (c) A description of how the unit is or will be designed, constructed, operated, and...
40 CFR 270.20 - Specific part B information requirements for land treatment facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... field test that will be conducted, including: (i) The type of test (e.g., column leaching, degradation...: (1) The wastes to be land treated; (2) Design measures and operating practices necessary to maximize... treatment zone; (c) A description of how the unit is or will be designed, constructed, operated, and...
30 CFR 585.405 - How do I designate an operator?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 585.405 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Lease and Grant... identify the new designated operator within 72 hours on a form approved by BOEM. The lessee(s) or grantee(s...
30 CFR 585.405 - How do I designate an operator?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 585.405 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Lease and Grant... identify the new designated operator within 72 hours on a form approved by BOEM. The lessee(s) or grantee(s...
30 CFR 585.405 - How do I designate an operator?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 585.405 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Lease and Grant... identify the new designated operator within 72 hours on a form approved by BOEM. The lessee(s) or grantee(s...
Collaborative Mission Design at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.
2005-01-01
NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.
1971-01-01
The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.
Expert Systems for United States Navy Shore Facilities Utility Operations.
1988-03-01
of expertise when assessing the applicability of an expert system. Each of the tasks as similarly ranked to reflect subjective judgement on the...United States Navy Shore Facilities Utility Operations ABSTRACT A technology assessment of expert systems as they might be used in Navy utility...of these applications include design, fault diagnoses, training, data base management, and real-time monitoring. An assessment is given of each
Code of Federal Regulations, 2010 CFR
2010-07-01
... following requirements: (1) You must reduce your intake flow, at a minimum, to a level commensurate with... that the total design intake flow from all cooling water intake structures at your facility meets the... total design intake flow must be no greater than five (5) percent of the source water annual mean flow...
Code of Federal Regulations, 2011 CFR
2011-07-01
... discharge from at least a 25-year storm; (3) The owner or operator must design, construct, operate, and...-hour, 25-year storm; and (4) Collection and holding facilities (e.g., tanks or basins) associated with...
Code of Federal Regulations, 2013 CFR
2013-07-01
... discharge from at least a 25-year storm; (3) The owner or operator must design, construct, operate, and...-hour, 25-year storm; and (4) Collection and holding facilities (e.g., tanks or basins) associated with...
Code of Federal Regulations, 2012 CFR
2012-07-01
... discharge from at least a 25-year storm; (3) The owner or operator must design, construct, operate, and...-hour, 25-year storm; and (4) Collection and holding facilities (e.g., tanks or basins) associated with...
Code of Federal Regulations, 2014 CFR
2014-07-01
... discharge from at least a 25-year storm; (3) The owner or operator must design, construct, operate, and...-hour, 25-year storm; and (4) Collection and holding facilities (e.g., tanks or basins) associated with...
Code of Federal Regulations, 2010 CFR
2010-07-01
... discharge from at least a 25-year storm; (3) The owner or operator must design, construct, operate, and...-hour, 25-year storm; and (4) Collection and holding facilities (e.g., tanks or basins) associated with...
SSBRP User Operations Facility (UOF) Overview and Development Strategy
NASA Technical Reports Server (NTRS)
Picinich, Lou; Stone, Thom; Sun, Charles; Windrem, May; Givens, John J. (Technical Monitor)
1995-01-01
This paper will present the Space Station Biological Research Project (SSBRP) User Operations Facility (UOF) architecture and development strategy. A major element of the UOF at NASA Ames Research Center, the Communication and Data System (CDS) will be the primary focus of the discussions. CDS operational, telescience, security, and development objectives will be discussed along with CDS implementation strategy. The implementation strategy discussions will include: Object Oriented Analysis & Design, System & Software Prototyping, and Technology Utilization. A CDS design overview that includes: CDS Context Diagram, CDS Architecture, Object Models, Use Cases, and User Interfaces will also be presented. CDS development brings together "cutting edge" technologies and techniques such as: object oriented development, network security, multimedia networking, web-based data distribution, JAVA, and graphical user interfaces. Use of these "cutting edge" technologies and techniques translates directly to lower development and operations costs.
The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT
NASA Technical Reports Server (NTRS)
da Silva, Benjamim; Galvao, M. C.; Pereira, Clovis Solano
2008-01-01
The main objective of this paper is to present the capabilities of the new anechoic shielded rooms designed for space and commercial applications as part of the Integration and Testing Laboratory (LIT, Laboratorio de Integracao e Testes) in Brazil. A new anechoic shielded room named CBA2 has been in full operation since March 2007 and a remodeled chamber CBA1 is planned to be ready by the end of 2008, replacing an old facility which was in operation for the last 18 years. The Brazilian Space Program started with very small and simple satellites and the old CBA1 chamber was conceived in 1987 to accomplish the EMI/EMC tests not requiring significant volumes. Since the very beginning this facility was also used by the private sector for other applications mainly due to the absorption of digital electronics in all kind of products. The intense use of this facility during the last years, operating three shifts a day, caused a normal degradation and imposed several limitations. Therefore, a new totally remodeled chamber was designed considering the state of the art in terms of absorbers and associated instrumentation. On the other hand the facility CBA2 was conceived, designed and implemented to test large satellites taking into account the advance of the technology in terms of RF frequencies, power level, testing methodologies and several other factors. A very interesting and unique aspect of this project was the partnership between the private sector and governmental institution. As a result, the total investment was shared between several companies and consequently a time-sharing use of the facility as well.
Bender, Désirée; Hollstein, Tina; Schweppe, Cornelia
2017-12-01
This paper presents findings from an ethnographic study of old age care facilities for German-speaking people in Thailand. It analyses the conditions and processes behind the development and specific designs of such facilities. It first looks at the intertwinement, at the socio-structural level, of different transborder developments in which the facilities' emergence is embedded. Second, it analyses the processes that accompany the emergence, development and organisation of these facilities at the local level. In this regard, it points out the central role of the facility operators as transnational actors who mediate between different frames of reference and groups of actors involved in these facilities. It concludes that the processes of mediation and intertwining are an important and distinctive feature of the emergence of these facilities, necessitated by the fact that, although the facilities are located in Thailand, their 'markets' are in the German-speaking countries of their target groups.
Baseline performance of solar collectors for NASA Langley solar building test facility
NASA Technical Reports Server (NTRS)
Knoll, R. H.; Johnson, S. M.
1977-01-01
The solar collector field contains seven collector designs. Before operation in the field, the experimental performances (thermal efficiencies) of the seven collector designs were measured in an indoor solar simulator. The resulting data provided a baseline for later comparison with actual field test data. The simulator test results are presented for the collectors as received, and after several weeks of outdoor exposure with no coolant (dry operation). Six of the seven collector designs tested showed substantial reductions in thermal efficiency after dry operation.
303-K Storage Facility closure plan. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-15
Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Codemore » (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.« less
Explosive safety criteria at a Department of Energy contractor facility
NASA Astrophysics Data System (ADS)
Krach, F.
1984-08-01
Monsanto Research Corporation (MRC) operates the Mound facility in Miamisburg, Ohio, for the Department of Energy. Small explosive components are manufactured at MRC, and stringent explosive safety criteria have been developed for their manufacturing. The goals of these standards are to reduce employee injuries and eliminate fenceline impacts resulting from accidental detonations. The manner in which these criteria were developed and what DOD standards were incorporated into MRC's own design criteria are described. These design requirements are applicable to all new construction at MRC. An example of the development of the design of a Component Test Facility is presented to illustrate the application of the criteria.
Design strategies for the International Space University's variable gravity research facility
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.
1990-01-01
A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.
Sustainability Base: The Self-guided "Tour"
NASA Technical Reports Server (NTRS)
Grymes, Rosalind; Poll, Scott
2012-01-01
This series of 6 information sheets was designed to familiarize readers with the performance capabilities of Sustainability Base. The set described the design intentions and operational characteristics of this LEED Platinum facility
Ford Motor Company NDE facility shielding design.
Metzger, Robert L; Van Riper, Kenneth A; Jones, Martin H
2005-01-01
Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations.
NASA Reactor Facility Hazards Summary. Volume 1
NASA Technical Reports Server (NTRS)
1959-01-01
The Lewis Research Center of the National Aeronautics and Space Administration proposes to build a nuclear research reactor which will be located in the Plum Brook Ordnance Works near Sandusky, Ohio. The purpose of this report is to inform the Advisory Committee on Reactor Safeguards of the U. S. Atomic Energy Commission in regard to the design Lq of the reactor facility, the characteristics of the site, and the hazards of operation at this location. The purpose of this research reactor is to make pumped loop studies of aircraft reactor fuel elements and other reactor components, radiation effects studies on aircraft reactor materials and equipment, shielding studies, and nuclear and solid state physics experiments. The reactor is light water cooled and moderated of the MTR-type with a primary beryllium reflector and a secondary water reflector. The core initially will be a 3 by 9 array of MTR-type fuel elements and is designed for operation up to a power of 60 megawatts. The reactor facility is described in general terms. This is followed by a discussion of the nuclear characteristics and performance of the reactor. Then details of the reactor control system are discussed. A summary of the site characteristics is then presented followed by a discussion of the larger type of experiments which may eventually be operated in this facility. The considerations for normal operation are concluded with a proposed method of handling fuel elements and radioactive wastes. The potential hazards involved with failures or malfunctions of this facility are considered in some detail. These are examined first from the standpoint of preventing them or minimizing their effects and second from the standpoint of what effect they might have on the reactor facility staff and the surrounding population. The most essential feature of the design for location at the proposed site is containment of the maximum credible accident.
ERIC Educational Resources Information Center
Ballard, Ken
2000-01-01
Discusses planning points when negotiating joint ventures for designing public recreational facilities. The obstacle and impact of money in the negotiations is examined as are handling the definition of operational responsibilities, personnel and maintenance, program and service delivery, and progress of the partnership and facility itself. (GR)
ERIC Educational Resources Information Center
Kennedy, Mike
2005-01-01
As energy costs rise and resources dwindle, schools and universities can benefit greatly by taking an environmentally sensitive approach to construction, renovation and maintenance of facilities. Administrators free up needed budget resources by operating facilities more efficiently. Using sustainable-design strategies can set a good example for…
24 CFR 100.306 - Intent to operate as housing designed for persons who are 55 years of age or older.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (7) Public posting in common areas of statements describing the facility or community as housing for... good faith attempt to remove such language in determining whether the housing facility or community...
Agenda of the Fourth Annual Summer Conference, NASA/USRA University Advanced Design Program
NASA Technical Reports Server (NTRS)
1988-01-01
Presentations given by the participants at the fourth annual summer conference of the NASA/USRA University Advanced Design Program are summarized. The study topics include potential space and aeronautics projects which could be undertaken during a 20 to 30 year period beginning with the Space Station Initial Operating Configuration (IOC) scheduled for the early to mid-1990's. This includes system design studies for both manned and unmanned endeavors; e.g., lunar launch and landing facilities and operations, variable artificial gravity facility for the Space Station, manned Mars aircraft and delivery system, long term space habitat, construction equipment for lunar bases, Mars oxygen production system, trans-Pacific high speed civil transport, V/STOL aircraft concepts, etc.
2012-02-17
Industrial Area Construction: Located 5 miles south of Launch Complex 39, construction of the main buildings -- Operations and Checkout Building, Headquarters Building, and Central Instrumentation Facility – began in 1963. In 1992, the Space Station Processing Facility was designed and constructed for the pre-launch processing of International Space Station hardware that was flown on the space shuttle. Along with other facilities, the industrial area provides spacecraft assembly and checkout, crew training, computer and instrumentation equipment, hardware preflight testing and preparations, as well as administrative offices. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
Simulation Facilities and Test Beds for Galileo
NASA Astrophysics Data System (ADS)
Schlarmann, Bernhard Kl.; Leonard, Arian
2002-01-01
Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to availability, continuity and integrity requirements. It gives more details on two of these system design tools: the Galileo Signal Validation Facility (GSVF) and the Galileo System Simulation Facility (GSSF). It will describe the operational use of these facilities within the complete set of design tools and especially the combined use of GSVF and GSSF will be described. Finally, this paper presents also examples and results obtained with these tools.
Short Duration Reduced Gravity Drop Tower Design and Development
NASA Astrophysics Data System (ADS)
Osborne, B.; Welch, C.
The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.
Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility
NASA Technical Reports Server (NTRS)
Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer
2009-01-01
Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits and difficulties that a migration to cloud-based computing philosophies has uncovered when compared to the legacy Mission Control Center architecture. The team consists of system and software engineers with extensive experience with the MCC infrastructure and software currently used to support the International Space Station (ISS) and Space Shuttle program (SSP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 304 Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Facility is now undergoing closure asmore » defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 304 Facility, the history of materials and waste managed, and the procedures that will be followed to close the 304 Facility. The 304 Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.« less
The NHERI RAPID Facility: Enabling the Next-Generation of Natural Hazards Reconnaissance
NASA Astrophysics Data System (ADS)
Wartman, J.; Berman, J.; Olsen, M. J.; Irish, J. L.; Miles, S.; Gurley, K.; Lowes, L.; Bostrom, A.
2017-12-01
The NHERI post-disaster, rapid response research (or "RAPID") facility, headquartered at the University of Washington (UW), is a collaboration between UW, Oregon State University, Virginia Tech, and the University of Florida. The RAPID facility will enable natural hazard researchers to conduct next-generation quick response research through reliable acquisition and community sharing of high-quality, post-disaster data sets that will enable characterization of civil infrastructure performance under natural hazard loads, evaluation of the effectiveness of current and previous design methodologies, understanding of socio-economic dynamics, calibration of computational models used to predict civil infrastructure component and system response, and development of solutions for resilient communities. The facility will provide investigators with the hardware, software and support services needed to collect, process and assess perishable interdisciplinary data following extreme natural hazard events. Support to the natural hazards research community will be provided through training and educational activities, field deployment services, and by promoting public engagement with science and engineering. Specifically, the RAPID facility is undertaking the following strategic activities: (1) acquiring, maintaining, and operating state-of-the-art data collection equipment; (2) developing and supporting mobile applications to support interdisciplinary field reconnaissance; (3) providing advisory services and basic logistics support for research missions; (4) facilitating the systematic archiving, processing and visualization of acquired data in DesignSafe-CI; (5) training a broad user base through workshops and other activities; and (6) engaging the public through citizen science, as well as through community outreach and education. The facility commenced operations in September 2016 and will begin field deployments beginning in September 2018. This poster will provide an overview of the vision for the RAPID facility, the equipment that will be available for use, the facility's operations, and opportunities for user training and facility use.
