20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?
Code of Federal Regulations, 2012 CFR
2012-04-01
... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND... operators have in managing work-based learning? (a) The center operator must emphasize and implement work... training, and through arrangements with employers. Work-based learning must be under actual working...
20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?
Code of Federal Regulations, 2013 CFR
2013-04-01
... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND... operators have in managing work-based learning? (a) The center operator must emphasize and implement work... training, and through arrangements with employers. Work-based learning must be under actual working...
20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?
Code of Federal Regulations, 2014 CFR
2014-04-01
... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND... operators have in managing work-based learning? (a) The center operator must emphasize and implement work... training, and through arrangements with employers. Work-based learning must be under actual working...
20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?
Code of Federal Regulations, 2010 CFR
2010-04-01
... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND... managing work-based learning? (a) The center operator must emphasize and implement work-based learning... arrangements with employers. Work-based learning must be under actual working conditions and must be designed...
20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?
Code of Federal Regulations, 2011 CFR
2011-04-01
... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND... managing work-based learning? (a) The center operator must emphasize and implement work-based learning... arrangements with employers. Work-based learning must be under actual working conditions and must be designed...
Lessons Learned in Starting and Running a Neighborhood Networks Center.
ERIC Educational Resources Information Center
Department of Housing and Urban Development, Washington, DC.
This guide shares information about setting up and operating Neighborhood Networks centers. (These centers operate in Department of Housing and Urban Development-assisted or -insured housing nationwide to help low-income people boost their basic skills and find good jobs, learn to use computers and the Internet, run businesses, improve their…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-14
... America Division, Including Workers From Steelcase University Also Known as Steelcase Learning Center, a..., also known as Steelcase Learning Center, is a subsidiary of Steelcase, Inc. Since Steelcase University, also known as Steelcase Learning Center, a subsidiary of Steelcase, Inc. operates internally with...
NATO Command Structure: Considerations for the Future
2010-09-01
Learned Center3 3JALLC in Monsanto , Portugal Estimated ACT Strength: 1265* NATO Maritime Interdiction Operational Training Center5 5 NMIOTC at Souda...NATO to national funding. Second, the Joint Analysis and Lessons Learned Center (JALLC) in Monsanto could be brought back to ACT in Virginia or (as...Center1 Joint Warfare Center1 Joint Analysis and Lessons Learned Center2 2JALLC relocated from Monsanto , Portugal to ACT in Norfolk, VA to improve
Chinese Lessons from Other Peoples’ Wars
2011-11-01
have a unified center for lessons learned (key U.S. examples are the Joint Center for Operational Analy- 8 sis, the Center for Army Lessons Learned...complete publicly available docu- mentary and analytical record in Chinese on the wars might present. Readers are advised to bear these chal- lenges...guided missiles (PGM). Indeed, there are 14 many PLA studies about the PGM and its employment in the U.S. joint and integrated operations in the
2003-11-01
Command Historian , and the personnel from the Center for Army Lessons Learned (CALL) for their assistance in gaining access to the many documents that...after the Network Centric Warfare Case Study operations. The Center for Army Lessons Learned (CALL), the V Corps Command Historian , and other... Historian , Dr. Charles Kirkpatrick, in Heidelberg, Germany, assisted in this effort. Nu- merous documents were collected, both unclassified and classified
Alternative Learning Centers: Another Option for Discipline Programs.
ERIC Educational Resources Information Center
Pare, John A.
1983-01-01
Describes the operation and effectiveness of the Alternative Learning Center program administered by James Madison Memorial High School in Madison (Wisconsin). The center permits the school to remove students committing breaches of school discipline from their classes without removing them from the educational environment altogether. (PGD)
2005-03-01
execute these dangerous and uncertain missions. iv In my recent travels in the U.S. Central Command area of operations I had the great fortune of meeting...jfcom.mil 1Joint Center for Operational Analysis and Lessons Learned (JCOA-LL) Bulletin “That others may live…to return with honor” The old Chinese ...information has to travel to meet GCC staff requirements increases the difficulty in handling and maintaining situational awareness on PR events
IVHS Denver Metro Area, Traffic Operations Center Tour
DOT National Transportation Integrated Search
1992-10-01
THE PURPOSE OF THIS DOCUMENT IS TO RELATE THE EXPERIENCES LEARNED DURING THE RECENT TRAFFIC OPERATIONS CENTER (TOC) TOUR. THIS TOUR INCLUDED VISITS TO THE FOLLOWING: : - COMPASS - HIGHWAY 401 TRAFFIC MANAGEMENT SYSTEM IN THE TORONTO METROPOLITAN A...
Staffing the ISS Control Centers: Lessons Learned from Long-Duration Human Space Flight
NASA Technical Reports Server (NTRS)
Olsen, Carrie D.; Horvath, Timothy J.; Davis, Sally P.
2006-01-01
The International Space Station (ISS) has been in operation with a permanent human presence in space for over five years, and plans for continued operations stretch ten years into the future. Ground control and support operations are, likewise, a 15-year enterprise. This long-term, 24-hour per day, 7 day per week support has presented numerous challenges in the areas of ground crew training, initial and continued certification, and console staffing. The Mission Control Center in Houston, Texas and the Payload Operations Center in Huntsville, Alabama have both tackled these challenges, with similar, yet distinct, approaches. This paper describes the evolution of the staffing and training policies of both control centers in a chronological progression. The relative merits and shortcomings of the various policies employed are discussed and a summary of "lessons learned" is presented. Finally, recommendations are made as best practices for future long-term space missions.
Environmental Learning Centers: A Template.
ERIC Educational Resources Information Center
Vozick, Eric
1999-01-01
Provides a working model, or template, for community-based environmental learning centers (ELCs). The template presents a philosophy as well as a plan for staff and administration operations, educational programming, and financial support. The template also addresses "green" construction and maintenance of buildings and grounds and…
DOT National Transportation Integrated Search
2000-10-01
This report demonstrates the benefits and potential pitfalls of deploying and operating an integrated freeway and arterial management system. In particular, it discusses the lessons learned about the Medical Center Corridor (MCC) Project deployed in ...
Lessons learned in command environment development
NASA Astrophysics Data System (ADS)
Wallace, Daniel F.; Collie, Brad E.
2000-11-01
As we consider the issues associated with the development of an Integrated Command Environment (ICE), we must obviously consider the rich history in the development of control rooms, operations centers, information centers, dispatch offices, and other command and control environments. This paper considers the historical perspective of control environments from the industrial revolution through the information revolution, and examines the historical influences and the implications that that has for us today. Environments to be considered are military command and control spaces, emergency response centers, medical response centers, nuclear reactor control rooms, and operations centers. Historical 'lessons learned' from the development and evolution of these environments will be examined to determine valuable models to use, and those to be avoided. What are the pitfalls? What are the assumptions that drive the environment design? Three case histories will be presented, examining (1) the control room of the Three Mile Island power plant, (2) the redesign of the US Naval Space Command operations center, and (3) a testbed for an ICE aboard a naval surface combatant.
Working with Business and Industry.
ERIC Educational Resources Information Center
Stempel, Ellen F.
This publication contains guidelines for fostering cooperation between the business and professional community and a community adult learning center. It is based on a program in operation at the Great Neck (New York) Adult Learning Center. The guidelines for initiating and conducting the program cover the following processes: selection of the…
2004-12-01
domestic use of the armed forces. 9Joint Center for Operational Analysis and Lessons Learned (JCOA-LL) Bulletin An almost invisible law In many...enacted a program to increase significantly the role of the armed forces in drug interdiction as part of the Defense Authorization Act for 1989. The...technology, expanded intelligence collection, and the formation of new partnerships are necessary. • Arms control and other multilateral agreements will be
The Mathematics and Computer Science Learning Center (MLC).
ERIC Educational Resources Information Center
Abraham, Solomon T.
The Mathematics and Computer Science Learning Center (MLC) was established in the Department of Mathematics at North Carolina Central University during the fall semester of the 1982-83 academic year. The initial operations of the MLC were supported by grants to the University from the Burroughs-Wellcome Company and the Kenan Charitable Trust Fund.…
Lv, Houning; Zhao, Ningning; Zheng, Zhongqing; Wang, Tao; Yang, Fang; Jiang, Xihui; Lin, Lin; Sun, Chao; Wang, Bangmao
2017-05-01
Peroral endoscopic myotomy (POEM) has emerged as an advanced technique for the treatment of achalasia, and defining the learning curve is mandatory. From August 2011 to June 2014, two operators in our institution (A&B) carried out POEM on 35 and 33 consecutive patients, respectively. Moving average and cumulative sum (CUSUM) methods were used to analyze the POEM learning curve for corrected operative time (cOT), referring to duration of per centimeter myotomy. Additionally, perioperative outcomes were compared among distinct learning curve phases. Using the moving average method, cOT reached a plateau at the 29th case and at the 24th case for operators A and B, respectively. CUSUM analysis identified three phases: initial learning period (Phase 1), efficiency period (Phase 2) and mastery period (Phase 3). The relatively smooth state in the CUSUM graph occurred at the 26th case and at the 24th case for operators A and B, respectively. Mean cOT of distinct phases for operator A were 8.32, 5.20 and 3.97 min, whereas they were 5.99, 3.06 and 3.75 min for operator B, respectively. Eckardt score and lower esophageal sphincter pressure significantly decreased during the 1-year follow-up period. Data were comparable regarding patient characteristics and perioperative outcomes. This single-center study demonstrated that expert endoscopists with experience in esophageal endoscopic submucosal dissection reached a plateau in learning of POEM after approximately 25 cases. © 2016 Japan Gastroenterological Endoscopy Society.
Language Resource Centers Program
ERIC Educational Resources Information Center
Office of Postsecondary Education, US Department of Education, 2012
2012-01-01
The Language Resource Centers (LRC) program provides grants to institutions of higher education to establish, strengthen, and operate resource centers that serve to improve the nation's capacity to teach and learn foreign languages. Eligible applicants are institutions of higher education. Duration of the grant is four years. Center activities…
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2010-01-01
This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
A Patient Learning Center for an Army MEDDAC - A Feasibility Study. Final Report.
ERIC Educational Resources Information Center
Kucha, Deloros H.
A feasibility study was conducted to examine in detail, analyze, and describe the development and operation (system effectiveness and efficiency) of a patient learning center in a MEDDAC, and to provide such information to the Surgeon General for use in planning future health care delivery to military-care eligible beneficiaries. Study objectives…
ERIC Educational Resources Information Center
Gibson, Michael R.
2016-01-01
"Designing backwards" is presented here as a means to utilize human-centered processes in diverse educational settings to help teachers and students learn to formulate and operate design processes to achieve three sequential and interrelated goals. The first entails teaching them to effectively and empathetically identify, frame and…
2016-10-01
Manpower Data Center (DMDC) for data extracts identifying monthly deployments from September 2001 through December 2014. This data would answer questions... Manpower Data Center (DMDC) databases captured which service members were mobilized and deployed. Government history offices, lessons learned...develop MOEs and MOPs to conduct assessments. 1. Data Extracts Concurrent with engagement efforts, IDA queried the Defense Manpower Data Center (DMDC
Learning Resources Center, North Carolina Central University. Twenty-Ninth Annual Report, 1978-79.
ERIC Educational Resources Information Center
Jermundson, Aaron
This overview of services extended to students, faculty, staff, and administration by the Learning Resources Center includes an assessment of the staff and funding needed to support its continued growth, as well as reports on the various facets of its operation. Both narrative and statistical reports are provided in each of the service areas: (1)…
ERIC Educational Resources Information Center
TATUM, WILLIAM; CHASNOFF, ROBERT
ACTIVITIES, FACILITIES, AND PROGRAMED READING MATERIALS AT THE ADULT LEARNING CENTER OF ELIZABETHPORT (ELIZABETH, NEW JERSEY) WERE EVALUATED IN 1968 BY STAFF MEMBERS AND PARTICIPANTS. STAFF OPINIONS DIFFERED AS TO THE MOST SUCCESSFUL MATERIALS, AND REASONS GIVEN FOR SUCCESS VARIED BETWEEN INTEREST LEVEL, SIZE OF PRINT AND LENGTH OF STORIES, THE…
Holistic Approach to Data Center Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Steven W
This presentation discusses NREL's Energy System Integrations Facility and NREL's holistic design approach to sustainable data centers that led to the world's most energy-efficient data center. It describes Peregrine, a warm water liquid cooled supercomputer, waste heat reuse in the data center, demonstrated PUE and ERE, and lessons learned during four years of operation.
Space Operations Learning Center
NASA Technical Reports Server (NTRS)
Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng
2012-01-01
The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
As part of the Research Institute for Computing and Information Systems (RICIS) activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This interim report provides the status of the project and outlines the future plans.
Naval Facilities Engineering Command Needs to Improve Controls Over Task Order Administration
2015-07-02
consolidated joint use Submarine Learning Center and Submarine Squadron Headquarters facility that: • includes training space for submarine crews, and...allows frequent and timely interaction between Headquarters personnel, Submarine Learning Center instructors, and waterfront operations personnel...Introduction DODIG-2015-141 │ 3 Project P-528 provides a Torpedo Exercise Support facility that: • supports submarine crew training and certification to
Integrating Automation into a Multi-Mission Operations Center
NASA Technical Reports Server (NTRS)
Surka, Derek M.; Jones, Lori; Crouse, Patrick; Cary, Everett A, Jr.; Esposito, Timothy C.
2007-01-01
NASA Goddard Space Flight Center's Space Science Mission Operations (SSMO) Project is currently tackling the challenge of minimizing ground operations costs for multiple satellites that have surpassed their prime mission phase and are well into extended mission. These missions are being reengineered into a multi-mission operations center built around modern information technologies and a common ground system infrastructure. The effort began with the integration of four SMEX missions into a similar architecture that provides command and control capabilities and demonstrates fleet automation and control concepts as a pathfinder for additional mission integrations. The reengineered ground system, called the Multi-Mission Operations Center (MMOC), is now undergoing a transformation to support other SSMO missions, which include SOHO, Wind, and ACE. This paper presents the automation principles and lessons learned to date for integrating automation into an existing operations environment for multiple satellites.
2017-01-27
Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned Program manager, far right, is pictured with panelists from the Apollo 1 Lessons Learned event in the Training Auditorium at NASA's Kennedy Space Center in Florida. In the center, are Ernie Reyes, retired, former Apollo 1 senior operations manager; and John Tribe, retired, former Apollo 1 Reaction and Control System lead engineer. At far left is Zulie Cipo, the Apollo, Challenger, Columbia Lessons Learned Program event support team lead. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.
Lessons Learned and Lessons To Be Learned: An Overview of Innovative Network Learning Environments.
ERIC Educational Resources Information Center
Jacobson, Michael J.; Jacobson, Phoebe Chen
This paper provides an overview of five innovative projects involving network learning technologies in the United States: (1) the MicroObservatory Internet Telescope is a collection of small, high-quality, and low-maintenance telescopes operated by the Harvard-Smithsonian Center for Astrophysics (Massachusetts), which may be used remotely via the…
NASA Technical Reports Server (NTRS)
Dittermore, Gary; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.
Successful model for cooperative student learning centers in physics and astronomy
NASA Astrophysics Data System (ADS)
Bieniek, Ronald J.; Johnson, John A.
2003-04-01
We have established successful problem-based learning centers for introductory courses in physics [1] and astronomy [2] that fully implement the Seven Principles of Good Practice in Undergraduate Education [3] without increased demand on faculty time. Large percentages of students at our two institutions voluntarily utilize these learning venues. Course instructors guide self-forming groups of students to mastery of technical concepts and skills, building greater student self-confidence through direct interaction and feedback. The approach's immediacy helps students recognize ambiguities in their understanding, thereby increasing impact at teachable moments. Underperforming students are assisted along side students who wish to hone their skills. The format also facilitates racial and gender mixing within learning center camaraderie. Specific pedagogical and operational techniques for running learning centers will be presented. [1] http://www.umr.edu/ physics/plc [2] http://astron.berkeley.edu/talc.html [3] A.W. Chickering & Z.F. Gamson, Am. Assoc. Higher Ed. Bulletin, 1987, 39(7) 3-7.
NASA Technical Reports Server (NTRS)
Maxwell, Theresa G.; Bihner, William J.
2010-01-01
This paper discusses the NASA Headquarters mishap response process for the Space Shuttle and International Space Station programs, and how the process has evolved based on lessons learned from the Space Shuttle Challenger and Columbia accidents. It also describes the NASA Headquarters Space Operations Center (SOC) and its special role in facilitating senior management's overall situational awareness of critical spaceflight operations, before, during, and after a mishap, to ensure a timely and effective contingency response.
The Network Operations Control Center upgrade task: Lessons learned
NASA Technical Reports Server (NTRS)
Sherif, J. S.; Tran, T.-L.; Lee, S.
1994-01-01
This article synthesizes and describes the lessons learned from the Network Operations Control Center (NOCC) upgrade project, from the requirements phase through development and test and transfer. At the outset, the NOCC upgrade was being performed simultaneously with two other interfacing and dependent upgrades at the Signal Processing Center (SPC) and Ground Communications Facility (GCF), thereby adding a significant measure of complexity to the management and overall coordination of the development and transfer-to-operations (DTO) effort. Like other success stories, this project carried with it the traditional elements of top management support and exceptional dedication of cognizant personnel. Additionally, there were several NOCC-specific reasons for success, such as end-to-end system engineering, adoption of open-system architecture, thorough requirements management, and use of appropriate off-the-shelf technologies. On the other hand, there were several difficulties, such as ill-defined external interfaces, transition issues caused by new communications protocols, ambivalent use of two sets of policies and standards, and mistailoring of the new JPL management standard (due to the lack of practical guidelines). This article highlights the key lessons learned, as a means of constructive suggestions for the benefit of future projects.
Educational Applications of Astronomy & Space Flight Operations at the Kennedy Space Center
NASA Astrophysics Data System (ADS)
Erickson, L. K.
1999-09-01
Within two years, the Kennedy Space Center will complete a total redesign of NASA's busiest Visitor's Center. Three million visitors per year will be witness to a new program focused on expanding the interests of the younger public in NASA's major space programs, in space operations, and in astronomy. This project, being developed through the Visitor's Center director, a NASA faculty fellow, and the Visitor's Center contractor, is centered on the interaction between NASA programs, the visiting youth, and their parents. The goal of the Center's program is to provide an appealing learning experience for teens and pre teens using stimulating displays and interactive exhibits that are also educational.
20 CFR 670.520 - Are students permitted to hold jobs other than work-based learning opportunities?
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Are students permitted to hold jobs other than work-based learning opportunities? 670.520 Section 670.520 Employees' Benefits EMPLOYMENT AND... than work-based learning opportunities? Yes, a center operator may authorize a student to participate...
20 CFR 670.520 - Are students permitted to hold jobs other than work-based learning opportunities?
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Are students permitted to hold jobs other than work-based learning opportunities? 670.520 Section 670.520 Employees' Benefits EMPLOYMENT AND... than work-based learning opportunities? Yes, a center operator may authorize a student to participate...
20 CFR 670.520 - Are students permitted to hold jobs other than work-based learning opportunities?
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Are students permitted to hold jobs other than work-based learning opportunities? 670.520 Section 670.520 Employees' Benefits EMPLOYMENT AND... than work-based learning opportunities? Yes, a center operator may authorize a student to participate...
20 CFR 670.520 - Are students permitted to hold jobs other than work-based learning opportunities?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Are students permitted to hold jobs other than work-based learning opportunities? 670.520 Section 670.520 Employees' Benefits EMPLOYMENT AND...-based learning opportunities? Yes, a center operator may authorize a student to participate in gainful...
20 CFR 670.520 - Are students permitted to hold jobs other than work-based learning opportunities?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Are students permitted to hold jobs other than work-based learning opportunities? 670.520 Section 670.520 Employees' Benefits EMPLOYMENT AND...-based learning opportunities? Yes, a center operator may authorize a student to participate in gainful...
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being reengineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEiX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the reengineering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team s experiences with integrating multiple missions into a fleet-based automated ground system.
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.
Field Test Advisor Perceptions of Center Operations: An Occasional Paper.
ERIC Educational Resources Information Center
Goldstein, Marjorie T.
A 1974 survey was undertaken to determine the extent to which the Curriculum Research and Development Center in Mental Retardation was responsive to the needs of the Social Learning Curriculum field test advisors (FTA's). Thirty-eight FTA's responded. Among the results was a significant positive change in FTA's perceptions of Center functioning.…
NASA Technical Reports Server (NTRS)
Ferell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Goerz, Jesse; Brown, Barbara
2010-01-01
This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).
ERIC Educational Resources Information Center
Davis, Harold S.
The organization and development of instructional materials centers (IMC's) as a part of a program of educational improvement is discussed. Analysis is made of the advantages, disadvantages, and organization of centralized IMC's, decentralized IMC's, and coordinated IMC's, with recommendations being made for their development. The operation of…
Fashions in Instructional Development.
ERIC Educational Resources Information Center
Knapper, Christopher K.
This paper on instructional development notes the trend toward teaching improvement efforts, classifies instructional development centers in terms of their differing philosophies of operation, and identifies some general problems that have been encountered in institutional efforts to improve teaching and learning. Centers in North America, Europe,…
Learning curve for intracranial angioplasty and stenting in single center.
Cai, Qiankun; Li, Yongkun; Xu, Gelin; Sun, Wen; Xiong, Yunyun; Sun, Wenshan; Bao, Yuanfei; Huang, Xianjun; Zhang, Yao; Zhou, Lulu; Zhu, Wusheng; Liu, Xinfeng
2014-01-01
To identify the specific caseload to overcome learning curve effect based on data from consecutive patients treated with Intracranial Angioplasty and Stenting (IAS) in our center. The Stenting and Aggressive Medical Management for Preventing Recurrent Stroke and Intracranial Stenosis trial was prematurely terminated owing to the high rate of periprocedural complications in the endovascular arm. To date, there are no data available for determining the essential caseload sufficient to overcome the learning effect and perform IAS with an acceptable level of complications. Between March 2004 and May 2012, 188 consecutive patients with 194 lesions who underwent IAS were analyzed retrospectively. The outcome variables used to assess the learning curve were periprocedural complications (included transient ischemic attack, ischemic stroke, vessel rupture, cerebral hyperperfusion syndrome, and vessel perforation). Multivariable logistic regression analysis was employed to illustrate the existence of learning curve effect on IAS. A risk-adjusted cumulative sum chart was performed to identify the specific caseload to overcome learning curve effect. The overall rate of 30-days periprocedural complications was 12.4% (24/194). After adjusting for case-mix, multivariate logistic regression analysis showed that operator experience was an independent predictor for periprocedural complications. The learning curve of IAS to overcome complications in a risk-adjusted manner was 21 cases. Operator's level of experience significantly affected the outcome of IAS. Moreover, we observed that the amount of experience sufficient for performing IAS in our center was 21 cases. Copyright © 2013 Wiley Periodicals, Inc.
Managing Risk in Safety Critical Operations - Lessons Learned from Space Operations
NASA Technical Reports Server (NTRS)
Gonzalez, Steven A.
2002-01-01
The Mission Control Center (MCC) at Johnson Space Center (JSC) has a rich legacy of supporting Human Space Flight operations throughout the Apollo, Shuttle and International Space Station eras. Through the evolution of ground operations and the Mission Control Center facility, NASA has gained a wealth of experience of what it takes to manage the risk in Safety Critical Operations, especially when human life is at risk. The focus of the presentation will be on the processes (training, operational rigor, team dynamics) that enable the JSC/MCC team to be so successful. The presentation will also share the evolution of the Mission Control Center architecture and how the evolution was introduced while managing the risk to the programs supported by the team. The details of the MCC architecture (e.g., the specific software, hardware or tools used in the facility) will not be shared at the conference since it would not give any additional insight as to how risk is managed in Space Operations.
ERIC Educational Resources Information Center
Weiss, Michael J.; Visher, Mary G.; Wathington, Heather
2010-01-01
This Brief, based on a report of the same title, presents results from a rigorous study of a basic learning communities program operated at Hillsborough Community College. Hillsborough, one of six community colleges participating in the National Center for Postsecondary Research's (NCPR) Learning Communities Demonstration, is a large, urban…
NASA Astrophysics Data System (ADS)
Larson, Richard C.; Murray, M. Elizabeth
2008-04-01
This paper uses case studies to focus on distance learning in developing countries as an enabler for economic development and poverty reduction. To provide perspective, we first review the history of telecottages, local technology-equipped facilities to foster community-based learning, which have evolved into "telecenters" or "Community Learning Centers" (CLCs). Second, we describe extensive site visits to CLCs in impoverished portions of China and Mexico, the centers operated by premier universities in each respective country. These CLCs constitute the core of new emerging systems of distance education, and their newness poses challenges and opportunities, which are discussed. Finally, we offer 12 points to develop further the concept and reality of distance learning in support of economic development.
Adult Basic Learning in an Activity Center: A Demonstration Approach.
ERIC Educational Resources Information Center
Metropolitan Adult Education Program, San Jose, CA.
Escuela Amistad, an activity center in San Jose, California, is now operating at capacity, five months after its origin. Average daily attendance has been 125 adult students, 18-65, most of whom are females of Mexican-American background. Activities and services provided by the center are: instruction in English as a second language, home…
ERIC Educational Resources Information Center
Adamson, John; Brown, Howard
2012-01-01
This study reports on the steering of a self-access learning center in a Japanese university by its "middle management" committee over the first years of its operation. Middle management practice was informed by an ethnographic archive of various facets of center use, particularly concerning language policy and curriculum integration, issues about…
DCDM1: Lessons Learned from the World's Most Energy Efficient Data Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sickinger, David E; Van Geet, Otto D; Carter, Thomas
This presentation discusses the holistic approach to design the world's most energy-efficient data center, which is located at the U.S. Department of Energy National Renewable Energy Laboratory (NREL). This high-performance computing (HPC) data center has achieved a trailing twelve-month average power usage effectiveness (PUE) of 1.04 and features a chiller-less design, component-level warm-water liquid cooling, and waste heat capture and reuse. We provide details of the demonstrated PUE and energy reuse effectiveness (ERE) and lessons learned during four years of production operation. Recent efforts to dramatically reduce the water footprint will also be discussed. Johnson Controls partnered with NREL andmore » Sandia National Laboratories to deploy a thermosyphon cooler (TSC) as a test bed at NREL's HPC data center that resulted in a 50% reduction in water usage during the first year of operation. The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device with an open cooling tower.« less
ERIC Educational Resources Information Center
Center for Mental Health in Schools at UCLA, 2011
2011-01-01
factors affecting learning and teaching and how the operational infrastructure is reworked to enable strategic and effective development of essential interventions. This is especially so for schools that…
Human Error and the International Space Station: Challenges and Triumphs in Science Operations
NASA Technical Reports Server (NTRS)
Harris, Samantha S.; Simpson, Beau C.
2016-01-01
Any system with a human component is inherently risky. Studies in human factors and psychology have repeatedly shown that human operators will inevitably make errors, regardless of how well they are trained. Onboard the International Space Station (ISS) where crew time is arguably the most valuable resource, errors by the crew or ground operators can be costly to critical science objectives. Operations experts at the ISS Payload Operations Integration Center (POIC), located at NASA's Marshall Space Flight Center in Huntsville, Alabama, have learned that from payload concept development through execution, there are countless opportunities to introduce errors that can potentially result in costly losses of crew time and science. To effectively address this challenge, we must approach the design, testing, and operation processes with two specific goals in mind. First, a systematic approach to error and human centered design methodology should be implemented to minimize opportunities for user error. Second, we must assume that human errors will be made and enable rapid identification and recoverability when they occur. While a systematic approach and human centered development process can go a long way toward eliminating error, the complete exclusion of operator error is not a reasonable expectation. The ISS environment in particular poses challenging conditions, especially for flight controllers and astronauts. Operating a scientific laboratory 250 miles above the Earth is a complicated and dangerous task with high stakes and a steep learning curve. While human error is a reality that may never be fully eliminated, smart implementation of carefully chosen tools and techniques can go a long way toward minimizing risk and increasing the efficiency of NASA's space science operations.
Lessons learned from the introduction of autonomous monitoring to the EUVE science operations center
NASA Technical Reports Server (NTRS)
Lewis, M.; Girouard, F.; Kronberg, F.; Ringrose, P.; Abedini, A.; Biroscak, D.; Morgan, T.; Malina, R. F.
1995-01-01
The University of California at Berkeley's (UCB) Center for Extreme Ultraviolet Astrophysics (CEA), in conjunction with NASA's Ames Research Center (ARC), has implemented an autonomous monitoring system in the Extreme Ultraviolet Explorer (EUVE) science operations center (ESOC). The implementation was driven by a need to reduce operations costs and has allowed the ESOC to move from continuous, three-shift, human-tended monitoring of the science payload to a one-shift operation in which the off shifts are monitored by an autonomous anomaly detection system. This system includes Eworks, an artificial intelligence (AI) payload telemetry monitoring package based on RTworks, and Epage, an automatic paging system to notify ESOC personnel of detected anomalies. In this age of shrinking NASA budgets, the lessons learned on the EUVE project are useful to other NASA missions looking for ways to reduce their operations budgets. The process of knowledge capture, from the payload controllers for implementation in an expert system, is directly applicable to any mission considering a transition to autonomous monitoring in their control center. The collaboration with ARC demonstrates how a project with limited programming resources can expand the breadth of its goals without incurring the high cost of hiring additional, dedicated programmers. This dispersal of expertise across NASA centers allows future missions to easily access experts for collaborative efforts of their own. Even the criterion used to choose an expert system has widespread impacts on the implementation, including the completion time and the final cost. In this paper we discuss, from inception to completion, the areas where our experiences in moving from three shifts to one shift may offer insights for other NASA missions.
2017-01-27
NASA Kennedy Space Center Director Bob Cabana, at left, moderates a panel discussion during the Apollo 1 Lessons Learned event in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The theme of the presentation was "To There and Back Again." Answering questions are Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
Meeting Consumers' Information Needs: Putting Research to Work.
ERIC Educational Resources Information Center
Steketee, Drew
The Consumer Information Center is a federal program which encourages federal agencies to develop and release consumer information to the public. It also promotes consumer awareness and access to information through the "Consumer Information Catalog" and a mail order distribution operation. Through research, the Center can learn the…
The Strategies for Significant Survival of Postsecondary Centers for Continuing Education.
ERIC Educational Resources Information Center
Caldwell, Phyllis A.
While the financial survival of postsecondary institutions is being stressed, continuing education operarions are facing increasing difficulties in surviving and competing. Strategies are needed for the significant survival of continuing education operations at the small college. The Lifelong Learning Center and others like it need to be concerned…
Distance Learning as a Training and Education Tool.
ERIC Educational Resources Information Center
Hosley, David L.; Randolph, Sherry L.
Lockheed Space Operations Company's Technical Training Department provides certification classes to personnel at other National Aeronautics and Space Administration (NASA) Centers. Courses are delivered over the Kennedy Space Center's Video Teleconferencing System (ViTS). The ViTS system uses two-way compressed video and two-way audio between…
A Cognitive Approach to e-Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Rice, Douglas M.; Eaton, Sharon L.
2003-12-01
Like traditional classroom instruction, distributed learning derives from passive training paradigms. Just as student-centered classroom teaching methods have been applied over several decades of classroom instruction, interactive approaches have been encouraged for distributed learning. While implementation of multimedia-based training features may appear to produce active learning, sophisticated use of multimedia features alone does not necessarily enhance learning. This paper describes the results of applying cognitive science principles to enhance learning in a student-centered, distributed learning environment, and lessons learned in developing and delivering this training. Our interactive, scenario-based approach exploits multimedia technology within a systematic, cognitive framework for learning. Themore » basis of the application of cognitive principles is the innovative use of multimedia technology to implement interaction elements. These simple multimedia interactions, which are used to support new concepts, are later combined with other interaction elements to create more complex, integrated practical exercises. This technology-based approach may be applied in a variety of training and education contexts, but is especially well suited for training of equipment operators and maintainers. For example, it has been used in a sustainment training application for the United States Army's Combat Support System Automated Information System Interface (CAISI). The CAISI provides a wireless communications capability that allows various logistics systems to communicate across the battlefield. Based on classroom training material developed by the CAISI Project Office, the Pacific Northwest National Laboratory designed and developed an interactive, student-centered distributed-learning application for CAISI operators and maintainers. This web-based CAISI training system is also distributed on CD media for use on individual computers, and material developed for the computer-based course can be used in the classroom. In addition to its primary role in sustainment training, this distributed learning course can complement or replace portions of the classroom instruction, thus supporting a blended learning solution.« less
Satellite Ground Operations Automation: Lessons Learned and Future Approaches
NASA Technical Reports Server (NTRS)
Catena, John; Frank, Lou; Saylor, Rick; Weikel, Craig; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
Reducing spacecraft ground system operations costs is a major goal in all missions. The Fast Auroral Snapshot (FAST) flight operations team at the NASA/Goddard Spacecraft Flight Center developed in-house scripts and procedures to automate monitoring of critical spacecraft functions. The initial staffing profile of 16x7 was reduced first to 8x5 and then to 'lights out'. Operations functions became an offline review of system performance and the generation of future science plans for subsequent upload to the spacecraft. Lessons learned will be applied to the challenging Triana mission, where 24x7 contact with the spacecraft will be necessary at all times.
Mars mission science operations facilities design
NASA Technical Reports Server (NTRS)
Norris, Jeffrey S.; Wales, Roxana; Powell, Mark W.; Backes, Paul G.; Steinke, Robert C.
2002-01-01
A variety of designs for Mars rover and lander science operations centers are discussed in this paper, beginning with a brief description of the Pathfinder science operations facility and its strengths and limitations. Particular attention is then paid to lessons learned in the design and use of operations facilities for a series of mission-like field tests of the FIDO prototype Mars rover. These lessons are then applied to a proposed science operations facilities design for the 2003 Mars Exploration Rover (MER) mission. Issues discussed include equipment selection, facilities layout, collaborative interfaces, scalability, and dual-purpose environments. The paper concludes with a discussion of advanced concepts for future mission operations centers, including collaborative immersive interfaces and distributed operations. This paper's intended audience includes operations facility and situation room designers and the users of these environments.
Worker-Centered Learning: A Union Guide to Workplace Literacy.
ERIC Educational Resources Information Center
Sarmiento, Anthony R.; Kay, Ann
This guide examines organized labor's views on adult literacy. It also describes several union-sponsored workplace education programs and suggests how a union can plan and operate a worker-centered literacy program. The book is organized in three parts. The first part examines workplace literacy in four chapters that cover the following: the…
2017-01-27
Kennedy Space Center Director Bob Cabana welcomes participants to the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Guest panelists included Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team; Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
2017-01-27
Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned program manager, at left, presents a certificate to Ernie Reyes, retired, former Apollo 1 senior operations manager, during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
2002-03-01
sections consists of four units, the Domestic Terrorism Operations Unit, the WMD Operations Unit, the WMD Countermeasures Unit, and Special Events Management Unit...Countermeasures Unit Chief Special Events Management Unit Chief Domestic Terrorism/ Counterterrorism Section Chief International Terrorism Section Asstistant
NASA Technical Reports Server (NTRS)
Byrne, R.; Scharf, M.; Doan, D.; Liu, J.; Willems, A.
2004-01-01
An advanced network interface was designed and implemented by a team from the Jet Propulsion Lab with support from the European Space Operations Center. This poster shows the requirements for the interface, the design, the topology, the testing and lessons learned from the whole implementation.
English for Petrochemical Plant Operators.
ERIC Educational Resources Information Center
Bynum, Henri Sue
The development of a program and curriculum for instruction in technical English for Saudi Arabian petrochemical plant operator trainees studying in the United States for two years was undertaken by the University of South Alabama's English Language Center. The program was designed to accommodate (1) the degree of skills and prior learning of the…
32 CFR 158.5 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operational deployments, develop and submit lessons learned that result in improved best practices and... Director, Defense Manpower Data Center (DMDC), under the authority, direction, and control of the USD(P&R...
