Sample records for operations team final

  1. I-880 Integrated Corridor Management Concept of Operation : Final Submittal: Concept of Operations for the I-880 Corridor in Oakland, California

    DOT National Transportation Integrated Search

    2008-03-31

    This report describes the draft Concept of Operations that has been developed for the Integrated Corridor Mobility (ICM) program by the I-880 corridor team. The I-880 corridor team has defined this Concept of Operations (ConOps) based on two primary ...

  2. Science Operations Management

    NASA Astrophysics Data System (ADS)

    Squibb, Gael F.

    1984-10-01

    The operation teams for the Infrared Astronomical Satellite (IRAS) included scientists from the IRAS International Science Team. The scientific decisions on an hour-to-hour basis, as well as the long-term strategic decisions, were made by science team members. The IRAS scientists were involved in the analysis of the instrument performance, the analysis of the quality of the data, the decision to reacquire data that was contaminated by radiation effects, the strategy for acquiring the survey data, and the process for using the telescope for additional observations, as well as the processing decisions required to ensure the publication of the final scientific products by end of flight operations plus one year. Early in the project, two science team members were selected to be responsible for the scientific operational decisions. One, located at the operations control center in England, was responsible for the scientific aspects of the satellite operations; the other, located at the scientific processing center in Pasadena, was responsible for the scientific aspects of the processing. These science team members were then responsible for approving the design and test of the tools to support their responsibilities and then, after launch, for using these tools in making their decisions. The ability of the project to generate the final science data products one year after the end of flight operations is due in a large measure to the active participation of the science team members in the operations. This paper presents a summary of the operational experiences gained from this scientific involvement.

  3. NASA/MOD Operations Impacts from Shuttle Program

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Michael; Mattes, Gregory; Grabois, Michael; Griffith, Holly

    2011-01-01

    Operations plays a pivotal role in the success of any human spaceflight program. This paper will highlight some of the core tenets of spaceflight operations from a systems perspective and use several examples from the Space Shuttle Program to highlight where the success and safety of a mission can hinge upon the preparedness and competency of the operations team. Further, awareness of the types of operations scenarios and impacts that can arise during human crewed space missions can help inform design and mission planning decisions long before a vehicle gets into orbit. A strong operations team is crucial to the development of future programs; capturing the lessons learned from the successes and failures of a past program will allow for safer, more efficient, and better designed programs in the future. No matter how well a vehicle is designed and constructed, there are always unexpected events or failures that occur during space flight missions. Preparation, training, real-time execution, and troubleshooting are skills and values of the Mission Operations Directorate (MOD) flight controller; these operational standards have proven invaluable to the Space Shuttle Program. Understanding and mastery of these same skills will be required of any operations team as technology advances and new vehicles are developed. This paper will focus on individual Space Shuttle mission case studies where specific operational skills, techniques, and preparedness allowed for mission safety and success. It will detail the events leading up to the scenario or failure, how the operations team identified and dealt with the failure and its downstream impacts. The various options for real-time troubleshooting will be discussed along with the operations team final recommendation, execution, and outcome. Finally, the lessons learned will be summarized along with an explanation of how these lessons were used to improve the operational preparedness of future flight control teams.

  4. Measurement of Team Behaviors in a Navy Environment. Final Report.

    ERIC Educational Resources Information Center

    Morgan, Ben B., Jr.; And Others

    Report of the first year of a three-year study attempting to understand the processes of Teen Evaluation and Maturation (TEAM) in operational Navy contexts, seeking to document changes occurring when team members learn about their tasks, each other, and the environmental demands of the scenarios of the Naval Gunfire Support (NGFS) Department,…

  5. Implementing Distributed Operations: A Comparison of Two Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Mishkin, Andrew; Larsen, Barbara

    2006-01-01

    Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption of web-based and telecommunication tools has been critical to the success of Cassini operations.

  6. Hazardous material transportation safety and security field operational test final evaluation plan : executive summary

    DOT National Transportation Integrated Search

    2003-03-17

    The purpose of this effort is to independently evaluate the Battelle Operational Test Team to test methods for leveraging technology and operations to improve HAZMAT transport security, safety, and operational efficiency. As such, the preceding techn...

  7. Regional operations research program for development of geothermal energy in the southwest United States. Final technical report, June 1977-August 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marlin, J.M.; Christ, R.; McDevitt, P.

    1979-01-01

    The efforts by the Core and State Teams in data acquisition, electric and non-electric economic studies, development of computer support functions and operations, and preparation of geothermal development scenarios are described. Team reports for the states of Arizona, Colorado, Nevada, New Mexico, and Utah are included in the appendices along with a summary of the state scenarios. (MHR)

  8. Student Drop Tower Competitions: Dropping In a Microgravity Environment (DIME) and What If No Gravity? (WING)

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard

    2011-01-01

    This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.

  9. 324 Building B-Cell Pressurized Water Reactor Spent Fuel Packaging & Shipment RL Readiness Assessment Final Report [SEC 1 Thru 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUMPHREYS, D C

    A parallel readiness assessment (RA) was conducted by independent Fluor Hanford (FH) and U. S. Department of Energy, Richland Operations Office (RL) team to verify that an adequate state of readiness had been achieved for activities associated with the packaging and shipping of pressurized water reactor fuel assemblies from B-Cell in the 324 Building to the interim storage area at the Canister Storage Building in the 200 Area. The RL review was conducted in parallel with the FH review in accordance with the Joint RL/FH Implementation Plan (Appendix B). The RL RA Team members were assigned a FH RA Teammore » counterpart for the review. With this one-on-one approach, the RL RA Team was able to assess the FH Team's performance, competence, and adherence to the implementation plan and evaluate the level of facility readiness. The RL RA Team agrees with the FH determination that startup of the 324 Building B-Cell pressurized water reactor spent nuclear fuel packaging and shipping operations can safely proceed, pending completion of the identified pre-start items in the FH final report (see Appendix A), completion of the manageable list of open items included in the facility's declaration of readiness, and execution of the startup plan to operations.« less

  10. Utah Southwest Regional Geothermal Development Operations Research Project. Appendix 10 of regional operations research program for development of geothermal energy in the Southeast United States. Final technical report, June 1977--August 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Stanley; Wagstaff, Lyle W.

    1979-01-01

    The Southwest Regional Geothermal Operations/Research project was initiated to investigate geothermal development in the five states within the region: Arizona, Colorado, Nevada, New Mexico, and Utah. Although the region changed during the first year to include Idaho, Montana, North Dakota, South Dakota, and Wyoming, the project objectives and procedures remained unchanged. The project was funded by the DOE/DGE and the Four Corners Regional Commission with participation by the New Mexico Energy Resources Board. The study was coordinated by the New Mexico Energy Institute at New Mexico State University, acting through a 'Core Team'. A 'state' team, assigned by the states,more » conducted the project within each state. This report details most of the findings of the first year's efforts by the Utah Operations/Research team. It is a conscientious effort to report the findings and activities of the Utah team, either explicitly or by reference. The results are neither comprehensive nor final, and should be regarded as preliminary efforts to much of what the Operations/Research project was envisioned to accomplish. In some cases the report is probably too detailed, in other cases too vague; hopefully, however, the material in the report, combined with the Appendices, will be able to serve as source material for others interested in geothermal development in Utah.« less

  11. NCEP Operational HWRF Forecasting System

    Science.gov Websites

    NOAA logo - Click to go to the NOAA homepage EMC Hurricane Team NWS logo - Click to go to the NWS © 2018 | NOAA * NWS * NCEP * EMC * Hurricane Project Team DISCLAIMER: THIS INFORMATION IS PROVIDED AS GUIDANCE. IT REQUIRES INTERPRETATION BY HURRICANE SPECIALISTS AND SHOULD NOT BE CONSIDERED AS A FINAL

  12. Science sequence design

    NASA Technical Reports Server (NTRS)

    Koskela, P. E.; Bollman, W. E.; Freeman, J. E.; Helton, M. R.; Reichert, R. J.; Travers, E. S.; Zawacki, S. J.

    1973-01-01

    The activities of the following members of the Navigation Team are recorded: the Science Sequence Design Group, responsible for preparing the final science sequence designs; the Advanced Sequence Planning Group, responsible for sequence planning; and the Science Recommendation Team (SRT) representatives, responsible for conducting the necessary sequence design interfaces with the teams during the mission. The interface task included science support in both advance planning and daily operations. Science sequences designed during the mission are also discussed.

  13. Essentials for Team Based Rehearsals and the Differences Between Earth Orbiting and Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Gomez-Rosa, Carlos; Cifuentes, Juan; Wasiak, Francis; Alfonzo, Agustin

    2015-01-01

    The mission readiness environment is where spacecraft and ground systems converge to form the entire as built flight system for the final phase of operationally-themed testing. For most space missions, this phase starts between nine to twelve months prior to the planned launch. In the mission readiness environment, the goal is to perform sufficient testing to exercise the flight teams and systems through all mission phases in order to demonstrate that all elements are ready to support. As part of the maturation process, a mission rehearsal program is introduced to focus on team processes within the final flight system, in a more realistic operational environment. The overall goal for a mission rehearsal program is to: 1) ensure all flight system elements are able to meet mission objectives as a cohesive team; 2) reduce the risk in space based operations due to deficiencies in people, processes, procedures, or systems; and 3) instill confidence in the teams that will execute these first time flight activities. A good rehearsal program ensures critical events are exercised, discovers team or flight system nuances whose impact were previously unknown, and provides a real-time environment in which to interact with the various teams and systems. For flight team members, the rehearsal program provides experience and training in the event of planned (or unplanned) flight contingencies. To preserve the essence for team based rehearsals, this paper will explore the important elements necessary for a successful rehearsal program, document differences driven by Earth Orbiting (Aqua, Aura, Suomi-National Polar-orbiting Partnership (NPP)) and Deep Space missions (New Horizons, Mars Atmosphere and Volatile EvolutioN (MAVEN)) and discuss common challenges to both mission types. In addition, large scale program considerations and enhancements or additional steps for developing a rehearsal program will also be considered. For NASA missions, the mission rehearsal phase is a key milestone for predicting and ensuring on-orbit success.

  14. Operational Readiness Review Final Report for K Basin Fuel Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIES, T.H.

    2002-10-01

    An Operational Readiness Review (ORR) was conducted by the U.S. Department of Energy (DOE), Richland Operations Office (RL) to verify that an adequate state of readiness had been achieved for startup of the K Basin Fuel Transfer System (FTS). The DOE ORR was conducted during the period November 6-18, 2002. The DOE ORR team concluded that the K Basin Fuel Transfer System is ready to start operations, subject to completion and verification of identified pre-start findings. The ORR was conducted in accordance with the Spent Nuclear Fuel (SNF) K Basin Fuel Transfer System (FTS) Operational Readiness Review (ORR) Plan ofmore » Action and the Operational Readiness Review Implementation Plan for K Basin Fuel Transfer System. Review activities consisted of staff interviews, procedure and document reviews, and observations of normal facility operations, operational upset conditions, and an emergency drill. The DOE ORR Team also reviewed and assessed the adequacy of the contractor ORR3 and the RL line management review. The team concurred with the findings and observations identified in these two reports. The DOE ORR for the FTS evaluated the contractor under single-shift operations. Of concern to the ORR Team was that SNF Project management intended to change from a single-shift FTS operation to a two-shift operation shortly after the completion of the DOE ORR. The ORR team did not assess two-shift FTS operations and the ability of the contractor to conduct a smooth transition from shift to shift. However, the DOE ORR team did observe an operational upset drill that was conducted during day shift and carried over into swing shift; during this drill, swing shift was staffed with fewer personnel as would be expected for two-shift operations. The facility was able to adequately respond to the event with the reduced level of staff. The ORR Team was also able to observe a Shift Manager turnover meeting when one shift manager had to be relieved during the middle of the day. The ORR Team did not have the opportunity to observe a shift turnover from one crew to another. The ORR Team has evaluated the risk of not observing this activity and considers the risk to be minimal based on the fact that operating staff are very familiar with the FTS equipment and its procedures, and because existing Conduct of Operations processes and procedures are adequate and implemented. Because the ORR Team has not observed two-shift FTS operations, we recommend that additional RL oversight be provided at the start of two-shift FTS operations to evaluate the adequacy of crew turnovers.« less

  15. TA-60 Warehouse and Salvage SWPPP Rev 2 Jan 2017-Final

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    The Stormwater Pollution Prevention Team (PPT) for the TA-60-0002 Salvage and Warehouse Area consists of operations and management personnel from the facility, Multi-Sector General Permitting (MSGP) stormwater personnel from Environmental Compliance Programs (EPC-CP) organization, and Deployed Environmental Professionals. The EPC-CP representative is responsible for Laboratory compliance under the National Pollutant Discharge Elimination System (NPDES) permit regulations. The team members are selected on the basis of their familiarity with the activities at the facility and the potential impacts of those activities on stormwater runoff. The Warehouse and Salvage Yard are a single shift operation; therefore, a member of the PPT ismore » always present during operations.« less

  16. Code Blue Emergencies: A Team Task Analysis and Educational Initiative.

    PubMed

    Price, James W; Applegarth, Oliver; Vu, Mark; Price, John R

    2012-01-01

    The objective of this study was to identify factors that have a positive or negative influence on resuscitation team performance during emergencies in the operating room (OR) and post-operative recovery unit (PAR) at a major Canadian teaching hospital. This information was then used to implement a team training program for code blue emergencies. In 2009/10, all OR and PAR nurses and 19 anesthesiologists at Vancouver General Hospital (VGH) were invited to complete an anonymous, 10 minute written questionnaire regarding their code blue experience. Survey questions were devised by 10 recovery room and operation room nurses as well as 5 anesthesiologists representing 4 different hospitals in British Columbia. Three iterations of the survey were reviewed by a pilot group of nurses and anesthesiologists and their feedback was integrated into the final version of the survey. Both nursing staff (n = 49) and anesthesiologists (n = 19) supported code blue training and believed that team training would improve patient outcome. Nurses noted that it was often difficult to identify the leader of the resuscitation team. Both nursing staff and anesthesiologists strongly agreed that too many people attending the code blue with no assigned role hindered team performance. Identifiable leadership and clear communication of roles were identified as keys to resuscitation team functioning. Decreasing the number of people attending code blue emergencies with no specific role, increased access to mock code blue training, and debriefing after crises were all identified as areas requiring improvement. Initial team training exercises have been well received by staff.

  17. Attitudes to teamwork and safety among Italian surgeons and operating room nurses.

    PubMed

    Prati, Gabriele; Pietrantoni, Luca

    2014-01-01

    Previous studies have shown that surgical team members' attitudes about safety and teamwork in the operating theatre may play a role in patient safety. The aim of this study was to assess attitudes about teamwork and safety among Italian surgeons and operating room nurses. Fifty-five surgeons and 48 operating room nurses working in operating theatres at one hospital in Italy completed the Operating Room Management Attitudes Questionnaire (ORMAQ). Results showed several discrepancies in attitudes about teamwork and safety between surgeons and operating room nurses. Surgeons had more positive views on the quality of surgical leadership, communication, teamwork, and organizational climate in the theatre than operating room nurses. Operating room nurses reported that safety rules and procedures were more frequently disregarded than the surgeons. The results are only partially aligned with previous ORMAQ surveys of surgical teams in other countries. The differences emphasize the influence of national culture, as well as the particular healthcare system. This study shows discrepancies on many aspects in attitudes to teamwork and safety between surgeons and operating room nurses. The findings support implementation and use of team interventions and human factor training. Finally, attitude surveys provide a method for assessing safety culture in surgery, for evaluating the effectiveness of training initiatives, and for collecting data for a hospital's quality assurance programme.

  18. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  19. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    A jar of peanuts is seen sitting on a console in mission control of the Space Flight Operations Center as the Cassini mission team await the final downlink of the spacecraft's data recorder, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Cassini program manager at JPL, Earl Maize, is seen in mission control of the Space Flight Operations Center as the Cassini team wait for the spacecraft to establish a connection with NASA's Deep Space Network to begin the final playback of its data recorder, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, rips up the final contingency plan for the Cassini mission, Friday, Sept. 15, 2017 in mission control at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster is seen in mission control as the Cassini spacecraft makes its final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. A pilot study to evaluate the utility of live training (LIVEX) in the operational preparedness of UK military trauma teams.

    PubMed

    Smith, J E; Withnall, R D J; Rickard, R F; Lamb, D; Sitch, A; Hodgetts, T J

    2016-12-01

    With the end of UK military operations in Iraq and Afghanistan, it is essential that peacetime training of Defence Medical Services (DMS) trauma teams ensures appropriate future preparedness. A new model of pre-deployment training involves placement of formed military trauma teams into civilian trauma centres. This study evaluates the benefit of 'live training during an exercise period' (LIVEX) for DMS trauma teams. A cross-sectional questionnaire-based survey of participants was conducted. Quantitative data were collected prior to the start and on the final day. Written reports were collected from the coordinators. Thematic analysis was used to identify emergent themes in a supplementary, qualitative analysis. Each team comprised 13 personnel and results should be interpreted with knowledge of this small sample size. The response rate for both the pre-LIVEX and post-LIVEX questionnaire was 100%. By the end of the week, 89% of participants (n=23) stated LIVEX was an 'appropriate or very appropriate' way of preparing for an operational role compared with 40% (n=9) before the exercise (p<0.01). However, completing LIVEX made no difference to participants' personal perception of their own operational preparedness. Thematic analysis suggested greater training benefit for more junior members of the team; from Regulars and Reservists training together; and from two-way exchange of information between DMS and National Health Service medical staffs. Completing LIVEX made no statistically significant difference to participants' personal perception of their own operational preparedness, but the perception of LIVEX as an appropriate training platform improved significantly after conducting the training exercise. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. 2014-2682

    NASA Image and Video Library

    2014-05-23

    CAPE CANAVERAL, Fla. -- Team members from the University of Akron in Ohio take a break before their final mining run on the final day of NASA's 2014 Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett

  5. Experience of disused source management in Latin America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimenta Mourao, R.

    2008-07-01

    The Centro de Desenvolvimento da Tecnologia Nuclear (Center for the Development of Nuclear Technology) - CDTN - has been actively engaged in cooperation programs for disused source management throughout the Latin American and the Caribbean region since 1996. The CDTN source conditioning team participated in the preparation of the technical procedures established for the different tasks involved in the radium sources conditioning operations, like preparation of the packaging for conditioning; sources conditioning; capsule welding; leak test in radium-containing capsule; and radiation protection planning for the conditioning of disused radium sources. The team also carried out twelve radium sources conditioning operationmore » in the region, besides in-house operations, which resulted in a total conditioned activity of approximately 525 GBq, or 14,200 mg of radium. Additionally, one operation was carried out in Nicaragua to safely condition three Cobalt teletherapy heads stored under very precarious conditions in the premises of an old hospital. More recently, the team started its participation in an IAEA- and US State Department-sponsored program for the repatriation of disused or excess transuranic sources presently stored at users' premises or under regulatory control in different countries in the region. In September 2007 the team attended a theoretical and practical training in transuranic sources management, including the participation in the conditioning of different neutron sources in certified packages. It is expected that the trained team will carry out similar operations in other Latin American countries. Finally, the team is expected be involved in the near future in the repatriation of US-origin teletherapy heads and industrial gauges. (authors)« less

  6. [Teamwork in the operating theatre: the German Observational Teamwork Assessment for Surgery (OTAS-D) and its first application in Germany].

    PubMed

    Passauer-Baierl, S; Chiapponi, C; Bruns, C J; Weigl, M

    2014-12-01

    The quality of surgical teamwork contributes to performance of the operating theatre team, service quality and patient safety in surgery. Observational tools are a feasible and reliable way to capture and evaluate teamwork in the operating theatre (OT). We introduce the German version of the Observational Teamwork Assessment for Surgery (OTAS-D) and present the first observational results from German OTs. Quality of surgical teamwork was assessed with observational teamwork assessment for surgery (OTAS-D). It evaluates five dimensions of OT teamwork: communication, coordination, cooperation/backup behaviour, leadership, and team monitoring/situation awareness. Each dimension is evaluated for each profession (surgical, nursing, and anaesthesia team) as well for each phase of the procedure (pre-, intra-, and post-operative). We observed n = 63 procedures, mainly in abdominal/general and orthopaedic surgery. Additionally, all OT team members scored their individual evaluation of the intra-operative teamwork (standardised 1-item questions). The OTAS-D evaluations showed meaningful results and differences for the OT professions as well as across the different phases of the procedures. Overall, a medium to good level of the OT teamwork was observed. There were no differences in regard to type of surgery (minimally invasive vs. open) or surgical specialties. With an increased coordination of the surgical team we observed a significantly increased cooperation of the nursing team (r = 0.36, p = 0.004). Concerning the OT staffs self-reports, the surgical and nursing teams reported higher scores for quality of surgical teamwork during the procedure than their anaesthesia team members. No significant relationships between observed quality of OT teamwork and self-reports were found. The German version of OTAS-D is a psychometrically robust method to capture the quality of teamwork in operating theatres. It enables the analyses of teamwork between the surgical, nursing and anaesthesia professions in acute surgical care. Limitations of the first application results are considered. Finally, potential applications for surgical teaching, research and quality management are discussed. Georg Thieme Verlag KG Stuttgart · New York.

  7. Computer-aided dispatch--traffic management center field operational test final evaluation plan : WSDOT deployment

    DOT National Transportation Integrated Search

    2003-09-22

    This document presents the Evaluation Teams plan for conducting the evaluation of the FOT in Washington State. A companion document exists for the evaluation of the Utah deployment. This plan includes the experimental design for testing hypotheses...

  8. Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1992-01-01

    Lockheed personnel, along with team member subcontractors and consultants, have performed a preliminary design for the LAWS Instrument. Breadboarding and testing of a LAWS class laser have also been performed. These efforts have demonstrated that LAWS is a feasible Instrument and can be developed with existing state-of-the-art technology. Only a commitment to fund the instrument development and deployment is required to place LAWS in orbit and obtain the anticipated science and operational forecasting benefits. The LAWS Science Team was selected in 1988-89 as were the competing LAWS phase 1/2 contractor teams. The LAWS Science Team developed requirements for the LAWS Instrument, and the NASA/LAWS project office defined launch vehicle and platform design constraints. From these requirements and constraints, the lockheed team developed LAWS Instrument concepts and configurations. A system designed to meet these requirements and constraints is outlined. The LAWS primary subsystem and interfaces - laser, optical, and receiver/processor - required to assemble a lidar are identified. Also identified are the support subsystems required for the lidar to function from space: structures and mechanical, thermal, electrical, and command and data management. The Lockheed team has developed a preliminary design of a LAWS Instrument System consisting of these subsystems and interfaces which will meet the requirements and objectives of the Science Team. This final report provides a summary of the systems engineering analyses and trades of the LAWS. Summaries of the configuration, preliminary designs of the subsystems, testing recommendations, and performance analysis are presented. Environmental considerations associated with deployment of LAWS are discussed. Finally, the successful LAWS laser breadboard effort is discussed along with the requirements and test results.

  9. Data Collection and Administration Procedures for the Job Performance Measurement System

    DTIC Science & Technology

    1992-10-01

    acceptable to the MAJCC4s and would allow data collection to proceed smoothly with effective use of time and resources. Table 2 lists the number of bases...WTPT, but this was not required. Previous exposure to the JPM project was also beneficial, though not required. Finally, to ensure an effective line of...PDCIKR 1. Provide team leadership to facilitate effective operation and the collection of quality data. 2. Serve as the liaison between team and AFHRL

  10. Tank waste remediation system retrieval and disposal mission readiness-to-proceed responses to internal independent assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaus, P.S.

    1998-01-06

    The US Department of Energy (DOE) is planning to make critical decisions during fiscal year (FY) 1998 regarding privatization contracts for the treatment of Hanford tank waste. Specifically, DOE, Richland Operations Office (RL), will make decisions related to proceeding with Phase 1 Privatization. In support of these decisions, the management and integration (M+I) contractor must be able to meet the requirements to support the Phase 1 privatization contractors. As part of the assessment of the Tank Waste Retrieval (TWR) Readiness-To-Proceed (RTP), an independent review of their process and products was required by the RL letter of August 8, 1997. Themore » Independent Review Team reviewed the adequacy of the planning that has been done by the M+I contractor to validate that, if the plans are carried out, there is reasonable assurance of success. Overall, the RTP Independent Review Team concluded that, if the planning by the M+I contractor team is carried out with adequate funding, there is reasonable assurance that the M+I contractor will be able to deliver waste to the privatization contractor for the duration of Phase 1. This conclusion was based on addressing the recommendations contained in the Independent Review Team`s Final Report and in the individual Criteria and Review Approach (CRA) forms completed during the assessment. The purpose of this report is to formally document the independent assessment and the RTP team responses to the Independent Review Team recommendations. It also provides closure logics for selected recommendations from a Lockheed Martin Hanford Corporation (LMHC) internal assessment of the Technical Basis Review (TBR) packages. This report contains the RTP recommendation closure process (Section 2.0); the closure tables (Section 3.0) which provide traceability between each review team recommendation and its corresponding Project Hanford Management Contract closure logic; and two attachments that formally document the Independent Review Team Final Report and the Internal Assessment Final Report.« less

  11. The Rosetta Science Archive: Status and Plans for Enhancing the Archive Content

    NASA Astrophysics Data System (ADS)

    Heather, David; Barthelemy, Maud; Besse, Sebastien; Fraga, Diego; Grotheer, Emmanuel; O'Rourke, Laurence; Taylor, Matthew; Vallat, Claire

    2017-04-01

    On 30 September 2016, Rosetta completed its incredible mission by landing on the surface of Comet 67P/Churyumov-Gerasimenko. Although this marked an end to the spacecraft's active operations, intensive work is still ongoing with instrument teams preparing their final science data deliveries for ingestion into ESA's Planetary Science Archive (PSA). In addition, ESA is establishing contracts with some instrument teams to enhance their data and documentation in an effort to provide the best long-term archive possible for the Rosetta mission. Currently, the majority of teams have delivered all of their data from the nominal mission (end of 2015), and are working on their remaining increments from the 1-year mission extension. The aim is to complete the nominal archiving with data from the complete mission by the end of this year, when a full mission archive review will be held. This review will assess the complete data holdings from Rosetta and ensure that the archive is ready for the long-term. With the resources from the operational mission coming to an end, ESA has established a number of 'enhanced archiving' contracts to ensure that the best possible data are delivered to the archive before instrument teams disband. Updates are focused on key aspects of an instrument's calibration or the production of higher level data / information, and are therefore specific to each instrument's needs. These contracts are currently being kicked off, and will run for various lengths depending upon the activities to be undertaken. The full 'archive enhancement' process will run until September 2019, when the post operations activities for Rosetta will end. Within these contracts, most instrument teams will work on providing a Science User Guide for their data, as well as updating calibrations. Several teams will also be delivering higher level and derived products. For example, the VIRTIS team will be updating both their spectral and geometrical calibrations, and will aim to deliver mapping products to the final archive. Similarly, the OSIRIS team will be improving their calibrations and delivering data additionally in FITS format. The Rosetta Plasma Consortium (RPC) instruments will complete cross-calibrations and a number of activities individual to each instrument. The MIDAS team will also be working on cross-calibrations and will produce a dust particle catalog from the comet coma. GIADA will be producing dust environment maps, with products in 3D plus time. A contract also exists to produce and deliver data set(s) containing sup-porting ground-based observations from amateur astronomers. In addition to these contracts, the Rosetta ESA archiving team will produce calibrated data sets for the NAVCAM instrument, and will work to include the latest shape models from the comet into the final Rosetta archive. Work is also underway to provide a centralized solution to the problem of geometry on the comet. This presentation will outline the current status of the Rosetta archive, as well as highlighting some of the 'enhanced archiving' activities planned with the various instrument teams on Rosetta.

  12. Humans and Autonomy: Implications of Shared Decision Making for Military Operations

    DTIC Science & Technology

    2017-01-01

    and machine learning transparency are identified as future research opportunities. 15. SUBJECT TERMS autonomy, human factors, intelligent agents...network as either the mission changes or an agent becomes disabled (DSB 2012). Fig. 2 Control structures for human agent teams. Robots without tools... learning (ML) algorithms monitor progress. However, operators have final executive authority; they are able to tweak the plan or choose an option

  13. Human Performance Modeling and Simulation for Launch Team Applications

    NASA Technical Reports Server (NTRS)

    Peaden, Cary J.; Payne, Stephen J.; Hoblitzell, Richard M., Jr.; Chandler, Faith T.; LaVine, Nils D.; Bagnall, Timothy M.

    2006-01-01

    This paper describes ongoing research into modeling and simulation of humans for launch team analysis, training, and evaluation. The initial research is sponsored by the National Aeronautics and Space Administration's (NASA)'s Office of Safety and Mission Assurance (OSMA) and NASA's Exploration Program and is focused on current and future launch team operations at Kennedy Space Center (KSC). The paper begins with a description of existing KSC launch team environments and procedures. It then describes the goals of new Simulation and Analysis of Launch Teams (SALT) research. The majority of this paper describes products from the SALT team's initial proof-of-concept effort. These products include a nominal case task analysis and a discrete event model and simulation of launch team performance during the final phase of a shuttle countdown; and a first proof-of-concept training demonstration of launch team communications in which the computer plays most roles, and the trainee plays a role of the trainee's choice. This paper then describes possible next steps for the research team and provides conclusions. This research is expected to have significant value to NASA's Exploration Program.

  14. Truck activity and wait times at international border crossings : USDOT Region V Regional University Transportation Center final report.

    DOT National Transportation Integrated Search

    2016-11-30

    Documenting the times trucks incur when crossing an international border facility is valuable both to the private freight industry and to gateway facility operators and planners. Members of the project team previously developed and implemented an app...

  15. Evaluating the Reliability of Emergency Response Systems for Large-Scale Incident Operations

    DTIC Science & Technology

    2010-01-01

    for describing response performance or other reliability related measures include Kolesar et al., 1975; Chelst and Jarvis , 1979; Revelle and Hogan...Chemicals,” Journal of Hazardous Materials, Vol. 159, 2008, pp. 2–12. Mason, Steve , Final Report, Incident Name: Teris LLC Explosion and Fire, El Dorado...Arkansas, EPA Region 6, Emergency Readiness Team, Response and Prevention Branch, March 2005. Mason, Steve , Final Report, Incident Name: Union Pacific

  16. Extensible Adaptable Simulation Systems: Supporting Multiple Fidelity Simulations in a Common Environment

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brian J.; Barrett, Larry K.

    2012-01-01

    Common practice in the development of simulation systems is meeting all user requirements within a single instantiation. The Joint Polar Satellite System (JPSS) presents a unique challenge to establish a simulation environment that meets the needs of a diverse user community while also spanning a multi-mission environment over decades of operation. In response, the JPSS Flight Vehicle Test Suite (FVTS) is architected with an extensible infrastructure that supports the operation of multiple observatory simulations for a single mission and multiple mission within a common system perimeter. For the JPSS-1 satellite, multiple fidelity flight observatory simulations are necessary to support the distinct user communities consisting of the Common Ground System development team, the Common Ground System Integration & Test team, and the Mission Rehearsal Team/Mission Operations Team. These key requirements present several challenges to FVTS development. First, the FVTS must ensure all critical user requirements are satisfied by at least one fidelity instance of the observatory simulation. Second, the FVTS must allow for tailoring of the system instances to function in diverse operational environments from the High-security operations environment at NOAA Satellite Operations Facility (NSOF) to the ground system factory floor. Finally, the FVTS must provide the ability to execute sustaining engineering activities on a subset of the system without impacting system availability to parallel users. The FVTS approach of allowing for multiple fidelity copies of observatory simulations represents a unique concept in simulator capability development and corresponds to the JPSS Ground System goals of establishing a capability that is flexible, extensible, and adaptable.

  17. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Sandi Thompson of the National Center for Microgravity Research GRC makes a final adjustment to the drop package. This image is from a digital still camera; higher resolution is not available.

  18. A Re-Analysis of the Collaborative Knowledge Transcripts from a Noncombatant Evacuation Operation Scenario: The Next Phase in the Evolution of a Team Collaboration Model

    DTIC Science & Technology

    2008-04-15

    65 E. Scoring Matrix for the NEO Scenario ............................................................................ 69 F. Experimenter...the unclassified scenario. Warner, Wroblewski, and Shuck (2004) also developed a scoring matrix for the final NEO plan (see appendix E). They did...this with input from military operational personnel who had experience in actual NEO scenarios. The researchers created the matrix so that they

  19. Building the Qualification File of EGNOS with DOORS

    NASA Astrophysics Data System (ADS)

    Fabre, J.

    2008-08-01

    EGNOS, the European Satellite-Based Augmentation System (SBAS) to GPS, is getting to its final deployment and being initially operated towards qualification and certification to reach operational capability by 2008/2009. A very important milestone in the development process is the System Qualification Review (QR). As the verification phase aims at demonstrating that the EGNOS System design meets the applicable requirements, the QR declares the completion of verification activities. The main document to present at QR is a consolidated, consistent and complete Qualification file. The information included shall give confidence to the QR reviewers that the performed qualification activities are completed. Therefore, an important issue for the project team is to focus on synthetic and consistent information, and to make the presentation as clear as possible. Traceability to applicable requirements shall be systematically presented. Moreover, in order to support verification justification, reference to details shall be available, and the reviewer shall have the possibility to link automatically to the documents including this detailed information. In that frame, Thales Alenia Space has implemented a strong support in terms of methodology and tool, to provide to System Engineering and Verification teams a single reference technical database, in which all team members consult the applicable requirements, compliance, justification, design data and record the information necessary to build the final Qualification file. This paper presents the EGNOS context, the Qualification file contents, and the methodology implemented, based on Thales Alenia Space practices and in line with ECSS. Finally, it shows how the Qualification file is built in a DOORS environment.

  20. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, watches monitors in mission control of the Space Flight Operations Center as the Cassini spacecraft begins downlink data through NASA's Deep Space Network, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Crew Selection and Training

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1996-01-01

    This research addressed a number of issues relevant to the performance of teams in demanding environments. Initial work, conducted in the aviation analog environment, focused on developing new measures of performance related attitudes and behaviors. The attitude measures were used to assess acceptance of concepts related to effective teamwork and personal capabilities under stress. The behavioral measures were used to evaluate the effectiveness of flight crews operating in commercial aviation. Assessment of team issues in aviation led further to the evaluation and development of training to enhance team performance. Much of the work addressed evaluation of the effectiveness of such training, which has become known as Crew Resource Management (CRM). A second line of investigation was into personality characteristics that predict performance in challenging environments such as aviation and space. A third line of investigation of team performance grew out of the study of flight crews in different organizations. This led to the development of a theoretical model of crew performance that included not only individual attributes such as personality and ability, but also organizational and national culture. A final line of investigation involved beginning to assess whether the methodologies and measures developed for the aviation analog could be applied to another domain -- the performance of medical teams working in the operating room.

  2. Tiger Team Assessment of the Pantex Plant, Amarillo, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-01

    This document contains the findings and associated root causes identified during the Tiger Team Assessment of the Department of Energy's (DOE) Pantex Plant in Amarillo, Texas. This assessment was conducted by the Department's Office of Environment, Safety and Health between October 2 and 31, 1989. The scope of the assessment of the Pantex Plant covered all areas of environment, safety and health (ES H) activities, including compliance with federal, state, and local regulations, requirements, permits, agreements, orders and consent decrees, and DOE ES H Orders. The assessment also included an evaluation of the adequacy of DOE and site contractor ESmore » H management programs. The draft findings were submitted to the Office of Defense Programs, the Albuquerque Operations Office, the Amarillo Area Office, and regulatory agencies at the conclusion of the on-site assessment activities for review and comment on technical accuracy. Final modifications and any other appropriate changes have been incorporated in the final report. The Tiger Team Assessment of the Pantex Plant is part of the larger Tiger Team Assessment program which will encompass over 100 DOE operating facilities. The assessment program is part of a 10-point initiative announced by Secretary of Energy James D. Watkins on June 27, 1989, to strengthen environmental protection and waste management activities in the Department. The results of the program will provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and site contractor ES H management programs, and DOE-wide ES H compliance trends.« less

  3. Enabling Knowledge Management for the Joint Forward Operating Base (JFOB)/Base Camp Community of Practice (COP)

    DTIC Science & Technology

    2006-09-01

    Albert Vargesko, and Mr. Michael Wolford. Finally, the authors would like to acknowledge the groundbreaking work that the Company Command team has...done with respect to Army-related Knowledge Management (KM): LTCs Nate Allen, Tony Burgess, and MAJ Steve Schweitzer ; and just as importantly, for

  4. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.

  5. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2010-01-01

    This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  6. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, are seen as they watch a replay of the final moments of the Cassini spacecraft during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Sandi Thompson of the National Center for Microgravity Research GRC makes a final adjustment to the drop package. This image is from a digital still camera; higher resolution is not available.

  8. Athlete leadership: a review of the theoretical, measurement, and empirical literature.

    PubMed

    Loughead, Todd M

    2017-08-01

    Athlete leadership is defined as an athlete who occupies a formal or informal leadership role within a team and influences team members to achieve a common objective. The area of athlete leadership has been shaped by theories and measurement tools from organizational and sport coaching literatures. The present article describes the conceptual developments within athlete leadership by providing an operational definition of this construct, followed by the theories and measurement tools used to examine athlete leadership. Finally, the present paper describes both qualitative and quantitative research that has emerged over the last decade. The results suggest the importance of this source of leadership within sport teams. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. What is the Final Verification of Engineering Requirements?

    NASA Technical Reports Server (NTRS)

    Poole, Eric

    2010-01-01

    This slide presentation reviews the process of development through the final verification of engineering requirements. The definition of the requirements is driven by basic needs, and should be reviewed by both the supplier and the customer. All involved need to agree upon a formal requirements including changes to the original requirements document. After the requirements have ben developed, the engineering team begins to design the system. The final design is reviewed by other organizations. The final operational system must satisfy the original requirements, though many verifications should be performed during the process. The verification methods that are used are test, inspection, analysis and demonstration. The plan for verification should be created once the system requirements are documented. The plan should include assurances that every requirement is formally verified, that the methods and the responsible organizations are specified, and that the plan is reviewed by all parties. The options of having the engineering team involved in all phases of the development as opposed to having some other organization continue the process once the design has been complete is discussed.

  10. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini NASA Social attendees speak with members of the Cassini mission team in the Charles Elachi Mission Control Center in the Space Flight Operation Center, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. Juno Mission Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard J.

    2008-01-01

    The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.

  12. From Strategic to Tactical and Nowhere in Between: The USAF at the Operational Level

    DTIC Science & Technology

    2012-06-01

    stove piped, lacking the balance to operate effectively across the full ROMO. Finally, the lack of balance combined with the dual responsibilities...was able to reorganize and lead effectively . As for 12AF (AFSOUTH), despite a lack of balance on the staff leading to a slow transition to support...development, the teams focused on three central elements: a standardized organizational structure, manned with a cross-functionally balance staff to support

  13. Space environment's effect on MODIS calibration

    NASA Astrophysics Data System (ADS)

    Dodd, J. L.; Wenny, B. N.; Chiang, K.; Xiong, X.