NASA Astrophysics Data System (ADS)
Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei
2017-03-01
An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.
48 CFR 970.2704-2 - Procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... design or operation of any plants or facilities or specially designed equipment for such plants or... limited copyright license for a period of five years, and, in certain rare cases, specified longer periods...
Infections Unlikely to be Spread Through Swimming Pools
... Swimming Facilities Historic CDC Design & Operation Manuals Operation & Maintenance 12 Steps for Prevention of Recreational Water Illnesses ... Privacy FOIA No Fear Act OIG 1600 Clifton Road Atlanta , GA 30329-4027 USA 800-CDC-INFO ( ...
Energy Systems Test Area (ESTA) Pyrotechnic Operations: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Hacker, Scott
2012-01-01
The Johnson Space Center (JSC) has created and refined innovative analysis, design, development, and testing techniques that have been demonstrated in all phases of spaceflight. JSC is uniquely positioned to apply this expertise to components, systems, and vehicles that operate in remote or harsh environments. We offer a highly skilled workforce, unique facilities, flexible project management, and a proven management system. The purpose of this guide is to acquaint Test Requesters with the requirements for test, analysis, or simulation services at JSC. The guide includes facility services and capabilities, inputs required by the facility, major milestones, a roadmap of the facility s process, and roles and responsibilities of the facility and the requester. Samples of deliverables, facility interfaces, and inputs necessary to define the cost and schedule are included as appendices to the guide.
Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trond Bjornard; Philip C. Durst
2012-05-01
This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA)more » of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with the IAEA. If these requirements are understood at the earliest stages of facility design, it will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards, and will help the IAEA implement nuclear safeguards worldwide, especially in countries building their first nuclear facilities. It is also hoped that this guidance document will promote discussion between the IAEA, State Regulator/SSAC, Project Design Team, and Facility Owner/Operator at an early stage to ensure that new ISFSIs will be effectively and efficiently safeguarded. This is intended to be a living document, since the international nuclear safeguards requirements may be subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and facility operators for greater efficiency and cost effectiveness. As these improvements are made, it is recommended that the subject guidance document be updated and revised accordingly.« less
A NEW, SMALL DRYING FACILITY FOR WET RADIOACTIVE WASTE AND LIQUIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldiges, Olaf; Blenski, Hans-Juergen
2003-02-27
Due to the reason, that in Germany every Waste, that is foreseen to be stored in a final disposal facility or in a long time interim storage facility, it is necessary to treat a lot of waste using different drying technologies. In Germany two different drying facilities are in operation. The GNS Company prefers a vacuum-drying-technology and has built and designed PETRA-Drying-Facilities. In a lot of smaller locations, it is not possible to install such a facility because inside the working areas of that location, the available space to install the PETRA-Drying-Facility is too small. For that reason, GNS decidedmore » to design a new, small Drying-Facility using industrial standard components, applying the vacuum-drying-technology. The new, small Drying-Facility for wet radioactive waste and liquids is presented in this paper. The results of some tests with a prototype facility are shown in chapter 4. The main components of that new facility are described in chapter 3.« less
Environmental impact statement Space Shuttle advanced solid rocket motor program
NASA Technical Reports Server (NTRS)
1989-01-01
The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site. Sites being considered for the new facilities include John C. Stennis Space Center, Hancock County, Mississippi; the Yellow Creek site in Tishomingo County, Mississippi, which is currently in the custody and control of the Tennessee Valley Authority; and John F. Kennedy Space Center, Brevard County, Florida. TVA proposes to transfer its site to the custody and control of NASA if it is the selected site. All facilities need not be located at the same site. Existing facilities which may provide support for the program include Michoud Assembly Facility, New Orleans Parish, Louisiana; and Slidell Computer Center, St. Tammany Parish, Louisiana. NASA's preferred production location is the Yellow Creek site, and the preferred test location is the Stennis Space Center.
Hypersonic Wind Tunnel Calibration Using the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
Rhode, Matthew N.; DeLoach, Richard
2005-01-01
A calibration of a hypersonic wind tunnel has been conducted using formal experiment design techniques and response surface modeling. Data from a compact, highly efficient experiment was used to create a regression model of the pitot pressure as a function of the facility operating conditions as well as the longitudinal location within the test section. The new calibration utilized far fewer design points than prior experiments, but covered a wider range of the facility s operating envelope while revealing interactions between factors not captured in previous calibrations. A series of points chosen randomly within the design space was used to verify the accuracy of the response model. The development of the experiment design is discussed along with tactics used in the execution of the experiment to defend against systematic variation in the results. Trends in the data are illustrated, and comparisons are made to earlier findings.
Design and application of a test rig for super-critical power transmission shafts
NASA Technical Reports Server (NTRS)
Darlow, M.; Smalley, A.
1979-01-01
The design, assembly, operational check-out and application of a test facility for testing supercritical power transmission shafts under realistic conditions of size, speed and torque are described. Alternative balancing methods and alternative damping mechanisms are demonstrated and compared. The influence of torque upon the unbalance distribution is studied, and its effect on synchronous vibrations is investigated. The feasibility of operating supercritical power transmission shafting is demonstrated, but the need for careful control, by balancing and damping, of synchronous and nonsynchronous vibrations is made clear. The facility was demonstrated to be valuable for shaft system development programs and studies for both advanced and current-production hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristescu, I.; Cristescu, I. R.; Doerr, L.
2008-07-15
The ITER Isotope Separation System (ISS) and Water Detritiation System (WDS) should be integrated in order to reduce potential chronic tritium emissions from the ISS. This is achieved by routing the top (protium) product from the ISS to a feed point near the bottom end of the WDS Liquid Phase Catalytic Exchange (LPCE) column. This provides an additional barrier against ISS emissions and should mitigate the memory effects due to process parameter fluctuations in the ISS. To support the research activities needed to characterize the performances of various components for WDS and ISS processes under various working conditions and configurationsmore » as needed for ITER design, an experimental facility called TRENTA representative of the ITER WDS and ISS protium separation column, has been commissioned and is in operation at TLK The experimental program on TRENTA facility is conducted to provide the necessary design data related to the relevant ITER operating modes. The operation availability and performances of ISS-WDS have impact on ITER fuel cycle subsystems with consequences on the design integration. The preliminary experimental data on TRENTA facility are presented. (authors)« less
Aircraft Mishap Exercise at SLF
2018-02-14
An Aircraft Mishap Preparedness and Contingency Plan is underway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The center's Flight Operations rehearsed a helicopter crash-landing to test new and updated emergency procedures. The operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
Hexley, Philip; Smith, Victoria; Wall, Samantha
2016-04-01
Shared Resource Laboratories (SRLs) provide investigators access to necessary scientific and resource expertise to leverage complex technologies fully for advancing high-quality biomedical research in a cost-effective manner. At the University of Nebraska Medical Center, the Flow Cytometry Research Facility (FCRF) offered access to exceptional technology, but the methods of operation were outdated and unsustainable. Whereas technology has advanced and the institute has expanded, the operations at the facility remained unchanged for 35 yr. To rectify this, at the end of 2013, we took a product lifecycle management approach to affect large operational changes and align the services offered with the SRL goal of education, as well as to provide service to researchers. These disruptive operational changes took over 10 mo to complete and allowed for independent end-user acquisition of flow cytometry data. The results have been monitored for the past 12 mo. The operational changes have had a positive impact on the quality of research, increased investigator-facility interaction, reduced stress of facility staff, and increased overall use of the resources. This product lifecycle management approach to facility operations allowed us to conceive of, design, implement, and monitor effectively the changes at the FCRF. This approach should be considered by SRL management when faced with the need for operationally disruptive measures.
Calculation of the Strip Foundation on Solid Elastic Base, Taking into Account the Karst Collapse
NASA Astrophysics Data System (ADS)
Sharapov, R.; Lodigina, N.
2017-07-01
Karst processes greatly complicate the construction and operation of buildings and structures. Due to the karstic deformations at different times there have been several major accidents, which analysis showed that in all cases the fundamental errors committed at different stages of building development: site selection, engineering survey, design, construction or operation of the facilities. Theory analysis of beams on elastic foundation is essential in building practice. Specialist engineering facilities often have to resort to multiple designing in finding efficient forms of construction of these facilities. In work the calculation of stresses in cross-sections of the strip foundation evenly distributed load in the event of karst. A comparison of extreme stress in the event of karst and without accounting for the strip foundation as a beam on an elastic foundation.
Schilling, Stefan; Fusco, Francesco Maria; De Iaco, Giuseppina; Bannister, Barbara; Maltezou, Helena C.; Carson, Gail; Gottschalk, Rene; Brodt, Hans-Reinhard; Brouqui, Philippe; Puro, Vincenzo; Ippolito, Giuseppe
2014-01-01
Background Highly Infectious Diseases (HIDs) are (i) easily transmissible form person to person; (ii) cause a life-threatening illness with no or few treatment options; and (iii) pose a threat for both personnel and the public. Hence, even suspected HID cases should be managed in specialised facilities minimizing infection risks but allowing state-of-the-art critical care. Consensus statements on the operational management of isolation facilities have been published recently. The study presented was set up to compare the operational management, resources, and technical equipment among European isolation facilities. Due to differences in geography, population density, and national response plans it was hypothesized that adherence to recommendations will vary. Methods and Findings Until mid of 2010 the European Network for Highly Infectious Diseases conducted a cross-sectional analysis of isolation facilities in Europe, recruiting 48 isolation facilities in 16 countries. Three checklists were disseminated, assessing 44 items and 148 specific questions. The median feedback rate for specific questions was 97.9% (n = 47/48) (range: n = 7/48 (14.6%) to n = 48/48 (100%). Although all facilities enrolled were nominated specialised facilities' serving countries or regions, their design, equipment and personnel management varied. Eighteen facilities fulfilled the definition of a High Level Isolation Unit'. In contrast, 24 facilities could not operate independently from their co-located hospital, and five could not ensure access to equipment essential for infection control. Data presented are not representative for the EU in general, as only 16/27 (59.3%) of all Member States agreed to participate. Another limitation of this study is the time elapsed between data collection and publication; e.g. in Germany one additional facility opened in the meantime. Conclusion There are disparities both within and between European countries regarding the design and equipment of isolation facilities. With regard to the International Health Regulations, terminology, capacities and equipment should be standardised. PMID:25350843
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... provide post accident design basis cooling. Therefore, the proposed change does not involve a significant... operating margin inherent in the design orifices of the RHR suppression pool cooling test return line and... information in comment submissions that you do not want to be publicly disclosed. The NRC posts all comment...
A high resolution cavity BPM for the CLIC Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chritin, N.; Schmickler, H.; Soby, L.
2010-08-01
In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.
Cast Coil Transformer Fire Susceptibility and Reliability Study
1991-04-01
transformers reduce risk to the user compared to liquid-filled units, eliminate environmental impacts, are more efficient than most transformer designs, and...filled units, eliminate environmental impacts, arc more efficient than most transformer designs, and add minimal risk to the facility in a fire situation...add minimal risk to the facility in a fire situation. Cast coil transformers have a long record of operation and have proven to be reliable and
Skylab materials processing facility experiment developer's report
NASA Technical Reports Server (NTRS)
Parks, P. G.
1975-01-01
The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.
LCDRS FLOW FROM DOUBLE-LINED LANDFILLS AND SURFACE IMPOUNDMENTS
This report presents field data on the measured flows of liquid from the leakage detection, collection, and removal systems (LDCRSs) of 28 double-lined surface impoundment facilities. or each facility, information on design and operation is presented, as is an evaluation of the s...
Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility
NASA Astrophysics Data System (ADS)
Corato, V.; Affinito, L.; Anemona, A.; Besi Vetrella, U.; Di Zenobio, A.; Fiamozzi Zignani, C.; Freda, R.; Messina, G.; Muzzi, L.; Perrella, M.; Reccia, L.; Tomassetti, G.; Turtù, S.; della Corte, A.
2015-03-01
The ‘NAFASSY’ (NAtional FAcility for Superconducting SYstems) facility is designed to test wound conductor samples under high-field conditions at variable temperatures. Due to its unique features, it is reasonable to assume that in the near future NAFASSY will have a preeminent role at the international level in the qualification of long coiled cables in operative conditions. The magnetic system consists of a large warm bore background solenoid, made up of three series-connected grading sections obtained by winding three different Nb3Sn Cable-in-Conduit Conductors. Thanks to the financial support of the Italian Ministry for University and Research the low-field coil is currently under production. The design has been properly modified to allow the system to operate also as a stand-alone facility, with an inner bore diameter of 1144 mm. This magnet is able to provide about 7 T on its axis and about 8 T close to the insert inner radius, giving the possibility of performing a test relevant for large-sized NbTi or medium-field Nb3Sn conductors. The detailed design of the 8 T magnet, including the electro-magnetic, structural and thermo-hydraulic analysis, is here reported, as well as the production status.
The ISS Fluids and Combustion Facility: Experiment Accommodations Summary
NASA Technical Reports Server (NTRS)
Corban, Robert R.; Simons, Stephen N. (Technical Monitor)
2001-01-01
The International Space Station's (ISS's) Fluids and Combustion Facility (FCF) is in the process of final design and development activities to accommodate a wide range of experiments in the fields of combustion science and fluid physics. The FCF is being designed to provide potential experiments with well defined interfaces that can meet the experimenters requirements, provide the flexibility for on-orbit reconfiguration, and provide the maximum capability within the ISS resources and constraints. As a multi-disciplined facility, the FCF supports various experiments and scientific objectives, which will be developed in the future and are not completely defined at this time. Since developing experiments to be performed within FCF is a continuous process throughout the FCF's operational lifetime, each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Configurations of potential experiments in the FCF has been on-going to better define the FCF interfaces and provide assurances that the FCF design will meet its design requirements. This paper provides a summary of ISS resources and FCF capabilities, which are available for potential ISS FCF users. Also, to better understand the utilization of the FCF a description of a various experiment layouts and associated operations in the FCF are provided.
NASA Astrophysics Data System (ADS)
Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.
2011-04-01
The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. N Appendix N to Par...