32 CFR 158.5 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operational deployments, develop and submit lessons learned that result in improved best practices and... Director, Defense Manpower Data Center (DMDC), under the authority, direction, and control of the USD(P&R...
32 CFR 158.5 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operational deployments, develop and submit lessons learned that result in improved best practices and... Director, Defense Manpower Data Center (DMDC), under the authority, direction, and control of the USD(P&R...
ERIC Educational Resources Information Center
Arnote, Thelma E.
Phase I of a research and demonstration project was devoted to establishing, operating, and evaluating a demonstration nursery center to provide for the daytime care of 30 infants and toddlers ranging in age from 2 months through 3 years. During this phase, some emphasis was also given to recruiting and training the center's nursery assistants,…
[Pancreatoduodenectomy: learning curve within single multi-field center].
Kaprin, A D; Kostin, A A; Nikiforov, P V; Egorov, V I; Grishin, N A; Lozhkin, M V; Petrov, L O; Bykasov, S A; Sidorov, D V
2018-01-01
To analyze learning curve by using of immediate results of pancreatoduodenectomy at multi-field oncology institute. For the period 2010-2016 at Abdominal Oncology Department of Herzen Moscow Oncology Research Institute 120 pancreatoduodenal resections were consistently performed. All patients were divided into two groups: the first 60 procedures (group A) and subsequent 60 operations (group B). Herewith, first 60 operations were performed within the first 4.5 years of study period, the next 60 operations - within remaining 2.5 years. Learning curves showed significantly variable intraoperative blood loss (1100 ml and 725 ml), surgery time (589 min and 513 min) and postoperative hospital-stay (15 days and 13 days) in group A followed by gradual improvement of these values in group B. Incidence of negative resection margin (R0) was also significantly improved in the last 60 operations (70 and 92%, respectively). Despite pancreatoduodenectomy is one of the most difficult surgical interventions in abdominal surgery learning curve will differ from one surgeon to another.
NASA Technical Reports Server (NTRS)
Taylor, Gary O.
2001-01-01
John C. Stennis Space Center continues to support the Propulsion community in an effort to validate High-Test Peroxide as an alternative to existing/future oxidizers. This continued volume of peroxide test/handling activity at Stennis Space Center (SSC) provides numerous opportunities for the SSC team to build upon previously documented 'lessons learned'. SSC shall continue to strive to document their experience and findings as H2O2 issues surface. This paper is intended to capture all significant peroxide issues that we have learned over the last three years. This data (lessons learned) has been formulated from practical handling, usage, storage, operations, and initial development/design of our systems/facility viewpoint. The paper is intended to be an information type tool and limited in technical rational; therefore, presenting the peroxide community with some issues to think about as the continued interest in peroxide evolves and more facilities/hardware are built. These lessons learned are intended to assist industry in mitigating problems and identifying potential pitfalls when dealing with the requirements for handling high-test peroxide.
Noncombatant Evacuation Operations: Department of State’s Lessons Learned Program
2016-06-10
student author and do not necessarily represent the views of the U.S. Army Command and General Staff College or any other U.S. governmental agency...68 viii ACRONYMS AAR After Action Review CALL Center for Army Lessons Learned CMS Crisis Management Support CMU Crisis Management ...Knowledge Management Chart .......................................................................25 Figure 5. Organization Chart
2017-01-27
Ernie Reyes, retired, former Apollo 1 senior operations manager, signs a book for a worker after the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
ERIC Educational Resources Information Center
MARTIN, WALTER TRAVIS, JR.
IN 1964, NORTH CAROLINA ESTABLISHED A SYSTEM OF "FUNDAMENTALS LEARNING LABORATORIES" WHERE ADULTS MIGHT OBTAIN PROGRAMED SELF-INSTRUCTION AT MINIMAL COST (A $2.00 REGISTRATION FEE). IN A DESCRIPTIVE STUDY OF THE 17 LABORATORIES OPERATING IN 1965, DATA WERE GATHERED BY QUESTIONNAIRES AND INTERVIEWS. FINDINGS INCLUDED THE FOLLOWING-- (1)…
Space Human Factors: Research to Application
NASA Technical Reports Server (NTRS)
Woolford, Barbara
2008-01-01
Human Factors has been instrumental in preventing potential on-orbit hazards and increasing overall crew safety. Poor performance & operational learning curves on-orbit are mitigated. Human-centered design is applied to optimize design and minimize potentially hazardous conditions, especially with larger crew sizes and habitat constraints. Lunar and Mars requirements and design developments are enhanced, based on ISS Lessons Learned.
ERIC Educational Resources Information Center
Louisiana State Office of Public Health, New Orleans. Dept. of Health and Hospitals.
Since 1991, 23 school health centers have been established to serve children and families through locally sponsored health and education partnerships to improve the health and learning potential of Louisiana's public school students. This report presents information on the program operation in 1996-97. Section 1 of the report describes the growth…
Bowrey, David J; Kidd, Jane M
2014-01-01
The emotions experienced by medical students on first exposure to the operating theatre are unknown. It is also unclear what influence these emotions have on the learning process. To understand the emotions experienced by students when in the operating theatre for the first time and the impact of these emotions on learning. Nine 3rd-year medical students participated in semistructured interviews to explore these themes. A qualitative approach was used; interviews were transcribed and coded thematically. All participants reported initial negative emotions (apprehension, anxiety, fear, shame, overwhelmed), with excitement being reported by 3. Six participants considered that their anxiety was so overwhelming that it was detrimental to their learning. Participants described a period of familiarization to the environment, after which learning was facilitated. Early learning experiences centered around adjustment to the physical environment of the operating theatre. Factors driving initial negative feelings were loss of familiarity, organizational issues, concerns about violating protocol, and a fear of syncope. Participants considered that it took a median of 1 week (range = 1 day-3 weeks) or 5 visits to the operating theatre (range = 1-10) before feeling comfortable in the new setting. Emotions experienced on subsequent visits to the operating theatre were predominantly positive (enjoyment, happiness, confident, involved, pride). Two participants reported negative feelings related to social exclusion. Being included in the team was a powerful determinant of enjoyment. These findings indicate that for learning in the operating theatre to be effective, addressing the negative emotions of the students might be beneficial. This could be achieved by a formal orientation program for both learners and tutors in advance of attendance in the operating theatre. For learning to be optimized, students must feel a sense of inclusion in the theatre community of practice.
Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers
NASA Technical Reports Server (NTRS)
Scott, David W.
2010-01-01
Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.
Lessons learned in control center technologies and non-technologies
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.
1991-01-01
Information is given in viewgraph form on the Solar Mesosphere Explorer (SME) Control Center and the Oculometer and Automated Space Interface System (OASIS). Topics covered include SME mission operations functions; technical and non-technical features of the SME control center; general tasks and objects within the Space Station Freedom (SSF) ground system nodes; OASIS-Real Time for the control and monitoring of of space systems and subsystems; and OASIS planning, scheduling, and PC architecture.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
The reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we also use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use two terms interchangeable to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS). This report is the deliverable D3 in our project activity and provides the test results of the fuzzy learning translational controller. This report is organized in six sections. Based on our experience and analysis with the attitude controller, we have modified the basic configuration of the reinforcement learning algorithm in ARIC as described in section 2. The shuttle translational controller and its implementation in fuzzy learning architecture is described in section 3. Two test cases that we have performed are described in section 4. Our results and conclusions are discussed in section 5, and section 6 provides future plans and summary for the project.
ERIC Educational Resources Information Center
Baker, Eva L.
2007-01-01
This paper will describe the relationships between research on learning and its application in assessment models and operational systems. These have been topics of research at the National Center for Research on Evaluation, Standards, and Student Testing (CRESST) for more than 20 years and form a significant part of the intellectual foundation of…
ERIC Educational Resources Information Center
McBain, Susan L.
This module on owning and operating a garden center is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided into…
ERIC Educational Resources Information Center
Lucci, William, Jr.
2005-01-01
The Stafford Technical Center (STC) in Rutland, Vermont, operates with a mission statement that proudly touts its desire to "create a learning environment that promotes pride in work, a sense of self-worth and the ability to respect others by developing effective communication and life skills." Stafford acknowledges that these learning…
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
Utilization of Virtual Server Technology in Mission Operations
NASA Technical Reports Server (NTRS)
Felton, Larry; Lankford, Kimberly; Pitts, R. Lee; Pruitt, Robert W.
2010-01-01
Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.
Virtualization in the Operations Environments
NASA Technical Reports Server (NTRS)
Pitts, Lee; Lankford, Kim; Felton, Larry; Pruitt, Robert
2010-01-01
Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.
The influence of learning and updating speed on the growth of commercial websites
NASA Astrophysics Data System (ADS)
Wan, Xiaoji; Deng, Guishi; Bai, Yang; Xue, Shaowei
2012-08-01
In this paper, we study the competition model of commercial websites with learning and updating speed, and further analyze the influence of learning and updating speed on the growth of commercial websites from a nonlinear dynamics perspective. Using the center manifold theory and the normal form method, we give the explicit formulas determining the stability and periodic fluctuation of commercial sites. Numerical simulations reveal that sites periodically fluctuate as the speed of learning and updating crosses one threshold. The study provides reference and evidence for website operators to make decisions.
Operation COPE: Family Learning Center Handbook with Mothers Who are Heads of Households.
ERIC Educational Resources Information Center
Davidson, Edmonia W.
The handbook is comprised of materials related to the implementation of Operation COPE, a Washington, D.C., demonstration Adult Basic Education (ABE) project for low-income young mothers who are heads of households, developed by the National Council of Negro Women (NCNW). The project featured a curriculum which integrated coping skills with Adult…
Joint Forces Command - Operation United Assistance Case Study: Lessons and Best Practices
2016-07-01
additional and prioritized computers and access in the operations center for these mission requirements are essential. 127 JFC-OUA CASE STUDY Issue...this publication is welcomed and highly encouraged. Joint Forces Command – Operation United Assistance Case Study JFC-OUA CASE STUDY iii Foreword...Based on information drawn from various sources including after action reports, lessons learned, case studies , umbrella-week visits, and key-leader
20 CFR 670.525 - What residential support services must Job Corps center operators provide?
Code of Federal Regulations, 2011 CFR
2011-04-01
... the Secretary: (a) A quality living and learning environment that supports the overall training..., vending machines, disciplinary fines, and donations, and is run by an elected student government, with the...
20 CFR 670.525 - What residential support services must Job Corps center operators provide?
Code of Federal Regulations, 2010 CFR
2010-04-01
... the Secretary: (a) A quality living and learning environment that supports the overall training..., vending machines, disciplinary fines, and donations, and is run by an elected student government, with the...
1973-08-02
S73-31875 (2 Aug. 1973) --- After learning of a problem in the Command/Service Module which was used to transport the Skylab 3 crew to the orbiting Skylab space station cluster, NASA officials held various meetings to discuss the problem. Here, four men monitor the current status of the problem in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) at the Johnson Space Center (JSC). From the left are Gary E. Coen, Guidance and Navigation System flight controller; Howard W. Tindall Jr., Director of Flight Operations at JSC; Dr. Christopher C. Kraft Jr., JSC Director; and Sigurd A. Sjoberg, JSC Deputy Director. Photo credit: NASA
2013-01-17
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, Jacobs Technology General Manager Andy Allen speaks at a town hall meeting providing attendees an opportunity to learn about the Test and Operations Support Contract, or TOSC, hiring process and to introduce the organization's management team. NASA recently awarded its TOSC contract to Jacobs Technology Inc. of Tullahoma, Tenn. Jacobs will provide overall management and implementation of ground systems capabilities, flight hardware processing and launch operations at Kennedy. These tasks will support the International Space Station, Ground Systems Development and Operations, and the Space Launch System, Orion Multi-Purpose Crew Vehicle and Launch Services programs. For more information, visit http://www.nasa.gov/centers/kennedy/news/tosc_awarded.html Photo credit: NASA/Dimitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Marshall Space Flight Center. Teams from Johnson Space Center, Kennedy Space Center and Marshall competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft takes off during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-07-24
CAPE CANAVERAL, Fla. – Kennedy Space Center workers learn about the benefits of foam-rolling exercises and techniques to relieve the strain and pain of overused muscles and connective tissue. The class was part of the National Employee Health and Fitness Day event. Yoga, cardio dance, and boot camp classes were also offered throughout the day at the Operations and Checkout Building's Fitness Center. Photo credit: NASA/ Dimitri Gerondidakis
ERIC Educational Resources Information Center
Kingi, Marcella
This module on owning and operating a day care center is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…
Goldstone-Apple Valley Radio Telescope System Theory of Operation
NASA Technical Reports Server (NTRS)
Stephan, George R.
1997-01-01
The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.
20 CFR 670.525 - What residential support services must Job Corps center operators provide?
Code of Federal Regulations, 2013 CFR
2013-04-01
... issued by the Secretary: (a) A quality living and learning environment that supports the overall training..., vending machines, disciplinary fines, and donations, and is run by an elected student government, with the...
20 CFR 670.525 - What residential support services must Job Corps center operators provide?
Code of Federal Regulations, 2012 CFR
2012-04-01
... issued by the Secretary: (a) A quality living and learning environment that supports the overall training..., vending machines, disciplinary fines, and donations, and is run by an elected student government, with the...
20 CFR 670.525 - What residential support services must Job Corps center operators provide?
Code of Federal Regulations, 2014 CFR
2014-04-01
... issued by the Secretary: (a) A quality living and learning environment that supports the overall training..., vending machines, disciplinary fines, and donations, and is run by an elected student government, with the...
Warnasch, Scott C
2016-05-01
In 2006, unexpected discoveries of buried World Trade Center (WTC) debris and human remains were made at the World Trade Center mass disaster site. New York City's Office of Chief Medical Examiner (OCME) was given the task of systematically searching the site for any remaining victims' remains. The subsequent OCME assessment and archaeological excavation conducted from 2006 until 2013, resulted in the recovery of over 1,900 victims' remains. In addition, this operation demonstrated the essential skills archaeologists can provide in a mass disaster recovery operation. The OCME excavation data illustrates some of the challenges encountered during the original recovery effort of 2001/2002. It suggests that when understood within the larger site recovery context, certain fundamental components of the original recovery effort, such as operational priorities and activities in effect during the original recovery, directly or indirectly resulted in unsearched deposits that contained human remains. © 2016 American Academy of Forensic Sciences.
2012-08-03
Cape Canaveral, Fla. -- NASA Kennedy Space Center Director Bob Cabana discusses the Commercial Crew Program's CCP newest partnerships from the center's Operations Support Building 2 OSB II. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under a funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
2009-02-01
assessments and meeting rehearsal and individual learning materials • Specify the metrics to be used to capture the quality of interagency...government; • Improve security; and • Promote reconstruction (Barno, 2004; Dziedzic & Siedl, 2005; Center for Army Lessons Learned (CALL), 2007). The...their orientations and creating group-level, hierarchical orientations out of the aggregated individual orientations (Wan, Chiu, Peng, & Tam , 2007
2013-08-15
VINCENT VIDAURRI, CENTER, A TECHNICAL SPECIALIST WITH TELEDYNE BROWN ENGINEERING SUPPORTING MISSION OPERATIONS AT THE MARSHALL SPACE FLIGHT CENTER, PROVIDES DETAILS ABOUT A MOCK-UP OF THE INTERNATIONAL SPACE STATION SCIENCE LAB TO A GROUP OF AREA TEACHERS AS PART OF "BACK-2-SCHOOL DAY." TEAM REDSTONE -- WHICH INCLUDES THE MARSHALL SPACE FLIGHT CENTER AND U.S. ARMY ORGANIZATIONS ON REDSTONE ARSENAL -- INVITED 50 TEACHERS TO TOUR REDSTONE ARSENAL AUG. 15, GIVING THEM AN OPPORTUNITY TO LEARN OF AND SEE RESOURCES AVAILABLE TO THEM AND THEIR STUDENTS. THE TOUR FOCUSED ON SITES AVAILABLE FOR FIELD TRIPS FOR STUDENTS STUDYING MATH, SCIENCE, TECHNOLOGY AND ENGINEERING. STOPS INCLUDED MARSHALL'S PAYLOAD OPERATIONS INTEGRATION CENTER AND THE HIGH SCHOOLS UNITED WITH NASA TO CREATE HARDWARE LAB, OR HUNCH, BOTH LOCATED IN BUILDING 4663. THE PROGRAM GIVES HIGH SCHOOL STUDENTS THE CHANCE TO WORK WITH NASA ENGINEERS TO DESIGN AND BUILD HARDWARE FOR USE ON THE INTERNATIONAL SPACE STATION. THE TEACHERS ALSO VISITED THE ARMY AVIATION & MISSILE RESEARCH DEVELOPMENT & ENGINEERING CENTER AND THE REDSTONE TEST CENTER
NASA Astrophysics Data System (ADS)
Talbot, C. A.; Ralph, M.; Jasperse, J.; Forbis, J.
2017-12-01
Lessons learned from the multi-agency Forecast-Informed Reservoir Operations (FIRO) effort demonstrate how research and observations can inform operations and policy decisions at Federal, State and Local water management agencies with the collaborative engagement and support of researchers, engineers, operators and stakeholders. The FIRO steering committee consists of scientists, engineers and operators from research and operational elements of the National Oceanographic and Atmospheric Administration and the US Army Corps of Engineers, researchers from the US Geological Survey and the US Bureau of Reclamation, the state climatologist from the California Department of Water Resources, the chief engineer from the Sonoma County Water Agency, and the director of the Scripps Institution of Oceanography's Center for Western Weather and Water Extremes at the University of California-San Diego. The FIRO framework also provides a means of testing and demonstrating the benefits of next-generation water cycle observations, understanding and models in water resources operations.
The pilot phase of the NIH Chemical Genomics Center.
Thomas, Craig J; Auld, Douglas S; Huang, Ruili; Huang, Wenwei; Jadhav, Ajit; Johnson, Ronald L; Leister, William; Maloney, David J; Marugan, Juan J; Michael, Sam; Simeonov, Anton; Southall, Noel; Xia, Menghang; Zheng, Wei; Inglese, James; Austin, Christopher P
2009-01-01
The NIH Chemical Genomics Center (NCGC) was the inaugural center of the Molecular Libraries and Screening Center Network (MLSCN). Along with the nine other research centers of the MLSCN, the NCGC was established with a primary goal of bringing industrial technology and experience to empower the scientific community with small molecule compounds for use in their research. We intend this review to serve as 1) an introduction to the NCGC standard operating procedures, 2) an overview of several of the lessons learned during the pilot phase and 3) a review of several of the innovative discoveries reported during the pilot phase of the MLSCN.
ERIC Educational Resources Information Center
Morehead State Univ., KY.
Three types of instruction were used in the Ohio Module Project: traditional classes, programmed learning centers, and home instruction. Four major objectives of the project are: (1) to determine the kind of training program necessary to prepare paraprofessionals to operate an instructional program utilizing programmed materials, (2) to compare…
Continuing Professional Education in the Military
ERIC Educational Resources Information Center
Gleiman, Ashley; Zacharakis, Jeff
2016-01-01
The military relies on continuing professional education as a key component to the success of its organization. With decreasing budgets and increasing importance for a force that operates efficiently and thinks critically, the cognitive tension among training, education, and learning comes center stage.
Data Sharing to Improve Close Approach Monitoring and Safety of Flight
NASA Astrophysics Data System (ADS)
Chan, Joseph; DalBello, Richard; Hope, Dean; Wauthier, Pascal; Douglas, Tim; Inghram, Travis
2009-03-01
Individual satellite operators have done a good job of developing the internal protocols and procedures to ensure the safe operation of their fleets. However, data sharing among operators for close approach monitoring is conducted in an ad-hoc manner during relocations, and there is currently no standardized agreement among operators on the content, format, and distribution protocol for data sharing. Crowding in geostationary orbit, participation by new commercial actors, government interest in satellite constellations, and highly maneuverable spacecraft all suggest that satellite operators will need to begin a dialogue on standard communication protocols and procedure to improve situation awareness. We will give an overview of the current best practices among different operators for close approach monitoring and discuss the concept of an active data center to improve data sharing, conjunction monitoring, and avoidance among satellite operators. We will also report on the progress and lessons learned from a Data Center prototype conducted by several operators over a one year period.
2013-01-17
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, Jacobs Technology Deputy General Manager Lorna Kenna speaks at a town hall meeting providing attendees an opportunity to learn about the Test and Operations Support Contract, or TOSC, hiring process and to introduce the organization's management team. NASA recently awarded its TOSC contract to Jacobs Technology Inc. of Tullahoma, Tenn. Jacobs will provide overall management and implementation of ground systems capabilities, flight hardware processing and launch operations at Kennedy. These tasks will support the International Space Station, Ground Systems Development and Operations, and the Space Launch System, Orion Multi-Purpose Crew Vehicle and Launch Services programs. For more information, visit http://www.nasa.gov/centers/kennedy/news/tosc_awarded.html Photo credit: NASA/Dimitri Gerondidakis
Inspiring the Next Generation in Space Life Sciences
NASA Technical Reports Server (NTRS)
Hayes, Judith
2010-01-01
Competitive summer internships in space life sciences at NASA are awarded to college students every summer. Each student is aligned with a NASA mentor and project that match his or her skills and interests, working on individual projects in ongoing research activities. The interns consist of undergraduate, graduate, and medical students in various majors and disciplines from across the United States. To augment their internship experience, students participate in the Space Life Sciences Summer Institute (SLSSI). The purpose of the Institute is to offer a unique learning environment that focuses on the current biomedical issues associated with human spaceflight; providing an introduction of the paradigms, problems, and technologies of modern spaceflight cast within the framework of life sciences. The Institute faculty includes NASA scientists, physicians, flight controllers, engineers, managers, and astronauts; and fosters a multi-disciplinary science approach to learning with a particular emphasis on stimulating experimental creativity and innovation within an operational environment. This program brings together scientists and students to discuss cutting-edge solutions to problems in space physiology, environmental health, and medicine; and provides a familiarization of the various aspects of space physiology and environments. In addition to the lecture series, behind-the-scenes tours are offered that include the Neutral Buoyancy Laboratory, Mission Control Center, space vehicle training mockups, and a hands-on demonstration of the Space Shuttle Advanced Crew Escape Suit. While the SLSSI is managed and operated at the Johnson Space Center in Texas, student interns from the other NASA centers (Glenn and Ames Research Centers, in Ohio and California) also participate through webcast distance learning capabilities.
2017-01-27
Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned Program manager, welcomes participants to the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Guest panelists included Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team; Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
Flight Planning Branch NASA Co-op Tour
NASA Technical Reports Server (NTRS)
Marr, Aja M.
2013-01-01
This semester I worked with the Flight Planning Branch at the NASA Johnson Space Center. I learned about the different aspects of flight planning for the International Space Station as well as the software that is used internally and ISSLive! which is used to help educate the public on the space program. I had the opportunity to do on the job training in the Mission Control Center with the planning team. I transferred old timeline records from the planning team's old software to the new software in order to preserve the data for the future when the software is retired. I learned about the operations of the International Space Station, the importance of good communication between the different parts of the planning team, and enrolled in professional development classes as well as technical classes to learn about the space station.
Field studies of safety security rescue technologies through training and response activities
NASA Astrophysics Data System (ADS)
Murphy, Robin R.; Stover, Sam
2006-05-01
This paper describes the field-oriented philosophy of the Institute for Safety Security Rescue Technology (iSSRT) and summarizes the activities and lessons learned during calendar year 2005 of its two centers: the Center for Robot-Assisted Search and Rescue and the NSF Safety Security Rescue industry/university cooperative research center. In 2005, iSSRT participated in four responses (La Conchita, CA, Mudslides, Hurricane Dennis, Hurricane Katrina, Hurricane Wilma) and conducted three field experiments (NJTF-1, Camp Hurricane, Richmond, MO). The lessons learned covered mobility, operator control units, wireless communications, and general reliability. The work has collectively identified six emerging issues for future work. Based on these studies, a 10-hour, 1 continuing education unit credit course on rescue robotics has been created and is available. Rescue robots and sensors are available for loan upon request.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1993-01-01
As part of the RICIS project, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use these two terms interchangeably to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS) and programming/testing support from other contractor personnel. This report is the final deliverable D4 in our milestones and project activity. It provides the test results for the special testcase of approach/docking scenario for the shuttle and SMM satellite. Based on our experience and analysis with the attitude and translational controllers, we have modified the basic configuration of the reinforcement learning algorithm in ARIC. The shuttle translational controller and its implementation in ARIC is described in our deliverable D3. In order to simulate the final approach and docking operations, we have set-up this special testcase as described in section 2. The ARIC performance results for these operations are discussed in section 3 and conclusions are provided in section 4 along with the summary for the project.
Reconsidering Food Reward, Brain Stimulation, and Dopamine: Incentives Act Forward.
Newquist, Gunnar; Gardner, R Allen
2015-01-01
In operant conditioning, rats pressing levers and pigeons pecking keys depend on contingent food reinforcement. Food reward agrees with Skinner's behaviorism, undergraduate textbooks, and folk psychology. However, nearly a century of experimental evidence shows, instead, that food in an operant conditioning chamber acts forward to evoke species-specific feeding behavior rather than backward to reinforce experimenter-defined responses. Furthermore, recent findings in neuroscience show consistently that intracranial stimulation to reward centers and dopamine release, the proposed reward molecule, also act forward to evoke inborn species-specific behavior. These results challenge longstanding views of hedonic learning and must be incorporated into contemporary learning theory.
VERIFYING CLEANER TECHNOLOGIES WITH EPA'S ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM
The US EPA's Office of Research and Development Environmental Technology Verification (ETV) Program completed its five-year pilot period in 2001. Now in 2002 lessons learned in the pilot period are being incorporated seamlessly into six operating ETV Centers which cover technolo...
DOT National Transportation Integrated Search
2000-01-01
This report demonstrates the benefits and potential pitfalls of deploying and operating an integrated freeway and arterial management system. In particular, it discusses the lessons learned about the Medical Center Corridor (MCC) Project deployed in ...
ERIC Educational Resources Information Center
Gonyea, Jacob Patrick
2012-01-01
The city of Las Vegas, Nevada has experienced a slowdown in tourism, a drop in property taxes and consolidated tax revenue used to support the city's operating budget, and a lack of economic diversification. Because of these changes, the ability of displaced workers to learn marketable employment skills continues to be an important issue for the…
2014-03-03
CAPE CANAVERAL, Fla. – NASA astronaut candidates Andrew Morgan, from left, Nicole Mann, Tyler Nick Hague, Josh Cassada, Anne McClain, Christina Hammock and Victor Glover listen as Steve Cox or Flight Systems and Operations Integration in Kennedy Ground Systems Development and Operations, far right, briefed on firing rooms inside the Launch Control Center at Kennedy Space Center in Florida during a daylong set of briefings and tours of different facilities at NASA's primary launch center. The astronaut class of 2013 was selected by NASA after an extensive year-and-a-half search. The new group will help the agency push the boundaries of exploration and travel to new destinations in the solar system. To learn more about the astronaut class of 2013, visit: http://www.nasa.gov/astronauts/2013astroclass.html Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Madura, John T.; Bauman, William H.; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.
2010-01-01
The Applied Meteorology Unit (AMU) provides technology transition and technique development to improve operational weather support to the Space Shuttle and the entire American space program. The AMU is funded and managed by NASA and operated by a contractor that provides five meteorologists with a diverse mix of advanced degrees, operational experience, and associated skills including data processing, statistics, and the development of graphical user interfaces. The AMU's primary customers are the U.S. Air Force 45th Weather Squadron at Patrick Air Force Base, the National Weather Service Spaceflight Meteorology Group at NASA Johnson Space Center, and the National Weather Service Melbourne FL Forecast Office. The AMU has transitioned research into operations for nineteen years and worked on a wide range of topics, including new forecasting techniques for lightning probability, synoptic peak winds,.convective winds, and summer severe weather; satellite tools to predict anvil cloud trajectories and evaluate camera line of sight for Space Shuttle launch; optimized radar scan strategies; evaluated and implemented local numerical models; evaluated weather sensors; and many more. The AMU has completed 113 projects with 5 more scheduled to be completed by the end of 2010. During this rich history, the AMU and its customers have learned many lessons on how to effectively transition research into operations. Some of these lessons learned include collocating with the operational customer and periodically visiting geographically separated customers, operator submitted projects, consensus tasking process, use of operator primary advocates for each project, customer AMU liaisons with experience in both operations and research, flexibility in adapting the project plan based on lessons learned during the project, and incorporating training and other transition assistance into the project plans. Operator involvement has been critical to the AMU's remarkable success and many awards from NASA, the National Weather Association, and two citations from the Navy's Center of Excellence for Best Manufacturing Practices. This paper will present the AMU's proven methods and explain how they may be applied by other organizations to effectively transition research into operations.
Legacy of Operational Space Medicine During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.
2011-01-01
The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.
NASA Technical Reports Server (NTRS)
Chen, Alexander Y.
1990-01-01
Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
As part of the RICIS activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This report is deliverable D2 Altitude Control Results and provides the status of the project after four months of activities and outlines the future plans. In section 2 we describe the Fuzzy-Learner system for the attitude control functions. In section 3, we provide the description of test cases and results in a chronological order. In section 4, we have summarized our results and conclusions. Our future plans and recommendations are provided in section 5.
Developing a space network interface simulator: The NTS approach
NASA Technical Reports Server (NTRS)
Hendrzak, Gary E.
1993-01-01
This paper describes the approach used to redevelop the Network Control Center (NCC) Test System (NTS), a hardware and software facility designed to make testing of the NCC Data System (NCCDS) software efficient, effective, and as rigorous as possible prior to operational use. The NTS transmits and receives network message traffic in real-time. Data transfer rates and message content are strictly controlled and are identical to that of the operational systems. NTS minimizes the need for costly and time-consuming testing with the actual external entities (e.g., the Hubble Space Telescope (HST) Payload Operations Control Center (POCC) and the White Sands Ground Terminal). Discussed are activities associated with the development of the NTS, lessons learned throughout the project's lifecycle, and resulting productivity and quality increases.
Functional description of a command and control language tutor
NASA Technical Reports Server (NTRS)
Elke, David R.; Seamster, Thomas L.; Truszkowski, Walter
1990-01-01
The status of an ongoing project to explore the application of Intelligent Tutoring System (ITS) technology to NASA command and control languages is described. The primary objective of the current phase of the project is to develop a user interface for an ITS to assist NASA control center personnel in learning Systems Test and Operations Language (STOL). Although this ITS will be developed for Gamma Ray Observatory operators, it will be designed with sufficient flexibility so that its modules may serve as an ITS for other control languages such as the User Interface Language (UIL). The focus of this phase is to develop at least one other form of STOL representation to complement the operational STOL interface. Such an alternative representation would be adaptively employed during the tutoring session to facilitate the learning process. This is a key feature of this ITS which distinguishes it from a simulator that is only capable of representing the operational environment.
Oh, Pok-Ja; Kim, Il-Ok; Shin, Sung-Rae; Jung, Hoe-Kyung
2004-10-01
This study was to develop Web-based multimedia content for Physical Examination and Health Assessment. The multimedia content was developed based on Jung's teaching and learning structure plan model, using the following 5 processes : 1) Analysis Stage, 2) Planning Stage, 3) Storyboard Framing and Production Stage, 4) Program Operation Stage, and 5) Final Evaluation Stage. The web based multimedia content consisted of an intro movie, main page and sub pages. On the main page, there were 6 menu bars that consisted of Announcement center, Information of professors, Lecture guide, Cyber lecture, Q&A, and Data centers, and a site map which introduced 15 week lectures. In the operation of web based multimedia content, HTML, JavaScript, Flash, and multimedia technology (Audio and Video) were utilized and the content consisted of text content, interactive content, animation, and audio & video. Consultation with the experts in context, computer engineering, and educational technology was utilized in the development of these processes. Web-based multimedia content is expected to offer individualized and tailored learning opportunities to maximize and facilitate the effectiveness of the teaching and learning process. Therefore, multimedia content should be utilized concurrently with the lecture in the Physical Examination and Health Assessment classes as a vital teaching aid to make up for the weakness of the face-to- face teaching-learning method.
Center for the Built Environment: Research
to design and development teams, leading to a situation in which many building industry professionals make economic and design decisions with insufficient feedback from experience, or input from objective building design, construction, and operations. Learn more about our sustainability and whole building
Energy Systems Integration Facility | NREL
influence how electric power systems operate far into the future. LEARN MORE Sharing Knowledge Recent 2017 Journal Article Wind and Solar Resource Data Sets Technical Report Innovation Incubator , Liquid Submerged Server for High-Efficiency Data Centers News and Announcements News More News News
Communication Arts Curriculum: A Model Program. Revised.
ERIC Educational Resources Information Center
Tamaqua Area School District, PA.
This publication describes, in three sections, a high school Communication Arts Curriculum (CAC) program designed to further students' communication skills as they participate in student-centered learning activities in the fine arts, the practical arts, and the performing arts. "Program Operation" includes a course outline and inventories for…
20 CFR 638.514 - Residential support services.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Residential support services. 638.514 Section... support services. The center operator shall provide for residential support services structured as an... social environment, seven days a week, 24 hours a day, designed to enhance learning and personal...
20 CFR 638.514 - Residential support services.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Residential support services. 638.514 Section... support services. The center operator shall provide for residential support services structured as an... social environment, seven days a week, 24 hours a day, designed to enhance learning and personal...
Innovation in a Learning Health Care System: Veteran-Directed Home- and Community-Based Services.
Garrido, Melissa M; Allman, Richard M; Pizer, Steven D; Rudolph, James L; Thomas, Kali S; Sperber, Nina R; Van Houtven, Courtney H; Frakt, Austin B
2017-11-01
A path-breaking example of the interplay between geriatrics and learning healthcare systems is the Veterans Health Administration's (VHA's) planned roll-out of a program for providing participant-directed home- and community-based services to veterans with cognitive and functional limitations. We describe the design of a large-scale, stepped-wedge, cluster-randomized trial of the Veteran-Directed Home- and Community-Based Services (VD-HCBS) program. From March 2017 through December 2019, up to 77 Veterans Affairs Medical Centers will be randomized to times to begin offering VD-HCBS to veterans at risk of nursing home placement. Services will be provided to community-dwelling participants with support from Aging and Disability Network Agencies. The VHA Partnered Evidence-based Policy Resource Center (PEPReC) is coordinating the evaluation, which includes collaboration from operational stakeholders from the VHA and Administration for Community Living and interdisciplinary researchers from the Center of Innovation in Long-Term Services and Supports and the Center for Health Services Research in Primary Care. For older veterans with functional limitations who are eligible for VD-HCBS, we will evaluate health outcomes (hospitalizations, emergency department visits, nursing home admissions, days at home) and healthcare costs associated with VD-HCBS availability. Learning healthcare systems facilitate diffusion of innovation while enabling rigorous evaluation of effects on patient outcomes. The VHA's randomized rollout of VD-HCBS to veterans at risk of nursing home placement is an example of how to achieve these goals simultaneously. PEPReC's experience designing an evaluation with researchers and operations stakeholders may serve as a framework for others seeking to develop rapid, rigorous, large-scale evaluations of delivery system innovations targeted to older adults. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.