    2010-09-01

    The MODerate resolution Imaging Spectroradiometer flies on board the Earth Observing System (EOS) satellites Terra and Aqua in a sun-synchronous orbit that crosses the equator at 10:30 AM and 2:30 PM, respectively, at a low earth orbit (LEO) altitude of 705 km. Terra was launched on December 18,1999 and Aqua was launched on May 4, 2002. As the MODIS instruments on board these satellites continue to operate beyond the design lifetime of six years, the cumulative effect of the space environment on MODIS and its calibration is of increasing importance. There are several aspects of the space environment that impact both the top of atmosphere (TOA) calibration and, therefore, the final science products of MODIS. The south Atlantic anomaly (SAA), spacecraft drag, extreme radiative and thermal environment, and the presence of orbital debris have the potential to significantly impact both MODIS and the spacecraft, either directly or indirectly, possibly resulting in data loss. Efforts from the Terra and Aqua Flight Operations Teams (FOT), the MODIS Instrument Operations Team (IOT), and the MODIS Characterization Support Team (MCST) prevent or minimize external impact on the TOA calibrated data. This paper discusses specific effects of the space environment on MODIS and how they are minimized.

  14. Mars Reconnaissance Orbiter Operational Aerobraking Phase Assessment

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Striepe, Scott A.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) was inserted into orbit around Mars on March 10, 2005. After a brief delay, it began the process of aerobraking - using the atmospheric drag on the vehicle to reduce orbital period. The aerobraking phase lasted approximately 5 months (April 4 to August 30, 2006), during which teams from the Jet Propulsion Laboratory, Lockheed Martin Space Systems Corporation, and NASA Langley Research Center worked together to monitor and maneuver the spacecraft such that thermal margin on the solar arrays was maintained while schedule margin was upheld to provide a final local mean solar time (LMST) at ascending node of 3:00pm on the final aerobraking orbit. This paper will focus on the contribution of the flight mechanics team at NASA Langley Research Center (LaRC) during the aerobraking phase of the MRO mission.

  15. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A pair of Worcester Polytechnic Institute (WPI) students walk past a pair of team KuuKulgur's robots on the campus quad, during a final tuneup before the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. KSC-2011-5745

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- The Convoy Command Center vehicle is positioned on the Shuttle Landing Facility (SLF) at NASA's Kennedy Space Center in Florida awaiting the landing of space shuttle Atlantis. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Accompanying the command convoy team are STS-135 Assistant Launch Director Pete Nickolenko (right), NASA astronaut Janet Kavandi and Chris Hasselbring, USA Operations Manager (left). Securing the space shuttle fleet's place in history, Atlantis marks the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ben Smegelsky

  18. Fort Hood Army Internal Review Team: Final Report

    DTIC Science & Technology

    2010-08-04

    Report Date l August 4, 2010 Protecting our Army community at home & abroad Army Internal Review Team : Final Report Report Documentation Page Form...DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Fort Hood Army Internal Review Team : Final Report 5a. CONTRACT NUMBER 5b. GRANT...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 FoRt Hood Army Internal Review team : Final Report August 4, 2010 1 FoRt Hood Army

  19. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  20. ARRA FEMP Technical Assistance -- Federal Aviation Administration Project 209 -- Control Tower and Support Building, Palm Springs, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arends, J.; Sandusky, William F.

    2010-03-31

    This report represents findings of a design review team that evaluated construction documents (at the 100% level) and operating specifications for a new control tower and support building that will be built in Palm Springs, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  1. A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Hendrik F.

    The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.

  2. Nomad rover field experiment, Atacama Desert, Chile 1. Science results overview

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.; Thomas, G.; Witzke, B.

    2001-04-01

    Nomad was deployed for a 45 day traverse in the Atacama Desert, Chile, during the summer of 1997. During this traverse, 1 week was devoted to science experiments. The goal of the science experiments was to test different planetary surface exploration strategies that included (1) a Mars mission simulation, (2) a science on the fly experiment, where the rover was kept moving 75% of the operation time. (The goal of this operation was to determine whether or not successful interpretation of the environment is related to the time spent on a target. The role of mobility in helping the interpretation was also assessed.) (3) a meteorite search using visual and instrumental methods to remotely identify meteorites in extreme environments, and (4) a time-delay experiment with and without using the panospheric camera. The results were as follow: the remote science team positively identified the main characteristics of the test site geological environment. The science on the fly experiment showed that the selection of appropriate targets might be even more critical than the time spent on a study area to reconstruct the history of a site. During the same operation the science team members identified and sampled a rock from a Jurassic outcrop that they proposed to be a fossil. The presence of paleolife indicators in this rock was confirmed later by laboratory analysis. Both visual and instrumental modes demonstrated the feasibility, in at least some conditions, of carrying out a field search for meteorites by using remote-controlled vehicles. Finally, metrics collected from the observation of the science team operations, and the use team members made of mission data, provided critical information on what operation sequences could be automated on board rovers in future planetary surface explorations.

  3. Discrepant perceptions of communication, teamwork and situation awareness among surgical team members.

    PubMed

    Wauben, L S G L; Dekker-van Doorn, C M; van Wijngaarden, J D H; Goossens, R H M; Huijsman, R; Klein, J; Lange, J F

    2011-04-01

    To assess surgical team members' differences in perception of non-technical skills. Questionnaire design. Operating theatres (OTs) at one university hospital, three teaching hospitals and one general hospital in the Netherlands. Sixty-six surgeons, 97 OT nurses, 18 anaesthetists and 40 nurse anaesthetists. All surgical team members, of five hospitals, were asked to complete a questionnaire and state their opinion on the current state of communication, teamwork and situation awareness at the OT. Ratings for 'communication' were significantly different, particularly between surgeons and all other team members (P ≤ 0.001). The ratings for 'teamwork' differed significantly between all team members (P ≤ 0.005). Within 'situation awareness' significant differences were mainly observed for 'gathering information' between surgeons and other team members (P < 0.001). Finally, 72-90% of anaesthetists, OT nurses and nurse anaesthetists rated routine team briefings and debriefings as inadequate. This study shows discrepancies on many aspects in perception between surgeons and other surgical team members concerning communication, teamwork and situation awareness. Future research needs to ascertain whether these discrepancies are linked to greater risk of adverse events or to process as well as systems failures. Establishing this link would support implementation and use of complex team interventions that intervene at multiple levels of the healthcare system.

  4. A Constrained and Versioned Data Model for TEAM Data

    NASA Astrophysics Data System (ADS)

    Andelman, S.; Baru, C.; Chandra, S.; Fegraus, E.; Lin, K.

    2009-04-01

    The objective of the Tropical Ecology Assessment and Monitoring Network (www.teamnetwork.org) is "To generate real time data for monitoring long-term trends in tropical biodiversity through a global network of TEAM sites (i.e. field stations in tropical forests), providing an early warning system on the status of biodiversity to effectively guide conservation action". To achieve this, the TEAM Network operates by collecting data via standardized protocols at TEAM Sites. The standardized TEAM protocols include the Climate, Vegetation and Terrestrial Vertebrate Protocols. Some sites also implement additional protocols. There are currently 7 TEAM Sites with plans to grow the network to 15 by June 30, 2009 and 50 TEAM Sites by the end of 2010. At each TEAM Site, data is gathered as defined by the protocols and according to a predefined sampling schedule. The TEAM data is organized and stored in a database based on the TEAM spatio-temporal data model. This data model is at the core of the TEAM Information System - it consumes and executes spatio-temporal queries, and analytical functions that are performed on TEAM data, and defines the object data types, relationships and operations that maintain database integrity. The TEAM data model contains object types including types for observation objects (e.g. bird, butterfly and trees), sampling unit, person, role, protocol, site and the relationship of these object types. Each observation data record is a set of attribute values of an observation object and is always associated with a sampling unit, an observation timestamp or time interval, a versioned protocol and data collectors. The operations on the TEAM data model can be classified as read operations, insert operations and update operations. Following are some typical operations: The operation get(site, protocol, [sampling unit block, sampling unit,] start time, end time) returns all data records using the specified protocol and collected at the specified site, block, sampling unit and time range. The operation insertSamplingUnit(sampling unit, site, protocol) saves a new sampling unit into the data model and links it with the site and protocol. The operation updateSampligUnit(sampling_unit_id, attribute, value) changes the attribute (e.g. latitude or longitude) of the sampling unit to the specified value. The operation insertData(observation record, site, protocol, sampling unit, timestamps, data collectors) saves a new observation record into the database and associates it with specified objects. The operation updateData(protocol, data_id, attribute, value) modifies the attribute of an existing observation record to the specified value. All the insert or update operations require: 1) authorization to ensure the user has necessary privileges to perform the operation; 2) timestamp validation to ensure the observation timestamps are in the designated time range specified in the sampling schedule; 3) data validation to check that the data records use correct taxonomy terms and data values. No authorization is performed for get operations, but under some specific condition, a username may be required for the purpose of authentication. Along with the validations above, the TEAM data model also supports human based data validation on observed data through the Data Review subsystem to ensure data quality. The data review is implemented by adding two attributes review_tag and review_comment to each observation data record. The attribute review_tag is used by a reviewer to specify the quality of data, and the attribute review_comment is for reviewers to give more information when a problem is identified. The review_tag attribute can be populated by either the system conducting QA/QC tests or by pre-specified scientific experts. The following is the review operation, which is actually a special case of the operation updateData: The operation updateReview(protocol, data_id, judgment, comment) sets the attribute review_tag and review_comment to the specified values. By systematically tracking every step, The TEAM data model can roll back to any previous state. This is achieved by introducing a historical data container for each editable object type. When the operation updateData is applied to an object to modify its attribute, the object will be tagged with the current timestamp and the name of the user who conducts the operation, the tagged object will then be moved into the historical data container, and finally a new object will be created with the new value for the specified attribute. The diagram illustrates the architecture of the TEAM data management system. A data collector can use the Data Ingestion subsystem to load new data records into the TEAM data model. The system establishes a first level of review (i.e. meets minimum data standards via QA/QC tests). Further review is done via experts and they can verify and provide their comments on data records through the Data Review subsystem. The data editor can then address data records based on the reviewer's comments. Users can use the Data Query and Download application to find data by sites, protocols and time ranges. The Data Query and Download system packages selected data with the data license and important metadata information into a single package and delivers it to the user.

  5. Decision Making Training in the Mission Operations Directorate

    NASA Technical Reports Server (NTRS)

    O'Keefe, William S.

    2013-01-01

    At JSC, we train our new flight controllers on a set of team skills that we call Space Flight Resource Management (SFRM). SFRM is akin to Crew Resource Management for the airlines and trains flight controllers to work as an effective team to reduce errors and improve safety. We have developed this training over the years with the assistance of Ames Research Center, Wyle Labs and University of Central Florida. One of the skills we teach is decision making/ problem solving (DM/PS). We teach DM/PS first in several classroom sessions, reinforce it in several part task training environments, and finally practice it in full-mission, full-team simulations. What I am proposing to talk about is this training flow: its content and how we teach it.

  6. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, embrace after the Cassini spacecraft plunged into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Canister Storage Building (CSB) Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POWERS, T.B.

    2000-03-16

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safetymore » analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.« less

  8. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, react to seeing images of the Cassini science and engineering teams during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator

    NASA Astrophysics Data System (ADS)

    Liu, Hu-Chen; Liu, Long; Li, Ping

    2014-10-01

    Failure mode and effects analysis (FMEA) has shown its effectiveness in examining potential failures in products, process, designs or services and has been extensively used for safety and reliability analysis in a wide range of industries. However, its approach to prioritise failure modes through a crisp risk priority number (RPN) has been criticised as having several shortcomings. The aim of this paper is to develop an efficient and comprehensive risk assessment methodology using intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED) operator to overcome the limitations and improve the effectiveness of the traditional FMEA. The diversified and uncertain assessments given by FMEA team members are treated as linguistic terms expressed in intuitionistic fuzzy numbers (IFNs). Intuitionistic fuzzy weighted averaging (IFWA) operator is used to aggregate the FMEA team members' individual assessments into a group assessment. IFHWED operator is applied thereafter to the prioritisation and selection of failure modes. Particularly, both subjective and objective weights of risk factors are considered during the risk evaluation process. A numerical example for risk assessment is given to illustrate the proposed method finally.

  10. Total Quality Management (TQM), an Overview

    DTIC Science & Technology

    1991-09-01

    Quality Management (TQM). It discusses the reasons TQM is a current growth industry, what it is, and how one implements it. It describes the basic analytical tools, statistical process control, some advanced analytical tools, tools used by process improvement teams to enhance their own operations, and action plans for making improvements. The final sections discuss assessing quality efforts and measuring the quality to knowledge

  11. Tracking the Short Term Planning (STP) Development Process

    NASA Technical Reports Server (NTRS)

    Price, Melanie; Moore, Alexander

    2010-01-01

    Part of the National Aeronautics and Space Administration?s mission is to pioneer the future in space exploration, scientific discovery and aeronautics research is enhanced by discovering new scientific tools to improve life on earth. Sequentially, to successfully explore the unknown, there has to be a planning process that organizes certain events in the right priority. Therefore, the planning support team has to continually improve their processes so the ISS Mission Operations can operate smoothly and effectively. The planning support team consists of people in the Long Range Planning area that develop timelines that includes International Partner?s Preliminary STP inputs all the way through to publishing of the Final STP. Planning is a crucial part of the NASA community when it comes to planning the astronaut?s daily schedule in great detail. The STP Process is in need of improvement, because of the various tasks that are required to be broken down in order to get the overall objective of developing a Final STP done correctly. Then a new project came along in order to store various data in a more efficient database. "The SharePoint site is a Web site that provides a central storage and collaboration space for documents, information, and ideas."

  12. Final matches of the FIRST regional robotic competition at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Student teams behind protective walls operate remote controls to maneuver their robots around the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. The robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Teams played defense by taking away competitors' pillows and generally harassing opposing machines. On the side of the field are the judges, including (far left) Deputy Director for Launch and Payload Processing Loren Shriver and former KSC Director of Shuttle Processing Robert Sieck. A giant screen TV displays the action on the field. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.

  13. Remote Infrared Imaging of the Space Shuttle During Hypersonic Flight: HYTHIRM Mission Operations and Coordination

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.; Gruber, Jennifer R.; Hensley, Doyle W.; Verstynen, Harry A.; Oram, Timothy D.; Berger, Karen T.; Splinter, Scott C.; Horvath, Thomas J.; Kerns, Robert V.

    2011-01-01

    The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project has been responsible for obtaining spatially resolved, scientifically calibrated in-flight thermal imagery of the Space Shuttle Orbiter during reentry. Starting with STS-119 in March of 2009 and continuing through to the majority of final flights of the Space Shuttle, the HYTHIRM team has to date deployed during seven Shuttle missions with a mix of airborne and ground based imaging platforms. Each deployment of the HYTHIRM team has resulted in obtaining imagery suitable for processing and comparison with computational models and wind tunnel data at Mach numbers ranging from over 18 to under Mach 5. This paper will discuss the detailed mission planning and coordination with the NASA Johnson Space Center Mission Control Center that the HYTHIRM team undergoes to prepare for and execute each mission.

  14. Discrepant perceptions of communication, teamwork and situation awareness among surgical team members

    PubMed Central

    Wauben, L.S.G.L.; Dekker-van Doorn, C.M.; van Wijngaarden, J.D.H.; Goossens, R.H.M.; Huijsman, R.; Klein, J.; Lange, J.F.

    2011-01-01

    Objective To assess surgical team members’ differences in perception of non-technical skills. Design Questionnaire design. Setting Operating theatres (OTs) at one university hospital, three teaching hospitals and one general hospital in the Netherlands. Participants Sixty-six surgeons, 97 OT nurses, 18 anaesthetists and 40 nurse anaesthetists. Methods All surgical team members, of five hospitals, were asked to complete a questionnaire and state their opinion on the current state of communication, teamwork and situation awareness at the OT. Results Ratings for ‘communication’ were significantly different, particularly between surgeons and all other team members (P ≤ 0.001). The ratings for ‘teamwork’ differed significantly between all team members (P ≤ 0.005). Within ‘situation awareness’ significant differences were mainly observed for ‘gathering information’ between surgeons and other team members (P < 0.001). Finally, 72–90% of anaesthetists, OT nurses and nurse anaesthetists rated routine team briefings and debriefings as inadequate. Conclusions This study shows discrepancies on many aspects in perception between surgeons and other surgical team members concerning communication, teamwork and situation awareness. Future research needs to ascertain whether these discrepancies are linked to greater risk of adverse events or to process as well as systems failures. Establishing this link would support implementation and use of complex team interventions that intervene at multiple levels of the healthcare system. PMID:21242160

  15. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster is seen after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  16. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster is seen during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  17. Magic 2010 RASR Team

    DTIC Science & Technology

    2010-12-15

    MAGIC 2010 – FINAL REPORT RASR TEAM - CONTRACT NO: FA2386-10-1-4021 December 15, 2010 Final Report for AOARD Grant FA23861014021 – MAGIC ... MAGIC 2010 Competition - Robotic Research Team (RASR) Abstract: The RASR team developed a system for the coordination of groups of unmanned...accomplish those missions. Our team goal was to develop a system that can provide long term value to the war-fighter, utilizing MAGIC 2010 as a stepping

  18. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration Project 209 - Control Tower and Support Building, Las Vegas, NV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arends, J.; Sandusky, William F.

    2010-03-31

    This report represents findings of a design review team that evaluated construction documents (at the 70% level) and operating specifications for a new control tower and support building that will be built in Las Vegas, Nevada by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specification that would result in additional energy savings for the FAA that would not have otherwise occurred.

  19. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration – Project 209 Control Tower and Support Building Oakland, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arends, J.; Sandusky, William F.

    2010-03-01

    This report represents findings of a design review team that evaluated construction documents (at the 70% level) and operating specifications for a new control tower and support building that will be build at Oakland, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specification that would result in additional energy savings for the FAA that would not have otherwise occurred.

  20. TEAM TRAINING. FINAL TECHNICAL REPORT FEBRUARY 1966-FEBRUARY 1967.

    ERIC Educational Resources Information Center

    BRIGGS, GEORGE E.; JOHNSTON, WILLIAM A.

    THIS IS THE FINAL REPORT ON A FOUR-YEAR PROGRAM OF LABORATORY RESEARCH ON TEAM TRAINING IN A COMBAT INFORMATION CENTER (CIC) CONTEXT. THE RESEARCH LITERATURE ON TEAM TRAINING IS REVIEWED, AND A SET OF CONCLUSIONS IS DRAWN WITH REGARD TO TEAM PERFORMANCE AS A FUNCTION OF TASK, TRAINING, AND COMMUNICATIONS VARIABLES. IN ADDITION, THE IMPLICATIONS…

  1. Comparison of answer-until-correct and full-credit assessments in a team-based learning course.

    PubMed

    Farland, Michelle Z; Barlow, Patrick B; Levi Lancaster, T; Franks, Andrea S

    2015-03-25

    To assess the impact of awarding partial credit to team assessments on team performance and on quality of team interactions using an answer-until-correct method compared to traditional methods of grading (multiple-choice, full-credit). Subjects were students from 3 different offerings of an ambulatory care elective course, taught using team-based learning. The control group (full-credit) consisted of those enrolled in the course when traditional methods of assessment were used (2 course offerings). The intervention group consisted of those enrolled in the course when answer-until-correct method was used for team assessments (1 course offering). Study outcomes included student performance on individual and team readiness assurance tests (iRATs and tRATs), individual and team final examinations, and student assessment of quality of team interactions using the Team Performance Scale. Eighty-four students enrolled in the courses were included in the analysis (full-credit, n=54; answer-until-correct, n=30). Students who used traditional methods of assessment performed better on iRATs (full-credit mean 88.7 (5.9), answer-until-correct mean 82.8 (10.7), p<0.001). Students who used answer-until-correct method of assessment performed better on the team final examination (full-credit mean 45.8 (1.5), answer-until-correct 47.8 (1.4), p<0.001). There was no significant difference in performance on tRATs and the individual final examination. Students who used the answer-until-correct method had higher quality of team interaction ratings (full-credit 97.1 (9.1), answer-until-correct 103.0 (7.8), p=0.004). Answer-until-correct assessment method compared to traditional, full-credit methods resulted in significantly lower scores for iRATs, similar scores on tRATs and individual final examinations, improved scores on team final examinations, and improved perceptions of the quality of team interactions.

  2. Land Ahoy! Understanding Submarine Command and Control During the Completion of Inshore Operations.

    PubMed

    Roberts, Aaron P J; Stanton, Neville A; Fay, Daniel

    2017-12-01

    The aim of this study was to use multiple command teams to provide empirical evidence for understanding communication flow, information pertinence, and tasks undertaken in a submarine control room when completing higher- and lower-demand inshore operation (INSO) scenarios. The focus of submarine operations has changed, and submarines are increasingly required to operate in costal littoral zones. However, submarine command team performance during INSO is not well understood, particularly from a sociotechnical systems perspective. A submarine control-room simulator was built. The creation of networked workstations allowed a team of nine operators to perform tasks completed by submarine command teams during INSO. The Event Analysis of Systematic Teamwork method was used to model the social, task, and information networks and to describe command team performance. Ten teams were recruited for the study, affording statistical comparisons of how command-team roles and level of demand affected performance. Results indicated that the submarine command-team members are required to rapidly integrate sonar and visual data as the periscope is used, periodically, in a "duck-and-run" fashion, to maintain covertness. The fusion of such information is primarily completed by the operations officer (OPSO), with this operator experiencing significantly greater demand than any other operator. The OPSO was a bottleneck in the command team when completing INSO, experiencing similar load in both scenarios, suggesting that the command team may benefit from data synthesis tasks being more evenly distributed within the command team. The work can inform future control-room design and command-team ways of working by identifying bottlenecks in terms of information and task flow between operators.

  3. GFAST Software Demonstration

    NASA Image and Video Library

    2017-03-17

    NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System (SLS) and Orion spacecraft. The software is called the Ground Launch Sequencer. It will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns. The Ground and Flight Application Software Team (GFAST) demonstrated the software. It was developed by the Command, Control and Communications team in the Ground Systems Development and Operations (GSDO) Program. GSDO is helping to prepare the center for the first test flight of Orion atop the SLS on Exploration Mission 1.

  4. The Rosetta video approach: An overview and lessons learned so far

    NASA Astrophysics Data System (ADS)

    Zender, J.; Schwehm, G.; Wilke, M.

    2008-01-01

    After an interplanetary cruise of 10 years, the Rosetta spacecraft and Philae lander, will arrive in 2014 at comet Churyomov-Gerasimenkov. All involved parties are aware of the knowledge decrease during these years and the potential complications that might arise during problem resolution before or during cometary operations. The Rosetta Science Operations Center (RSOC) supports the Rosetta orbiter experimenters in the preservation of their knowledge. The author will present the overall efforts that are done within the RSOC team to ensure the preservation of the existing information—address databases, documentation, etc.—but will emphasis on the effort to preserve existing experience using a video approach. The video approach included the visit of all orbiter experimenter teams for several days, executing interviews with engineers, technicians and scientists. During the interviews a table of content with attached keywords was generated. The final video was transferred into a computer readable form and connected with the table of content. We will present the methodology that was used to prepare and execute the interviews, to prepare the final video material and the storage and structure of the table of content and keyword. The experimenter interviews at their home institutes and the follow-up work are finished. The feedback we received so far from experimenters and the lessons learned from the interview team will be presented. In the meantime, the approach is continued during the Rosetta commissioning and interviews are executed after each instrument commissioning slot. The author will give an outlook of potential further usage of this approach.

  5. 2014-2683

    NASA Image and Video Library

    2014-05-23

    CAPE CANAVERAL, Fla. -- Team members prepare their robot to dig in simulated Martian soil in the Caterpillar Mining Arena on the final day of NASA's 2014 Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett

  6. The Rosetta Science Archive: Status and Plans for Completing and Enhancing the Archive Content

    NASA Astrophysics Data System (ADS)

    Heather, D.; Barthelemy, M.; Fraga, D.; Grotheer, E.; O'Rourke, L.; Taylor, M.

    2017-09-01

    On 30 September 2016, Rosetta's signal flat-lined, confirming that the spacecraft had completed its incredible mission by landing on the surface of Comet 67P/Churyumov-Gerasimenko. Although this marked an end to the spacecraft's active operations, intensive work is still on-going with instrument teams preparing their final science data increments for delivery and ingestion into ESA's Planetary Science Archive (PSA). In addition to this, ESA is establishing contracts with a number of instrument teams to enhance and improve their data and documentation in an effort to provide the best long- term archive possible for the Rosetta mission. This presentation will outline the current status of the Rosetta archive, as well as highlighting some of the 'enhanced archiving' activities planned and underway with the various instrument teams on Rosetta to ensure the scientific legacy of the mission.

  7. Peer mentored teams to support undergraduate group work in higher education

    NASA Astrophysics Data System (ADS)

    Cinderey, Lynn Elizabeth

    This research starts with a set of practical research questions to investigate a problem which occurs in some computing undergraduate modules that use group work as part of the learning and assessment strategy. In this study final year students with experience in information systems project work and trained in team processes met with small groups of first year computing students with the aim of turning the first year project group into a team. This study seeks to explore the experience of the final year students as they take on the role of peer tutor looking at the problems they perceive within the first year teams and the skills and knowledge they use to help them. The study includes the recruitment and training of final year students (n=9) and allocation to first year teams. The final year students acted as co-researchers and team leaders in L4 Information Systems project work and recorded their thoughts and observations in a diary during the first semester of 2008/9 academic year. Diary data was supplemented by interview data from a sample of final year students (n=4). The sample was selected based on the richness of the data provided in the diaries and the number of meetings held with their teams. Rich data and thick descriptions were essential for a phenomenological examination of the experience of the final year students. A number of findings emerged. A critical approach to analysis revealed ongoing conflicts occurred across cultural divides within the first year teams that final year leaders did not articulate or appear fully aware of. This had important implications for individual team members. Other findings which relate to issues of changing levels of motivation in the teams over the ten weeks, roles adopted by the leaders, ability to systematize the project or team processes and the ability to reflect on unsuccessful strategies also had implications for peer mentoring training and support. The picture that emerged from the data suggested that lack of intercultural sensitivity and empathy within the student group reduces the value of peer mentoring interventions for some first year undergraduate team members in computing. In order to improve the experience for all students, methods to develop intercultural sensitivity within the student body are examined and a framework for training and support is proposed.

  8. Data Flow System operations: from the NTT to the VLT

    NASA Astrophysics Data System (ADS)

    Silva, David R.; Leibundgut, Bruno; Quinn, Peter J.; Spyromilio, Jason; Tarenghi, Massimo

    1998-07-01

    Science operations at the ESO very large telescope is scheduled to begin in April 1999. ESO is currently finalizing the VLT science operations plan. This plan describes the operations tasks and staffing needed to support both visitor and service mode operations. The Data Flow Systems (DFS) currently being developed by ESO will provide the infrastructure necessary for VLT science operations. This paper describes the current VLT science operations plan, first by discussing the tasks involved and then by describing the operations teams that have responsibility for those tasks. Prototypes of many of these operational concepts and tools have been in use at the ESO New Technology Telescope (NTT) since February 1997. This paper briefly summarizes the status of these prototypes and then discusses what operation lessons have been learned from the NTT experience and how they can be applied to the VLT.

  9. Analysis of the Research and Studies Program at the United States Military Academy

    DTIC Science & Technology

    2004-09-01

    operational assessment methodology, efficiency analysis, recruiting analysis especially marketing effects and capability analysis and modeling. Lieutenant...Finally, and arguably the most compelling rationale is the market force of increased funding. Figure 3 below shows the increase in funding received by...to integrate in a team of analysts from other departments to assist in the effort. First, bringing in analysts from other departments gave those

  10. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration – Project 209 Control Tower and Support Building, Reno, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arends, J.; Sandusky, William F.

    2010-06-30

    Pacific Northwest National Laboratory (PNNL) and Redhorse Corporation (Redhorse) conducted an energy audit on the Federal Aviation Administration (FAA) control tower and base building in Reno, Nevada. This report presents the findings of the energy audit team that evaluated construction documents and operating specifications (at the 100% level) and completed a site visit. The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  11. Shared communication processes within healthcare teams for rare diseases and their influence on healthcare professionals' innovative behavior and patient satisfaction

    PubMed Central

    2011-01-01

    Background A rare disease is a pattern of symptoms that afflicts less than five in 10,000 patients. However, as about 6,000 different rare disease patterns exist, they still have significant epidemiological relevance. We focus on rare diseases that affect multiple organs and thus demand that multidisciplinary healthcare professionals (HCPs) work together. In this context, standardized healthcare processes and concepts are mainly lacking, and a deficit of knowledge induces uncertainty and ambiguity. As such, individualized solutions for each patient are needed. This necessitates an intensive level of innovative individual behavior and thus, adequate idea generation. The final implementation of new healthcare concepts requires the integration of the expertise of all healthcare team members, including that of the patients. Therefore, knowledge sharing between HCPs and shared decision making between HCPs and patients are important. The objective of this study is to assess the contribution of shared communication and decision-making processes in patient-centered healthcare teams to the generation of innovative concepts and consequently to improvements in patient satisfaction. Methods A theoretical framework covering interaction processes and explorative outcomes, and using patient satisfaction as a measure for operational performance, was developed based on healthcare management, innovation, and social science literature. This theoretical framework forms the basis for a three-phase, mixed-method study. Exploratory phase I will first involve collecting qualitative data to detect central interaction barriers within healthcare teams. The results are related back to theory, and testable hypotheses will be derived. Phase II then comprises the testing of hypotheses through a quantitative survey of patients and their HCPs in six different rare disease patterns. For each of the six diseases, the sample should comprise an average of 30 patients with six HCP per patient-centered healthcare team. Finally, in phase III, qualitative data will be generated via semi-structured telephone interviews with patients to gain a deeper understanding of the communication processes and initiatives that generate innovative solutions. Discussion The findings of this proposed study will help to elucidate the necessity of individualized innovative solutions for patients with rare diseases. Therefore, this study will pinpoint the primary interaction and communication processes in multidisciplinary teams, as well as the required interplay between exploratory outcomes and operational performance. Hence, this study will provide healthcare institutions and HCPs with results and information essential for elaborating and implementing individual care solutions through the establishment of appropriate interaction and communication structures and processes within patient-centered healthcare teams. PMID:21510848

  12. Shared communication processes within healthcare teams for rare diseases and their influence on healthcare professionals' innovative behavior and patient satisfaction.

    PubMed

    Hannemann-Weber, Henrike; Kessel, Maura; Budych, Karolina; Schultz, Carsten

    2011-04-21

    A rare disease is a pattern of symptoms that afflicts less than five in 10,000 patients. However, as about 6,000 different rare disease patterns exist, they still have significant epidemiological relevance. We focus on rare diseases that affect multiple organs and thus demand that multidisciplinary healthcare professionals (HCPs) work together. In this context, standardized healthcare processes and concepts are mainly lacking, and a deficit of knowledge induces uncertainty and ambiguity. As such, individualized solutions for each patient are needed. This necessitates an intensive level of innovative individual behavior and thus, adequate idea generation. The final implementation of new healthcare concepts requires the integration of the expertise of all healthcare team members, including that of the patients. Therefore, knowledge sharing between HCPs and shared decision making between HCPs and patients are important. The objective of this study is to assess the contribution of shared communication and decision-making processes in patient-centered healthcare teams to the generation of innovative concepts and consequently to improvements in patient satisfaction. A theoretical framework covering interaction processes and explorative outcomes, and using patient satisfaction as a measure for operational performance, was developed based on healthcare management, innovation, and social science literature. This theoretical framework forms the basis for a three-phase, mixed-method study. Exploratory phase I will first involve collecting qualitative data to detect central interaction barriers within healthcare teams. The results are related back to theory, and testable hypotheses will be derived. Phase II then comprises the testing of hypotheses through a quantitative survey of patients and their HCPs in six different rare disease patterns. For each of the six diseases, the sample should comprise an average of 30 patients with six HCP per patient-centered healthcare team. Finally, in phase III, qualitative data will be generated via semi-structured telephone interviews with patients to gain a deeper understanding of the communication processes and initiatives that generate innovative solutions. The findings of this proposed study will help to elucidate the necessity of individualized innovative solutions for patients with rare diseases. Therefore, this study will pinpoint the primary interaction and communication processes in multidisciplinary teams, as well as the required interplay between exploratory outcomes and operational performance. Hence, this study will provide healthcare institutions and HCPs with results and information essential for elaborating and implementing individual care solutions through the establishment of appropriate interaction and communication structures and processes within patient-centered healthcare teams.

  13. TeamSTEPPS Improves Operating Room Efficiency and Patient Safety.

    PubMed

    Weld, Lancaster R; Stringer, Matthew T; Ebertowski, James S; Baumgartner, Timothy S; Kasprenski, Matthew C; Kelley, Jeremy C; Cho, Doug S; Tieva, Erwin A; Novak, Thomas E

    2016-09-01

    The objective was to evaluate the effect of TeamSTEPPS on operating room efficiency and patient safety. TeamSTEPPS consisted of briefings attended by all health care personnel assigned to the specific operating room to discuss issues unique to each case scheduled for that day. The operative times, on-time start rates, and turnover times of all cases performed by the urology service during the initial year with TeamSTEPPS were compared to the prior year. Patient safety issues identified during postoperative briefings were analyzed. The mean case time was 12.7 minutes less with TeamSTEPPS (P < .001). The on-time first-start rate improved by 21% with TeamSTEPPS (P < .001). The mean room turnover time did not change. Patient safety issues declined from an initial rate of 16% to 6% at midyear and remained stable (P < 0.001). TeamSTEPPS was associated with improved operating room efficiency and diminished patient safety issues in the operating room. © The Author(s) 2015.

  14. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans speaks with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  15. Ocean Drilling Program: Drilling Services

    Science.gov Websites

    Drilling operations team Material services team Development engineering team ODP/TAMU Science Operator Home Services department consists of three team-oriented project groups, which also work to improve the existing team. A member of this team sails with each cruise to provide expertise for the shipboard scientific

  16. MPT_DOE Final Report 12-15-16 rev1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunce, Michael

    The goal of this project was to achieve breakthrough thermal efficiency on a light duty passenger car engine, with minimal impact to emissions. The enabling technology or technologies were to be relatively low cost and integrateable into existing production processes. Through the use of Turbulent Jet Ignition (TJI), an enabling technology for ultra-lean engine operation, the project team was able to meet or exceed all technical goals of this program.

  17. Human Error and Commercial Aviation Accidents: A Comprehensive, Fine-Grained Analysis Using HFACS

    DTIC Science & Technology

    2006-07-01

    Factors Figure 2. The HFACS framework. 3 practiced and seemingly automatic behaviors is that they are particularly susceptible to attention and/or memory...been included in most error frameworks, the third and final error form, perceptual errors, has received comparatively less attention . No less...operate safely. After all, just as not everyone can play linebacker for their favorite professional football team or be a concert pianist , not

  18. Force Enhancement Packages for Countering Nuclear Threats in the 2022-2027 Time Frame: Final Report

    DTIC Science & Technology

    2015-09-01

    survey, and area characterization methods . • Apply proper radioisotope identification techniques. A-10 c. A one-week CNT operations exercise at Fort...focus on experiments to seek better iv methods , holding active teaching until later. The team expects that better methods would involve collection... methods likely will involve collection by multiple ISR sensors and on-the-ground investigators, with only limited use of radiation detectors. The

  19. The Role of the Pulmonary Embolism Response Team: How to Build One, Who to Include, Scenarios, Organization, and Algorithms.

    PubMed

    Galmer, Andrew; Weinberg, Ido; Giri, Jay; Jaff, Michael; Weinberg, Mitchell

    2017-09-01

    Pulmonary embolism response teams (PERTs) are multidisciplinary response teams aimed at delivering a range of diagnostic and therapeutic modalities to patients with pulmonary embolism. These teams have gained traction on a national scale. However, despite sharing a common goal, individual PERT programs are quite individualized-varying in their methods of operation, team structures, and practice patterns. The tendency of such response teams is to become intensely structured, algorithmic, and inflexible. However, in their current form, PERT programs are quite the opposite. They are being creatively customized to meet the needs of the individual institution based on available resources, skills, personnel, and institutional goals. After a review of the essential core elements needed to create and operate a PERT team in any form, this article will discuss the more flexible feature development of the nascent PERT team. These include team planning, member composition, operational structure, benchmarking, market analysis, and rudimentary financial operations. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Trauma teams and time to early management during in situ trauma team training

    PubMed Central

    Härgestam, Maria; Lindkvist, Marie; Jacobsson, Maritha; Brulin, Christine

    2016-01-01

    Objectives To investigate the association between the time taken to make a decision to go to surgery and gender, ethnicity, years in profession, experience of trauma team training, experience of structured trauma courses and trauma in the trauma team, as well as use of closed-loop communication and leadership styles during trauma team training. Design In situ trauma team training. The patient simulator was preprogrammed to represent a severely injured patient (injury severity score: 25) suffering from hypovolemia due to external trauma. Setting An emergency room in an urban Scandinavian level one trauma centre. Participants A total of 96 participants were divided into 16 trauma teams. Each team consisted of six team members: one surgeon/emergency physician (designated team leader), one anaesthesiologist, one registered nurse anaesthetist, one registered nurse from the emergency department, one enrolled nurse from the emergency department and one enrolled nurse from the operating theatre. Primary outcome HRs with CIs (95% CI) for the time taken to make a decision to go to surgery was computed from a Cox proportional hazards model. Results Three variables remained significant in the final model. Closed-loop communication initiated by the team leader increased the chance of a decision to go to surgery (HR: 3.88; CI 1.02 to 14.69). Only 8 of the 16 teams made the decision to go to surgery within the timeframe of the trauma team training. Conversely, call-outs and closed-loop communication initiated by the team members significantly decreased the chance of a decision to go to surgery, (HR: 0.82; CI 0.71 to 0.96, and HR: 0.23; CI 0.08 to 0.71, respectively). Conclusions Closed-loop communication initiated by the leader appears to be beneficial for teamwork. In contrast, a high number of call-outs and closed-loop communication initiated by team members might lead to a communication overload. PMID:26826152

  1. Mission control team structure and operational lessons learned from the 2009 and 2010 NASA desert RATS simulated lunar exploration field tests

    NASA Astrophysics Data System (ADS)

    Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall

    2013-10-01

    The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations team the opportunity to gain insight into functional hardware requirements via lessons learned from executing the Desert RATS field test missions. This paper will detail the mission control team structure that was used during the 2009 and 2010 Desert RATS Lunar analog missions. It will also present a number of the lessons learned by the operations team during these field tests. Major lessons learned involved Mission Control Center (MCC) operations, pre-mission planning and training processes, procedure requirements, communication requirements, and logistic support for analogs. This knowledge will be applied to future Desert RATS field tests, and other Earth based analog testing for space exploration, to continue the evolution of manned space operations in preparation for human planetary exploration. It is important that operational knowledge for human space exploration missions be obtained during Earth-bound field tests to the greatest extent possible. This allows operations personnel the ability to examine various flight control and crew operations scenarios in preparation for actual space missions.

  2. Applying Web-Based Tools for Research, Engineering, and Operations

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2011-01-01

    Personnel in the NASA Glenn Research Center Network and Architectures branch have performed a variety of research related to space-based sensor webs, network centric operations, security and delay tolerant networking (DTN). Quality documentation and communications, real-time monitoring and information dissemination are critical in order to perform quality research while maintaining low cost and utilizing multiple remote systems. This has been accomplished using a variety of Internet technologies often operating simultaneously. This paper describes important features of various technologies and provides a number of real-world examples of how combining Internet technologies can enable a virtual team to act efficiently as one unit to perform advanced research in operational systems. Finally, real and potential abuses of power and manipulation of information and information access is addressed.