Space Nuclear Thermal Propulsion (SNTP) Air Force facility
NASA Technical Reports Server (NTRS)
Beck, David F.
1993-01-01
The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.
A button - type beam position monitor design for TARLA facility
NASA Astrophysics Data System (ADS)
Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.
2016-03-01
Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, B.; Stern, W.; Colley, J.
International Atomic Energy Agency (IAEA) safeguards involves verification activities at a wide range of facilities in a variety of operational phases (e.g., under construction, start-up, operating, shutdown, closed-down, and decommissioned). Safeguards optimization for each different facility type and operational phase is essential for the effectiveness of safeguards implementation. The IAEA’s current guidance regarding safeguards for the different facility types in the various lifecycle phases is provided in its Design Information Examination (DIE) and Verification (DIV) procedure. 1 Greater efficiency in safeguarding facilities that are shut down or closed down, including those being decommissioned, could allow the IAEA to use amore » greater portion of its effort to conduct other verification activities. Consequently, the National Nuclear Security Administration’s Office of International Nuclear Safeguards sponsored this study to evaluate whether there is an opportunity to optimize safeguards approaches for facilities that are shutdown or closed-down. The purpose of this paper is to examine existing safeguards approaches for shutdown and closed-down facilities, including facilities being decommissioned, and to seek to identify whether they may be optimized.« less
Engineering directorate technical facilities catalog
NASA Technical Reports Server (NTRS)
Maloy, Joseph E.
1993-01-01
The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).
Skylab Shroud in the Space Power Facility
1970-12-21
The 56-foot tall, 24,400-pound Skylab shroud installed in the Space Power Facility’s vacuum chamber at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station. The Space Power Facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It can produce a vacuum deep enough to simulate the conditions at 300 miles altitude. The Space Power Facility was originally designed to test nuclear-power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. Payload shrouds are aerodynamic fairings to protect the payload during launch and ascent to orbit. The Skylab mission utilized the largest shroud ever attempted. Unlike previous launches, the shroud would not be jettisoned until the spacecraft reached orbit. NASA engineers designed these tests to verify the dynamics of the jettison motion in a simulated space environment. Fifty-four runs and three full-scale jettison tests were conducted from mid-September 1970 to June 1971. The shroud behaved as its designers intended, the detonators all fired, and early design issues were remedied by the final test. The Space Power Facility continues to operate today. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, Horst; Purgert, Robert Michael
Following the successful completion of a 15-year effort to develop and test materials that would allow coal-fired power plants to be operated at advanced ultra-supercritical (A-USC) steam conditions, a United States-based consortium is presently engaged in a project to build an A-USC component test facility (ComTest). A-USC steam cycles have the potential to improve cycle efficiency, reduce fuel costs, and reduce greenhouse gas emissions. Current development and demonstration efforts are focused on enabling the construction of A-USC plants, operating with steam temperatures as high as 1400°F (760°C) and steam pressures up to 5000 psi (35 MPa), which can potentially increasemore » cycle efficiencies to 47% HHV (higher heating value), or approximately 50% LHV (lower heating value), and reduce CO 2 emissions by roughly 25%, compared to today’s U.S. fleet. A-USC technology provides a lower-cost method to reduce CO 2 emissions, compared to CO 2 capture technologies, while retaining a viable coal option for owners of coal generation assets. Among the goals of the ComTest facility are to validate that components made from advanced nickel-based alloys can operate and perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty of cost estimates for future A-USC power plants. The configuration of the ComTest facility would include the key A-USC technology components that were identified for expanded operational testing, including a gas-fired superheater, high-temperature steam piping, steam turbine valve, and cycling header component. Membrane walls in the superheater have been designed to operate at the full temperatures expected in a commercial A-USC boiler, but at a lower (intermediate) operating pressure. This superheater has been designed to increase the temperature of the steam supplied by the host utility boiler up to 1400°F (760°C). The steam turbine stop and control valve component has been designed to operate at full A-USC temperatures, and would be tested both in throttling operation and to accumulate accelerated, repetitive stroke cycles. A cycling header component has been designed to confirm the suitability of new high-temperature nickel alloys to cycling operation, expected of future coal-fired power plants. Current test plans would subject these components to A-USC operating conditions for at least 8,000 hours by September 2020. The ComTest project is managed by Energy Industries of Ohio, and technically directed by the Electric Power Research Institute, Inc., with General Electric designing the A-USC components. This consortium is completing the Detailed Engineering phase of the project, with procurement scheduled to begin in late 2017. The effort is primarily funded by the U.S. Department of Energy, through the National Energy Technology Laboratory, along with the Ohio Development Services Agency. This presentation outlines the motivation for the project, explains the project’s structure and schedule, and provides technical details on the design of the ComTest facility.« less
Design Status of the LBNF / DUNE Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadimitriou, Vaia; et al.
The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a wide band beam of neutrinos of sufficient intensity and appropriate energy toward DUNE detectors, placed 4850 feet underground at SURF in South Dakota, about 1,300 km away. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a four-interaction length solid target and produce mesons which are subsequently focused by a set of three magnetic horns into a 194 m long helium-filled decay pipe where they decay intomore » muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spatial and radiological constraints, extensive simulations and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to about 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015 and CD-3a approval in September 2016. We discuss here the Beamline design status and the associated challenges.« less
High-Explosives Applications Facility (HEAF)
NASA Astrophysics Data System (ADS)
Morse, J. L.; Weingart, R. C.
1989-03-01
This Safety Analysis Report (SAR) reviews the safety and environmental aspects of the High Explosives Applications Facility (HEAF). Topics covered include the site selected for the HEAF, safety design criteria, operations planned within the facility, and the safety and environmental analyses performed on this project to date. Provided in the Summary section is a review of hazards and the analyses, conclusions, and operating limits developed in this SAR. Appendices provide supporting documents relating to this SAR. This SAR is required by the LLNL Health and Safety Manual and DOE Order 5481.1B(2) to document the safety analysis efforts. The SAR was assembled by the Hazards Control Department, B-Division, and HEAF project personnel. This document was reviewed by B Division, the Chemistry Department, the Hazards Control Department, the Laboratory Associate Director for Administration and Operations, and the Associate Directors ultimately responsible for HEAF operations.
A New Large Vibration Test Facility Concept for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Ross, Brian P.; Johnson, Eric L.; Hoksbergen, Joel; Lund, Doug
2014-01-01
The James Webb Space Telescope consists of three main components, the Integrated Science Instrument Module (ISIM) Element, the Optical Telescope Element (OTE), and the Spacecraft Element. The ISIM and OTE are being assembled at the National Aeronautics and Space Administration's Goddard Spaceflight Center (GSFC). The combined OTE and ISIM Elements, called OTIS, will undergo sine vibration testing before leaving Goddard. OTIS is the largest payload ever tested at Goddard and the existing GSFC vibration facilities are incapable of performing a sine vibration test of the OTIS payload. As a result, a new large vibration test facility is being designed. The new facility will consist of a vertical system with a guided head expander and a horizontal system with a hydrostatic slip table. The project is currently in the final design phase with installation to begin in early 2015 and the facility is expected to be operational by late 2015. This paper will describe the unique requirements for a new large vibration test facility and present the selected final design concepts.
NASA Technical Reports Server (NTRS)
Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.
2010-01-01
An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration
EPA’s Experimental Stream Facility: Design and Research Supporting Watershed Management
The EPA’s Experimental Stream Facility (ESF) represents an important tool in research that is underway to further understanding of the relative importance of stream ecosystems and the services they provide for effective watershed management. The ESF is operated under the goal of ...
Lidar Based Emissions Measurement at the Whole Facility Scale: Method and Error Analysis
USDA-ARS?s Scientific Manuscript database
Particulate emissions from agricultural sources vary from dust created by operations and animal movement to the fine secondary particulates generated from ammonia and other emitted gases. The development of reliable facility emission data using point sampling methods designed to characterize regiona...
What Really Needs to Be Built?
ERIC Educational Resources Information Center
Gilbert, P. G.
1991-01-01
Discusses the development of a camp design brief that clarifies the specific priorities and criteria for building or expanding camp facilities. Presents three situations in which camp directors accurately diagnosed their facility problems but changed their building plans over time because of financial, operational, or locational considerations.…
Flow analysis of airborne particles in a hospital operating room
NASA Astrophysics Data System (ADS)
Faeghi, Shiva; Lennerts, Kunibert
2016-06-01
Preventing airborne infections during a surgery has been always an important issue to deliver effective and high quality medical care to the patient. One of the important sources of infection is particles that are distributed through airborne routes. Factors influencing infection rates caused by airborne particles, among others, are efficient ventilation and the arrangement of surgical facilities inside the operating room. The paper studies the ventilation airflow pattern in an operating room in a hospital located in Tehran, Iran, and seeks to find the efficient configurations with respect to the ventilation system and layout of facilities. This study uses computational fluid dynamics (CFD) and investigates the effects of different inflow velocities for inlets, two pressurization scenarios (equal and excess pressure) and two arrangements of surgical facilities in room while the door is completely open. The results show that system does not perform adequately when the door is open in the operating room under the current conditions, and excess pressure adjustments should be employed to achieve efficient results. The findings of this research can be discussed in the context of design and controlling of the ventilation facilities of operating rooms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara
2005-02-06
Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an earlymore » prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called 'HPR-1'.« less
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Design. 646.214 Section 646.214 Highways FEDERAL HIGHWAY... Projects § 646.214 Design. (a) General. (1) Facilities that are the responsibility of the railroad for maintenance and operation shall conform to the specifications and design standards used by the railroad in its...
Biomedical user facility at the 400-MeV Linac at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, W.T.
1993-12-01
In this paper, general requirements are discussed on a biomedical user facility at the Fermilab`s 400-MeV Linac, which meets the needs of biology and biophysics experiments, and a conceptual design and typical operations requirements of the facility is presented. It is assumed that no human patient treatment will take place in this facility. If human patients were treated, much greater attention would have to be paid to safeguarding the patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S.B.; Srivastava, P.; Mishra, S.K.
2013-07-01
Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of itsmore » longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)« less
Measurement of the 21Na(p,{gamma})22Mg Reaction with the Dragon Facility at TRIUMF-ISAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, A.A.; Bishop, S.; D'Auria, J.M.
2003-08-26
The DRAGON recoil separator facility, designed to measure the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now operational at the TRIUMF-ISAC radioactive beam facility in Vancouver, Canada. We report on first measurements of the 21Na(p,{gamma})22Mg reaction rate with radioactive beams of 21Na.
Interim Stabilization Equipment Essential and Support Drawing Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
KOCH, M.R.
The purpose of this document is to list the Interim Stabilization equipment drawings that are classified as Essential or Support drawings. Essential Drawings: Those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment. Support Drawings: Those drawings identified by the facility staff that further describe the design details of structures, systems or components shown on essential drawings.
NASA Technical Reports Server (NTRS)
2007-01-01
Work on Stennis Space Center's new Emergency Operations Center is progressing on schedule, according to Robert Perkins, construction manager with Jacobs Technology. At the turn of the New Year, construction contractors had completed the pervious paving for the north and west parking lots. Part of the facility's `green' design, pervious paving allows water to pass through and be absorbed directly into the ground below, preventing erosion from runoff. Through January, workers concentrated on installing the roof, sprinkler piping and overhead cable trays for electrical and communication lines. The next step will be interior work, erecting wallboard and installing electrical equipment. Perkins said NASA seeks to earn a Silver LEED (Leadership in Energy and Environmental Design) Rating for the project's environmentally-friendly and sustainable design, construction and operation. The facility has a projected completion date of February 2009.
2007-12-30
Work on Stennis Space Center's new Emergency Operations Center is progressing on schedule, according to Robert Perkins, construction manager with Jacobs Technology. At the turn of the New Year, construction contractors had completed the pervious paving for the north and west parking lots. Part of the facility's `green' design, pervious paving allows water to pass through and be absorbed directly into the ground below, preventing erosion from runoff. Through January, workers concentrated on installing the roof, sprinkler piping and overhead cable trays for electrical and communication lines. The next step will be interior work, erecting wallboard and installing electrical equipment. Perkins said NASA seeks to earn a Silver LEED (Leadership in Energy and Environmental Design) Rating for the project's environmentally-friendly and sustainable design, construction and operation. The facility has a projected completion date of February 2009.
Safety analysis in test facility design
NASA Astrophysics Data System (ADS)
Valk, A.; Jonker, R. J.
1990-09-01
The application of safety analysis techniques as developed in, for example nuclear and petrochemical industry, can be very beneficial in coping with the increasing complexity of modern test facility installations and their operations. To illustrate the various techniques available and their phasing in a project, an overview of the most commonly used techniques is presented. Two case studies are described: the hazard and operability study techniques and safety zoning in relation to the possible presence of asphyxiating atmospheres.
Zero Gravity Research Facility User's Guide
NASA Technical Reports Server (NTRS)
Thompson, Dennis M.
1999-01-01
The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
...] Leakage Detection Systems,'' to define a new time limit for restoring inoperable RCS leakage detection instrumentation to operable status, establish alternate methods of monitoring RCS leakage when monitors are... design bases related to the operability of the RCS leakage detection instrumentation. Date of issuance...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... Design,'' GDC 31, ``Fracture Prevention of Reactor Coolant Pressure Boundary,'' and GDC 32, ``Inspection... Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration...
A Structured, Yet Agile Approach to Designing C2 Operating Environments
2012-06-01
PROCESS ........................................................ 22 APPENDIX A: SUPPLEMENTAL MATERIAL...organization’s mission effectiveness. Lastly, he identifies the mechanisms for C2 agility, enabled by people, processes , information, systems...operations, controls forces, and coordinates operational activities and/or a facility that is organized to gather, process , analyze, dispatch, and
Facility design consideration for continuous mix production of class 1.3 propellant
NASA Technical Reports Server (NTRS)
Williamson, K. L.; Schirk, P. G.
1994-01-01
In November of 1989, NASA awarded the Advanced Solid Rocket Motor (ASRM) contract to Lockheed Missiles and Space Company (LMSC) for production of advanced solid rocket motors using the continuous mix process. Aerojet ASRM division (AAD) was selected as the facility operator and RUST International Corporation provided the engineering, procurement, and construction management services. The continuous mix process mandates that the mix and cast facilities be 'close-coupled' along with the premix facilities, creating unique and challenging requirements for the facility designer. The classical approach to handling energetic materials-division into manageable quantities, segregation, and isolation-was not available due to these process requirements and quantities involved. This paper provides a description of the physical facilities, the continuous mix process, and discusses the monitoring and detection techniques used to mitigate hazards and prevent an incident.