NASA Technical Reports Server (NTRS)
Dinsel, Alison; Jermstad, Wayne; Robertson, Brandan
2006-01-01
The Mechanical Design and Analysis Branch at the Johnson Space Center (JSC) is responsible for the technical oversight of over 30 mechanical systems flying on the Space Shuttle Orbiter and the International Space Station (ISS). The branch also has the responsibility for reviewing all mechanical systems on all Space Shuttle and International Space Station payloads, as part of the payload safety review process, through the Mechanical Systems Working Group (MSWG). These responsibilities give the branch unique insight into a large number of mechanical systems, and problems encountered during their design, testing, and operation. This paper contains narrative descriptions of lessons learned from some of the major problems worked on by the branch during the last two years. The problems are grouped into common categories and lessons learned are stated.
Launch processing system transition from development to operation
NASA Technical Reports Server (NTRS)
Paul, H. C.
1977-01-01
The Launch Processing System has been under development at Kennedy Space Center since 1973. A prototype system was developed and delivered to Marshall Space Flight Center for Solid Rocket Booster checkout in July 1976. The first production hardware arrived in late 1976. The System uses a distributed computer network for command and monitoring and is supported by a dual large scale computer system for 'off line' processing. A high level of automation is anticipated for Shuttle and Payload testing and launch operations to gain the advantages of short turnaround capability, repeatability of operations, and minimization of operations and maintenance (O&M) manpower. Learning how to efficiently apply the system is our current problem. We are searching for more effective ways to convey LPS system performance characteristics from the designer to a large number of users. Once we have done this, we can realize the advantages of LPS system design.
2012-08-03
Cape Canaveral, Fla. -- From left, Kennedy Space Center Director Robert Cabana, NASA Administrator Charlie Bolden and Commercial Crew Program CCP, Manager Ed Mango announce the newest partners of NASA's Commercial Crew Program from Operations Support Building 2 OSB II at Kennedy Space Center in Florida. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
2012-08-03
Cape Canaveral, Fla. -- NASA Administrator Charlie Bolden announces the newest partners of NASA's Commercial Crew Program CCP from Operations Support Building 2 OSB II at Kennedy Space Center in Florida. At left, is Kennedy Space Center Director Robert Cabana, and at right, is Commercial Crew Program CCP Manager Ed Mango. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
2012-08-03
Cape Canaveral, Fla. -- NASA Commercial Crew Program CCP Manager Ed Mango discusses the program's newest partnerships from the Operations Support Building 2 OSB II at Kennedy Space Center in Florida. From left, are Kennedy Space Center Director Robert Cabana and NASA Administrator Charlie Bolden. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
2012-08-03
Cape Canaveral, Fla. -- NASA Administrator Charlie Bolden announces the newest partners of NASA's Commercial Crew Program CCP from Operations Support Building 2 OSB II at Kennedy Space Center in Florida. At left, is Kennedy Space Center Director Robert Cabana and at right, is Commercial Crew Program CCP Manager Ed Mango. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
2012-08-03
Cape Canaveral, Fla. -- NASA Kennedy Space Center Director Bob Cabana discusses the Commercial Crew Program's CCP newest partnerships from the center's Operations Support Building 2 OSB II. To his right, is NASA Administrator Charlie Bolden, and to his far right, is Commercial Crew Program Manager Ed Mango. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
Report from the School of Experience: Lessons-Learned on NASA's EOS/ICESat Mission
NASA Technical Reports Server (NTRS)
Anselm, William
2003-01-01
Abstract-NASA s Earth Observing System EOS) Ice, Cloud, and Land Elevation Satellite (ICESat) mission was one of the first missions under Goddard Space Flight Center s (then-) new Rapid Spacecraft Development Office. This paper explores the lessons-learned under the ICESat successful implementation and launch, focusing on four areas: Procurement., Management, Technical, and Launch and Early Operations. Each of these areas is explored in a practical perspective of communication, the viewpoint of the players, and the interactions among the organizations. Conclusions and lessons-learned are summarized in the final section.
Arrowhead Ripper: Adaptive Leadership in Full Spectrum Operations
2009-06-01
of the city . Local mills processed flour from a combination of Iraqi wheat and imported grain, and agents delivered it to the citizens. However...later as an operation’s officer for the Center for Army Lessons Learned at Fort Leavenworth, Kansas . Upon completion of the Command and General...a “full spectrum” force during Operation ARROWHEAD RIPPER in the city of Baqubah, Iraq, from June to September 2007. The Brigade Commander organized
2008-06-13
CULTURAL COMPETENCY TRAINING IN THE UNITED STATES MARINE CORPS: A PRESCRIPTION FOR SUCCESS IN THE LONG WAR A thesis presented to the...of military units that demonstrated cultural awareness while conducting operations in a foreign land. After presenting a review of the current...Marine Corps Center for Advanced Operational Cultural Learning (CAOCL), advocates teaching Marines enough of a language to do the things they need to
Anatomy of a Security Operations Center
NASA Technical Reports Server (NTRS)
Wang, John
2010-01-01
Many agencies and corporations are either contemplating or in the process of building a cyber Security Operations Center (SOC). Those Agencies that have established SOCs are most likely working on major revisions or enhancements to existing capabilities. As principle developers of the NASA SOC; this Presenters' goals are to provide the GFIRST community with examples of some of the key building blocks of an Agency scale cyber Security Operations Center. This presentation viII include the inputs and outputs, the facilities or shell, as well as the internal components and the processes necessary to maintain the SOC's subsistence - in other words, the anatomy of a SOC. Details to be presented include the SOC architecture and its key components: Tier 1 Call Center, data entry, and incident triage; Tier 2 monitoring, incident handling and tracking; Tier 3 computer forensics, malware analysis, and reverse engineering; Incident Management System; Threat Management System; SOC Portal; Log Aggregation and Security Incident Management (SIM) systems; flow monitoring; IDS; etc. Specific processes and methodologies discussed include Incident States and associated Work Elements; the Incident Management Workflow Process; Cyber Threat Risk Assessment methodology; and Incident Taxonomy. The Evolution of the Cyber Security Operations Center viII be discussed; starting from reactive, to proactive, and finally to proactive. Finally, the resources necessary to establish an Agency scale SOC as well as the lessons learned in the process of standing up a SOC viII be presented.
2014-05-01
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Mark Huetter, assistant chief of Training for the center's Fire Rescue Department, is interviewed near the Shuttle Landing Facility. He discussed working with pilots in NASA Aircraft Operations to develop procedures for using agency helicopters to transport injured patients to a local hospital. The training activity took place in Kennedy's Launch Complex 39 turn-basin parking lot. It was part of a new training program developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dimitri Gerondidakis
2014-05-01
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Mark Huetter, assistant chief of Training for the center's Fire Rescue Department, is interviewed near the Shuttle Landing Facility. He discussed working with pilots in NASA Aircraft Operations to develop procedures for using agency helicopters to transport injured patients to a local hospital. The training activity took place in Kennedy's Launch Complex 39 turn-basin parking lot. It was part of a new training program developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dimitri Gerondidakis
2014-04-30
CAPE CANAVERAL, Fla. -- Following a training exercise at NASA's Kennedy Space Center in Florida, helicopter pilot Bill Martin, a URS Federal Technical Services in the agency's Aircraft Operations, left, confers with Mark Huetter of Chenega Security & Support Solutions. Martin serves as assistant chief of Training for the center's Fire Rescue Department. The activity taking place in Kennedy's Launch Complex 39 turn-basin parking lot was only one of several drills. It was part of a new training program that was developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dan Casper
Innovation in Sustainable Education and Entrepreneurship through the UKM Recycling Center Operations
ERIC Educational Resources Information Center
Zain, Shahrom Md; Basri, Noor Ezlin Ahmad; Mahmood, Nur Ajlaa; Basri, Hassan; Yaacob, Mashitoh; Ahmad, Maisarah
2013-01-01
Sustainable education and entrepreneurship through practical learning activities are necessary for students in higher education institutions. Students must experience real situations to develop an attitude and personality of caring for the environment, and they can acquire entrepreneurship education by managing transactions with recyclables. The…
ERIC Educational Resources Information Center
Razwick, Jeff
2010-01-01
According to the U.S. Census Bureau, more than 130,000 elementary and secondary schools, and about 4,200 higher-education institutions operate across the country. These learning centers educate an estimated 75 million children and adults each year. From a numbers standpoint alone, it is obvious that providing adequate fire- and life-safety…
AVESTAR Center for Operational Excellence of Electricity Generation Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, Stephen
2012-08-29
To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offeringmore » combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for use in establishing a Virtual Carbon Capture Center (VCCC), similar in concept to the DOE’s National Carbon Capture Center for slipstream testing. The VCCC will enable developers of CO2 capture technologies to integrate, test, and optimize the operation of their dynamic capture models within the context of baseline power plant dynamic models. The objective is to provide hands-on, simulator-based “learn-by-operating” test platforms to accelerate the scale-up and deployment of CO2 capture technologies. Future AVESTAR plans also include pursuing R&D on the dynamics, operation, and control of integrated electricity generation and storage systems for the modern grid era. Special emphasis will be given to combining load-following energy plants with renewable and distributed generating supplies and fast-ramping energy storage systems to provide near constant baseload power.« less
2017-01-27
Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team, speaks to participants during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Other guest panelists included Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
2004-09-01
contributions during combat operations in Iraq. Vice Admiral Timothy J. Keating , U.S. Navy, then commander of the U.S. Fifth Fleet and Naval Forces...Admiral Keating described the boat crews as having been the “first line of defense” for coalition naval forces during the amphibious assault of Iraq’s Al...illegally. This law- enforcement presence to preserve maritime security in the 3.4-million-square-mile American exclusive economic zone also led to the
Simple Automatic File Exchange (SAFE) to Support Low-Cost Spacecraft Operation via the Internet
NASA Technical Reports Server (NTRS)
Baker, Paul; Repaci, Max; Sames, David
1998-01-01
Various issues associated with Simple Automatic File Exchange (SAFE) are presented in viewgraph form. Specific topics include: 1) Packet telemetry, Internet IP networks and cost reduction; 2) Basic functions and technical features of SAFE; 3) Project goals, including low-cost satellite transmission to data centers to be distributed via an Internet; 4) Operations with a replicated file protocol; 5) File exchange operation; 6) Ground stations as gateways; 7) Lessons learned from demonstrations and tests with SAFE; and 8) Feedback and future initiatives.
Genesis of a flexible turning center
NASA Astrophysics Data System (ADS)
Sanclemente, Paul; French, Robert D.
GE - Aircraft Engines has designed, built, and is operating a flexible turning center for jet engine hardware. Although the plant is in the forefront of manufacturing technology development, it was intended from the start to be a production facility. So while there was much to learn from being involved in all phases of the project, meeting production schedules was, and is, key to its success. This paper reviews the early history of the project and ends with a view of its recent production status.
2008-05-01
oriented training ARI U.S. Army Research Institute for the Behavioral and Social Sciences ATRRS Army Training Requirements and Resources System AUTOGEN ...Manager Director Training and Leader Development Technical review by Kimberly A. Metcalf, U.S. Army Research Institute Kathleen A. Quinkert, U.S. Army...Leaming Centers (LLCs) are the physical instentiation of the Army Training and Doctrine Command’s (TRADOC’s) lifelong leaming concept. Previous research by
STEM Mentor Breakfast at Debus Center
2017-05-25
Kennedy Space Center Deputy Director Janet Petro speaks to students during a Women in STEM mentoring breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
2010-12-11
David Lalejini, an employee of the Naval Research Laboratory at NASA's John C. Stennis Space Center, helps a pair of teachers deploy a remotely-operated underwater Sea Perch robot during workshop activities Dec. 11. The Stennis Education Office teamed with Naval Research Laboratory counterparts to conduct a two-day workshop Dec. 10-11 for Louisiana and Mississippi teachers. During the no-cost workshop, teachers learned to build and operate Sea Perch robots. The teachers now can take the Sea Perch Program back to students.
NASA Technical Reports Server (NTRS)
2010-01-01
David Lalejini, an employee of the Naval Research Laboratory at NASA's John C. Stennis Space Center, helps a pair of teachers deploy a remotely-operated underwater Sea Perch robot during workshop activities Dec. 11. The Stennis Education Office teamed with Naval Research Laboratory counterparts to conduct a two-day workshop Dec. 10-11 for Louisiana and Mississippi teachers. During the no-cost workshop, teachers learned to build and operate Sea Perch robots. The teachers now can take the Sea Perch Program back to students.
NASA Technical Reports Server (NTRS)
Maxwell, Theresa G.; McNair, Ann R. (Technical Monitor)
2002-01-01
The planning processes for the International Space Station (ISS) Program are quite complex. Detailed mission planning for ISS on-orbit operations is a distributed function. Pieces of the on-orbit plan are developed by multiple planning organizations, located around the world, based on their respective expertise and responsibilities. The "pieces" are then integrated to yield the final detailed plan that will be executed onboard the ISS. Previous space programs have not distributed the planning and scheduling functions to this extent. Major ISS planning organizations are currently located in the United States (at both the NASA Johnson Space Center (JSC) and NASA Marshall Space Flight Center (MSFC)), in Russia, in Europe, and in Japan. Software systems have been developed by each of these planning organizations to support their assigned planning and scheduling functions. Although there is some cooperative development and sharing of key software components, each planning system has been tailored to meet the unique requirements and operational environment of the facility in which it operates. However, all the systems must operate in a coordinated fashion in order to effectively and efficiently produce a single integrated plan of ISS operations, in accordance with the established planning processes. This paper addresses lessons learned during the development of these multiple distributed planning systems, from the perspective of the developer of one of the software systems. The lessons focus on the coordination required to allow the multiple systems to operate together, rather than on the problems associated with the development of any particular system. Included in the paper is a discussion of typical problems faced during the development and coordination process, such as incompatible development schedules, difficulties in defining system interfaces, technical coordination and funding for shared tools, continually evolving planning concepts/requirements, programmatic and budget issues, and external influences. Techniques that mitigated some of these problems will also be addressed, along with recommendations for any future programs involving the development of multiple planning and scheduling systems. Many of these lessons learned are not unique to the area of planning and scheduling systems, so may be applied to other distributed ground systems that must operate in concert to successfully support space mission operations.
NASA Technical Reports Server (NTRS)
Maxwell, Theresa G.
2002-01-01
The planning processes for the International Space Station (ISS) Program are quite complex. Detailed mission planning for ISS on-orbit operations is a distributed function. Pieces of the on-orbit plan are developed by multiple planning organizations, located around the world, based on their respective expertise and responsibilities. The pieces are then integrated to yield the final detailed plan that will be executed onboard the ISS. Previous space programs have not distributed the planning and scheduling functions to this extent. Major ISS planning organizations are currently located in the United States (at both the NASA Johnson Space Center (JSC) and NASA Marshall Space Flight Center (MSFC)), in Russia, in Europe, and in Japan. Software systems have been developed by each of these planning organizations to support their assigned planning and scheduling functions. Although there is some cooperative development and sharing of key software components, each planning system has been tailored to meet the unique requirements and operational environment of the facility in which it operates. However, all the systems must operate in a coordinated fashion in order to effectively and efficiently produce a single integrated plan of ISS operations, in accordance with the established planning processes. This paper addresses lessons learned during the development of these multiple distributed planning systems, from the perspective of the developer of one of the software systems. The lessons focus on the coordination required to allow the multiple systems to operate together, rather than on the problems associated with the development of any particular system. Included in the paper is a discussion of typical problems faced during the development and coordination process, such as incompatible development schedules, difficulties in defining system interfaces, technical coordination and funding for shared tools, continually evolving planning concepts/requirements, programmatic and budget issues, and external influences. Techniques that mitigated some of these problems will also be addressed, along with recommendations for any future programs involving the development of multiple planning and scheduling systems. Many of these lessons learned are not unique to the area of planning and scheduling systems, so may be applied to other distributed ground systems that must operate in concert to successfully support space mission operations.
Hypergolic Propellants: The Handling Hazards and Lessons Learned from Use
NASA Technical Reports Server (NTRS)
Nufer, Brian
2010-01-01
Several unintentional hypergolic fluid related spills, fires, and explosions from the Apollo Program, the Space Shuttle Program, the Titan Program, and a few others have occurred over the past several decades. Spill sites include the following government facilities: Kennedy Space Center (KSC), Johnson Space Center (JSC), White Sands Test Facility (WSTF), Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS), Edwards Air Force Base (EAFB), Little Rock AFB, and McConnell AFB. Until now, the only method of capturing the lessons learned from these incidents has been "word of mouth" or by studying each individual incident report. Through studying several dozen of these incidents, certain root cause themes are apparent. Scrutinizing these themes could prove to be highly beneficial to future hypergolic system testing, checkout, and operational use.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Carpenter, James R.
2011-01-01
The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.
Drive Cycle Data | Transportation Secure Data Center | NREL
one file. Download Individual Survey and Study Drive Cycle Data Below you'll find drive cycle data download files for individual surveys and studies. Greater Fairbanks, Alaska, Transportation Survey Drive Cycle Data by Vehicle (24-hour period of operation) Download Learn more about the survey. California
ERIC Educational Resources Information Center
Babuca, Pamela; Meade, Kelly
2012-01-01
Today's educators are passionate about shifting the standard classroom towards technology rich, collaborative spaces that support multiple types of learning environments (e.g. individual; peer-to-peer; problem based; hands-on; student-centered). On the other hand, facilities planners are challenged to create solutions within existing, restrictive…
Energy Systems Integration News | Energy Systems Integration Facility |
capabilities, and new methodologies that allowed NREL to model operations of the Eastern Interconnection at Analyst Power Systems Modeling Researcher Project Manager Power Systems Engineering Center Research Engineer Power Systems Modeling and Control Get the full list of job postings and learn more about working
Annual Report to the Board of Trustees, School Year 1975-76.
ERIC Educational Resources Information Center
Cuesta Coll., San Luis Obispo, CA.
A comprehensive picture of college operations for the 1975-76 academic year is presented in this report to Cuesta College's Board of Trustees. Included are data and narratives concerning: (1) curriculum; (2) personnel; (3) library learning center; (4) evening division and summer session; (5) community services; (6) vocational education; (7)…
World War II Spy Kit: "The Great Nazi Intelligence Coup."
ERIC Educational Resources Information Center
Haight, David
This instructional packet is designed to introduce students to primary source material by having them participate in an historical "what might have been." Students engage in critical thinking and document analysis, and through the process learn about Operation OVERLORD and World War II in general. This spy kit centers on Operation…
Changing Methods and Mindsets: Lessons from Innovate NYC
ERIC Educational Resources Information Center
Hodas, Steven
2016-01-01
As schools and classrooms explore technology-based, student-centered, personalized approaches to teaching and learning, their efforts to innovate can be hamstrung by archaic district operating systems that do not allow them to take advantage of new technologies, to work with smaller startup companies, or to quickly make and implement decisions.…
A Socio-Technical Analysis of Knowledgeable Practice in Radiation Therapy
ERIC Educational Resources Information Center
Lozano, Reynaldo Garza
2012-01-01
The role of the modern radiation therapist is directed and driven by the organizational system. Changes affecting their role are implemented as a response to changes in the industry. Operations of the modern cancer center, with new and changing treatment technologies bring questions regarding the learning process of radiation therapists at a time…
Pocha, Christine
2010-01-01
Six Sigma and Lean Thinking are quality initiatives initially deployed in industry to improve operational efficiency leading to better quality and subsequent cost savings. The financial rationale for embarking on this quality journey is clear; applying it to today's health care remains challenging. The cost of medical care is increasing at an alarming rate; most of these cost increases are attributed to an aging population and technological advances; therefore, largely beyond control. Furthermore, health care cost increases are caused by unnecessary operational inefficiency associated with the direct medical service delivery process. This article describes the challenging journey of implementing Six Sigma methodology at a tertiary care medical center. Many lessons were learned; however, of utmost importance were team approach, "buy in" of the stakeholders, and the willingness of team members to change daily practice and to adapt new and innovative ways how health care can be delivered. Six Sigma incorporated as part of the "company's or hospital's culture" would be most desirable but the learning curve will be steep.
View of Mission Control Center during the Apollo 13 oxygen cell failure
NASA Technical Reports Server (NTRS)
1970-01-01
Several persons important to the Apollo 13 mission, at consoles in the Mission Operations Control Room of the Mission Control Center (MCC). Seated at consoles, from left to right, are Astronaut Donald K. Slayton, Director of Flight Crew Operations; Astronaut Jack R. Lousma, Shift 3 spacecraft communicator; and Astronaut John W. Young, commander of the Apollo 13 back-up crew. Standing, left to right, are Astronaut Tom K. Mattingly, who was replaced as Apollo 13 command module pilot after it was learned he may come down with measles, and Astronaut Vance D. Brand, Shift 2 spacecraft communicator. Several hours earlier crew members of the Apollo 13 mission reported to MCC that trouble had developed with an oxygen cell in their spacecraft.
STEM Mentor Breakfast at Debus Center
2017-05-25
Barbara Brown, center at the table, strategic implementation manager with the Exploration Research and Technology Programs at NASA's Kennedy Space Center in Florida, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
2017-12-08
Barred Spiral Galaxy NGC 1300 Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: P. Knezek (WIYN) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html
2008-01-01
execution, a summary of results, a list of presentations and publications and a current status. Additional information is provided on the senior...Cadets learn best when they are challenged and when they are interested. The introduction of current issues facing the military into their...faculty, officers conduct research on relevant projects to remain current in their operational branch or in the Functional Areas 49, 51, 53 and 57. The
Saturn's Rings in Ultraviolet Light
2017-12-08
Saturn's Rings in Ultraviolet Light Credit: NASA and E. Karkoschka (University of Arizona) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.
2013-01-01
The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.
NASA Technical Reports Server (NTRS)
Decker, Ryan; Barbre, Robert; Huddleston, Lisa; Wilfong, Tim; Brauer, Tom
2018-01-01
The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. On the evening of 10 September 2017, Hurricane Irma passed within 100 miles to the west of KSC through the middle of the Florida peninsula. The hurricane was responsible for power outages to approximately 2/3 of Florida's population. This paper will describe the characteristics of the tropospheric wind observations from the TDRWP during Irma, provide a comparison to previous TDRWP observations from Hurricane Matthew in 2016, and discuss lessons learned regarding dissemination of TDRWP data during the event.
Upgrade of The Thermal Vacuum Data System at NASA/GSFC
NASA Technical Reports Server (NTRS)
Palmer, John; Powers, Edward I. (Technical Monitor)
2000-01-01
The Goddard Space Flight Center's new thermal vacuum data acquisition system is a networked client-sever application that enables lab operations crews to monitor all tests from a central location. The GSFC thermal vacuum lab consists of eleven chambers in Building 7 and one chamber in Building 10. The new data system was implemented for several reasons. These included the need for centralized data collection, more flexible and easier to use operator interface, greater data accessibility, a reduction in testing time and cost, and increased payload and personnel safety. Additionally, a new data system was needed for year-2000 compliance. This paper discusses the incorporation of the Thermal Vacuum Data System (TVDS) within the thermal vacuum lab at GSFC, its features and capabilities and lessons learned in its implementation. Additional topics include off-center (Internet) capability for remote monitoring and the role of TVDS in the efforts to automate thermal vacuum chamber operations.
Secure Remote Access Issues in a Control Center Environment
NASA Technical Reports Server (NTRS)
Pitts, Lee; McNair, Ann R. (Technical Monitor)
2002-01-01
The ISS finally reached an operational state and exists for local and remote users. Onboard payload systems are managed by the Huntsville Operations Support Center (HOSC). Users access HOSC systems by internet protocols in support of daily operations, preflight simulation, and test. In support of this diverse user community, a modem security architecture has been implemented. The architecture has evolved over time from an isolated but open system to a system which supports local and remote access to the ISS over broad geographic regions. This has been accomplished through the use of an evolved security strategy, PKI, and custom design. Through this paper, descriptions of the migration process and the lessons learned are presented. This will include product decision criteria, rationale, and the use of commodity products in the end architecture. This paper will also stress the need for interoperability of various products and the effects of seemingly insignificant details.
2012-08-03
Cape Canaveral, Fla. -- NASA Administrator Charlie Bolden announces the newest partners of NASA's Commercial Crew Program CCP from Operations Support Building 2 OSB II at Kennedy Space Center in Florida. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
2012-08-03
Cape Canaveral, Fla. -- NASA Commercial Crew Program CCP Manager Ed Mango discusses the program's newest partnerships from the Operations Support Building 2 OSB II at Kennedy Space Center in Florida. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
Upgrade of the Thermal Vacuum Data System at NASA/GSFC
NASA Technical Reports Server (NTRS)
Palmer, John
2000-01-01
The Goddard Space Flight Center's new thermal vacuum data acquisition system is a networked client-sever application that enables lab operations crews to monitor all tests from a central location. The GSFC thermal vacuum lab consists of eleven chambers in Building 7 and one chamber in Building 10. The new data system was implemented for several reasons. These included the need for centralized data collection, more flexible and easier to use operator interface, greater data accessibility, a reduction in testing time and cost, and increased payload and personnel safety. Additionally, a new data system was needed for year-2000 compliance. This paper discusses the incorporation of the Thermal Vacuum Data System (TVDS) within the thermal vacuum lab at GSFC, its features and capabilities and lessons learned in its implementation. Additional topics include off-center (Internet) capability for remote monitoring and the role of TVDS in the efforts to automate thermal vacuum chamber operations.
STEM Mentor Breakfast at Debus Center
2017-05-25
Jonette Stecklein (in the blue shirt), a flight systems engineer from Johnson Space Center in Houston, talks to students during a Women in STEM mentoring breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
Geoscience Training for NASA Astronaut Candidates
NASA Technical Reports Server (NTRS)
Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.
2017-01-01
After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.
Lessons learned for improving spacecraft ground operations
NASA Astrophysics Data System (ADS)
Bell, Michael; Stambolian, Damon; Henderson, Gena
NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.
Lessons Learned for Improving Spacecraft Ground Operations
NASA Technical Reports Server (NTRS)
Bell, Michael A.; Stambolian, Damon B.; Henderson, Gena M.
2012-01-01
NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.
The 2017 AANS Presidential Address. A world of innovation.
Boop, Frederick A
2017-12-01
The 2016 scientific meeting of the American Association of Neurological Surgeons (AANS) focused on the theme "A World of Innovation." In his presidential address, 2016 AANS President Frederick Boop compared the historical development of the specialty of neurological surgery with that of the development of global communications. In the early years, general surgeons training in the United States would spend post-residency time abroad learning from surgical masters in Europe and other places. Since Harvey Cushing's day, neurosurgeons from around the world continue to travel abroad, with many now coming to America for training at centers of excellence. Current clinical practice is defined by multi-national, multi-center clinical trials, and the AANS subsidiary NeuroPoint Alliance has positioned itself to serve as an international center for the oversight of such trials. The Neurosurgery Research & Education Foundation and the Journal of Neurosurgery Publishing Group have made it possible for a neurosurgeon anywhere with Internet access to learn relevant surgical anatomy, learn new neurosurgical procedures, and watch masters in the field perform operations via high-definition surgical videos at no cost via learning platforms such as the Rhoton Collection, the Neurosurgical Atlas, and Neurosurgical Focus video supplements. At the same time, patients are now traveling abroad to seek medical specialty care. Although the globalization of health care poses certain threats, it also presents neurosurgeons with a world of opportunities.
ASCANS Class of 2013 Visit KSC
2014-03-03
CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana briefs members of the most recently selected group of NASA astronauts. The presentation covering operations at the Florida spaceport took place in the center's Headquarters Building. The astronaut class of 2013 was selected by NASA after an extensive year-and-a-half search. The new group will help the agency push the boundaries of exploration and travel to new destinations in the solar system. To learn more about the astronaut class of 2013, visit: http://www.nasa.gov/astronauts/2013astroclass.html Photo credit: NASA/Kim Shiflett
University Television in Northeastern California: A Partial Solution for the Future?
ERIC Educational Resources Information Center
Urbanowicz, Charles F.
The Instructional Television Fixed Service (ITFS) closed circuit delivery system, which became operational on the California State University (CSU), Chico campus in 1975, has offered 61 courses (up to 13 per semester) with up to 27 transmission hours per week to campus students and people at six surrounding Regional Learning Centers (RLC). CSU,…
ERIC Educational Resources Information Center
Center for Education Statistics (ED/OERI), Washington, DC.
A survey of public high school principals asked which policies, programs, and practices designed to improve learning were currently in operation at their schools, and whether these policies were instituted or substantially strengthened in the past 5 years. These policies reflect the school-level recommendations for education reform made in "A…
Virtual World Learning Spaces: Developing a Second Life Operating Room Simulation
ERIC Educational Resources Information Center
Gerald, Stephanie; Antonacci, David M.
2009-01-01
User-created virtual worlds, such as Second Life, are a hot topic in higher education. Thousands of educators are currently exploring and using Second Life, and hundreds of colleges and universities have purchased and developed their own private islands in Second Life, including the University of Kansas Medical Center (KUMC). Because it is so easy…
Satellite Schools: The Private Provision of School Infrastructure. Policy Insight Number 153.
ERIC Educational Resources Information Center
Beales, Janet R.
1992-01-01
The private-sector provision of school infrastructure in the form of satellite schools is discussed in this paper. Following the introduction, section 2 presents a case study of Satellite Learning Centers in Dade County, Florida, in which the schools operate as public schools on business worksites. The host-business, American Bankers Insurance…
De La Salle Vocational Supportive Life Skills Learning Program Off Campus. Operational Manual.
ERIC Educational Resources Information Center
Gaus, Charles, Ed.
Serving as a course planning guide and field aide, this handbook describes the philosophy, policies, and procedures of the De La Salle Vocational off-campus community-based day treatment center designed to effect the reshaping of basic values and attitudes of youngsters who are identified by the courts as maladjusted. Separate sections explain the…
ERIC Educational Resources Information Center
Center on Educational Governance, 2007
2007-01-01
Like other public schools, California charter schools are judged primarily by one measure: student test scores. Though necessary, the Academic Performance Index and Average Yearly Progress scores can't assess charter schools' broad dimensions of student learning, program effectiveness and school operations. The state's accountability system…
De La Garza, Javier Rodrigo; Kowalewski, Karl-Friedrich; Friedrich, Mirco; Schmidt, Mona Wanda; Bruckner, Thomas; Kenngott, Hannes Götz; Fischer, Lars; Müller-Stich, Beat-Peter; Nickel, Felix
2017-03-21
Laparoscopic training has become an important part of surgical education. Laparoscopic Roux-en-Y gastric bypass (RYGB) is the most common bariatric procedure performed. Surgeons must be well trained prior to operating on a patient. Multimodality training is vital for bariatric surgery. E-learning with videos is a standard approach for training. The present study investigates whether scoring the operation videos with performance checklists improves learning effects and transfer to a simulated operation. This is a monocentric, two-arm, randomized controlled trial. The trainees are medical students from the University of Heidelberg in their clinical years with no prior laparoscopic experience. After a laparoscopic basic virtual reality (VR) training, 80 students are randomized into one of two arms in a 1:1 ratio to the checklist group (group A) and control group without a checklist (group B). After all students are given an introduction of the training center, VR trainer and laparoscopic instruments, they start with E-learning while watching explanations and videos of RYGB. Only group A will perform ratings with a modified Bariatric Objective Structured Assessment of Technical Skill (BOSATS) scale checklist for all videos watched. Group B watches the same videos without rating. Both groups will then perform an RYGB in the VR trainer as a primary endpoint and small bowel suturing as an additional test in the box trainer for evaluation. This study aims to assess if E-learning and rating bariatric surgical videos with a modified BOSATS checklist will improve the learning curve for medical students in an RYGB VR performance. This study may help in future laparoscopic and bariatric training courses. German Clinical Trials Register, DRKS00010493 . Registered on 20 May 2016.
Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy
NASA Technical Reports Server (NTRS)
Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott
2011-01-01
The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.
Major, Piotr; Wysocki, Michał; Dworak, Jadwiga; Pędziwiatr, Michał; Pisarska, Magdalena; Wierdak, Mateusz; Zub-Pokrowiecka, Anna; Natkaniec, Michał; Małczak, Piotr; Nowakowski, Michał; Budzyński, Andrzej
2018-06-01
Laparoscopic sleeve gastrectomy (LSG) has become an attractive bariatric procedure with promising treatment effects yet amount of data regarding institutional learning process is limited. Retrospective study included patients submitted to LSG at academic teaching hospital. Patients were divided into groups every 100 consecutive patients. LSG introduction was structured along with Enhanced Recovery after Surgery (ERAS) treatment protocol. Primary endpoint was determining the LSG learning curve's stabilization point, using operative time, intraoperative difficulties, intraoperative adverse events (IAE), and number of stapler firings. Secondary endpoints: influence on perioperative complications and reoperations. Five hundred patients were included (330 females, median age of 40 (33-49) years). Operative time in G1-G2 differed significantly from G3-G5. Stabilization point was the 200th procedure using operative time. Intraoperative difficulties of G1 differed significantly from G2-G5, with stabilization after the 100th procedure. IAE and number of stapler firings could not be used as predictor. Based on perioperative morbidity, the learning curve was stabilized at the 100th procedure. The morbidity rates in the groups were G1, 13%; G2, 4%; G3, 5%; G4, 5%; and G5, 2%. The reoperation rate in G1 was 3%; G2, 2%; G3, 2%; G4, 1%; and G5, 0%. The institutional learning process stabilization point for LSG in a newly established bariatric center is between the 100th and 200th operation. Initially, the morbidity rate is high, which should concern surgeons who are willing to perform bariatric surgery.
Kleynen, Melanie; Moser, Albine; Haarsma, Frederike A; Beurskens, Anna J; Braun, Susy M
2017-08-01
The goal of this study was to examine which motor learning options are applied by experienced physiotherapists in neurological rehabilitation, and how they choose between the different options. A descriptive qualitative approach was used. A purposive sample of five expert physiotherapists from the neurological ward of a rehabilitation center participated. Data were collected using nine videotaped therapy situations. During retrospective think-aloud interviews, the physiotherapists were instructed to constantly "think aloud" while they were watching their own videos. Five "operators" were identified: "act", "know", "observe", "assess" and "argue". The "act" operator consisted of 34 motor learning options, which were clustered into "instruction", "feedback" and "organization". The "know", "observe", "assess" and "argue" operators explained how therapists chose one of these options. The four operators seem to be interrelated and together lead to a decision to apply a particular motor learning option. Results show that the participating physiotherapists used a great variety of motor learning options in their treatment sessions. Further, the decision-making process with regard to these motor learning options was identified. Results may support future intervention studies that match the content and process of therapy in daily practice. The study should be repeated with other physiotherapists. Implications for Rehabilitation The study provided insight into the way experienced therapist handle the great variety of possible motor learning options, including concrete ideas on how to operationalize these options in specific situations. Despite differences in patients' abilities, it seems that therapists use the same underlying clinical reasoning process when choosing a particular motor learning option. Participating physiotherapists used more than the in guidelines suggested motor learning options and considered more than the suggested factors, hence adding practice based options of motor learning to the recommended ones in the guidelines. A think-aloud approach can be considered for peer-to-peer and student coaching to enhance discussion on the motor learning options applied and the underlying choices and to encourage research by practicing clinicians.
2017-12-08
"Light Echo" Illuminates Dust Around Supergiant Star V838 Monocerotis (V838 Mon) Credit: NASA and The Hubble Heritage Team (AURA/STScI) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
Development and training of a learning expert system in an autonomous mobile robot via simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; Lyness, E.; DeSaussure, G.