  3. The METOP-A Orbit Acquisition Strategy and its LEOP Operational Experience

    NASA Technical Reports Server (NTRS)

    Merz, K.; Serrano, M. A. Martin; Kuijper, D.; Matatoros, M. A. Garcia

    2007-01-01

    Europe's first polar-orbiting weather satellite, METOPA, was launched by a Soyuz launcher from Baikonur Cosmodrome on the 19th of October of 2006. The routine operations of METOP-A are conducted by EUMETSAT (European Organization for Exploitation of Meteorological Satellites) in the frame of the European Polar System mission (EPS). The METOP-A Launch and Early Orbit Phase (LEOP) operations have been performed by ESA/ESOC. The Flight Dynamics Orbit Determination and Control team (OD&C) at ESOC was in charge of correcting the S/C orbit as delivered by the launcher in such a way that EUMETSAT would be able to acquire the reference orbit with a drift-stop manoeuvre approximately two weeks after a LEOP of 3 days and Hand-Over to the EUMETSAT Control Centre (EUMETSAT-CC) in Darmstadt, Germany. The various strict constraints and the short amount of time available for ESOC operations made this task challenging. Several strategies were prepared before launch and analysed during LEOP based on the achieved injection orbit. This paper presents the different manoeuvre strategies investigated and finally applied to acquire the operational orbit, reporting as well the details of its execution and final achieved state.

  4. An integrated computer-based procedure for teamwork in digital nuclear power plants.

    PubMed

    Gao, Qin; Yu, Wenzhu; Jiang, Xiang; Song, Fei; Pan, Jiajie; Li, Zhizhong

    2015-01-01

    Computer-based procedures (CBPs) are expected to improve operator performance in nuclear power plants (NPPs), but they may reduce the openness of interaction between team members and harm teamwork consequently. To support teamwork in the main control room of an NPP, this study proposed a team-level integrated CBP that presents team members' operation status and execution histories to one another. Through a laboratory experiment, we compared the new integrated design and the existing individual CBP design. Sixty participants, randomly divided into twenty teams of three people each, were assigned to the two conditions to perform simulated emergency operating procedures. The results showed that compared with the existing CBP design, the integrated CBP reduced the effort of team communication and improved team transparency. The results suggest that this novel design is effective to optim team process, but its impact on the behavioural outcomes may be moderated by more factors, such as task duration. The study proposed and evaluated a team-level integrated computer-based procedure, which present team members' operation status and execution history to one another. The experimental results show that compared with the traditional procedure design, the integrated design reduces the effort of team communication and improves team transparency.

  5. Securely Partitioning Spacecraft Computing Resources: Validation of a Separation Kernel

    NASA Astrophysics Data System (ADS)

    Bremer, Leon; Schreutelkamp, Erwin

    2011-08-01

    The F-35 Lightning II, also known as the Joint Strike Fighter, will be the first operational fighter aircraft equipped with an operational MultiShip Embedded Training capability. This onboard training system allows teams of fighter pilots to jointly operate their F-35 in flight against virtual threats, avoiding the need for real adversary air threats and surface threat systems in their training. The European Real-time Operations Simulator (EuroSim) framework is well known in the space domain, particularly in support of engineering and test phases of space system development. In the MultiShip Embedded Training project, EuroSim is not only the essential tool for development and verification throughout the project but is also the engine of the final embedded simulator on board of the F-35 aircraft. The novel ways in which EuroSim is applied in the project in relation to distributed simulation problems, team collaboration, tool chains and embedded systems can benefit many projects and applications. The paper describes the application of EuroSim as the simulation engine of the F-35 Embedded Training solution, the extensions to the EuroSim product that enable this application, and its usage in development and verification of the whole project as carried out at the sites of Dutch Space and the National Aerospace Laboratory (NLR).

  6. Distributed subterranean exploration and mapping with teams of UAVs

    NASA Astrophysics Data System (ADS)

    Rogers, John G.; Sherrill, Ryan E.; Schang, Arthur; Meadows, Shava L.; Cox, Eric P.; Byrne, Brendan; Baran, David G.; Curtis, J. Willard; Brink, Kevin M.

    2017-05-01

    Teams of small autonomous UAVs can be used to map and explore unknown environments which are inaccessible to teams of human operators in humanitarian assistance and disaster relief efforts (HA/DR). In addition to HA/DR applications, teams of small autonomous UAVs can enhance Warfighter capabilities and provide operational stand-off for military operations such as cordon and search, counter-WMD, and other intelligence, surveillance, and reconnaissance (ISR) operations. This paper will present a hardware platform and software architecture to enable distributed teams of heterogeneous UAVs to navigate, explore, and coordinate their activities to accomplish a search task in a previously unknown environment.

  7. Hybrid procedures for an infant with hypoplastic left heart syndrome with intact atrial septum.

    PubMed

    Suzuki, Shoji; Kise, Hiroaki; Kaga, Shigeaki; Hoshiai, Minako; Koizumi, Keiichi; Hasebe, Yohei; Motohashi, Shinya; Matsumoto, Masahiko

    2015-08-01

    A boy, prenatally diagnosed as hypoplastic left heart syndrome (HLHS) with intact atrial septum (IAS) was successfully treated by hybrid procedures. He underwent emergent catheter atrial septostomy and stent insertion in the atrial septum on Day 1 and then underwent bilateral pulmonary artery banding, ductal stent insertion, modified Norwood operation, bidirectional Glenn's operation and finally Fontan type operation at 2 years of age. Considering the presence of decompression pathway from the left atrium in HLHS with IAS, we should organize a treatment team for collaborative work and plan an appropriate treatment strategy before delivery. Although his clinical course has been uneventful until now, closer medical observation is warranted because he may have coexisting pulmonary disease.

  8. American Recovery and Reinvestment Act (ARRA) - FEMP Technical Assistance - Federal Aviation Administration - Project 209 - Control Tower and Support Building, Boise, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arends, J.; Sandusky, William F.

    2010-06-28

    This report documents an energy audit performed by Pacific Northwest National Laboratory (PNNL) and Redhorse Corporation (Redhorse) conducted on the Federal Aviation Administration (FAA) control tower and base building in Boise, Idaho. This report presents findings of the energy audit team that evaluated construction documents and operating specifications (at the 100% level) followed by a site visit of the facility under construction. The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for FAA that would not have otherwise occurred.

  9. Dawn Orbit Determination Team: Modeling and Fitting of Optical Data at Vesta

    NASA Technical Reports Server (NTRS)

    Kennedy, Brian; Abrahamson, Matt; Ardito, Alessandro; Haw, Robert; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft was launched on September 27th, 2007. Its mission is to consecutively rendezvous with and observe the two largest bodies in the main asteroid belt, Vesta and Ceres. It has already completed over a year's worth of direct observations of Vesta (spanning from early 2011 through late 2012) and is currently on a cruise trajectory to Ceres, where it will begin scientific observations in mid-2015. Achieving this data collection required careful planning and execution from all Dawn operations teams. Dawn's Orbit Determination (OD) team was tasked with reconstruction of the as-flown trajectory as well as determination of the Vesta rotational rate, pole orientation and ephemeris, among other Vesta parameters. Improved knowledge of the Vesta pole orientation, specifically, was needed to target the final maneuvers that inserted Dawn into the first science orbit at Vesta. To solve for these parameters, the OD team used radiometric data from the Deep Space Network (DSN) along with optical data reduced from Dawn's Framing Camera (FC) images. This paper will de-scribe the initial determination of the Vesta ephemeris and pole using a combination of radiometric and optical data, and also the progress the OD team has made since then to further refine the knowledge of Vesta's body frame orientation and rate with these data.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, Christian

    The effort to collect and process foam for the purpose of recycling performed by the Material Sustainability and Pollution Prevention (MSP2) team at Sandia National Laboratories is an incredible one, but in order to make it run more efficiently it needed some tweaking. This project started in June of 2015. We used the Value Stream Mapping process to allow us to look at the current state of the foam collection and processing operation. We then thought of all the possible ways the process could be improved. Soon after that we discussed which of the "dreams" were feasible. And finally, wemore » assigned action items to members of the team so as to ensure that the improvements actually occur. These improvements will then, due to varying factors, continue to occur over the next couple years.« less

  11. GFAST Software Demonstration

    NASA Image and Video Library

    2017-03-17

    NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System (SLS) and Orion spacecraft. In front, far right, is Charlie Blackwell-Thompson, launch director for Exploration Mission 1 (EM-1). The software is called the Ground Launch Sequencer. It will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns. The Ground and Flight Application Software Team (GFAST) demonstrated the software. It was developed by the Command, Control and Communications team in the Ground Systems Development and Operations (GSDO) Program. GSDO is helping to prepare the center for the first test flight of Orion atop the SLS on EM-1.

  12. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans discusses an image of Saturn's moon Daphnis with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. STS-107 Flight Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video shows the activities of the STS-107 crew (Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists; Ilan Ramon, Payload Specialist) during flight day 11 of the Columbia orbiter's final mission. In the video, crew members from the Blue Team (McCool, Brown, Anderson) and the Red Team (Husband, Chawla, Clark, Ramon) are shown at work on experiments in the SpaceHab RDM (Research Double Module), and performing other tasks. Much of the video is shot and narrated by Commander Husband. Mission Specialist Brown is shown operating the MEIDEX (Mediterranean Israeli Dust Experiment). Crew activities shown include making breakfast, entering sleep stations, and programming shuttle maneuvers necessary for the spaceborne experiments onboard. Earth views shown in the video include one of Egypt, Israel and Jerusalem.

  14. Dealing with aggressive behavior within the health care team: a leadership challenge.

    PubMed

    Hynes, Patricia; Kissoon, Niranjan; Hamielec, Cindy M; Greene, Anne Marie; Simone, Carmine

    2006-06-01

    During an interdisciplinary Canadian leadership forum [ (click on the Conferences icon)], participants were challenged to develop an approach to a difficult leadership/management situation. In a scenario involving aggressive behavior among health care providers, participants identified that, before responding, an appropriate leader should collect additional information to identify the core problem(s) causing such behavior. Possibilities include stress; lack of clear roles, responsibilities, and standard operating procedures; and, finally, lack of training on important leadership/management skills. As a result of these core problems, several potential solutions are possible, all with potential obstacles to implementation. Additional education around communication and team interaction was felt to be a priority. In summary, clinical leaders probably have a great deal to gain from augmenting their leadership/management skills.

  15. NOAA Office of Exploration and Research > Education > Materials

    Science.gov Websites

    2014 Funding Opportunities Contact Us Program Review Review Panel Final Report Review Team Documents Review Review Panel Final Report Review Team Documents Presentations Supporting Documents Guiding

  16. Amateur Radio on the International Space Station - Phase 2 Hardware System

    NASA Technical Reports Server (NTRS)

    Bauer, F.; McFadin, L.; Bruninga, B.; Watarikawa, H.

    2003-01-01

    The International Space Station (ISS) ham radio system has been on-orbit for over 3 years. Since its first use in November 2000, the first seven expedition crews and three Soyuz taxi crews have utilized the amateur radio station in the Functional Cargo Block (also referred to as the FGB or Zarya module) to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early on, the Amateur Radio on the International Space Station (ARISS) international team devised a multi-phased hardware development approach for the ISS ham radio station. Three internal development Phases. Initial Phase 1, Mobile Radio Phase 2 and Permanently Mounted Phase 3 plus an externally mounted system, were proposed and agreed to by the ARISS team. The Phase 1 system hardware development which was started in 1996 has since been delivered to ISS. It is currently operational on 2 meters. The 70 cm system is expected to be installed and operated later this year. Since 2001, the ARISS international team have worked to bring the second generation ham system, called Phase 2, to flight qualification status. At this time, major portions of the Phase 2 hardware system have been delivered to ISS and will soon be installed and checked out. This paper intends to provide an overview of the Phase 1 system for background and then describe the capabilities of the Phase 2 radio system. It will also describe the current plans to finalize the Phase 1 and Phase 2 testing in Russia and outlines the plans to bring the Phase 2 hardware system to full operation.

  17. Non-technical skills of surgeons and anaesthetists in simulated operating theatre crises.

    PubMed

    Doumouras, A G; Hamidi, M; Lung, K; Tarola, C L; Tsao, M W; Scott, J W; Smink, D S; Yule, S

    2017-07-01

    Deficiencies in non-technical skills (NTS) have been increasingly implicated in avoidable operating theatre errors. Accordingly, this study sought to characterize the impact of surgeon and anaesthetist non-technical skills on time to crisis resolution in a simulated operating theatre. Non-technical skills were assessed during 26 simulated crises (haemorrhage and airway emergency) performed by surgical teams. Teams consisted of surgeons, anaesthetists and nurses. Behaviour was assessed by four trained raters using the Non-Technical Skills for Surgeons (NOTSS) and Anaesthetists' Non-Technical Skills (ANTS) rating scales before and during the crisis phase of each scenario. The primary endpoint was time to crisis resolution; secondary endpoints included NTS scores before and during the crisis. A cross-classified linear mixed-effects model was used for the final analysis. Thirteen different surgical teams were assessed. Higher NTS ratings resulted in significantly faster crisis resolution. For anaesthetists, every 1-point increase in ANTS score was associated with a decrease of 53·50 (95 per cent c.i. 31·13 to 75·87) s in time to crisis resolution (P < 0·001). Similarly, for surgeons, every 1-point increase in NOTSS score was associated with a decrease of 64·81 (26·01 to 103·60) s in time to crisis resolution in the haemorrhage scenario (P = 0·001); however, this did not apply to the difficult airway scenario. Non-technical skills scores were lower during the crisis phase of the scenarios than those measured before the crisis for both surgeons and anaesthetists. A higher level of NTS of surgeons and anaesthetists led to quicker crisis resolution in a simulated operating theatre environment. © 2017 BJS Society Ltd Published by John Wiley & Sons Ltd.

  18. NOAA Office of Exploration and Research > Science > Overview

    Science.gov Websites

    2014 Funding Opportunities Contact Us Program Review Review Panel Final Report Review Team Documents Opportunities Contact Us Program Review Review Panel Final Report Review Team Documents Presentations Supporting

  19. Los Angeles - Gateway Freight Advanced Traveler Information System : demonstration team final report.

    DOT National Transportation Integrated Search

    2015-02-01

    This Demonstration Team Final Report has been prepared to provide an overview of the conduct and qualitative findings of the LA-Gateway FRATIS development and testing program. More specifically, this document provides: A description of the testin...

  20. South Florida freight advanced traveler information system : demonstration team final report.

    DOT National Transportation Integrated Search

    2015-05-01

    This Demonstration Team Final Report has been prepared to provide an overview of the conduct and qualitative findings of the South Florida FRATIS development and testing program. More specifically, this document provides: A description of the tes...

  1. A Hands-on Approach to Teaching Geophysics through the University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course in the Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Saustrup, S.

    2017-12-01

    The three week field course is offered to graduate and upper-level undergraduate students as hands-on instruction and training for marine geology and geophysics applications. Instructors provide theoretical and technical background of high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, and the sedimentology of resulting seabed samples in the initial phase of the course. The class then travels to the Gulf Coast for a week of at-sea field work. Over the last 10 years, field sites at Freeport, Port Aransas, and Galveston, TX, and Grand Isle, LA, have provided ideal locations for students to explore and investigate coastal and continental shelf processes through the application of geophysical techniques. Students with various backgrounds work in teams of four and rotate between two marine vessels: the R/V Scott Petty, a 26' vessel owned and operated by UTIG, and the R/V Manta, an 82' vessel owned and operated by NOAA. They assist with survey design, instrumentation setup and breakdown, data acquisition, trouble-shooting, data quality control, and safe instrumentation deployment and recovery. Teams also process data and sediment samples in an onshore field lab. During the final week, students visualize, integrate and interpret data for a final project using industry software. The course concludes with final presentations and discussions wherein students examine Gulf Coast geological history and sedimentary processes with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course satisfies field experience requirements for some degree programs, provides an alternative to land-based field courses and to our knowledge, remains the only class of its kind. Alumni note the course's applicability to energy, environmental, and geotechnical industries as well as coastal restoration/management fields.

  2. Autonomous Command Operation of the WIRE Spacecraft

    NASA Technical Reports Server (NTRS)

    Prior, Mike; Walyus, Keith; Saylor, Rick

    1999-01-01

    This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period.

  3. The Bicycle Assembly Line Game

    ERIC Educational Resources Information Center

    Klotz, Dorothy

    2011-01-01

    "The Bicycle Assembly Line Game" is a team-based, in-class activity that helps students develop a basic understanding of continuously operating processes. Each team of 7-10 students selects one of seven prefigured bicycle assembly lines to operate. The lines are run in real-time, and the team that operates the line that yields the…

  4. Bandit: Technologies for Proximity Operations of Teams of Sub-10Kg Spacecraft

    DTIC Science & Technology

    2007-10-16

    and adding a dedicated overhead camera system. As will be explained below, the forced-air system did not work and the existing system has proven too...erratic to justify the expense of the camera system. 6DOF Software Simulator. The existing Java-based graphical 6DOF simulator was to be improved for...proposed camera system for a nonfunctional table. The C-9 final report is enclosed. ["Prf flj ,er Figure 1. Forced-air table schematic Figure 2

  5. Foreword

    NASA Astrophysics Data System (ADS)

    Caraveo, Patrizia; Gehrels, Neil; Tagliaferri, Gianpiero

    2015-09-01

    The Swift launch in 2004 was a nail-biter as one storm after another pummeled Cape Canaveral. The satellite had arrived in July, and our launch team fretted over whether its baby, locked away in a hangar, could survive the hurricane-force winds. The October launch was delayed a week, then another week, and then a few more days. Finally, on November 20, Swift launched under clear Florida skies. Pre-launch jitters gave way to an adrenaline rush as the first data came down showing a perfectly operating observatory.

  6. Improving Human/Autonomous System Teaming Through Linguistic Analysis

    NASA Technical Reports Server (NTRS)

    Meszaros, Erica L.

    2016-01-01

    An area of increasing interest for the next generation of aircraft is autonomy and the integration of increasingly autonomous systems into the national airspace. Such integration requires humans to work closely with autonomous systems, forming human and autonomous agent teams. The intention behind such teaming is that a team composed of both humans and autonomous agents will operate better than homogenous teams. Procedures exist for licensing pilots to operate in the national airspace system and current work is being done to define methods for validating the function of autonomous systems, however there is no method in place for assessing the interaction of these two disparate systems. Moreover, currently these systems are operated primarily by subject matter experts, limiting their use and the benefits of such teams. Providing additional information about the ongoing mission to the operator can lead to increased usability and allow for operation by non-experts. Linguistic analysis of the context of verbal communication provides insight into the intended meaning of commonly heard phrases such as "What's it doing now?" Analyzing the semantic sphere surrounding these common phrases enables the prediction of the operator's intent and allows the interface to supply the operator's desired information.

  7. Leader evaluation and team cohesiveness in the process of team development: A matter of gender?

    PubMed Central

    Sczesny, Sabine; Gumí, Tània; Guimerà, Roger; Sales-Pardo, Marta

    2017-01-01

    Leadership positions are still stereotyped as masculine, especially in male-dominated fields (e.g., engineering). So how do gender stereotypes affect the evaluation of leaders and team cohesiveness in the process of team development? In our study participants worked in 45 small teams (4–5 members). Each team was headed by either a female or male leader, so that 45 leaders (33% women) supervised 258 team members (39% women). Over a period of nine months, the teams developed specific engineering projects as part of their professional undergraduate training. We examined leaders’ self-evaluation, their evaluation by team members, and team cohesiveness at two points of time (month three and month nine, the final month of the collaboration). While we did not find any gender differences in leaders’ self-evaluation at the beginning, female leaders evaluated themselves more favorably than men at the end of the projects. Moreover, female leaders were evaluated more favorably than male leaders at the beginning of the project, but the evaluation by team members did not differ at the end of the projects. Finally, we found a tendency for female leaders to build more cohesive teams than male leaders. PMID:29059231

  8. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, answer questions from the media during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. ULSGEN (Uplink Summary Generator)

    NASA Technical Reports Server (NTRS)

    Wang, Y.-F.; Schrock, M.; Reeve, T.; Nguyen, K.; Smith, B.

    2014-01-01

    Uplink is an important part of spacecraft operations. Ensuring the accuracy of uplink content is essential to mission success. Before commands are radiated to the spacecraft, the command and sequence must be reviewed and verified by various teams. In most cases, this process requires collecting the command data, reviewing the data during a command conference meeting, and providing physical signatures by designated members of various teams to signify approval of the data. If commands or sequences are disapproved for some reason, the whole process must be restarted. Recording data and decision history is important for traceability reasons. Given that many steps and people are involved in this process, an easily accessible software tool for managing the process is vital to reducing human error which could result in uplinking incorrect data to the spacecraft. An uplink summary generator called ULSGEN was developed to assist this uplink content approval process. ULSGEN generates a web-based summary of uplink file content and provides an online review process. Spacecraft operations personnel view this summary as a final check before actual radiation of the uplink data. .

  10. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, second from right, talks about her experiences with Cassini during the Cassini NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Also participating in the engineering panel was Cassini program manager at JPL, Earl Maize, right, guidance and control engineer for the Cassini mission at Saturn, Luis Andrade, second from left, and mission planner for the Cassini mission at Saturn, Molly Bittner, left. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. Energy Frontier Research With ATLAS: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, John; Black, Kevin; Ahlen, Steve

    2016-06-14

    The Boston University (BU) group is playing key roles across the ATLAS experiment: in detector operations, the online trigger, the upgrade, computing, and physics analysis. Our team has been critical to the maintenance and operations of the muon system since its installation. During Run 1 we led the muon trigger group and that responsibility continues into Run 2. BU maintains and operates the ATLAS Northeast Tier 2 computing center. We are actively engaged in the analysis of ATLAS data from Run 1 and Run 2. Physics analyses we have contributed to include Standard Model measurements (W and Z cross sections,more » t\\bar{t} differential cross sections, WWW^* production), evidence for the Higgs decaying to \\tau^+\\tau^-, and searches for new phenomena (technicolor, Z' and W', vector-like quarks, dark matter).« less

  12. Computing shifts to monitor ATLAS distributed computing infrastructure and operations

    NASA Astrophysics Data System (ADS)

    Adam, C.; Barberis, D.; Crépé-Renaudin, S.; De, K.; Fassi, F.; Stradling, A.; Svatos, M.; Vartapetian, A.; Wolters, H.

    2017-10-01

    The ATLAS Distributed Computing (ADC) group established a new Computing Run Coordinator (CRC) shift at the start of LHC Run 2 in 2015. The main goal was to rely on a person with a good overview of the ADC activities to ease the ADC experts’ workload. The CRC shifter keeps track of ADC tasks related to their fields of expertise and responsibility. At the same time, the shifter maintains a global view of the day-to-day operations of the ADC system. During Run 1, this task was accomplished by a person of the expert team called the ADC Manager on Duty (AMOD), a position that was removed during the shutdown period due to the reduced number and availability of ADC experts foreseen for Run 2. The CRC position was proposed to cover some of the AMODs former functions, while allowing more people involved in computing to participate. In this way, CRC shifters help with the training of future ADC experts. The CRC shifters coordinate daily ADC shift operations, including tracking open issues, reporting, and representing ADC in relevant meetings. The CRC also facilitates communication between the ADC experts team and the other ADC shifters. These include the Distributed Analysis Support Team (DAST), which is the first point of contact for addressing all distributed analysis questions, and the ATLAS Distributed Computing Shifters (ADCoS), which check and report problems in central services, sites, Tier-0 export, data transfers and production tasks. Finally, the CRC looks at the level of ADC activities on a weekly or monthly timescale to ensure that ADC resources are used efficiently.

  13. Interactive Webmap-Based Science Planning for BepiColombo

    NASA Astrophysics Data System (ADS)

    McAuliffe, J.; Martinez, S.; Ortiz de Landaluce, I.; de la Fuente, S.

    2015-10-01

    For BepiColombo, ESA's Mission to Mercury, we will build a web-based, map-based interface to the Science Planning System. This interface will allow the mission's science teams to visually define targets for observations and interactively specify what operations will make up the given observation. This will be a radical departure from previous ESA mission planning methods. Such an interface will rely heavily on GIS technologies. This interface will provide footprint coverage of all existing archived data for Mercury, including a set of built-in basemaps. This will allow the science teams to analyse their planned observations and operational constraints with relevant contextual information from their own instrument, other BepiColombo instruments or from previous missions. The interface will allow users to import and export data in commonly used GIS formats, such that it can be visualised together with the latest planning information (e.g. import custom basemaps) or analysed in other GIS software. The interface will work with an object-oriented concept of an observation that will be a key characteristic of the overall BepiColombo scienceplanning concept. Observation templates or classes will be tracked right through the planning-executionprocessing- archiving cycle to the final archived science products. By using an interface that synthesises all relevant available information, the science teams will have a better understanding of the operational environment; it will enhance their ability to plan efficiently minimising or removing manual planning. Interactive 3D visualisation of the planned, scheduled and executed observations, simulation of the viewing conditions and interactive modification of the observation parameters are also being considered.

  14. Trauma teams and time to early management during in situ trauma team training.

    PubMed

    Härgestam, Maria; Lindkvist, Marie; Jacobsson, Maritha; Brulin, Christine; Hultin, Magnus

    2016-01-29

    To investigate the association between the time taken to make a decision to go to surgery and gender, ethnicity, years in profession, experience of trauma team training, experience of structured trauma courses and trauma in the trauma team, as well as use of closed-loop communication and leadership styles during trauma team training. In situ trauma team training. The patient simulator was preprogrammed to represent a severely injured patient (injury severity score: 25) suffering from hypovolemia due to external trauma. An emergency room in an urban Scandinavian level one trauma centre. A total of 96 participants were divided into 16 trauma teams. Each team consisted of six team members: one surgeon/emergency physician (designated team leader), one anaesthesiologist, one registered nurse anaesthetist, one registered nurse from the emergency department, one enrolled nurse from the emergency department and one enrolled nurse from the operating theatre. HRs with CIs (95% CI) for the time taken to make a decision to go to surgery was computed from a Cox proportional hazards model. Three variables remained significant in the final model. Closed-loop communication initiated by the team leader increased the chance of a decision to go to surgery (HR: 3.88; CI 1.02 to 14.69). Only 8 of the 16 teams made the decision to go to surgery within the timeframe of the trauma team training. Conversely, call-outs and closed-loop communication initiated by the team members significantly decreased the chance of a decision to go to surgery, (HR: 0.82; CI 0.71 to 0.96, and HR: 0.23; CI 0.08 to 0.71, respectively). Closed-loop communication initiated by the leader appears to be beneficial for teamwork. In contrast, a high number of call-outs and closed-loop communication initiated by team members might lead to a communication overload. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Grid Stability Awareness System (GSAS) Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuerborn, Scott; Ma, Jian; Black, Clifton

    The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less

  16. Strategic Planning Study Team. Final Report.

    ERIC Educational Resources Information Center

    Tennessee Univ., Chattanooga.

    This final report presents the results of a University of Tennessee at Chattanooga's (UTC) strategic planning study team, which was charged with documenting computerized services currently available and recommending to the UTC administration areas in which new services should be introduced at the university. A questionnaire was administered to…

  17. Unobtrusive Monitoring of Spaceflight Team Functioning. Literature Review and Operational Assessment for NASA Behavioral Health and Performance Element

    NASA Technical Reports Server (NTRS)

    Maidel, Veronica; Stanton, Jeffrey M.

    2010-01-01

    This document contains a literature review suggesting that research on industrial performance monitoring has limited value in assessing, understanding, and predicting team functioning in the context of space flight missions. The review indicates that a more relevant area of research explores the effectiveness of teams and how team effectiveness may be predicted through the elicitation of individual and team mental models. Note that the mental models referred to in this literature typically reflect a shared operational understanding of a mission setting such as the cockpit controls and navigational indicators on a flight deck. In principle, however, mental models also exist pertaining to the status of interpersonal relations on a team, collective beliefs about leadership, success in coordination, and other aspects of team behavior and cognition. Pursuing this idea, the second part of this document provides an overview of available off-the-shelf products that might assist in extraction of mental models and elicitation of emotions based on an analysis of communicative texts among mission personnel. The search for text analysis software or tools revealed no available tools to enable extraction of mental models automatically, relying only on collected communication text. Nonetheless, using existing software to analyze how a team is functioning may be relevant for selection or training, when human experts are immediately available to analyze and act on the findings. Alternatively, if output can be sent to the ground periodically and analyzed by experts on the ground, then these software packages might be employed during missions as well. A demonstration of two text analysis software applications is presented. Another possibility explored in this document is the option of collecting biometric and proxemic measures such as keystroke dynamics and interpersonal distance in order to expose various individual or dyadic states that may be indicators or predictors of certain elements of team functioning. This document summarizes interviews conducted with personnel currently involved in observing or monitoring astronauts or who are in charge of technology that allows communication and monitoring. The objective of these interviews was to elicit their perspectives on monitoring team performance during long-duration missions and the feasibility of potential automatic non-obtrusive monitoring systems. Finally, in the last section, the report describes several priority areas for research that can help transform team mental models, biometrics, and/or proxemics into workable systems for unobtrusive monitoring of space flight team effectiveness. Conclusions from this work suggest that unobtrusive monitoring of space flight personnel is likely to be a valuable future tool for assessing team functioning, but that several research gaps must be filled before prototype systems can be developed for this purpose.

  18. 30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines... the operator as to the number of miners willing to serve on a mine rescue team; (8) The operator's...

  19. 30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines... the operator as to the number of miners willing to serve on a mine rescue team; (8) The operator's...

  20. 30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines... the operator as to the number of miners willing to serve on a mine rescue team; (8) The operator's...

  1. 30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines... the operator as to the number of miners willing to serve on a mine rescue team; (8) The operator's...

  2. 30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines... the operator as to the number of miners willing to serve on a mine rescue team; (8) The operator's...

  3. Effects of perioperative briefing and debriefing on patient safety: a prospective intervention study

    PubMed Central

    Leong, Katharina Brigitte Margarethe Siew Lan; Hanskamp-Sebregts, Mirelle; van der Wal, Raymond A; Wolff, Andre P

    2017-01-01

    Objectives This study was carried out to improve patient safety in the operating theatre by the introduction of perioperative briefing and debriefing, which focused on an optimal collaboration between surgical team members. Design A prospective intervention study with one pretest and two post-test measurements: 1 month before and 4 months and 2.5 years after the implementation of perioperative briefing and debriefing, respectively. Setting Operating theatres of a tertiary care hospital with 875 beds in the Netherlands. Participants All members of five surgical teams participated in the perioperative briefing and debriefing. Intervention The implementation of perioperative briefing and debriefing from July 2012 to January 2014. Primary and secondary outcomes The primary outcome was changes in the team climate, measured by the Team Climate Inventory. Secondary outcomes were the experiences of surgical teams with perioperative briefing and debriefing, measured with a structured questionnaire, and the duration of the briefings, measured by an independent observer. Results Two and a half years after the introduction of perioperative briefing and debriefing, the team climate increased statistically significant (p≤0.05). Members of the five surgical teams strongly agreed with the positive influence of perioperative briefing and debriefing on clear agreements and reminding one another of the agreements of the day. They perceived a higher efficiency of the surgical programme with more operations starting on time and less unexpectedly long operation time. The perioperative briefing took less than 4 min to conduct. Conclusions Perioperative briefing and debriefing improved the team climate of surgical teams and the efficiency of their work within the operating theatre with acceptable duration per briefing. Surgical teams with alternating team compositions have the most benefit of briefing and debriefing. PMID:29247103

  4. Team Training through Communications Control

    DTIC Science & Technology

    1982-02-01

    training * operational environment * team training research issues * training approach * team communications * models of operator beharior e...on the market soon, it certainly would be investigated carefully for its applicability to the team training problem. ce A text-to-speech voice...generation system. Votrax has recently marketed such a device, and others may soon follow suit. ’ d. A speech replay system designed to produce speech from

  5. Research and development portfolio of the sustainability science team national sustainable operations USDA Forest Service

    Treesearch

    Trista Patterson; David Nicholls; Jonathan Long

    2015-01-01

    The Sustainability Science Team (SST) of the U.S. Department of Agriculture (USDA) Forest Service Sustainable Operations Initiative is a 18-member virtual research and development team, located across five regions and four research stations of the USDA Forest Service. The team provides research, publication, systems analysis, and decision support to the Sustainable...

  6. Can varying the number of teams in a shift schedule constitute a preventive strategy?

    PubMed

    Jeppesen, Hans Jeppe; Kleiven, Magnar; Bøggild, Henrik

    2004-12-01

    The study examines the implications for shiftworkers of applying different numbers of teams in the organization of shiftwork. The participating operators came from five different companies applying continuous shift rotation systems. The companies shared the same product organization and a common corporate culture belonging to the same multinational company. Each company had a shift system consisting of four, five or six teams, with the proportion of shifts outside day work decreasing as the number of teams increased. Questionnaire and documentary data were used as data sources. Operators in systems with additional teams had more daywork but also more irregular working hours due to both overtime and schedule changes. Operators using six teams used fewer social compensation strategies. Operators in four teams were most satisfied with their work hours. Satisfaction with the time available for various social activities outside work varied inconsistently between the groups. In rotating systems the application of more teams reduces the number of shifts outside day work. This apparent improvement for shiftworkers was counteracted by a concomitant irregularity produced by greater organizational requirements for flexibility. The balance of this interaction was found to have a critical impact on employees.

  7. Services for Children with Deaf-Blindness Pilot Project. Final Report.

    ERIC Educational Resources Information Center

    Stremel, Kathleen

    This final report describes a pilot project, "Quality Service Provision for Infants and Young Children with Deaf-Blindness: A Mechanism for State Intervention Teams," developed and implemented at the University of Southern Mississippi. The project developed a model of an intervention team that provides intensive training and technical…

  8. Assessing performance in complex team environments.

    PubMed

    Whitmore, Jeffrey N

    2005-07-01

    This paper provides a brief introduction to team performance assessment. It highlights some critical aspects leading to the successful measurement of team performance in realistic console operations; discusses the idea of process and outcome measures; presents two types of team data collection systems; and provides an example of team performance assessment. Team performance assessment is a complicated endeavor relative to assessing individual performance. Assessing team performance necessitates a clear understanding of each operator's task, both at the individual and team level, and requires planning for efficient data capture and analysis. Though team performance assessment requires considerable effort, the results can be very worthwhile. Most tasks performed in Command and Control environments are team tasks, and understanding this type of performance is becoming increasingly important to the evaluation of mission success and for overall system optimization.

  9. Effective communication and teamwork promotes patient safety.

    PubMed

    Gluyas, Heather

    2015-08-05

    Teamwork requires co-operation, co-ordination and communication between members of a team to achieve desired outcomes. In industries with a high degree of risk, such as health care, effective teamwork has been shown to achieve team goals successfully and efficiently, with fewer errors. This article introduces behaviours that support communication, co-operation and co-ordination in teams. The central role of communication in enabling co-operation and co-ordination is explored. A human factors perspective is used to examine tools to improve communication and identify barriers to effective team communication in health care.

  10. Can cultural differences lead to accidents? Team cultural differences and sociotechnical system operations.

    PubMed

    Strauch, Barry

    2010-04-01

    I discuss cultural factors and how they may influence sociotechnical system operations. Investigations of several major transportation accidents suggest that cultural factors may have played a role in the causes of the accidents. However, research has not fully addressed how cultural factors can influence sociotechnical systems. I review literature on cultural differences in general and cultural factors in sociotechnical systems and discuss how these differences can affect team performance in sociotechnical systems. Cultural differences have been observed in social and interpersonal dimensions and in cognitive and perceptual styles; these differences can affect multioperator team performance. Cultural factors may account for team errors in sociotechnical systems, most likely during high-workload, high-stress operational phases. However, much of the research on cultural factors has methodological and interpretive shortcomings that limit their applicability to sociotechnical systems. Although some research has been conducted on the role of cultural differences on team performance in sociotechnical system operations, considerable work remains to be done before the effects of these differences can be fully understood. I propose a model that illustrates how culture can interact with sociotechnical system operations and suggest avenues of future research. Given methodological challenges in measuring cultural differences and team performance in sociotechnical system operations, research in these systems should use a variety of methodologies to better understand how culture can affect multioperator team performance in these systems.

  11. Science Planning Implementation and Challenges for the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Ashman, Mike; Cardesin Moinelo, Alejandro; Frew, David; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Muñoz, Michela; Nespoli, Federico

    2018-05-01

    The ExoMars Science Operations Centre (SOC) is located at ESA's European Space Astronomy Centre (ESAC) in Madrid, Spain and is responsible for coordinating the science planning activities for TGO in order to optimize the scientific return of the mission. The SOC constructs, in accordance with Science Working Team (SWT) science priorities, and in coordination with the PI science teams and ESA's Mission Operations Centre (MOC), a plan of scientific observations and delivers conflict free operational products for uplink and execution on-board. To achieve this, the SOC employs a planning concept based on Long, Medium and Short Term planning cycles. Long Term planning covers mission segments of several months and is conducted many months prior to execution. Its goal is to establish a feasible science observation strategy given the science priorities and the expected mission profile. Medium Term planning covers a 1 month mission segment and is conducted from 3 to 2 months prior to execution whilst Short Term planning covers a 1 week segment and is conducted from 2 weeks to 1 week prior to execution. The goals of Medium and Short Term planning are to operationally instantiate and validate the Long Term plan such that the SOC may deliver to MOC a conflict free spacecraft pointing profile request (a Medium Term planning deliverable), and the final instrument telecommanding products (a Short Term planning deliverable) such that the science plan is achieved and all operational constraints are met. With a 2 hour-400km science orbit, the vast number of solar occultation, nadir measurement, and surface imaging opportunities, combined with additional mission constraints such as the necessary provision of TGO communication slots to support the ExoMars 2020 Rover & Surface Platform mission and NASA surface assets, creates a science planning task of considerable magnitude and complexity. In this paper, we detail how the SOC is developing and implementing the necessary planning infrastructure, processes and automation in order to support science planning of this scale throughout the TGO mission. We also detail how the re-use and further development of ESA's multi-mission planning software tool is being implemented in order to provide the necessary additional functionality for the SOC's planning team to exploit, and to therefore ensure the optimum scientific return of the TGO mission. Finally, we provide an overview and status of the real science planning activities taking place in the first weeks of the nominal science phase in the first half of 2018.

  12. Space Station redesign option A: Modular buildup concept

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In early 1993, President Clinton mandated that NASA look at lower cost alternatives to Space Station Freedom. He also established an independent advisory committee - the Blue Ribbon Panel - to review the redesign work and evaluate alternatives. Daniel Goldin, NASA Administrator, established a Station Redesign Team that began operating in late March from Crystal City, Virginia. NASA intercenter teams - one each at Marshall Space Flight Center, Johnson Space Center, and Langley Research Center provided engineering and other support. The results of the Option A study done at Marshall Space Flight Center are summarized. Two configurations (A-1 and A-2) are covered. Additional data is provided in the briefing package MSFC SRT-001, Final System Review to SRT-002, Space Station Option A Modular Buildup Concept, Volumes 1-5, Revision B, June 10, 1993. In June 1993, President Clinton decided to proceed with a modular concept consistent with Option A, and asked NASA to provide an Implementation Plan by September. All data from the Option A redesign activity was provided to NASA's Transition Team for use in developing the Implementation Plan.

  13. Mission operations and command assurance: Flight operations quality improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Potts, Sherrill S.; Witkowski, Mona M.

    1994-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous solving among flight teams and provides continuous process improvement to reduce risk in mission operations by addressing human factors. The MO&CA task has evolved from participating as a member of the spacecraft team, to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  14. Key team physical and technical performance indicators indicative of team quality in the soccer Chinese super league.