Report of foreign travel to Paris, France, June 1, 1990--June 12, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoesen, S.D.; Jones, L.S.
1990-07-01
The Martin Marietta Energy Systems, Inc., Team, consisting of representatives of the Engineering Division and Central Waste Management Division, participated in a technology exchange program on French --- US low-level radioactive waste (LLW) management facility design, construction, and operation. Visits were made to the new French LLW disposal facility currently under construction, the Centre de Stockage de l'Aube (CSA), to the La Hague reprocessing facility to visit LLW conditioning and storage facilities, and to the operating LLW disposal facility, the Centre de Stockage de la Manche (CSM). A meeting was also held with representatives of the Agence National pour lamore » Gestion des Dechets Radioactifs (ANDRA) to discuss overall French and Oak Ridge LLW disposal facility development programs and to review the status of the efforts being conducted under the current subcontract with NUMATEC/Societe General pour les Techniques Nouvelles (SGN)/ANDRA.« less
241-AY Double Shell Tanks (DST) Integrity Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
JENSEN, C.E.
1999-09-21
This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.
Criteria for Solid Waste Disposal Facilities: A Guide for Owners/Operators
EPA's continuing mission to establish the minimum national standards for landfill design, operation, and management that will enhance landfill safety and boost public confidence in landfills as a component of a workable integrated waste management system.
42 CFR 136.101 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HEALTH AND HUMAN SERVICES INDIAN HEALTH Grants for Development, Construction, and Operation of... including feasibility studies, construction, operation, provision, or maintenance of services and facilities provided to Indians and, (b) for projects for planning, training, evaluation or other activities designed...
NASA Technical Reports Server (NTRS)
Mccllough, J. R.; Sharpe, A.; Doetsch, K. H.
1980-01-01
The SIMFAC has played a vital role in the design, development, and performance verification of the shuttle remote manipulator system (SRMS) to be installed in the space shuttle orbiter. The facility provides for realistic man-in-the-loop operation of the SRMS by an operator in the operator complex, a flightlike crew station patterned after the orbiter aft flight deck with all necessary man machine interface elements, including SRMS displays and controls and simulated out-of-the-window and CCTV scenes. The characteristics of the manipulator system, including arm and joint servo dynamics and control algorithms, are simulated by a comprehensive mathematical model within the simulation subsystem of the facility. Major studies carried out using SIMFAC include: SRMS parameter sensitivity evaluations; the development, evaluation, and verification of operating procedures; and malfunction simulation and analysis of malfunction performance. Among the most important and comprehensive man-in-the-loop simulations carried out to date on SIMFAC are those which support SRMS performance verification and certification when the SRMS is part of the integrated orbiter-manipulator system.
NASA Technical Reports Server (NTRS)
Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.
1986-01-01
To establish a long-term research facility for experimental investigations of design diversity as a means of achieving fault-tolerant systems, a distributed testbed for multiple-version software was designed. It is part of a local network, which utilizes the Locus distributed operating system to operate a set of 20 VAX 11/750 computers. It is used in experiments to measure the efficacy of design diversity and to investigate reliability increases under large-scale, controlled experimental conditions.
E-4 Test Facility Design Status
NASA Technical Reports Server (NTRS)
Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick
2001-01-01
Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.
High field superconducting solenoid for the LASA in Milan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acerbi, E.; Aleessandria, F.; Baccaglioni, G.
1988-03-01
This paper presents the preliminary design of a 19 T superconducting facility for the LASA Laboratory in Milan. The main features of the facility, realized with NbTi, Nb/sub 3/Sn and V/sub 3/Ga coils, are represented by an high field homogeneity in the center region and by the presence of two cryostats which allow to operate separately the NbTi coil (useful bore 0.55 m) and the Nb/sub 3/Sn - V/sub 3/Ga coils (useful bore 0.05 - 0.07 m). The main parameters of the facility and the design criteria are discussed in details.
Commissioning and operation of the horizontal test apparatus at SNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang-Ho; Neustadt, Thomas S.; Howell, Matthew P.
2015-07-01
The Spallation Neutron Source (SNS) at Oak Ridge National Lab (ORNL) has built, commissioned and operated a Horizontal Test Apparatus (HTA) vessel in the Radiofrequency Test Facility (RFTF) test cave. It can be operated at 4.5 K using the independent Cryogenic Test Facility (CTF). The HTA is designed to be a single cavity version of an SNS cryomodule with the ability to demount and replace the cavity. It provides the functionality for testing a single dressed SNS medium or high beta Superconducting Radiofrequency (SRF) cavity. The HTA is currently being used in support of R&D for in-situ plasma processing ofmore » the cavity's inner niobium surface. The design and commissioning of the HTA at 4.5 K will be presented as well as results from operating the HTA including cool-down, warm-up and steady state operations. Results from plasma processing a warm SCRF cavity in-between cold HTA tests will also be reported.« less
To build a mine: Prospect to product
NASA Technical Reports Server (NTRS)
Gertsch, Richard E.
1992-01-01
The terrestrial definition of ore is a quantity of earth materials containing a mineral that can be extracted at a profit. While a space-based resource-gathering operation may well be driven by other motives, such an operation should have the most favorable cost-benefit ratio possible. To this end, principles and procedures already tested by the stringent requirements of the profit motive should guide the selection, design, construction, and operation of a space-based mine. Proceeding from project initiation to a fully operational mine requires several interacting and overlapping steps, which are designed to facilitate the decision process and insure economic viability. The steps to achieve a fully operational mine are outlined. Presuming that the approach to developing nonterrestrial resources will parallel that for developing mineral resources on Earth, we can speculate on some of the problems associated with developing lunar and asteroidal resources. The baseline for our study group was a small lunar mine and oxygen extraction facility. The development of this facility is described in accordance with the steps outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.
CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility tomore » meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)« less
Status of power generation experiments in the NASA Lewis closed cycle MHD facility
NASA Technical Reports Server (NTRS)
Sovie, R. J.; Nichols, L. D.
1971-01-01
The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.
NASA Astrophysics Data System (ADS)
Massmann, Joel; Freeze, R. Allan
1987-02-01
This paper puts in place a risk-cost-benefit analysis for waste management facilities that explicitly recognizes the adversarial relationship that exists in a regulated market economy between the owner/operator of a waste management facility and the government regulatory agency under whose terms the facility must be licensed. The risk-cost-benefit analysis is set up from the perspective of the owner/operator. It can be used directly by the owner/operator to assess alternative design strategies. It can also be used by the regulatory agency to assess alternative regulatory policy, but only in an indirect manner, by examining the response of an owner/operator to the stimuli of various policies. The objective function is couched in terms of a discounted stream of benefits, costs, and risks over an engineering time horizon. Benefits are in the form of revenues for services provided; costs are those of construction and operation of the facility. Risk is defined as the cost associated with the probability of failure, with failure defined as the occurrence of a groundwater contamination event that violates the licensing requirements established for the facility. Failure requires a breach of the containment structure and contaminant migration through the hydrogeological environment to a compliance surface. The probability of failure can be estimated on the basis of reliability theory for the breach of containment and with a Monte-Carlo finite-element simulation for the advective contaminant transport. In the hydrogeological environment the hydraulic conductivity values are defined stochastically. The probability of failure is reduced by the presence of a monitoring network operated by the owner/operator and located between the source and the regulatory compliance surface. The level of reduction in the probability of failure depends on the probability of detection of the monitoring network, which can be calculated from the stochastic contaminant transport simulations. While the framework is quite general, the development in this paper is specifically suited for a landfill in which the primary design feature is one or more synthetic liners in parallel. Contamination is brought about by the release of a single, inorganic nonradioactive species into a saturated, high-permeability, advective, steady state horizontal flow system which can be analyzed with a two-dimensional analysis. It is possible to carry out sensitivity analyses for a wide variety of influences on this system, including landfill size, liner design, hydrogeological parameters, amount of exploration, extent of monitoring network, nature of remedial schemes, economic factors, and regulatory policy.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Register. Surveys are designed to determine the number and location of all operational pumpout and dump... the coastal zone. Surveys also are designed to determine the number of recreational vessels in coastal... increase the value of usefulness of existing property. Dump station. A facility specifically designed to...
40 CFR 265.1090 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicable to the facility. Except for air emission control equipment design documentation and information... the operating record for a minimum of 3 years. Air emission control equipment design documentation... explain: How use of the required air emission controls on the tanks would affect the tank design features...
40 CFR 265.1090 - Recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicable to the facility. Except for air emission control equipment design documentation and information... the operating record for a minimum of 3 years. Air emission control equipment design documentation... explain: How use of the required air emission controls on the tanks would affect the tank design features...
40 CFR 265.1090 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicable to the facility. Except for air emission control equipment design documentation and information... the operating record for a minimum of 3 years. Air emission control equipment design documentation... explain: How use of the required air emission controls on the tanks would affect the tank design features...
DOT National Transportation Integrated Search
2017-02-01
The authors reviewed the literature on planning intermodal transit facilities, extracting recommendations about station and station-area design and land uses, operation of transportation services, and policy actions for station-area planning. They al...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.
30 CFR 250.1628 - Design, installation, and operation of production systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...
30 CFR 250.1628 - Design, installation, and operation of production systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...
30 CFR 250.1628 - Design, installation, and operation of production systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...
47 CFR 74.750 - Transmission system facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... and TV translator transmitters will be certificated by the FCC: (1) The equipment shall be so designed...
A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI
NASA Astrophysics Data System (ADS)
Tiedemann, D.; Stiebing, K. E.; Winters, D. F. A.; Quint, W.; Varentsov, V.; Warczak, A.; Malarz, A.; Stöhlker, Th.
2014-11-01
A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×1012 atoms/cm3 for helium and 8.1×1012 atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.
NASA Technical Reports Server (NTRS)
Hebert, Phillip W., Sr.
2008-01-01
May 2007, NASA's Constellation Program selected John C Stennis Space Center (SSC) near Waveland Mississippi as the site to construct an altitude test facility for the developmental and qualification testing of the Ares1 upper stage (US) engine. Test requirements born out of the Ares1 US propulsion system design necessitate exceptional Data Acquisition System (DAS) design solutions that support facility and propellant systems conditioning, test operations control and test data analysis. This paper reviews the new A3 Altitude Test Facility's DAS design requirements for real-time deterministic digital data, DAS technology enhancements, system trades, technology validation activities, and the current status of this system's new architecture. Also to be discussed will be current network technologies to improve data transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spore, J.W.; Cappiello, M.W.; Dotson, P.J.
The analytical support in 1985 for Cylindrical Core Test Facility (CCTF), Slab Core Test Facility (SCTF), and Upper Plenum Test Facility (UPTF) tests involves the posttest analysis of 16 tests that have already been run in the CCTF and the SCTF and the pretest analysis of 3 tests to be performed in the UPTF. Posttest analysis is used to provide insight into the detailed thermal-hydraulic phenomena occurring during the refill and reflood tests performed in CCTF and SCTF. Pretest analysis is used to ensure that the test facility is operated in a manner consistent with the expected behavior of anmore » operating full-scale plant during an accident. To obtain expected behavior of a plant during an accident, two plant loss-of-coolant-accident (LOCA) calculations were performed: a 200% cold-leg-break LOCA calculation for a 2772 MW(t) Babcock and Wilcox plant and a 200% cold-leg-break LOCA calculation for a 3315 MW(t) Westinghouse plant. Detailed results are presented for several CCTF UPI tests and the Westinghouse plant analysis.« less
Extreme winds and tornadoes: an overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, J.R.
1985-01-01
The objective of this course on extreme winds, hurricanes and tornadoes is to provide an overview of these natural phenomenon from the perspective of design of new buildings and structures or the evaluation of existing ones. Information is directly applicable to design and evaluation processes. The premise is that the facility under consideration, which may consist of various buildings, structures, processing equipment, stacks, ventilation ducts, etc., can be classified into certain categories, depending on the importance of the mission performed in the facility or the hazard that is presented by the particular operation. Having classified the facility into an appropriatemore » category will automatically define certain design goals for the facility. The design goals are then met by selecting a design wind speed that is appropriate for the specified exceedance probability and by following certain specified design procedures. The problem then is to determine appropriate wind loads and other applicable loads, including dead loads, live loads, seismic loads and other loads that may act on the structures. The design process can then proceed in the usual manner. In the case of existing facilities the strengths of the various structural elements, subsystems and systems are evaluated and these strengths are related to wind speeds that would result in failure to meet the design goals. 12 refs.« less
33 CFR 148.725 - What are the design, construction and operational criteria?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the basis of how well they: (a) Reflect the use of best available technology in design, construction...) Maximize use of existing facilities; (i) Provide personnel trained in oil spill prevention at critical...
33 CFR 148.725 - What are the design, construction and operational criteria?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the basis of how well they: (a) Reflect the use of best available technology in design, construction...) Maximize use of existing facilities; (i) Provide personnel trained in oil spill prevention at critical...
2006-07-01
31 July 1995 3. Human Engineering Guide to Equipment Design, Department of Defense, Washington D.C., 1972 4. American National Standard for Human Factors Engineering of Visual Display Terminal Workstations , ANSI
In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems
Muzio, Lawrence J [Laguna Niguel, CA; Smith, Randall A [Huntington Beach, CA
2009-12-22
Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunett, A. J.; Fanning, T. H.
The United States has extensive experience with the design, construction, and operation of sodium cooled fast reactors (SFRs) over the last six decades. Despite the closure of various facilities, the U.S. continues to dedicate research and development (R&D) efforts to the design of innovative experimental, prototype, and commercial facilities. Accordingly, in support of the rich operating history and ongoing design efforts, the U.S. has been developing and maintaining a series of tools with capabilities that envelope all facets of SFR design and safety analyses. This paper provides an overview of the current U.S. SFR analysis toolset, including codes such asmore » SAS4A/SASSYS-1, MC2-3, SE2-ANL, PERSENT, NUBOW-3D, and LIFE-METAL, as well as the higher-fidelity tools (e.g. PROTEUS) being integrated into the toolset. Current capabilities of the codes are described and key ongoing development efforts are highlighted for some codes.« less
Simulation Enabled Safeguards Assessment Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Bean; Trond Bjornard; Thomas Larson
2007-09-01
It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements inmore » functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.« less
Fire safety design of a mobile quarantine facility
NASA Technical Reports Server (NTRS)
Bass, R. S.; Hirasaki, J. K.