1989-11-01
The Center for Engineering Systems Advanced Research (CESAR) conducts basic research in the area of intelligent machines. Recently at CESAR a learning expert system was created to operate on board an autonomous robot working at a process control panel. The authors discuss two-computer simulation system used to create, evaluate and train this learning system. The simulation system has a graphics display of the current status of the process being simulated, and the same program which does the simulating also drives the actual control panel. Simulation results were validated on the actual robot. The speed and safety values of using amore » computerized simulator to train a learning computer, and future uses of the simulation system, are discussed.« less
Habitat Demonstration Unit Project Leadership and Management Strategies
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
STEM Mentor Breakfast at Debus Center
2017-05-25
Kim Stratton, at left, with Caterpillar, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
STEM Mentor Breakfast at Debus Center
2017-05-25
Gioia Massa, at left, a NASA payload scientist, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
Operational Concept for the NASA Constellation Program's Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Best, Joel; Chavers, Greg; Richardson, Lea; Cruzen, Craig
2008-01-01
Ares I design brings together innovation and new technologies with established infrastructure and proven heritage hardware to achieve safe, reliable, and affordable human access to space. NASA has 50 years of experience from Apollo and Space Shuttle. The Marshall Space Flight Center's Mission Operations Laboratory is leading an operability benchmarking effort to compile operations and supportability lessons learned from large launch vehicle systems, both domestically and internationally. Ares V will be maturing as the Shuttle is retired and the Ares I design enters the production phase. More details on the Ares I and Ares V will be presented at SpaceOps 2010 in Huntsville, Alabama, U.S.A., April 2010.
Spychalski, Michał; Skulimowski, Aleksander; Dziki, Adam; Saito, Yutaka
2017-12-01
Up to date we lack a detailed description of the colorectal endoscopic submucosal dissection (ESD) learning curve, that would represent the experience of the Western center. The aim of this study was to define the critical points of the learning curve and to draw up lesions qualification guidelines tailored to the endoscopists experience. We have carried out a single center prospective study. Between June 2013 and December 2016, 228 primary colorectal lesions were managed by ESD procedure. In order to create a learning curve model and to carry out the analysis the cases were divided into six periods, each consisting of 38 cases. The overall en bloc resection rate was 79.39%. The lowest en bloc resection rate (52.36%) was observed in the first period. After completing 76 procedures, the resection rate surged to 86% and it was accompanied by the significant increase in the mean procedure speed of ≥9 cm 2 /h. Lesions localization and diameter had a signification impact on the outcomes. After 76 procedures, en bloc resection rate of 90.9 and 90.67% were achieved for the left side of colon and rectum, respectively. In the right side of colon statistically significant lower resection rate of 67.57% was observed. We have proved that in the setting of the Western center, colorectal ESD can yield excellent results. It seems that the key to the success during the learning period is 'tailoring' lesions qualification guidelines to the experience of the endoscopist, as lesions diameter and localization highly influence the outcomes.
Crew Factors in Flight Operations X: Alertness Management in Flight Operations
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.
1999-01-01
In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue counter-measure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.
Crew Factors in Flight Operations X: Alertness Management in Flight Operations
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.
2001-01-01
In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.
Space Mechanisms Lessons Learned Study. Volume 2: Literature Review
NASA Technical Reports Server (NTRS)
Shapiro, Wilbur; Murray, Frank; Howarth, Roy; Fusaro, Robert
1995-01-01
Hundreds of satellites have been launched to date. Some have operated extremely well and others have not. In order to learn from past operating experiences, a study was conducted to determine the conditions under which space mechanisms (mechanically moving components) have previously worked or failed. The study consisted of an extensive literature review that included both government contractor reports and technical journals, communication and visits (when necessary) to the various NASA and DOD centers and their designated contractors (this included contact with project managers of current and prior NASA satellite programs as well as their industry counterparts), requests for unpublished information to NASA and industry, and a mail survey designed to acquire specific mechanism experience. The information obtained has been organized into two volumes. Volume 1 provides a summary of the lesson learned, the results of a needs analysis, responses to the mail survey, a listing of experts, a description of some available facilities, and a compilation of references. Volume 2 contains a compilation of the literature review synopsis.
Space Mechanisms Lessons Learned Study. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Shapiro, Wilbur; Murray, Frank; Howarth, Roy; Fusaro, Robert
1995-01-01
Hundreds of satellites have been launched to date. Some have operated extremely well and others have not. In order to learn from past operating experiences, a study was conducted to determine the conditions under which space mechanisms (mechanically moving components) have previously worked or failed. The study consisted of: (1) an extensive literature review that included both government contractor reports and technical journals; (2) communication and visits (when necessary) to the various NASA and DOD centers and their designated contractors (this included contact with project managers of current and prior NASA satellite programs as well as their industry counterparts); (3) requests for unpublished information to NASA and industry; and (4) a mail survey designed to acquire specific mechanism experience. The information obtained has been organized into two volumes. Volume 1 provides a summary of the lessons learned, the results of a needs analysis, responses to the mail survey, a listing of experts, a description of some available facilities and a compilation of references. Volume 2 contains a compilation of the literature review synopsis.
STEM Mentor Breakfast at Debus Center
2017-05-25
Hortense Diggs, at right, the deputy director of the Communication and Public Engagement Directorate at NASA's Kennedy Space Center in Florida, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
NASA Pathways Co-op Tour Johnson Space Center Fall 2013
NASA Technical Reports Server (NTRS)
Masood, Amir; Osborne-Lee, Irwin W.
2013-01-01
This report outlines the tasks and objectives completed during a co-operative education tour with National Aeronautics and Space Association (NASA) at the Johnson Space Center in Houston, Texas. I worked for the Attitude & Pointing group of the Flight Dynamics Division within the Mission Operations Directorate at Johnson Space Center. NASA's primary mission is to support and expand the various ongoing space exploration programs and any research and development activities associated with it. My primary project required me to develop and a SharePoint web application for my group. My secondary objective was to become familiar with the role of my group which was primarily to provide spacecraft attitude and line of sight determination, including Tracking and Data Relay Satellite (TDRS) communications coverage for various NASA, International, and commercial partner spacecraft. My projects required me to become acquainted with different software systems, fundamentals of aerospace engineering, project management, and develop essential interpersonal communication skills. Overall, I accomplished multiple goals which included laying the foundations for an updated SharePoint which will allow for an organized platform to communicate and share data for group members and external partners. I also successfully learned about the operations of the Attitude & Pointing Group and how it contributes to the Missions Operations Directorate and NASA's Space Program as a whole
ERIC Educational Resources Information Center
Benford, John Q.
Phase IV of the Student Library Resource Requirements Project had as its two main purposes: (1) the establishment of a student learning center demonstration, with the collaboration of school and public library organizations and to begin its operation and evaluation and (2) to expand the well-established interagency planning mechanism into other…
ERIC Educational Resources Information Center
Dyer, Samuel Coad
1998-01-01
A former board member of a New Zealand primary school describes the country's political climate as radical economic libertarian; contract bidding among schools will soon be required. Elementary schools are child-centered and multicultural, operate year-round, involve the board and community, follow a national curriculum, and have overworked,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Rod
FIRETEC presents a new way of studying fire and learning how to better manage and cope with it. The model provides additional scientific input for decisions by policymakers working in land management, water resources and energy. The team hopes it will eventually assist fire and fuel management operations. This research is done in partnership with the USDA Forest Service, Air Force Wildland Fire Center, INRA and Canadian Forest Service.
MacCarthy, Dan; Hollander, Marcus J
2014-01-01
In 2002, the British Columbia Ministry of Health and the British Columbia Medical Association (now Doctors of BC) came together to form the British Columbia General Practice Services Committee to bring about transformative change in primary care in British Columbia, Canada. This committee's approach to primary care was to respond to an operational problem--the decline of family practice in British Columbia--with an operational solution--assist general practitioners to provide better care by introducing new incentive fees into the fee-for-service payment schedule, and by providing additional training to general practitioners. This may be referred to as a "soft power" approach, which can be summarized in the abbreviation RISQ: focus on Relationships; provide Incentives for general practitioners to spend more time with their patients and provide guidelines-based care; Support general practitioners by developing learning modules to improve their practices; and, through the incentive payments and learning modules, provide better Quality care to patients and improved satisfaction to physicians. There are many similarities between the British Columbian approach to primary care and the US patient-centered medical home.
ERIC Educational Resources Information Center
Bottini, Michael; Grossman, Sue
2005-01-01
Many early childhood professionals recommend the use of learning centers in classrooms for young children (Kostelnik, Soderman, & Whiren, 2004). Centers provide children with opportunities for making choices, working with others, being involved in hands-on activities, and becoming fully engaged in learning. In contrast, traditional classroom…
Extending the International Space Station Life and Operability
NASA Technical Reports Server (NTRS)
Cecil, Andrew J.; Pitts, R. Lee; Sparks, Ray N.; Wickline, Thomas W.; Zoller, David A.
2012-01-01
The International Space Station (ISS) is in an operational configuration with final assembly complete. To fully utilize ISS and extend the operational life, it became necessary to upgrade and extend the onboard systems with the Obsolescence Driven Avionics Redesign (ODAR) project. ODAR enabled a joint project between the Johnson Space Center (JSC) and Marshall Space Flight Center (MSFC) focused on upgrading the onboard payload and Ku-Band systems, expanding the voice and video capabilities, and including more modern protocols allowing unprecedented access for payload investigators to their on-orbit payloads. The MSFC Huntsville Operations Support Center (HOSC) was tasked with developing a high-rate enhanced Functionally Distributed Processor (eFDP) to handle 300Mbps Return Link data, double the legacy rate, and incorporate a Line Outage Recorder (LOR). The eFDP also provides a 25Mbps uplink transmission rate with a Space Link Extension (SLE) interface. HOSC also updated the Payload Data Services System (PDSS) to incorporate the latest Consultative Committee for Space Data Systems (CCSDS) protocols, most notably the use of the Internet Protocol (IP) Encapsulation, in addition to the legacy capabilities. The Central Command Processor was also updated to interact with the new onboard and ground capabilities of Mission Control Center -- Houston (MCC-H) for the uplink functionality. The architecture, implementation, and lessons learned, including integration and incorporation of Commercial Off The Shelf (COTS) hardware and software into the operational mission of the ISS, is described herein. The applicability of this new technology provides new benefits to ISS payload users and ensures better utilization of the ISS by the science community
The application of automated operations at the Institutional Processing Center
NASA Technical Reports Server (NTRS)
Barr, Thomas H.
1993-01-01
The JPL Institutional and Mission Computing Division, Communications, Computing and Network Services Section, with its mission contractor, OAO Corporation, have for some time been applying automation to the operation of JPL's Information Processing Center (IPC). Automation does not come in one easy to use package. Automation for a data processing center is made up of many different software and hardware products supported by trained personnel. The IPC automation effort formally began with console automation, and has since spiraled out to include production scheduling, data entry, report distribution, online reporting, failure reporting and resolution, documentation, library storage, and operator and user education, while requiring the interaction of multi-vendor and locally developed software. To begin the process, automation goals are determined. Then a team including operations personnel is formed to research and evaluate available options. By acquiring knowledge of current products and those in development, taking an active role in industry organizations, and learning of other data center's experiences, a forecast can be developed as to what direction technology is moving. With IPC management's approval, an implementation plan is developed and resources identified to test or implement new systems. As an example, IPC's new automated data entry system was researched by Data Entry, Production Control, and Advance Planning personnel. A proposal was then submitted to management for review. A determination to implement the new system was made and elements/personnel involved with the initial planning performed the implementation. The final steps of the implementation were educating data entry personnel in the areas effected and procedural changes necessary to the successful operation of the new system.
NASA Technical Reports Server (NTRS)
Mitchell, T. R.
1974-01-01
The development of a test engineer oriented language has been under way at the Kennedy Space Center for several years. The result of this effort is the Ground Operations Aerospace Language, GOAL, a self-documenting, high-order language suitable for coding automatic test, checkout and launch procedures. GOAL is a highly readable, writable, retainable language that is easily learned by nonprogramming oriented engineers. It is sufficiently powerful for use at all levels of Space Shuttle ground processing, from line replaceable unit checkout to integrated launch day operations. This paper will relate the language development, and describe GOAL and its applications.
2017-01-27
Suzy Cunningham, with the Communication and Public Engagement Directorate, sings the National Anthem before the start of the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Guest panelists included Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team; Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
Quantification of Operational Learning in Minimal Invasive Extracorporeal Circulation.
Anastasiadis, Kyriakos; Antonitsis, Polychronis; Asteriou, Christos; Argiriadou, Helena; Deliopoulos, Apostolos; Konstantinou, Dimitrios; Grosomanidis, Vassilios; Tossios, Paschalis
2017-07-01
Minimal invasive extracorporeal circulation (MiECC) has initiated important new efforts within science and technology towards a more physiologic perfusion. In this study, we aim to investigate the learning curve of our center regarding MiECC. We studied a series of 150 consecutive patients who underwent elective coronary artery bypass grafting by the same surgical team during the initial phase of MiECC application. Patients were randomly assigned into two groups. Group A (n = 75) included patients operated on MiECC, while group B (n = 75) included patients operated with conventional cardiopulmonary bypass (cCPB). The primary end-point of the study was to identify whether there is a learning curve when operating on MiECC. The following parameters were unrelated with increasing experience, even though the results favored MiECC use: reduced CPB duration (102.9 ± 25 vs. 122.2 ± 33 min, P <0.001), peak troponin release (0.07 ± 0.02 vs. 0.1 ± 0.04 ng/mL, P < 0.01), peak creatinine levels (0.97 ± 0.24 vs. 1.2 ± 0.3 mg/dL, P < 0.001), duration of mechanical ventilation (14.1 ± 7.2 vs. 36.9 ± 59.8 h, P < 0.01) and ICU stay (2.1 ± 0.7 vs. 4.4 ± 6.4 days, P < 0.01). However, need for intraoperative blood transfusion showed a trend towards a gradual decrease as experience with MiECC system was accumulating (R 2 = 0.094, P = 0.007). Subsequently, operational learning applied to postoperative hematocrit and hemoglobin levels (R 2 = 0.098, P = 0.006). We identified that advantages of MiECC technology in terms of reduced hemodilution and improved end-organ protection and clinical outcome are evident from the first patient. Optimal results are obtained with 50 cases; this refers mainly to significant reduction in the need for intraoperative blood transfusion. Teamwork from surgeons, anesthesiologists, and perfusionists is of paramount importance in order to maximize the clinical benefits from this technology. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Expert systems and advanced automation for space missions operations
NASA Technical Reports Server (NTRS)
Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas
1990-01-01
Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.
National center for airborne laser mapping proposed
NASA Astrophysics Data System (ADS)
Carter, Bill; Shrestha, Ramesh L.; Dietrich, Bill
Researchers from universities, U.S. government agencies, U.S. national laboratories, and private industry met in the spring to learn about the current capabilities of Airborne Laser Swath Mapping (ALSM), share their experiences in using the technology for a wide variety of research applications, outline research that would be made possible by research-grade ALSM data, and discuss the proposed operation and management of the brand new National Center for Airborne Laser Mapping (NCALM).The workshop successfully identified a community of researchers with common interests in the advancement and use of ALSM—a community which strongly supports the immediate establishment of the NCALM.
Architecture of a Biomedical Informatics Research Data Management Pipeline.
Bauer, Christian R; Umbach, Nadine; Baum, Benjamin; Buckow, Karoline; Franke, Thomas; Grütz, Romanus; Gusky, Linda; Nussbeck, Sara Yasemin; Quade, Matthias; Rey, Sabine; Rottmann, Thorsten; Rienhoff, Otto; Sax, Ulrich
2016-01-01
In University Medical Centers, heterogeneous data are generated that cannot always be clearly attributed to patient care or biomedical research. Each data set has to adhere to distinct intrinsic and operational quality standards. However, only if high-quality data, tools to work with the data, and most importantly guidelines and rules of how to work with the data are addressed adequately, an infrastructure can be sustainable. Here, we present the IT Research Architecture of the University Medical Center Göttingen and describe our ten years' experience and lessons learned with infrastructures in networked medical research.
The effect of environmental initiatives on NASA specifications and standards activities
NASA Technical Reports Server (NTRS)
Griffin, Dennis; Webb, David; Cook, Beth
1995-01-01
The NASA Operational Environment Team (NOET) has conducted a survey of NASA centers specifications and standards that require the use of Ozone Depleting Substances (ODS's) (Chlorofluorocarbons (CFCs), Halons, and chlorinated solvents). The results of this survey are presented here, along with a pathfinder approach utilized at Marshall Space Flight Center (MSFC) to eliminate the use of ODS's in targeted specifications and standards. Presented here are the lessons learned from a pathfinder effort to replace CFC-113 in a significant MSFC specification for cleaning and cleanliness verification methods for oxygen, fuel and pneumatic service, including Shuttle propulsion elements.
Bayesian nonparametric adaptive control using Gaussian processes.
Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A
2015-03-01
Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.
Real-time science operations to support a lunar polar volatiles rover mission
NASA Astrophysics Data System (ADS)
Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; Stoker, Carol R.
2015-05-01
Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the ∼ 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration.
Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission
NASA Technical Reports Server (NTRS)
Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.;
2014-01-01
Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration.
Lessons learned: mobile device encryption in the academic medical center.
Kusche, Kristopher P
2009-01-01
The academic medical center is faced with the unique challenge of meeting the multi-faceted needs of both a modern healthcare organization and an academic institution, The need for security to protect patient information must be balanced by the academic freedoms expected in the college setting. The Albany Medical Center, consisting of the Albany Medical College and the Albany Medical Center Hospital, was challenged with implementing a solution that would preserve the availability, integrity and confidentiality of business, patient and research data stored on mobile devices. To solve this problem, Albany Medical Center implemented a mobile encryption suite across the enterprise. Such an implementation comes with complexities, from performance across multiple generations of computers and operating systems, to diversity of application use mode and end user adoption, all of which requires thoughtful policy and standards creation, understanding of regulations, and a willingness and ability to work through such diverse needs.
Surveillance of Disease and Nonbattle Injuries During US Army Operations in Afghanistan and Iraq.
Hauret, Keith G; Pacha, Laura; Taylor, Bonnie J; Jones, Bruce H
2016-01-01
Disease and nonbattle injury (DNBI) are the leading causes of morbidity during wars and military operations. However, adequate medical data were never before available to service public health centers to conduct DNBI surveillance during deployments. This article describes the process, results and lessons learned from centralized DNBI surveillance by the US Army Center for Health Promotion and Preventive Medicine, predecessor of the US Army Public Health Command, during operations in Afghanistan and Iraq (2001-2013).The surveillance relied primarily on medical evacuation records and in-theater hospitalization records. Medical evacuation rates (per 1,000 person-years) for DNBI were higher (Afghanistan: 56.7; Iraq: 40.2) than battle injury rates (Afghanistan: 12.0; Iraq: 7.7). In Afghanistan and Iraq, respectively, the leading diagnostic categories for medical evacuations were nonbattle injury (31% and 34%), battle injury (20% and 16%), and behavioral health (12% and 10%). Leading causes of medically evacuated nonbattle injuries were sports/physical training (22% and 24%), falls (23% and 26%) and military vehicle accidents (8% and 11%). This surveillance demonstrated the feasibility, utility, and benefits of centralized DNBI surveillance during military operations.
NASA Technical Reports Server (NTRS)
Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter
1998-01-01
During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.
2012-08-03
CAPE CANAVERAL, Fla. -- This is an artist's conception of Space Exploration Technologies', or SpaceX, crewed Dragon capsule atop the company's Falcon 9 rocket under development for NASA's Commercial Crew Program, or CCP. The integrated system was selected for CCP's Commercial Crew Integrated Capability, or CCiCap, initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under a funded Space Act Agreement, or SAA, SpaceX will spend the next 21 months completing its design, conducting critical risk reduction testing on its spacecraft and launch vehicle, and showcasing how it would operate and manage missions from launch through orbit and landing, setting the stage for a future demonstration mission. To learn more about CCP, which is based at NASA's Kennedy Space Center in Florida and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Image credit: SpaceX
2012-08-03
CAPE CANAVERAL, Fla. -- This is an artist's conception of The Boeing Company's CST-100 spacecraft atop a United Launch Alliance ULA Atlas V rocket under development for NASA's Commercial Crew Program, or CCP. The integrated system was selected for CCP's Commercial Crew Integrated Capability, or CCiCap, initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under a funded Space Act Agreement, or SAA, Boeing will spend the next 21 months completing its design, conducting critical risk reduction testing on its spacecraft and launch vehicle, and showcasing how it would operate and manage missions from launch through orbit and landing, setting the stage for a future demonstration mission. To learn more about CCP, which is based at NASA's Kennedy Space Center in Florida and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Image credit: Boeing
View of Mission Control Center during the Apollo 13 oxygen cell failure
1970-04-14
S70-34902 (14 April 1970) --- Several persons important to the Apollo 13 mission, at consoles in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC). Seated at consoles, from left to right, are astronauts Donald K. Slayton, director of flight crew operations; astronaut Jack R. Lousma, Shift 3 spacecraft communicator; and astronaut John W. Young, commander of the Apollo 13 backup crew. Standing, left to right, are astronaut Tom K. Mattingly II, who was replaced as Apollo 13 command module pilot after it was learned he may come down with measles, and astronaut Vance D. Brand, Shift 2 spacecraft communicator. Several hours earlier, in the late evening hours of April 13, crew members of the Apollo 13 mission reported to MCC that trouble had developed with an oxygen cell on their spacecraft.
2014-04-29
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, agency helicopter pilots ensure all is clear before taking off during a training exercise. Helicopter pilot Bill Martin, a URS Federal Technical Services in the agency's Aircraft Operations, is seen in the front seat. Behind Martin on the left, is Mark Huetter, of Chenega Security & Support Solutions. Martin serves as assistant chief of Training for the center's Fire Rescue Department. The activity taking place in Kennedy's Launch Complex 39 turn-basin parking lot was only one of several drills. It was part of a new training program that was developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dan Casper
An operations and command systems for the extreme ultraviolet explorer
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Korsmeyer, David J.; Olson, Eric C.; Wong, Gary
1994-01-01
About 40% of the budget of a scientific spacecraft mission is usually consumed by Mission Operations & Data Analysis (MO&DA) with MO driving these costs. In the current practice, MO is separated from spacecraft design and comes in focus relatively late in the mission life cycle. As a result, spacecraft may be designed that are very difficult to operate. NASA centers have extensive MO expertise but often lessons learned in one mission are not exploited for other parallel or future missions. A significant reduction of MO costs is essential to ensure a continuing and growing access to space for the scientific community. We are addressing some of these issues with a highly automated payload operations and command system for an existing mission, the Extreme Ultraviolet Explorer (EUVE). EUVE is currently operated jointly by the Goddard Space Flight Center (GSFC), responsible for spacecraft operations, and the Center for Extreme Ultraviolet Astrophysics (CEA) of the University of California, Berkeley, which controls the telescopes and scientific instruments aboard the satellite. The new automated system is being developed by a team including personnel from the NASA Ames Research Center (ARC), the Jet Propulsion Laboratory (JPL) and the Center for EUV Astrophysics (CEA). An important goal of the project is to provide AI-based technology that can be easily operated by nonspecialists in AI. Another important goal is the reusability of the techniques for other missions. Models of the EUVE spacecraft need to be built both for planning/scheduling and for monitoring. In both cases, our modeling tools allow the assembly of a spacecraft model from separate sub-models of the various spacecraft subsystems. These sub-models are reusable; therefore, building mission operations systems for another small satellite mission will require choosing pre-existing modules, reparametrizing them with respect to the actual satellite telemetry information, and reassembling them in a new model. We briefly describe the EUVE mission and indicate why it is particularly suitable for the task. Then we briefly outline our current work in mission planning/scheduling and spacecraft and instrument health monitoring.
Problem-Based Learning: Instructor Characteristics, Competencies, and Professional Development
2011-01-01
cognitive learning objectives addressed by student -centered instruction . For instance, experiential learning , a variation of which is used at the...based learning in grade school science or mathematics . However, the measures could be modified to focus on adult PBL (or student -centered learning ... student -centered learning methods, the findings should generalize across instructional methods of interest to the Army. Further research is required
2018-05-01
The 2017 class of astronaut candidates tour Boeing's Commercial Crew and Cargo Facility at NASA's Kennedy Space Center in Florida on May 1. They are at the center for a familiarization tour of facilities, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, and the Vehicle Assembly Building. They also toured United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station, and SpaceX's Launch Complex 39A at Kennedy. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.
2018-05-01
The 2017 class of astronaut candidates arrive at Boeing's Commercial Crew and Cargo Facility at NASA's Kennedy Space Center in Florida on May 1. They are at the center for a familiarization tour of facilities, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, and the Vehicle Assembly Building. They also toured United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station, and SpaceX's Launch Complex 39A at Kennedy. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.
Nonvolatile Memory Materials for Neuromorphic Intelligent Machines.
Jeong, Doo Seok; Hwang, Cheol Seong
2018-04-18
Recent progress in deep learning extends the capability of artificial intelligence to various practical tasks, making the deep neural network (DNN) an extremely versatile hypothesis. While such DNN is virtually built on contemporary data centers of the von Neumann architecture, physical (in part) DNN of non-von Neumann architecture, also known as neuromorphic computing, can remarkably improve learning and inference efficiency. Particularly, resistance-based nonvolatile random access memory (NVRAM) highlights its handy and efficient application to the multiply-accumulate (MAC) operation in an analog manner. Here, an overview is given of the available types of resistance-based NVRAMs and their technological maturity from the material- and device-points of view. Examples within the strategy are subsequently addressed in comparison with their benchmarks (virtual DNN in deep learning). A spiking neural network (SNN) is another type of neural network that is more biologically plausible than the DNN. The successful incorporation of resistance-based NVRAM in SNN-based neuromorphic computing offers an efficient solution to the MAC operation and spike timing-based learning in nature. This strategy is exemplified from a material perspective. Intelligent machines are categorized according to their architecture and learning type. Also, the functionality and usefulness of NVRAM-based neuromorphic computing are addressed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tracking Active Learning in the Medical School Curriculum: A Learning-Centered Approach.
McCoy, Lise; Pettit, Robin K; Kellar, Charlyn; Morgan, Christine
2018-01-01
Medical education is moving toward active learning during large group lecture sessions. This study investigated the saturation and breadth of active learning techniques implemented in first year medical school large group sessions. Data collection involved retrospective curriculum review and semistructured interviews with 20 faculty. The authors piloted a taxonomy of active learning techniques and mapped learning techniques to attributes of learning-centered instruction. Faculty implemented 25 different active learning techniques over the course of 9 first year courses. Of 646 hours of large group instruction, 476 (74%) involved at least 1 active learning component. The frequency and variety of active learning components integrated throughout the year 1 curriculum reflect faculty familiarity with active learning methods and their support of an active learning culture. This project has sparked reflection on teaching practices and facilitated an evolution from teacher-centered to learning-centered instruction.
Tracking Active Learning in the Medical School Curriculum: A Learning-Centered Approach
McCoy, Lise; Pettit, Robin K; Kellar, Charlyn; Morgan, Christine
2018-01-01
Background: Medical education is moving toward active learning during large group lecture sessions. This study investigated the saturation and breadth of active learning techniques implemented in first year medical school large group sessions. Methods: Data collection involved retrospective curriculum review and semistructured interviews with 20 faculty. The authors piloted a taxonomy of active learning techniques and mapped learning techniques to attributes of learning-centered instruction. Results: Faculty implemented 25 different active learning techniques over the course of 9 first year courses. Of 646 hours of large group instruction, 476 (74%) involved at least 1 active learning component. Conclusions: The frequency and variety of active learning components integrated throughout the year 1 curriculum reflect faculty familiarity with active learning methods and their support of an active learning culture. This project has sparked reflection on teaching practices and facilitated an evolution from teacher-centered to learning-centered instruction. PMID:29707649
ERIC Educational Resources Information Center
Lafferty, Bill R.
The San Antonio Experience-Based Career Education (EBCE) project was evaluated by a third party for its three years of operation. The project was designed to assist youth in making a successful transition to adulthood through community-based and learning center experiences, and was implemented by the Harlandale and San Antonio school districts.…
2016-12-01
On Killing: The Psychological Cost of Learning to Kill in War and Society (New York: Integrated Media Incorporated, 2014), Kindle location 2618...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. INTEGRATION OF...REPORT DATE December 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE INTEGRATION OF BEHAVIORAL THREAT MANAGEMENT INTO
Mali and Islamic Extremism: Applying Lessons Learned from Afghanistan
2016-11-21
Stability operations use the pop- ulation as the center of gravity.40 U.S. military doctrine directs us to review political, military, economic ...military success or lasting stability . This article addresses the similar contexts between the two countries and how lessons from Afghanistan can be...applied to Mali to improve chances for lasting stability . Keywords: Africa, Mali, Azawad, asymmetric warfare, belligerent forces, jihad, Islamic
System Administrator for LCS Development Sets
NASA Technical Reports Server (NTRS)
Garcia, Aaron
2013-01-01
The Spaceport Command and Control System Project is creating a Checkout and Control System that will eventually launch the next generation of vehicles from Kennedy Space Center. KSC has a large set of Development and Operational equipment already deployed in several facilities, including the Launch Control Center, which requires support. The position of System Administrator will complete tasks across multiple platforms (Linux/Windows), many of them virtual. The Hardware Branch of the Control and Data Systems Division at the Kennedy Space Center uses system administrators for a variety of tasks. The position of system administrator comes with many responsibilities which include maintaining computer systems, repair or set up hardware, install software, create backups and recover drive images are a sample of jobs which one must complete. Other duties may include working with clients in person or over the phone and resolving their computer system needs. Training is a major part of learning how an organization functions and operates. Taking that into consideration, NASA is no exception. Training on how to better protect the NASA computer infrastructure will be a topic to learn, followed by NASA work polices. Attending meetings and discussing progress will be expected. A system administrator will have an account with root access. Root access gives a user full access to a computer system and or network. System admins can remove critical system files and recover files using a tape backup. Problem solving will be an important skill to develop in order to complete the many tasks.
NASA Technical Reports Server (NTRS)
Hughes, Peter M.; Luczak, Edward C.
1991-01-01
Flight Operations Analysts (FOAs) in the Payload Operations Control Center (POCC) are responsible for monitoring a satellite's health and safety. As satellites become more complex and data rates increase, FOAs are quickly approaching a level of information saturation. The FOAs in the spacecraft control center for the COBE (Cosmic Background Explorer) satellite are currently using a fault isolation expert system named the Communications Link Expert Assistance Resource (CLEAR), to assist in isolating and correcting communications link faults. Due to the success of CLEAR and several other systems in the control center domain, many other monitoring and fault isolation expert systems will likely be developed to support control center operations during the early 1990s. To facilitate the development of these systems, a project was initiated to develop a domain specific tool, named the Generic Spacecraft Analyst Assistant (GenSAA). GenSAA will enable spacecraft analysts to easily build simple real-time expert systems that perform spacecraft monitoring and fault isolation functions. Lessons learned during the development of several expert systems at Goddard, thereby establishing the foundation of GenSAA's objectives and offering insights in how problems may be avoided in future project, are described. This is followed by a description of the capabilities, architecture, and usage of GenSAA along with a discussion of its application to future NASA missions.
Active learning in the space engineering education at Technical University of Madrid
NASA Astrophysics Data System (ADS)
Rodríguez, Jacobo; Laverón-Simavilla, Ana; Lapuerta, Victoria; Ezquerro Navarro, Jose Miguel; Cordero-Gracia, Marta
This work describes the innovative activities performed in the field of space education at the Technical University of Madrid (UPM), in collaboration with the center engaged by the European Space Agency (ESA) in Spain to support the operations for scientific experiments on board the International Space Station (E-USOC). These activities have been integrated along the last academic year of the Aerospatiale Engineering degree. A laboratory has been created, where the students have to validate and integrate the subsystems of a microsatellite by using demonstrator satellites. With the acquired skills, the students participate in a training process centered on Project Based Learning, where the students work in groups to perform the conceptual design of a space mission, being each student responsible for the design of a subsystem of the satellite and another one responsible of the mission design. In parallel, the students perform a training using a ground station, installed at the E-USOC building, which allow them to learn how to communicate with satellites, how to download telemetry and how to process the data. This also allows students to learn how the E-USOC works. Two surveys have been conducted to evaluate the impact of these techniques in the student engineering skills and to know the degree of satisfaction of students with respect to the use of these learning methodologies.
Lessons Learned for Improving Spacecraft Ground Operations
NASA Technical Reports Server (NTRS)
Bell, Michael; Henderson, Gena; Stambolian, Damon
2013-01-01
NASA policy requires each Program or Project to develop a plan for how they will address Lessons Learned. Projects have the flexibility to determine how best to promote and implement lessons learned. A large project might budget for a lessons learned position to coordinate elicitation, documentation and archival of the project lessons. The lessons learned process crosses all NASA Centers and includes the contactor community. o The Office of The Chief Engineer at NASA Headquarters in Washington D.C., is the overall process owner, and field locations manage the local implementation. One tool used to transfer knowledge between program and projects is the Lessons Learned Information System (LLIS). Most lessons come from NASA in partnership with support contractors. A search for lessons that might impact a new design is often performed by a contractor team member. Knowledge is not found with only one person, one project team, or one organization. Sometimes, another project team, or person, knows something that can help your project or your task. Knowledge sharing is an everyday activity at the Kennedy Space Center through storytelling, Kennedy Engineering Academy presentations and through searching the Lessons Learned Information system. o Project teams search the lessons repository to ensure the best possible results are delivered. o The ideas from the past are not always directly applicable but usually spark new ideas and innovations. Teams have a great responsibility to collect and disseminate these lessons so that they are shared with future generations of space systems designers. o Leaders should set a goal for themselves to host a set numbers of lesson learned events each year and do more to promote multiple methods of lessons learned activities. o High performing employees are expected to share their lessons, however formal knowledge sharing presentation are not the norm for many employees.
ERIC Educational Resources Information Center
Ke, Fengfeng; Kwak, Dean
2013-01-01
The present study investigated the relationships between constructs of web-based student-centered learning and the learning satisfaction of a diverse online student body. Hypotheses on the constructs of student-centered learning were tested using structural equation modeling. The results indicated that five key constructs of student-centered…
Beyond the Art Lesson: Free-Choice Learning Centers
ERIC Educational Resources Information Center
Werth, Laurie
2010-01-01
In this article, the author emphasizes that by providing learning centers in the art studio environment and by providing "free-choice time," art educators can encourage and reinforce the natural learning styles of students. Learning centers give elementary students the freedom to pursue individual artistic expression. They give students an…
Validating a Technology Enhanced Student-Centered Learning Model
ERIC Educational Resources Information Center
Kang, Myunghee; Hahn, Jungsun; Chung, Warren
2015-01-01
The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…
NASA Technical Reports Server (NTRS)
Ferrell, Bob A.; Lewis, Mark E.; Perotti, Jose M.; Brown, Barbara L.; Oostdyk, Rebecca L.; Goetz, Jesse W.
2010-01-01
This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC). Part of the0 overall implementation of National Aeronautics and Space Administration's (NASA's) CxP, FDIR is being implemented in three main components of the program (Ares, Orion, and Ground Operations/Processing). While not initially part of the design baseline for the CxP Ground Operations, NASA felt that FDIR is important enough to develop, that NASA's Exploration Systems Mission Directorate's (ESMD's) Exploration Technology Development Program (ETDP) initiated a task for it under their Integrated System Health Management (ISHM) research area. This task, referred to as the FDIIR project, is a multi-year multi-center effort. The primary purpose of the FDIR project is to develop a prototype and pathway upon which Fault Detection and Isolation (FDI) may be transitioned into the Ground Operations baseline. Currently, Qualtech Systems Inc (QSI) Commercial Off The Shelf (COTS) software products Testability Engineering and Maintenance System (TEAMS) Designer and TEAMS RDS/RT are being utilized in the implementation of FDI within the FDIR project. The TEAMS Designer COTS software product is being utilized to model the system with Functional Fault Models (FFMs). A limited set of systems in Ground Operations are being modeled by the FDIR project, and the entire Ares Launch Vehicle is being modeled under the Functional Fault Analysis (FFA) project at Marshall Space Flight Center (MSFC). Integration of the Ares FFMs and the Ground Processing FFMs is being done under the FDIR project also utilizing the TEAMS Designer COTS software product. One of the most significant challenges related to integration is to ensure that FFMs developed by different organizations can be integrated easily and without errors. Software Interface Control Documents (ICDs) for the FFMs and their usage will be addressed as the solution to this issue. In particular, the advantages and disadvantages of these ICDs across physically separate development groups will be delineated.