    PubMed

    Yang, Gai; Leicht, Anthony S; Lago, Carlos; Gómez, Miguel-Ángel

    2018-01-01

    The aim of this study was to identify the key physical and technical performance variables related to team quality in the Chinese Super League (CSL). Teams' performance variables were collected from 240 matches and analysed via analysis of variance between end-of-season-ranked groups and multinomial logistic regression. Significant physical performance differences between groups were identified for sprinting (top-ranked group vs. upper-middle-ranked group) and total distance covered without possession (upper and upper-middle-ranked groups and lower-ranked group). For technical performance, teams in the top-ranked group exhibited a significantly greater amount of possession in opponent's half, number of entry passes in the final 1/3 of the field and the Penalty Area, and 50-50 challenges than lower-ranked teams. Finally, time of possession increased the probability of a win compared with a draw. The current study identified key performance indicators that differentiated end-season team quality within the CSL.

  15. Neurolab: Final Report for the Ames Research Center Payload

    NASA Technical Reports Server (NTRS)

    Maese, A. Christopher (Editor); Ostrach, Louis H. (Editor); Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    Neurolab, the final Spacelab mission, launched on STS-90 on April 17, 1998, was dedicated to studying the nervous system. NASA cooperated with domestic and international partners to conduct the mission. ARC's (Ames Research Center's) Payload included 15 experiments designed to study the adaptation and development of the nervous system in microgravity. The payload had the largest number of Principal and Co-Investigators, largest complement of habitats and experiment unique equipment flown to date, and most diverse distribution of live specimens ever undertaken by ARC, including rodents, toadfish, swordtail fish, water snails, hornweed and crickets To facilitate tissue sharing and optimization of science objectives, investigators were grouped into four science discipline teams: Neuronal Plasticity, Mammalian Development, Aquatic, and Neurobiology. Several payload development challenges were experienced and required an extraordinary effort, by all involved, to meet the launch schedule. With respect to hardware and the total amount of recovered science, Neurolab was regarded as an overall success. However, a high mortality rate in one rodent group and several hardware anomalies occurred inflight that warranted postflight investigations. Hardware, science, and operations lessons were learned that should be taken into consideration by payload teams developing payloads for future Shuttle missions and the International Space Station.

  16. Case study: Comparison of motivation for achieving higher performance between self-directed and manager-directed aerospace engineering teams

    NASA Astrophysics Data System (ADS)

    Erlick, Katherine

    "The stereotype of engineers is that they are not people oriented; the stereotype implies that engineers would not work well in teams---that their task emphasis is a solo venture and does not encourage social aspects of collaboration" (Miner & Beyerlein, 1999, p. 16). The problem is determining the best method of providing a motivating environment where design engineers may contribute within a team in order to achieve higher performance in the organization. Theoretically, self-directed work teams perform at higher levels. But, allowing a design engineer to contribute to the team while still maintaining his or her anonymity is the key to success. Therefore, a motivating environment must be established to encourage greater self-actualization in design engineers. The purpose of this study is to determine the favorable motivational environment for design engineers and describe the comparison between two aerospace design-engineering teams: one self-directed and the other manager directed. Following the comparison, this study identified whether self-direction or manager-direction provides the favorable motivational environment for operating as a team in pursuit of achieving higher performance. The methodology used in this research was the case study focusing on the team's levels of job satisfaction and potential for higher performance. The collection of data came from three sources, (a) surveys, (b) researcher observer journal and (c) collection of artifacts. The surveys provided information regarding personal behavior characteristics, potentiality for higher performance and motivational attributes. The researcher journal provided information regarding team dynamics, individual interaction, conflict and conflict resolution. The milestone for performance was based on the collection of artifacts from the two teams. The findings from this study illustrated that whether the team was manager-directed or self-directed does not appear to influence the needs and wants of the team members. The self-directed team was more motivated to learn their topic than was the manager-directed team, but they struggled with their path in following their vision whereas the manager-directed team kept their focus under the guidance of their manager. Finally, both teams are in fact effective; however specific circumstances may be an important objective when deciding to utilize either a self-directed or manager-directed team.

  17. Foundations for teaching surgeons to address the contributions of systems to operating room team conflict.

    PubMed

    Rogers, David A; Lingard, Lorelei; Boehler, Margaret L; Espin, Sherry; Schindler, Nancy; Klingensmith, Mary; Mellinger, John D

    2013-09-01

    Prior research has shown that surgeons who effectively manage operating room conflict engage in a problem-solving stage devoted to modifying systems that contribute to team conflict. The purpose of this study was to clarify how systems contributed to operating room team conflict and clarify what surgeons do to modify them. Focus groups of circulating nurses and surgeons were conducted at 5 academic medical centers. Narratives describing the contributions of systems to operating room conflict and behaviors used by surgeons to address those systems were analyzed using the constant comparative approach associated with a constructivist grounded theory approach. Operating room team conflict was affected by 4 systems-related factors: team features, procedural-specific staff training, equipment management systems, and the administrative leadership itself. Effective systems problem solving included advocating for change based on patient safety concerns. The results of this study provide clarity about how systems contribute to operating room conflict and what surgeons can do to effectively modify these systems. This information is foundational material for a conflict management educational program for surgeons. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. NOAA Office of Exploration and Research > Data Access > Publications

    Science.gov Websites

    2014 Funding Opportunities Contact Us Program Review Review Panel Final Report Review Team Documents Affiliate Locations Strategic Plan 2014 Funding Opportunities Contact Us Program Review Review Panel Final Report Review Team Documents Presentations Supporting Documents Guiding Documents Exploration Overview

  19. NOAA Office of Exploration and Research > Home

    Science.gov Websites

    2014 Funding Opportunities Contact Us Program Review Review Panel Final Report Review Team Documents Review Review Panel Final Report Review Team Documents Presentations Supporting Documents Guiding the NOAA Science Advisory Board, a thirteen-member Review Panel conducted the first-ever formal

  20. Multidisciplinary team simulation for the operating theatre: a review of the literature.

    PubMed

    Tan, Shaw Boon; Pena, Guilherme; Altree, Meryl; Maddern, Guy J

    2014-01-01

    Analyses of adverse events inside the operating theatre has demonstrated that many errors are caused by failure in non-technical skills and teamwork. While simulation has been used successfully for teaching and improving technical skills, more recently, multidisciplinary simulation has been used for training team skills. We hypothesized that this type of training is feasible and improves team skills in the operating theatre. A systematic search of the literature for studies describing true multidisciplinary operating theatre team simulation was conducted in November and December 2012. We looked at the characteristics and outcomes of the team simulation programmes. 1636 articles were initially retrieved. Utilizing a stepwise evaluation process, 26 articles were included in the review. The studies reveal that multidisciplinary operating theatre simulation has been used to provide training in technical and non-technical skills, to help implement new techniques and technologies, and to identify latent weaknesses within a health system. Most of the studies included are descriptions of training programmes with a low level of evidence. No randomized control trial was identified. Participants' reactions to the training programme were positive in all studies; however, none of them could objectively demonstrate that skills acquired from simulation are transferred to the operating theatre or show a demonstrable benefit in patient outcomes. Multidisciplinary operating room team simulation is feasible and widely accepted by participants. More studies are required to assess the impact of this type of training on operative performance and patient safety. © 2013 Royal Australasian College of Surgeons.

  1. The uses of an observation team with a parent support group.

    PubMed

    O'Brien, P J

    1994-04-01

    This brief report examines the uses of an Observation Team with a Parent Support Group. In particular, attention is placed on the idea of the Observation Team acting as a Reflecting Team in the final session of the group's life. Using the Observation Team in this manner has evolved from an amalgamation of ideas from family therapy and group therapy theory.

  2. The Transition from VMS to Unix Operations for STScI's Science Planning and Scheduling Team

    NASA Astrophysics Data System (ADS)

    Adler, D. S.; Taylor, D. K.

    The Science Planning and Scheduling Team of the Space Telescope Science Institute currently uses the VMS operating system. SPST began a transition to Unix-based operations in the summer of 1999. The main tasks for SPST to address in the Unix transition are: (1) converting the current SPST operational tools from DCL to Python; (2) converting our database report scripts from SQL; (3) adopting a Unix-based code management system; and (4) training the SPST staff. The goal is to fully transition the team to Unix operations by the end of 2001.

  3. Payload Operations Support Team Tools

    NASA Technical Reports Server (NTRS)

    Askew, Bill; Barry, Matthew; Burrows, Gary; Casey, Mike; Charles, Joe; Downing, Nicholas; Jain, Monika; Leopold, Rebecca; Luty, Roger; McDill, David; hide

    2007-01-01

    Payload Operations Support Team Tools is a software system that assists in (1) development and testing of software for payloads to be flown aboard the space shuttles and (2) training of payload customers, flight controllers, and flight crews in payload operations

  4. 2014 Zero Waste Strategic Plan Executive Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wrons, Ralph J.

    Sandia National Laboratories/New Mexico is located in Albuquerque, New Mexico, primarily on Department of Energy (DOE) permitted land on approximately 2,800 acres of Kirtland Air Force Base. There are approximately 5.5 million square feet of buildings, with a workforce of approximately 9200 personnel. Sandia National Laboratories Materials Sustainability and Pollution Prevention (MSP2) program adopted in 2008 an internal team goal for New Mexico site operations for Zero Waste to Landfill by 2025. Sandia solicited a consultant to assist in the development of a Zero Waste Strategic Plan. The Zero Waste Consultant Team selected is a partnership of SBM Management Servicesmore » and Gary Liss & Associates. The scope of this Plan is non-hazardous solid waste and covers the life cycle of material purchases to the use and final disposal of the items at the end of their life cycle.« less

  5. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Duane Roth, of Cassini's navigation team, left, speaks with director of NASA's Jet Propulsion Laboratory, Michael Watkins, right, after Cassini's mission was declared over, Friday, Sept. 15, 2017 in mission control at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, standing, watches telemetry come in from Cassini with Julie Bellerose, left, Duane Roth, second from left, and Mar Vaquero of the Cassini navigation team in the mission control room, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. KSC-2013-4342

    NASA Image and Video Library

    2013-12-11

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, Gary Dahlke, high powered rocket subject matter expert, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann

  8. KSC-2013-4343

    NASA Image and Video Library

    2013-12-11

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann

  9. 2014-2684

    NASA Image and Video Library

    2014-05-23

    CAPE CANAVERAL, Fla. -- The University of North Dakota's robotic miner digs in the simulated Martian soil in the Caterpillar Mining Arena on the final day of NASA's 2014 Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett

  10. Enhancing Cassini Operations & Science Planning Tools

    NASA Technical Reports Server (NTRS)

    Castello, Jonathan

    2012-01-01

    The Cassini team uses a variety of software utilities as they manage and coordinate their mission to Saturn. Most of these tools have been unchanged for many years, and although stability is a virtue for long-lived space missions, there are some less-fragile tools that could greatly benefit from modern improvements. This report shall describe three such upgrades, including their architectural differences and their overall impact. Emphasis is placed on the motivation and rationale behind architectural choices rather than the final product, so as to illuminate the lessons learned and discoveries made.These three enhancements included developing a strategy for migrating Science Planning utilities to a new execution model, rewriting the team's internal portal for ease of use and maintenance, and developing a web-based agenda application for tracking the sequence of files being transmitted to the Cassini spacecraft. Of this set, the first two have been fully completed, while the agenda application is currently in the early prototype stage.

  11. The Department of Energy`s Remedial Action Assessment System (RAAS): Decision support tools for performing streamlined feasibility studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.K.

    1994-06-01

    The United States Department of Energy (DOE) faces the major task of cleaning up hundreds of waste sites across the nation, which will require completion of a large number of remedial investigation/feasibility studies (RI/FSs). The intent of each RI/FS is to characterize the waste problems and environmental conditions at the operable unit level, segment the remediation problem into manageable medium-specific and contaminant-specific pieces, define corresponding remediation objectives, and identify remedial response actions to satisfy those objectives. The RI/FS team can then identify combinations of remediation technologies that will meet the remediation objectives. Finally, the team must evaluate these remedial alternativesmore » in terms of effectiveness, implementability, cost, and acceptability. The Remedial Action Assessment System (RAAS) is being developed by Pacific Northwest Laboratory (PNL) to support DOE in this effort.« less

  12. Final matches of the FIRST regional robotic competition at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Four robots vie for position on the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. Powered by 12-volt batteries and operated by remote control, the robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Student teams, shown behind protective walls, play defense by taking away competitors' pillows and generally harassing opposing machines. Two of the robots have lifted their caches of pillows above the field, a movement which earns them points. Along with the volunteer referees, at the edge of the playing field, judges at right watch the action. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.

  13. Solar Versus Fission Surface Power for Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.; hide

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.

  14. [First definition of minimal care model: the role of nurses, physiotherapists, dietitians and psychologists in preventive and rehabilitative cardiology].

    PubMed

    Bettinardi, Ornella; da Vico, Letizia; Pierobon, Antonia; Iannucci, Manuela; Maffezzoni, Barbara; Borghi, Silvana; Ferrari, Marina; Brazzo, Silvia; Mazza, Antonio; Sommaruga, Marinella; Angelino, Elisabetta; Biffi, Barbara; Agostini, Susanna; Masini, Maria Luisa; Ambrosetti, Marco; Faggiano, Pompilio; Griffo, Raffaele

    2014-09-01

    Rehabilitative and preventive cardiology (CRP) is configured as intervention prevention to "gain health" through a process of multifactorial care that reduces disability and the risk of subsequent cardiovascular events. It makes use of an interdisciplinary team in which every professional needs to have multiple intervention paths because of the different levels of clinical and functional complexity of cardiac patients who currently have access to the rehabilitation. The document refers to the use of interventions by nurses, physiotherapists, dietitians and psychologists that are part of the rehabilitation team of CRP. Interventions of which have been documented, on scientific bases and clinical practice, empirical effectiveness and organizational efficiency. The methodological approach of this paper is a first attempt to define, through the model of consensus, the minimum standards for a CRP evidence based characterized by clearly defined criteria that can be used by operators of CRP. The document describes the activities to be carried out in each of the phases included in the pathways of care by nurses, physiotherapists, dietitians and psychologists. The routes identified were divided, according to the type of patients who have access to the CRP and to the phases of care, including the initial assessment, intervention, evaluation and final reporting, in high medium and low complexity. Examples of models of reporting, used by the operators of the team according to the principles of good clinical practice, are provided. This is made to allow traceability of operations, encourage communication inside the working group and within the patient and the caregiver. Also to give any possible indication for the post-rehabilitation.

  15. KSC-03pd0270

    NASA Image and Video Library

    2003-02-05

    KENNEDY SPACE CENTER, FLA. -- Members of the Recovery Management Team at KSC are at work in the Operations Support Building. They are part of the investigation into the accident that claimed orbiter Columbia and her crew of seven on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. Seated around the table (clockwise from far left) are Chris Hasselbring, Landing Operations, USA (co-chair of the Response Management Team); Don Maxwell, Safety, United Space Alliance (USA); Russ DeLoach, chief, Shuttle Mission Assurance Branch, NASA; George Jacobs, Shuttle Engineering; Jeff Campbell, Shuttle Engineering; Denny Gagen, Landing Recovery Manager (second co-chair of the team); and Dave Rainer, Launch and Landing Operations. The team is coordinating KSC technical support and assets to the Mishap Investigation Team in Barksdale, La., and providing support for the Recovery teams in Los Angeles, Texas, New Mexico, Arizona and California. In addition, the team is following up on local leads pertaining to potential debris in the KSC area. .

  16. KSC-03pd0271

    NASA Image and Video Library

    2003-02-05

    KENNEDY SPACE CENTER, FLA. - Two members of the Recovery Management Team at KSC are at work in the Operations Support Building. At left is Don Maxwell, Safety, United Space Alliance, and at right is Larry Ulmer, Safety, NASA. They are part of the investigation into the accident that claimed orbiter Columbia and her crew of seven on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. Other team members are Russ DeLoach, chief, Shuttle Mission Assurance Branch, NASA; George Jacobs, Shuttle Engineering; Jeff Campbell, Shuttle Engineering; Dave Rainer, Launch and Landing Operations; and the two co-chairs of the Response Management Team, Denny Gagen, Landing Recovery Manager, and Chris Hasselbring, Landing Operations, USA. The team is coordinating KSC technical support and assets to the Mishap Investigation Team in Barksdale, La., and providing support for the Recovery teams in Los Angeles, Texas, New Mexico, Arizona and California. In addition, the team is following up on local leads pertaining to potential debris in the KSC area. .

  17. The Armys Armored Multi Purpose Vehicle (AMPV): Background and Issues for Congress

    DTIC Science & Technology

    2017-01-11

    M-113 personnel carriers, which are still in service in a variety of support capacities in Armored Brigade Combat Teams (ABCTs). While M-113s no...reliability, and interoperability by mission role variant within the Heavy Brigade Combat Team (HBCT) [now known as the Armored Brigade Combat Team – ABCT... teams within complex operational environments. For example, “commanders will not allow them to leave Forward Operating Bases (FOBs) or enter

  18. Team Cohesion, Player Attitude, and Performance Expectations in Simulation.

    ERIC Educational Resources Information Center

    Wellington, William J.; Faria, A. J.

    1996-01-01

    Examines the relationship of team cohesion, participant attitude, and performance expectations to actual performance results in a simulation competition. Findings indicate a strong relationship between beginning team cohesion and performance expectations and final game performance, but little relationship between beginning participant attitudes…

  19. 15 CFR 270.350 - Freedom of Information Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Collection and Preservation of Evidence; Information Created Pursuant to an... documents submitted or received by NIST, a Team, or any other investigation participant, until the final...

  20. 15 CFR 270.350 - Freedom of Information Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Collection and Preservation of Evidence; Information Created Pursuant to an... documents submitted or received by NIST, a Team, or any other investigation participant, until the final...

  1. 15 CFR 270.350 - Freedom of Information Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Collection and Preservation of Evidence; Information Created Pursuant to an... documents submitted or received by NIST, a Team, or any other investigation participant, until the final...

  2. 15 CFR 270.350 - Freedom of Information Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Collection and Preservation of Evidence; Information Created Pursuant to an... documents submitted or received by NIST, a Team, or any other investigation participant, until the final...

  3. 15 CFR 270.350 - Freedom of Information Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Collection and Preservation of Evidence; Information Created Pursuant to an... documents submitted or received by NIST, a Team, or any other investigation participant, until the final...

  4. Mars Express Science Operations During Deep Eclipse: An Example of Adapting Science Operations On Aging Spacecraft

    NASA Astrophysics Data System (ADS)

    Merritt, Donald R.; Cardesin Moinelo, Alejandro; Marin Yaseli de la Parra, Julia; Breitfellner, Michel; Blake, Rick; Castillo Fraile, Manuel; Grotheer, Emmanuel; Martin, Patrick; Titov, Dmitri

    2018-05-01

    This paper summarizes the changes required to the science planning of the Mars Express spacecraft to deal with the second-half of 2017, a very restrictive period that combined low power, low data rate and deep eclipses, imposing very limiting constraints for science operations. With this difficult operational constraint imposed, the ESAC Mars Express science planning team worked very hard with the ESOC flight control team and all science experiment teams to maintain a minimal level of science operations during this difficult operational period. This maintained the integrity and continuity of the long term science observations, which is a hallmark and highlight of such long-lived missions.

  5. Landsat-7 Simulation and Testing Environments

    NASA Technical Reports Server (NTRS)

    Holmes, E.; Ha, K.; Hawkins, K.; Lombardo, J.; Ram, M.; Sabelhaus, P.; Scott, S.; Phillips, R.

    1999-01-01

    A spacecraft Attitude Control and Determination Subsystem (ACDS) is heavily dependent upon simulation throughout its entire development, implementation and ground test cycle. Engineering simulation tools are typically developed to design and analyze control systems to validate the design and software simulation tools are required to qualify the flight software. However, the need for simulation does not end here. Operating the ACDS of a spacecraft on the ground requires the simulation of spacecraft dynamics, disturbance modeling and celestial body motion. Sensor data must also be simulated and substituted for actual sensor data on the ground so that the spacecraft will respond by sending commands to the actuators as they will on orbit. And finally, the simulators is the primary training tool and test-bed for the Flight Operations Team. In this paper various ACDS simulation, developed for or used by the Landsat 7 project will be described. The paper will include a description of each tool, its unique attributes, and its role in the overall development and testing of the ACDS. Finally, a section is included which discusses how the coordinated use of these simulation tools can maximize the probability of uncovering software, hardware and operations errors during the ground test process.

  6. KSC-2011-5751

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- The Convoy Command Center vehicle is positioned on the Shuttle Landing Facility (SLF) at NASA's Kennedy Space Center in Florida awaiting the landing of space shuttle Atlantis. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Seen here is Chris Hasselbring, USA Operations Manager. Securing the space shuttle fleet's place in history, Atlantis marks the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ben Smegelsky

  7. Site scientific mission plan for the Southern Great Plains CART site, January-June 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1994-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1995, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Experiment Support Team [EST], Operations Team, Data Management Teammore » [DMT], Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, The ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.« less

  8. Using AUTORAD for Cassini File Uplinks: Incorporating Automated Commanding into Mission Operations

    NASA Technical Reports Server (NTRS)

    Goo, Sherwin

    2014-01-01

    As the Cassini spacecraft embarked on the Solstice Mission in October 2010, the flight operations team faced a significant challenge in planning and executing the continuing tour of the Saturnian system. Faced with budget cuts that reduced the science and engineering staff by over a third in size, new and streamlined processes had to be developed to allow the Cassini mission to maintain a high level of science data return with a lower amount of available resources while still minimizing the risk. Automation was deemed an important key in enabling mission operations with reduced workforce and the Cassini flight team has made this goal a priority for the Solstice Mission. The operations team learned about a utility called AUTORAD which would give the flight operations team the ability to program selected command files for radiation up to seven days in advance and help minimize the need for off-shift support that could deplete available staffing during the prime shift hours. This paper will describe how AUTORAD is being utilized by the Cassini flight operations team and the processes that were developed or modified to ensure that proper oversight and verification is maintained in the generation and execution of radiated command files.

  9. Mine Improvement and New Emergency Response Act of 2006. Public Law 109-236, S2803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-06-15

    This Act may be cited as the 'Mine Improvement and New Emergency Response Act of 2006' or the 'MINER Act'. It amends the Federal Mine Safety and Health Act of 1977 to improve the safety of mines and mining. The Act requires operators of underground coal mines to improve accident preparedness. The legislation requires mining companies to develop an emergency response plan specific to each mine they operate, and requires that every mine has at least two rescue teams located within one hour. S. 2803 also limits the legal liability of rescue team members and the companies that employ them.more » The act increases both civil and criminal penalties for violations of federal mining safety standards and gives the Mine Safety and Health Administration (MSHA) the ability to temporarily close a mine that fails to pay the penalties or fines. In addition, the act calls for several studies into ways to enhance mine safety, as well as the establishment of a new office within the National Institute for Occupational Safety and Health devoted to improving mine safety. Finally, the legislation establishes new scholarship and grant programs devoted to training individuals with respect to mine safety.« less

  10. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini project scientist at JPL, Linda Spilker, center, speaks about a montage of images, made from data obtained by Cassini's visual and infrared mapping spectrometer, shows the location on Saturn where the NASA spacecraft entered Saturn's atmosphere, Friday, Sept. 15, 2017 during a press conference at NASA's Jet Propulsion Laboratory in Pasadena, California. Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, also participated in the press conference. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. Team Training for Dynamic Cross-Functional Teams in Aviation: Behavioral, Cognitive, and Performance Outcomes.

    PubMed

    Littlepage, Glenn E; Hein, Michael B; Moffett, Richard G; Craig, Paul A; Georgiou, Andrea M

    2016-12-01

    This study evaluates the effectiveness of a training program designed to improve cross-functional coordination in airline operations. Teamwork across professional specializations is essential for safe and efficient airline operations, but aviation education primarily emphasizes positional knowledge and skill. Although crew resource management training is commonly used to provide some degree of teamwork training, it is generally focused on specific specializations, and little training is provided in coordination across specializations. The current study describes and evaluates a multifaceted training program designed to enhance teamwork and team performance of cross-functional teams within a simulated airline flight operations center. The training included a variety of components: orientation training, position-specific declarative knowledge training, position-specific procedural knowledge training, a series of high-fidelity team simulations, and a series of after-action reviews. Following training, participants demonstrated more effective teamwork, development of transactive memory, and more effective team performance. Multifaceted team training that incorporates positional training and team interaction in complex realistic situations and followed by after-action reviews can facilitate teamwork and team performance. Team training programs, such as the one described here, have potential to improve the training of aviation professionals. These techniques can be applied to other contexts where multidisciplinary teams and multiteam systems work to perform highly interdependent activities. © 2016, Human Factors and Ergonomics Society.

  12. Cyber as a Team Sport: Operationalizing a Whole-Of-Government Approach to Cyberspace Operations

    DTIC Science & Technology

    2011-06-07

    July 2010-7 June 2011 4. TITLE AND SUBTITLE • -~ ·- ~ I 5a. CONTRACT NUMBER CYBER AS A "TEAM SPORT ": OPERATIONALIZING A WHOLE-OF-GOVERNMENT APPROACH...JOINT FORCES STAFF COLLEGE JOINT ADVANCED WARFIGHTING SCHOOL CYBER AS A “TEAM SPORT ”: OPERATIONALIZING A WHOLE-OF- GOVERNMENT APPROACH...TO CYBERSPACE OPERATIONS by Elizabeth A. Myers Department of Defense CYBER AS A "TEAM SPORT ": OPERATIONALIZING A WHOLE-OF· GOVERNMENT

  13. A Genuine TEAM Player

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Qualtech Systems, Inc. developed a complete software system with capabilities of multisignal modeling, diagnostic analysis, run-time diagnostic operations, and intelligent interactive reasoners. Commercially available as the TEAMS (Testability Engineering and Maintenance System) tool set, the software can be used to reveal unanticipated system failures. The TEAMS software package is broken down into four companion tools: TEAMS-RT, TEAMATE, TEAMS-KB, and TEAMS-RDS. TEAMS-RT identifies good, bad, and suspect components in the system in real-time. It reports system health results from onboard tests, and detects and isolates failures within the system, allowing for rapid fault isolation. TEAMATE takes over from where TEAMS-RT left off by intelligently guiding the maintenance technician through the troubleshooting procedure, repair actions, and operational checkout. TEAMS-KB serves as a model management and collection tool. TEAMS-RDS (TEAMS-Remote Diagnostic Server) has the ability to continuously assess a system and isolate any failure in that system or its components, in real time. RDS incorporates TEAMS-RT, TEAMATE, and TEAMS-KB in a large-scale server architecture capable of providing advanced diagnostic and maintenance functions over a network, such as the Internet, with a web browser user interface.

  14. Surgical team turnover and operative time: An evaluation of operating room efficiency during pulmonary resection.

    PubMed

    Azzi, Alain Joe; Shah, Karan; Seely, Andrew; Villeneuve, James Patrick; Sundaresan, Sudhir R; Shamji, Farid M; Maziak, Donna E; Gilbert, Sebastien

    2016-05-01

    Health care resources are costly and should be used judiciously and efficiently. Predicting the duration of surgical procedures is key to optimizing operating room resources. Our objective was to identify factors influencing operative time, particularly surgical team turnover. We performed a single-institution, retrospective review of lobectomy operations. Univariate and multivariate analyses were performed to evaluate the impact of different factors on surgical time (skin-to-skin) and total procedure time. Staff turnover within the nursing component of the surgical team was defined as the number of instances any nurse had to leave the operating room over the total number of nurses involved in the operation. A total of 235 lobectomies were performed by 5 surgeons, most commonly for lung cancer (95%). On multivariate analysis, percent forced expiratory volume in 1 second, surgical approach, and lesion size had a significant effect on surgical time. Nursing turnover was associated with a significant increase in surgical time (53.7 minutes; 95% confidence interval, 6.4-101; P = .026) and total procedure time (83.2 minutes; 95% confidence interval, 30.1-136.2; P = .002). Active management of surgical team turnover may be an opportunity to improve operating room efficiency when the surgical team is engaged in a major pulmonary resection. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. Real-Time Operation of the International Space Station

    NASA Astrophysics Data System (ADS)

    Suffredini, M. T.

    2002-01-01

    The International Space Station is on orbit and real-time operations are well underway. Along with the assembly challenges of building and operating the International Space Station , scientific activities are also underway. Flight control teams in three countries are working together as a team to plan, coordinate and command the systems on the International Space Station.Preparations are being made to add the additional International Partner elements including their operations teams and facilities. By October 2002, six Expedition crews will have lived on the International Space Station. Management of real-time operations has been key to these achievements. This includes the activities of ground teams in control centers around the world as well as the crew on orbit. Real-time planning is constantly challenged with balancing the requirements and setting the priorities for the assembly, maintenance, science and crew health functions on the International Space Station. It requires integrating the Shuttle, Soyuz and Progress requirements with the Station. It is also necessary to be able to respond in case of on-orbit anomalies and to set plans and commands in place to ensure the continues safe operation of the Station. Bringing together the International Partner operations teams has been challenging and intensely rewarding. Utilization of the assets of each partner has resulted in efficient solutions to problems. This paper will describe the management of the major real-time operations processes, significant achievements, and future challenges.

  16. Flying Cassini with Virtual Operations Teams

    NASA Technical Reports Server (NTRS)

    Dodd, Suzanne; Gustavson, Robert

    1998-01-01

    The Cassini Program's challenge is to fly a large, complex mission with a reduced operations budget. A consequence of the reduced budget is elimination of the large, centrally located group traditionally used for uplink operations. Instead, responsibility for completing parts of the uplink function is distributed throughout the Program. A critical strategy employed to handle this challenge is the use of Virtual Uplink Operations Teams. A Virtual Team is comprised of a group of people with the necessary mix of engineering and science expertise who come together for the purpose of building a specific uplink product. These people are drawn from throughout the Cassini Program and participate across a large geographical area (from Germany to the West coast of the USA), covering ten time zones. The participants will often split their time between participating in the Virtual Team and accomplishing their core responsibilities, requiring significant planning and time management. When the particular uplink product task is complete, the Virtual Team disbands and the members turn back to their home organization element for future work assignments. This time-sharing of employees is used on Cassini to build mission planning products, via the Mission Planning Virtual Team, and sequencing products and monitoring of the sequence execution, via the Sequence Virtual Team. This challenging, multitasking approach allows efficient use of personnel in a resource constrained environment.

  17. Study and Implementation of the End-to-End Data Pipeline for the Virtis Imaging Spectrometer Onbaord Venus Express: "From Science Operations Planning to Data Archiving and Higher Lever Processing"

    NASA Astrophysics Data System (ADS)

    Cardesín Moinelo, Alejandro

    2010-04-01

    This PhD Thesis describes the activities performed during the Research Program undertaken for two years at the Istituto Nazionale di AstroFisica in Rome, Italy, as active member of the VIRTIS Technical and Scientific Team, and one additional year at the European Space Astronomy Center in Madrid, Spain, as member of the Mars Express Science Ground Segment. This document will show a study of all sections of the Science Ground Segment of the Venus Express mission, from the planning of the scientific operations, to the generation, calibration and archiving of the science data, including the production of valuable high level products. We will present and discuss here the end-to-end diagram of the ground segment from the technical and scientific point of view, in order to describe the overall flow of information: from the original scientific requests of the principal investigator and interdisciplinary teams, up to the spacecraft, and down again for the analysis of the measurements and interpretation of the scientific results. These scientific results drive to new and more elaborated scientific requests, which are used as feedback to the planning cycle, closing the circle. Special attention is given here to describe the implementation and development of the data pipeline for the VIRTIS instrument onboard Venus Express. During the research program, both the raw data generation pipeline and the data calibration pipeline were developed and automated in order to produce the final raw and calibrated data products from the input telemetry of the instrument. The final raw and calibrated products presented in this work are currently being used by the VIRTIS Science team for data analysis and are distributed to the whole scientific community via the Planetary Science Archive. More than 20,000 raw data files and 10,000 calibrated products have already been generated after almost 4 years of mission. In the final part of the Thesis, we will also present some high level data processing methods developed for the Mapping channel of the VIRTIS instrument. These methods have been implemented for the generation of high level global maps of measured radiance over the whole planet, which can then be used for the understanding of the global dynamics and morphology of the Venusian atmosphere. This method is currently being used to compare different emissions probing at different altitudes from the low cloud layers up to the upper mesosphere, by using the averaged projected values of radiance observed by the instrument, such as the near infrared windows at 1.7 μm and 2.3μm, the thermal region at 3.8μm and 5μm plus the analysis of particular emissions in the night and day side of the planet. This research has been undertaken under guidance and supervision of Giuseppe Piccioni, VIRTIS co-Principal Investigator, with support of the entire VIRTIS technical and scientific team, in particular of the Archiving team in Paris (LESIA-Meudon). The work has also been done in close collaboration with the Science and Mission Operations Centres in Madrid and Darmstadt (European Space Agency), the EGSE software developer (Techno Systems), the manufacturer of the VIRTIS instrument (Galileo Avionica) and the developer of the VIRTIS onboard software (DLR Berlin). The outcome of the technical and scientific work presented in this thesis is currently being used by the VIRTIS team to continue the investigations on the Venusian atmosphere and plan new scientific observations to improve the overall knowledge of the solar system. At the end of this document we show some of the many technical and scientific contributions, which have already been published in several international journals and conferences, and some articles of the European Space Agency used for public outreach.

  18. Applying lessons from commercial aviation safety and operations to resuscitation.

    PubMed

    Ornato, Joseph P; Peberdy, Mary Ann

    2014-02-01

    Both commercial aviation and resuscitation are complex activities in which team members must respond to unexpected emergencies in a consistent, high quality manner. Lives are at stake in both activities and the two disciplines have similar leadership structures, standard setting processes, training methods, and operational tools. Commercial aviation crews operate with remarkable consistency and safety, while resuscitation team performance and outcomes are highly variable. This commentary provides the perspective of two physician-pilots showing how commercial aviation training, operations, and safety principles can be adapted to resuscitation team training and performance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Effective Team Performance in Military Environments. Final Report.

    ERIC Educational Resources Information Center

    Hogan, Robert; And Others

    Identification of psychological factors influencing team performance in the chemical, biological, and radiological defense (CBR-D) environment were identified by a system for task classification: (1) combining Herold's task demands and Holland's taxonomy of work environments and (2) describing the development and evaluation of team tasks. This…

  20. Medical Response to Haiti Earthquake: Operation Unified Response

    DTIC Science & Technology

    2011-01-24

    NGO’s • 1500 patients seen • 4 tons medical supplies Operation UNIFIED RESPONSE Medical Logistics Support 18 Support to PROMESS Warehouse ... Logistics Advisory Team  Re-organized warehouse  Provided inventory mgmt  Teams at port to organize donations  Forklift support Operation UNIFIED

  1. Team climate and attitudes toward information and communication technology among nurses on acute psychiatric wards.

    PubMed

    Koivunen, Marita; Anttila, Minna; Kuosmanen, Lauri; Katajisto, Jouko; Välimäki, Maritta

    2015-01-01

    Objectives: To describe the association of team climate with attitudes toward information and communication technology among nursing staff working on acute psychiatric wards. Background: Implementation of ICT applications in nursing practice brings new operating models to work environments, which may affect experienced team climate on hospital wards. Method: Descriptive survey was used as a study design. Team climate was measured by the Finnish modification of the Team Climate Inventory, and attitudes toward ICT by Burkes' questionnaire. The nursing staff (N = 181, n = 146) on nine acute psychiatric wards participated in the study. Results: It is not self-evident that experienced team climate associates with attitudes toward ICT, but there are some positive relationships between perceived team climate and ICT attitudes. The study showed that nurses' motivation to use ICT had statistically significant connections with experienced team climate, participative safety (p = 0.021), support for innovation (p = 0.042) and task orientation (p = 0.042). Conclusion: The results suggest that asserting team climate and supporting innovative operations may lead to more positive attitudes toward ICT. It is, in particular, possible to influence nurses' motivation to use ICT. More attention should be paid to psychosocial factors such as group education and co-operation at work when ICT applications are implemented in nursing.

  2. Suggested set-up and layout of instruments and equipment for advanced operative laparoscopy.

    PubMed

    Winer, W K; Lyons, T L

    1995-02-01

    Crucial elements that ensure the organization and smoothness of a laparoscopic procedure are clear communication among well-trained endoscopy team members, properly maintained equipment, and a sensible layout of the instruments. The team consists of the surgeon, surgical assistant, circulator, scrub nurse, laser nurse, and anesthesiologist. To promote continuity and interaction and to ensure a systematic, pleasant pace for laparoscopic procedures, the team should establish a specific routine, as well as set-up and layout of tables, equipment, and instruments. Key ingredients for advanced operative laparoscopy to be performed with optimum efficiency and effectiveness are the best organization and placement of the equipment, instrumentation, and team in a particular setting in the operating room.

  3. Identifying and training non-technical skills for teams in acute medicine

    PubMed Central

    Flin, R; Maran, N

    2004-01-01

    The aviation domain provides a better analogy for the "temporary" teams that are found in acute medical specialities than industrial or military teamwork research based on established teams. Crew resource management (CRM) training, which emphasises portable skills (for whatever crew a pilot is rostered to on a given flight), has been recognised to have potential application in medicine, especially for teams in the operating theatre, intensive care unit, and emergency room. Drawing on research from aviation psychology that produced the behavioural marker system NOTECHS for rating European pilots' non-technical skills for teamwork on the flightdeck, this paper outlines the Anaesthetists Non-Technical Skills behavioural rating system for anaesthetists working in operating theatre teams. This taxonomy was used as the design basis for a training course, Crisis Avoidance Resource Management for Anaesthetists used to develop these skills, based in an operating theatre simulator. Further developments of this training programme for teams in emergency medicine are outlined. PMID:15465960

  4. KSC-03pd0269

    NASA Image and Video Library

    2003-02-05

    KENNEDY SPACE CENTER, FLA. -- Members of the Recovery Management Team at KSC are at work in the Operations Support Building. They are part of the investigation into the accident that claimed orbiter Columbia and her crew of seven on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. From left around the table are Don Maxwell, Safety, United Space Alliance (USA); Russ DeLoach, chief, Shuttle Mission Assurance Branch, NASA; George Jacobs, Shuttle Engineering; Jeff Campbell, Shuttle Engineering; Dave Rainer, Launch and Landing Operations; and the two co-chairs of the Response Management Team, Denny Gagen, Landing Recovery Manager, and Chris Hasselbring, Landing Operations, USA. The team is coordinating KSC technical support and assets to the Mishap Investigation Team in Barksdale, La., and providing support for the Recovery teams in Los Angeles, Texas, New Mexico, Arizona and California. In addition, the team is following up on local leads pertaining to potential debris in the KSC area. .

  5. An Alternative Front End Analysis Strategy for Complex Systems

    DTIC Science & Technology

    2014-12-01

    Mutual trust Trust across and between team members Team/collective efficacy How well the team works together effectively Team/collective orientation...and experts. Finally, it has been shown that one effect of expertise is the development of applicable schemas, which, in turn, reduce the working ...TASK NUMBER 409 5e. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Institute

  6. NASA Space Environments Technical Discipline Team Space Weather Activities

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  7. Streamline, Organizational, Legislative and Administrative Response to Permitting, PV Market Share, and Solar Energy Costs (Broward Go SOLAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halsey, Jeffery D.