1971-01-01
During the design phase of the Mobile Quarantine Facility (MQF), a primary consideration was fire safety. Therefore, appropriate criteria and ground rules were used in the design and construction of the facility. The fire codes and fire-requirement listings that are used by commerical airlines were supplied to the Manned Spacecraft Center (MSC) by the Federal Aviation Agency (FAA). After these codes were reviewed, a basic ground rule was adopted that flame protection for all combustible materials should be at least equivalent to or better than the standards for commercial aircraft. Because the MQF was designed to operate with an interior atmosphere of air rather than with an oxygen-enriched atmosphere such as that of the Apollo spacecraft cabin, the requirements for MQF material were not as stringent as those for the spacecraft.
Design and Development of a Real-Time Model Attitude Measurement System for Hypersonic Facilities
NASA Technical Reports Server (NTRS)
Jones, Thomas W.; Lunsford, Charles B.
2005-01-01
A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and applies photogrammetric principles for point tracking to compute model position including pitch, roll and yaw variables. A discussion of the constraints encountered during the design, development, and testing process, including lighting, vibration, operational range and optical access is included. Initial measurement results from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.
Design and Development of a Real-Time Model Attitude Measurement System for Hypersonic Facilities
NASA Technical Reports Server (NTRS)
Jones, Thomas W.; Lunsford, Charles B.
2004-01-01
A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and applies photogrammetric principles for point tracking to compute model position including pitch, roll and yaw variables. A discussion of the constraints encountered during the design, development, and testing process, including lighting, vibration, operational range and optical access is included. Initial measurement results from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.
High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.E. O'Brien; X. Zhang; K. DeWall
2012-09-01
This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.
None
2017-12-09
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-05-21
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
Dynamic Model of the BIO-Plex Air Revitalization System
NASA Technical Reports Server (NTRS)
Finn, Cory; Meyers, Karen; Duffield, Bruce; Luna, Bernadette (Technical Monitor)
2000-01-01
The BIO-Plex facility will need to support a variety of life support system designs and operation strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop the infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth. A general description of the dynamic mass flow model is provided, along with some simulation results. The paper also discusses sizing and operations issues and describes plans for future simulation studies.
Flight dynamics facility operational orbit determination support for the ocean topography experiment
NASA Technical Reports Server (NTRS)
Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.
1991-01-01
The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.
Design concepts for the Centrifuge Facility Life Sciences Glovebox
NASA Technical Reports Server (NTRS)
Sun, Sidney C.; Horkachuck, Michael J.; Mckeown, Kellie A.
1989-01-01
The Life Sciences Glovebox will provide the bioisolated environment to support on-orbit operations involving non-human live specimens and samples for human life sceinces experiments. It will be part of the Centrifuge Facility, in which animal and plant specimens are housed in bioisolated Habitat modules and transported to the Glovebox as part of the experiment protocols supported by the crew. At the Glovebox, up to two crew members and two habitat modules must be accommodated to provide flexibility and support optimal operations. This paper will present several innovative design concepts that attempt to satisfy the basic Glovebox requirements. These concepts were evaluated for ergonomics and ease of operations using computer modeling and full-scale mockups. The more promising ideas were presented to scientists and astronauts for their evaluation. Their comments, and the results from other evaluations are presented. Based on the evaluations, the authors recommend designs and features that will help optimize crew performance and facilitate science accommodations, and specify problem areas that require further study.
Sewage sludge pasteurization by gamma radiation: A Canadian demonstration project — 1988-91
NASA Astrophysics Data System (ADS)
Swinwood, Jean F.; Wilson, Bruce K.
Nordion International Inc. and a Canadian city, in cooperation with the Federal & Provincial Ministries of the Environment, began a project in 1988 to construct and operate a commercial-scale sewage sludge pasteurization facility using gamma radiation technology. The facility is scheduled to begin operations in 1991. This paper discusses the objectives and scope of the project, the design of the irradiation system, and the plans to market the pasteurized sludge as a high-value, organic soil conditioner and fertilizer.
Weirich, Scott R; Silverstein, Joann; Rajagopalan, Balaji
2011-08-01
There is increasing interest in decentralization of wastewater collection and treatment systems. However, there have been no systematic studies of the performance of small treatment facilities compared with larger plants. A statistical analysis of 4 years of discharge monthly report (DMR) data from 210 operating wastewater treatment facilities was conducted to determine the effect of average flow rate and capacity utilization on effluent biochemical oxygen demand (BOD), total suspended solids (TSS), ammonia, and fecal coliforms relative to permitted values. Relationships were quantified using generalized linear models (GLMs). Small facilities (40 m³/d) had violation rates greater than 10 times that of the largest facilities (400,000 m³/d) for BOD, TSS, and ammonia. For facilities with average flows less than 40,000 m³/d, increasing capacity utilization was correlated with increased effluent levels of BOD and TSS. Larger facilities tended to operate at flows closer to their design capacity while maintaining treatment suggesting greater efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Telichenko, Valeriy; Malykha, Galina; Dorogan, Igor
2017-10-01
The article is devoted to the organization of construction of nuclear medicine facilities in Russia. The article describes the main methods of nuclear medical diagnostics, as well as the peculiarities of nuclear medicine facilities that determine the need for application of specific methods for organizing and managing the construction, methods of requirements management in the organization of construction of nuclear medicine facilities. Sustainable development of the transport of radioactive isotopes from the place of production to places of consumption is very important for the safety of the population. The requirements management system is an important and necessary component in organizing the construction of complex facilities, such as nuclear medicine facilities. The author developed and proposed a requirements management system for the design, construction and operation of a nuclear medicine facility, which provides for a cyclic sequence of actions. This system allows reducing the consumption of resources including material and energy during construction and operation of complex objects.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... explanation of the bases for the contention and a concise statement of the alleged facts or expert opinion... design bases. Revised analysis may either result in continued conformance with design bases or may change the design bases. If design basis changes result from a revised analysis, the specific design changes...
The challenge of logistics facilities development
NASA Technical Reports Server (NTRS)
Davis, James R.
1987-01-01
The paper discusses the experiences of a group of engineers and logisticians at John F. Kennedy Space center in the design, construction and activation of a consolidated logistics facility for support of Space Transportation System ground operations and maintenance. The planning, methodology and processes are covered, with emphasis placed on unique aspects and lessons learned. The project utilized a progressive design, baseline and build concept for each phase of construction, with the Government exercising funding and configuration oversight.
Solar power satellite system definition study, volume 4, phase 2
NASA Technical Reports Server (NTRS)
1979-01-01
Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.
NASA Astrophysics Data System (ADS)
Swift, Jonathan J.; Bottom, Michael; Johnson, John A.; Wright, Jason T.; McCrady, Nate; Wittenmyer, Robert A.; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S.; Herzig, Erich; Myles, Justin; Blake, Cullen H.; Eastman, Jason; Beatty, Thomas G.; Barnes, Stuart I.; Gibson, Steven R.; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Sliski, David H.; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; de Vera, Jon; Szentgyorgyi, Andrew
2015-04-01
The Miniature Exoplanet Radial Velocity Array (MINERVA) is a U.S.-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7-m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high-precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. We describe the design of MINERVA, including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, California, and their on-sky performance is validated. The design and simulated performance of the spectrograph is briefly discussed as we await its completion. New observations from our test facility demonstrate sub-mmag photometric precision of one of our radial velocity survey targets, and we present new transit observations and fits of WASP-52b-a known hot-Jupiter with an inflated radius and misaligned orbit. The process of relocating the MINERVA hardware to its final destination at the Fred Lawrence Whipple Observatory in southern Arizona has begun, and science operations are expected to commence in 2015.
Using GREENSCOPE for Sustainable Process Design: An Educational Opportunity
Increasing sustainability can be approached through the education of those who design, construct, and operate facilities. As chemical engineers learn elements of process systems engineering, they can be introduced to sustainability concepts. The EPA’s GREENSCOPE methodology and...
RAMI modeling of plant systems for proposed tritium production and extraction facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, A.
2000-04-05
The control of life-cycle cost is a primary concern during the development, construction, operation, and decommissioning of DOE systems and facilities. An effective tool that can be used to control these costs, beginning with the design stage, is called a reliability, availability, maintainability, and inspectability analysis or, simply, RAMI for short. In 1997, RAMI technology was introduced to the Savannah River Site with applications at the conceptual design stage beginning with the Accelerator Production of Tritium (APT) Project and later extended to the Commercial Light Water Reactor (CLWR) Tritium Extraction Facility (TEF) Project. More recently it has been applied tomore » the as-build Water Treatment Facilities designed for ground water environmental restoration. This new technology and database was applied to the assessment of balance-of-plant systems for the APT Conceptual Design Report. Initial results from the Heat Removal System Assessment revealed that the system conceptual design would cause the APT to fall short of its annual production goal. Using RAM technology to immediately assess this situation, it was demonstrated that the product loss could be gained back by upgrading the system's chiller unit capacity at a cost of less than $1.3 million. The reclaimed production is worth approximately $100 million. The RAM technology has now been extended to assess the conceptual design for the CLWR-TEF Project. More specifically, this technology and database is being used to translate high level availability goals into lower level system design requirements that will ensure the TEF meets its production goal. Results, from the limited number of system assessments performed to date, have already been used to modify the conceptual design for a remote handling system, improving its availability to the point that a redundant system, with its associated costs of installation and operation may no longer be required. RAMI results were also used to justify the elimination of a metal uranium bed in the design of a water cracker system, producing a significant reduction in the estimated construction and operating costs.« less
Safety Evaluation Report for the Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3070)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
This report documents the US Nuclear Regulatory Commission (NRC) staff review and safety evaluation of the Louisiana Energy Services, L.P. (LES, the applicant) application for a license to possess and use byproduct, source, and special nuclear material and to enrich natural uranium to a maximum of 5 percent U-235 by the gas centrifuge process. The plant, to be known as the Claiborne Enrichment Center (CEC), would be constructed near the town of Homer in Claiborne Parish, Louisiana. At full production in a given year, the plant will receive approximately 4,700 tonnes of feed UF{sub 6} and produce 870 tonnes ofmore » low-enriched UF{sub 6}, and 3,830 tonnes of depleted UF{sub 6} tails. Facility construction, operation, and decommissioning are expected to last 5, 30, and 7 years, respectively. The objective of the review is to evaluate the potential adverse impacts of operation of the facility on worker and public health and safety under both normal operating and accident conditions. The review also considers the management organization, administrative programs, and financial qualifications provided to assure safe design and operation of the facility. The NRC staff concludes that the applicant`s descriptions, specifications, and analyses provide an adequate basis for safety review of facility operations and that construction and operation of the facility does not pose an undue risk to public health and safety.« less
40 CFR 265.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: (i) Changes in operating plans or facility design affect the post-closure plan, or (ii) Events which... operation, or no later than 60 days after an unexpected event has occurred which has affected the post... operation, or no more than 60 days after an unexpected event has occurred which has affected the post...
40 CFR 265.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: (i) Changes in operating plans or facility design affect the post-closure plan, or (ii) Events which... operation, or no later than 60 days after an unexpected event has occurred which has affected the post... operation, or no more than 60 days after an unexpected event has occurred which has affected the post...
Advancing Translational Research through Facility Design in Non-AMC Hospitals.
Pati, Debajyoti; Pietrzak, Michael P; Harvey, Thomas E; Armstrong, Walter B; Clarke, Robert; Weissman, Neil J; Rapp, Paul E; Smith, Mark S; Fairbanks, Rollin J; Collins, Jeffreyg M
2013-01-01
This article aims to explore the future of translational research and its physical design implications for community hospitals and hospitals not attached to large centralized research platforms. With a shift in medical services delivery focus to community wellness, continuum of care, and comparative effectiveness research, healthcare research will witness increasing pressure to include community-based practitioners. The roundtable discussion group, comprising 14 invited experts from 10 institutions representing the fields of biomedical research, research administration, facility planning and design, facility management, finance, and environmental design research, examined the issue in a structured manner. The discussion was conducted at the Washington Hospital Center, MedStar Health, Washington, D.C. Institutions outside the AMCs will be increasingly targeted for future research. Three factors are crucial for successful research in non-AMC hospitals: operational culture, financial culture, and information culture. An operating culture geared towards creation, preservation, and protection of spaces needed for research; creative management of spaces for financial accountability; and a flexible information infrastructure at the system level that enables complete link of key programmatic areas to academic IT research infrastructure are critical to success of research endeavors. Hospital, interdisciplinary, leadership, planning, work environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.
CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility tomore » meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.« less
NASA Astrophysics Data System (ADS)
Kumar, V. Suresh; Kumar, R.; Sivaraman, N.; Ravisankar, G.; Vasudeva Rao, P. R.
2010-09-01
The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device.
Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps
Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; ...
2015-07-31
The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m 2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holdersmore » compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less
System integration of marketable subsystems. [for residential solar heating and cooling
NASA Technical Reports Server (NTRS)
1979-01-01
Progress is reported in the following areas: systems integration of marketable subsystems; development, design, and building of site data acquisition subsystems; development and operation of the central data processing system; operation of the MSFC Solar Test Facility; and systems analysis.
Groundwater and Distribution Workbook.
ERIC Educational Resources Information Center
Ekman, John E.
Presented is a student manual designed for the Wisconsin Vocational, Technical and Adult Education Groundwater and Distribution Training Course. This program introduces waterworks operators-in-training to basic skills and knowledge required for the operation of a groundwater distribution waterworks facility. Arranged according to the general order…
40 CFR 418.15 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate Subcategory... calcium sulfate storage pile runoff facility operated separately or in combination with a water recirculation system designed, constructed and operated to maintain a surge capacity equal to the runoff from...
40 CFR 418.15 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate Subcategory... calcium sulfate storage pile runoff facility operated separately or in combination with a water recirculation system designed, constructed and operated to maintain a surge capacity equal to the runoff from...