Research to Operations Transition of an Auroral Specification and Forecast Model
NASA Astrophysics Data System (ADS)
Jones, J.; Sanders, S.; Davis, B.; Hedrick, C.; Mitchell, E. J.; Cox, J. M.
Aurorae are generally caused by collisions of high-energy precipitating electrons and neutral molecules in Earth’s polar atmosphere. The electrons, originating in Earth’s magnetosphere, collide with oxygen and nitrogen molecules driving them to an excited state. As the molecules return to their normal state, a photon is released resulting in the aurora. Aurora can become troublesome for operations of UHF and L-Band radars since these radio frequencies can be scattered by these abundant free electrons and excited molecules. The presence of aurorae under some conditions can lead to radar clutter or false targets. It is important to know the state of the aurora and when radar clutter is likely. For this reason, models of the aurora have been developed and used in an operational center for many decades. Recently, a data-driven auroral precipitation model was integrated into the DoD operational center for space weather. The auroral precipitation model is data-driven in a sense that solar wind observations from the Lagrangian point L1 are used to drive a statistical model of Earth’s aurorae to provide nowcasts and short-duration forecasts of auroral activity. The project began with a laboratory-grade prototype and an algorithm theoretical basis document, then through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourages rapid and flexible response to customer-driven changes. The result was an operational capability that met customer expectations for reliability, security, and scientific accuracy. Details of the model and the process of operational integration are discussed as well as lessons learned to improve performance on future projects.
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
Sensenig, Julia A
2007-08-01
This article addresses the effect of a nursing care center on student learning. Associate degree nursing students spend clinical days at a nursing care center that was created in collaboration with an inner-city clinic serving individuals who are uninsured and underinsured. The nursing students learn cultural sensitivity, teaching strategies, and interdisciplinary skills. The service-learning experience benefits the nursing students, the nursing department of the college, the patients who visit the nursing care center, the clinic, and the community. This article describes the development of the nursing care center, examples of teaching-learning opportunities, and evidence of student learning. This successful collaboration between a community college and an inner-city clinic can be Associareplicated by other nursing programs.
The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center
NASA Astrophysics Data System (ADS)
Singer, H. J.
2017-12-01
The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.
Enhanced International Space Station Ku-Band Telemetry Service
NASA Technical Reports Server (NTRS)
Cecil, Andrew J.; Pitts, R. Lee; Welch, Steven J.; Bryan, Jason D.
2014-01-01
The International Space Station (ISS) is in an operational configuration. To fully utilize the ISS and take advantage of the modern protocols and updated Ku-band access, the Huntsville Operations Support Center (HOSC) has designed an approach to extend the Kuband forward link access for payload investigators to their on-orbit payloads. This dramatically increases the ground to ISS communications for those users. This access also enables the ISS flight controllers operating in the Payload Operations and Integration Center to have more direct control over the systems they are responsible for managing and operating. To extend the Ku-band forward link to the payload user community the development of a new command server is necessary. The HOSC subsystems were updated to process the Internet Protocol Encapsulated packets, enable users to use the service based on their approved services, and perform network address translation to insure that the packets are forwarded from the user to the correct payload repeating that process in reverse from ISS to the payload user. This paper presents the architecture, implementation, and lessons learned. This will include the integration of COTS hardware and software as well as how the device is incorporated into the operational mission of the ISS. Thus, this paper also discusses how this technology can be applicable to payload users of the ISS.
NASA Astrophysics Data System (ADS)
Rodríguez, Jacobo; Laverón-Simavilla, Ana; del Cura, Juan M.; Ezquerro, José M.; Lapuerta, Victoria; Cordero-Gracia, Marta
2015-10-01
This work describes the innovation activities performed in the field of space education since the academic year 2009/10 at the Technical University of Madrid (UPM), in collaboration with the Spanish User Support and Operations Center (E-USOC), the center assigned by the European Space Agency (ESA) in Spain to support the operations of scientific experiments on board the International Space Station. These activities have been integrated within the last year of the UPM Aerospace Engineering degree. A laboratory has been created, where students have to validate and integrate the subsystems of a microsatellite using demonstrator satellites. In parallel, the students participate in a Project Based Learning (PBL) training process in which they work in groups to develop the conceptual design of a space mission. One student in each group takes the role of project manager, another one is responsible for the mission design and the rest are each responsible for the design of one of the satellite subsystems. A ground station has also been set up with the help of students developing their final thesis, which will allow future students to perform training sessions and learn how to communicate with satellites, how to receive telemetry and how to process the data. Several surveys have been conducted along two academic years to evaluate the impact of these techniques in engineering learning. The surveys evaluate the acquisition of specific and generic competences, as well as the students' degree of satisfaction with respect to the use of these learning methodologies. The results of the surveys and the perception of the lecturers show that PBL encourages students' motivation and improves their results. They not only acquire better technical training, but also improve their transversal skills. It is also pointed out that this methodology requires more dedication from lecturers than traditional methods.
NASA Technical Reports Server (NTRS)
1993-01-01
Using chordic technology, a data entry operator can finger key combinations for text or graphics input. Because only one hand is needed, a disabled person may use it. Strain and fatigue are less than when using a conventional keyboard; input is faster, and the system can be learned in about an hour. Infogrip, Inc. developed chordic input technology with Stennis Space Center (SSC). (NASA is interested in potentially faster human/computer interaction on spacecraft as well as a low cost tactile/visual training system for the handicapped.) The company is now marketing the BAT as an improved system for both disabled and non-disabled computer operators.
Polyurethane Foam-Filled Skull Replica of Craniosynostosis for Surgical Training.
Jeong, Yeon Jin; Lee, Jun Yong
2016-05-01
Craniosynostosis has a relatively low incidence in the general population and its treatment requires cautious approaches. For these reasons, patients are usually referred to several specialists or a medical center. Therefore, most trainees and young surgeons do not have any chances to experience patients of craniosynostosis, but learn about it only from textbooks. And for a surgeon who tries to operate on a craniosynostosis patient, it is hard to make a proper preoperative plan.The authors suggest a polyurethane foam-filled skull replica of craniosynostosis for trainees that can also be used in planning a craniosynostosis operation.
NASA Astrophysics Data System (ADS)
Turner, Kent Alan
Gamification is the act of introducing game elements in any aspect of life. In this case, it is a classroom. The operating model of BioCraft was a role-playing game that reinforced deaf students' use of new vocabulary in a gamified environment. BioCraft addressed the problem of deaf students acquiring scientific terms and using these scientific terms bilingually in academic language. BioCraft also established a student-centered learning atmosphere that promoted intersubjectivity, appropriation, and self-determination. In BioCraft, students became avatars of new organisms living on a new planet who needed to learn about living systems, adaptations, and genetics in order to survive. The results of the operating model suggested that gamification had an effect on deaf students' motivation and frequency of using new scientific terms with minimal persuasion from the teacher.
Lessons Learned with Metallized Gelled Propellants
NASA Technical Reports Server (NTRS)
1996-01-01
During testing of metallized gelled propellants in a rocket engine, many changes had to be made to the normal test program for traditional liquid propellants. The lessons learned during the testing and the solutions for many of the new operational conditions posed with gelled fuels will help future programs run more smoothly. The major factors that influenced the success of the testing were propellant settling, piston-cylinder tank operation, control of self pressurization, capture of metal oxide particles, and a gelled-fuel protective layer. In these ongoing rocket combustion experiments at the NASA Lewis Research Center, metallized, gelled liquid propellants are used in a small modular engine that produces 30 to 40 lb of thrust. Traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt% loadings of aluminum are used with gaseous oxygen as the oxidizer. The figure compares the thrust chamber efficiencies of different engines.
Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned
NASA Technical Reports Server (NTRS)
Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich
2013-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.
A Learning Center Approach to Infant Education.
ERIC Educational Resources Information Center
Adams, Polly K.; Taylor, Michaell K.
Following a prefatory description of infant development and high-quality infant day care centers, this paper focuses on the construction of learning centers for infants and toddlers in day care. Issues for consideration are specified, and 18 different care/learning centers and 6 work sstations for parents/staff are briefly described. In addition…
Cost Analysis In A Multi-Mission Operations Environment
NASA Technical Reports Server (NTRS)
Newhouse, M.; Felton, L.; Bornas, N.; Botts, D.; Roth, K.; Ijames, G.; Montgomery, P.
2014-01-01
Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the decreasing flight rate. This paper presents the issues encountered during the HOSC cost analysis process, and the associated lessons learned. These lessons can be used when planning for a new multi-mission operations center or in the transformation from a dedicated control center to multi-center operations, as an aid in defining processes that support future cost analysis and estimation. The lessons can also be used by mature serviceoriented, multi-mission control centers to streamline or refine their cost analysis process.
Cost Analysis in a Multi-Mission Operations Environment
NASA Technical Reports Server (NTRS)
Felton, Larry; Newhouse, Marilyn; Bornas, Nick; Botts, Dennis; Ijames, Gayleen; Montgomery, Patty; Roth, Karl
2014-01-01
Spacecraft control centers have evolved from dedicated, single-mission or single mission-type support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multi-mission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the decreasing flight rate. This paper presents the issues encountered during the HOSC cost analysis process, and the associated lessons learned. These lessons can be used when planning for a new multi-mission operations center or in the transformation from a dedicated control center to multi-center operations, as an aid in defining processes that support future cost analysis and estimation. The lessons can also be used by mature service-oriented, multi-mission control centers to streamline or refine their cost analysis process.
Science Learning Outcomes in Alignment with Learning Environment Preferences
NASA Astrophysics Data System (ADS)
Chang, Chun-Yen; Hsiao, Chien-Hua; Chang, Yueh-Hsia
2011-04-01
This study investigated students' learning environment preferences and compared the relative effectiveness of instructional approaches on students' learning outcomes in achievement and attitude among 10th grade earth science classes in Taiwan. Data collection instruments include the Earth Science Classroom Learning Environment Inventory and Earth Science Learning Outcomes Inventory. The results showed that most students preferred learning in a classroom environment where student-centered and teacher-centered instructional approaches coexisted over a teacher-centered learning environment. A multivariate analysis of covariance also revealed that the STBIM students' cognitive achievement and attitude toward earth science were enhanced when the learning environment was congruent with their learning environment preference.
Blanc, Thomas; Muller, Cecile; Abdoul, Hendy; Peev, Stoyen; Paye-Jaouen, Annabel; Peycelon, Matthieu; Carricaburu, Elisabeth; El-Ghoneimi, Alaa
2013-03-01
Laparoscopic pyeloplasty in children remains controversial and is not included in most pediatric urology centers because of technical difficulties and lack of long-term results. To critically analyze our 10-yr experience with the retroperitoneal approach (RA), with a particular interest on the impact of the learning curve in a teaching center. Patients who underwent pyeloplasty between 1999 and 2010 at our institution were reviewed (n=390). The diagnosis of ureteropelvic junction obstruction was confirmed by ultrasound and technetium Tc 99m mercaptoacetyltriglycine-3 renal scan or magnetic resonance imaging; the same criteria were used to evaluate the outcome. The lateral RA was selected in children >1 yr of age without abnormal migration or fusion of the kidney (n=104). Dismembered pyeloplasty and anastomosis were performed using running monofilament 5-0 or 6-0 absorbable suture. All were drained by double-J stent except 20 cases drained by external transanastomotic stent. We assessed intra- and postoperative morbidity and analyzed the teaching of technique and learning curve. Data are expressed as medians and interquartile range (25th, 75th percentiles) for quantitative variables. Median age was 6.2 yr (2.2-10.3). Thirty-three patients had crossing vessels. Median operative time was 185 min (160-235). Median hospital stay was 2 d (1-2). Redo pyeloplasty was needed in only two children (2%). Median follow-up was 2.1 yr (1.4-4.1). Operative time was <3 h after 35 cases. After 30 cases performed by the same surgeon, standardization of the technique was feasible, which helped in the teaching process because 50% of the final 30 cases were done by trainees. Retroperitoneal dismembered laparoscopic pyeloplasty is a safe, reliable, and efficient procedure with an excellent outcome in selected children according to their indications and age, and the experience of the surgical team. Even if the transmission to trainees is successful, it is still a long learning process and remains a challenging task for a teaching center. Copyright © 2012. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Costa, Guillermo J.; Arteaga, Ricardo A.
2011-01-01
A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.
2017-12-08
The Crab Nebula is a supernova remnant, all that remains of a tremendous stellar explosion. Observers in China and Japan recorded the supernova nearly 1,000 years ago, in 1054. Credit: NASA, ESA, J. Hester and A. Loll (Arizona State University) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
2017-12-08
Carina Nebula Details: Great Clouds Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
2012-08-03
CAPE CANAVERAL, Fla. -- This is an artist's conception of Sierra Nevada Corp. SNC Space System's Dream Chaser spacecraft atop a United Launch Alliance ULA Atlas V rocket under development for NASA's Commercial Crew Program, or CCP. The integrated system was selected for CCP's Commercial Crew Integrated Capability, or CCiCap, initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under a funded Space Act Agreement, or SAA, SNC will spend the next 21 months completing its design, conducting critical risk reduction testing on its spacecraft and launch vehicle, and showcasing how it would operate and manage missions from launch through orbit and landing, setting the stage for a future demonstration mission. To learn more about CCP, which is based at NASA's Kennedy Space Center in Florida and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Image credit: SNC
Learning from near-misses to avoid future catastrophes
NASA Astrophysics Data System (ADS)
Dillon, Robin L.
2014-11-01
Organizations that fail to use known near-miss data when making operational decisions may be inadvertently rewarding risky behavior. Over time such risk taking compounds as similar near-misses are repeatedly observed and the ability to recognize anomalies and document the events decreases (i.e., normalization of deviance [1,2,3]). History from the space shuttle program shows that only the occasional large failure increases attention to anomalies again. This paper discusses prescriptions for project managers based on several on-going activities at NASA Goddard Space Flight Center (GSFC) to improve the lesson learning process for space missions. We discuss how these efforts can contribute to reducing near-miss bias and the normalization of deviance. This research should help organizations design learning processes that draw lessons from near-misses.
2018-05-02
The 2017 class of astronaut candidates are at United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station (CCAFS) in Florida for a familiarization tour. They also toured facilities at Kennedy Space Center, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, the Vehicle Assembly Building, Boeing's Commercial Crew and Cargo Facility, and SpaceX's Launch Complex 39A. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.
Designing Assessments of Microworld Training for Combat Service Support Staff
2003-01-01
training for distribution management skills as a part of a larger project that entailed making changes to the current structure, content, and methods...of CSS training. Microworld models are small-scale simulations of organizations and operations. They are useful for training distribution management processes...pilot studies using a microworld model for U.S. Army Reserve (USAR) soldiers in Distribution Management Centers. The degree to which trainees learned
Strategy, Theory, Tactical Possibilities and the Design of Amphibious Concepts
2012-05-17
the process of learning and pierce the veil of uncertainty that lies between the protagonists, a gambit must be made—sufficient energy must be...non-military means was again challenging amphibious operations advocates.34 From 1990 – 2010, the Marine Corps conducted approximately 104...power for political ends by using multiple means and approaches to attack multiple centers of gravity and thus collapse an adversary’s system. The
Enhancing Soldier-Centered Learning with Emerging Training Technologies and Integrated Assessments
2013-12-01
classroom and game -based training platform. The mobile training focuses on declarative knowledge and covers basic terminology and principles for...International, has over 20 years of experience in instructional design with focus on game -based training for Defense-related projects. Jessie Hyland...training content, which teaches Soldiers how to operate a common piece of signal equipment, is delivered via a mobile device, virtual classroom and game
Vidoni, Eric D; Boyd, Lara A
2007-09-01
Two major memory and learning systems operate in the brain: one for facts and ideas (ie, the declarative or explicit system), one for habits and behaviors (ie, the procedural or implicit system). Broadly speaking these two memory systems can operate either in concert or entirely independently of one another during the performance and learning of skilled motor behaviors. This Special Issue article has two parts. In the first, we present a review of implicit motor skill learning that is largely centered on the interactions between declarative and procedural learning and memory. Because distinct neuroanatomical substrates support unique aspects of learning and memory and thus focal injury can cause impairments that are dependent on lesion location, we also broadly consider which brain regions mediate implicit and explicit learning and memory. In the second part of this article, the interactive nature of these two memory systems is illustrated by the presentation of new data that reveal that both learning implicitly and acquiring explicit knowledge through physical practice lead to motor sequence learning. In our new data, we discovered that for healthy individuals use of the implicit versus explicit memory system differently affected variability of performance during acquisition practice; variability was higher early in practice for the implicit group and later in practice for the acquired explicit group. Despite the difference in performance variability, by retention both groups demonstrated comparable change in tracking accuracy and thus, motor sequence learning. Clinicians should be aware of the potential effects of implicit and explicit interactions when designing rehabilitation interventions, particularly when delivering explicit instructions before task practice, working with individuals with focal brain damage, and/or adjusting therapeutic parameters based on acquisition performance variability.
School-based health centers: accessibility and accountability.
Brindis, Claire D; Klein, Jonathan; Schlitt, John; Santelli, John; Juszczak, Linda; Nystrom, Robert J
2003-06-01
To examine the current experience of school-based health centers (SBHCs) in meeting the needs of children and adolescents, changes over time in services provided and program sponsorship, and program adaptations to the changing medical marketplace. Information for the 1998-1999 Census of School-Based Health Centers was collected through a questionnaire mailed to health centers in December 1998. A total of 806 SBHCs operating in schools or on school property responded, representing a 70% response rate. Descriptive statistics and cross-tab analyses were conducted. The number of SBHCs grew from 120 in 1988 to nearly 1200 in 1998, serving an estimated 1.1 million students. No longer primarily in urban high schools, health centers now operate in diverse areas in 45 states, serving students from kindergarten through high school. Sponsorship has shifted from community-based clinics to hospitals, local health departments, and community health centers, which represent 73% of all sponsors. Most use computer-based patient-tracking systems (88%), and 73% bill Medicaid and other third-party insurers for student-patient encounters. SBHCs have demonstrated leadership by implementing medical standards of care and providing accountable sources of health care. Although the SBHC model is responsive to local community needs, centers provide care for only 2% of children enrolled in U.S. schools. A lack of stable financing streams continues to challenge sustainability. As communities seek to meet the needs of this population, they are learning important lessons about providing acceptable, accessible, and comprehensive services and about implementing quality assurance mechanisms.
ERIC Educational Resources Information Center
Smith, Anita; Helms, Jenifer V.; St. John, Mark
2007-01-01
Inverness Research Associates served as external evaluators for the Center for Informal Learning and Schools (CILS) from its inception in 2002 as a National Science Foundation (NSF)-funded Center for Learning and Teaching. One of the programs that CILS developed was the Informal Learning Certificate (ILC) for informal science educators (mostly…
ERIC Educational Resources Information Center
Chen, Jian; Zhou, Junhai; Sun, Li; Wu, Qiuhui; Lu, Huiling; Tian, Jing
2015-01-01
Student-centered learning is generally defined as any instructional method that purportedly engages students in active learning and critical thinking. The student-centered method of teaching moves the focus from teaching to learning, from the teachers' conveying course concepts via lecture to the understanding of concepts by students. The…
A Culture of Learning: Inside a Living-Learning Center
ERIC Educational Resources Information Center
Kranzow, Jeannine; Hinkle, Sara E.; Muthiah, Richard; Davis, Colin
2015-01-01
Exploring the culture of a living-learning center, this study examines the educational practices that aim to link in- and out-of-class experiences. Through a cultural lens, the authors offer a glimpse into a living-learning center located within a state institution in the Midwest that models a way of effectively connecting the curricular and…
Monthly Themes and Learning Centers for Young Children with Visual and Multiple Impairments.
ERIC Educational Resources Information Center
Hamilton, Paula J.
This paper describes the learning center approach of the preschool and kindergarten programs at the Maryland School for the Blind. Units are presented in monthly themes suggested by the local school curriculum, and this thematic approach is incorporated into the specific learning centers. The classroom is divided into six main learning areas: (1)…
Center Stage: A Platform for the Discussion of Teaching/Learning Ideas. 1991-1992.
ERIC Educational Resources Information Center
O'Heron, Paul, Ed.
1992-01-01
"Center Stage" is a monthly publication of Broome Community College (Binghamton, New York), sponsored by the Teaching Resources Center as a platform for the discussion of ideas about teaching and learning by Broome College faculty. The second volume (nine issues) of "Center Stage" includes the following articles: "Towards a Learning Community:…
Chaos in the Classroom: Center Learning in a 1st Grade Setting
ERIC Educational Resources Information Center
Lanaux, Courtney F.; Vice, Kristen E.; Fashing-Varner, Kenneth J.
2014-01-01
How can centers be utilized in a classroom so students have full control of what they are learning and when? Can centers be used effectively post-kindergarten? During student teaching in a first grade classroom in southeast Louisiana, two student teachers, their classroom mentor teacher, and the 1st grade students experienced center learning that…
ASCANS Class of 2013 Tour the O&C with Cabana
2014-03-03
CAPE CANAVERAL, Fla. -- In the Operations and Checkout Building of NASA's Kennedy Space Center in Florida, associate center director Kelvin Manning, left, briefs astronaut candidates Nicole Mann, center, and Tyler Nick Hague on preparations for the launch the Orion spacecraft on Exploration Flight Test EFT-1. Plans call for the Lockheed Martin-built Orion to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station. The astronaut class of 2013 was selected by NASA after an extensive year-and-a-half search. The new group will help the agency push the boundaries of exploration and travel to new destinations in the solar system. To learn more about the astronaut class of 2013, visit: http://www.nasa.gov/astronauts/2013astroclass.html Photo credit: NASA/Kim Shiflett
The Denali Earth Science Education Project
NASA Astrophysics Data System (ADS)
Hansen, R. A.; Stachnik, J. C.; Roush, J. J.; Siemann, K.; Nixon, I.
2004-12-01
In partnership with Denali National Park and Preserve and the Denali Institute, the Alaska Earthquake Information Center (AEIC) will capitalize upon an extraordinary opportunity to raise public interest in the earth sciences. A coincidence of events has made this an ideal time for outreach to raise awareness of the solid earth processes that affect all of our lives. On November 3, 2002, a M 7.9 earthquake occurred on the Denali Fault in central Alaska, raising public consciousness of seismic activity in this state to a level unmatched since the M 9.2 "Good Friday" earthquake of 1964. Shortly after the M 7.9 event, a new public facility for scientific research and education in Alaska's national parks, the Murie Science and Learning Center, was constructed at the entrance to Denali National Park and Preserve only 43 miles from the epicenter of the Denali Fault Earthquake. The AEIC and its partners believe that these events can be combined to form a synergy for the creation of unprecedented opportunities for learning about solid earth geophysics among all segments of the public. This cooperative project will undertake the planning and development of education outreach mechanisms and products for the Murie Science and Learning Center that will serve to educate Alaska's residents and visitors about seismology, tectonics, crustal deformation, and volcanism. Through partnerships with Denali National Park and Preserve, this cooperative project will include the Denali Institute (a non-profit organization that assists the National Park Service in operating the Murie Science and Learning Center) and Alaska's Denali Borough Public School District. The AEIC will also draw upon the resources of long standing state partners; the Alaska Division of Geological & Geophysical Surveys and the Alaska Division of Homeland Security and Emergency Services. The objectives of this project are to increase public awareness and understanding of the solid earth processes that affect life in Alaska, and to provide new and innovative science curricula and teacher training for the benefit of students and teachers in Alaska and beyond. These objectives will be met by the development of learning opportunities and resources that will come together around the Murie Science and Learning Center as a focus for interpretation of EarthScope science and research results in Alaska. Project activities will take place in five areas, which are: 1) development of interactive museum displays for the Murie Science and Learning Center utilizing cutting edge technology for learning, 2) public outreach with a series of publications and Internet resources, 3) development of inquiry-based, experiential curricula for middle school students to enhance science education, 4) development of accredited teacher training workshops for science educators, and 5) the creation of opportunities for EarthScope scientists to interact with students, teachers, and the public through a series of lectures and discussions in national parks and local communities across Alaska.
Blending Formal and Informal Learning Networks for Online Learning
ERIC Educational Resources Information Center
Czerkawski, Betül C.
2016-01-01
With the emergence of social software and the advance of web-based technologies, online learning networks provide invaluable opportunities for learning, whether formal or informal. Unlike top-down, instructor-centered, and carefully planned formal learning settings, informal learning networks offer more bottom-up, student-centered participatory…
Space Mechanisms Lessons Learned and Accelerated Testing Studies
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1997-01-01
A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.
Lockheed Martin Skunk Works Single Stage to Orbit/Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
1999-01-01
Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. This portion of the report is comprised of a status report of Lockheed Martin's contribution to the program. The following is a summary of the Lockheed Martin Centers involved and work reviewed under their portion of the agreement: (1) Lockheed Martin Skunk Works - Vehicle Development, Operations Development, X-33 and RLV Systems Engineering, Manufacturing, Ground Operations, Reliability, Maintainability/Testability, Supportability, & Special Analysis Team, and X-33 Flight Assurance; (2) Lockheed Martin Technical Operations - Launch Support Systems, Ground Support Equipment, Flight Test Operations, and RLV Operations Development Support; (3) Lockheed Martin Space Operations - TAEM and A/L Guidance and Flight Control Design, Evaluation of Vehicle Configuration, TAEM and A/L Dispersion Analysis, Modeling and Simulations, Frequency Domain Analysis, Verification and Validation Activities, and Ancillary Support; (4) Lockheed Martin Astronautics-Denver - Systems Engineering, X-33 Development; (5) Sanders - A Lockheed Martin Company - Vehicle Health Management Subsystem Progress, GSS Progress; and (6) Lockheed Martin Michoud Space Systems - X-33 Liquid Oxygen (LOX) Tank, Key Challenges, Lessons Learned, X-33/RLV Composite Technology, Reusable Cyrogenic Insulation (RCI) and Vehicle Health Monitoring, Main Propulsion Systems (MPS), Structural Testing, X-33 System Integration and Analysis, and Cyrogenic Systems Operations.
Consolidation at the Top ... At Last: Eighteenth Annual Status Report on For Profit Child Care
ERIC Educational Resources Information Center
Neugebauer, Roger
2005-01-01
This article presents an interview with the chief executive officer of the Knowledge Learning Corporation, Mr. Thomas Heymann. Recently, KLC has acquired two of the largest learning centers organizations: the KinderCare Learning Centers and the Children's World Learning Centers. As a result of these mergers KLC is now the largest for profit child…
The Application of Carl Rogers' Person-Centered Learning Theory to Web-Based Instruction.
ERIC Educational Resources Information Center
Miller, Christopher T.
This paper provides a review of literature that relates research on Carl Rogers' person-centered learning theory to Web-based learning. Based on the review of the literature, a set of criteria is described that can be used to determine how closely a Web-based course matches the different components of Rogers' person-centered learning theory. Using…
Animal-Centered Learning Activities in Pharmacy Education
Lust, Elaine
2006-01-01
Objectives To assess the contribution of animal-centered activities to students achieving learning outcomes in a veterinary therapeutics course. Design Qualitative methods were used to assess the outcome of using “hands-on” animal interactions as tools of engagement in the course. Reflective commentary on animal-centered activities was collected and analyzed. Assessment Animal-centered learning activities are effective tools for engaging students and facilitating their understanding and application of veterinary therapeutic knowledge, skills, and attitudes. Analysis of qualitative data revealed themes of professional caring and caring behaviors as a direct result of animal-centered activities. Elements of empathy, caring, compassion, and self-awareness were strong undercurrents in student's comments. Conclusions Animal-centered learning activities provide an innovative learning environment for the application of veterinary pharmacy knowledge, skills, and attitudes directly to animal patients. The use of animals in the course is a successful active-learning technique to engage pharmacy students and assist them in developing caring attitudes and behaviors beneficial to future health care providers. PMID:17149415
2011-09-02
CAPE CANAVERAL, Fla. -- The NASA Legends and Trailblazers Panel address the audience attending the Tom Joyner Family Reunion. From left is the master of ceremonies, Lance Foster (standing) with panel members Robyn Gordon, director of Center Operations, Glenn Research Center; Lewis Braxton, deputy director, Ames Research Center; Woodrow Whitlow, associate administrator for Mission Support Directorates, NASA Headquarters; astronaut Leland Melvin, associate administrator for Education, NASA Headquarters; and astronaut Mike Foreman, Johnson Space Center. The event was held in the Exhibit Hall of the Gaylord Palms Resort and Convention Center in Kissimmee, Fla., and hosted by nationally syndicated radio personality Tom Joyner during the extended Labor Day weekend Sept. 1-4. Besides offering attendees the opportunity to visit tourist attractions in the Orlando area, the reunion gave NASA education specialists an avenue to tout the benefits of math and scientific learning, as well as the many educational opportunities offered by the space agency. For more information on NASA's education initiatives, visit http://www.nasa.gov/education. Photo credit: NASA/Frankie Martin
2011-09-02
CAPE CANAVERAL, Fla. -- The NASA Legends and Trailblazers Panel take to the stage at the Tom Joyner Family Reunion. From left is the master of ceremonies, Lance Foster (standing) with panel members Robyn Gordon, director of Center Operations, Glenn Research Center; Lewis Braxton, deputy director, Ames Research Center; Woodrow Whitlow, associate administrator for Mission Support Directorates; astronaut Leland Melvin, associate administrator for Education; and astronaut Mike Foreman, Johnson Space Center. The event was held in the Exhibit Hall of the Gaylord Palms Resort and Convention Center in Kissimmee, Fla., and hosted by nationally syndicated radio personality Tom Joyner during the extended Labor Day weekend Sept. 1-4. Besides offering attendees the opportunity to visit tourist attractions in the Orlando area, the reunion gave NASA education specialists an avenue to tout the benefits of math and scientific learning, as well as the many educational opportunities offered by the space agency. For more information on NASA's education initiatives, visit http://www.nasa.gov/education. Photo credit: NASA/Frankie Martin
NASA Technical Reports Server (NTRS)
Marius, Julio L.; Busch, Jim
2008-01-01
The Tropical Rainfall Measuring Mission (TRMM) spacecraft was launched in November of 1996 in order to obtain unique three dimensional radar cross sectional observations of cloud structures with particular interest in hurricanes. The TRMM mission life was recently extended with current estimates that operations will continue through the 2012-2013 timeframe. Faced with this extended mission profile, the project has embarked on a technology refresh and re-engineering effort. TRMM has recently implemented a re-engineering effort to expand a middleware based messaging architecture to enable fully redundant lights-out of flight operations activities. The middleware approach is based on the Goddard Mission Services Evolution Center (GMSEC) architecture, tools and associated open-source Applications Programming Interface (API). Middleware based messaging systems are useful in spacecraft operations and automation systems because private node based knowledge (such as that within a telemetry and command system) can be broadcast on the middleware messaging bus and hence enable collaborative decisions to be made by multiple subsystems. In this fashion, private data is made public and distributed within the local area network and multiple nodes can remain synchronized with other nodes. This concept is useful in a fully redundant architecture whereby one node is monitoring the processing of the 'prime' node so that in the event of a failure the backup node can assume operations of the prime, without loss of state knowledge. This paper will review and present the experiences, architecture, approach and lessons learned of the TRMM re-engineering effort centered on the GMSEC middleware architecture and tool suite. Relevant information will be presented that relates to the dual redundant parallel nature of the Telemetry and Command (T and C) and Front-End systems and how these systems can interact over a middleware bus to achieve autonomous operations including autonomous commanding to recover missing science data during the same spacecraft contact.
Integrating Learning, Problem Solving, and Engagement in Narrative-Centered Learning Environments
ERIC Educational Resources Information Center
Rowe, Jonathan P.; Shores, Lucy R.; Mott, Bradford W.; Lester, James C.
2011-01-01
A key promise of narrative-centered learning environments is the ability to make learning engaging. However, there is concern that learning and engagement may be at odds in these game-based learning environments. This view suggests that, on the one hand, students interacting with a game-based learning environment may be engaged but unlikely to…
McTernan, Bernita
2005-01-01
Catholic Healthcare West (CHW), San Francisco, which either sponsors or participates in three separate leadership development programs, sees the formation of new ministry leadership as a matter of the first importance. For the past four years, CHW has participated in CHA's Ecclesiology and Spiritual Renewal Program for System Leaders, the annual pilgrimage to the Vatican City in which ministry executives, board members, and sponsors get an opportunity to learn about the church's institutional structure and immerse themselves in its spiritual atmosphere. In 2002 the system established its CHW Learning Institute, which offers all employees training in leadership, clinical, governance, and employee development. Among other things, the institute has developed CHW's Competency Standards for Leadership. In 2004 CHW, with four other Catholic health care systems in the western United States, created the Ministry Leadership Center, Sacramento. This spring, 49 CHW managers were among the students enrolled in the center's inaugural classes. Among other subjects, they studied the distinctive competencies-intellectual, affective, and spiritual-required to lead a health care ministry in its operations and governance.
Science Learning Centers--An Aid to Instruction.
ERIC Educational Resources Information Center
Orlich, Donald C.; And Others
1982-01-01
Rationale for and examples of science learning centers are provided. "Life Beneath the Sea,""Humans in Space,""World of Insects" and "Experimentation" centers are described. Instructions for constructing centers from readily available materials are included. (JN)
Kraus, T; Wolkener, F; Mieth, M; Möller, J; Büchler, M W
2002-10-01
Expansion of ambulatory surgical care is a major focus in United States health politics. In 1996 a total of 31.5 million ambulatory operations were performed, currently accounting for 45% of yearly procedures. Operations in ophthalmology and gastroenterology are predominant. Ambulatory surgery is organized in different forms: "office-based surgery," "hospital outpatient departments," and "ambulatory surgery centers" (ASC). The numbers of ASCs are rapidly increasing. The current proportion of ASCs is 16% of all operations. The type of ambulatory surgery is primarily defined by payors. Medicare standards are the benchmark for private organizations. Recovery care centers now offer postoperative care beyond the former 23-h threshold. This may lead to a further expanded ASC access. Revenues for ambulatory surgery were so far mostly based on fees for service. The implementation of an outpatient prospective payment system ("OPPS") is planned by Medicare, using fixed package prices within a newly defined ambulatory payment classification ("APC"). The dimension of structural changes could be enormous and possibly be compared with the implementation of DRGs in 1983.
NASA Technical Reports Server (NTRS)
Frigm, Ryan C.; Levi, Joshua A.; Mantziaras, Dimitrios C.
2010-01-01
An operational Conjunction Assessment Risk Analysis (CARA) concept is the real-time process of assessing risk posed by close approaches and reacting to those risks if necessary. The most effective way to completely mitigate conjunction risk is to perform an avoidance maneuver. The NASA Goddard Space Flight Center has implemented a routine CARA process since 2005. Over this period, considerable experience has been gained and many lessons have been learned. This paper identifies and presents these experiences as general concepts in the description of the Conjunction Assessment, Flight Dynamics, and Flight Operations methodologies and processes. These general concepts will be tied together and will be exemplified through a case study of an actual high risk conjunction event for the Aura mission.
User-Centered Computer Aided Language Learning
ERIC Educational Resources Information Center
Zaphiris, Panayiotis, Ed.; Zacharia, Giorgos, Ed.
2006-01-01
In the field of computer aided language learning (CALL), there is a need for emphasizing the importance of the user. "User-Centered Computer Aided Language Learning" presents methodologies, strategies, and design approaches for building interfaces for a user-centered CALL environment, creating a deeper understanding of the opportunities and…
ERIC Educational Resources Information Center
FAUNCE, R.W.