    2013-08-28

    Broward County and its partners (the Go SOLAR Team), operating under a Department of Energy Rooftop Solar Challenge Agreement, designed, developed and implemented an online permitting system for rooftop solar PV systems. This is a single web based system with a single permit fee that will issue a permit, with a set of design plans preapproved by partner building officials, within one hour. The system is currently available at gosolar.broward.org for use within any of the partner Authorities Having [permitting] Jurisdiction (AHJ). Additionally, the Go SOLAR Team researched, developed and to the extent feasible, implemented three best management practices tomore » make a fertile environment for the new online permit system. These included Net Metering and Interconnection Standards, Solar-Friendly Financing, and Planning and Zoning Ordinances. Finally, the team implemented a substantial outreach effort to advocate for the development of solar in Broward County, with an emphasis on Solar Rights, concluding with a Go SOLAR Fest day and a half conference with over 1,200 attendees and 50 exhibitors. The Go SOLAR project was completed on time, under DOE’s budgeted amount, and all project objectives were met or exceeded.« less

  8. Storytelling of co-operative team meetings in acute psychiatric care.

    PubMed

    Vuokila-Oikkonen, Päivi; Janhonen, Sirpa; Saarento, Outi; Harri, Marja

    2002-10-01

    One of the goals of co-operative psychiatric nursing and co-operative team meetings is to improve patients' and significant others' participation and thus, to enhance patients' resources outside the hospital. The objective of this paper is to describe the different expert interventions that either enabled or prevented patient and his/her significant others participation in co-operative team meetings in acute psychiatric wards. The data consisted of 11 videotaped team meetings. The participants were voluntary patients, significant others and experts in health and social care. A narrative approach focused on the storytelling of all members in the meetings. The method of modified dialogue analysis was used to identify the ideas of the stories. The same topic of discussion was shared in active participation. The experts asked open-ended questions, the patient and his/her significant others' were free to express their viewpoints and the experts' interpretation was based on their stories. The experts presented the reasons for their questions, and the contents of the questions were verbalized. In passive participation, the experts questions were based on their own point of view, and the patient and his significant others merely answered these questions. If the expert opinion appeared too dominating at the co-operative team meeting, the patient's and his/her significant others' participation was in jeopardy. The physician either dominates the storytelling or gives space for free expressions of various viewpoints during the co-operative team meetings.

  9. Report of the Space Shuttle Management Independent Review Team

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

  10. Report of the Space Shuttle Management Independent Review Team

    NASA Astrophysics Data System (ADS)

    1995-02-01

    At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

  11. Small Unix data acquisition system

    NASA Astrophysics Data System (ADS)

    Engberg, D.; Glanzman, T.

    1994-02-01

    A R&D program has been established to investigate the use of Unix in the various aspects of experimental computation. Earlier R&D work investigated the basic real-time aspects of the IBMRS/6000 workstation running AIX, which claims to be a real-time operating system. The next step in this R&D is the construction of prototype data acquisition system which attempts to exercise many of the features needed in the final on-line system in a realistic situation. For this project, we have combined efforts with a team studying the use of novel cell designs and gas mixtures in a new prototype drift chamber.

  12. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  13. [Network Design of the Spaceport Command and Control System

    NASA Technical Reports Server (NTRS)

    Teijeiro, Antonio

    2017-01-01

    I helped the Launch Control System (LCS) hardware team sustain the network design of the Spaceport Command and Control System. I wrote the procedure that will be used to satisfy an official hardware test for the hardware carrying data from the Launch Vehicle. I installed hardware and updated design documents in support of the ongoing development of the Spaceport Command and Control System and applied firewall experience I gained during my spring 2017 semester to inspect and create firewall security policies as requested. Finally, I completed several online courses concerning networking fundamentals and Unix operating systems.

  14. Medical Operations Support for ISS Operations - The Role of the BME Operations Team Leads

    NASA Technical Reports Server (NTRS)

    Janney, Rob; Sabatier, Veronica

    2010-01-01

    This slide presentation reviews the role of the biomedical flight controllers (BMEs), and BME Operations Team Leads (OTLs) in providing medical support for personnel on the International Space Station. This presentation will concentrate on role of the BME OTLs, who provide the integration function across the integration function across all Crew Health Care System (CHeCS) disciplines for operational products and medical procedures.

  15. Overview and Results of ISS Space Medicine Operations Team (SMOT) Activities

    NASA Technical Reports Server (NTRS)

    Johnson, H. Magee; Sargsyan, Ashot E.; Armstrong, Cheryl; McDonald, P. Vernon; Duncan, James M.; Bogomolov, V. V.

    2007-01-01

    The Space Medicine Operations Team (SMOT) was created to integrate International Space Station (ISS) Medical Operations, promote awareness of all Partners, provide emergency response capability and management, provide operational input from all Partners for medically relevant concerns, and provide a source of medical input to ISS Mission Management. The viewgraph presentation provides an overview of educational objectives, purpose, operations, products, statistics, and its use in off-nominal situations.

  16. NATO Code of Best Practice for C2 Assessment (revised)

    DTIC Science & Technology

    2002-10-01

    Based Research, Inc . for the United States Office of Naval Research. These collaboration metrics focus on individual and team cognitive/awareness, team...Troops, Time, and Civil considerations OOTW – Operations Other Than War PESTLE – Political, Economic, Social, Technological, Legal, and Environmental...Operational Analysis OOTW Operations Other Than War OR Operations Research P PESTLE Political, Economic, Social, Technological, Legal, and Environmental

  17. Final Report of the NASA Technology Readiness Assessment (TRA) Study Team

    NASA Technical Reports Server (NTRS)

    Hirshorn, Steven; Jefferies, Sharon

    2016-01-01

    The material in this report covers the results on the NASA-wide TRA team, who are responsible for ascertaining the full extent of issues and ambiguities pertaining to TRATRL and to provide recommendations for mitigation. The team worked for approximately 6 months to become knowledgeable on the current TRATRL process and guidance and to derive recommendations for improvement.The team reviewed the TRA processes of other government agencies (OGA), including international agencies, and found that while the high-level processes are similar, the NASA process has a greater level of detail. Finally, NASA’s HQ OCT continues to monitor the GAO’s efforts to produce a TRA Best Practices Guide, a draft of which was received in February 2016. This Guide could impact the recommendations of this report.

  18. Cassini Information Management System in Distributed Operations Collaboration and Cassini Science Planning

    NASA Technical Reports Server (NTRS)

    Equils, Douglas J.

    2008-01-01

    Launched on October 15, 1997, the Cassini-Huygens spacecraft began its ambitious journey to the Saturnian system with a complex suite of 12 scientific instruments, and another 6 instruments aboard the European Space Agencies Huygens Probe. Over the next 6 1/2 years, Cassini would continue its relatively simplistic cruise phase operations, flying past Venus, Earth, and Jupiter. However, following Saturn Orbit Insertion (SOI), Cassini would become involved in a complex series of tasks that required detailed resource management, distributed operations collaboration, and a data base for capturing science objectives. Collectively, these needs were met through a web-based software tool designed to help with the Cassini uplink process and ultimately used to generate more robust sequences for spacecraft operations. In 2001, in conjunction with the Southwest Research Institute (SwRI) and later Venustar Software and Engineering Inc., the Cassini Information Management System (CIMS) was released which enabled the Cassini spacecraft and science planning teams to perform complex information management and team collaboration between scientists and engineers in 17 countries. Originally tailored to help manage the science planning uplink process, CIMS has been actively evolving since its inception to meet the changing and growing needs of the Cassini uplink team and effectively reduce mission risk through a series of resource management validation algorithms. These algorithms have been implemented in the web-based software tool to identify potential sequence conflicts early in the science planning process. CIMS mitigates these sequence conflicts through identification of timing incongruities, pointing inconsistencies, flight rule violations, data volume issues, and by assisting in Deep Space Network (DSN) coverage analysis. In preparation for extended mission operations, CIMS has also evolved further to assist in the planning and coordination of the dual playback redundancy of highvalue data from targets such as Titan and Enceladus. This paper will outline the critical role that CIMS has played for Cassini in the distributed ops paradigm throughout operations. This paper will also examine the evolution that CIMS has undergone in the face of new science discoveries and fluctuating operational needs. And finally, this paper will conclude with theoretical adaptation of CIMS for other projects and the potential savings in cost and risk reduction that could potentially be tapped into by future missions.

  19. 78 FR 79010 - Criteria to Certify Coal Mine Rescue Teams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... to Certify Coal Mine Rescue Teams AGENCY: Mine Safety and Health Administration, Labor. ACTION... updated the coal mine rescue team certification criteria. The Mine Improvement and New Emergency Response... mine operator to certify the qualifications of a coal mine rescue team is that team members are...

  20. 23 CFR 636.118 - Is team switching allowed after contract award?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Is team switching allowed after contract award? 636.118... TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.118 Is team switching allowed after contract...-builder, team member switching (adding or switching team members) is discouraged after contract award...

  1. 23 CFR 636.118 - Is team switching allowed after contract award?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Is team switching allowed after contract award? 636.118... TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.118 Is team switching allowed after contract...-builder, team member switching (adding or switching team members) is discouraged after contract award...

  2. 23 CFR 636.118 - Is team switching allowed after contract award?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Is team switching allowed after contract award? 636.118... TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.118 Is team switching allowed after contract...-builder, team member switching (adding or switching team members) is discouraged after contract award...

  3. 30 CFR 49.11 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TEAMS Mine Rescue Teams for Underground Coal Mines § 49.11 Purpose and scope. (a) This subpart... recovery. (b) The following Table 49.11 summarizes the new requirements for mine rescue teams contained in... Operators and Mine Rescue Teams Requirement Type of mine rescue team Mine-site Composite Contract State...

  4. 30 CFR 49.11 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TEAMS Mine Rescue Teams for Underground Coal Mines § 49.11 Purpose and scope. (a) This subpart... recovery. (b) The following Table 49.11 summarizes the new requirements for mine rescue teams contained in... Operators and Mine Rescue Teams Requirement Type of mine rescue team Mine-site Composite Contract State...

  5. 23 CFR 636.118 - Is team switching allowed after contract award?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Is team switching allowed after contract award? 636.118... TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.118 Is team switching allowed after contract...-builder, team member switching (adding or switching team members) is discouraged after contract award...

  6. 30 CFR 49.11 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TEAMS Mine Rescue Teams for Underground Coal Mines § 49.11 Purpose and scope. (a) This subpart... recovery. (b) The following Table 49.11 summarizes the new requirements for mine rescue teams contained in... Operators and Mine Rescue Teams Requirement Type of mine rescue team Mine-site Composite Contract State...

  7. 30 CFR 49.11 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TEAMS Mine Rescue Teams for Underground Coal Mines § 49.11 Purpose and scope. (a) This subpart... recovery. (b) The following Table 49.11 summarizes the new requirements for mine rescue teams contained in... Operators and Mine Rescue Teams Requirement Type of mine rescue team Mine-site Composite Contract State...

  8. 30 CFR 49.11 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TEAMS Mine Rescue Teams for Underground Coal Mines § 49.11 Purpose and scope. (a) This subpart... recovery. (b) The following Table 49.11 summarizes the new requirements for mine rescue teams contained in... Operators and Mine Rescue Teams Requirement Type of mine rescue team Mine-site Composite Contract State...

  9. 23 CFR 636.118 - Is team switching allowed after contract award?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Is team switching allowed after contract award? 636.118... TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.118 Is team switching allowed after contract...-builder, team member switching (adding or switching team members) is discouraged after contract award...

  10. Task versus relationship conflict, team performance, and team member satisfaction: a meta-analysis.

    PubMed

    De Dreu, Carsten K W; Weingart, Laurie R

    2003-08-01

    This study provides a meta-analysis of research on the associations between relationship conflict, task conflict, team performance, and team member satisfaction. Consistent with past theorizing, results revealed strong and negative correlations between relationship conflict, team performance, and team member satisfaction. In contrast to what has been suggested in both academic research and introductory textbooks, however, results also revealed strong and negative (instead of the predicted positive) correlations between task conflict team performance, and team member satisfaction. As predicted, conflict had stronger negative relations with team performance in highly complex (decision making, project, mixed) than in less complex (production) tasks. Finally, task conflict was less negatively related to team performance when task conflict and relationship conflict were weakly, rather than strongly, correlated.

  11. Team processes in airway facilities operations control centers.

    DOT National Transportation Integrated Search

    2000-07-01

    In October 2000, the Airway Facilities organization plans to transition the National Airspace System (NAS) monitoring responsibilities to three regional Operations Control Centers (OCCs). Teams in these facilities will be different from those that cu...

  12. Affective Balance, Team Prosocial Efficacy and Team Trust: A Multilevel Analysis of Prosocial Behavior in Small Groups.

    PubMed

    Cuadrado, Esther; Tabernero, Carmen

    2015-01-01

    Little research has focused on how individual- and team-level characteristics jointly influence, via interaction, how prosocially individuals behave in teams and few studies have considered the potential influence of team context on prosocial behavior. Using a multilevel perspective, we examined the relationships between individual (affective balance) and group (team prosocial efficacy and team trust) level variables and prosocial behavior towards team members. The participants were 123 students nested in 45 small teams. A series of multilevel random models was estimated using hierarchical linear and nonlinear modeling. Individuals were more likely to behave prosocially towards in-group members when they were feeling good. Furthermore, the relationship between positive affective balance and prosocial behavior was stronger in teams with higher team prosocial efficacy levels as well as in teams with higher team trust levels. Finally, the relevance of team trust had a stronger influence on behavior than team prosocial efficacy.

  13. Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challenge

    NASA Technical Reports Server (NTRS)

    Dubon, Lydia P.

    2006-01-01

    The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), manages the project and is responsible for flight operation; Orbital Sciences Corporation (OSC), is the spacecraft builder and is responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), is responsible for science planning and operations. As a cost-capped mission, one of Dawn's implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL's ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL's GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project's commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to fundamental systems engineering practices: decomposition of the project request into manageable requirements; integration of multiple ground disciplines and experts into a focused team effort; definition of a structured yet flexible development process; definition of an in-process risk reduction plan; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.

  14. Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challange

    NASA Technical Reports Server (NTRS)

    Dubon, Lydia P.

    2006-01-01

    The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), responsible for project management and flight operations; Orbital Sciences Corporation (OSC), spacecraft builder and responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), responsible for science planning and operations. As a cost-capped mission, one of Dawn s implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL s ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL s GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project s commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to an overall systems engineering process and fundamental systems engineering practices: decomposition of the project request into manageable requirements; definition of a structured yet flexible development process; integration of multiple ground disciplines and experts into a focused team effort; in-process risk management; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.

  15. Characteristics of team briefings in gynecological surgery.

    PubMed

    Forsyth, Katherine L; Hildebrand, Emily A; Hallbeck, M Susan; Branaghan, Russell J; Blocker, Renaldo C

    2018-02-24

    Preoperative briefings have been proven beneficial for improving team performance in the operating room. However, there has been minimal research regarding team briefings in specific surgical domains. As part of a larger project to develop a briefing structure for gynecological surgery, the study aimed to better understand the current state of pre-operative team briefings in one department of an academic hospital. Twenty-four team briefings were observed and video recorded. Communication was analyzed and social network metrics were created based on the team member verbal interactions. Introductions occurred in only 25% of the briefings. Network analysis revealed that average team briefings exhibited a hierarchical structure of communication, with the surgeon speaking the most frequently. The average network for resident-led briefings displayed a non-hierarchical structure with all team members communicating with the resident. Briefings conducted without a standardized protocol can produce variable communication between the role leading and the team members present. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. An engineering database management system for spacecraft operations

    NASA Technical Reports Server (NTRS)

    Cipollone, Gregorio; Mckay, Michael H.; Paris, Joseph

    1993-01-01

    Studies at ESOC have demonstrated the feasibility of a flexible and powerful Engineering Database Management System in support for spacecraft operations documentation. The objectives set out were three-fold: first an analysis of the problems encountered by the Operations team in obtaining and managing operations documents; secondly, the definition of a concept for operations documentation and the implementation of prototype to prove the feasibility of the concept; and thirdly, definition of standards and protocols required for the exchange of data between the top-level partners in a satellite project. The EDMS prototype was populated with ERS-l satellite design data and has been used by the operations team at ESOC to gather operational experience. An operational EDMS would be implemented at the satellite prime contractor's site as a common database for all technical information surrounding a project and would be accessible by the cocontractor's and ESA teams.

  17. Science operations management. [with Infrared Astronomy Satellite project

    NASA Technical Reports Server (NTRS)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  18. Observation of behavioural markers of non-technical skills in the operating room and their relationship to intra-operative incidents.

    PubMed

    Siu, Joey; Maran, Nikki; Paterson-Brown, Simon

    2016-06-01

    The importance of non-technical skills in improving surgical safety and performance is now well recognised. Better understanding is needed of the impact that non-technical skills of the multi-disciplinary theatre team have on intra-operative incidents in the operating room (OR) using structured theatre-based assessment. The interaction of non-technical skills that influence surgical safety of the OR team will be explored and made more transparent. Between May-August 2013, a range of procedures in general and vascular surgery in the Royal Infirmary of Edinburgh were performed. Non-technical skills behavioural markers and associated intra-operative incidents were recorded using established behavioural marking systems (NOTSS, ANTS and SPLINTS). Adherence to the surgical safety checklist was also observed. A total of 51 procedures were observed, with 90 recorded incidents - 57 of which were considered avoidable. Poor situational awareness was a common area for surgeons and anaesthetists leading to most intra-operative incidents. Poor communication and teamwork across the whole OR team had a generally large impact on intra-operative incidents. Leadership was shown to be an essential set of skills for the surgeons as demonstrated by the high correlation of poor leadership with intra-operative incidents. Team-working and management skills appeared to be especially important for anaesthetists in the recovery from an intra-operative incident. A significant number of avoidable incidents occur during operative procedures. These can all be linked to failures in non-technical skills. Better training of both individual and team in non-technical skills is needed in order to improve patient safety in the operating room. Copyright © 2014 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  19. Augmenting team cognition in human-automation teams performing in complex operational environments.

    PubMed

    Cuevas, Haydee M; Fiore, Stephen M; Caldwell, Barrett S; Strater, Laura

    2007-05-01

    There is a growing reliance on automation (e.g., intelligent agents, semi-autonomous robotic systems) to effectively execute increasingly cognitively complex tasks. Successful team performance for such tasks has become even more dependent on team cognition, addressing both human-human and human-automation teams. Team cognition can be viewed as the binding mechanism that produces coordinated behavior within experienced teams, emerging from the interplay between each team member's individual cognition and team process behaviors (e.g., coordination, communication). In order to better understand team cognition in human-automation teams, team performance models need to address issues surrounding the effect of human-agent and human-robot interaction on critical team processes such as coordination and communication. Toward this end, we present a preliminary theoretical framework illustrating how the design and implementation of automation technology may influence team cognition and team coordination in complex operational environments. Integrating constructs from organizational and cognitive science, our proposed framework outlines how information exchange and updating between humans and automation technology may affect lower-level (e.g., working memory) and higher-level (e.g., sense making) cognitive processes as well as teams' higher-order "metacognitive" processes (e.g., performance monitoring). Issues surrounding human-automation interaction are discussed and implications are presented within the context of designing automation technology to improve task performance in human-automation teams.

  20. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Team members of "Survey" drive their robot around the campus on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Survey team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  1. Evaluation of effects of an operational multidisciplinary team on antibiotic use in the medium to long term at a French university hospital.

    PubMed

    Demoré, Béatrice; Humbert, Pauline; Boschetti, Emmanuelle; Bevilacqua, Sibylle; Clerc-Urmès, Isabelle; May, Thierry; Pulcini, Céline; Thilly, Nathalie

    2017-10-01

    Background Antibiotic-resistant bacteria are a major public health problem throughout the world. In 2006, in accordance with the national guidelines for antibiotic use, the CHRU of Nancy created an operational multidisciplinary antibiotic team at one of its sites. In 2011, a cluster-controlled trial showed that the operational multidisciplinary antibiotic team (the intervention) had a favourable short-term effect on antibiotic use and costs. Objective Our objective was to determine whether these effects continued over the medium to long term (that is, 2-7 years after creation of the operational multidisciplinary antibiotic team, 2009-2014). Setting The 1800-bed University Hospital of Nancy (France). Method The effect in the medium to long term is measured according to the same criteria and assessed by the same methods as the first study. A cluster controlled trial was performed on the period 2009-2014. The intervention group comprised 11 medical and surgical wards in settings where the operational multidisciplinary antibiotic team was implemented and the control group comprised 6 wards without this operational team. Main outcome measure Consumption of antibiotics overall and by therapeutic class (in defined daily doses per 1000 patient-days) and costs savings (in €). Results The reduction in antibiotic use and costs continued, but at a lower rate than in the short term (11% between 2009 and 2014 compared with 33% between 2007 and 2009) at the site of the intervention. The principal decreases concerned fluoroquinolones and glycopeptides. At the site without an operational multidisciplinary antibiotic team (the control group), total antibiotic use remained stable. Between 2009 and 2014, costs fell 10.5% in the intervention group and 5.7% in the control group. Conclusion This study shows that it is possible to maintain the effectiveness over time of such an intervention and demonstrates its role in defining a hospital's antibiotic policy.

  2. Generation of Simulated Tracking Data for LADEE Operational Readiness Testing

    NASA Technical Reports Server (NTRS)

    Woodburn, James; Policastri, Lisa; Owens, Brandon

    2015-01-01

    Operational Readiness Tests were an important part of the pre-launch preparation for the LADEE mission. The generation of simulated tracking data to stress the Flight Dynamics System and the Flight Dynamics Team was important for satisfying the testing goal of demonstrating that the software and the team were ready to fly the operational mission. The simulated tracking was generated in a manner to incorporate the effects of errors in the baseline dynamical model, errors in maneuver execution and phenomenology associated with various tracking system based components. The ability of the mission team to overcome these challenges in a realistic flight dynamics scenario indicated that the team and flight dynamics system were ready to fly the LADEE mission. Lunar Atmosphere and Dust Environment.

  3. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    NASA Technical Reports Server (NTRS)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  4. Student Registered Nurse Anesthetists' Atittudes toward and Perceptions of Teamwork in the Operating Room

    ERIC Educational Resources Information Center

    Heiner, Jeremy S.

    2013-01-01

    Student registered nurse anesthetists are an important part of an operating room team, yet little research has investigated how they perceive teamwork or approach team related issues specific to the operating room. This mixed methods study evaluated junior and senior student registered nurse anesthetists' attitudes toward and perceptions of…

  5. The 2010 Desert Rats Science Operations Test: Outcomes and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Eppler, D. B.

    2011-01-01

    The Desert RATS 2010 Team tested a variety of science operations management techniques, applying experience gained during the manned Apollo missions and the robotic Mars missions. This test assessed integrated science operations management of human planetary exploration using real-time, tactical science operations to oversee daily crew science activities, and a night shift strategic science operations team to conduct strategic level assessment of science data and daily traverse results. In addition, an attempt was made to collect numerical metric data on the outcome of the science operations to assist test evaluation. The two most important outcomes were 1) the production of significant (almost overwhelming) volume of data produced during daily traverse operations with two rovers, advanced imaging systems and well trained, scientifically proficient crew-members, and 2) the degree to which the tactical team s interaction with the surface crew enhanced science return. This interaction depended on continuous real-time voice and data communications, and the quality of science return from any human planetary exploration mission will be based strongly on the aggregate interaction between a well trained surface crew and a dedicated science operations support team using voice and imaging data from a planet s surface. In addition, the scientific insight developed by both the science operations team and the crews could not be measurable by simple numerical quantities, and its value will be missed by a purely metric-based evaluation of test outcome. In particular, failure to recognize the critical importance of this qualitative type interaction may result in mission architecture choices that will reduce science return.

  6. Enabling Rapid Integration of Combined Arms Teams into a Brigade Combat Team Organizational Structure

    DTIC Science & Technology

    2017-06-01

    organizational structure , fixed vs. mobile forward operating base (FOB) synchronization, prior preparation, and unit capabilities. 5. Ideas to Improve...Technical Report 1356 Enabling Rapid Integration of Combined Arms Teams into a Brigade Combat Team Organizational Structure ...2012 - May 2014 4. TITLE AND SUBTITLE Enabling Rapid Integration of Combined Arms Teams into a Brigade Combat Team Organizational Structure

  7. An Evaluation of Student Team Teaching in Sophomore Physics Classes. Final Report.

    ERIC Educational Resources Information Center

    Thrasher, Paul H.

    In the present document the effectiveness of a student team teaching technique is evaluated in comparison with the lecture method. The team teaching technique, previously used for upper division and graduate physics courses, was, for this study, used in a sophomore physics, electricity and magnetism course for engineers, mathematicians, chemists,…

  8. Traffic management teams : a description and action plan for Virginia.

    DOT National Transportation Integrated Search

    1988-01-01

    A traffic management team improves the overall traffic operations in an urban area, especially along urban corridors, through the communication, coordination, and cooperation of the transportation-related operational agencies in the area. Since vario...

  9. A Rover Operations Protocol for Maintaining Compliance with Planetary Protection Requirements

    NASA Astrophysics Data System (ADS)

    Jones, Melissa; Vasavada, Ashwin

    2016-07-01

    The Mars Science Laboratory (MSL) mission, with its Curiosity rover, arrived at Gale Crater in August 2012 with the scientific objective of assessing the past and present habitability of the landing site area. It is not a life detection mission, but one that uses geological, geochemical, and environmental measurements to understand whether past and present conditions could have supported life. The MSL mission is designated Planetary Protection Category IVa, with specific restrictions on the landing site and surface operations. In particular, the mission is prohibited from introducing any hardware into a Mars Special Region, as defined by COSPAR policy and in NASA document NPR 8020.12D. Fluid-formed features such as recurring slope lineae are included in this prohibition. Finally, any evidence suggesting the presence of Special Regions or flowing liquid at the actual MSL landing site shall be communicated to the NASA Planetary Protection Officer immediately, and physical contact by the rover with such features shall be entirely avoided. The MSL Project has recently developed and instituted a protocol in daily rover operations to ensure ongoing compliance with its planetary protection categorization. A particular challenge comes from the fact that the characteristics of potential Special Regions may not be obvious in the rover downlink data (e.g., landscape images, chemical measurements, or meteorology), or easily distinguishable from characteristics of other processes that do not imply Special Regions. For this reason, the first step in the process would be for the lead scientist for that day of operations (a role that rotates through senior scientists on the mission) to scrutinize all the targets that may receive interaction by rover hardware, such as targets for arm contact, or paths for wheel contact. Based on the expertise of the lead scientist, and definitions of Mars Special Regions, if any features of concern are identified, the other scientists on duty that day would be brought into a discussion. Typically the tactical team has a mix of experts in geology, astrobiology, geological materials, geochemistry, and meteorology. If this team cannot rule out the concern of introducing rover hardware into a potential Special Region, arm and wheel usage would be prohibited in that day's planning. This halt in tactical operations would allow a separate Special Regions Team to re-consider the data more deliberately, but still on timeline that would allow rover operations to resume as quickly as possible. This team is chosen in advance to have a broad range of expertise that can weigh the evidence for a potential Special Region, including representatives from the institutional planetary protection organization and involvement of the MSL Project Manager. If this team cannot rule out the concern, rover operations continue to hold while the NASA Planetary Protection Office is engaged to determine the best course of action for the mission. It is worth noting that evidence of modern, fluid-formed features at Gale Crater is not expected and would represent a major scientific discovery for the mission and Mars Exploration Program. However, this low-likelihood outcome still requires vigilance to ensure compliance with planetary protection requirements.

  10. Final Checks of Aquarius Instrument

    NASA Image and Video Library

    2011-04-29

    Less than two months before launch, team members conduct their final checks of NASA Aquarius instrument at Vandenberg Air Force Base, Calif. Subsequent final instrument tests will be conducted on the launch pad.

  11. The Evolution of Extravehicular Activity Operations to Lunar Exploration Based on Operational Lessons Learned During 2009 NASA Desert RATS Field Testing

    NASA Technical Reports Server (NTRS)

    Bell, Ernest R., Jr.; Welsh, Daren; Coan, Dave; Johnson, Kieth; Ney, Zane; McDaniel, Randall; Looper, Chris; Guirgis, Peggy

    2010-01-01

    This paper will present options to evolutionary changes in several philosophical areas of extravehicular activity (EVA) operations. These areas will include single person verses team EVAs; various loss of communications scenarios (with Mission Control, between suited crew, suited crew to rover crew, and rover crew A to rover crew B); EVA termination and abort time requirements; incapacitated crew ingress time requirements; autonomous crew operations during loss of signal periods including crew decisions on EVA execution (including decision for single verses team EVA). Additionally, suggestions as to the evolution of the make-up of the EVA flight control team from the current standard will be presented. With respect to the flight control team, the major areas of EVA flight control, EVA Systems and EVA Tasks, will be reviewed, and suggested evolutions of each will be presented. Currently both areas receive real-time information, and provide immediate feedback during EVAs as well as spacesuit (extravehicular mobility unit - EMU) maintenance and servicing periods. With respect to the tasks being performed, either EMU servicing and maintenance, or the specific EVA tasks, daily revising of plans will need to be able to be smoothly implemented to account for unforeseen situations and findings. Many of the presented ideas are a result of lessons learned by the NASA Johnson Space Center Mission Operations Directorate operations team support during the 2009 NASA Desert Research and Technology Studies (Desert RATS). It is important that the philosophy of both EVA crew operations and flight control be examined now, so that, where required, adjustments can be made to a next generation EMU and EVA equipment that will complement the anticipated needs of both the EVA flight control team and the crews.

  12. Anticipation, Teamwork, and Cognitive Load: Chasing Efficiency during Robot-Assisted Surgery

    PubMed Central

    Sexton, Kevin; Johnson, Amanda; Gotsch, Amanda; Hussein, Ahmed A.; Cavuoto, Lora; Guru, Khurshid A.

    2018-01-01

    Introduction Robot-assisted surgery (RAS) has changed the traditional operating room, occupying more space with equipment and isolating console surgeons away from the patients and their team. We aimed to evaluate how anticipation of surgical steps and familiarity between team members impacted efficiency and safety. Methods We analyzed recordings (video and audio) of 12 robot-assisted radical prostatectomies. Any requests between surgeon and the team members were documented and classified by personnel, equipment type, mode of communication, level of inconvenience in fulfilling the request, and anticipation. Surgical team members completed questionnaires assessing team familiarity and cognitive load (NASA-TLX). Predictors of team efficiency were assessed using Pearson correlation and stepwise linear regression. Results 1330 requests were documented of which 413 (31%) were anticipated. Anticipation correlated negatively with operative time resulting in overall 8% reduction of OR time. Team familiarity negatively correlated with inconveniences. Anticipation ratio, percent of requests that were nonverbal, and total request duration were significantly correlated with the console surgeons’ cognitive load (r=0.77, p=0.006; r=0.63, p=0.04; and r=0.70, p=0.02, respectively). Conclusions Anticipation and active engagement by the surgical team resulted in shorter operative time; and higher familiarity scores were associated with fewer inconveniences. Less anticipation and nonverbal requests were also associated with lower cognitive load for the console surgeon. Training efforts to increase anticipation and team familiarity can improve team efficiency during RAS. PMID:28689193

  13. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  14. Requirements, Resource Planning and Management for Decrewing/Recrewing Scenarios of the International Space Station

    NASA Technical Reports Server (NTRS)

    Bach, David A.; Hasbrook, Peter V.; BBrand, Susan N.

    2012-01-01

    Following the failure of 44P on launch in August 2011, and the subsequent grounding of all Russian Soyuz rocket based launches, the ISS ground teams engaged in an effort to determine how long the ISS could remain crewed, what would be required to safely configure the ISS for decrewing, and what would be required to recrew the ISS upon resumption of Soyuz rocket launches if decrewing became necessary. This White Paper was written to capture the processes and lessons learned from real-time time events and to provide a reference and training document for ISS Program teams in the event decrewing of the ISS is needed. Through coordination meetings and assessments, teams identified six decrewing priorities for ground and crew operations. These priorities were integrated along with preflight priorities through the Increment replanning process. Additionally, the teams reviewed, updated, and implemented changes to the governing documentation for the configuration of the ISS for a contingency decrewing event. Steps were taken to identify critical items for disposal prior to decrewing, as well as identifying the required items to be strategically staged or flown with the astronauts and cosmonauts who would eventually recrew the ISS. After the successful launches and dockings of both 45P and 28S, the decrewing team transitioned to finalizing and publishing the documentation for standardizing the decrewing flight rules. With the continued launching of crews and cargo to the ISS, utilization and science is again a high priority, with the Increment pairs 29 and 30, and 31 and 32 reaching the milestone of at least 35 hours per week average utilization.

  15. Dimensions and intensity of inter-professional teamwork in primary care: evidence from five international jurisdictions.

    PubMed

    Levesque, Jean-Frederic; Harris, Mark F; Scott, Cathie; Crabtree, Benjamin; Miller, William; Halma, Lisa M; Hogg, William E; Weenink, Jan-Willem; Advocat, Jenny R; Gunn, Jane; Russell, Grant

    2017-10-23

    Inter-professional teamwork in primary care settings offers potential benefits for responding to the increasing complexity of patients' needs. While it is a central element in many reforms to primary care delivery, implementing inter-professional teamwork has proven to be more challenging than anticipated. The objective of this study was to better understand the dimensions and intensity of teamwork and the developmental process involved in creating fully integrated teams. Secondary analyses of qualitative and quantitative data from completed studies conducted in Australia, Canada and USA. Case studies and matrices were used, along with face-to-face group retreats, using a Collaborative Reflexive Deliberative Approach. Four dimensions of teamwork were identified. The structural dimension relates to human resources and mechanisms implemented to create the foundations for teamwork. The operational dimension relates to the activities and programs conducted as part of the team's production of services. The relational dimension relates to the relationships and interactions occurring in the team. Finally, the functional dimension relates to definitions of roles and responsibilities aimed at coordinating the team's activities as well as to the shared vision, objectives and developmental activities aimed at ensuring the long-term cohesion of the team. There was a high degree of variation in the way the dimensions were addressed by reforms across the national contexts. The framework enables a clearer understanding of the incremental and iterative aspects that relate to higher achievement of teamwork. Future reforms of primary care need to address higher-level dimensions of teamwork to achieve its expected outcomes. © The Author 2017. Published by Oxford University Press.

  16. How Team-Level and Individual-Level Conflict Influences Team Commitment: A Multilevel Investigation.

    PubMed

    Lee, Sanghyun; Kwon, Seungwoo; Shin, Shung J; Kim, MinSoo; Park, In-Jo

    2017-01-01

    We investigate how two different types of conflict (task conflict and relationship conflict) at two different levels (individual-level and team-level) influence individual team commitment. The analysis was conducted using data we collected from 193 employees in 31 branch offices of a Korean commercial bank. The relationships at multiple levels were tested using hierarchical linear modeling (HLM). The results showed that individual-level relationship conflict was negatively related to team commitment while individual-level task conflict was not. In addition, both team-level task and relationship conflict were negatively associated with team commitment. Finally, only team-level relationship conflict significantly moderated the relationship between individual-level relationship conflict and team commitment. We further derive theoretical implications of these findings.

  17. How Team-Level and Individual-Level Conflict Influences Team Commitment: A Multilevel Investigation

    PubMed Central

    Lee, Sanghyun; Kwon, Seungwoo; Shin, Shung J.; Kim, MinSoo; Park, In-Jo

    2018-01-01

    We investigate how two different types of conflict (task conflict and relationship conflict) at two different levels (individual-level and team-level) influence individual team commitment. The analysis was conducted using data we collected from 193 employees in 31 branch offices of a Korean commercial bank. The relationships at multiple levels were tested using hierarchical linear modeling (HLM). The results showed that individual-level relationship conflict was negatively related to team commitment while individual-level task conflict was not. In addition, both team-level task and relationship conflict were negatively associated with team commitment. Finally, only team-level relationship conflict significantly moderated the relationship between individual-level relationship conflict and team commitment. We further derive theoretical implications of these findings. PMID:29387033

  18. 77 FR 53179 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    .... SUMMARY: The North Pacific Fishery Management Council's (NPFMC) Crab Plan Team (CPT) will meet in Seattle.... SUPPLEMENTARY INFORMATION: The Plan Team meeting agenda includes: Final stock assessments and harvest...

  19. Space Shuttle Ascent Flight Design Process: Evolution and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Picka, Bret A.; Glenn, Christopher B.

    2011-01-01

    The Space Shuttle Ascent Flight Design team is responsible for defining a launch to orbit trajectory profile that satisfies all programmatic mission objectives and defines the ground and onboard reconfiguration requirements for this high-speed and demanding flight phase. This design, verification and reconfiguration process ensures that all applicable mission scenarios are enveloped within integrated vehicle and spacecraft certification constraints and criteria, and includes the design of the nominal ascent profile and trajectory profiles for both uphill and ground-to-ground aborts. The team also develops a wide array of associated training, avionics flight software verification, onboard crew and operations facility products. These key ground and onboard products provide the ultimate users and operators the necessary insight and situational awareness for trajectory dynamics, performance and event sequences, abort mode boundaries and moding, flight performance and impact predictions for launch vehicle stages for use in range safety, and flight software performance. These products also provide the necessary insight to or reconfiguration of communications and tracking systems, launch collision avoidance requirements, and day of launch crew targeting and onboard guidance, navigation and flight control updates that incorporate the final vehicle configuration and environment conditions for the mission. Over the course of the Space Shuttle Program, ascent trajectory design and mission planning has evolved in order to improve program flexibility and reduce cost, while maintaining outstanding data quality. Along the way, the team has implemented innovative solutions and technologies in order to overcome significant challenges. A number of these solutions may have applicability to future human spaceflight programs.

  20. Device- and system-independent personal touchless user interface for operating rooms : One personal UI to control all displays in an operating room.

    PubMed

    Ma, Meng; Fallavollita, Pascal; Habert, Séverine; Weidert, Simon; Navab, Nassir

    2016-06-01

    In the modern day operating room, the surgeon performs surgeries with the support of different medical systems that showcase patient information, physiological data, and medical images. It is generally accepted that numerous interactions must be performed by the surgical team to control the corresponding medical system to retrieve the desired information. Joysticks and physical keys are still present in the operating room due to the disadvantages of mouses, and surgeons often communicate instructions to the surgical team when requiring information from a specific medical system. In this paper, a novel user interface is developed that allows the surgeon to personally perform touchless interaction with the various medical systems, switch effortlessly among them, all of this without modifying the systems' software and hardware. To achieve this, a wearable RGB-D sensor is mounted on the surgeon's head for inside-out tracking of his/her finger with any of the medical systems' displays. Android devices with a special application are connected to the computers on which the medical systems are running, simulating a normal USB mouse and keyboard. When the surgeon performs interaction using pointing gestures, the desired cursor position in the targeted medical system display, and gestures, are transformed into general events and then sent to the corresponding Android device. Finally, the application running on the Android devices generates the corresponding mouse or keyboard events according to the targeted medical system. To simulate an operating room setting, our unique user interface was tested by seven medical participants who performed several interactions with the visualization of CT, MRI, and fluoroscopy images at varying distances from them. Results from the system usability scale and NASA-TLX workload index indicated a strong acceptance of our proposed user interface.

  1. Collision Avoidance: Coordination of Predicted Conjunctions between NASA Satellites and Satellites of other Countries

    NASA Astrophysics Data System (ADS)

    Kelly, A.; Watson, W.