40 CFR 418.15 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate Subcategory... calcium sulfate storage pile runoff facility operated separately or in combination with a water recirculation system designed, constructed and operated to maintain a surge capacity equal to the runoff from...
Cognitive ergonomics of operational tools
NASA Astrophysics Data System (ADS)
Lüdeke, A.
2012-10-01
Control systems have become increasingly more powerful over the past decades. The availability of high data throughput and sophisticated graphical interactions has opened a variety of new possibilities. But has this helped to provide intuitive, easy to use applications to simplify the operation of modern large scale accelerator facilities? We will discuss what makes an application useful to operation and what is necessary to make a tool easy to use. We will show that even the implementation of a small number of simple application design rules can help to create ergonomic operational tools. The author is convinced that such tools do indeed help to achieve higher beam availability and better beam performance at accelerator facilities.
NASA Technical Reports Server (NTRS)
Tiller, Smith E.; Sullivan, David
1992-01-01
An overview of a self-contained Direct Energy Transfer Power System which was developed to provide power to the Long Duration Exposure Facility (LDEF) Low-Temperature Heat Pipe Experiment Package is presented. The power system operated successfully for the entire mission. Data recorded by the onboard recorder shows that the system operated within design specifications. Other than unanticipated overcharging of the battery, the power system operated as expected for nearly 32,000 low earth orbit cycles, and was still operational when tested after the LDEF recovery. Some physical damage was sustained by the solar array panels due to micrometeoroid hits, but there were not electrical failures.
LH2 airport requirements study
NASA Technical Reports Server (NTRS)
Brewer, G. D. (Editor)
1976-01-01
A preliminary assessment of the facilities and equipment which will be required at a representative airport is provided so liquid hydrogen LH2 can be used as fuel in long range transport aircraft in 1995-2000. A complete facility was conceptually designed, sized to meet the projected air traffic requirement. The facility includes the liquefaction plant, LH2, storage capability, and LH2 fuel handling system. The requirements for ground support and maintenance for the LH2 fueled aircraft were analyzed. An estimate was made of capital and operating costs which might be expected for the facility. Recommendations were made for design modifications to the reference aircraft, reflecting results of the analysis of airport fuel handling requirements, and for a program of additional technology development for air terminal related items.
NASA Technical Reports Server (NTRS)
Chapman, David K.; Wells, H. William
1996-01-01
The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.
NASA Technical Reports Server (NTRS)
Torr, Douglas G.
1991-01-01
A summary of the status of the Cross-section Facility at MSFC is presented. A facility was designed, fabricated, assembled, tested, and operated for measurement of differential scattering cross sections important to understand the induced environment for a vehicle (e.g., Space Station) in low earth orbit. A user's manual for the facility is also presented. The performance of the facility was evaluated and found to be satisfactory in all the essential areas. Differential scattering cross sections were measured and results for the scattering measurements are included. Input to the development of the Ultraviolet Imager Optical System is also discussed. Design, fabrication, and evaluation of UV filters using a four-layer aluminum base are reported.
Cryogenic propellant management: Integration of design, performance and operational requirements
NASA Technical Reports Server (NTRS)
Worlund, A. L.; Jamieson, J. R., Jr.; Cole, T. W.; Lak, T. I.
1985-01-01
The integration of the design features of the Shuttle elements into a cryogenic propellant management system is described. The implementation and verification of the design/operational changes resulting from design deficiencies and/or element incompatibilities encountered subsequent to the critical design reviews are emphasized. Major topics include: subsystem designs to provide liquid oxygen (LO2) tank pressure stabilization, LO2 facility vent for ice prevention, liquid hydrogen (LH2) feedline high point bleed, pogo suppression on the Space Shuttle Main Engine (SSME), LO2 low level cutoff, Orbiter/engine propellant dump, and LO2 main feedline helium injection for geyser prevention.
Qualification and Selection of Flight Diode Lasers for Space Applications
NASA Technical Reports Server (NTRS)
Liebe, Carl C.; Dillon, Robert P.; Gontijo, Ivair; Forouhar, Siamak; Shapiro, Andrew A.; Cooper, Mark S.; Meras, Patrick L.
2010-01-01
The reliability and lifetime of laser diodes is critical to space missions. The Nuclear Spectroscopic Telescope Array (NuSTAR) mission includes a metrology system that is based upon laser diodes. An operational test facility has been developed to qualify and select, by mission standards, laser diodes that will survive the intended space environment and mission lifetime. The facility is situated in an electrostatic discharge (ESD) certified clean-room and consist of an enclosed temperature-controlled stage that can accommodate up to 20 laser diodes. The facility is designed to characterize a single laser diode, in addition to conducting laser lifetime testing on up to 20 laser diodes simultaneously. A standard laser current driver is used to drive a single laser diode. Laser diode current, voltage, power, and wavelength are measured for each laser diode, and a method of selecting the most adequate laser diodes for space deployment is implemented. The method consists of creating histograms of laser threshold currents, powers at a designated current, and wavelengths at designated power. From these histograms, the laser diodes that illustrate a performance that is outside the normal are rejected and the remaining lasers are considered spaceborne candidates. To perform laser lifetime testing, the facility is equipped with 20 custom laser drivers that were designed and built by California Institute of Technology specifically to drive NuSTAR metrology lasers. The laser drivers can be operated in constant-current mode or alternating-current mode. Situated inside the enclosure, in front of the laser diodes, are 20 power-meter heads to record laser power throughout the duration of lifetime testing. Prior to connecting a laser diode to the current source for characterization and lifetime testing, a background program is initiated to collect current, voltage, and resistance. This backstage data collection enables the operational test facility to have full laser diode traceablity.
A new thermal vacuum facility at the Martin Marietta Waterton plant
NASA Technical Reports Server (NTRS)
Watson, Robert N.; Bonn, John W.
1992-01-01
A new thermal-vacuum facility has been recently completed at the Martin Marietta Waterton plant near Denver, Colorado. The facility was designed, fabricated, installed, and tested as a turn-key project by Pitt-Des Moines Inc. and CVI Inc. The chamber has a 5.49 M by 6.10 M (18 ft by 20 ft) flat floor and a half-cylindrical roof with a diameter of 5.49 M (18 ft). Both ends of the chamber have full cross section doors, with one equipped with translating motors for horizontal motion. The chamber is provided with four 0.91 M (36 inches) cryopumps to obtain an ultimate pressure of 9 x 10(exp -8) Torr (Clean-Dry-Empty). The thermal shroud is designed to operate at a maximum of -179 C (-290 F) with an internal heat input of 316 MJ/Hr (300,000 BTU/Hr) using liquid nitrogen. The shroud is also designed to operate at any temperature between -156 C (-250 F) and 121 C (+250 F) using gaseous nitrogen, and heat or cool at a rate of 1.1 C (2 F) per minute.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... understand VY's design, layout, and construction. This failure to comprehend and understand the layout... Facilities,'' and General Design Criteria 60, ``Control of Releases of Radioactive Materials to the Environment,'' and 64, ``Monitoring Radioactivity Releases,'' of Appendix A, ``General Design Criteria for...
33 CFR 143.401 - Vessel certification and operation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Standby Vessels § 143.401... that the standby vessel is designated to assist. Crew spaces may be used to meet the requirements of... persons on the most populated facility that the standby vessel is designated to assist. Crew spaces may be...
33 CFR 143.401 - Vessel certification and operation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Standby Vessels § 143.401... that the standby vessel is designated to assist. Crew spaces may be used to meet the requirements of... persons on the most populated facility that the standby vessel is designated to assist. Crew spaces may be...
33 CFR 143.401 - Vessel certification and operation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Standby Vessels § 143.401... that the standby vessel is designated to assist. Crew spaces may be used to meet the requirements of... persons on the most populated facility that the standby vessel is designated to assist. Crew spaces may be...
33 CFR 143.401 - Vessel certification and operation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Standby Vessels § 143.401... that the standby vessel is designated to assist. Crew spaces may be used to meet the requirements of... persons on the most populated facility that the standby vessel is designated to assist. Crew spaces may be...
33 CFR 143.401 - Vessel certification and operation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Standby Vessels § 143.401... that the standby vessel is designated to assist. Crew spaces may be used to meet the requirements of... persons on the most populated facility that the standby vessel is designated to assist. Crew spaces may be...
Concept synthesis of an equipment manipulation and transportation system EMATS
NASA Technical Reports Server (NTRS)
Depeuter, W.; Waffenschmidt, E.
1989-01-01
The European Columbus Scenario is established. One of the Columbus Elements, the Man Tended Free Flyer will be designed for fully autonomous operation in order to provide the environment for micro gravity facilities. The Concept of an autonomous automation system which perform servicing of facilities and deals with related logistic tasks is discussed.
Taking a Fresh Look at Facilities Data: Lessons Learned
ERIC Educational Resources Information Center
Coburn, Kari C.
2007-01-01
This chapter highlights some important themes from the previous chapters in this volume that will assist institutional research professionals and other higher education leaders interested in expanding use of facilities data in planning and decision making: (1) What you don't know can hurt you; (2) Operational systems are not designed to support ad…
Athletic Facilities: Planning, Designing, and Operating Today's Physical-Education Centers.
ERIC Educational Resources Information Center
Spoor, Dana L.
1998-01-01
Examines what should be featured in an athletic facility, how to plan for the many different sports and activities that will be housed, and how to get the community involved. Areas addressed include planning for locker rooms and storage, flooring and lighting, building code adherence, spectator seating, building security, and outdoor recreation…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-14
... buildings (Buildings 2, 4, 6, 7, and 8) and construction of a single 5-story replacement facility in the... clinics; incorporate evidence-based design; include expansion of technology; and allow for operational... regulation. 2. MFD--demolition of five hospital buildings, construction of a single 5-story replacement...
Experimental Supersonic Combustion Research at NASA Langley
NASA Technical Reports Server (NTRS)
Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne
1998-01-01
Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.
KSC ground operations planning for Space Station
NASA Technical Reports Server (NTRS)
Lyon, J. R.; Revesz, W., Jr.
1993-01-01
At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.
The Use of Environmental Test Facilities for Purposes Beyond Their Original Design
NASA Technical Reports Server (NTRS)
Fisher, Terry C.; Marner, W. J.
2000-01-01
Increasing demands from space flight project offices are requiring environmental testing facilities to become more versatile with increased capabilities. At the same time, maintaining a cost-effective approach to test operations has driven efforts to use these facilities for purposes beyond their original design. This paper presents an overview of the Jet Propulsion Laboratory's efforts to provide JPL's space flight projects with test facilities to meet unique test requirements and to serve the needs of selected outside customers. The large number of recent Mars Missions, including the Mars Pathfinder project, have required testing of components and systems in a Martian surface environment in facilities originally designed for deep space testing. The unique problems associated with performing these tests are discussed, along with practical solutions. Other unique test requirements are discussed including the use of space simulation chambers for testing high altitude balloon gondolas and the use of vacuum chambers for system level test firing of an ion propulsion engine.
Development of high integrity, maximum durability concrete structures for LLW disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
1992-05-01
A number of disposal facilities for Low-Level Radioactive Wastes have been planned for the Savannah River Site. Design has been completed for disposal vaults for several waste classifications and construction is nearly complete or well underway on some facilities. Specific design criteria varies somewhat for each waste classification. All disposal units have been designed as below-grade concrete vaults, although the majority will be above ground for many years before being encapsulated with earth at final closure. Some classes of vaults have a minimum required service life of 100 years. All vaults utilize a unique blend of cement, blast furnace slagmore » and pozzolan. The design synthesizes the properties of the concrete mix with carefully planned design details and construction methodologies to (1) eliminate uncontrolled cracking; (2) minimize leakage potential; and (3) maximize durability. The first of these vaults will become operational in 1992. 9 refs.« less
Development of high integrity, maximum durability concrete structures for LLW disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
1992-01-01
A number of disposal facilities for Low-Level Radioactive Wastes have been planned for the Savannah River Site. Design has been completed for disposal vaults for several waste classifications and construction is nearly complete or well underway on some facilities. Specific design criteria varies somewhat for each waste classification. All disposal units have been designed as below-grade concrete vaults, although the majority will be above ground for many years before being encapsulated with earth at final closure. Some classes of vaults have a minimum required service life of 100 years. All vaults utilize a unique blend of cement, blast furnace slagmore » and pozzolan. The design synthesizes the properties of the concrete mix with carefully planned design details and construction methodologies to (1) eliminate uncontrolled cracking; (2) minimize leakage potential; and (3) maximize durability. The first of these vaults will become operational in 1992. 9 refs.« less
Risk assessment as standard work in design.
Morrill, Patricia W
2013-01-01
This case study article examines a formal risk assessment as part of the decision making process for design solutions in high risk areas. The overview of the Failure Modes and Effects Analysis (FMEA) tool with examples of its application in hospital building projects will demonstrate the benefit of those structured conversations. This article illustrates how two hospitals used FMEA when integrating operational processes with building projects: (1) adjacency decision for Intensive Care Unit (ICU); and (2) distance concern for handling of specimens from Surgery to Lab. Both case studies involved interviews that exposed facility solution concerns. Just-in-time studies using the FMEA followed the same risk assessment process with the same workshop facilitator involving structured conversations in analyzing risks. In both cases, participants uncovered key areas of risk enabling them to take the necessary next steps. While the focus of this article is not the actual design solution, it is apparent that the risk assessment brought clarity to the situations resulting in prompt decision making about facility solutions. Hospitals are inherently risky environments; therefore, use of the formal risk assessment process, FMEA, is an opportunity for design professionals to apply more rigor to design decision making when facility solutions impact operations in high risk areas. Case study, decision making, hospital, infection control, strategy, work environment.
Air STAR Beyond Visual Range UAS Description and Preliminary Test Results
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Cox, David E.; Foster, John V.; Riddick, Stephen E.; Laughter, Sean A.
2016-01-01
The NASA Airborne Subscale Transport Aircraft Research Unmanned Aerial System project's capabilities were expanded by updating the system design and concept of operations. The new remotely piloted airplane system design was flight tested to assess integrity and operational readiness of the design to perform flight research. The purpose of the system design is to improve aviation safety by providing a capability to validate, in high-risk conditions, technologies to prevent airplane loss of control. Two principal design requirements were to provide a high degree of reliability and that the new design provide a significant increase in test volume (relative to operations using the previous design). The motivation for increased test volume is to improve test efficiency and allow new test capabilities that were not possible with the previous design and concept of operations. Three successful test flights were conducted from runway 4-22 at NASA Goddard Space Flight Center's Wallops Flight Facility.