THIS EVALUATION OF AN EXPERIMENTAL JUNIOR HIGH SCHOOL PROGRAM IN MINNEAPOLIS PRESENTS DATA DERIVED FROM TWO YEARS OF OPERATION. THIS SCHOOL WAS ESTABLISHED TO EXPLORE METHODS OF GIVING MEANINGFUL EDUCATION TO 45 DISADVANTAGED STUDENTS. IT WAS LOCATED IN A SEPARATE FACILITY AND, DURING THE FIRST YEAR, STAFFED BY EIGHT TEACHERS. THIS EXPERIMENTAL…
Science in 60 â Simulating Flames Helps Tame Future Wildfires
Lin, Rod
2018-01-16
FIRETEC presents a new way of studying fire and learning how to better manage and cope with it. The model provides additional scientific input for decisions by policymakers working in land management, water resources and energy. The team hopes it will eventually assist fire and fuel management operations. This research is done in partnership with the USDA Forest Service, Air Force Wildland Fire Center, INRA and Canadian Forest Service.
1985-04-01
decision aids consider the cognitive skills of human operators. Data are required on the kinds of decision strategies they invoke, their limitations in...basic electronics, memory for procedural tasks, and career-role learning by officers. Computerized decision aids for surveillance tasks and opportunities...of Navy retention incentives. Computerized aids for plain English in military documents and for tactical action officer training were also developed in
General Services Administration: FY 1998 Congressional Justification.
1997-03-20
APPROPRIATIONS: Consumer Information Center CIC GSA InSite STATEMENT OF DAVID J. BARRAM ACTING ADMINISTRATOR, GENERAL SERVICES ADMINISTRATION BEFORE THE...in every area in which we operate. I think three impulses drive us toward change. First, we believe the customer is king. We’re learning what that...really means. We thrill our customers with GSA Advantage!, with less than 2 cents a network minute for long distance on-net telephone service, and
Safety and Mission Assurance: A NASA Perspective
NASA Technical Reports Server (NTRS)
Higginbotham, Scott A.
2016-01-01
Manned spaceflight is an incredibly complex and inherently risky human endeavor. As the result of the lessons learned through years of triumph and tragedy, the National Aeronautics and Space Administration (NASA) has embraced a comprehensive and integrated approach to the challenge of ensuring safety and mission success. This presentation will provide an overview of some of the techniques employed in this effort, with a focus on the processing operations performed at the Kennedy Space Center (KSC).
ERIC Educational Resources Information Center
Jackson, Liz
2015-01-01
Student-centered learning has been conceived as a Western export to the East and the developing world in the last few decades. Philosophers of education often associate student-centered learning with frameworks related to meeting the needs of individual pupils: from Deweyan experiential learning, to the "pedagogy of the oppressed" and…
Lessons Learned in Engineering
NASA Technical Reports Server (NTRS)
Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.
2011-01-01
This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations.
User-Centered Design of Online Learning Communities
ERIC Educational Resources Information Center
Lambropoulos, Niki, Ed.; Zaphiris, Panayiotis, Ed.
2007-01-01
User-centered design (UCD) is gaining popularity in both the educational and business sectors. This is due to the fact that UCD sheds light on the entire process of analyzing, planning, designing, developing, using, evaluating, and maintaining computer-based learning. "User-Centered Design of Online Learning Communities" explains how…
FaculTea: Professional Development for Learning Centered Academic Advising
ERIC Educational Resources Information Center
Voller, Julie Givans
2013-01-01
The theory of learning centered academic advising states that the purpose of advising is to teach undergraduate students about the logic and purpose of their education. Previous scholarship on learning centered advising has focused on the theoretical or on implementation by faculty at small colleges and universities. Methods for supporting…
Anytime, Anywhere: Student-Centered Learning for Schools and Teachers
ERIC Educational Resources Information Center
Wolfe, Rebecca E., Ed.; Steinberg, Adria, Ed.; Hoffman, Nancy, Ed.
2013-01-01
"Anytime, Anywhere" synthesizes existing research and practices in the emerging field of student-centered learning, and includes profiles of schools that have embraced this approach. Educators have argued that students should be at the center of learning, constructing new knowledge based on what is interesting to them, and receiving…
QuickStrike ASOC Battlefield Simulation: Preparing the War Fighter to Win
NASA Technical Reports Server (NTRS)
Jones, Richard L.
2010-01-01
The QuickStrike ASOC (Air Support Operations Center) Battlefield Simulation fills a crucial gap in USAF and United Kingdom Close Air Support (CAS) and airspace manager training. The system now provides six squadrons with the capability to conduct total-mission training events whenever the personnel and time are available. When the 111th ASOC returned from their first deployment to Afghanistan they realized the training available prior to deployment was inadequate. They sought an organic training capability focused on the ASOC mission that was low cost, simple to use, adaptable, and available now. Using a commercial off-the-shelf simulation, they developed a complete training system by adapting the simulation to their training needs. Through more than two years of spiral development, incorporating lessons learned, the system has matured, and can now realistically replicate the Tactical Operations Center (TOC) in Kabul, Afghanistan, the TOC supporting the mission in Iraq, or can expand to support a major conflict scenario. The training system provides a collaborative workspace for the training audience and exercise control group via integrated software and workstations that can easily adapt to new mission reqUirements and TOC configurations. The system continues to mature. Based on inputs from the war fighter, new capabilities have been incorporated to add realism and simplify the scenario development process. The QuickStrike simulation can now import TBMCS Air Tasking Order air mission data and can provide air and ground tracks to a common operating picture; presented through either C2PC or JADOCS. This oranic capability to practice team processes and tasks and to conduct mission rehearsals proved its value in the 111 h ASOS's next deployment. The ease of scenario development and the simple to learn and intuitive gamelike interface enables the squadrons to develop and share scenarios incorporating lessons learned from every deployment. These war fighters have now filled the training gap and have the capability they need to train to win.
Previous experience in manned space flight: A survey of human factors lessons learned
NASA Technical Reports Server (NTRS)
Chandlee, George O.; Woolford, Barbara
1993-01-01
Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.
Machine learning for micro-tomography
NASA Astrophysics Data System (ADS)
Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James
2017-09-01
Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.
2017-12-08
The Hubble Space Telescope in a picture snapped by a Servicing Mission 4 crewmember just after the Space Shuttle Atlantis captured Hubble with its robotic arm on May 13, 2009, beginning the mission to upgrade and repair the telescope. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html
2010-03-01
Carina Nebula Details: The Caterpillar Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html
Welding in Space: Lessons Learned for Future In Space Repair Development
NASA Technical Reports Server (NTRS)
Russell, C. K.; Nunes, A. C.; Zimmerman, F. R.
2005-01-01
Welds have been made in the harsh environment of space only twice in the history of manned space flight. The United States conducted the M5 12 experiment on Skylab and the former Soviet Union conducted an Extravehicular Activity. Both experiments demonstrated electron beam welding. A third attempt to demonstrate and advance space welding was made by the Marshall Space Flight Center in the 90's but the experiment was demanifested as a Space Shuttle payload. This presentation summarizes the lessons learned from these three historical experiences in the areas of safety, design, operations and implementation so that welding in space can become an option for in space repair applications.
NASA Technical Reports Server (NTRS)
Holder, Donald W., Jr.; Bagdigian, Robert M.
1992-01-01
A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a Space Station Freedom (SSF) pre-development water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated for a total of 35 days, including 23 days in closed-loop mode with man-in-the-loop. Although several significant subsystem physical anomalies were encountered, reclaimed potable and hygiene water routinely met current SSF water quality specifications. This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.
Analysis of good practice of public health Emergency Operations Centers.
Xu, Min; Li, Shi-Xue
2015-08-01
To study the public health Emergency Operations Centers (EOCs)in the US, the European Union, the UK and Australia, and summarize the good practice for the improvement of National Health Emergency Response Command Center in Chinese National Health and Family Planning Commission. Literature review was conducted to explore the EOCs of selected countries. The study focused on EOC function, organizational structure, human resources and information management. The selected EOCs had the basic EOC functions of coordinating and commanding as well as the public health related functions such as monitoring the situation, risk assessment, and epidemiological briefings. The organizational structures of the EOCs were standardized, scalable and flexible. Incident Command System was the widely applied organizational structure with a strong preference. The EOCs were managed by a unit of emergency management during routine time and surge staff were engaged upon emergencies. The selected EOCs had clear information management framework including information collection, assessment and dissemination. The performance of National Health Emergency Response Command Center can be improved by learning from the good practice of the selected EOCs, including setting clear functions, standardizing the organizational structure, enhancing the human resource capacity and strengthening information management. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oschepkova, Elena; Vasinskaya, Irina; Sockoluck, Irina
2017-11-01
In view of changing educational paradigm (adopting of two-tier system of higher education concept - undergraduate and graduate programs) a need of using of modern learning and information and communications technologies arises putting into practice learner-centered approaches in training of highly qualified specialists for extraction and processing of solid commercial minerals enterprises. In the unstable market demand situation and changeable institutional environment, from one side, and necessity of work balancing, supplying conditions and product quality when mining-and-geological parameters change, from the other side, mining enterprises have to introduce and develop the integrated management process of product and informative and logistic flows under united management system. One of the main limitations, which keeps down the developing process on Russian mining enterprises, is staff incompetence at all levels of logistic management. Under present-day conditions extraction and processing of solid commercial minerals enterprises need highly qualified specialists who can do self-directed researches, develop new and improve present arranging, planning and managing technologies of technical operation and commercial exploitation of transport and transportation and processing facilities based on logistics. Learner-centered approach and individualization of the learning process necessitate the designing of individual learning route (ILR), which can help the students to realize their professional facilities according to requirements for specialists for extraction and processing of solid commercial minerals enterprises.
Learning Challenges Involved in Developing Leading for Learning
ERIC Educational Resources Information Center
Timperley, Helen S.
2006-01-01
The study in this article seeks to understand the learning challenges involved in developing learning-centered leadership in schools. It is based on Southworth's (1998, 2004) ideas of leadership for improving schools, which comprise promoting learning-centered improvement at all levels through professional development and a focus on the quality of…
Active Learning Environment with Lenses in Geometric Optics
ERIC Educational Resources Information Center
Tural, Güner
2015-01-01
Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…
Jack, Megan C; Kenkare, Sonya B; Saville, Benjamin R; Beidler, Stephanie K; Saba, Sam C; West, Alisha N; Hanemann, Michael S; van Aalst, John A
2010-01-01
Faced with work-hour restrictions, educators are mandated to improve the efficiency of resident and medical student education. Few studies have assessed learning styles in medicine; none have compared teaching and learning preferences. Validated tools exist to study these deficiencies. Kolb describes 4 learning styles: converging (practical), diverging (imaginative), assimilating (inductive), and accommodating (active). Grasha Teaching Styles are categorized into "clusters": 1 (teacher-centered, knowledge acquisition), 2 (teacher-centered, role modeling), 3 (student-centered, problem-solving), and 4 (student-centered, facilitative). Kolb's Learning Style Inventory (HayGroup, Philadelphia, Pennsylvania) and Grasha-Riechmann's TSS were administered to surgical faculty (n = 61), residents (n = 96), and medical students (n = 183) at a tertiary academic medical center, after informed consent was obtained (IRB # 06-0612). Statistical analysis was performed using χ(2) and Fisher exact tests. Surgical residents preferred active learning (p = 0.053), whereas faculty preferred reflective learning (p < 0.01). As a result of a comparison of teaching preferences, although both groups preferred student-centered, facilitative teaching, faculty preferred teacher-centered, role-modeling instruction (p = 0.02) more often. Residents had no dominant teaching style more often than surgical faculty (p = 0.01). Medical students preferred converging learning (42%) and cluster 4 teaching (35%). Statistical significance was unchanged when corrected for gender, resident training level, and subspecialization. Significant differences exist between faculty and residents in both learning and teaching preferences; this finding suggests inefficiency in resident education, as previous research suggests that learning styles parallel teaching styles. Absence of a predominant teaching style in residents suggests these individuals are learning to be teachers. The adaptation of faculty teaching methods to account for variations in resident learning styles may promote a better learning environment and more efficient faculty-resident interaction. Additional, multi-institutional studies using these tools are needed to elucidate these findings fully. Copyright © 2010 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
A Learning Center Can Happen to You.
ERIC Educational Resources Information Center
Currey, Mary Nell; Hancock, Vickie
This booklet describes the development and activities of the Clinton Park Elementary School Media Center, a first and second grade learning center located in Clinton, Mississippi. Following introductory materials on the establishment of the media center in September 1975 and federal funding of media center projects from 1975 to 1978, information…
Library Media Learning and Play Center.
ERIC Educational Resources Information Center
Faber, Therese; And Others
Preschool educators developed a library media learning and play center to enable children to "experience" a library; establish positive attitudes about the library; and encourage respect for self, others, and property. The center had the following areas: check-in and check-out desk, quiet reading section, computer center, listening center, video…
... Gold Sponsor NSPC Brain & Spine Surgery Learn More Gold Sponsor University of Colorado Acoustic Neuroma Program and Rocky Mountain Gamma Knife Center Learn More Gold Sponsor USC Acoustic Neuroma Center Learn More Gold ...
Developing Community-Based Learning Centers for Older Adults. A Technical Assistance Manual.
ERIC Educational Resources Information Center
Sprouse, Betsy M.; Brown, Karen
Designed for community groups and organizations, groups of older adults, senior clubs, and agencies, this manual documents the process of developing community education programs for older adults. The first section introduces the concept of a community learning center, while the second section considers whether a learning center should be…
Contextualized Writing: Promoting Audience-Centered Writing through Scenario-Based Learning
ERIC Educational Resources Information Center
Golden, Paullett
2018-01-01
Scenario-based learning is an approach for student-centered learning used in the medical and legal fields, but is little used in liberal arts. In this study, I examine students' understanding and application of audience-centered writing techniques after a semester of formal scenario-based essays and problem-based activities. Comparing the grades…
A Treasure Chest of Primary Learning Center Ideas.
ERIC Educational Resources Information Center
Kessler, Margaret; Kessler, John
Defining a learning center as a classroom area containing several learning stations where students may work independently with materials which teach, reinforce, or enrich their skills, this guide presents a number of ideas for use in the visual motivation display area of such a center. Suggestions for displays for the various teaching stations are…
A Design Case of Scaffolding Hybrid/Online Student-Centered Learning with Multimedia
ERIC Educational Resources Information Center
Hsiao, E-Ling; Mikolaj, Peter; Shih, Ya-Ting
2017-01-01
Implementing student-centered learning in hybrid/online settings is very challenging due to the physical separation of instructor and students. This article discusses the need for instructors to provide scaffolds and multimedia modules to facilitate knowledge construction in the student-centered learning process. To offer students solid learning…
ERIC Educational Resources Information Center
National Education Association, Washington, DC. Project on Utilization of Inservice Education R & D Outcomes.
The inservice teacher education package described here focuses on skill building in instructional, organizational, and managerial classroom techniques for developing and implementing learning centers. Seven specific learning centers are discussed, the subjects including microscopes, telling time, China, mathematics, economics, and adjectives.…
Use a Building Learning Center Enrichment Program to Meet Needs of Gifted/Talented.
ERIC Educational Resources Information Center
Schurr, Sandra
The paper describes the Learning Center Enrichment Program for elementary school gifted and talented children. The nomenclature associated with the program model (learning center, enrichment, and management system) is defined; and it is explained that the program is organized according to the enrichment triad model advocated by J. Renzulli because…
Learning Centers: A Report of the 1977 NEH Institute at Ohio State University.
ERIC Educational Resources Information Center
Allen, Edward D.
1978-01-01
A description of the twenty learning center units for advanced classes developed by the French and Spanish teacher-participants. Learning centers permit students to work independently at well-defined tasks. The units deal with housing, shopping, cooking, transportation, sports, fiestas, literature, history, architecture, painting, and music.…
Wireless Internet and Student-Centered Learning: A Partial Least-Squares Model
ERIC Educational Resources Information Center
Lu, Eric Y.; Ma, Hongyan; Turner, Sandra; Huang, Wayne
2007-01-01
Wireless Internet technology is gaining a foothold on more and more campuses, yet few studies have investigated how wireless Internet supports and enhances a student-centered learning environment. This study seeks to fill the gap by developing an instrument to measure how wireless Internet supports student-centered learning. A web survey was…
Child Development Associate. Learning Centers.
ERIC Educational Resources Information Center
Oscar Rose Junior Coll., Midwest City, OK.
One of a series of 18, this Child Development Associate (CDA) training module provides a guide to the construction of learning centers in preschool settings. Upon completion of the module the CDA trainee is expected to be able to analyze and improve the arrangement of space, materials and equipment; specify and rotate learning centers in the…
The Planned and the Emergent: An Alternative Model of Learning and Literacy
ERIC Educational Resources Information Center
Rogers, Lori S.
2013-01-01
Within academic institutions, writing centers are uniquely situated, socially rich sites for exploring learning and literacy. I examine the work of the Michigan Tech Writing Center's UN 1002 World Cultures study teams primarily because student participants and Writing Center coaches are actively engaged in structuring their own learning and…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-11
... and Media Services for Individuals With Disabilities--Center on Online Learning and Students With... competition for the Center on Online Learning and Students with Disabilities (84.327U) that was announced in... extension under the Center on Online Learning and Students with Disabilities competition does not need to...
Architecture and evolution of Goddard Space Flight Center Distributed Active Archive Center
NASA Technical Reports Server (NTRS)
Bedet, Jean-Jacques; Bodden, Lee; Rosen, Wayne; Sherman, Mark; Pease, Phil
1994-01-01
The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been developed to enhance Earth Science research by improved access to remote sensor earth science data. Building and operating an archive, even one of a moderate size (a few Terabytes), is a challenging task. One of the critical components of this system is Unitree, the Hierarchical File Storage Management System. Unitree, selected two years ago as the best available solution, requires constant system administrative support. It is not always suitable as an archive and distribution data center, and has moderate performance. The Data Archive and Distribution System (DADS) software developed to monitor, manage, and automate the ingestion, archive, and distribution functions turned out to be more challenging than anticipated. Having the software and tools is not sufficient to succeed. Human interaction within the system must be fully understood to improve efficiency to improve efficiency and ensure that the right tools are developed. One of the lessons learned is that the operability, reliability, and performance aspects should be thoroughly addressed in the initial design. However, the GSFC DAAC has demonstrated that it is capable of distributing over 40 GB per day. A backup system to archive a second copy of all data ingested is under development. This backup system will be used not only for disaster recovery but will also replace the main archive when it is unavailable during maintenance or hardware replacement. The GSFC DAAC has put a strong emphasis on quality at all level of its organization. A Quality team has also been formed to identify quality issues and to propose improvements. The DAAC has conducted numerous tests to benchmark the performance of the system. These tests proved to be extremely useful in identifying bottlenecks and deficiencies in operational procedures.
Active-Learning versus Teacher-Centered Instruction for Learning Acids and Bases
ERIC Educational Resources Information Center
Sesen, Burcin Acar; Tarhan, Leman
2011-01-01
Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of "acids and bases". Sample: The sample of this…
Early prediction of student goals and affect in narrative-centered learning environments
NASA Astrophysics Data System (ADS)
Lee, Sunyoung
Recent years have seen a growing recognition of the role of goal and affect recognition in intelligent tutoring systems. Goal recognition is the task of inferring users' goals from a sequence of observations of their actions. Because of the uncertainty inherent in every facet of human computer interaction, goal recognition is challenging, particularly in contexts in which users can perform many actions in any order, as is the case with intelligent tutoring systems. Affect recognition is the task of identifying the emotional state of a user from a variety of physical cues, which are produced in response to affective changes in the individual. Accurately recognizing student goals and affect states could contribute to more effective and motivating interactions in intelligent tutoring systems. By exploiting knowledge of student goals and affect states, intelligent tutoring systems can dynamically modify their behavior to better support individual students. To create effective interactions in intelligent tutoring systems, goal and affect recognition models should satisfy two key requirements. First, because incorrectly predicted goals and affect states could significantly diminish the effectiveness of interactive systems, goal and affect recognition models should provide accurate predictions of user goals and affect states. When observations of users' activities become available, recognizers should make accurate early" predictions. Second, goal and affect recognition models should be highly efficient so they can operate in real time. To address key issues, we present an inductive approach to recognizing student goals and affect states in intelligent tutoring systems by learning goals and affect recognition models. Our work focuses on goal and affect recognition in an important new class of intelligent tutoring systems, narrative-centered learning environments. We report the results of empirical studies of induced recognition models from observations of students' interactions in narrative-centered learning environments. Experimental results suggest that induced models can make accurate early predictions of student goals and affect states, and they are sufficiently efficient to meet the real-time performance requirements of interactive learning environments.
2013-03-22
TITUSVILLE, Fla. – Visitors to the Tico Air Show near NASA's Kennedy Space Center in Florida take time to learn about the work the agency is pursuing and plans for future exploration. Visitors to the NASA booth found out about the Ground Systems Development and Operations Program, the Launch Services Program and the Commercial Crew Program, all based at Kennedy. They could also see models of spacecraft and rockets including the Space Launch System, or SLS. Photo credit: NASA/Dimitri Gerondidokis
2013-03-22
TITUSVILLE, Fla. – Visitors to the Tico Air Show near NASA's Kennedy Space Center in Florida take time to learn about the work the agency is pursuing and plans for future exploration. Visitors to the NASA booth found out about the Ground Systems Development and Operations Program, the Launch Services Program and the Commercial Crew Program, all based at Kennedy. They could also see models of spacecraft and rockets including the Space Launch System, or SLS. Photo credit: NASA/Dimitri Gerondidokis
2013-03-22
TITUSVILLE, Fla. – Visitors to the Tico Air Show near NASA's Kennedy Space Center in Florida take time to learn about the work the agency is pursuing and plans for future exploration. Visitors to the NASA booth found out about the Ground Systems Development and Operations Program, the Launch Services Program and the Commercial Crew Program, all based at Kennedy. They could also see models of spacecraft and rockets including the Space Launch System, or SLS. Photo credit: NASA/Dimitri Gerondidokis
The challenge of logistics facilities development
NASA Technical Reports Server (NTRS)
Davis, James R.
1987-01-01
The paper discusses the experiences of a group of engineers and logisticians at John F. Kennedy Space center in the design, construction and activation of a consolidated logistics facility for support of Space Transportation System ground operations and maintenance. The planning, methodology and processes are covered, with emphasis placed on unique aspects and lessons learned. The project utilized a progressive design, baseline and build concept for each phase of construction, with the Government exercising funding and configuration oversight.
The Learning Curve: MACVs Grasp of Intelligence, PSYOP, and Their Coordination, 1965-1971
2015-06-01
demonstrations break out on a number of US college campuses 4 May 1970 - Four students fatally shot during protest at Kent State University...Operational Art and Science from the Air Command and Staff College , and a Master’s of Philosophy in Military Strategy from the School of Advanced...Turned a Tactical Victory into a Political Defeat”, (Ft. Belvoir: Defense Technical Information Center, 2009), www.dtic.mil/cgi-bin/GetTRDoc?AD
ERIC Educational Resources Information Center
Christman-Rothlein, Liz; Meinbach, Anita M.
1981-01-01
Information is given on how to put together a learning center. Discusses information and activity packets for a complete learning center on tornadoes including objectives, directions, materials, photographs of physical arrangements, and posttest. (DC)
LCROSS Lunar Impactor - Lessons Learned from a Small Satellite Mission
NASA Technical Reports Server (NTRS)
Andrews, Daniel R.
2010-01-01
The Lunar CRater Observation and Sensing Satellite (LCROSS) launched with the Lunar Reconnaissance Orbiter (LRO) on June 18, 2009. While the science function of the LCROSS mission was to determine the presence of water-ice in a permanently-shadowed crater on the moon, the operational purpose was to be a pioneer for future low-cost, risk-tolerant small satellite NASA missions. Recent strategic changes at the Agency level have only furthered the importance of small satellite missions. NASA Ames Research Center and its industry partner, Northrop-Grumman, initiated this spacecraft project two-years after its co-manifest mission had started, with less than one-fifth the budget. With a $79M total cost cap (including operations and reserves) and 31-months until launch, LCROSS needed a game-changing approach to be successful. At the LCROSS Confirmation Review, the ESMD Associate Administrator asked the Project team to keep a close record of lessons learned through the course of the mission and share their findings with the Agency at the end of the mission. This paper summarizes the Project, the mission, its risk position, and some of the more notable lessons learned.
Qiu, Zhengjun; Sun, Jing; Pu, Ying; Jiang, Tao; Cao, Jun; Wu, Weidong
2011-09-01
Transumbilical single incision laparoscopic surgery (SILS) is a new laparoscopic procedure in which only one transumbilical incision is made, demonstrated as a scarless procedure. Here we report a single-center preliminary experience of transumbilical single incision laparoscopic cholecystectomy (SILC) in the treatment of benign gallbladder diseases, defining a single surgeon's learning curve. A total of 80 patients underwent SILC successfully by a single experienced laparoscopic surgeon. The operation was performed following the routine LC procedure. Then the perioperative demographics were recorded and the operative time was used to define the learning curve. The study group included 27 male and 53 female patients with gallstones (56 cases), cholesterol polyps (16 cases), an adenomatous polyp (3 cases), adenomyomatosis (1 case), or complex diseases (4 cases), and all consented to undergo SILC. No patient was converted to normal LC or open surgery. There were no perioperative port-related or surgical complications. The average operative time was 46.9 ± 14.6 min. The average postoperative hospital stay was 1.8 ± 1.3 days. The learning curve of the SILC procedures for this series of selected patients confirmed that SILC is a feasible, safe, and effective approach to the treatment of benign gallbladder diseases. For experienced laparoscopic surgeons, SILC is an easy and safe procedure. Patients benefit from milder pain, a lower incidence of port-related complications, better cosmesis, and fast recovery. The SILC procedure may become another option for the treatment of benign gallbladder diseases for selected patients.
Transanal total mesorectal excision for rectal cancer: evaluation of the learning curve.
Koedam, T W A; Veltcamp Helbach, M; van de Ven, P M; Kruyt, Ph M; van Heek, N T; Bonjer, H J; Tuynman, J B; Sietses, C
2018-04-01
Transanal total mesorectal excision (TaTME) provides an excellent view of the resection margins for rectal cancer from below, but is challenging due to few anatomical landmarks. During implementation of this technique, patient safety and optimal outcomes need to be ensured. The aim of this study was to evaluate the learning curve of TaTME in patients with rectal cancer in order to optimize future training programs. All consecutive patients after TaTME for rectal cancer between February 2012 and January 2017 were included in a single-center database. Influence of surgical experience on major postoperative complications, leakage rate and operating time was evaluated using cumulative sum charts and the splitting model. Correction for potential case-mix differences was performed. Over a period of 60 months, a total of 138 patients were included in this study. Adjusted for case-mix, improvement in postoperative outcomes was clearly seen after the first 40 patients, showing a decrease in major postoperative complications from 47.5 to 17.5% and leakage rate from 27.5 to 5%. Mean operating time (42 min) and conversion rate (from 10% to zero) was lower after transition to a two-team approach, but neither endpoint decreased with experience. Readmission and reoperation rates were not influenced by surgical experience. The learning curve of TaTME affected major (surgical) postoperative complications for the first 40 patients. A two-team approach decreased operative time and conversion rate. When implementing this new technique, a thorough teaching and supervisory program is recommended to shorten the learning curve and improve the clinical outcomes of the first patients.
Federally sponsored multidisciplinary research centers: Learning, evaluation, and vicious circles.
Youtie, Jan; Corley, Elizabeth A
2011-02-01
Despite the increasing investment in multi-year federally funded science and technology centers in universities, there are few studies of how these centers engage in learning and change based on information submitted from various agents in the oversight and evaluation process. One challenge is how to manage and respond to this evaluative information, especially when it is conflicting. Although the center can learn and adapt in response to this information, it can also become subject to a vicious circle of continuous restructuring and production of documentation to address various and potentially inconsistent recommendations. In this paper we illustrate the effects of such a dynamic based on our experiences as external evaluators of the $25 million NSF-funded Learning in Informal and Formal Environments (LIFE) Center. The case study presents an analysis of annual reports and strategic planning documents along with other sources of evidence to illustrate the evolution of center organizational approaches in response to evaluations by external review panels, center evaluators, program managers, and other external stakeholders. We conclude with suggestions for how evaluators may help centers ease the cost of learning and reduce the likelihood of a vicious circle. 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Confrey, Jere; Gianopulos, Garron; McGowan, William; Shah, Meetal; Belcher, Michael
2017-01-01
The paper describes how designers used the construct of learning trajectories to create a tool, Math-Mapper 6-8, to help scaffold curricula toward increased learner-centered coherence. It defines "learner-centered curricular coherence" as "an organizational means to promote a high likelihood that each learner traverses one of many…
The role of failure/problems in engineering: A commentary of failures experienced - lessons learned
NASA Technical Reports Server (NTRS)
Ryan, R. S.
1992-01-01
The written version of a series of seminars given to several aerospace companies and three NASA centers are presented. The results are lessons learned through a study of the problems experienced in 35 years of engineering. The basic conclusion is that the primary cause of problems has not been mission technologies, as important as technology is, but the neglect of basic principles. Undergirding this is the lack of a systems focus from determining requirements through design, verification, and operations phases. Many of the concepts discussed are fundamental to total quality management (TQM) and can be used to augment this product enhanced philosophy. Fourteen principles are addressed with problems experienced and are used as examples. Included is a discussion of the implication of constraints, poorly defined requirements, and schedules. Design guidelines, lessons learned, and future tasks are listed. Two additional sections are included that deal with personal lessons learned and thoughts on future thrusts (TQM).
Lessons learned in the development of the STOL intelligent tutoring system
NASA Technical Reports Server (NTRS)
Seamster, Thomas; Baker, Clifford; Ames, Troy
1991-01-01
Lessons learned during the development of the NASA Systems Test and Operations Language (STOL) Intelligent Tutoring System (ITS), being developed at NASA Goddard Space Flight Center are presented. The purpose of the intelligent tutor is to train STOL users by adapting tutoring based on inferred student strengths and weaknesses. This system has been under development for over one year and numerous lessons learned have emerged. These observations are presented in three sections, as follows. The first section addresses the methodology employed in the development of the STOL ITS and briefly presents the ITS architecture. The second presents lessons learned, in the areas of: intelligent tutor development; documentation and reporting; cost and schedule control; and tools and shells effectiveness. The third section presents recommendations which may be considered by other ITS developers, addressing: access, use and selection of subject matter experts; steps involved in ITS development; use of ITS interface design prototypes as part of knowledge engineering; and tools and shells effectiveness.
ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David
2000-01-01
The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).
NASA Astrophysics Data System (ADS)
Gastón, Martín; Fernández-Peruchena, Carlos; Körnich, Heiner; Landelius, Tomas
2017-06-01
The present work describes the first approach of a new procedure to forecast Direct Normal Irradiance (DNI): the #hashtdim that treats to combine ground information and Numerical Weather Predictions. The system is centered in generate predictions for the very short time. It combines the outputs from the Numerical Weather Prediction Model HARMONIE with an adaptive methodology based on Machine Learning. The DNI predictions are generated with 15-minute and hourly temporal resolutions and presents 3-hourly updates. Each update offers forecasts to the next 12 hours, the first nine hours are generated with 15-minute temporal resolution meanwhile the last three hours present hourly temporal resolution. The system is proved over a Spanish emplacement with BSRN operative station in south of Spain (PSA station). The #hashtdim has been implemented in the framework of the Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies (DNICast) project, under the European Union's Seventh Programme for research, technological development and demonstration framework.
NASA CORE - A Worldwide Distribution Center for Educational Materials.
NASA Astrophysics Data System (ADS)
Kaiser-Holscott, K.
2005-05-01
The Lorain County Joint Vocational School District (JVS) administers NASA's Central Operation of Resources for Educators (CORE) for the purpose of: A. Operating a mail order service to supply educators around the world with NASA's educational materials; B. Servicing NASA Education Programs/Projects with NASA's educational materials; C. Supporting the NASA Educator Resource Center Network with technology resources for the next generation of ERC. D. Support NASA's mission to inspire the next generation of explorers...as only NASA can; E. Inspire and motivate students to pursue careers in geography, science, technology, engineering and mathematics. This is accomplished by the continued operation of a central site that educators can contact to obtain information about NASA educational programs and research; obtain NASA educational publications and media; and receive technical support for NASA multimedia materials. In addition CORE coordinates the efforts of the 67 NASA Educator Resource Centers to establish a more effective network to serve educators. CORE directly supports part of NASA's core mission, To Inspire the Next Generation of Explorers.as only NASA can. CORE inspires and motivates students to pursue careers in geography, science, technology, engineering and mathematics by providing educators with exciting and NASA-unique educational material to enhance the students' learning experience. CORE is located at the Lorain County Joint Vocational School (JVS) in Oberlin, Ohio. Students at the JVS assist with the daily operations of CORE. This assistance provides the students with valuable vocational training opportunities and helps the JVS reduce the amount of funding needed to operate CORE. CORE has vast experience in the dissemination of NASA educational materials as well as a network of NASA Education Resource Centers who distribute NASA materials to secondary and post-secondary schools and universities, informal educators, and other interested individuals and organizations. CORE would be a valuable resource for the distribution of Earth and Space Science products presented to the Joint Assembly.
ERIC Educational Resources Information Center
Ponte, Lucille M.
2006-01-01
Pedagogical experts contend that students learn best when they are actively involved in and responsible for their own learning. In a student-centered learning environment, the instructor ideally serves primarily as a learning resource or facilitator. With the guidance of the instructor, students in active learning environments strive for…
ERIC Educational Resources Information Center
Flynn, William J.
Whether the topic is the learning revolution, a learning college for the 21st century, the learning organization, or the growth of franchised learning centers throughout the country, we are in the grip of learning mania. This issue has galvanized higher education to such an extent that suddenly it is unfashionable to mention teaching without…
Assessing Student Behaviors and Motivation for Actively Learning Biology
ERIC Educational Resources Information Center
Moore, Michael Edward
2017-01-01
Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…
Students´ Perspectives on eLearning Activities in Person-Centered, Blended Learning Settings
ERIC Educational Resources Information Center
Haselberger, David; Motsching, Renate
2016-01-01
Blended or hybrid learning has become a frequent practice in higher education. In this article our primary research interest was to find out how students perceived eLearning activities in blended learning courses based on the person-centered paradigm. Through analyzing the content of a series of semi-structured interviews we found out that…
The efficacy of student-centered instruction in supporting science learning.
Granger, E M; Bevis, T H; Saka, Y; Southerland, S A; Sampson, V; Tate, R L
2012-10-05
Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students' understanding of models and evidence and the self-efficacy of teachers.
Re-Examining Cognition during Student-Centered, Web-Based Learning
ERIC Educational Resources Information Center
Hannafin, Michael; Hannafin, Kathleen; Gabbitas, Bruce
2009-01-01
During student-centered learning, the individual assumes responsibility for determining learning goals, monitoring progress toward meeting goals, adjusting or adapting approaches as warranted, and determining when individual goals have been adequately addressed. This can be particularly challenging while learning from the World-Wide Web, where…
Mailman Segal Center for Human Development | NSU
Dean Jim & Jan Moran Family Center Village Collaborations Early Learning Programs About Early Learning Programs Family Center Preschool About Our Preschool Enrollment Family Center Infant & Toddler - Advanced ABA M.S. in Developmental Disabilities - ABA Non-Degree Seeking - ABA & Advanced ABA Autism
The value of Web-based library services at Cedars-Sinai Health System.