    2014-09-01

    This paper describes one of the challenges facing the flight operations teams of the International Earth Observing constellation satellites at the 705 km orbit, including NASAs satellites. The NASA Earth Science Mission Operations (ESMO) Project has been dealing with predicted conjunctions (close approach) between operational/non-operational space objects and the satellites in the International Earth observing constellations for several years. Constellation satellites include: NASAs Earth Observing System (EOS) Terra, Aqua, and Aura, CloudSat, the joint NASA/CNES CALIPSO mission, Earth Observing 1 (EO-1), the Japan Aerospace and Exploration Agency (JAXA) Global Change Observation Mission-Water 1 (GCOM-W1) mission, the United States Geological Survey (USGS) Landsat 7 and Landsat 8, and until 2013, Argentinas SAC-C mission and the CNES PARASOL mission. The NASA Conjunction Analysis and Risk Assessment (CARA) team provides daily reports to the ESMO Project regarding any high interest close approach events (HIEs) involving the constellation satellites. The daily CARA reports provide risk assessment results that help the operations teams to determine if there is a need to perform a risk mitigation action. If the conjuncting space object is an operational satellite that is capable of maneuvering, the affected satellite team needs to coordinate their action plan with the owner operator of the conjuncting satellite. It is absolutely critical for the two teams to communicate as soon as possible. The goal is to minimize the collision risk; this can happen if both satellite operators do not coordinate their maneuver plans. The constellation teams have established guidelines for coordinating HIEs. This coordination process has worked successfully for several years for satellites that are operated by other organizations in the United States and by NASAs international partners, all with whom NASA has a cooperative agreement. However, the situation is different for HIEs with satellites of foreign operators that do not have an agreement with NASA and the constellation organizations. The current process for coordinating close approach events is neither timely nor satisfactory. Due to the concern that NASAs multi-billion dollar assets at the 705 km orbit can be wiped out by a collision with satellites of foreign operators, the NASA ESMO Project and the CARA team are proposing a more timely coordination and communication process to resolve and safely mitigate these HIEs. This proposed process does not violate any existing communication constraints between the United States and certain foreign operators. This proposal, as described in this paper, will be presented at the conference and comments from other satellite operators will be welcomed and greatly appreciated.

  2. Navigating the MESSENGER Spacecraft through End of Mission

    NASA Astrophysics Data System (ADS)

    Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.

    2015-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury from March 2011 until the end of April 2015, when it impacted the planetary surface after propellant reserves used to maintain the orbit were depleted. This highly successful mission was led by the principal investigator, Sean C. Solomon, of Columbia University. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and assembled the spacecraft and served as the home for spacecraft operations. Spacecraft navigation for the entirety of the mission was provided by the Space Navigation and Flight Dynamics Practice (SNAFD) of KinetX Aerospace. Orbit determination (OD) solutions were generated through processing of radiometric tracking data provided by NASA's Deep Space Network (DSN) using the MIRAGE suite of orbital analysis tools. The MESSENGER orbit was highly eccentric, with periapsis at a high northern latitude and periapsis altitude in the range 200-500 km for most of the orbital mission phase. In a low-altitude "hover campaign" during the final two months of the mission, periapsis altitudes were maintained within a narrow range between about 35 km and 5 km. Navigating a spacecraft so near a planetary surface presented special challenges. Tasks required to meet those challenges included the modeling and estimation of Mercury's gravity field and of solar and planetary radiation pressure, and the design of frequent orbit-correction maneuvers. Superior solar conjunction also presented observational modeling issues. One key to the overall success of the low-altitude hover campaign was a strategy to utilize data from an onboard laser altimeter as a cross-check on the navigation team's reconstructed and predicted estimates of periapsis altitude. Data obtained from the Mercury Laser Altimeter (MLA) on a daily basis provided near-real-time feedback that proved invaluable in evaluating alternative orbit estimation strategies, and eventually allowed the navigation team to settle on an approach that gave consistently accurate predictions. Thus, final mission success was truly the result of a collaborative effort between members of the science, mission operations, mission design, and navigation teams.

  3. Practice Patterns Regarding Multidisciplinary Cancer Management and Suggestions for Further Refinement: Results from a National Survey in Korea.

    PubMed

    Lee, Yun-Gyoo; Oh, Sukjoong; Kimm, Heejin; Koo, Dong-Hoe; Kim, Do Yeun; Kim, Bong-Seog; Lee, Seung-Sei

    2017-10-01

    This study was conducted to explore the process and operation of a cancer multidisciplinary team (MDT) after the reimbursement decision in Korea, and to identify ways to overcome the major barriers to effective and sustainable MDTs. Approximately 1,000 cancer specialists, including medical oncologists, surgical oncologists, radiation oncologists, pathologists, and radiologists in general hospitals in Koreawere invited to complete the survey. The questionnaire covered the following topics: organizational structure of MDTs, candidates for consulting, the clinical decision-making initiative, and responsibility for dealing with legal disputes. We collected a total of 179 responses (18%) from physicians at institutions where an MDT approach was active. A surgical oncologist (91%), internist (90%),radiologist (89%),radiation oncologist (86%), pathologist (71%), and trainees (20%) regularly participated in MDT operations. Approximately 55% of respondents stated that MDTs met regularly. In cases of a split opinion, the physician in charge (69%) or chairperson (17%) made the final decision, and most (86%) stated they followed the final decision. About 15% and 32% of respondents were "very satisfied" and "satisfied," respectively, with the current MDT's operations. Among 38 institutional representatives, 34% responded that the MDT operation became more active and 18% stated an MDT was newly implemented after the reimbursement decision. The reimbursement decision invigorated MDT operations in almost half of eligible hospitals. Dissatisfaction regarding current MDTs was over 50%, and the high discordance rates regarding risk sharing suggest that it is necessary to revise the current system of MDTs.

  4. The Preparation for and Execution of Engineering Operations for the Mars Curiosity Rover Mission

    NASA Technical Reports Server (NTRS)

    Samuels, Jessica A.

    2013-01-01

    The Mars Science Laboratory Curiosity Rover mission is the most complex and scientifically packed rover that has ever been operated on the surface of Mars. The preparation leading up to the surface mission involved various tests, contingency planning and integration of plans between various teams and scientists for determining how operation of the spacecraft (s/c) would be facilitated. In addition, a focused set of initial set of health checks needed to be defined and created in order to ensure successful operation of rover subsystems before embarking on a two year science journey. This paper will define the role and responsibilities of the Engineering Operations team, the process involved in preparing the team for rover surface operations, the predefined engineering activities performed during the early portion of the mission, and the evaluation process used for initial and day to day spacecraft operational assessment.

  5. SmartStaff: A Support Concept for Staff Planning

    DTIC Science & Technology

    2000-11-01

    facilitated time management and decreased the ambiguities of the plans presented. However, the quality of the final plan did not improve. Team decision making, Team Planning, Group Support Systems, Task Group Staff

  6. Intelligent Mobile Sensor System (IMSS) for drum inspection and monitoring -- Volume 3. Final report, October 1, 1993--April 22, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This manual is intended to be read by people who will use the IMSS system on a regular basis, who will be referred to as IMSS system operators. Portions of this manual are intended to be read by operations staff who need to understand certain aspects of the IMSS system since their staff will be working near the IMSS vehicle and docking station. Sections 1 through 4 provide general information of interest both to operations staff and IMSS system operators. The remainder of this manual provides information of interest mainly to IMSS system operators. This manual is customized for usemore » of the IMSS system at the DOE Idaho National Engineering Laboratory (INEL), specifically in Buildings 628 through 634 at INEL`s Radioactive Waste Management Complex (RWMC). The vast majority of this manual is applicable to any installation site--only a few minor details are specific to INEL. This manual will be complemented by one-on-one training provided to INEL personnel by the IMSS system development team.« less

  7. From Prime to Extended Mission: Evolution of the MER Tactical Uplink Process

    NASA Technical Reports Server (NTRS)

    Mishkin, Andrew H.; Laubach, Sharon

    2006-01-01

    To support a 90-day surface mission for two robotic rovers, the Mars Exploration Rover mission designed and implemented an intensive tactical operations process, enabling daily commanding of each rover. Using a combination of new processes, custom software tools, a Mars-time staffing schedule, and seven-day-a-week operations, the MER team was able to compress the traditional weeks-long command-turnaround for a deep space robotic mission to about 18 hours. However, the pace of this process was never intended to be continued indefinitely. Even before the end of the three-month prime mission, MER operations began evolving towards greater sustainability. A combination of continued software tool development, increasing team experience, and availability of reusable sequences first reduced the mean process duration to approximately 11 hours. The number of workshifts required to perform the process dropped, and the team returned to a modified 'Earth-time' schedule. Additional process and tool adaptation eventually provided the option of planning multiple Martian days of activity within a single workshift, making 5-day-a-week operations possible. The vast majority of the science team returned to their home institutions, continuing to participate fully in the tactical operations process remotely. MER has continued to operate for over two Earth-years as many of its key personnel have moved on to other projects, the operations team and budget have shrunk, and the rovers have begun to exhibit symptoms of aging.

  8. KSC-03pd0272

    NASA Image and Video Library

    2003-02-05

    KENNEDY SPACE CENTER, FLA. - Don Maxwell, Safety, United Space Alliance, checks a map of Texas during a meeting of the Recovery Management Team at KSC. The team is part of the investigation into the accident that claimed orbiter Columbia and her crew of seven on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. Other team members are Russ DeLoach, chief, Shuttle Mission Assurance Branch, NASA; George Jacobs, Shuttle Engineering; Jeff Campbell, Shuttle Engineering; Dave Rainer, Launch and Landing Operations; the two co-chairs of the Response Management Team, Denny Gagen, Landing Recovery Manager, Chris Hasselbring, Landing Operations, USA; and Larry Ulmer, Safety, NASA. The team is coordinating KSC technical support and assets to the Mishap Investigation Team in Barksdale, La., and providing support for the Recovery teams in Los Angeles, Texas, New Mexico, Arizona and California. In addition, the team is following up on local leads pertaining to potential debris in the KSC area. .

  9. Wilkinson Microwave Anisotropy Probe (WMAP) Battery Operations Problem Resolution Team (PRT)

    NASA Technical Reports Server (NTRS)

    Keys, Denney J.

    2010-01-01

    The NASA Technical Discipline Fellow for Electrical Power, was requested to form a Problem Resolution Team (PRT) to help assess the health of the flight battery that is currently operating aboard NASA's Wilkinson Microwave Anisotropy Probe (WMAP) and provide recommendations for battery operations to mitigate the risk of impacting science operations for the rest of the mission. This report contains the outcome of the PRT's assessment.

  10. Astronaut training in view of the future: A Columbus payload instructor perspective

    NASA Astrophysics Data System (ADS)

    Aguzzi, Manuela; Bosca, Riccardo; Müllerschkowski, Uwe

    2010-02-01

    In early 2008 the Columbus module was successfully attached to the ISS. Columbus is the main European contribution to the on-board scientific activity, and is the result of the interdisciplinary effort of European professionals involved from the concept to the utilisation of the laboratory. Astronauts from different Space Agencies have been trained to operate the scientific payloads aboard Columbus, in order to return fundamental data to the scientific community. The aim of this paper is to describe the current activity of the Columbus Payload Training Team (as part of the European Astronaut Centre of ESA) and from this experience derive lessons learned for the future training development, in view of long-term missions. The general structure of the training is described. The Columbus Payload Training Team activity is outlined and the process of the lesson development (Instructional System Design) is briefly described. Finally the features of the training process that can become critical in future scenario are highlighted.

  11. Final matches of the FIRST regional robotic competition at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During the 1999 FIRST Southeastern Regional robotic competition held at KSC, a robot carrying its cache of pillow-like disks maneuvers to move around another at left. Powered by 12-volt batteries and operated by remote control, the robotic gladiators spend two minutes each trying to grab, claw and hoist the pillows onto their machines. Teams play defense by taking away competitors' pillows and generally harassing opposing machines. Behind the field are a group of judges, including KSC former KSC Director of Shuttle Processing Robert Sieck (left, in cap), and Center Director Roy Bridges (in white shirt). A giant screen TV in the background displays the action on the playing field. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.

  12. A versatile sensor network for urban search and rescue operations

    NASA Astrophysics Data System (ADS)

    Känsälä, Klaus; Korkalainen, Marko; Mäyrä, Aki

    2011-11-01

    The presentation is based in the research work carried out in EU funded project SGL for USaR (Second Generation Locator for Urban Search and Rescue Operations). The aim of this project is to develop wireless standalone communication system with embedded sensor network which can be globally used in rescue operations after accidents or terrorist attacks. The system should be able to operate without external support for several days: it should have autonomy with power supply and communication. The devices must be lightweight so that rescue team can easily carry them and finally they must be easy to install and use. The range of the wireless communication must cover an area of several square kilometers. The embedded sensor system must be able to detect sings of life but also detect hazards threatening the rescue operators thus preventing more accidents. It should also support positioning and digital mapping as well as the management of the search and rescue operation. This sensor network for urban search and rescue operations has been tested on a field conditions and it has proven to be robust and reliable and provides an energy efficient way of communication and positioning on harsh conditions.

  13. Final Evaluation Report. SAELP Interagengy Collaborative Governance Project. Creating a Culture that Supports High Performing Teams

    ERIC Educational Resources Information Center

    Monahan, Thomas C.

    2007-01-01

    In 2006, representatives of the New Jersey Department of Education, the New Jersey School Boards Association, and the New Jersey Association of School Administrators, conceived a joint venture aimed at assisting board of education teams, including their superintendents, to function better as cohesive teams and foster improved academic achievement…

  14. The Definition and Measurement of Small Military Unit Team Functions. Final Report, July 1980-October 1981.

    ERIC Educational Resources Information Center

    Shiflett, Samuel; And Others

    A study was undertaken to improve the measurement of small team performance within the Army. A provisional taxonomy of team-level performance functions was field-validated; criteria and measures of the functions were developed; and their reliability was examined. The provisional taxonomy, used for observing Army field training exercises, was used…

  15. The Astronaut Glove Challenge: Big Innovation from a (Very) Small Team

    NASA Technical Reports Server (NTRS)

    Homer, Peter

    2008-01-01

    Many measurements were taken by test engineers from Hamilton Sundstrand, the prime contractor for the current EVA suit. Because the raw measurements needed to be converted to torques and combined into a final score, it was impossible to keep track of who was ahead in this phase. The final comfort and dexterity test was performed in a depressurized glove box to simulate real on-orbit conditions. Each competitor was required to exercise the glove through a defined set of finger, thumb, and wrist motions without any sign of abrasion or bruising of the competitor's hand. I learned a lot about arm fatigue! This was a pass-fail event, and both of the remaining competitors came through intact. After taking what seemed like an eternity to tally the final scores, the judges announced that I had won the competition. My glove was the only one to have achieved lower finger-bending torques than the Phase VI glove. Looking back, I see three sources of the success of this project that I believe also operate in other programs where small teams have broken new ground in aerospace technologies. These are awareness, failure, and trust. By remaining aware of the big picture, continuously asking myself, "Am I converging on a solution?" and "Am I converging fast enough?" I was able to see that my original design was not going to succeed, leading to the decision to start over. I was also aware that, had I lingered over this choice or taken time to analyze it, I would not have been ready on the first day of competition. Failure forced me to look outside conventional thinking and opened the door to innovation. Choosing to make incremental failures enabled me to rapidly climb the learning curve. Trusting my "gut" feelings-which are really an internalized accumulation of experiences-and my newly acquired skills allowed me to devise new technologies rapidly and complete both gloves just in time. Awareness, failure, and trust are intertwined: failure provides experiences that inform awareness and provide decision-making opportunities that build trust among team members and managers while opening minds to new pathways for development. All three are necessary for teams-large or small-to achieve big innovation.

  16. Accident analysis and control options in support of the sludge water system safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEY, B.E.

    A hazards analysis was initiated for the SWS in July 2001 (SNF-8626, K Basin Sludge and Water System Preliminary Hazard Analysis) and updated in December 2001 (SNF-10020 Rev. 0, Hazard Evaluation for KE Sludge and Water System - Project A16) based on conceptual design information for the Sludge Retrieval System (SRS) and 60% design information for the cask and container. SNF-10020 was again revised in September 2002 to incorporate new hazards identified from final design information and from a What-if/Checklist evaluation of operational steps. The process hazards, controls, and qualitative consequence and frequency estimates taken from these efforts have beenmore » incorporated into Revision 5 of HNF-3960, K Basins Hazards Analysis. The hazards identification process documented in the above referenced reports utilized standard industrial safety techniques (AIChE 1992, Guidelines for Hazard Evaluation Procedures) to systematically guide several interdisciplinary teams through the system using a pre-established set of process parameters (e.g., flow, temperature, pressure) and guide words (e.g., high, low, more, less). The teams generally included representation from the U.S. Department of Energy (DOE), K Basins Nuclear Safety, T Plant Nuclear Safety, K Basin Industrial Safety, fire protection, project engineering, operations, and facility engineering.« less

  17. The Habitat Demonstration Unit System Integration

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Kennedy, Kriss J.; Tri, Terry O.; Howe, Alan S.

    2010-01-01

    The Lunar Surface System Habitat Demonstration Unit (HDU) will require a project team to integrate a variety of contributions from National Aeronautics and Space Administration (NASA) centers and potential outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture. To accomplish the development of the first version of the HDU, the Pressurized Excursion Module (PEM), from conception in June 2009 to rollout for operations in July 2010, the HDU project team is using several strategies to mitigate risks and bring the separate efforts together. First, a set of design standards is being developed to define the interfaces between the various systems of PEM and to the payloads, such as the Geology Laboratory, that those systems will support. Scheduled activities such as early fit-checks and the utilization of a habitat avionics test bed prior to equipment installation into HDU PEM are planned to facilitate the integration process. A coordinated effort to establish simplified Computer Aided Design (CAD) standards and the utilization of a modeling and simulation systems will aid in design and integration concept development. Finally, decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU design to maximize the efficiency of both integration and field operations.

  18. Team West Virginia/Rome Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korakakis, Dimitris

    Overall, the team, West Virginia University (WVU) and University of Rome Tor Vergata (UTV), has a goal of building an attractive, low-cost, energy-efficient solar-powered home that represents both the West Virginian and Italian cultures.

  19. Disposal site quality team final report

    DOT National Transportation Integrated Search

    2001-09-01

    The disposal site quality team was formed in July 2000 to address Caltrans (Department) and Federal Highway Administration (FHWA) policies on disposal, staging, and borrow areas (DSB), including plant sites, contractor yards, and access roads. Caltra...

  20. Mental Health Advisory Team (MHAT) 6 -- Operation Enduring Freedom 2009 Afghanistan

    DTIC Science & Technology

    2009-11-06

    Mental Health Advisory Team (MHAT) 6 Operation Enduring Freedom 2009 Afghanistan 6 November 2009 Office o f the Command Surgeon US Forces...Afghanistan (USFOR-A) and Office o f The Surgeon General United States Army Medical Command The results and opinions presented in this report are...United States Army, or the Office of The Surgeon General. The MHAT 6 team would like to acknowledge the active involvement and in-theater support

  1. Identification of Combat Unit Leader Skills and Leader-Group Interaction Processes

    DTIC Science & Technology

    1980-01-01

    Categories of human learning. New York: Academic Press, 1964. Galton , (Sir) Francis . Hereditary genius. l-itmillan and Company, London, 1879. Garland...naissance tEam was given the mission to acquire intelligence on enemy activities in a particular area of operation (Jones, 1969). The team was to avoid...contact as the mission was strictly one of gathering intelligence . The team operating in the assigned reconnaisspnce zone came upon approximately 15 NVA

  2. Creating and Supporting a Mixed Methods Health Services Research Team

    PubMed Central

    Bowers, Barbara; Cohen, Lauren W; Elliot, Amy E; Grabowski, David C; Fishman, Nancy W; Sharkey, Siobhan S; Zimmerman, Sheryl; Horn, Susan D; Kemper, Peter

    2013-01-01

    Objective. To use the experience from a health services research evaluation to provide guidance in team development for mixed methods research. Methods. The Research Initiative Valuing Eldercare (THRIVE) team was organized by the Robert Wood Johnson Foundation to evaluate The Green House nursing home culture change program. This article describes the development of the research team and provides insights into how funders might engage with mixed methods research teams to maximize the value of the team. Results. Like many mixed methods collaborations, the THRIVE team consisted of researchers from diverse disciplines, embracing diverse methodologies, and operating under a framework of nonhierarchical, shared leadership that required new collaborations, engagement, and commitment in the context of finite resources. Strategies to overcome these potential obstacles and achieve success included implementation of a Coordinating Center, dedicated time for planning and collaborating across researchers and methodologies, funded support for in-person meetings, and creative optimization of resources. Conclusions. Challenges are inevitably present in the formation and operation of effective mixed methods research teams. However, funders and research teams can implement strategies to promote success. PMID:24138774

  3. Creating and supporting a mixed methods health services research team.

    PubMed

    Bowers, Barbara; Cohen, Lauren W; Elliot, Amy E; Grabowski, David C; Fishman, Nancy W; Sharkey, Siobhan S; Zimmerman, Sheryl; Horn, Susan D; Kemper, Peter

    2013-12-01

    To use the experience from a health services research evaluation to provide guidance in team development for mixed methods research. The Research Initiative Valuing Eldercare (THRIVE) team was organized by the Robert Wood Johnson Foundation to evaluate The Green House nursing home culture change program. This article describes the development of the research team and provides insights into how funders might engage with mixed methods research teams to maximize the value of the team. Like many mixed methods collaborations, the THRIVE team consisted of researchers from diverse disciplines, embracing diverse methodologies, and operating under a framework of nonhierarchical, shared leadership that required new collaborations, engagement, and commitment in the context of finite resources. Strategies to overcome these potential obstacles and achieve success included implementation of a Coordinating Center, dedicated time for planning and collaborating across researchers and methodologies, funded support for in-person meetings, and creative optimization of resources. Challenges are inevitably present in the formation and operation of effective mixed methods research teams. However, funders and research teams can implement strategies to promote success. © Health Research and Educational Trust.

  4. Affective Balance, Team Prosocial Efficacy and Team Trust: A Multilevel Analysis of Prosocial Behavior in Small Groups

    PubMed Central

    Cuadrado, Esther; Tabernero, Carmen

    2015-01-01

    Little research has focused on how individual- and team-level characteristics jointly influence, via interaction, how prosocially individuals behave in teams and few studies have considered the potential influence of team context on prosocial behavior. Using a multilevel perspective, we examined the relationships between individual (affective balance) and group (team prosocial efficacy and team trust) level variables and prosocial behavior towards team members. The participants were 123 students nested in 45 small teams. A series of multilevel random models was estimated using hierarchical linear and nonlinear modeling. Individuals were more likely to behave prosocially towards in-group members when they were feeling good. Furthermore, the relationship between positive affective balance and prosocial behavior was stronger in teams with higher team prosocial efficacy levels as well as in teams with higher team trust levels. Finally, the relevance of team trust had a stronger influence on behavior than team prosocial efficacy. PMID:26317608

  5. The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Thomas C.; Strom, Dean; Beulow, Laura

    The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 andmore » 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)« less

  6. Balloon aortic valvuloplasty as a bridge-to-decision in high risk patients with aortic stenosis: a new paradigm for the heart team decision making

    PubMed Central

    Saia, Francesco; Moretti, Carolina; Dall'Ara, Gianni; Ciuca, Cristina; Taglieri, Nevio; Berardini, Alessandra; Gallo, Pamela; Cannizzo, Marina; Chiarabelli, Matteo; Ramponi, Niccolò; Taffani, Linda; Bacchi-Reggiani, Maria Letizia; Marrozzini, Cinzia; Rapezzi, Claudio; Marzocchi, Antonio

    2016-01-01

    Background Whilst the majority of the patients with severe aortic stenosis can be directly addressed to surgical aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI), in some instances additional information may be needed to complete the diagnostic workout. We evaluated the role of balloon aortic valvuloplasty (BAV) as a bridge-to-decision (BTD) in selected high-risk patients. Methods Between 2007 and 2012, the heart team in our Institution required BTD BAV in 202 patients. Very low left ventricular ejection fraction, mitral regurgitation grade ≥ 3, frailty, hemodynamic instability, serious comorbidity, or a combination of these factors were the main drivers for this strategy. We evaluated how BAV influenced the final treatment strategy in the whole patient group and in each specific subgroup. Results Mean logistic European System for Cardiac Operative Risk Evaluation (EuroSCORE) was 23.5% ± 15.3%, age 81 ± 7 years. In-hospital mortality was 4.5%, cerebrovascular accident 1% and overall vascular complications 4% (0.5% major; 3.5% minor). Of the 193 patients with BTD BAV who survived and received a second heart team evaluation, 72.6% were finally deemed eligible for definitive treatment (25.4% for AVR; 47.2% for TAVI): 96.7% of patients with left ventricular ejection fraction recovery; 70.5% of patients with mitral regurgitation reduction; 75.7% of patients who underwent BAV in clinical hemodynamic instability; 69.2% of frail patients and 68% of patients who presented serious comorbidities. Conclusions Balloon aortic valvuloplasty can be considered as bridge-to-decision in high-risk patients with severe aortic stenosis who cannot be immediate candidates for definitive transcatheter or surgical treatment. PMID:27582761

  7. Exploration and Resource Assessment at Mountain Home Air Force Base, Idaho Using an Integrated Team Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possiblemore » sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home AFB.« less

  8. Assessing and evaluating multidisciplinary translational teams: a mixed methods approach.

    PubMed

    Wooten, Kevin C; Rose, Robert M; Ostir, Glenn V; Calhoun, William J; Ameredes, Bill T; Brasier, Allan R

    2014-03-01

    A case report illustrates how multidisciplinary translational teams can be assessed using outcome, process, and developmental types of evaluation using a mixed-methods approach. Types of evaluation appropriate for teams are considered in relation to relevant research questions and assessment methods. Logic models are applied to scientific projects and team development to inform choices between methods within a mixed-methods design. Use of an expert panel is reviewed, culminating in consensus ratings of 11 multidisciplinary teams and a final evaluation within a team-type taxonomy. Based on team maturation and scientific progress, teams were designated as (a) early in development, (b) traditional, (c) process focused, or (d) exemplary. Lessons learned from data reduction, use of mixed methods, and use of expert panels are explored.

  9. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.

    PubMed

    McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja

    2014-05-01

    Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.

  10. Surgical team proficiency in minimally invasive esophagectomy is related to case volume and improves patient outcomes.

    PubMed

    Okamura, Akihiko; Watanabe, Masayuki; Fukudome, Ian; Yamashita, Kotaro; Yuda, Masami; Hayami, Masaru; Imamura, Yu; Mine, Shinji

    2018-04-01

    Minimally invasive esophagectomy (MIE) is being increasingly performed; however, it is still associated with high morbidity and mortality. The correlation between surgical team proficiency and patient load lacks clarity. This study evaluates surgical outcomes during the first 3-year period after establishment of a new surgical team. A new surgical team was established in September 2013 by two expert surgeons having experience of performing more than 100 MIEs. We assessed 237 consecutive patients who underwent MIE for esophageal cancer and evaluated the impact of surgical team proficiency on postoperative outcomes, as well as the team learning curve. In the cumulative sum analysis, a point of downward inflection for operative time and blood loss was observed in case 175. After 175 cases, both operative time and blood loss significantly decreased (P < 0.001 and P < 0.001, respectively), and postoperative incidence of pneumonia significantly decreased from 18.9 to 6.5% (P = 0.024). Median postoperative hospital stay also decreased from 20 to 18 days (P = 0.022). Additionally, serum CRP levels on postoperative day 1 showed a significant, but weak inverse association with the number of cases (P = 0.024). After 175 cases, both operative time and blood loss significantly decreased. In addition, the incidence of pneumonia decreased significantly. Additionally, surgical team proficiency may decrease serum CRP levels immediately after MIE. Surgical team proficiency based on team experience had beneficial effects on patients undergoing MIE.

  11. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    SUsskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  12. Lessons Learned from Daily Uplink Operations during the Deep Impact Mission

    NASA Technical Reports Server (NTRS)

    Stehly, Joseph S.

    2006-01-01

    The daily preparation of uplink products (commands and files) for Deep Impact was as problematic as the final encounter images were spectacular. The operations team was faced with many challenges during the six-month mission to comet Tempel One of the biggest difficulties was that the Deep Impact Flyby and Impactor vehicles necessitated a high volume of uplink products while also utilizing a new uplink file transfer capability. The Jet Propulsion Laboratory (JPL) Multi-Mission Ground Systems and Services (MGSS) Mission Planning and Sequence Team (MPST) had the responsibility of preparing the uplink products for use on the two spacecraft. These responsibilities included processing nearly 15,000 flight products, modeling the states of the spacecraft during all activities for subsystem review, and ensuring that the proper commands and files were uplinked to the spacecraft. To guarantee this transpired and the health and safety of the two spacecraft were not jeopardized several new ground scripts and procedures were developed while the Deep Impact Flyby and Impactor spacecraft were en route to their encounter with Tempel-1. These scripts underwent several adaptations throughout the entire mission up until three days before the separation of the Flyby and Impactor vehicles. The problems presented by Deep Impact's daily operations and the development of scripts and procedures to ease those challenges resulted in several valuable lessons learned. These lessons are now being integrated into the design of current and future MGSS missions at JPL.

  13. A Study of VITOM in Pediatric Surgery and Urology: Evaluation of Technology Acceptance and Usability by Operating Team and Surgeon Musculoskeletal Discomfort.

    PubMed

    Frykman, Philip K; Freedman, Andrew L; Kane, Timothy D; Cheng, Zhi; Petrosyan, Mikael; Catchpole, Kenneth

    2017-02-01

    We studied operating team acceptability of Video Telescopic Monitor (VITOM ® ) exoscope by exploring the ease of use of the device in two centers. We also assessed factors affecting surgeon musculoskeletal discomfort. We focused on how the operating team interacted with the VITOM system with surrogate measures of usefulness, image quality, ease of use, workload, and setup time. Multivariable linear regression was used to model the relationships between team role, experience, and setup time. Relationships between localized musculoskeletal discomfort and use of VITOM alone, and with loupes, were also analyzed. Four surgeons, 7 surgical techs, 7 circulating nurses, and 13 surgical residents performed 70 pediatric surgical and urological operations. We found that subjective views of each team member were consistently positive with 69%-74% agreed or strongly agreed that VITOM enhanced their ability to perform their job and improved the surgical process. Unexpectedly, the scrub techs and nurses perceived more value and utility of VITOM, presumably because it provides them a view of the operative field that would otherwise be unavailable to them. Team members rated perceptions of image quality highly and workload generally satisfactory. Not surprisingly, setup time decreased with team experience and multivariable modeling showed significant correlations with surgeon and surgical tech experience, but not circulating nurse. An important finding was that surgeon neck discomfort was reduced with use of VITOM alone for magnification, compared with use of loupes and VITOM. The most likely explanation for these findings is improved posture with the neck at a neutral position when viewing the VITOM images, compared with neck flexion with loupes, and thus, a less favorable ergonomic position. This study suggests that there may be small drawbacks associated with VITOM use initially, but these reduce with increased experience and benefit both the surgeon and the rest of the team.

  14. Connecticut Biodiesel Power Generation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grannis, Lee; York, Carla R.

    Sabre will continue support of the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection to become more automated. Final project reports for data collection and system performance to be generated. Sabre continued to support the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection became more automated. Final project reports for data collection and system performance were generated and are part of this final report. Some Systems Sensors were replaced due to a lightning strike.more » Sample data charts are shown at the end of the report. During the project, Sabre Engineering provided support to the project team with regarding to troubleshooting technical issues and system integration with the local power utility company. The resulting lessons learned through Sabre’s participation in the project have been valuable to the integrity of the data collected as well as in providing BioPur Light & Power valuable insights into future operations and planning for possible expansion. The system monitoring and data collection system has been operating as designed and continues to provide relevant information to the system operators. The information routinely gathered automatically by the system also contributes to the REN and REC validations which are required to secure credit for these items. During the quarter, the remaining work on the operations and safety manual were completed and released for publication after screen shots were verified. The goal of this effort to provide an accurate set of precautions and procedures for the technology system that can be replicated to other similar system.« less

  15. 30 CFR 254.6 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Pipeline means pipe and any associated equipment, appurtenance, or building used or intended for use in the... with “discharge” for the purposes of this part. Spill management team means the trained persons... for directing and coordinating response operations. Spill-response operating team means the trained...

  16. 30 CFR 254.6 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Pipeline means pipe and any associated equipment, appurtenance, or building used or intended for use in the... with “discharge” for the purposes of this part. Spill management team means the trained persons... for directing and coordinating response operations. Spill-response operating team means the trained...

  17. 30 CFR 254.6 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Pipeline means pipe and any associated equipment, appurtenance, or building used or intended for use in the... with “discharge” for the purposes of this part. Spill management team means the trained persons... for directing and coordinating response operations. Spill-response operating team means the trained...

  18. NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations

    NASA Technical Reports Server (NTRS)

    Letchworth, Gary; Schlierf, Roland

    2011-01-01

    The NASA Orion Ground Processing Team was originally formed by the Kennedy Space Center (KSC) Constellation (Cx) Project Office's Orion Division to define, refine and mature pre-launch and post-landing ground operations for the Orion human spacecraft. The multidisciplined KSC Orion team consisted of KSC civil servant, SAIC, Productivity Apex, Inc. and Boeing-CAPPS engineers, project managers and safety engineers, as well as engineers from Constellation's Orion Project and Lockheed Martin Orion Prime contractor. The team evaluated the Orion design configurations as the spacecraft concept matured between Systems Design Review (SDR), Systems Requirement Review (SRR) and Preliminary Design Review (PDR). The team functionally decomposed prelaunch and post-landing steps at three levels' of detail, or tiers, beginning with functional flow block diagrams (FFBDs). The third tier FFBDs were used to build logic networks and nominal timelines. Orion ground support equipment (GSE) was identified and mapped to each step. This information was subsequently used in developing lower level operations steps in a Ground Operations Planning Document PDR product. Subject matter experts for each spacecraft and GSE subsystem were used to define 5th - 95th percentile processing times for each FFBD step, using the Delphi Method. Discrete event simulations used this information and the logic network to provide processing timeline confidence intervals for launch rate assessments. The team also used the capabilities of the KSC Visualization Lab, the FFBDs and knowledge of the spacecraft, GSE and facilities to build visualizations of Orion pre-launch and postlanding processing at KSC. Visualizations were a powerful tool for communicating planned operations within the KSC community (i.e., Ground Systems design team), and externally to the Orion Project, Lockheed Martin spacecraft designers and other Constellation Program stakeholders during the SRR to PDR timeframe. Other operations planning tools included Kaizen/Lean events, mockups and human factors analysis. The majority of products developed by this team are applicable as KSC prepares 21st Century Ground Systems for the Orion Multi-Purpose Crew Vehicle and Space Launch System.

  19. The Virtual Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Moore, Mike; Fox, Jeffrey

    1994-01-01

    Spacecraft management is becoming more human intensive as spacecraft become more complex and as operations costs are growing accordingly. Several automation approaches have been proposed to lower these costs. However, most of these approaches are not flexible enough in the operations processes and levels of automation that they support. This paper presents a concept called the Virtual Mission Operations Center (VMOC) that provides highly flexible support for dynamic spacecraft management processes and automation. In a VMOC, operations personnel can be shared among missions, the operations team can change personnel and their locations, and automation can be added and removed as appropriate. The VMOC employs a form of on-demand supervisory control called management by exception to free operators from having to actively monitor their system. The VMOC extends management by exception, however, so that distributed, dynamic teams can work together. The VMOC uses work-group computing concepts and groupware tools to provide a team infrastructure, and it employs user agents to allow operators to define and control system automation.

  20. Go Deeper, Go Deeper: Understanding submarine command and control during the completion of dived tracking operations.

    PubMed

    Roberts, Aaron P J; Stanton, Neville A; Fay, Daniel T

    2018-05-01

    This is a world's first-of-a-kind study providing empirical evidence for understanding submarine control room performance when completing higher and lower demand Dived Tracking (DT) scenarios. A submarine control room simulator was built, using a non-commercial version of Dangerous Waters as the simulation engine. The creation of networked workstations allowed a team of nine operators to perform tasks completed by submarine command teams during DT. The Event Analysis of Systemic Teamwork (EAST) method was used to model the social, task and information networks and describe command team performance. Ten teams were recruited for the study, affording statistical comparisons of how command team roles and level of demand affected performance. Results indicate that command teams can covertly DT a contact differently depending on demand (e.g. volume of contacts). In low demand it was possible to use periscope more often than in high demand, in a 'duck-and-run' fashion. Therefore, the type of information and frequency of particular task completion, was significantly different between the higher and lower demand conditions. This resulted in different operators in the command team experiencing greater demand depending on how the DT mission objective was completed. Potential bottlenecks in the command team were identified and implications are discussed alongside suggestions for future work. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Decision making in a multidisciplinary cancer team: does team discussion result in better quality decisions?

    PubMed

    Kee, Frank; Owen, Tracy; Leathem, Ruth

    2004-01-01

    To establish whether treatment recommendations made by clinicians concur with the best outcomes predicted from their prognostic estimates and whether team discussion improves the quality or outcome of their decision making, the authors studied real-time decision making by a lung cancer team. Clinicians completed pre- and postdiscussion questionnaires for 50 newly diagnosed patients. For each patient/doctor pairing, a decision model determined the expected patient outcomes from the clinician's prognostic estimates. The difference between the expected utility of the recommended treatment and the maximum utility derived from the clinician's predictions of the outcomes (the net utility loss) following all potential treatment modalities was calculated as an indicator of quality of the decision. The proportion of treatment decisions changed by the multidisciplinary team discussion was also calculated. Insofar as the change in net utility loss brought about by multidisciplinary team discussion was not significantly different from zero, team discussion did not improve the quality of decision making overall. However, given the modest power of the study, these findings must be interpreted with caution. In only 23 of 87 instances (26%) in which an individual specialist's initial treatment preference differed from the final group judgment did the specialist finally concur with the group treatment choice after discussion. This study does not support the theory that team discussion improves decision making by closing a knowledge gap.

  2. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Cassini program manager at JPL, Earl Maize, watches monitors in mission control of the Space Flight Operations Center as the Cassini spacecraft begins downlink data through NASA's Deep Space Network, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Lean manufacturing comes to China: a case study of its impact on workplace health and safety.

    PubMed

    Brown, Garrett D; O'Rourke, Dara

    2007-01-01

    Lean manufacturing, which establishes small production "cells," or teams of workers, who complete an entire product from raw material processing through final assembly and shipment, increases health and safety hazards by mixing previously separated exposures to various chemicals (with possible additive and cumulative effects) and noise. The intensification of work leads to greater ergonomic and stress-related adverse health effects, as well as increased safety hazards. The standard industrial hygiene approach of anticipation, recognition, evaluation, and hazard control is applicable to lean operations. A focus on worker participation in identifying and solving problems is critical for reducing negative impacts. A key to worker safety in lean production operations is the development of informed, empowered, and active workers with the knowledge, skills, and opportunity to act in the workplace to eliminate or reduce hazards.

  4. Medical capability team: the clinical microsystem for combat healthcare delivery in counterinsurgency operations.

    PubMed

    Clark, Susz; Van Steenvort, Jon K

    2008-01-01

    Today's operational environment in the support of counterinsurgency operations requires greater tactical and operational flexibility and diverse medical capabilities. The skills and organizations required for full spectrum medical operations are different from those of the past. Combat healthcare demands agility and the capacity for rapid change in clinical systems and processes to better support the counterinsurgency environment. This article proposes the Army Medical Department (AMEDD) develop and implement the medical capability team (MCT) for combat healthcare delivery. It discusses using the concept of the brigade combat team to develop medical capability teams as the unit of effectiveness to transform frontline care; provides a theoretical overview of the MCT as a "clinical microsystem"; discusses MCT leadership, training, and organizational support, and the deployment and employment of the MCT in a counterinsurgency environment. Additionally, this article proposes that the AMEDD initiate the development of an AMEDD Combat Training Center of Excellence to train and validate the MCTs. The complexity of combat healthcare demands an agile and campaign quality AMEDD with joint expeditionary capability in order to promote the best patient outcomes in a counterinsurgency environment.