Thermal-hydraulic analysis of the coil test facility for CFETR.
Ren, Yong; Liu, Xiaogang; Li, Junjun; Wang, Zhaoliang; Qiu, Lilong; Du, Shijun; Li, Guoqiang; Gao, Xiang
2016-01-01
Performance test of the China Fusion Engineering Test Reactor (CFETR) central solenoid (CS) and toroidal field (TF) insert coils is of great importance to evaluate the CFETR magnet performance in relevant operation conditions. The superconducting magnet of the coil test facility for CFETR is being designed with the aim of providing a background magnetic field to test the CFETR CS insert and TF insert coils. The superconducting magnet consists of the inner module with Nb 3 Sn coil and the outer module with NbTi coil. The superconducting magnet is designed to have a maximum magnetic field of 12.59 T and a stored energy of 436.6 MJ. An active quench protection circuit and the positive temperature coefficient dump resistor were adopted to transfer the stored magnetic energy. The temperature margin behavior of the test facility for CFETR satisfies the design criteria. The quench analysis of the test facility shows that the cable temperature and the helium pressure inside the jacket are within the design criteria.
NASA Technical Reports Server (NTRS)
Baals, D. D. (Editor)
1977-01-01
Fundamental aerodynamic questions for which high Reynolds number experimental capability is required are discussed. The operational characteristics and design features of the National Transonic Facility are reviewed.
Baumgart, André; Denz, Christof; Bender, Hans-Joachim; Schleppers, Alexander
2009-01-01
The complexity of the operating room (OR) requires that both structural (eg, department layout) and behavioral (eg, staff interactions) patterns of work be considered when developing quality improvement strategies. In our study, we investigated how these contextual factors influence outpatient OR processes and the quality of care delivered. The study setting was a German university-affiliated hospital performing approximately 6000 outpatient surgeries annually. During the 3-year-study period, the hospital significantly changed its outpatient OR facility layout from a decentralized (ie, ORs in adjacent areas of the building) to a centralized (ie, ORs in immediate vicinity of each other) design. To study the impact of the facility change on OR processes, we used a mixed methods approach, including process analysis, process modeling, and social network analysis of staff interactions. The change in facility layout was seen to influence OR processes in ways that could substantially affect patient outcomes. For example, we found a potential for more errors during handovers in the new centralized design due to greater interdependency between tasks and staff. Utilization of the mixed methods approach in our analysis, as compared with that of a single assessment method, enabled a deeper understanding of the OR work context and its influence on outpatient OR processes.
Development and testing of a novel subsea production system and control buoy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The remoteness of Australia`s northwest shelf presents challenges for the economic viability of offshore resource-development projects. Accordingly, the East Spar development has been designed to minimize capital and life-cycle costs to ensure the long-term viability of this offshore gas field. The offshore facilities are made up of a novel unmanned navigation, communication, and control (NCC) buoy linked to a subsea-production system that includes heat exchangers, insert-retrievable choke valves, multiphase flow-meters, and an on-line pipeline-corrosion monitoring system. The technological building blocks for field development are industry proved. However, the novel arrangement of this proven technology into a remotely controlled, self-contained, minimum-maintenancemore » unmanned facility is unique and has led to many challenges during the design and testing of the NCC buoy and subsea facilities. Among these challenges has been the formulation of an integration test program of the NCC buoy and subsea hardware that proves, as far as reasonably possible, the complete functionality of each equipment item and interface, subject to constraints imposed by schedule, cost, and logistics. Integration testing is particularly important to confirm that the offshore facilities will operate as designed with sufficient reliability and system redundancy to ensure continuous operation throughout the 20-year field life.« less
TEMPUS: A facility for containerless electromagnetic processing onboard spacelab
NASA Technical Reports Server (NTRS)
Lenski, H.; Willnecker, R.
1990-01-01
The electromagnetic containerless processing facility TEMPUS was recently assigned for a flight on the IML-2 mission. In comparison to the TEMPUS facility already flown on a sounding rocket, several improvements had to be implemented. These are in particular related to: safety; resource management; and the possibility to process different samples with different requirements in one mission. The basic design of this facility as well as the expected processing capabilities are presented. Two operational aspects turned out to strongly influence the facility design: control of the sample motion (first experimental results indicate that crew or ground interaction will be necessary to minimize residual sample motions during processing); and exchange of RF-coils (during processing in vacuum, evaporated sample materials will condense at the cold surface and may force a coil exchange, when a critical thickness is exceeded).
Aerospace Energy Systems Laboratory - Requirements and design approach
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1988-01-01
The NASA Ames/Dryden Flight Research Facility operates a mixed fleet of research aircraft employing NiCd batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has evolved over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.
Transitioning to a New Facility: The Crucial Role of Employee Engagement.
Slosberg, Meredith; Nejati, Adeleh; Evans, Jennie; Nanda, Upali
Transitioning to a new facility can be challenging for employees and detrimental to operations. A key aspect of the transition is employee understanding of, and involvement in, the design of the new facility. The literature lacks a comprehensive study of the impact of change engagement throughout the design, construction, and activation of a project as well as how that can affect perceptions, expectations, and, eventually, satisfaction of employees. The purpose of this research was to examine employee perceptions and satisfaction throughout a hospital design, construction, and activation process. Three pulse-point surveys were administered throughout the transition of a children's hospital emergency department and neonatal intensive care unit to a new facility. We also administered a postoccupancy survey 3 months after the move into the new facility. We received 544 responses and analyzed them to assess the relationship between involvement in design or change engagement initiatives and overall perceptions. The results revealed a strong relationship between employee engagement and their level of preparedness to move, readiness to adapt, and satisfaction. Early involvement in the design of a facility or new processes can significantly affect staff preparedness and readiness to adapt as well as employees' overall satisfaction with the building after occupancy. In addition, our findings suggest that keeping a finger on the pulse of employee perceptions and expectations throughout the design, construction, and activation phase is critical to employee preparedness and satisfaction in transitioning to a new facility.
Estimation of Stormwater Interception Rate for various LID Facilities
NASA Astrophysics Data System (ADS)
Kim, S.; Lee, O.; Choi, J.
2017-12-01
In this study, the stormwater interception rate is proposed to apply in the design of LID facilities. For this purpose, EPA-SWMM is built with some areas of Noksan National Industrial Complex where long-term observed stormwater data were monitored and stormwater interception rates for various design capacities of various LID facilities are estimated. While the sensitivity of stormwater interception rate according to design specifications of bio-retention and infiltration trench facilities is not large, the sensitivity of stormwater interception rate according to local rainfall characteristics is relatively big. As a result of comparing the present rainfall interception rate estimation method which is officially operated in Korea with the one proposed in this study, it will be presented that the present method is highly likely to overestimate the performance of the bio-retention and infiltration trench facilities. Finally, a new stormwater interception rate formulas for the bio-retention and infiltration trench LID facilities will be proposed. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.
20 MW Flywheel frequency regulation plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arseneaux, James
Hazle designed, built, commissioned, and operates a utility-scale 20 MW flywheel energy storage plant in Hazle Township, Pennsylvania (the Hazle Facility) using flywheel technology developed by its affiliate, Beacon Power, LLC (Beacon Power). The Hazle Facility provides frequency regulation services to the regional transmission organization, PJM Interconnection, LLC (PJM), through its participation in PJM’s Regulation Market (a market-based system for the purchase and sale of the Regulation ancillary service). The zero emission Hazle Facility is designed for a 20 year-life over which it is capable of performing at least 100,000 full depth of discharge cycles. To achieve its 20 MWmore » capacity, the Hazle Facility is comprised of two hundred of Beacon Power’s 100 kilowatt (kW)/25 kilowatt/hour (kWh) flywheels connected in parallel. The Hazle Facility can fully respond to a signal from PJM in less than 2 seconds. The Hazle facility was constructed in an economic development zone designated by the Commonwealth of Pennsylvania and its construction relied on local contractors and labor for completion.« less
Check-Standard Testing Across Multiple Transonic Wind Tunnels with the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
Deloach, Richard
2012-01-01
This paper reports the result of an analysis of wind tunnel data acquired in support of the Facility Analysis Verification & Operational Reliability (FAVOR) project. The analysis uses methods referred to collectively at Langley Research Center as the Modern Design of Experiments (MDOE). These methods quantify the total variance in a sample of wind tunnel data and partition it into explained and unexplained components. The unexplained component is further partitioned in random and systematic components. This analysis was performed on data acquired in similar wind tunnel tests executed in four different U.S. transonic facilities. The measurement environment of each facility was quantified and compared.
An investigation of networking techniques for the ASRM facility
NASA Technical Reports Server (NTRS)
Moorhead, Robert J., II; Smith, Wayne D.; Thompson, Dale R.
1992-01-01
This report is based on the early design concepts for a communications network for the Advanced Solid Rocket Motor (ASRM) facility being built at Yellow Creek near Iuka, MS. The investigators have participated in the early design concepts and in the evaluation of the initial concepts. The continuing system design effort and any modification of the plan will require a careful evaluation of the required bandwidth of the network, the capabilities of the protocol, and the requirements of the controllers and computers on the network. The overall network, which is heterogeneous in protocol and bandwidth, is being modeled, analyzed, simulated, and tested to obtain some degree of confidence in its performance capabilities and in its performance under nominal and heavy loads. The results of the proposed work should have an impact on the design and operation of the ASRM facility.
2011-01-20
CAPE CANAVERAL, Fla. -- A traditional ribbon-cutting ceremony takes place outside the Propellants North Administration and Maintenance Facility at NASA's Kennedy Space Center in Florida. From left, are Thomas Wilczek, contracting officer technical representative/project manager for NASA Construction of Facilities; Bradley O’Toole, NASA contracting officer; James Wright, deputy assistant administrator for the Office of Strategic Infrastructure at NASA Headquarters; Frank Kline, NASA Construction of Facility project manager; Bob Cabana, Kennedy's center director; Mike Benik, director of Kennedy's Center Operations; Ward Davis, president of HW Davis Construction Inc.; and Rick Ferreira, chief operating officer of Jones Edmunds and Associates Inc. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
2011-01-20
CAPE CANAVERAL, Fla. -- A traditional ribbon-cutting ceremony takes place outside the Propellants North Administration and Maintenance Facility at NASA's Kennedy Space Center in Florida. From left, are Thomas Wilczek, contracting officer technical representative/project manager for NASA Construction of Facilities; Bradley O’Toole, NASA contracting officer; James Wright, deputy assistant administrator for the Office of Strategic Infrastructure at NASA Headquarters; Frank Kline, NASA Construction of Facility project manager; Bob Cabana, Kennedy's center director; Mike Benik, director of Kennedy's Center Operations; Ward Davis, president of HW Davis Construction Inc.; and Rick Ferreira, chief operating officer of Jones Edmunds and Associates Inc. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
An electric propulsion long term test facility
NASA Technical Reports Server (NTRS)
Trump, G.; James, E.; Vetrone, R.; Bechtel, R.
1979-01-01
An existing test facility was modified to provide for extended testing of multiple electric propulsion thruster subsystems. A program to document thruster subsystem characteristics as a function of time is currently in progress. The facility is capable of simultaneously operating three 2.7-kW, 30-cm mercury ion thrusters and their power processing units. Each thruster is installed via a separate air lock so that it can be extended into the 7m x 10m main chamber without violating vacuum integrity. The thrusters exhaust into a 3m x 5m frozen mercury target. An array of cryopanels collect sputtered target material. Power processor units are tested in an adjacent 1.5m x 2m vacuum chamber or accompanying forced convection enclosure. The thruster subsystems and the test facility are designed for automatic unattended operation with thruster operation computer controlled. Test data are recorded by a central data collection system scanning 200 channels of data a second every two minutes. Results of the Systems Demonstration Test, a short shakedown test of 500 hours, and facility performance during the first year of testing are presented.
Distant Operational Care Centre: Design Project Report
NASA Technical Reports Server (NTRS)
1996-01-01
The goal of this project is to outline the design of the Distant Operational Care Centre (DOCC), a modular medical facility to maintain human health and performance in space, that is adaptable to a range of remote human habitats. The purpose of this project is to outline a design, not to go into a complete technical specification of a medical facility for space. This project involves a process to produce a concise set of requirements, addressing the fundamental problems and issues regarding all aspects of a space medical facility for the future. The ideas presented here are at a high level, based on existing, researched, and hypothetical technologies. Given the long development times for space exploration, the outlined concepts from this project embodies a collection of identified problems, and corresponding proposed solutions and ideas, ready to contribute to future space exploration efforts. In order to provide a solid extrapolation and speculation in the context of the future of space medicine, the extent of this project's vision is roughly within the next two decades. The Distant Operational Care Centre (DOCC) is a modular medical facility for space. That is, its function is to maintain human health and performance in space environments, through prevention, diagnosis, and treatment. Furthermore, the DOCC must be adaptable to meet the environmental requirements of different remote human habitats, and support a high quality of human performance. To meet a diverse range of remote human habitats, the DOCC concentrates on a core medical capability that can then be adapted. Adaptation would make use of the DOCC's functional modularity, providing the ability to replace, add, and modify core functions of the DOCC by updating hardware, operations, and procedures. Some of the challenges to be addressed by this project include what constitutes the core medical capability in terms of hardware, operations, and procedures, and how DOCC can be adapted to different remote habitats.
Construction, Startup and Operation of a New LLRW Disposal Facility in Andrews County, Texas - 12151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vliet, James A.