Halub, L P
1999-07-01
Cedars-Sinai Medical Library/Information Center has maintained Web-based services since 1995 on the Cedars-Sinai Health System network. In that time, the librarians have found the provision of Web-based services to be a very worthwhile endeavor. Library users value the services that they access from their desktops because the services save time. They also appreciate being able to access services at their convenience, without restriction by the library's hours of operation. The library values its Web site because it brings increased visibility within the health system, and it enables library staff to expand services when budget restrictions have forced reduced hours of operation. In creating and maintaining the information center Web site, the librarians have learned the following lessons: consider the design carefully; offer what services you can, but weigh the advantages of providing the services against the time required to maintain them; make the content as accessible as possible; promote your Web site; and make friends in other departments, especially information services.
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, center director Bob Cabana announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Gwynne Shotwell, president and chief operating officer of SpaceX, look on. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Kennedy Space Center Director Bob Cabana listen. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
The value of Web-based library services at Cedars-Sinai Health System.
Halub, L P
1999-01-01
Cedars-Sinai Medical Library/Information Center has maintained Web-based services since 1995 on the Cedars-Sinai Health System network. In that time, the librarians have found the provision of Web-based services to be a very worthwhile endeavor. Library users value the services that they access from their desktops because the services save time. They also appreciate being able to access services at their convenience, without restriction by the library's hours of operation. The library values its Web site because it brings increased visibility within the health system, and it enables library staff to expand services when budget restrictions have forced reduced hours of operation. In creating and maintaining the information center Web site, the librarians have learned the following lessons: consider the design carefully; offer what services you can, but weigh the advantages of providing the services against the time required to maintain them; make the content as accessible as possible; promote your Web site; and make friends in other departments, especially information services. PMID:10427423
SpaceOps 2012 Plus 2: Social Tools to Simplify ISS Flight Control Communications and Log Keeping
NASA Technical Reports Server (NTRS)
Cowart, Hugh S.; Scott, David W.
2014-01-01
A paper written for the SpaceOps 2012 Conference (Simplify ISS Flight Control Communications and Log Keeping via Social Tools and Techniques) identified three innovative concepts for real time flight control communications tools based on social mechanisms: a) Console Log Tool (CoLT) - A log keeping application at Marshall Space Flight Center's (MSFC) Payload Operations Integration Center (POIC) that provides "anywhere" access, comment and notifications features similar to those found in Social Networking Systems (SNS), b) Cross-Log Communication via Social Techniques - A concept from Johnsson Space Center's (JSC) Mission Control Center Houston (MCC-H) that would use microblogging's @tag and #tag protocols to make information/requests visible and/or discoverable in logs owned by @Destination addressees, and c) Communications Dashboard (CommDash) - A MSFC concept for a Facebook-like interface to visually integrate and manage basic console log content, text chat streams analogous to voice loops, text chat streams dedicated to particular conversations, generic and position-specific status displays/streams, and a graphically based hailing display. CoLT was deployed operationally at nearly the same time as SpaceOps 2012, the Cross- Log Communications idea is currently waiting for a champion to carry it forward, and CommDash was approved as a NASA Iinformation Technoloby (IT) Labs project. This paper discusses lessons learned from two years of actual CoLT operations, updates CommDash prototype development status, and discusses potential for using Cross-Log Communications in both MCC-H and/or POIC environments, and considers other ways for synergizing console applcations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoberi, J.
Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less
Plan of Work 2010: Towards True Student-Centered Learning
ERIC Educational Resources Information Center
European Students' Union (NJ1), 2010
2010-01-01
The European Students' Union's (ESU's) vision regarding the Student Centered Learning concept stems from the fundamental belief that the learning process should have at its core learning objectives as they are prioritized by each individual students, also that each (potential) student should be empowered to define those objectives and progress…
Integrated Strategic Planning in a Learning-Centered Community College
ERIC Educational Resources Information Center
Kelley, Susan; Kaufman, Roger
2007-01-01
In learning-centered community colleges, planning, like all processes, must measurably improve learning and learner performance. This article shares Valencia Community College's approach to revising its strategic planning process based on the Organizational Elements Model to: 1) focus strategic planning on learning results that add value for…
Coordinating Centers in Cancer-Epidemiology Research: The Asia Cohort Consortium Coordinating Center
Rolland, Betsy; Smith, Briana R; Potter, John D
2011-01-01
Although it is tacitly recognized that a good Coordinating Center (CC) is essential to the success of any multi-site collaborative project, very little study has been done on what makes a CC successful, why some CCs fail, or how to build a CC that meets the needs of a given project. Moreover, very little published guidance is available, as few CCs outside the clinical-trial realm write about their work. The Asia Cohort Consortium (ACC) is a collaborative cancer-epidemiology research project that has made strong scientific and organizational progress over the past three years by focusing its CC on the following activities: collaboration development; operations management; statistical and data management; and communications infrastructure and tool development. Our hope is that, by sharing our experience building the ACC CC, we can begin a conversation about what it means to run a coordinating center for multi-institutional collaboration in cancer epidemiology, help other collaborative projects solve some of the issues associated with collaborative research, and learn from others. PMID:21803842
ERIC Educational Resources Information Center
Behling, Kirsten; Linder, Kathryn E.
2017-01-01
The authors report on the results of a survey conducted in the United States on collaboration between Centers for Teaching and Learning (CTLs) and Offices of Disability Services (ODSs) in institutions of higher education. The authors, a disability services professional and a former director of a Center for Teaching and Learning, give particular…
Learning Resource Center at the Baraboo Campus of the University of Wisconsin Center System.
ERIC Educational Resources Information Center
Umhoefer, Aural
The Learning Resource Center (LRC) at the Baraboo campus of the University of Wisconsin was designed to be an integral part of the teaching program, and to embody the multimedia approach to individual self-paced learning by using the most appropriate medium or combination of media for a given instructional situation. The collection includes books,…
ERIC Educational Resources Information Center
Nava, Norma Leticia
2016-01-01
This qualitative study explored stakeholders' (administrators, teachers, and parents) perspectives of English learners in the learning center, a response to intervention model, at a school district in Central California. Research existed concerning the yearly academic growth of students in a learning center, but there was a lack of knowledge about…
Cavanaugh, James T; Konrad, Shelley Cohen
2012-01-01
To describe the implementation of an interprofessional shared learning model designed to promote the development of person-centered healthcare communication skills. Master of social work (MSW) and doctor of physical therapy (DPT) degree students. The model used evidence-based principles of effective healthcare communication and shared learning methods; it was aligned with student learning outcomes contained in MSW and DPT curricula. Students engaged in 3 learning sessions over 2 days. Sessions involved interactive reflective learning, simulated role-modeling with peer assessment, and context-specific practice of communication skills. The perspective of patients/clients was included in each learning activity. Activities were evaluated through narrative feedback. Students valued opportunities to learn directly from each other and from healthcare consumers. Important insights and directions for future interprofessional learning experiences were gleaned from model implementation. The interprofessional shared learning model shows promise as an effective method for developing person-centered communication skills.
NASA Technical Reports Server (NTRS)
Bishop, Peter C.; Erickson, Lloyd
1990-01-01
The Management Information and Decision Support Environment (MIDSE) is a research activity to build and test a prototype of a generic human interface on the Johnson Space Center (JSC) Information Network (CIN). The existing interfaces were developed specifically to support operations rather than the type of data which management could use. The diversity of the many interfaces and their relative difficulty discouraged occasional users from attempting to use them for their purposes. The MIDSE activity approached this problem by designing and building an interface to one JSC data base - the personnel statistics tables of the NASA Personnel and Payroll System (NPPS). The interface was designed against the following requirements: generic (use with any relational NOMAD data base); easy to learn (intuitive operations for new users); easy to use (efficient operations for experienced users); self-documenting (help facility which informs users about the data base structure as well as the operation of the interface); and low maintenance (easy configuration to new applications). A prototype interface entitled the JSC Management Information Systems (JSCMIS) was produced. It resides on CIN/PROFS and is available to JSC management who request it. The interface has passed management review and is ready for early use. Three kinds of data are now available: personnel statistics, personnel register, and plan/actual cost.
SSA Building Blocks - Transforming Your Data and Applications into Operational Capability
NASA Astrophysics Data System (ADS)
Buell, D.; Hawthorne, Shayn, L.; Higgins, J.
The Electronic System Center's 850 Electronic Systems Group (ELSG) is currently using a Service Oriented Architecture (SOA) to rapidly create net-centric experimental prototypes. This SOA has been utilized effectively across diverse mission areas, such as global air operations and rapid sensor tasking for improved space event management. The 850 ELSG has deployed a working, accredited, SOA on the SIPRNET and provided real-time space information to five separate distributed operations centers. The 850 ELSG has learned first-hand the power of SOAs for integrating DoD and non-DoD SSA data in a rapid and agile manner, allowing capabilities to be fielded and sensors to be integrated in weeks instead of months. This opens a world of opportunity to integrate University data and experimental or proof-of-concept data with sensitive sensors and sources to support developing an array of SSA products for approved users in and outside of the space community. This paper will identify how new capabilities can be proactively developed to rapidly answer critical needs when SOA methodologies are employed and identifies the operational utility and the far-reaching benefits realized by implementing a service-oriented architecture. We offer a new paradigm for how data and application producer's contributions are presented for the rest of the community to leverage.
NASA Technical Reports Server (NTRS)
Dudley, Stephanie R. B.; Marsh, Angela L.
2014-01-01
With an increase in utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four-month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS real-time operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art Video Wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of the project included executing over 450 crew-hours of ISS real-time payload operations including a major onboard communications upgrade, SpaceX un-berth, a Soyuz launch, roll-out of ISS live video and interviews from the POIC, annual BCC certification and hurricane season, and ISS simulations and testing. Continuous ISS payload operations were possible during the PCA facility modifications with the reconfiguration of four control rooms and standup of two temporary control areas. Another major restriction to the project was an ongoing facility upgrade that included a NASA Headquarters mandated replacement of all electrical and mechanical systems and replacement of an external generator. These upgrades required a facility power outage during the PCA upgrades. The project also encompassed console layout designs and ordering, amenities selections and ordering, excessing of old equipment, moves, disposal of old IT equipment, camera installations, facility tour re-schedules, and contract justifications. These were just some of the tasks needed for a successful project. This paper describes the logistics and lessons learned in upgrading a control center capability in the middle of complex real-time operations. Combining the efficiencies of controller interaction and new technology infusion were prime drivers for this upgrade to handle the increased utilization of science research on ISS. The success of this project could not jeopardize the current operations while these facility upgrades occurred.
E-Learning and Virtual Science Centers
ERIC Educational Resources Information Center
Hin, Leo Tan Wee, Ed.; Subramaniam, R., Ed.
2005-01-01
"E-Learning and Virtual Science Centers" addresses an aspect of Web-based education that has not attracted sufficient attention in the international research literature--that of virtual science centers, the cyberspace annex of traditional science centers. It is the first book to be published on the rapidly advancing field of science education.…
Keeping It Alive: Centers Contribute to Cultural Renaissance on College Campuses.
ERIC Educational Resources Information Center
Simonelli, Richard
2003-01-01
Describes how AIHEC's Cultural Learning Centers share the people's stories through photos, artwork, Native languages, exhibits, and gardens. Give examples of a variety of learning centers including Where The Water Stops, Omaeqnomenewak Pematesenewak, Haskell Center For Healing, and the Spirit of the Plains. Concludes the future of Cultural…
Leading the Learner-Centered Campus
ERIC Educational Resources Information Center
Stamm, Liesa
2011-01-01
For those who advocate for greater attention to the development of the whole student, promoting a climate of student-centered learning on our campuses should be a major component of our endeavors. In "Leading the Learner-Centered Campus", Harris and Cullen provide some concrete proposals for achieving student-centered learning as central to the…
Efficiency at the Center of Learning and Teaching
ERIC Educational Resources Information Center
Goff-Kfouri, Carol Ann
2004-01-01
The purpose of this article was to clarify the seemingly contrary philosophies of learner centered and teacher centered teaching approaches. First, the benefits of both approaches are described. Examples of ways in which teacher centered classes using thoughtful questioning techniques or focused lectures enhance learning are presented. The…
A Ground Systems Architecture Transition for a Distributed Operations System
NASA Technical Reports Server (NTRS)
Sellers, Donna; Pitts, Lee; Bryant, Barry
2003-01-01
The Marshall Space Flight Center (MSFC) Ground Systems Department (GSD) recently undertook an architecture change in the product line that serves the ISS program. As a result, the architecture tradeoffs between data system product lines that serve remote users versus those that serve control center flight control teams were explored extensively. This paper describes the resulting architecture that will be used in the International Space Station (ISS) payloads program, and the resulting functional breakdown of the products that support this architecture. It also describes the lessons learned from the path that was followed, as a migration of products cause the need to reevaluate the allocation of functions across the architecture. The result is a set of innovative ground system solutions that is scalable so it can support facilities of wide-ranging sizes, from a small site up to large control centers. Effective use of system automation, custom components, design optimization for data management, data storage, data transmissions, and advanced local and wide area networking architectures, plus the effective use of Commercial-Off-The-Shelf (COTS) products, provides flexible Remote Ground System options that can be tailored to the needs of each user. This paper offers a description of the efficiency and effectiveness of the Ground Systems architectural options that have been implemented, and includes successful implementation examples and lessons learned.
SeeCoast: persistent surveillance and automated scene understanding for ports and coastal areas
NASA Astrophysics Data System (ADS)
Rhodes, Bradley J.; Bomberger, Neil A.; Freyman, Todd M.; Kreamer, William; Kirschner, Linda; L'Italien, Adam C.; Mungovan, Wendy; Stauffer, Chris; Stolzar, Lauren; Waxman, Allen M.; Seibert, Michael
2007-04-01
SeeCoast is a prototype US Coast Guard port and coastal area surveillance system that aims to reduce operator workload while maintaining optimal domain awareness by shifting their focus from having to detect events to being able to analyze and act upon the knowledge derived from automatically detected anomalous activities. The automated scene understanding capability provided by the baseline SeeCoast system (as currently installed at the Joint Harbor Operations Center at Hampton Roads, VA) results from the integration of several components. Machine vision technology processes the real-time video streams provided by USCG cameras to generate vessel track and classification (based on vessel length) information. A multi-INT fusion component generates a single, coherent track picture by combining information available from the video processor with that from surface surveillance radars and AIS reports. Based on this track picture, vessel activity is analyzed by SeeCoast to detect user-defined unsafe, illegal, and threatening vessel activities using a rule-based pattern recognizer and to detect anomalous vessel activities on the basis of automatically learned behavior normalcy models. Operators can optionally guide the learning system in the form of examples and counter-examples of activities of interest, and refine the performance of the learning system by confirming alerts or indicating examples of false alarms. The fused track picture also provides a basis for automated control and tasking of cameras to detect vessels in motion. Real-time visualization combining the products of all SeeCoast components in a common operating picture is provided by a thin web-based client.
Principles of Automation for Patient Safety in Intensive Care: Learning From Aviation.
Dominiczak, Jason; Khansa, Lara
2018-06-01
The transition away from written documentation and analog methods has opened up the possibility of leveraging data science and analytic techniques to improve health care. In the implementation of data science techniques and methodologies, high-acuity patients in the ICU can particularly benefit. The Principles of Automation for Patient Safety in Intensive Care (PASPIC) framework draws on Billings's principles of human-centered aviation (HCA) automation and helps in identifying the advantages, pitfalls, and unintended consequences of automation in health care. Billings's HCA principles are based on the premise that human operators must remain "in command," so that they are continuously informed and actively involved in all aspects of system operations. In addition, automated systems need to be predictable, simple to train, to learn, and to operate, and must be able to monitor the human operators, and every intelligent system element must know the intent of other intelligent system elements. In applying Billings's HCA principles to the ICU setting, PAPSIC has three key characteristics: (1) integration and better interoperability, (2) multidimensional analysis, and (3) enhanced situation awareness. PAPSIC suggests that health care professionals reduce overreliance on automation and implement "cooperative automation" and that vendors reduce mode errors and embrace interoperability. Much can be learned from the aviation industry in automating the ICU. Because it combines "smart" technology with the necessary controls to withstand unintended consequences, PAPSIC could help ensure more informed decision making in the ICU and better patient care. Copyright © 2018 The Joint Commission. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Santoso, Harry B.; Batuparan, Alivia Khaira; Isal, R. Yugo K.; Goodridge, Wade H.
2018-01-01
Student Centered e-Learning Environment (SCELE) is a Moodle-based learning management system (LMS) that has been modified to enhance learning within a computer science department curriculum offered by the Faculty of Computer Science of large public university in Indonesia. This Moodle provided a mechanism to record students' activities when…
Fuzzy logic in autonomous orbital operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.
How to Avoid a Learning Curve in Stapedotomy: A Standardized Surgical Technique.
Kwok, Pingling; Gleich, Otto; Dalles, Katharina; Mayr, Elisabeth; Jacob, Peter; Strutz, Jürgen
2017-08-01
To evaluate, whether a learning curve for beginners in stapedotomy can be avoided by using a prosthesis with thermal memory-shape attachment in combination with a standardized laser-assisted surgical technique. Retrospective case review. Tertiary referral center. Fifty-eight ears were operated by three experienced surgeons and compared with a group of 12 cases operated by a beginner in stapedotomy. Stapedotomy. Difference of pure-tone audiometry thresholds measured before and after surgery. The average postoperative gain for air conduction in the frequencies below 2 kHz was 20 to 25 dB and decreased for the higher frequencies. Using the Mann-Whitney-U test for comparing mean gain between experienced and inexperienced surgeons showed no significant difference (p = 0.281 at 4 kHz and p > 0.7 for the other frequencies). A Spearman rank correlation of the postoperative gain for air- and bone-conduction thresholds was obtained at each test frequency for the first 12 patients consecutively treated with a thermal memory-shape attachment prosthesis by two experienced and one inexperienced surgeon. This analysis does not support the hypothesis of a "learning effect" that should be associated with an improved outcome for successively treated patients. It is possible to avoid a learning curve in stapes surgery by applying a thermal memory-shape prosthesis in a standardized laser-assisted surgical procedure.
Pneumovesical ureteric reimplantation using T-fastener: A modification for bladder wall anchorage.
Lau, Chin Tung; Lan, Lawrence Chuen Leung; Wong, Kenneth Kak Yuen; Tam, Paul
2017-06-01
Bladder anchoring during pneumovesical ureteric reimplantation (PUR) can be difficult. Here we describe our new technique using a T-fastener (Kimberly Clark, Irving, TX, USA) to tackle this problem. A T-fastener has been applied to all patients who underwent PUR in our center since 2011. Seventeen consecutive cases were performed between 2011 and 2015. No bladder dislodgement or air leak was observed in any of the operations. No morbidity or mortality has been associated with the use of T-fasteners. In our experience, this technique is simple to learn and transferrable. It decreases intraoperative complications and helps to climb the learning curve. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Cheang, Kai I
2009-05-27
To develop, implement, and assess a learner-centered approach to teaching a third-year pharmacotherapy course in a doctor of pharmacy (PharmD) program. The pharmacotherapy course was restructured according to the learner-centered approach. The Motivated Strategies for Learning Questionnaire (MSLQ) was administered to students before and after taking the course, and changes in MSLQ subscales from baseline were evaluated. Students' response to the learner-centered approach and characteristics associated with MSLQ scores were also evaluated. Compared to baseline, students' intrinsic goal orientation control of learning beliefs, self-efficacy, critical thinking, and metacognitive self-regulation improved after taking the course. Students responded positively to the learner-centered approach. Additionally, students with a clinical practice career orientation or who prepared frequently for classes scored higher on several MSLQ domains. The learner-centered approach was effective in promoting several domains of motivation and learning strategies in a third-year pharmacotherapy course.
2014-05-20
CAPE CANAVERAL, Fla. -- A crawler-transporter rolls toward Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move Mobile Launcher Platform-2, or MLP-2, from the pad to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
ERIC Educational Resources Information Center
Yamagata, Satoshi
2018-01-01
The present study investigated the effects of two types of core-image-based basic verb learning approaches: the learner-centered and the teacher-centered approaches. The learner-centered approach was an activity in which participants found semantic relationships among several definitions of each basic target verb through a picture-elucidated card…
TARDEC's Intelligent Ground Systems overview
NASA Astrophysics Data System (ADS)
Jaster, Jeffrey F.
2009-05-01
The mission of the Intelligent Ground Systems (IGS) Area at the Tank Automotive Research, Development and Engineering Center (TARDEC) is to conduct technology maturation and integration to increase Soldier robot control/interface intuitiveness and robotic ground system robustness, functionality and overall system effectiveness for the Future Combat System Brigade Combat Team, Robotics Systems Joint Project Office and game changing capabilities to be fielded beyond the current force. This is accomplished through technology component development focused on increasing unmanned ground vehicle autonomy, optimizing crew interfaces and mission planners that capture commanders' intent, integrating payloads that provide 360 degree local situational awareness and expanding current UGV tactical behavior, learning and adaptation capabilities. The integration of these technology components into ground vehicle demonstrators permits engineering evaluation, User assessment and performance characterization in increasingly complex, dynamic and relevant environments to include high speed on road or cross country operations, all weather/visibility conditions and military operations in urban terrain (MOUT). Focused testing and experimentation is directed at reducing PM risk areas (safe operations, autonomous maneuver, manned-unmanned collaboration) and transitioning technology in the form of hardware, software algorithms, test and performance data, as well as User feedback and lessons learned.
2014-05-01
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill Martin, a URS Federal Technical Services helicopter pilot in the agency's Aircraft Operations, is interviewed near the Shuttle Landing Facility. He discussed working with spaceport Fire Rescue personnel to develop procedures for using agency helicopters to transport injured patients to a local hospital. The training activity took place in Kennedy's Launch Complex 39 turn-basin parking lot. It was part of a new training program developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dimitri Gerondidakis
2014-04-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a Fire Rescue vehicle stands by in a parking area near the Vehicle Assembly Building for training with pilots in NASA Aircraft Operations. The exercise is designed to develop procedures for using agency helicopters to transport injured patients to a local hospital. The activity taking place in Kennedy's Launch Complex 39 turn-basin parking lot was only one of several drills. It was part of a new training program that was developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dan Casper
2014-05-01
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill Martin, a URS Federal Technical Services helicopter pilot in the agency's Aircraft Operations, is interviewed near the Shuttle Landing Facility. He discussed working with spaceport Fire Rescue personnel to develop procedures for using agency helicopters to transport injured patients to a local hospital. The training activity took place in Kennedy's Launch Complex 39 turn-basin parking lot. It was part of a new training program developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dimitri Gerondidakis
2014-04-29
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Fire Rescue vehicles line up in a parking area near the Vehicle Assembly Building for training with pilots in NASA Aircraft Operations. The exercise is designed to develop procedures for using agency helicopters to transport injured patients to a local hospital. The activity taking place in Kennedy's Launch Complex 39 turn-basin parking lot was only one of several drills. It was part of a new training program that was developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dan Casper
2014-05-01
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill Martin, a URS Federal Technical Services helicopter pilot in the agency's Aircraft Operations, is interviewed near the Shuttle Landing Facility. He discussed working with spaceport Fire Rescue personnel to develop procedures for using agency helicopters to transport injured patients to a local hospital. The training activity took place in Kennedy's Launch Complex 39 turn-basin parking lot. It was part of a new training program developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dimitri Gerondidakis
In space performance of the lunar orbiter laser altimeter (LOLA) laser transmitter
NASA Astrophysics Data System (ADS)
Yu, Anthony W.; Shaw, George B.; Novo-Gradac, Ann Marie; Li, Steven X.; Cavanaugh, John
2011-11-01
In this paper we present the final configuration of the space flight laser transmitter as delivered to the Lunar Orbiter Laser Altimeter (LOLA) instrument along with some in-space operation performance data. The LOLA instrument is designed to map the lunar surface and provide unprecedented data products in anticipation of future manned flight missions. The laser transmitter has been operating on orbit at the Moon continuously since July 2009 and accumulated over 1.8 billion laser shots in space. The LOLA laser transmitter design has heritage dated back to the MOLA laser transmitter launched more than 10 years ago and incorporates lessons learned from previous laser altimeter missions at NASA Goddard Space Flight Center.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Indian Affairs.
A Senate committee hearing received testimony about high dropout rates and other problems at seven off-reservation boarding schools operated by the Bureau of Indian Affairs (BIA) or by tribal groups under BIA contract. The schools are Pierre Indian Learning Center (South Dakota), Sequoyah Indian High School (Oklahoma), Wahpeton Indian School…
Learning Reverse Engineering and Simulation with Design Visualization
NASA Technical Reports Server (NTRS)
Hemsworth, Paul J.
2018-01-01
The Design Visualization (DV) group supports work at the Kennedy Space Center by utilizing metrology data with Computer-Aided Design (CAD) models and simulations to provide accurate visual representations that aid in decision-making. The capability to measure and simulate objects in real time helps to predict and avoid potential problems before they become expensive in addition to facilitating the planning of operations. I had the opportunity to work on existing and new models and simulations in support of DV and NASA’s Exploration Ground Systems (EGS).
Integrity Assessment of E1-E3 Sailors at Naval Submarine School: FY2007 - FY2011
2012-01-01
5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Submarine Learning Center,Groton,CT,06349 8. PERFORMING... ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT...School, FT “A” School, STS“A” School, BESS, ATT E-CORE, TACT COMPS, SUB OFF BASIC, SOIC , CSRR Operator, and Basic Mechanical Skills. Submarine
Lessons Learned in Engineering. Supplement
NASA Technical Reports Server (NTRS)
Blair, James C.; Ryan, Robert S.; Schultzenhofer, Luke A.
2011-01-01
This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations. The supplemental CD contains accompanying PowerPoint presentations.
Building intelligent systems: Artificial intelligence research at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Friedland, P.; Lum, H.
1987-01-01
The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.
Building intelligent systems - Artificial intelligence research at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Friedland, Peter; Lum, Henry
1987-01-01
The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.
2014-07-03
CAPE CANAVERAL, Fla. – Therrin Protze, chief operating officer with Delaware North Parks and Resorts at NASA's Kennedy Space Center Visitor Complex in Florida, welcomes guests to the grand opening of the Great Balls of Fire exhibit. Great Balls of Fire shares the story of the origins of our solar system, asteroids and comets and their possible impacts and risks. The 1,500-square-foot exhibit, located in the East Gallery of the IMAX theatre at the visitor complex, features several interactive displays, real meteorites and replica asteroid models. The exhibit is a production of The Space Science Institute's National Center for Interactive Learning. It is a traveling exhibition that also receives funding from NASA and the National Science Foundation. Photo credit: NASA/Daniel Casper
ERIC Educational Resources Information Center
Ashmore, William H.
The report describes an elementary grade level career awareness program which was organized around four open-spaced non-graded learning centers: a kindergarten and three other learning centers in which students stayed for two-year periods to explore the 15 career clusters identified by the U.S. Office of Education. Each learning center used a…
ERIC Educational Resources Information Center
Lewis, Joseph Lee
2013-01-01
This study examined selected community stakeholders' perception of the current leadership at their local community educational learning center during an organizational transformation and cultural change process. The transition from a community college to an educational learning center, mandated in 2006 by the Accredition Commission and agreed on…
The Residential Conference Center as a Learning Sanctuary.
ERIC Educational Resources Information Center
Simpson, Edward G., Jr.
1990-01-01
Adult learning in residential conference centers is enhanced when a philosophical basis underlies their design. Six integrated elements for the development of learning sanctuaries are historical context, educational program, physical environment, support services, technology, and human resources. (SK)
Peer Learning Community Guide. CEELO FastFact
ERIC Educational Resources Information Center
Schilder, Diane; Brown, Kirsty Clarke; Gillaspy, Kathi
2014-01-01
States and technical assistance centers have asked the Center on Enhancing Early Learning Outcomes (CEELO) for guidance on establishing and maintaining a peer learning community (PLC). This document is designed to delineate the steps to establish and sustain a Peer Learning Community (PLC). It begins with a definition of a PLC and then presents…
Development of a Work Control System for Propulsion Testing at NASA Stennis
NASA Technical Reports Server (NTRS)
Messer, Elizabeth A.
2005-01-01
In 1996 Stennis Space Center was given management authority for all Propulsion Testing for NASA. Over the next few years several research and development (R&D) test facilities were completed and brought up to full operation in what is known as the E-Complex Test Facility at Stennis Space Center. To construct, activate and operate these test facilities, a manual paper-based work control system was created. After utilizing this paper-based work control system for approximately three years, it became apparent that the research and development test area needed a better method to execute, monitor, and report on tasks required to further propulsion testing. The paper based system did not provide the engineers adequate visibility into work tasks or the tracking of testing or hardware discrepancies. This system also restricted the engineer s ability to utilize and access past knowledge and experiences given the severe schedule limitations for most R&D propulsion testing projects. Therefore a system was developed to meet the growing need of Test Operations called the Propulsion Test Directorate (PTD) Work Control System. This system is used to plan, perform, and track tasks that support testing and also to capture lessons learned while doing so.
NASA Technical Reports Server (NTRS)
Schifer, Nicholas A.; Oriti, Salvatore M.
2013-01-01
The NASA Glenn Research Center (GRC) has been testing 100 We class, free-piston Stirling convertors for potential use in Stirling Radioisotope Power Systems (RPS) for space science and exploration missions. Free-piston Stirling convertors are capable of achieving a 38% conversion efficiency, making Stirling attractive for meeting future power system needs in light of the shrinking U.S. plutonium fuel supply. Convertors currently on test include four Stirling Technology Demonstration Convertors (TDCs), manufactured by the Stirling Technology Company (STC), and six Advanced Stirling Convertors (ASCs), manufactured by Sunpower, Inc. Total hours of operation is greater than 514,000 hours (59 years). Several tests have been initiated to demonstrate the functionality of Stirling convertors for space applications, including: in-air extended operation, thermal vacuum extended operation. Other tests have also been conducted to characterize Stirling performance in anticipated mission scenarios. Data collected during testing has been used to support life and reliability estimates, drive design changes and improve quality, and plan for expected mission scenarios. This paper will provide a summary of convertors tested at NASA GRC and discuss lessons learned through extended testing.
Universal Payload Information Management
NASA Technical Reports Server (NTRS)
Elmore, Ralph B.
2003-01-01
As the overall manager and integrator of International Space Station (ISS) science payloads, the Payload Operations Integration Center (POIC) at Marshall Space Flight Center has a critical need to provide an information management system for exchange and control of ISS payload files as well as to coordinate ISS payload related operational changes. The POIC's information management system has a fundamental requirement to provide secure operational access not only to users physically located at the POIC, but also to remote experimenters and International Partners physically located in different parts of the world. The Payload Information Management System (PIMS) is a ground-based electronic document configuration management and collaborative workflow system that was built to service the POIC's information management needs. This paper discusses the application components that comprise the PIMS system, the challenges that influenced its design and architecture, and the selected technologies it employs. This paper will also touch on the advantages of the architecture, details of the user interface, and lessons learned along the way to a successful deployment. With PIMS, a sophisticated software solution has been built that is not only universally accessible for POIC customer s information management needs, but also universally adaptable in implementation and application as a generalized information management system.
The MMS Science Data Center: Operations, Capabilities, and Resource.
NASA Astrophysics Data System (ADS)
Larsen, K. W.; Pankratz, C. K.; Giles, B. L.; Kokkonen, K.; Putnam, B.; Schafer, C.; Baker, D. N.
2015-12-01
The Magnetospheric MultiScale (MMS) constellation of satellites completed their six month commissioning period in August, 2015 and began science operations. Science operations for the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package occur at the Laboratory for Atmospheric and Space Physics (LASP). The Science Data Center (SDC) at LASP is responsible for the data production, management, distribution, and archiving of the data received. The mission will collect several gigabytes per day of particles and field data. Management of these data requires effective selection, transmission, analysis, and storage of data in the ground segment of the mission, including efficient distribution paths to enable the science community to answer the key questions regarding magnetic reconnection. Due to the constraints on download volume, this includes the Scientist-in-the-Loop program that identifies high-value science data needed to answer the outstanding questions of magnetic reconnection. Of particular interest to the community is the tools and associated website we have developed to provide convenient access to the data, first by the mission science team and, beginning March 1, 2016, by the entire community. This presentation will demonstrate the data and tools available to the community via the SDC and discuss the technologies we chose and lessons learned.
ERIC Educational Resources Information Center
Miller, Peter M.; Caponigro, Jay; Tyson, Luther
2008-01-01
This paper examines the working philosophy of a university-community collaborative program--the Robinson Community Learning Center (RCLC), a multifaceted community service center located in the Northeast Neighborhood of South Bend, Indiana, in the United States. This program's multitude of educational and social services includes individualized…
Lucinda Huffaker and the Hospitality of the Wabash Center
ERIC Educational Resources Information Center
Placher, William C.
2007-01-01
As associate director and then director of the Wabash Center for Teaching and Learning in Theology and Religion, Lucinda Huffaker has been a key factor in the Center's reputation for hospitality. The Center's work presupposes that reflection on teaching improves teaching and learning, and good reflection on one's teaching requires taking risks and…
Student-Centered Learning in Higher Education
ERIC Educational Resources Information Center
Wright, Gloria Brown
2011-01-01
In her book, "Learner-Centered Teaching", Maryellen Weimer contrasts the practices of teacher-centered college teaching and student-centered college teaching in terms of (1) the balance of power in the classroom, (2) the function of the course content, (3) the role of the teacher versus the role of the student, (4) the responsibility of learning,…
Forum: Learning Outcomes in Communication. The LOCs and the Shift to Student-Centered Learning
ERIC Educational Resources Information Center
Brown, Timothy J.; Castor, Theresa; Byrnes-Loinette, Kerry; Bowman, Jonathan; McBride, Chad
2016-01-01
Traditional teaching is based upon a "teacher"-centered rather than a "student"-centered approach (Bain, 2004). A teacher-centered approach underscores the long held philosophy that instructors are the gatekeepers of knowledge whose job is to convey their knowledge through a lecture, with students as passive receivers during…
Schilling, Lisa; Chase, Alide; Kehrli, Sommer; Liu, Amy Y; Stiefel, Matt; Brentari, Ruth
2010-11-01
By 2004, senior leaders at Kaiser Permanente, the largest not-for-profit health plan in the United States, recognizing variations across service areas in quality, safety, service, and efficiency, began developing a performance improvement (PI) system to realizing best-in-class quality performance across all 35 medical centers. MEASURING SYSTEMWIDE PERFORMANCE: In 2005, a Web-based data dashboard, "Big Q," which tracks the performance of each medical center and service area against external benchmarks and internal goals, was created. PLANNING FOR PI AND BENCHMARKING PERFORMANCE: In 2006, Kaiser Permanente national and regional continued planning the PI system, and in 2007, quality, medical group, operations, and information technology leaders benchmarked five high-performing organizations to identify capabilities required to achieve consistent best-in-class organizational performance. THE PI SYSTEM: The PI system addresses the six capabilities: leadership priority setting, a systems approach to improvement, measurement capability, a learning organization, improvement capacity, and a culture of improvement. PI "deep experts" (mentors) consult with national, regional, and local leaders, and more than 500 improvement advisors are trained to manage portfolios of 90-120 day improvement initiatives at medical centers. Between the second quarter of 2008 and the first quarter of 2009, performance across all Kaiser Permanente medical centers improved on the Big Q metrics. The lessons learned in implementing and sustaining PI as it becomes fully integrated into all levels of Kaiser Permanente can be generalized to other health care systems, hospitals, and other health care organizations.
... as a nursing home. Learn more: Residential Care Working with Care Providers Adult day centers Adult day centers offer people with Alzheimer's and other dementias the opportunity to be social and to participate in activities in a safe environment. Learn more: Adult Day Centers Advance directive An ...