  5. Shuttle remote manipulator system mission preparation and operations

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E., Jr.

    1989-01-01

    The preflight planning, analysis, procedures development, and operations support for the Space Transportation System payload deployment and retrieval missions utilizing the Shuttle Remote Manipulator System are summarized. Analysis of the normal operational loads and failure induced loads and motion are factored into all procedures. Both the astronaut flight crews and the Mission Control Center flight control teams receive considerable training for standard and mission specific operations. The real time flight control team activities are described.

  6. Managing Team Learning in a Spanish Commercial Bank

    ERIC Educational Resources Information Center

    Doving, Erik; Martin-Rubio, Irene

    2013-01-01

    Purpose: The purpose of this paper is to analyze how team management affects team-learning activities. Design/methodology/approach: The authors empirically study 68 teams as they operate in the natural business context of a major Spanish bank. Quantitative research utilizing multiple regression analyses is used to test hypotheses. Findings: The…

  7. Understanding medical practice team roles.

    PubMed

    Hills, Laura

    2015-01-01

    Do you believe that the roles your employees play on your medical practice team are identical to their job titles or job descriptions? Do you believe that team roles are determined by personality type? This article suggests that a more effective way to build and manage your medical practice team is to define team roles through employee behaviors. It provides 10 rules of behavioral team roles that can help practice managers to select and build high-performing teams, build more productive team relationships, improve the employee recruitment process, build greater team trust and understanding; and increase their own effectiveness. This article describes in detail Belbin's highly regarded and widely used team role theory and summarizes four additional behavioral team role theories and systems. It offers lessons learned when applying team role theory to practice. Finally, this article offers an easy-to-implement method for assessing current team roles. It provides a simple four-question checklist that will help practice managers balance an imbalanced medical practice team.

  8. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Gulick, S. P.; Allison, M. A.; Goff, J. A.; Duncan, D. D.; Saustrup, S.

    2011-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year five, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students seek to understand coastal and sedimentary processes of the Gulf Coast and continental shelf through application of these techniques in an exploratory mode. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. In the field, students rotate between two small research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibracoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for particle size analysis and initial data processing. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Focus, Landmark, Caris, and Fledermaus. The course concludes with a series of professional-level final presentations and discussions in which students examine geologic history and/or sedimentary processes represented by the Gulf Coast continental shelf. With course completion, students report a greater understanding of marine geology and geophysics via the course's intensive, hands-on, team approach and low instructor to student ratio. This course satisfies field experience requirements for some degree programs and thus provides a unique alternative to land-based field courses.

  9. Surgeons' Leadership Styles and Team Behavior in the Operating Room.

    PubMed

    Hu, Yue-Yung; Parker, Sarah Henrickson; Lipsitz, Stuart R; Arriaga, Alexander F; Peyre, Sarah E; Corso, Katherine A; Roth, Emilie M; Yule, Steven J; Greenberg, Caprice C

    2016-01-01

    The importance of leadership is recognized in surgery, but the specific impact of leadership style on team behavior is not well understood. In other industries, leadership is a well-characterized construct. One dominant theory proposes that transactional (task-focused) leaders achieve minimum standards and transformational (team-oriented) leaders inspire performance beyond expectations. We videorecorded 5 surgeons performing complex operations. Each surgeon was scored on the Multifactor Leadership Questionnaire, a validated method for scoring transformational and transactional leadership style, by an organizational psychologist and a surgeon researcher. Independent coders assessed surgeons' leadership behaviors according to the Surgical Leadership Inventory and team behaviors (information sharing, cooperative, and voice behaviors). All coders were blinded. Leadership style (Multifactor Leadership Questionnaire) was correlated with surgeon behavior (Surgical Leadership Inventory) and team behavior using Poisson regression, controlling for time and the total number of behaviors, respectively. All surgeons scored similarly on transactional leadership (range 2.38 to 2.69), but varied more widely on transformational leadership (range 1.98 to 3.60). Each 1-point increase in transformational score corresponded to 3 times more information-sharing behaviors (p < 0.0001) and 5.4 times more voice behaviors (p = 0.0005) among the team. With each 1-point increase in transformational score, leaders displayed 10 times more supportive behaviors (p < 0.0001) and displayed poor behaviors 12.5 times less frequently (p < 0.0001). Excerpts of representative dialogue are included for illustration. We provide a framework for evaluating surgeons' leadership and its impact on team performance in the operating room. As in other fields, our data suggest that transformational leadership is associated with improved team behavior. Surgeon leadership development, therefore, has the potential to improve the efficiency and safety of operative care. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Overcoming the ten most common barriers to effective team communication.

    PubMed

    Hills, Laura

    2013-01-01

    Communication is at the heart of medical practice management. Yet there are many barriers to effective communication that can interfere with the smooth running of the practice. This article describes the 10 most common barriers to effective medical practice team communication and offers six steps the practice manager can take to break them down. This article also suggests that the practice develop a team communication strategy. It suggests 10 communication principles readers can share directly with their teams and describes three hallmarks of effective team communication. Finally, this article provides a list of 25 practical questions practice managers can use to improve their team's communication.

  11. LISA Pathfinder and eLISA news

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira; Mueller, Guido

    2014-01-01

    Two important gatherings of the space-based gravitational-wave detector community were held in Zurich, Switzerland this past March. The first was a meeting of the Science Working Team for LISA Pathfinder (LPF), a dedicated technology demonstrator mission for a future LISA-like gravitational wave observatory. LPF is entering an extremely exciting phase with launch less than 15 months away. All flight components for both the European science payload, known as the LISA Technology Package (LTP), and the NASA science payload, known as the Space Technology 7 Disturbance Reduction System (ST7-DRS), have been delivered and are undergoing integration. The final flight component for the spacecraft bus, a cold-gas thruster based on the successful GAIA design, will be delivered later this year. Current focus is on completing integration of the science payload (see Figures 1 and 2) and preparation for operations and data analysis. After a launch in Summer 2015, LPF will take approximately 90 days to reach its operational orbit around the Earth-Sun Lagrange point (L1), where it will begin science operations. After 90 days of LTP operations followed by 90 days of DRS operations, LPF will have completed its prime mission of paving the way for a space-based observatory of gravitational waves in the milliHertz band. Immediately following the meeting of the LPF team, the eLISA consortium held its third progress meeting. The consortium (www.elisascience.org) is the organizing body of the European space-based gravitational-wave community, and it was responsible for the "The Gravitational Universe" whitepaper that resulted in the November 2013 election of a gravitational-wave science theme for ESA's Cosmic Visions L3 opportunity. In preparation for an L3 mission concept call, which is expected later this decade, and for launch in the mid 2030s, the eLISA consortium members are coordinating technology development and mission study activities which will build on the LPF results. The final mission concept is expected to include some international (non-European) contributions, and NASA has expressed an interest in participating in this ground-breaking mission. The US research community supports such a collaboration, or any other mission scenario that achieves the high-priority science of a space-based gravitational-wave observatory at the earliest possible date.

  12. Mission operations and command assurance: Instilling quality into flight operations

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  13. 30 CFR 49.6 - Equipment and maintenance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and Nonmetal Mines § 49.6 Equipment and... sufficient to sustain each team for eight hours while using the breathing apparatus during rescue operations...

  14. 30 CFR 49.6 - Equipment and maintenance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and Nonmetal Mines § 49.6 Equipment and... sufficient to sustain each team for eight hours while using the breathing apparatus during rescue operations...

  15. 30 CFR 49.6 - Equipment and maintenance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and Nonmetal Mines § 49.6 Equipment and... sufficient to sustain each team for eight hours while using the breathing apparatus during rescue operations...

  16. Simulation-based multidisciplinary team training decreases time to critical operations for trauma patients.

    PubMed

    Murphy, Margaret; Curtis, Kate; Lam, Mary K; Palmer, Cameron S; Hsu, Jeremy; McCloughen, Andrea

    2018-05-01

    Simulation has been promoted as a platform for training trauma teams. However, it is not clear if this training has an impact on health service delivery and patient outcomes. This study evaluates the association between implementation of a simulation based multidisciplinary trauma team training program at a metropolitan trauma centre and subsequent patient outcomes. This was a retrospective review of trauma registry data collected at an 850-bed Level 1 Adult Trauma Centre in Sydney, Australia. Two concurrent four-year periods, before and after implementation of a simulation based multidisciplinary trauma team training program were compared for differences in time to critical operations, Emergency Department (ED) length of stay (LOS) and patient mortality. There were 2389 major trauma patients admitted to the hospital during the study, 1116 in the four years preceding trauma team training (the PREgroup) and 1273 in the subsequent 4 years (the POST group). There were no differences between the groups with respect to gender, body region injured, incidence of polytrauma, and pattern of arrival to ED. The POST group was older (median age 54 versus 43 years, p < 0.001) and had a higher incidence of falls and assaults (p < 0.001). There was a reduction in time to critical operation, from 2.63 h (IQR 1.23-5.12) in the PRE-group to 0.55 h (IQR 0.22-1.27) in the POST-group, p < 0.001. The overall ED LOS increased, and there was no reduction in mortality. Post-hoc analysis found LOS in ED was reduced in the cohort requiring critical operations, p < 0.001. The implementation of trauma team training was associated with a reduction in time to critical operation while overall ED length of stay increased. Simulation is promoted as a platform for training teams; but the complexity of trauma care challenges efforts to demonstrate direct links between multidisciplinary team training and improved outcomes. There remain considerable gaps in knowledge as to how team training impacts health service delivery and patient outcomes. Retrospective comparative therapeutic/care management study, Level III evidence. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  17. Mobilising a team for the WHO Surgical Safety Checklist: a qualitative video study.

    PubMed

    Korkiakangas, Terhi

    2017-03-01

    One challenge identified in the Surgical Safety Checklist literature is the inconsistent participation of operating teams in the safety checks. Less is known about how teams move from preparatory activities into a huddle, and how communication underpins this gathering. The objective of this study is to examine the ways of mobilising teams and the level of participation in the safety checks. Team participation in time-out and sign-out was examined from a video corpus of 20 elective surgical operations. Teams included surgeons, nurses and anaesthetists in a UK teaching hospital, scheduled to work in the operations observed. Qualitative video analysis of team participation was adapted from the study of social interaction. The key aspects of team mobilisation were the timing of the checklist, the distribution of personnel in the theatre and the instigation practices used. These were interlinked in bringing about the participation outcomes, the number of people huddling up for time-out and sign-out. Timing seemed appropriate when most personnel were present in the theatre suite; poor timing was marked by personnel dispersed through the theatre. Participation could be managed using the instigation practices, which included or excluded participation within teams. The factors hindering full-team participation at time-out and sign-out were the overlapping (eg, anaesthetic and nursing) responsibilities and the use of exclusive instigation practices. The implementation of the Surgical Safety Checklist represents a global concern in patient safety research. Yet how teams huddle for the checks has to be acknowledged as an issue in its own right. Appropriate mobilisation practices can help bringing fuller teams together, which has direct relevance to team training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Orbit Determination Strategy and Simulation Performance for OSIRIS-REx Proximity Operations

    NASA Technical Reports Server (NTRS)

    Leonard, Jason M.; Antreasian, Peter G.; Jackman, Coralie D.; Page, Brian; Wibben, Daniel R.; Moreau, Michael C.

    2017-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRISREx)is a NASA New Frontiers mission to the near-earth asteroid Bennu that will rendez vousin 2018, create a comprehensive and detailed set of observations over several years, collect a regolith sample, and return the sample to Earth in 2023. The Orbit Determination (OD) team isa sub-section of the Flight Dynamics System responsible for generating precise reconstructions and predictions of the spacecraft trajectory. The OD team processes radiometric data, LIDAR, as well as center-finding and landmark-based Optical Navigation images throughout the proximity operations phase to estimate and predict the spacecraft location within several meters. Stringent knowledge requirements stress the OD teams concept of operations and procedures to produce verified and consistent high quality solutions for observation planning, maneuver planning, and onboard sequencing. This paper will provide insight into the OD concept of operations and summarize the OD performance expected during the approach and early proximity operation phases,based on our pre-encounter knowledge of Bennu. Strategies and methods used to compare and evaluate predicted and reconstructed solutions are detailed. The use of high fidelity operational tests during early 2017 will stress the teams concept of operations and ability to produce precise OD solutions with minimal turn-around delay.

  19. An Exploratory Analysis of Personality, Attitudes, and Study Skills on the Learning Curve within a Team-based Learning Environment

    PubMed Central

    Henry, Teague; Campbell, Ashley

    2015-01-01

    Objective. To examine factors that determine the interindividual variability of learning within a team-based learning environment. Methods. Students in a pharmacokinetics course were given 4 interim, low-stakes cumulative assessments throughout the semester and a cumulative final examination. Students’ Myers-Briggs personality type was assessed, as well as their study skills, motivations, and attitudes towards team-learning. A latent curve model (LCM) was applied and various covariates were assessed to improve the regression model. Results. A quadratic LCM was applied for the first 4 assessments to predict final examination performance. None of the covariates examined significantly impacted the regression model fit except metacognitive self-regulation, which explained some of the variability in the rate of learning. There were some correlations between personality type and attitudes towards team learning, with introverts having a lower opinion of team-learning than extroverts. Conclusion. The LCM could readily describe the learning curve. Extroverted and introverted personality types had the same learning performance even though preference for team-learning was lower in introverts. Other personality traits, study skills, or practice did not significantly contribute to the learning variability in this course. PMID:25861101

  20. An exploratory analysis of personality, attitudes, and study skills on the learning curve within a team-based learning environment.

    PubMed

    Persky, Adam M; Henry, Teague; Campbell, Ashley

    2015-03-25

    To examine factors that determine the interindividual variability of learning within a team-based learning environment. Students in a pharmacokinetics course were given 4 interim, low-stakes cumulative assessments throughout the semester and a cumulative final examination. Students' Myers-Briggs personality type was assessed, as well as their study skills, motivations, and attitudes towards team-learning. A latent curve model (LCM) was applied and various covariates were assessed to improve the regression model. A quadratic LCM was applied for the first 4 assessments to predict final examination performance. None of the covariates examined significantly impacted the regression model fit except metacognitive self-regulation, which explained some of the variability in the rate of learning. There were some correlations between personality type and attitudes towards team learning, with introverts having a lower opinion of team-learning than extroverts. The LCM could readily describe the learning curve. Extroverted and introverted personality types had the same learning performance even though preference for team-learning was lower in introverts. Other personality traits, study skills, or practice did not significantly contribute to the learning variability in this course.

  1. Fundamentals for Team Based Rehearsals and the Differences Between Low Earth and Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Gomez-Rosa, Carlos; Alfonzo, Agustin; Cifuentes, Juan; Wasiak, Francis

    2015-01-01

    Presentation to be presented at the 2015 IEEE Aerospace Conference, Big Sky, Montana, March 7-14-2015.Rehearsals are mission level readiness tests that exercise personnel, operational process, and flight products, in a near flight like environment. The program is started 6-9 months prior to launch and is used to ensure the final as built system will meet mission goals (i.e. validation). On Deep Space missions you rehearse cruise activities post launch!Focus on critical activities to the mission, (i.e. propulsive maneuvers, instrument commissioning and any first time events or coordinating activities that involve major stakeholders).

  2. TA-3-38 Metals Fab SWPPP Rev 2 Jan 2017-Final

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    The TA-3-38 MFS is part of LANL’s Utilities and Infrastructures (UI) Facilities Operations Directorate (FOD) with day-to-day management provided by the Logistics Division Central Shops (LOG-CS); which has established a Stormwater Pollution Prevention Team (PPT) whose members are responsible for assisting the facility manager in developing and revising the facility’s SWPPP as well as maintaining control measures and taking corrective actions when required. All PPT members will have access to either a hard copy or an electronic version of this SWPPP. A list of PPT members along with duties and contact information is provided in Appendix A of this SWPPP.

  3. TA-3-38 Carpenter's Shop SWPPP Rev 2 Jan 2017-Final

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    The TA-3-38 CS is part of LANL’s Utilities and Infrastructure (UI) Facilities Operations Directorate (FOD) with day-to-day management provided by the Logistics Division Central Shops (LOG-CS); which has established a Stormwater Pollution Prevention Team (PPT) whose members are responsible for assisting the facility manager in developing and revising the facility’s SWPPP as well as maintaining control measures and taking corrective actions when required. All PPT members will have access to either a hard copy or an electronic version of this SWPPP. A list of PPT members along with duties and contact information is provided in Appendix A of this SWPPP

  4. New vision system and navigation algorithm for an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Tann, Hokchhay; Shakya, Bicky; Merchen, Alex C.; Williams, Benjamin C.; Khanal, Abhishek; Zhao, Jiajia; Ahlgren, David J.

    2013-12-01

    Improvements were made to the intelligence algorithms of an autonomously operating ground vehicle, Q, which competed in the 2013 Intelligent Ground Vehicle Competition (IGVC). The IGVC required the vehicle to first navigate between two white lines on a grassy obstacle course, then pass through eight GPS waypoints, and pass through a final obstacle field. Modifications to Q included a new vision system with a more effective image processing algorithm for white line extraction. The path-planning algorithm adopted the vision system, creating smoother, more reliable navigation. With these improvements, Q successfully completed the basic autonomous navigation challenge, finishing tenth out of over 50 teams.

  5. Final mission design for IRAS

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) was operated on orbit from 26 January to 22 November 1983 (GMT). Its primary purpose, successfully accomplished, was to conduct an all-sky survey in the infrared from 8 to 120 microns. The mission design for this project featured orbit selection; numerous exercises in the geometry of the sphere; computer simulation of mission, sky, and telescope; and an active interface with the IRAS Science Team. In addition to mission design, the subject of mission planning after launch is addressed. The paper makes extensive use of reference to other works on the topic and seeks to derive some general conclusions on the subject based upon the IRAS experience.

  6. Factors Influencing Team Behaviors in Surgery: A Qualitative Study to Inform Teamwork Interventions.

    PubMed

    Aveling, Emma-Louise; Stone, Juliana; Sundt, Thoralf; Wright, Cameron; Gino, Francesca; Singer, Sara

    2018-07-01

    Surgical excellence demands teamwork. Poor team behaviors negatively affect team performance and are associated with adverse events and worse outcomes. Interventions to improve surgical teamwork focusing on frontline team members' nontechnical skills have proliferated but shown mixed results. Literature on teamwork in organizations suggests that team behaviors are also contingent on psychosocial, cultural, and organizational factors. This study examined factors influencing surgical team behaviors to inform more contextually sensitive and effective approaches to optimizing surgical teamwork. This qualitative study of cardiac surgical teams in a large United States teaching hospital included 34 semistructured interviews. Thematic network analysis was used to examine perceptions of ideal teamwork and factors influencing team behaviors in the operating room. Perceptions of ideal teamwork were largely shared, but team members held discrepant views of which team and leadership behaviors enhanced or undermined teamwork. Other factors affecting team behaviors were related to the local organizational culture, including management of staff behavior, variable case demands, and team members' technical competence, and fitness of organizational structures and processes to support teamwork. These factors affected perceptions of what constituted optimal interpersonal and team behaviors in the operating room. Team behaviors are contextually contingent and organizationally determined, and beliefs about optimal behaviors are not necessarily shared. Interventions to optimize surgical teamwork require establishing consensus regarding best practice, ability to adapt as circumstances require, and organizational commitment to addressing contextual factors that affect teams. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. GeoLab: A Geological Workstation for Future Missions

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample characterization for mission planning, operations, and sample prioritization, 3) evaluate analytical instruments and tools for providing efficient and meaningful data in advance of sample return and 4) identify science operations that leverage human presence with robotic tools. In the first year of tests (2010), GeoLab examined basic glovebox operations performed by one and two crewmembers and science operations performed by a remote science team. The 2010 tests also examined the efficacy of basic sample characterization [descriptions, microscopic imagery, X-ray fluorescence (XRF) analyses] and feedback to the science team. In year 2 (2011), the GeoLab team tested enhanced software and interfaces for the crew and science team (including Web-based and mobile device displays) and demonstrated laboratory configurability with a new diagnostic instrument (the Multispectral Microscopic Imager from the JPL and Arizona State University). In year 3 (2012), the GeoLab team installed and tested a robotic sample manipulator and evaluated robotic-human interfaces for science operations.

  8. Unobtrusive Monitoring of Spaceflight Team Functioning

    NASA Technical Reports Server (NTRS)

    Maidel, Veronica; Stanton, Jeffrey M.

    2010-01-01

    This document contains a literature review suggesting that research on industrial performance monitoring has limited value in assessing, understanding, and predicting team functioning in the context of space flight missions. The review indicates that a more relevant area of research explores the effectiveness of teams and how team effectiveness may be predicted through the elicitation of individual and team mental models. Note that the mental models referred to in this literature typically reflect a shared operational understanding of a mission setting such as the cockpit controls and navigational indicators on a flight deck. In principle, however, mental models also exist pertaining to the status of interpersonal relations on a team, collective beliefs about leadership, success in coordination, and other aspects of team behavior and cognition. Pursuing this idea, the second part of this document provides an overview of available off-the-shelf products that might assist in extraction of mental models and elicitation of emotions based on an analysis of communicative texts among mission personnel. The search for text analysis software or tools revealed no available tools to enable extraction of mental models automatically, relying only on collected communication text. Nonetheless, using existing software to analyze how a team is functioning may be relevant for selection or training, when human experts are immediately available to analyze and act on the findings. Alternatively, if output can be sent to the ground periodically and analyzed by experts on the ground, then these software packages might be employed during missions as well. A demonstration of two text analysis software applications is presented. Another possibility explored in this document is the option of collecting biometric and proxemic measures such as keystroke dynamics and interpersonal distance in order to expose various individual or dyadic states that may be indicators or predictors of certain elements of team functioning. This document summarizes interviews conducted with personnel currently involved in observing or monitoring astronauts or who are in charge of technology that allows communication and monitoring. The objective of these interviews was to elicit their perspectives on monitoring team performance during long-duration missions and the feasibility of potential automatic non-obtrusive monitoring systems. Finally, in the last section, the report describes several priority areas for research that can help transform team mental models, biometrics, and/or proxemics into workable systems for unobtrusive monitoring of space flight team effectiveness. Conclusions from this work suggest that unobtrusive monitoring of space flight personnel is likely to be a valuable future tool for assessing team functioning, but that several research gaps must be filled before prototype systems can be developed for this purpose.

  9. An automated environment for multiple spacecraft engineering subsystem mission operations

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.; Hioe, K.; Lai, J.; Imlay, E.; Schwuttke, U.; Hsu, E.; Mikes, S.

    1990-01-01

    Flight operations at the Jet Propulsion Laboratory (JPL) are now performed by teams of specialists, each team dedicated to a particular spacecraft. Certain members of each team are responsible for monitoring the performances of their respective spacecraft subsystems. Ground operations, which are very complex, are manual, labor-intensive, slow, and tedious, and therefore costly and inefficient. The challenge of the new decade is to operate a large number of spacecraft simultaneously while sharing limited human and computer resources, without compromising overall reliability. The Engineering Analysis Subsystem Environment (EASE) is an architecture that enables fewer controllers to monitor and control spacecraft engineering subsystems. A prototype of EASE has been installed in the JPL Space Flight Operations Facility for on-line testing. This article describes the underlying concept, development, testing, and benefits of the EASE prototype.

  10. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Dave Bates, left, and Tom Burk, right, working Cassini's attitude and articulation control subsystems, are seen at their console during the spacecraft's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    A monitor in mission control shows the time remaining until Cassini makes its final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Todd Brown, right, working Cassini's attitude and articulation control subsystems, is seen at his console during the spacecraft's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Todd Brown, working Cassini's attitude and articulation control subsystems, is seen at his console during the spacecraft's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. Customizing the JPL Multimission Ground Data System: Lessons learned

    NASA Technical Reports Server (NTRS)

    Murphy, Susan C.; Louie, John J.; Guerrero, Ana Maria; Hurley, Daniel; Flora-Adams, Dana

    1994-01-01

    The Multimission Ground Data System (MGDS) at NASA's Jet Propulsion Laboratory has brought improvements and new technologies to mission operations. It was designed as a generic data system to meet the needs of multiple missions and avoid re-inventing capabilities for each new mission and thus reduce costs. It is based on adaptable tools that can be customized to support different missions and operations scenarios. The MGDS is based on a distributed client/server architecture, with powerful Unix workstations, incorporating standards and open system architectures. The distributed architecture allows remote operations and user science data exchange, while also providing capabilities for centralized ground system monitor and control. The MGDS has proved its capabilities in supporting multiple large-class missions simultaneously, including the Voyager, Galileo, Magellan, Ulysses, and Mars Observer missions. The Operations Engineering Lab (OEL) at JPL has been leading Customer Adaptation Training (CAT) teams for adapting and customizing MGDS for the various operations and engineering teams. These CAT teams have typically consisted of only a few engineers who are familiar with operations and with the MGDS software and architecture. Our experience has provided a unique opportunity to work directly with the spacecraft and instrument operations teams and understand their requirements and how the MGDS can be adapted and customized to minimize their operations costs. As part of this work, we have developed workstation configurations, automation tools, and integrated user interfaces at minimal cost that have significantly improved productivity. We have also proved that these customized data systems are most successful if they are focused on the people and the tasks they perform and if they are based upon user confidence in the development team resulting from daily interactions. This paper will describe lessons learned in adapting JPL's MGDS to fly the Voyager, Galileo, and Mars Observer missions. We will explain how powerful, existing ground data systems can be adapted and packaged in a cost effective way for operations of small and large planetary missions. We will also describe how the MGDS was adapted to support operations within the Galileo Spacecraft Testbed. The Galileo testbed provided a unique opportunity to adapt MGDS to support command and control operations for a small autonomous operations team of a handful of engineers flying the Galileo Spacecraft flight system model.

  15. Supervising and Controlling Unmanned Systems: A Multi-Phase Study with Subject Matter Experts

    PubMed Central

    Porat, Talya; Oron-Gilad, Tal; Rottem-Hovev, Michal; Silbiger, Jacob

    2016-01-01

    Proliferation in the use of Unmanned Aerial Systems (UASs) in civil and military operations has presented a multitude of human factors challenges; from how to bridge the gap between demand and availability of trained operators, to how to organize and present data in meaningful ways. Utilizing the Design Research Methodology (DRM), a series of closely related studies with subject matter experts (SMEs) demonstrate how the focus of research gradually shifted from “how many systems can a single operator control” to “how to distribute missions among operators and systems in an efficient way”. The first set of studies aimed to explore the modal number, i.e., how many systems can a single operator supervise and control. It was found that an experienced operator can supervise up to 15 UASs efficiently using moderate levels of automation, and control (mission and payload management) up to three systems. Once this limit was reached, a single operator's performance was compared to a team controlling the same number of systems. In general, teams led to better performances. Hence, shifting design efforts toward developing tools that support teamwork environments of multiple operators with multiple UASs (MOMU). In MOMU settings, when the tasks are similar or when areas of interest overlap, one operator seems to have an advantage over a team who needs to collaborate and coordinate. However, in all other cases, a team was advantageous over a single operator. Other findings and implications, as well as future directions for research are discussed. PMID:27252662

  16. Pediatric medical device development by surgeons via capstone engineering design programs.

    PubMed

    Sack, Bryan S; Elizondo, Rodolfo A; Huang, Gene O; Janzen, Nicolette; Espinoza, Jimmy; Sanz-Cortes, Magdalena; Dietrich, Jennifer E; Hakim, Julie; Richardson, Eric S; Oden, Maria; Hanks, John; Haridas, Balakrishna; Hury, James F; Koh, Chester J

    2018-03-01

    There is a need for pediatric medical devices that accommodate the unique physiology and anatomy of pediatric patients that is increasingly receiving more attention. However, there is limited literature on the programs within children's hospitals and academia that can support pediatric device development. We describe our experience with pediatric device design utilizing collaborations between a children's hospital and two engineering schools. Utilizing the academic year as a timeline, unmet pediatric device needs were identified by surgical faculty and matched with an engineering mentor and a team of students within the Capstone Engineering Design programs at two universities. The final prototypes were showcased at the end of the academic year and if appropriate, provisional patent applications were filed. All twelve teams successfully developed device prototypes, and five teams obtained provisional patents. The prototypes that obtained provisional patents included a non-operative ureteral stent removal system, an evacuation device for small kidney stone fragments, a mechanical leech, an anchoring system of the chorio-amniotic membranes during fetal surgery, and a fetal oxygenation monitor during fetoscopic procedures. Capstone Engineering Design programs in partnership with surgical faculty at children's hospitals can play an effective role in the prototype development of novel pediatric medical devices. N/A - No clinical subjects or human testing was performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Environmental Survey preliminary report, Kansas City Plant, Kansas City, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE), Kansas City Plant (KCP), conducted March 23 through April 3, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the KCP. The Survey covers all environmental media and all areasmore » of environmental regulations. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data observations of the operations performed at the KCP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by DOE's Argonne National Laboratory. When completed, the results will be incorporated into the KCP Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the KCP Survey. 94 refs., 39 figs., 55 tabs.« less

  18. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. Itmore » is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs.« less

  19. Errors in veterinary practice: preliminary lessons for building better veterinary teams.

    PubMed

    Kinnison, T; Guile, D; May, S A

    2015-11-14

    Case studies in two typical UK veterinary practices were undertaken to explore teamwork, including interprofessional working. Each study involved one week of whole team observation based on practice locations (reception, operating theatre), one week of shadowing six focus individuals (veterinary surgeons, veterinary nurses and administrators) and a final week consisting of semistructured interviews regarding teamwork. Errors emerged as a finding of the study. The definition of errors was inclusive, pertaining to inputs or omitted actions with potential adverse outcomes for patients, clients or the practice. The 40 identified instances could be grouped into clinical errors (dosing/drugs, surgical preparation, lack of follow-up), lost item errors, and most frequently, communication errors (records, procedures, missing face-to-face communication, mistakes within face-to-face communication). The qualitative nature of the study allowed the underlying cause of the errors to be explored. In addition to some individual mistakes, system faults were identified as a major cause of errors. Observed examples and interviews demonstrated several challenges to interprofessional teamworking which may cause errors, including: lack of time, part-time staff leading to frequent handovers, branch differences and individual veterinary surgeon work preferences. Lessons are drawn for building better veterinary teams and implications for Disciplinary Proceedings considered. British Veterinary Association.

  20. Operational support to collision avoidance activities by ESA's space debris office

    NASA Astrophysics Data System (ADS)

    Braun, V.; Flohrer, T.; Krag, H.; Merz, K.; Lemmens, S.; Bastida Virgili, B.; Funke, Q.

    2016-09-01

    The European Space Agency's (ESA) Space Debris Office provides a service to support operational collision avoidance activities. This support currently covers ESA's missions Cryosat-2, Sentinel-1A and -2A, the constellation of Swarm-A/B/C in low-Earth orbit (LEO), as well as missions of third-party customers. In this work, we describe the current collision avoidance process for ESA and third-party missions in LEO. We give an overview on the upgrades developed and implemented since the advent of conjunction summary messages (CSM)/conjunction data messages (CDM), addressing conjunction event detection, collision risk assessment, orbit determination, orbit and covariance propagation, process control, and data handling. We pay special attention to the effect of warning thresholds on the risk reduction and manoeuvre rates, as they are established through risk mitigation and analysis tools, such as ESA's Debris Risk Assessment and Mitigation Analysis (DRAMA) software suite. To handle the large number of CDMs and the associated risk analyses, a database-centric approach has been developed. All CDMs and risk analysis results are stored in a database. In this way, a temporary local "mini-catalogue" of objects close to our target spacecraft is obtained, which can be used, e.g., for manoeuvre screening and to update the risk analysis whenever a new ephemeris becomes available from the flight dynamics team. The database is also used as the backbone for a Web-based tool, which consists of the visualization component and a collaboration tool that facilitates the status monitoring and task allocation within the support team as well as communication with the control team. The visualization component further supports the information sharing by displaying target and chaser motion over time along with the involved uncertainties. The Web-based solution optimally meets the needs for a concise and easy-to-use way to obtain a situation picture in a very short time, and the support for third-party missions not operated from the European Space Operations Centre (ESOC). Finally, we provide statistics on the identified conjunction events, taking into account the known significant changes in the LEO orbital environment and share ESA's experience along with recent examples.

  1. Effective team management by district nurses.

    PubMed

    Bliss, Julie

    2004-12-01

    This article considers the key role played by the district nurse in managing the district nursing team in order to provide high quality health care. It considers how the district nurse can use key managerial roles (interpersonal, informational and decision-making) in order to ensure unity within the team. The importance of shared goals and trust to achieve unity is explored and a strategy for managing conflict is discussed. Finally, the article suggests a set of ground rules which could be used to facilitate effective team working.

  2. Reducing the complexity of NASA's space communications infrastructure

    NASA Technical Reports Server (NTRS)

    Miller, Raymond E.; Liu, Hong; Song, Junehwa

    1995-01-01

    This report describes the range of activities performed during the annual reporting period in support of the NASA Code O Success Team - Lifecycle Effectiveness for Strategic Success (COST LESS) team. The overall goal of the COST LESS team is to redefine success in a constrained fiscal environment and reduce the cost of success for end-to-end mission operations. This goal is more encompassing than the original proposal made to NASA for reducing complexity of NASA's Space Communications Infrastructure. The COST LESS team approach for reengineering the space operations infrastructure has a focus on reversing the trend of engineering special solutions to similar problems.

  3. Managing Risk in Safety Critical Operations - Lessons Learned from Space Operations

    NASA Technical Reports Server (NTRS)

    Gonzalez, Steven A.

    2002-01-01

    The Mission Control Center (MCC) at Johnson Space Center (JSC) has a rich legacy of supporting Human Space Flight operations throughout the Apollo, Shuttle and International Space Station eras. Through the evolution of ground operations and the Mission Control Center facility, NASA has gained a wealth of experience of what it takes to manage the risk in Safety Critical Operations, especially when human life is at risk. The focus of the presentation will be on the processes (training, operational rigor, team dynamics) that enable the JSC/MCC team to be so successful. The presentation will also share the evolution of the Mission Control Center architecture and how the evolution was introduced while managing the risk to the programs supported by the team. The details of the MCC architecture (e.g., the specific software, hardware or tools used in the facility) will not be shared at the conference since it would not give any additional insight as to how risk is managed in Space Operations.

  4. Assessing and Evaluating Multidisciplinary Translational Teams: A Mixed Methods Approach

    PubMed Central

    Wooten, Kevin C.; Rose, Robert M.; Ostir, Glenn V.; Calhoun, William J.; Ameredes, Bill T.; Brasier, Allan R.

    2014-01-01

    A case report illustrates how multidisciplinary translational teams can be assessed using outcome, process, and developmental types of evaluation using a mixed methods approach. Types of evaluation appropriate for teams are considered in relation to relevant research questions and assessment methods. Logic models are applied to scientific projects and team development to inform choices between methods within a mixed methods design. Use of an expert panel is reviewed, culminating in consensus ratings of 11 multidisciplinary teams and a final evaluation within a team type taxonomy. Based on team maturation and scientific progress, teams were designated as: a) early in development, b) traditional, c) process focused, or d) exemplary. Lessons learned from data reduction, use of mixed methods, and use of expert panels are explored. PMID:24064432

  5. Hurricane risk mitigation - Emergency Operations Center

    NASA Image and Video Library

    2008-07-29

    Construction work on a new Emergency Operations Center at Stennis Space Center is nearing completion. Construction is expected to be complete by February 2009, with actual occupancy of the building planned for later that year. The new building will house fire, medical and security teams and will provide a top-grade facility to support storm emergency responder teams and emergency management operations for the south Mississippi facility.

  6. Implications of Perioperative Team Setups for Operating Room Management Decisions.

    PubMed

    Doll, Dietrich; Kauf, Peter; Wieferich, Katharina; Schiffer, Ralf; Luedi, Markus M

    2017-01-01

    Team performance has been studied extensively in the perioperative setting, but the managerial impact of interprofessional team performance remains unclear. We hypothesized that the interplay between anesthesiologists and surgeons would affect operating room turnaround times, and teams that worked together over time would become more efficient. We analyzed 13,632 surgical cases at our hospital that involved 64 surgeons and 48 anesthesiologists. We detrended and adjusted the data for potential confounders including age, American Society of Anesthesiologists physical status, and surgical list (scheduled cases of specific surgical specialties). The surgical lists were categorized as ear, nose, and throat surgery; trauma surgery; general surgery; and gynecology. We assessed the relationship between turnaround times and assignment of different anesthesiologists to specific surgeons using a Monte Carlo simulation. We found significant differences in team performances among the different surgical lists but no team learning. We constructed managerial decision tables for the assignment of anesthesiologists to specific surgeons at our hospital. We defined a decision algorithm based on these tables. Our analysis indicated that had this algorithm been used in staffing the operating room for the surgical cases represented in our data, median turnaround times would have a reduction potential of 6.8% (95% confidence interval 6.3% to 7.1%). A surgeon is usually predefined for scheduled surgeries (surgical list). Allocation of the right anesthesiologist to a list and to a surgeon can affect the team performance; thus, this assignment has managerial implications regarding the operating room efficiency affecting turnaround times and thus potentially overutilized time of a list at our hospital.

  7. Pay dispersion and performance in teams.

    PubMed

    Bucciol, Alessandro; Foss, Nicolai J; Piovesan, Marco

    2014-01-01

    Extant research offers conflicting predictions about the effect of pay dispersion on team performance. We collected a unique dataset from the Italian soccer league to study the effect of intra-firm pay dispersion on team performance, under different definitions of what constitutes a "team". This peculiarity of our dataset can explain the conflicting evidence. Indeed, we also find positive, null, and negative effects of pay dispersion on team performance, using the same data but different definitions of team. Our results show that when the team is considered to consist of only the members who directly contribute to the outcome, high pay dispersion has a detrimental impact on team performance. Enlarging the definition of the team causes this effect to disappear or even change direction. Finally, we find that the detrimental effect of pay dispersion is due to worse individual performance, rather than a reduction of team cooperation.

  8. Space station automation and robotics study. Operator-systems interface

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  9. Mars Pathfinder Atmospheric Entry Navigation Operations

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Spencer, D. A.; Kallemeyn, P. H.; Vaughan, R. M.

    1997-01-01

    On July 4, 1997, after traveling close to 500 million km, the Pathfinder spacecraft successfully completed entry, descent, and landing, coming to rest on the surface of Mars just 27 km from its target point. In the present paper, the atmospheric entry and approach navigation activities required in support of this mission are discussed. In particular, the flight software parameter update and landing site prediction analyses performed by the Pathfinder operations navigation team are described. A suite of simulation tools developed during Pathfinder's design cycle, but extendible to Pathfinder operations, are also presented. Data regarding the accuracy of the primary parachute deployment algorithm is extracted from the Pathfinder flight data, demonstrating that this algorithm performed as predicted. The increased probability of mission success through the software parameter update process is discussed. This paper also demonstrates the importance of modeling atmospheric flight uncertainties in the estimation of an accurate landing site. With these atmospheric effects included, the final landed ellipse prediction differs from the post-flight determined landing site by less then 0.5 km in downtrack.