2012-07-01
During this last year, Waste Control Specialists LLC (WCS) completed construction and achieved start of operations of a new low level radioactive waste (LLRW) disposal facility in Andrews County Texas. Disposal operations are underway for commercial LLRW, and start up evolutions are in progress for disposal of Department of Energy (DOE) LLRW. The overall approach to construction and start up are presented as well as some of the more significant challenges and how they were addressed to achieve initial operations of the first new commercial low level radioactive waste disposal facility in more than 30 years. The WCS disposal facilitymore » consists of two LLRW disposal cells, one for Texas Compact waste, and a separate disposal cell for DOE waste. Both disposal cells have very robust and unique designs. The cells themselves are constructed entirely in very low permeability red bed clay. The cell liners include a 0.91 meter thick clay liner meeting unprecedented permeability limits, 0.3 meter thick reinforced concrete barriers, as well as the standard geo-synthetic liners. Actions taken to meet performance criteria and install these liners will be discussed. Consistent with this highly protective landfill design, WCS chose to install a zero discharge site water management system. The considerations behind the design and construction of this system will be presented. Other activities essential to successful start of LLRW disposal operations included process and procedure development and refinement, staffing and staff development, and training. Mock ups were built and used for important evolutions and functions. Consistent with the extensive regulation of LLRW operations, engagement with the Texas Commission on Environmental Quality (TCEQ) was continuous and highly interactive. This included daily activity conference calls, weekly coordination calls and numerous topical conference calls and meetings. TCEQ staff and consultants frequently observed specific construction evolutions, such as geological feature mapping of designated excavation faces, disposal cell clay liner installation, disposal cell concrete barrier construction, etc. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickett, Chris A; Kovacic, Donald N; Morgan, Jim
Approved industry-standard cylinders are used globally for storing and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants and processing facilities. To verify that no diversion or undeclared production of nuclear material involving UF{sub 6} cylinders at the facility has occurred, the International Atomic Energy Agency (IAEA) conducts periodic, labor-intensive physical inspections to validate facility records, cylinder identities, and cylinder weights. A reliable cylinder monitoring system that would improve overall inspector effectiveness would be a significant improvement to the current international safeguards inspection regime. Such a system could include real-time unattended monitoring of cylinder movements, situation-specific rules-based event detection algorithms,more » and the capability to integrate with other types of safeguards technologies. This type of system could provide timely detection of abnormal operational activities that may be used to ensure more appropriate and efficient responses by the IAEA. A system of this type can reduce the reliance on paper records and have the additional benefit of facilitating domestic safeguards at the facilities at which it is installed. A radio-frequency (RF)-based system designed to track uranium hexafluoride (UF{sub 6}) cylinders during processing operations was designed, assembled, and tested at the United States Enrichment Corporation (USEC) facility in Portsmouth, Ohio, to determine the operational feasibility and durability of RF technology. The overall objective of the effort was to validate the robustness of RF technology for potential use as a future international safeguards tool for tracking UF6 cylinders at uranium-processing facilities. The results to date indicate that RF tags represent a feasible technique for tracking UF{sub 6} cylinders in operating facilities. Additional work will be needed to improve the operational robustness of the tags for repeated autoclave processing and to add tamper-indicating and data authentication features to some of the pertinent system components. Future efforts will focus on these needs along with implementing protocols relevant to IAEA safeguards. The work detailed in this report demonstrates the feasibility of constructing RF devices that can survive the operational rigors associated with the transportation, storage, and processing of UF6 cylinders. The system software specially designed for this project is called Cylinder Accounting and Tracking System (CATS). This report details the elements of the CATS rules-based architecture and its use in safeguards-monitoring and asset-tracking applications. Information is also provided on improvements needed to make the technology ready, as well as options for improving the safeguards aspects of the technology. The report also includes feedback from personnel involved in the testing, as well as individuals who could utilize an RF-based system in supporting the performance of their work. The system software was set up to support a Mailbox declaration, where a declaration can be made either before or after cylinder movements take place. When the declaration is made before cylinders move, the operators must enter this information into CATS. If the IAEA then shows up unexpectedly at the facility, they can see how closely the operational condition matches the declaration. If the declaration is made after the cylinders move, this provides greater operational flexibility when schedules are interrupted or are changed, by allowing operators to declare what moves have been completed. The IAEA can then compare where cylinders are with where CATS or the system says they are located. The ability of CATS to automatically generate Mailbox declarations is seen by the authors as a desirable feature. The Mailbox approach is accepted by the IAEA but has not been widely implemented (and never in enrichment facilities). During the course of this project, we have incorporated alternative methods for implementation.« less
PERLE. Powerful energy recovery linac for experiments. Conceptual design report
NASA Astrophysics Data System (ADS)
Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.
2018-06-01
A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.
Shuttle's 160 hour ground turnaround - A design driver
NASA Technical Reports Server (NTRS)
Widick, F.
1977-01-01
Turnaround analysis added a new dimension to the Space Program with the advent of the Space Shuttle. The requirement to turn the flight hardware around in 160 working hours from landing to launch was a significant design driver and a useful tool in forcing the integration of flight and ground systems design to permit an efficient ground operation. Although there was concern that time constraints might increase program costs, the result of the analysis was to minimize facility requirements and simplify operations with resultant cost savings.
Mars aerobrake assembly simulation
NASA Technical Reports Server (NTRS)
Filatovs, G. J.; Lee, Gordon K. F.; Garvey, John
1992-01-01
On-orbit assembly operation simulations in neutral buoyancy conditions are presently undertaken by a partial/full-scale Mars mission aerobrake mockup, whose design, conducted in the framework of an engineering senior students' design project, involved several levels of constraints for critical physical and operational features. Allowances had to be made for the auxiliary constraints introduced by underwater testing, as well as the subsegmenting required for overland shipment to the neutral-buoyancy testing facility. This mockup aerobrake's fidelity is determined by the numerous, competing design objectives.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.302 Standards. (a) The owner or operator of an affected facility shall equip each loading rack with a vapor collection system that is: (1) Designed to collect all benzene...
Code of Federal Regulations, 2012 CFR
2012-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.302 Standards. (a) The owner or operator of an affected facility shall equip each loading rack with a vapor collection system that is: (1) Designed to collect all benzene...
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.302 Standards. (a) The owner or operator of an affected facility shall equip each loading rack with a vapor collection system that is: (1) Designed to collect all benzene...
Code of Federal Regulations, 2011 CFR
2011-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.302 Standards. (a) The owner or operator of an affected facility shall equip each loading rack with a vapor collection system that is: (1) Designed to collect all benzene...
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.302 Standards. (a) The owner or operator of an affected facility shall equip each loading rack with a vapor collection system that is: (1) Designed to collect all benzene...
40 CFR 62.14610 - How do I maintain my operator qualification?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...) Responses to malfunctions or conditions that may lead to malfunction. (e) Discussion of operating problems...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, D.F.; Schroeder, P.R.
This technical note documents the SETTLE computer program which facilitates the design of a confined disposal facility (CDF) to retain solids, provide initial storage, and meet effluent discharge limitations for suspended solids during a dredged matenal disposal operation. Detailed information can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. SETTLE is a part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).
A modern depleted uranium manufacturing facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagula, T.A.
1995-07-01
The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout themore » DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.« less
A Course on Operational Considerations in Wastewater Treatment Plant Design. Student Manual.
ERIC Educational Resources Information Center
Stottler, Stag and Associates, San Antonio, TX.
This manual was designed to furnish information for upgrading the design of wastewater treatment plant facilities and to serve as a resource for establishing criteria for upgrading these plants. The manual also furnishes information for modifying plant design to compensate for current organic and hydraulic overloads and/or to meet more stringent…
Neutron Source Facility Training Simulator Based on EPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.
A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronson, James P.; Duke, Bill; Loffink, Ken
2008-12-30
In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. Migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival ofmore » migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage and trapping facility design, operation, and criteria. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. Beginning in March of 2007, two work elements from the Walla Walla Fish Passage Operations Project were transferred to other projects. The work element Enumeration of Adult Migration at Nursery Bridge Dam is now conducted under the Walla Walla Basin Natural Production Monitoring and Evaluation Project and the work element Provide Transportation Assistance is conducted under the Umatilla Satellite Facilities Operation and Maintenance Project. Details of these activities can be found in those project's respective annual reports.« less
2011-01-20
CAPE CANAVERAL, Fla. -- Mike Benik, the director of Center Operations at NASA's Kennedy Space Center in Florida, addresses an audience at the ribbon-cutting ceremony for the new environmentally friendly Propellants North Administration and Maintenance Facility. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
Japanese plan for SSF utilization
NASA Technical Reports Server (NTRS)
Mizuno, Toshio
1992-01-01
The Japanese Experiment Module (JEM) program has made significant progress. The JEM preliminary design review was completed in July 1992; construction of JEM operation facilities has begun; and the micro-G airplane, drop shaft, and micro-G experiment rocket are all operational. The national policy for JEM utilization was also established. The Space Experiment Laboratory (SEL) opened in June '92 and will function as a user support center. Eight JEM multiuser facilities are in phase B, and scientific requirements are being defined for 17 candidate multiuser facilities. The National Joint Research Program is about to start. Precursor missions and early Space Station utilization activities are being defined. This paper summarizes the program in outline and graphic form.
NASA Astrophysics Data System (ADS)
Catherall, R.; Andreazza, W.; Breitenfeldt, M.; Dorsival, A.; Focker, G. J.; Gharsa, T. P.; J, Giles T.; Grenard, J.-L.; Locci, F.; Martins, P.; Marzari, S.; Schipper, J.; Shornikov, A.; Stora, T.
2017-09-01
The ISOLDE facility has undergone numerous changes over the last 17 years driven by both the physics and technical community with a common goal to improve on beam variety, beam quality and safety. Improvements have been made in civil engineering and operational equipment while continuing developments aim to ensure operations following a potential increase in primary beam intensity and energy. This paper outlines the principal technical changes incurred at ISOLDE by building on a similar publication of the facility upgrades by Kugler (2000 Hyperfine Interact. 129 23-42). It also provides an insight into future perspectives through a brief summary issues addressed in the HIE-ISOLDE design study Catherall et al (2013 Nucl. Instrum. Methods Phys. Res. B 317 204-207).
SNS Cryogenic Test Facility Kinney Vacuum Pump Commissioning and Operation at 2 K
NASA Astrophysics Data System (ADS)
DeGraff, B.; Howell, M.; Kim, S.; Neustadt, T.
2017-12-01
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) has built and commissioned an independent Cryogenic Test Facility (CTF) in support of testing in the Radio-frequency Test Facility (RFTF). Superconducting Radio-frequency Cavity (SRF) testing was initially conducted with the CTF cold box at 4.5 K. A Kinney vacuum pump skid consisting of a roots blower with a liquid ring backing pump was recently added to the CTF system to provide testing capabilities at 2 K. System design, pump refurbishment and installation of the Kinney pump will be presented. During the commissioning and initial testing period with the Kinney pump, several barriers to achieve reliable operation were experienced. Details of these lessons learned and improvements to skid operations will be presented. Pump capacity data will also be presented.
SNS Cryogenic Test Facility Kinney Vacuum Pump Commissioning and Operation at 2 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degraff, Brian D.; Howell, Matthew P.; Kim, Sang-Ho
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) has built and commissioned an independent Cryogenic Test Facility (CTF) in support of testing in the Radio-frequency Test Facility (RFTF). Superconducting Radio-frequency Cavity (SRF) testing was initially conducted with the CTF cold box at 4.5 K. A Kinney vacuum pump skid consisting of a roots blower with a liquid ring backing pump was recently added to the CTF system to provide testing capabilities at 2 K. System design, pump refurbishment and installation of the Kinney pump will be presented. During the commissioning and initial testing period with the Kinneymore » pump, several barriers to achieve reliable operation were experienced. Details of these lessons learned and improvements to skid operations will be presented. Pump capacity data will also be presented.« less
ERIC Educational Resources Information Center
Arasmith, E. E.
The determination of the thickness of a sludge blanket in primary and secondary clarifiers and in gravity thickness is important in making operational control decisions. Knowing the thickness and concentration will allow the operator to determine sludge volume and detention time. Designed for individuals who have completed National Pollutant…
A Manual of Simplified Laboratory Methods for Operators of Wastewater Treatment Facilities.
ERIC Educational Resources Information Center
Westerhold, Arnold F., Ed.; Bennett, Ernest C., Ed.
This manual is designed to provide the small wastewater treatment plant operator, as well as the new or inexperienced operator, with simplified methods for laboratory analysis of water and wastewater. It is emphasized that this manual is not a replacement for standard methods but a guide for plants with insufficient equipment to perform analyses…
2011-01-20
CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony for the space agency's most environmentally friendly facility, the Propellants North Administrative and Maintenance Facility in Kennedy's Launch Complex 39 area. From left, are Mike Benik, director of Kennedy's Center Operations; James Wright, deputy assistant administrator for the Office of Strategic Infrastructure at NASA Headquarters; Bob Cabana, Kennedy's center director; Ward Davis, president of HW Davis Construction Inc.; and Rick Ferreira, chief operating officer of Jones Edmunds and Associates Inc. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility
NASA Astrophysics Data System (ADS)
Kobak, J. A.; Rollbuhler, R. J.
1981-10-01
A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.
Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility
NASA Technical Reports Server (NTRS)
Kobak, J. A.; Rollbuhler, R. J.
1981-01-01
A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglund, T.; Ranney, J.T.; Babb, C.L.
2000-10-01
The initial design criteria of the MSW to ethanol facility have been completed along with preliminary site identification and layouts for the processing facility. These items are the first step in evaluating the feasibility of this co-located facility. Pilot facility design and modification are underway for the production and dewatering of the lignin fuel. Major process equipment identification has been completed and several key unit operations will be accomplished on rental equipment. Equipment not available for rental or at TVA has been ordered and facility modification and shakedown will begin in October. The study of the interface and resulting impactsmore » on the TVA Colbert facility are underway. The TVA Colbert fossil plant is fully capable of providing a reliable steam supply for the proposed Masada waste processing facility. The preferred supply location in the Colbert steam cycle has been identified as have possible steam pipeline routes to the Colbert boundary. Additional analysis is underway to fully predict the impact of the steam supply on Colbert plant performance and to select a final steam pipeline route.« less
Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine
2014-03-01
Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazardsmore » from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.« less
ERIC Educational Resources Information Center
Higgins, Joseph
2003-01-01
Discusses green buildings, facilities designed, constructed, and operated in an environmentally friendly and resource-efficient way. Discusses reasons for campuses to "go green," the "shades of green" or variations in environmental-friendliness, certification through the Leadership in Energy and Environmental Design (LEED) rating system, financial…
PROCESS DESIGN MANUAL FOR SLUDGE TREATMENT AND DISPOSAL
The purpose of this manual is to provide the engineering community and related industry with a new source of information to be used in the planning, design, and operation of present and future wastewater pollution control facilities. This manual supplements this existing knowledg...