Today's Leaders for a Sustainable Tomorrow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Bryan
2013-02-27
Today's Leaders for a Sustainable Tomorrow is a collaboration of five residential environmental learning centers (Audubon Center of the North Woods, Deep Portage Learning Center, Laurentian Environmental Center, Long Lake Conservation Center and Wolf Ridge Environmental Learning Center) that together increased energy efficiency, energy conservation and renewable energy technologies through a number of different means appropriate for each unique center. For energy efficiency upgrades the centers installed envelope improvements to seal air barriers through better insulation in walls, ceilings, windows, doors as well as the installation of more energy efficient windows, doors, lighting and air ventilation systems. Through energy sub-metermore » monitoring the centers are able to accurately chart the usage of energy at each of their campuses and eliminate unnecessary energy usage. Facilities reduced their dependence on fossil fuel energy sources through the installation of renewable energy technologies including wood gasification, solar domestic hot water, solar photovoltaic, solar air heat, geothermal heating and wind power. Centers also installed energy education displays on the specific renewable energy technologies used at the center.« less
NASA Astrophysics Data System (ADS)
Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall
2013-10-01
The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations team the opportunity to gain insight into functional hardware requirements via lessons learned from executing the Desert RATS field test missions. This paper will detail the mission control team structure that was used during the 2009 and 2010 Desert RATS Lunar analog missions. It will also present a number of the lessons learned by the operations team during these field tests. Major lessons learned involved Mission Control Center (MCC) operations, pre-mission planning and training processes, procedure requirements, communication requirements, and logistic support for analogs. This knowledge will be applied to future Desert RATS field tests, and other Earth based analog testing for space exploration, to continue the evolution of manned space operations in preparation for human planetary exploration. It is important that operational knowledge for human space exploration missions be obtained during Earth-bound field tests to the greatest extent possible. This allows operations personnel the ability to examine various flight control and crew operations scenarios in preparation for actual space missions.
NASA Technical Reports Server (NTRS)
Mandl, Dan; Howard, Joseph
2000-01-01
The New Millennium Program's first Earth-observing mission (EO-1) is a technology validation mission. It is managed by the NASA Goddard Space Flight Center in Greenbelt, Maryland and is scheduled for launch in the summer of 2000. The purpose of this mission is to flight-validate revolutionary technologies that will contribute to the reduction of cost and increase of capabilities for future land imaging missions. In the EO-1 mission, there are five instrument, five spacecraft, and three supporting technologies to flight-validate during a year of operations. EO-1 operations and the accompanying ground system were intended to be simple in order to maintain low operational costs. For purposes of formulating operations, it was initially modeled as a small science mission. However, it quickly evolved into a more complex mission due to the difficulties in effectively integrating all of the validation plans of the individual technologies. As a consequence, more operational support was required to confidently complete the on-orbit validation of the new technologies. This paper will outline the issues and lessons learned applicable to future technology validation missions. Examples of some of these include the following: (1) operational complexity encountered in integrating all of the validation plans into a coherent operational plan, (2) initial desire to run single shift operations subsequently growing to 6 "around-the-clock" operations, (3) managing changes in the technologies that ultimately affected operations, (4) necessity for better team communications within the project to offset the effects of change on the Ground System Developers, Operations Engineers, Integration and Test Engineers, S/C Subsystem Engineers, and Scientists, and (5) the need for a more experienced Flight Operations Team to achieve the necessary operational flexibility. The discussion will conclude by providing several cost comparisons for developing operations from previous missions to EO-1 and discuss some details that might be done differently for future technology validation missions.
ERIC Educational Resources Information Center
Andiema, Nelly C.
2016-01-01
Despite many research studies showing the effectiveness of teacher application of child-centered learning in different educational settings, few studies have focused on teaching and learning activities in Pre-Schools. This research investigates the effect of child centered methods on teaching and learning of science activities in preschools in…
Usability Evaluation of the Student Centered e-Learning Environment
ERIC Educational Resources Information Center
Junus, Inas Sofiyah; Santoso, Harry Budi; Isal, R. Yugo K.; Utomo, Andika Yudha
2015-01-01
Student Centered e-Learning Environment (SCeLE) has substantial roles to support learning activities at Faculty of Computer Science, Universitas Indonesia (Fasilkom UI). Although it has been utilized for about 10 years, the usability aspect of SCeLE as an e-Learning system has not been evaluated. Therefore, the usability aspects of SCeLE Fasilkom…
Service Learning in Policy and Practice: A Study of Service Learning across Three Universities
ERIC Educational Resources Information Center
Ahmed, Zahra G.
2010-01-01
This dissertation studies the creation and implementation of service learning policy and the implications of these programs for democratic citizenship and political participation. The project focuses on service learning centers at three universities in the Los Angeles area, framing the creation and implementation of these campus-wide centers as an…
ERIC Educational Resources Information Center
Neo, Mai; Park, Heykyung; Lee, Min-Jae; Soh, Jian-Yuan; Oh, Ji-Young
2015-01-01
Educators today are moving towards transforming their teaching and learning methods from conventional teacher-centered approaches to student-centered learning approaches with the support of technology so as to better motivate students to participate and engage in their learning process. This study was developed as a joint collaborative effort…
ERIC Educational Resources Information Center
Dickover, Noel T.
2002-01-01
Explains performance-centered learning (PCL), an approach to optimize support for performance on the job by making corporate assets available to knowledge workers so they can solve actual problems. Illustrates PCL with a Web site that provides just-in-time learning, collaboration, and performance support tools to improve performance at the…
Learning-Centered Leadership and Teacher Learning in China: Does Trust Matter?
ERIC Educational Resources Information Center
Liu, Shengnan; Hallinger, Philip; Feng, Daming
2016-01-01
Purpose: In this era of global education reform, teacher professional learning (TPL) has emerged as a key factor in efforts to create sustainable school improvement. The same holds in Mainland China where ambitious curriculum reforms have been undertaken since 2000. The purpose of this paper is to examine the role of learning-centered leadership…
ERIC Educational Resources Information Center
Croker, Robert E.; And Others
A study identified the learning style preferences and brain hemisphericity of female inmates at the Pocatello Women's Correctional Center in Pocatello, Idaho. It also identified teaching methodologies to which inmates were exposed while in a learning environment as well as preferred teaching methods. Data were gathered by the Learning Type Measure…
Spitzer Space Telescope Sequencing Operations Software, Strategies, and Lessons Learned
NASA Technical Reports Server (NTRS)
Bliss, David A.
2006-01-01
The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries. Since this magnificent observatory has a limited lifetime, maximizing science viewing efficiency (ie, maximizing time spent executing activities directly related to science observations) was the key operational objective. The strategy employed for maximizing science viewing efficiency was to optimize spacecraft flexibility, adaptability, and use of observation time. The selected approach involved implementation of a multi-engine sequencing architecture coupled with nondeterministic spacecraft and science execution times. This approach, though effective, added much complexity to uplink operations and sequence development. The Jet Propulsion Laboratory (JPL) manages Spitzer s operations. As part of the uplink process, Spitzer s Mission Sequence Team (MST) was tasked with processing observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, constraint-checked, and modeled review and command products which accommodated the complexity of non-deterministic spacecraft and science event executions without increasing operations costs. The MST developed processes, scripts, and participated in the adaptation of multi-mission core software to enable rapid processing of complex sequences. The MST was also tasked with developing a Downlink Keyword File (DKF) which could instruct Deep Space Network (DSN) stations on how and when to configure themselves to receive Spitzer science data. As MST and uplink operations developed, important lessons were learned that should be applied to future missions, especially those missions which employ command-intensive operations via a multi-engine sequence architecture.
Integrating Sustainability as a Learning Tool
ERIC Educational Resources Information Center
Shiver, Steven M.; Dale, John R.
2011-01-01
Implementation of user interfaces designed to explain sustainable practices and provide opportunities for integration into curriculum include the new Renton Secondary Learning Center near Seattle, Washington. The Renton Secondary Learning Center (RSLC) builds upon a "Continuum of Services" to expand offerings and opportunities for…
ERIC Educational Resources Information Center
Challenger Center for Space Science Education, Alexandria, VA.
The Challenger Center for Space Science Education is a not-for-profit educational organization founded in 1986 following the Challenger 51-L space shuttle tragedy. This packet contains a variety of separate sheets and brochures providing information about the activities of the Challenger Center. Challenger Learning Centers provide hands-on,…
ERIC Educational Resources Information Center
McLaren, M. Bruce
1987-01-01
Describes New Mexico Military Institute (NMMI), a state-supported combined military high school/junior college. Discusses its new learning resources center, the impact of the center on the community, and efforts to promote a greater demand for center services and raise funds for the facility. Recommends 14 marketing strategies. (DMM)
Providing a Learning-Centered Instructional Environment.
ERIC Educational Resources Information Center
Evans, Ruby
This paper describes efforts made by the faculty at Santa Fe Community College (Florida) to provide a learning-centered instructional environment for students in an introductory statistics class. Innovation in instruction has been stressed as institutions switch from "teacher-centered classrooms" to "student-centered…
NASA Technical Reports Server (NTRS)
Seamster, Thomas L.; Eike, David R.; Ames, Troy J.
1990-01-01
This presentation concentrates on knowledge acquisition and its application to the development of an expert module and a user interface for an Intelligent Tutoring System (ITS). The Systems Test and Operations Language (STOL) ITS is being developed to assist NASA control center personnel in learning a command and control language as it is used in mission operations rooms. The objective of the tutor is to impart knowledge and skills that will permit the trainee to solve command and control problems in the same way that the STOL expert solves those problems. The STOL ITS will achieve this object by representing the solution space in such a way that the trainee can visualize the intermediate steps, and by having the expert module production rules parallel the STOL expert's knowledge structures.
ERIC Educational Resources Information Center
Jennings, Wayne
2005-01-01
The Community Learning Centers plan provides a systemically changed model for the 21st century. This top-to-bottom transformation of current education addresses all aspects of schools with a detailed framework to guide serious educational reformers. This fresh approach to principles of learning, curriculum, staffing, facilities, student as…
Teachers' Evaluation of Student-Centered Learning Environments
ERIC Educational Resources Information Center
Cubukcu, Zuhal
2012-01-01
Problem Statement: The student-centered teaching is the arrangement of the teaching experience focusing on the students' responsibilities and activities in the learning process which takes into consideration the students' interests, demands and needs. According to this approach, while teaching experiences are planned, different learning strategies…
The future of medical education is no longer blood and guts, it is bits and bytes.
Gorman, P J; Meier, A H; Rawn, C; Krummel, T M
2000-11-01
In the United States, medical care consumes approximately $1.2 trillion annually (14% of the gross domestic product) and involves 250,000 physicians, almost 1 million nurses, and countless other providers. While the Information Age has changed virtually every other facet of our life, the education of these healthcare professionals, both present and future, is largely mired in the 100-year-old apprenticeship model best exemplified by the phase "see one, do one, teach one." Continuing medical education is even less advanced. While the half-life of medical information is less than 5 years, the average physician practices 30 years and the average nurse 40 years. Moreover, as medical care has become increasingly complex, medical error has become a substantial problem. The current convulsive climate in academic health centers provides an opportunity to rethink the way medical education is delivered across a continuum of professional lifetimes. If this is well executed, it will truly make medical education better, safer, and cheaper, and provide real benefits to patient care, with instantaneous access to learning modules. At the Center for Advanced Technology in Surgery at Stanford we envision this future: within the next 10 years we will select, train, credential, remediate, and recredential physicians and surgeons using simulation, virtual reality, and Web-based electronic learning. Future physicians will be able to rehearse an operation on a projectable palpable hologram derived from patient-specific data, and deliver the data set of that operation with robotic assistance the next day.
ERIC Educational Resources Information Center
Jobs for the Future, 2012
2012-01-01
Despite the wide interest in and need for student-centered approaches to learning, educators have scant access to a comprehensive accounting of the key components of it. To build the knowledge base for the emerging field of student-centered learning, Jobs for the Future, a national nonprofit based in Boston, commissioned papers from nine teams of…
Environments for Lifelong Learning in Senior Centers
ERIC Educational Resources Information Center
Eaton, Jacqueline; Salari, Sonia
2005-01-01
Senior-center learning opportunities must adapt, as new retirees are better educated than their predecessors. We examined 3 multipurpose senior centers using 120 hours of observations and 30 participant interviews. Variation existed in the ability to maximize synomorphic relationships, where the physical environment supported educational…
Cheang, Kai I.
2009-01-01
Objectives To develop, implement, and assess a learner-centered approach to teaching a third-year pharmacotherapy course in a doctor of pharmacy (PharmD) program. Methods The pharmacotherapy course was restructured according to the learner-centered approach. The Motivated Strategies for Learning Questionnaire (MSLQ) was administered to students before and after taking the course, and changes in MSLQ subscales from baseline were evaluated. Students’ response to the learner-centered approach and characteristics associated with MSLQ scores were also evaluated. Results Compared to baseline, students’ intrinsic goal orientation control of learning beliefs, self-efficacy, critical thinking, and metacognitive self-regulation improved after taking the course. Students responded positively to the learner-centered approach. Additionally, students with a clinical practice career orientation or who prepared frequently for classes scored higher on several MSLQ domains. Conclusions The learner-centered approach was effective in promoting several domains of motivation and learning strategies in a third-year pharmacotherapy course. PMID:19564985
Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, P.K.; Freemerman, R.L.
1989-11-01
On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as themore » Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.« less
Role of Suzanne Mubarak Science Exploration Center in Motivating Physics Learning (abstract)
NASA Astrophysics Data System (ADS)
Mohsen, Mona
2009-04-01
The role of Science Exploration centers to promote learning ``beyond school walls'' is demonstrated. The Suzane Mubarak Science Exploration Center (www.smsec.com) at Hadaek El Kobba, Cairo, was inaugurated in 1998 with the assistance of Zusane Mubarak, the first lady of Egypt and the minister of education. It was the first interactive science and technology center in Egypt. After 10 years, the number of centers has increased to 33 nationwide. Since its inauguration the center has received over 3 million visitors. Through different facilities, such as the internet, science cities, multimedia, and virtual reality programs, basic principles of science are simplified and their technological applications in our daily lives are explored. These facilities are fully equipped with new media such as video conferencing, videotapes, overhead projectors, data shows, and libraries, as well as demonstration tools for basic science. The main objectives of the science exploration centers are discussed such as: (1) curricula development for on-line learning; (2) integration of e-learning programs into basic science (physics, mathematics, chemistry, and biology) and (3) workshops and organizations for students, teachers, and communities dealing with basic science programs.
ERIC Educational Resources Information Center
Walker, Luann
2016-01-01
This article presents an interview with Rick A. Sheets, who has been working in learning assistance, faculty training, and technology support for over 30 years. He collaborated with Frank Christ as the co-founder and webmaster of the Learning Support Centers in Higher Education (LSCHE) website, a resource established in 1996 for learning center…
ERIC Educational Resources Information Center
Lee, Eunbae; Hannafin, Michael J.
2016-01-01
Student-centered learning (SCL) identifies students as the owners of their learning. While SCL is increasingly discussed in K-12 and higher education, researchers and practitioners lack current and comprehensive framework to design, develop, and implement SCL. We examine the implications of theory and research-based evidence to inform those who…
ERIC Educational Resources Information Center
Afterschool Alliance, 2014
2014-01-01
The 21st Century Community Learning Centers (21st CCLC) initiative is the only federal funding source dedicated exclusively to before-school, afterschool, and summer learning programs. Each state education agency receives funds based on its share of Title I funding for low-income students at high-poverty, low performing schools. Funds are also…
ERIC Educational Resources Information Center
Hosler, Kim A.
2013-01-01
The purpose of this qualitative case study was to explore the experiences, perceptions, and pedagogy of nine self-identified faculty developers and instructional designers who work in centers for teaching and learning supporting faculty members requesting assistance with mobile learning. With the ever-increasing use of mobile devices across…
ERIC Educational Resources Information Center
Ackerman, Debra J.; Sansanelli, Rachel A.
2010-01-01
The proposed federal Early Learning Challenge Fund (ELCF) aims to improve the quality of early care and education programs by promoting the integration of more stringent program and early learning standards than are typically found in child care centers. ELCF grantees also must outline their plans for professional development and technical…
ERIC Educational Resources Information Center
Clarke, Oxana D.
2013-01-01
In the last few decades there has been a shift from thinking less about teaching and more about learning. Such a paradigm shift from teacher-centered to student-centered instruction requires students to think about their own learning and to monitor their own learning development and language achievement. Researchers have identified goal setting…
The Development of a Robot-Based Learning Companion: A User-Centered Design Approach
ERIC Educational Resources Information Center
Hsieh, Yi-Zeng; Su, Mu-Chun; Chen, Sherry Y.; Chen, Gow-Dong
2015-01-01
A computer-vision-based method is widely employed to support the development of a variety of applications. In this vein, this study uses a computer-vision-based method to develop a playful learning system, which is a robot-based learning companion named RobotTell. Unlike existing playful learning systems, a user-centered design (UCD) approach is…
ERIC Educational Resources Information Center
Merlone, Lynn; Moran, Dolores
2008-01-01
Fifth grade students with learning disabilities receive a ten-week unit on learning styles and the special education process as part of their transition to the middle school. Developed by a learning center teacher and guidance counselor, the program is derived from the literature on self-determination and from the work of Mel Levine. The…
ERIC Educational Resources Information Center
Comings, John, Ed.; Garner, Barbara, Ed.; Smith, Cristine, Ed.
2005-01-01
"The Review of Adult Learning and Literacy: Connecting Research, Policy, and Practice, Volume 5" is a volume in a series of annual publications of the National Center for the Study of Adult Learning and Literacy (NCSALL) that address major issues, the latest research, and the best practices in the field of adult literacy and learning.…
ERIC Educational Resources Information Center
Comings, John, Ed.; Garner, Barbara, Ed.; Smith, Cristine, Ed.
2004-01-01
"The Review of Adult Learning and Literacy: Connecting Research Policy, and Practice, Volume 4" is an addition to a series of annual publications of the National Center for the Study of Adult Learning and Literacy (NCSALL) that address major issues, the latest research, and the best practices in the field of adult literacy and learning.…
Lessons Learned in over Two Decades of GPS/GNSS Data Center Support
NASA Astrophysics Data System (ADS)
Boler, F. M.; Estey, L. H.; Meertens, C. M.; Maggert, D.
2014-12-01
The UNAVCO Data Center in Boulder, Colorado, curates, archives, and distributes geodesy data and products, mainly GPS/GNSS data from 3,000 permanent stations and 10,000 campaign sites around the globe. Although now having core support from NSF and NASA, the archive began around 1992 as a grass-roots effort of a few UNAVCO staff and community members to preserve data going back to 1986. Open access to this data is generally desired, but the Data Center in fact operates under an evolving suite of data access policies ranging from open access to nondisclosure for special cases. Key to processing this data is having the correct equipment metadata; reliably obtaining this metadata continues to be a challenge, in spite of modern cyberinfrastructure and tools, mostly due to human errors or lack of consistent operator training. New metadata problems surface when trying to design and publish modern Digital Object Identifiers for data sets where PIs, funding sources, and historical project names now need to be corrected and verified for data sets going back almost three decades. Originally, the data was GPS-only based on three signals on two carrier frequencies. Modern GNSS covers GPS modernization (three more signals and one additional carrier) as well as open signals and carriers of additional systems such as GLONASS, Galileo, BeiDou, and QZSS, requiring ongoing adaptive strategies to assess the quality of modern datasets. Also, new scientific uses of these data benefit from higher data rates than was needed for early tectonic applications. In addition, there has been a migration from episodic campaign sites (hence sparse data) to continuously operating stations (hence dense data) over the last two decades. All of these factors make it difficult to realistically plan even simple data center functions such as on-line storage capacity.
Complementing Operating Room Teaching With Video-Based Coaching.
Hu, Yue-Yung; Mazer, Laura M; Yule, Steven J; Arriaga, Alexander F; Greenberg, Caprice C; Lipsitz, Stuart R; Gawande, Atul A; Smink, Douglas S
2017-04-01
Surgical expertise demands technical and nontechnical skills. Traditionally, surgical trainees acquired these skills in the operating room; however, operative time for residents has decreased with duty hour restrictions. As in other professions, video analysis may help maximize the learning experience. To develop and evaluate a postoperative video-based coaching intervention for residents. In this mixed methods analysis, 10 senior (postgraduate year 4 and 5) residents were videorecorded operating with an attending surgeon at an academic tertiary care hospital. Each video formed the basis of a 1-hour one-on-one coaching session conducted by the operative attending; although a coaching framework was provided, participants determined the specific content collaboratively. Teaching points were identified in the operating room and the video-based coaching sessions; iterative inductive coding, followed by thematic analysis, was performed. Teaching points made in the operating room were compared with those in the video-based coaching sessions with respect to initiator, content, and teaching technique, adjusting for time. Among 10 cases, surgeons made more teaching points per unit time (63.0 vs 102.7 per hour) while coaching. Teaching in the video-based coaching sessions was more resident centered; attendings were more inquisitive about residents' learning needs (3.30 vs 0.28, P = .04), and residents took more initiative to direct their education (27% [198 of 729 teaching points] vs 17% [331 of 1977 teaching points], P < .001). Surgeons also more frequently validated residents' experiences (8.40 vs 1.81, P < .01), and they tended to ask more questions to promote critical thinking (9.30 vs 3.32, P = .07) and set more learning goals (2.90 vs 0.28, P = .11). More complex topics, including intraoperative decision making (mean, 9.70 vs 2.77 instances per hour, P = .03) and failure to progress (mean, 1.20 vs 0.13 instances per hour, P = .04) were addressed, and they were more thoroughly developed and explored. Excerpts of dialogue are presented to illustrate these findings. Video-based coaching is a novel and feasible modality for supplementing intraoperative learning. Objective evaluation demonstrates that video-based coaching may be particularly useful for teaching higher-level concepts, such as decision making, and for individualizing instruction and feedback to each resident.
Electronic patient-reported data capture as a foundation of rapid learning cancer care.
Abernethy, Amy P; Ahmad, Asif; Zafar, S Yousuf; Wheeler, Jane L; Reese, Jennifer Barsky; Lyerly, H Kim
2010-06-01
"Rapid learning healthcare" presents a new infrastructure to support comparative effectiveness research. By leveraging heterogeneous datasets (eg, clinical, administrative, genomic, registry, and research), health information technology, and sophisticated iterative analyses, rapid learning healthcare provides a real-time framework in which clinical studies can evaluate the relative impact of therapeutic approaches on a diverse array of measures. This article describes an effort, at 1 academic medical center, to demonstrate what rapid learning healthcare might look like in operation. The article describes the process of developing and testing the components of this new model of integrated clinical/research function, with the pilot site being an academic oncology clinic and with electronic patient-reported outcomes (ePROs) being the foundational dataset. Steps included: feasibility study of the ePRO system; validation study of ePRO collection across 3 cancers; linking ePRO and other datasets; implementation; stakeholder alignment and buy in, and; demonstration through use cases. Two use cases are presented; participants were metastatic breast cancer (n = 65) and gastrointestinal cancer (n = 113) patients at 2 academic medical centers. (1) Patient-reported symptom data were collected with tablet computers; patients with breast and gastrointestinal cancer indicated high levels of sexual distress, which prompted multidisciplinary response, design of an intervention, and successful application for funding to study the intervention's impact. (2) The system evaluated the longitudinal impact of a psychosocial care program provided to patients with breast cancer. Participants used tablet computers to complete PRO surveys; data indicated significant impact on psychosocial outcomes, notably distress and despair, despite advanced disease. Results return to the clinic, allowing iterative update and evaluation. An ePRO-based rapid learning cancer clinic is feasible, providing real-time research-quality data to support comparative effectiveness research.
Informal science education at Science City
NASA Astrophysics Data System (ADS)
French, April Nicole
The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.
Evaluating the Learning Curve for Percutaneous Nephrolithotomy under Total Ultrasound Guidance.
Song, Yan; Ma, YaNan; Song, YongSheng; Fei, Xiang
2015-01-01
To investigate the learning curve of percutaneous nephrolithotomy under total ultrasound guidance. One hundred and twenty consecutive PCNL operations under total ultrasound guidance performed by a novice surgeon in a tertiary referral center were studied. Operations were analyzed in cohorts of 15 to determine when a plateau was reached for the variables such as operation duration, ultrasound screening time, tract dilation time, stone-free rate and complication rate. Comparison was made with the results of a surgeon who had performed more than 1000 PCNLs. Fluoroscopy was not used at all during procedure. The mean operation time dropped from 82.5 min for the first 15 patients to a mean of 64.7 min for cases 46 through 60(P = 0.047). The ultrasound screening time was a peak of 6.4 min in the first 15 cases, whereas it dropped to a mean of 3.9 min for cases 46 through 60(P = 0.01). The tract dilation time dropped from 4.9 min for the first 15 patients to a mean of 3.8 min for cases 46 through 60(P = 0.036). The senior surgeon had a mean operating time, screening time and tract dilation time equivalent to those of the novice surgeon after 60 cases. There was no significant difference in stone free rate and complication rate. The competence of ultrasound guided PCNL is reached after 60 cases with good stone free rate and without major complications.
MO-B-BRC-01: Introduction [Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prisciandaro, J.
2016-06-15
Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less
MO-B-BRC-04: MRI-Based Prostate HDR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourtada, F.
2016-06-15
Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less
MO-B-BRC-00: Prostate HDR Treatment Planning - Considering Different Imaging Modalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2016-06-15
Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less
MO-B-BRC-02: Ultrasound Based Prostate HDR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Z.
2016-06-15
Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less
D'Angelo, Egidio; Casali, Stefano
2013-01-01
Following the fundamental recognition of its involvement in sensory-motor coordination and learning, the cerebellum is now also believed to take part in the processing of cognition and emotion. This hypothesis is recurrent in numerous papers reporting anatomical and functional observations, and it requires an explanation. We argue that a similar circuit structure in all cerebellar areas may carry out various operations using a common computational scheme. On the basis of a broad review of anatomical data, it is conceivable that the different roles of the cerebellum lie in the specific connectivity of the cerebellar modules, with motor, cognitive, and emotional functions (at least partially) segregated into different cerebro-cerebellar loops. We here develop a conceptual and operational framework based on multiple interconnected levels (a meta-levels hypothesis): from cellular/molecular to network mechanisms leading to generation of computational primitives, thence to high-level cognitive/emotional processing, and finally to the sphere of mental function and dysfunction. The main concept explored is that of intimate interplay between timing and learning (reminiscent of the “timing and learning machine” capabilities long attributed to the cerebellum), which reverberates from cellular to circuit mechanisms. Subsequently, integration within large-scale brain loops could generate the disparate cognitive/emotional and mental functions in which the cerebellum has been implicated. We propose, therefore, that the cerebellum operates as a general-purpose co-processor, whose effects depend on the specific brain centers to which individual modules are connected. Abnormal functioning in these loops could eventually contribute to the pathogenesis of major brain pathologies including not just ataxia but also dyslexia, autism, schizophrenia, and depression. PMID:23335884
NASA Technical Reports Server (NTRS)
Bagdigian, R. M.; Traweek, M. S.; Griffith, G. K.; Griffin, M. R.
1991-01-01
A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a predevelopment water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated in open and partially closed-loop modes, with man-in-the-loop, for a total of 28 days. Several significant subsystem physical anomalies were encountered during testing. Reclaimed potable and hygiene water generally met the current Space Station Freedom (SSF) water quality specifications for inorganic and microbiological constituents, but exceeded the maximum allowable concentrations for Total Organic Carbon (TOC). This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.
NASA Technical Reports Server (NTRS)
Price, Richard N.
2007-01-01
This paper intends to describe the lessons learned while specifying validating and installing a bit sync to replace the 30 year old Aydin Model 335a PCM bit sync used in the Space Shuttle Launch Control Center. The engineer had to analyze the original requirements and specifications and then create new requirements documentation that more correctly described our needs. One issue to consider was the removal of unnecessary requirements such as various data formats when only one format is used. The conversion to a system that no longer has an assortment of analog rotary switches required retraining of the operators. Finally, post-procurement corrections for undisclosed user requirements and missed design requirements required close contact with a manufacturer who was willing to accommodate the changes.
Nanosail-D: The Small Satellite That Could!
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Casas, Joseph P.; Agasid, Elwood F.; Adams, Charles L.; Laue, Greg; Kitts, Christopher; O'Brien, Sue
2011-01-01
Three years from its initial design review, NanoSail-D successfully deployed its sail on January 20th, 2011. It became the first solar sail vehicle to orbit the earth and the second sail ever unfurled in space. The NanoSail-D mission had two main objectives: eject a nanosatellite from a microsatellite; deploy its sail from a highly compacted volume and low mass system to validate large structure deployment and potential de-orbit technologies. These objectives were successfully achieved and the de-orbit analysis is in process. This paper presents an overview of the NanoSail-D project and insights into how potential setbacks were overcome. Many lessons have been learned during these past three years and are discussed in light of the phenomenal success and interest that this small satellite has generated. NanoSail-D was jointly designed and built by NASA's Marshall Space Flight Center and NASA's Ames Research Center. ManTech/NeXolve Corporation also provided key sail design support. The NanoSail-D experiment is managed by Marshall and jointly sponsored by the Army Space and Missile Defense Command, the Von Braun Center for Science and Innovation and Dynetics Inc. Ground operations support was provided by Santa Clara University, with radio beacon packets received from amateur operators around the world.
The software development process at the Chandra X-ray Center
NASA Astrophysics Data System (ADS)
Evans, Janet D.; Evans, Ian N.; Fabbiano, Giuseppina
2008-08-01
Software development for the Chandra X-ray Center Data System began in the mid 1990's, and the waterfall model of development was mandated by our documents. Although we initially tried this approach, we found that a process with elements of the spiral model worked better in our science-based environment. High-level science requirements are usually established by scientists, and provided to the software development group. We follow with review and refinement of those requirements prior to the design phase. Design reviews are conducted for substantial projects within the development team, and include scientists whenever appropriate. Development follows agreed upon schedules that include several internal releases of the task before completion. Feedback from science testing early in the process helps to identify and resolve misunderstandings present in the detailed requirements, and allows review of intangible requirements. The development process includes specific testing of requirements, developer and user documentation, and support after deployment to operations or to users. We discuss the process we follow at the Chandra X-ray Center (CXC) to develop software and support operations. We review the role of the science and development staff from conception to release of software, and some lessons learned from managing CXC software development for over a decade.
ERIC Educational Resources Information Center
La Salle, Donald P.
1979-01-01
Describes science programs for gifted students developed at a learning center in Connecticut. Programs include investigations in astronomy, geology, and climatology. The learning center site is a abandoned NIKE missle base. (MA)
ERIC Educational Resources Information Center
Donovan, Christine S.
1988-01-01
Provides background information, lesson plans, bulletin board activities, and a learning center description, all dealing with dinosaurs. Includes clip art for the learning center and reproducible "stamps" about some endangered species. (TW)
76 FR 76393 - Notice of Proposed Information Collection Requests
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
..., including through the use of information technology. Dated: December 2, 2011. Darrin King, Director... Collection: 21st Century Community Learning Centers: Lessons Learned Guides. OMB Control Number: 1875--NEW... Community Learning Centers (21st CCLC) program that will assist the U.S. Department of Education staff in...
Assessment of Tutoring Laboratories in a Learning Assistance Center
ERIC Educational Resources Information Center
Fullmer, Patricia
2012-01-01
The Learning Resource Center at Lincoln University, Pennsylvania, provides tutoring laboratories that are required for developmental reading, writing, and math courses. This article reviews the processes used to plan and determine the effectiveness of the tutoring laboratories, including logic models, student learning outcomes, and the results of…
Does Learning-Centered Teaching Promote Grade Improvement?
ERIC Educational Resources Information Center
Mostrom, Alison M.; Blumberg, Phyllis
2012-01-01
When the grade distribution within a course shifts towards higher grades, it may be due to grade inflation or grade improvement. If the positive shift is accompanied by an increase in achievement or learning, it should be considered grade improvement, "not" grade inflation. Effective learning-centered teaching is designed to promote student…
77 FR 8846 - Notice of Submission for OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
..., Evaluation and Policy Development Type of Review: New. Title of Collection: 21st Century Community Learning Centers: Lessons Learned Guides. OMB Control Number: Pending. Total Estimated Number of Annual Responses... guides for the 21st Century Community Learning Centers (21st CCLC) program that will assist the U.S...
Overview of Mediated Courseware in Learning Centers.
ERIC Educational Resources Information Center
Spangenberg, Ronald W.
A limited overview of some media related factors, this document should be helpful to the learning center manager who lacks extensive experience with media. It discusses important theoretical factors associated with media selection and summarizes research concerning the use of color and of motion in learning. Descriptive information concerning…
Power through Struggle in Introductory Statistics
ERIC Educational Resources Information Center
Autin, Melanie; Bateiha, Summer; Marchionda, Hope
2013-01-01
Traditional classroom instruction consists of teacher-centered learning in which the instructor presents course material through lectures. A recent trend in higher education is the implementation of student-centered learning in which students take a more active role in the learning process. The purpose of this article is to describe the discomfort…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... State Expanded Learning Time AGENCY: Institute of Education Sciences/National Center for Education... State Expanded Learning Time. OMB Control Number: 1850-NEW. Type of Review: a new collection... conduct semi-structured interviews with 21st Century Community Learning Centers (21st CCLC) state...
ERIC Educational Resources Information Center
Clanon, Jeff
1999-01-01
The 2-year process by which the Massachusetts Institute of Technology's Center for Organizational Learning transformed into the self-governed Society for Organizational Learning illustrates new ways of conceiving organizations, the capabilities required for change, and critical elements of the process: diverse representation, grounding in business…
Using Rocks: A Discovery Approach to Multi-faceted Learning.
ERIC Educational Resources Information Center
Thomas, John I.
Pupils' natural questioning attitudes lead them to discovery in a learning center, in contrast to the lecture method, by which information is forced on students regardless of their interests. This paper describes learning experiences built around rocks. Materials placed in a rock center (rocks, stones, pebbles, magnifying glasses hammers, and…
Implementing Instructional Development Through Learning Resource Programs. Volume 1.
ERIC Educational Resources Information Center
Holloway, Ralph, Ed.
At a meeting of community/junior college officials on proposed academic redesign based on learning resource centers, various aspects of instructional development were discussed. Topics include the use of television to extend education, organizing for instructional development, bringing about change, the concept of the learning center, organizing…
ERIC Educational Resources Information Center
Pelch, Michael Anthony
2016-01-01
STEM educational reform encourages a transition from instructor-centered passive learning classrooms to student-centered, active learning environments. Instructors adopting these changes incorporate research-validated teaching practices that improve student learning. Professional development that trains faculty to implement instructional reforms…
Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations
NASA Astrophysics Data System (ADS)
Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.
2015-12-01
Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.
Lima, Margarete Maria de; Reibnitz, Kenya Schmidt; Kloh, Daiana; Martini, Jussara Gue; Backes, Vania Marli Schubert
2017-11-27
To analyze how the indications of comprehensiveness translate into the teaching-learning process in a nursing undergraduate course. Qualitative case study carried out with professors of a Nursing Undergraduate Course. Data collection occurred through documentary analysis, non-participant observation and individual interviews. Data analysis was guided from an analytical matrix following the steps of the operative proposal. Eight professors participated in the study. Some indications of comprehensiveness such as dialogue, listening, mutual respect, bonding and welcoming are present in the daily life of some professors. The indications of comprehensiveness are applied by some professors in the pedagogical relationship. The results refer to the Comprehensiveness of teaching-learning in a single and double loop model, and in this the professor and the student assume an open posture for new possibilities in the teaching-learning process. Comprehensiveness, as it is recognized as a pedagogical principle, allows the disruption of a professor-centered teaching and advances in collective learning, enabling the professor and student to create their own design anchored in a reflective process about their practices and the reality found in the health services.