  10. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  11. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  12. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  13. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  14. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  15. The Promise of Virtual Teams: Identifying Key Factors in Effectiveness and Failure

    ERIC Educational Resources Information Center

    Horwitz, Frank M.; Bravington, Desmond; Silvis, Ulrik

    2006-01-01

    Purpose: The aim of the investigation is to identify enabling and disenabling factors in the development and operation of virtual teams; to evaluate the importance of factors such as team development, cross-cultural variables, leadership, communication and social cohesion as contributors to virtual team effectiveness. Design/methodology/approach:…

  16. Cooperation based dynamic team formation in multi-agent auctions

    NASA Astrophysics Data System (ADS)

    Pippin, Charles E.; Christensen, Henrik

    2012-06-01

    Auction based methods are often used to perform distributed task allocation on multi-agent teams. Many existing approaches to auctions assume fully cooperative team members. On in-situ and dynamically formed teams, reciprocal collaboration may not always be a valid assumption. This paper presents an approach for dynamically selecting auction partners based on observed team member performance and shared reputation. In addition, we present the use of a shared reputation authority mechanism. Finally, experiments are performed in simulation on multiple UAV platforms to highlight situations in which it is better to enforce cooperation in auctions using this approach.

  17. Requirements, Resource Planning, and Management for Decrewing/Recrewing Scenarios of the International Space Station

    NASA Technical Reports Server (NTRS)

    Bach, David A.; Brand, Susan N.; Hasbrook, Peter V.

    2013-01-01

    Following the failure of 44 Progress (44P) on launch in August 2011, and the subsequent grounding of all Russian Soyuz rocket based launches, the International Space Station (ISS) ground teams engaged in an effort to determine how long the ISS could remain crewed, what would be required to safely configure the ISS for decrewing, and what would be required to recrew the ISS upon resumption of Soyuz rocket launches if decrewing became necessary. This White Paper was written to capture the processes and lessons learned from real-time time events and to provide a reference and training document for ISS Program teams in the event decrewing of the ISS is needed. Through coordination meetings and assessments, teams identified six decrewing priorities for ground and crew operations. These priorities were integrated along with preflight priorities through the Increment re-planning process. Additionally, the teams reviewed, updated, and implemented changes to the governing documentation for the configuration of the ISS for a contingency decrewing event. Steps were taken to identify critical items for disposal prior to decrewing, as well as identifying the required items to be strategically staged or flown with the astronauts and cosmonauts who would eventually recrew the ISS. After the successful launches and dockings of both 45P and 28 Soyuz (28S), the decrewing team transitioned to finalizing and publishing the documentation for standardizing the decrewing flight rules. With the continued launching of crews and cargo to the ISS, utilization and science is again a high priority; both Increment pairs 29 and 30, and Increment 31 and 32 reaching the milestone of at least 35 hours per week average utilization.

  18. Requirements, Resource Planning and Management for Decrewing/Recrewing Scenarios of the International Space Station

    NASA Astrophysics Data System (ADS)

    Bach, David A.; Brand, Susan N.; Hasbrook, Peter V.

    2013-09-01

    Following the failure of 44 Progress (44P) on launch in August 2011, and the subsequent grounding of all Russian Soyuz rocket based launches, the International Space Station (ISS) ground teams engaged in an effort to determine how long the ISS could remain crewed, what would be required to safely configure the ISS for decrewing, and what would be required to recrew the ISS upon resumption of Soyuz rocket launches if decrewing became necessary. This White Paper was written to capture the processes and lessons learned from real-time time events and to provide a reference and training document for ISS Program teams in the event decrewing of the ISS is needed.Through coordination meetings and assessments, teams identified six decrewing priorities for ground and crew operations. These priorities were integrated along with preflight priorities through the Increment re-planning process. Additionally, the teams reviewed, updated, and implemented changes to the governing documentation for the configuration of the ISS for a contingency decrewing event. Steps were taken to identify critical items for disposal prior to decrewing, as well as identifying the required items to be strategically staged or flown with the astronauts and cosmonauts who would eventually recrew the ISS.After the successful launches and dockings of both 45P and 28 Soyuz (28S), the decrewing team transitioned to finalizing and publishing the documentation for standardizing the decrewing flight rules. With the continued launching of crews and cargo to the ISS, utilization and science is again a high priority; both Increment pairs 29 and 30, and Increment 31 and 32 reaching the milestone of at least 35 hours per week average utilization.

  19. Emergency department team communication with the patient: the patient's perspective.

    PubMed

    McCarthy, Danielle M; Ellison, Emily P; Venkatesh, Arjun K; Engel, Kirsten G; Cameron, Kenzie A; Makoul, Gregory; Adams, James G

    2013-08-01

    Effective communication is important for the delivery of quality care. The Emergency Department (ED) environment poses significant challenges to effective communication. The objective of this study was to determine patients' perceptions of their ED team's communication skills. This was a cross-sectional study in an urban, academic ED. Patients completed the Communication Assessment Tool for Teams (CAT-T) survey upon ED exit. The CAT-T was adapted from the psychometrically validated Communication Assessment Tool (CAT) to measure patient perceptions of communication with a medical team. The 14 core CAT-T items are associated with a 5-point scale (5 = excellent); results are reported as the percent of participants who responded "excellent." Responses were analyzed for differences based on age, sex, race, and operational metrics (wait time, ED daily census). There were 346 patients identified; the final sample for analysis was 226 patients (53.5% female, 48.2% Caucasian), representing a response rate of 65.3%. The scores on CAT-T items (reported as % "excellent") ranged from 50.0% to 76.1%. The highest-scoring items were "let me talk without interruptions" (76.1%), "talked in terms I could understand" (75.2%), and "treated me with respect" (74.3%). The lowest-scoring item was "encouraged me to ask questions" (50.0%). No differences were noted based on patient sex, race, age, wait time, or daily census of the ED. The patients in this study perceived that the ED teams were respectful and allowed them to talk without interruptions; however, lower ratings were given for items related to actively engaging the patient in decision-making and asking questions. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Anticipation, teamwork and cognitive load: chasing efficiency during robot-assisted surgery.

    PubMed

    Sexton, Kevin; Johnson, Amanda; Gotsch, Amanda; Hussein, Ahmed A; Cavuoto, Lora; Guru, Khurshid A

    2018-02-01

    Robot-assisted surgery (RAS) has changed the traditional operating room (OR), occupying more space with equipment and isolating console surgeons away from the patients and their team. We aimed to evaluate how anticipation of surgical steps and familiarity between team members impacted efficiency. We analysed recordings (video and audio) of 12 robot-assisted radical prostatectomies. Any requests between surgeon and the team members were documented and classified by personnel, equipment type, mode of communication, level of inconvenience in fulfilling the request and anticipation. Surgical team members completed questionnaires assessing team familiarity and cognitive load (National Aeronautics and Space Administration - Task Load Index). Predictors of team efficiency were assessed using Pearson correlation and stepwise linear regression. 1330 requests were documented, of which 413 (31%) were anticipated. Anticipation correlated negatively with operative time, resulting in overall 8% reduction of OR time. Team familiarity negatively correlated with inconveniences. Anticipation ratio, per cent of requests that were non-verbal and total request duration were significantly correlated with the console surgeons' cognitive load (r=0.77, p=0.006; r=0.63, p=0.04; and r=0.70, p=0.02, respectively). Anticipation and active engagement by the surgical team resulted in shorter operative time, and higher familiarity scores were associated with fewer inconveniences. Less anticipation and non-verbal requests were also associated with lower cognitive load for the console surgeon. Training efforts to increase anticipation and team familiarity can improve team efficiency during RAS. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Establishing and operating an incident response team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K.M.

    1992-09-01

    Occurrences of improprieties dealing with computer usage are on the increase. They range all the way from misuse by employees to international computer telecommunications hacking. In addition, natural disasters and other disasters such as catastrophic fires may also fall into the same category. These incidents, like any other breach of acceptable behavior, may or may not involve actual law breaking. A computer incident response team should be created as a first priority. This report discusses the establishment and operation of a response team.

  2. Establishing and operating an incident response team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K.M.

    1992-01-01

    Occurrences of improprieties dealing with computer usage are on the increase. They range all the way from misuse by employees to international computer telecommunications hacking. In addition, natural disasters and other disasters such as catastrophic fires may also fall into the same category. These incidents, like any other breach of acceptable behavior, may or may not involve actual law breaking. A computer incident response team should be created as a first priority. This report discusses the establishment and operation of a response team.

  3. Final Environmental Assessment for Proposed Additional Development, Testing Use, and Associated Training at the Technical Evaluation Assessment Monitor Site (TEAMS) at Kirtland Air Force Base, New Mexico

    DTIC Science & Technology

    2015-02-01

    supply, sanitary sewage/wastewater, storm water handling, and communications systems. Solid waste TEAMS Final Environmental Assessment Kirtland...appropriately sanitized prior to being placed back into service. This will ensure safety of the water system. Sanitary Sewer/Wastewater System. Kirtland...AFB does not have its own sewage treatment plant. Instead, the sanitary sewer system of Kirtland AFB transports wastewater to the city of

  4. Initiating and utilizing shared leadership in teams: The role of leader humility, team proactive personality, and team performance capability.

    PubMed

    Chiu, Chia-Yen Chad; Owens, Bradley P; Tesluk, Paul E

    2016-12-01

    The present study was designed to produce novel theoretical insight regarding how leader humility and team member characteristics foster the conditions that promote shared leadership and when shared leadership relates to team effectiveness. Drawing on social information processing theory and adaptive leadership theory, we propose that leader humility facilitates shared leadership by promoting leadership-claiming and leadership-granting interactions among team members. We also apply dominance complementary theory to propose that team proactive personality strengthens the impact of leader humility on shared leadership. Finally, we predict that shared leadership will be most strongly related to team performance when team members have high levels of task-related competence. Using a sample composed of 62 Taiwanese professional work teams, we find support for our proposed hypothesized model. The theoretical and practical implications of these results for team leadership, humility, team composition, and shared leadership are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. 30 CFR 49.3 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and... miners willing to serve on a mine rescue team; (8) The operator's alternative plan for assuring that a...

  6. 30 CFR 49.3 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and... miners willing to serve on a mine rescue team; (8) The operator's alternative plan for assuring that a...

  7. 30 CFR 49.3 - Alternative mine rescue capability for small and remote mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and... miners willing to serve on a mine rescue team; (8) The operator's alternative plan for assuring that a...

  8. Design of a Versatile, Teleoperable, Towable Lifting Machine with Robotic Capabilities for Use in Nasa's Lunar Base Operations

    NASA Technical Reports Server (NTRS)

    Harris, Elizabeth; Ogle, James; Schoppe, Dean

    1989-01-01

    The lifting machine will assist in lifting cargo off of landers sent to the Moon and in the construction of a lunar base. Three possible designs were considered for the overall configuration of the lifting machine: the variable angle crane, the tower crane, and the gantry crane. Alternate designs were developed for the major components of the lifting machine. A teleoperable, variable angle crane was chosen as its final design. The design consists of a telescoping boom mounted to a chassis that is supported by two conical wheels for towing and four outriggers for stability. Attached to the end of the boom is a seven degree of freedom robot arm for light, dexterous, lifting operations. A cable and hook suspends from the end of the boom for heavy, gross, lifting operations. Approximate structural sizes were determined for the lifter and its components. However, further analysis is needed to determine the optimum design dimensions. The design team also constructed a model of the design which demonstrates its features and operating principals.

  9. Report of the Shuttle Processing Review Team

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The intent of this report is to summarize the assessment of the shuttle processing operations at the Kennedy Space Center (KSC) as requested by the NASA Administrator. He requested a team reaffirmation that safety is the number one priority and review operations to ensure confidence in the shuttle processing procedures at KSC.

  10. Increasing Achievement by Focusing Grade-Level Teams on Improving Classroom Learning: A Prospective, Quasi-Experimental Study of Title I Schools

    ERIC Educational Resources Information Center

    Saunders, William M.; Goldenberg, Claude N.; Gallimore, Ronald

    2009-01-01

    The authors conducted a quasi-experimental investigation of effects on achievement by grade-level teams focused on improving learning. For 2 years (Phase 1), principals-only training was provided. During the final 3 years (Phase 2), school-based training was provided for principals and teacher leaders on stabilizing team settings and using…

  11. Team Faces Tough Odds to Implement New Phone Network | Poster

    Cancer.gov

    It was a Saturday, in the final stretch of winter in late February, and the temperature peaked to a pleasant 66 degrees. Many people were outside enjoying the spring-like weather; however, the Voice over Internet Protocol (VoIP) Deployment Team was hard at work at Industry Lane. The team of 10 was installing the new voice-only network, including deploying 145 phones, switching

  12. Team RoboSimian

    NASA Image and Video Library

    2015-06-09

    Many members of Team RoboSimian and a few guests gather with competition hardware at a "Meet the Robots" event during the DARPA Robotics Challenge Finals in Pomona, California, on June 6, 2015. The RoboSimian team at JPL is collaborating with partners at the University of California, Santa Barbara, and the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA19329

  13. Evaporative oxidation treatability test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatmentmore » Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.« less

  14. Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)

    NASA Technical Reports Server (NTRS)

    Qureshi, Rizwan Hamid; Hughes, Steven P.

    2014-01-01

    The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.

  15. Operational support considerations in Space Shuttle prelaunch processing

    NASA Technical Reports Server (NTRS)

    Schuiling, Roelof L.

    1991-01-01

    This paper presents an overview of operational support for Space Shuttle payload processing at the John F. Kennedy Space Center. The paper begins with a discussion of the Shuttle payload processing operation itself. It discusses the major organizational roles and describes the two major classes of payload operations: Spacelab mission payload and vertically-installed payload operations. The paper continues by describing the Launch Site Support Team and the Payload Processing Test Team. Specific areas of operational support are then identified including security and access, training, transport and handling, documentation and scheduling. Specific references for further investigatgion are included.

  16. Nuclear Nonproliferation Ontology Assessment Team Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strasburg, Jana D.; Hohimer, Ryan E.

    Final Report for the NA22 Simulations, Algorithm and Modeling (SAM) Ontology Assessment Team's efforts from FY09-FY11. The Ontology Assessment Team began in May 2009 and concluded in September 2011. During this two-year time frame, the Ontology Assessment team had two objectives: (1) Assessing the utility of knowledge representation and semantic technologies for addressing nuclear nonproliferation challenges; and (2) Developing ontological support tools that would provide a framework for integrating across the Simulation, Algorithm and Modeling (SAM) program. The SAM Program was going through a large assessment and strategic planning effort during this time and as a result, the relative importancemore » of these two objectives changed, altering the focus of the Ontology Assessment Team. In the end, the team conducted an assessment of the state of art, created an annotated bibliography, and developed a series of ontological support tools, demonstrations and presentations. A total of more than 35 individuals from 12 different research institutions participated in the Ontology Assessment Team. These included subject matter experts in several nuclear nonproliferation-related domains as well as experts in semantic technologies. Despite the diverse backgrounds and perspectives, the Ontology Assessment team functioned very well together and aspects could serve as a model for future inter-laboratory collaborations and working groups. While the team encountered several challenges and learned many lessons along the way, the Ontology Assessment effort was ultimately a success that led to several multi-lab research projects and opened up a new area of scientific exploration within the Office of Nuclear Nonproliferation and Verification.« less

  17. The race to save lives: demonstrating the use of social media for search and rescue operations.

    PubMed

    Simon, Tomer; Adini, Bruria; El-Hadid, Mohammed; Goldberg, Avishay; Aharonson-Daniel, Limor

    2014-11-06

    Utilizing social media in an emergency can enhance abilities to locate and evacuate casualties more rapidly and effectively, and can contribute towards saving lives following a disaster, through better coordination and collaboration between search and rescue teams. An exercise was conducted in order to test a standard operating procedure (SOP) designed to leverage social media use in response to an earthquake, and study whether social media can improve joint Israeli-Jordanian search and rescue operations following a regional earthquake. First responders from both Jordan and Israel were divided into two mixed groups of eight people each, representing joint (Israeli-Jordanian) EMS teams. Simulated patients were dispersed throughout the Ben-Gurion University Campus. The first search and rescue team used conventional methods, while the second team also used social media channels (Facebook and Twitter) to leverage search and rescue operations. Eighteen EMS and medical professionals from Israel and Jordan, which are members of the Emergency Response Development and Strategy Forum working group, participated in the exercise. The social media team found significantly more mock casualties, 21 out of 22 (95.45%) while the no-media team found only 19 out of 22 (86.36%). Fourteen patients (63.63%) were found by the social media team earlier than the no-media team. The differences between the two groups were analyzed using the Mann-Whitney U-test, and evacuation proved to be significantly quicker in the group that had access to social media. The differences between the three injury severities groups' extraction times in each group were analyzed using the Kruskal-Wallis test for variance. Injury severity influenced the evacuation times in the social media team but no such difference was noted in the no-media team. Utilizing social media in an emergency situation enables to locate and evacuate casualties more rapidly and effectively. Social media can contribute towards saving lives during a disaster, in national and bi-national circumstances. Due to the small numbers in the groups, this finding requires further verification on a larger study cohort.

  18. Science Operations on the Lunar Surface - Understanding the Past, Testing in the Present, Considering the Future

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2013-01-01

    The scientific success of any future human lunar exploration mission will be strongly dependent on design of both the systems and operations practices that underpin crew operations on the lunar surface. Inept surface mission preparation and design will either ensure poor science return, or will make achieving quality science operation unacceptably difficult for the crew and the mission operations and science teams. In particular, ensuring a robust system for managing real-time science information flow during surface operations, and ensuring the crews receive extensive field training in geological sciences, are as critical to mission success as reliable spacecraft and a competent operations team.

  19. Spitzer observatory operations: increasing efficiency in mission operations

    NASA Astrophysics Data System (ADS)

    Scott, Charles P.; Kahr, Bolinda E.; Sarrel, Marc A.

    2006-06-01

    This paper explores the how's and why's of the Spitzer Mission Operations System's (MOS) success, efficiency, and affordability in comparison to other observatory-class missions. MOS exploits today's flight, ground, and operations capabilities, embraces automation, and balances both risk and cost. With operational efficiency as the primary goal, MOS maintains a strong control process by translating lessons learned into efficiency improvements, thereby enabling the MOS processes, teams, and procedures to rapidly evolve from concept (through thorough validation) into in-flight implementation. Operational teaming, planning, and execution are designed to enable re-use. Mission changes, unforeseen events, and continuous improvement have often times forced us to learn to fly anew. Collaborative spacecraft operations and remote science and instrument teams have become well integrated, and worked together to improve and optimize each human, machine, and software-system element. Adaptation to tighter spacecraft margins has facilitated continuous operational improvements via automated and autonomous software coupled with improved human analysis. Based upon what we now know and what we need to improve, adapt, or fix, the projected mission lifetime continues to grow - as does the opportunity for numerous scientific discoveries.

  20. Staying Alive! Training High-Risk Teams for Self Correction

    NASA Technical Reports Server (NTRS)

    Slack, Kelley; Noe, Raymond; Weaver, Sallie

    2011-01-01

    Research examining teams working in high-risk operations has been lacking. The present symposium showcases research on team training that helps to optimize team performance in environments characterized by life or death situations arising spontaneously after long periods of mundane activity by pulling experts from diverse areas of industry: space flight, health care, and medical simulation.

  1. 77 FR 64360 - Proposed Extension of Existing Information Collection; Mine Rescue Teams for Underground Metal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Extension of Existing Information Collection; Mine Rescue Teams for Underground Metal and Nonmetal Mines...) requires the Secretary of Labor (Secretary) to publish regulations which provide that mine rescue teams be..., the costs of making advance arrangements for such teams are to be borne by the operator of each such...

  2. There is No "T" in School Improvement: The Missing Team Perspective

    ERIC Educational Resources Information Center

    Benoliel, Pascale; Berkovich, Izhak

    2017-01-01

    Purpose: The concept of teams tends to be marginalized in the scholarly discussion of school improvement. The purpose of this paper is to argue that teams play a crucial role in promoting an holistic integration of school operation necessary to support school change. Specifically, the paper outlines the dynamic of effective teams at times of…

  3. Team Learning: Through the Relational Dynamics of Co-operation and Rivalry in Team Communities

    ERIC Educational Resources Information Center

    Lotz, Maja

    2010-01-01

    This paper explores the constructive links between cooperation, rivalry, and learning within the structure of team communities. Drawing upon social learning theory and qualitative data from case studies conducted in Danish team-based firms, the main purpose is to argue that both cooperation and rivalry are important triggers for mobilizing…

  4. Team-Based Learning in a Community Health Nursing Course: Improving Academic Outcomes.

    PubMed

    Miles, Jane M; Larson, Kim L; Swanson, Melvin

    2017-07-01

    Population health concepts, such as upstream thinking, present challenging ideas to undergraduate nursing students grounded in an acute care orientation. The purpose of this study was to describe how team-based learning (TBL) influenced academic outcomes in a community health nursing course. A descriptive correlational design examined the relationship among student scores on individual readiness assurance tests (iRATs), team readiness assurance tests (tRATs), and the final examination. The sample included 221 nursing students who had completed the course. A large positive correlation was found between iRAT and final examination scores. For all students, the mean tRAT score was higher than the mean iRAT score. A moderate positive correlation existed between tRAT and final examination scores. The study contributes to understanding the effects of TBL pedagogy on student academic outcomes in nursing education. TBL is a valuable teaching method in a course requiring the application of challenging concepts. [J Nurs Educ. 2017;56(7):425-429.]. Copyright 2017, SLACK Incorporated.

  5. Operative team communication during simulated emergencies: Too busy to respond?

    PubMed

    Davis, W Austin; Jones, Seth; Crowell-Kuhnberg, Adrianna M; O'Keeffe, Dara; Boyle, Kelly M; Klainer, Suzanne B; Smink, Douglas S; Yule, Steven

    2017-05-01

    Ineffective communication among members of a multidisciplinary team is associated with operative error and failure to rescue. We sought to measure operative team communication in a simulated emergency using an established communication framework called "closed loop communication." We hypothesized that communication directed at a specific recipient would be more likely to elicit a check back or closed loop response and that this relationship would vary with changes in patients' clinical status. We used the closed loop communication framework to code retrospectively the communication behavior of 7 operative teams (each comprising 2 surgeons, anesthesiologists, and nurses) during response to a simulated, postanesthesia care unit "code blue." We identified call outs, check backs, and closed loop episodes and applied descriptive statistics and a mixed-effects negative binomial regression to describe characteristics of communication in individuals and in different specialties. We coded a total of 662 call outs. The frequency and type of initiation and receipt of communication events varied between clinical specialties (P < .001). Surgeons and nurses initiated fewer and received more communication events than anesthesiologists. For the average participant, directed communication increased the likelihood of check back by at least 50% (P = .021) in periods preceding acute changes in the clinical setting, and exerted no significant effect in periods after acute changes in the clinical situation. Communication patterns vary by specialty during a simulated operative emergency, and the effect of directed communication in eliciting a response depends on the clinical status of the patient. Operative training programs should emphasize the importance of quality communication in the period immediately after an acute change in the clinical setting of a patient and recognize that communication patterns and needs vary between members of multidisciplinary operative teams. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Review Team Focused Modeling Analysis of Radial Collector Well Operation on the Hypersaline Groundwater Plume beneath the Turkey Point Site near Homestead, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Martinus; Vail, Lance W.

    Researchers at Pacific Northwest National Laboratory served as members of a U.S. Nuclear Regulatory Commission review team for the Florida Power & Light Company’s application for two combined construction permits and operating licenses (combined licenses or COLs) for two proposed new reactor units—Turkey Point Units 6 and 7. The review team evaluated the environmental impacts of the proposed action based on the October 29, 2014 revision of the COL application, including the Environmental Report, responses to requests for additional information, and supplemental information. As part of this effort, team members tasked with assessing the environmental effects of proposed construction andmore » operation of Units 6 and 7 at the Turkey Point site reviewed two separate modeling studies that analyzed the interaction between surface water and groundwater that would be altered by the operation of radial collector wells (RCWs) at the site. To further confirm their understanding of the groundwater hydrodynamics and to consider whether certain actions, proposed after the two earlier modeling studies were completed, would alter the earlier conclusions documented by the review team in their draft environmental impact statement (EIS; NRC 2015), a third modeling analysis was performed. The third modeling analysis is discussed in this report.« less

  7. Pay Dispersion and Performance in Teams

    PubMed Central

    Bucciol, Alessandro; Foss, Nicolai J.; Piovesan, Marco

    2014-01-01

    Extant research offers conflicting predictions about the effect of pay dispersion on team performance. We collected a unique dataset from the Italian soccer league to study the effect of intra-firm pay dispersion on team performance, under different definitions of what constitutes a “team”. This peculiarity of our dataset can explain the conflicting evidence. Indeed, we also find positive, null, and negative effects of pay dispersion on team performance, using the same data but different definitions of team. Our results show that when the team is considered to consist of only the members who directly contribute to the outcome, high pay dispersion has a detrimental impact on team performance. Enlarging the definition of the team causes this effect to disappear or even change direction. Finally, we find that the detrimental effect of pay dispersion is due to worse individual performance, rather than a reduction of team cooperation. PMID:25397615

  8. Mishap Investigation Team (MIT) - Barksdale AFB, Louisiana

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip

    2005-01-01

    The Shuttle Program is organized to support a Shuttle mishap using the resources of the MIT. The afternoon of Feb. 1, 2003, the MIT deployed to Barksdale AFB. This location became the investigative center and interim storage location for crewmembers received from the Lufkin Disaster Field Office (DFO). Working under the leadership of the MIT Lead, the medical team executed a short-term plan that included search, recovery, and identification including coordination with the Armed Forces Institute of Pathology Temporary operations was set up at Barksdale Air Force Base for two weeks. During this time, coordination with the DFO field recovery teams, AFIP personnel, and the crew surgeons was on going. In addition, the crewmember families and NASA management were updated daily. The medical team also dealt with public reports and questions concerning biological and chemical hazards, which were coordinated with SPACEHAB, Inc., Kennedy Space Center (KSC) Medical Operations and the Johnson Space Center (JSC) Space Medicine office. After operations at Barksdale were concluded the medical team transitioned back to Houston and a long-term search, recovery and identification plan was developed.

  9. We will be champions: Leaders' confidence in 'us' inspires team members' team confidence and performance.

    PubMed

    Fransen, K; Steffens, N K; Haslam, S A; Vanbeselaere, N; Vande Broek, G; Boen, F

    2016-12-01

    The present research examines the impact of leaders' confidence in their team on the team confidence and performance of their teammates. In an experiment involving newly assembled soccer teams, we manipulated the team confidence expressed by the team leader (high vs neutral vs low) and assessed team members' responses and performance as they unfolded during a competition (i.e., in a first baseline session and a second test session). Our findings pointed to team confidence contagion such that when the leader had expressed high (rather than neutral or low) team confidence, team members perceived their team to be more efficacious and were more confident in the team's ability to win. Moreover, leaders' team confidence affected individual and team performance such that teams led by a highly confident leader performed better than those led by a less confident leader. Finally, the results supported a hypothesized mediational model in showing that the effect of leaders' confidence on team members' team confidence and performance was mediated by the leader's perceived identity leadership and members' team identification. In conclusion, the findings of this experiment suggest that leaders' team confidence can enhance members' team confidence and performance by fostering members' identification with the team. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Coordinating with Humans by Adjustable-Autonomy for Multirobot Pursuit (CHAMP)

    NASA Astrophysics Data System (ADS)

    Dumond, Danielle; Ayers, Jeanine; Schurr, Nathan; Carlin, Alan; Burke, Dustin; Rousseau, Jeffrey

    2012-06-01

    One of the primary challenges facing the modern small-unit tactical team is the ability of the unit to safely and effectively search, explore, clear and hold urbanized terrain that includes buildings, streets, and subterranean dwellings. Buildings provide cover and concealment to an enemy and restrict the movement of forces while diminishing their ability to engage the adversary. The use of robots has significant potential to reduce the risk to tactical teams and dramatically force multiply the small unit's footprint. Despite advances in robotic mobility, sensing capabilities, and human-robot interaction, the use of robots in room clearing operations remains nascent. CHAMP is a software system in development that integrates with a team of robotic platforms to enable them to coordinate with a human operator performing a search and pursuit task. In this way, the human operator can either give control to the robots to search autonomously, or can retain control and direct the robots where needed. CHAMP's autonomy is built upon a combination of adversarial pursuit algorithms and dynamic function allocation strategies that maximize the team's resources. Multi-modal interaction with CHAMP is achieved using novel gesture-recognition based capabilities to reduce the need for heads-down tele-operation. The Champ Coordination Algorithm addresses dynamic and limited team sizes, generates a novel map of the area, and takes into account mission goals, user preferences and team roles. In this paper we show results from preliminary simulated experiments and find that the CHAMP system performs faster than traditional search and pursuit algorithms.

  11. Establishment and operation of the National Accident Sampling System (NASS) team within the cities of Ft. Lauderdale/Hollywood, Florida

    NASA Astrophysics Data System (ADS)

    Beddow, B.; Roberts, C.; Rankin, J.; Bloch, A.; Peizer, J.

    1981-01-01

    The National Accident Sampling System (NASS) is described. The study area discussed is one of the original ten sites selected for NASS implementation. In addition to collecting data from the field, the original ten sites address questions of feasibility of the plan, projected results of the data collection effort, and specific operational topics, e.g., team size, sampling requirements, training approaches, quality control procedures, and field techniques. Activities and results of the first three years of the project, for both major tasks (establishment and operation) are addressed. Topics include: study area documentation; team description, function and activities; problems and solutions; and recommendations.

  12. Models and Methods for Adaptive Management of Individual and Team-Based Training Using a Simulator

    NASA Astrophysics Data System (ADS)

    Lisitsyna, L. S.; Smetyuh, N. P.; Golikov, S. P.

    2017-05-01

    Research of adaptive individual and team-based training has been analyzed and helped find out that both in Russia and abroad, individual and team-based training and retraining of AASTM operators usually includes: production training, training of general computer and office equipment skills, simulator training including virtual simulators which use computers to simulate real-world manufacturing situation, and, as a rule, the evaluation of AASTM operators’ knowledge determined by completeness and adequacy of their actions under the simulated conditions. Such approach to training and re-training of AASTM operators stipulates only technical training of operators and testing their knowledge based on assessing their actions in a simulated environment.

  13. Ground Data System Risk Mitigation Techniques for Faster, Better, Cheaper Missions

    NASA Technical Reports Server (NTRS)

    Catena, John J.; Saylor, Rick; Casasanta, Ralph; Weikel, Craig; Powers, Edward I. (Technical Monitor)

    2000-01-01

    With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.

  14. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Gulick, S. P.; Allison, M. A.; Goff, J. A.; Duncan, D. D.; Saustrup, S.

    2010-12-01

    During the spring-summer intersession, we annually offer an intensive three-week field course designed to provide hands-on instruction and training for graduate and upper-level undergraduate students in the acquisition, processing, interpretation, and visualization of marine geological and geophysical data. Now in year four, the course covers high-resolution air gun and streamer seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students first participate in three days of classroom instruction designed to provide theoretical and technical background on each field method and impart geologic context of the study area. Students then travel to the Gulf Coast for a week of at-sea field work. In the field, students rotate between two small research vessels: one vessel, the 22’ aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA’s R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, is used for high-resolution seismic reflection, CHIRP sub-bottom profiling, gravity coring, and vibracoring. Students assist with survey design, learn systems setup and acquisition parameters, and safe instrument deployment and retrieval techniques. Students also perform on-shore sedimentology lab work, data quality control, data processing and visualization using industry-standard software such as Focus, Landmark, Caris, and Fledermaus. During the course’s final week, students return to the classroom where, collaborating in teams of three, they integrate and interpret data in a final project which examines the geologic history and/or sedimentary processes as typified by the Gulf Coast continental shelf. The course culminates in a series of professional-level final presentations and discussions. Following the course, students report a greater understanding of marine geology and geophysics via the course’s intensive, hands-on, team approach, and low instructor to student ratio. This course satisfies field experience requirements for some degree programs and thus provides a unique alternative to land-based field courses.

  15. Teamwork and error in the operating room: analysis of skills and roles.

    PubMed

    Catchpole, K; Mishra, A; Handa, A; McCulloch, P

    2008-04-01

    To analyze the effects of surgical, anesthetic, and nursing teamwork skills on technical outcomes. The value of team skills in reducing adverse events in the operating room is presently receiving considerable attention. Current work has not yet identified in detail how the teamwork and communication skills of surgeons, anesthetists, and nurses affect the course of an operation. Twenty-six laparoscopic cholecystectomies and 22 carotid endarterectomies were studied using direct observation methods. For each operation, teams' skills were scored for the whole team, and for nursing, surgical, and anesthetic subteams on 4 dimensions (leadership and management [LM]; teamwork and cooperation; problem solving and decision making; and situation awareness). Operating time, errors in surgical technique, and other procedural problems and errors were measured as outcome parameters for each operation. The relationships between teamwork scores and these outcome parameters within each operation were examined using analysis of variance and linear regression. Surgical (F(2,42) = 3.32, P = 0.046) and anesthetic (F(2,42) = 3.26, P = 0.048) LM had significant but opposite relationships with operating time in each operation: operating time increased significantly with higher anesthetic but decreased with higher surgical LM scores. Errors in surgical technique had a strong association with surgical situation awareness (F(2,42) = 7.93, P < 0.001) in each operation. Other procedural problems and errors were related to the intraoperative LM skills of the nurses (F(5,1) = 3.96, P = 0.027). Detailed analysis of team interactions and dimensions is feasible and valuable, yielding important insights into relationships between nontechnical skills, technical performance, and operative duration. These results support the concept that interventions designed to improve teamwork and communication may have beneficial effects on technical performance and patient outcome.

  16. NASA Habitat Demonstration Unit (HDU) Deep Space Habitat Analog

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Kennedy, Kriss J.; Gill, Tracy

    2013-01-01

    The NASA Habitat Demonstration Unit (HDU) vertical cylinder habitat was established as a exploration habitat testbed platform for integration and testing of a variety of technologies and subsystems that will be required in a human-occupied planetary surface outpost or Deep Space Habitat (DSH). The HDU functioned as a medium-fidelity habitat prototype from 2010-2012 and allowed teams from all over NASA to collaborate on field analog missions, mission operations tests, and system integration tests to help shake out equipment and provide feedback for technology development cycles and crew training. This paper documents the final 2012 configuration of the HDU, and discusses some of the testing that took place. Though much of the higher-fidelity functionality has 'graduated' into other NASA programs, as of this writing the HDU, renamed Human Exploration Research Analog (HERA), will continue to be available as a volumetric and operational mockup for NASA Human Research Program (HRP) research from 2013 onward.

  17. Spacelab-Mir Module Lift in Operations and Checkout Building,

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The STS-71 Spacelab-Mir module is lifted by overhead crane from a test stand in the Operations and Checkout (O&C) Building after final checkout work is completed by the KSC payload processing team. the module will be integrated into the payload bay of the Space Shuttle orbiter Atlantis. During the 11-day mission, the module will serve as an orbital medical laboratory where joint U.S.-Russian investigations will be conducted on the physiological effects of long-duration spaceflight. Also on board Atlantis will be the Orbiter Docking System (ODS) that will permit the link-up of Atlantis and the Russian Mir Space Station. STS-71 is the first of seven planned docking missions. The Spacelab-Mir also carries supplies for the two Russian Mir 19 crew members who will liftoff as a part of the STS-71 crew and later transfer into the space station.

  18. XTCE GOVSAT Tool Suite 1.0

    NASA Technical Reports Server (NTRS)

    Rice, J. Kevin

    2013-01-01

    The XTCE GOVSAT software suite contains three tools: validation, search, and reporting. The Extensible Markup Language (XML) Telemetric and Command Exchange (XTCE) GOVSAT Tool Suite is written in Java for manipulating XTCE XML files. XTCE is a Consultative Committee for Space Data Systems (CCSDS) and Object Management Group (OMG) specification for describing the format and information in telemetry and command packet streams. These descriptions are files that are used to configure real-time telemetry and command systems for mission operations. XTCE s purpose is to exchange database information between different systems. XTCE GOVSAT consists of rules for narrowing the use of XTCE for missions. The Validation Tool is used to syntax check GOVSAT XML files. The Search Tool is used to search (i.e. command and telemetry mnemonics) the GOVSAT XML files and view the results. Finally, the Reporting Tool is used to create command and telemetry reports. These reports can be displayed or printed for use by the operations team.

  19. Team Training in the Perioperative Arena: A Methodology for Implementation and Auditing Behavior.

    PubMed

    Rhee, Amanda J; Valentin-Salgado, Yessenia; Eshak, David; Feldman, David; Kischak, Pat; Reich, David L; LoPachin, Vicki; Brodman, Michael

    Preventable medical errors in the operating room are most often caused by ineffective communication and suboptimal team dynamics. TeamSTEPPS is a government-funded, evidence-based program that provides tools and education to improve teamwork in medicine. The study hospital implemented TeamSTEPPS in the operating room and merged the program with a surgical safety checklist. Audits were performed to collect both quantitative and qualitative information on time out (brief) and debrief conversations, using a standardized audit tool. A total of 1610 audits over 6 months were performed by live auditors. Performance was sustained at desired levels or improved for all qualitative metrics using χ 2 and linear regression analyses. Additionally, the absolute number of wrong site/side/person surgery and unintentionally retained foreign body counts decreased after TeamSTEPPS implementation.

  20. Process and Learning Outcomes from Remotely-Operated, Simulated, and Hands-on Student Laboratories

    ERIC Educational Resources Information Center

    Corter, James E.; Esche, Sven K.; Chassapis, Constantin; Ma, Jing; Nickerson, Jeffrey V.

    2011-01-01

    A large-scale, multi-year, randomized study compared learning activities and outcomes for hands-on, remotely-operated, and simulation-based educational laboratories in an undergraduate engineering course. Students (N = 458) worked in small-group lab teams to perform two experiments involving stress on a cantilever beam. Each team conducted the…

  1. Advanced transportation system studies. Technical area 2: Heavy lift launch vehicle development. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Sections 10 to 13 of the Advanced Transportation System Studies final report are included in this volume. Section 10 contains a copy of an executive summary that was prepared by Lockheed Space Operations Company (LSOC) to document their support to the TA-2 contract during the first-year period of performance of the contract, May 1992 through May 1993. LSOC participated on the TA-2 contract as part of the concurrent engineering launch system definition team, and provided outstanding heavy lift launch vehicle (HLLV) ground operations requirements and concept assessments for Lockheed Missiles and Space Company (LMSC) through an intercompany work transfer as well as providing specific HLLV ground operations assessments at the direction of NASA KSC through KSC funding that was routed to the TA-2 contract. Section 11 contains a copy of a vehicle-independent, launch system health management requirements assessment. The purpose of the assessment was to define both health management requirements and the associated interfaces between a generic advanced transportation system launch vehicle and all related elements of the entire transportation system, including the ground segment. Section 12 presents the major TA-2 presentations provided to summarize the significant results and conclusions that were developed over the course of the contract. Finally, Section 13 presents the design and assessment report on the first lunar outpost heavy lift launch vehicle.

  2. Final consolidated action plan to Tiger Team. Volume 1, Change 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-04-01

    Two separate Tiger Team assessments were conducted at Sandia National Laboratories (SNL). The first was conducted at the California site in Livermore between April 30, 1990, and May 18, 1990. A second Tiger team assessment was conducted at the New Mexico site in Albuquerque between April 15 and May 24, 1991. One purpose of this Action Plan is to provide a formal written response to each of the findings and/or concerns cited in the SNL Tiger Team assessment reports. A second purpose is to present actions planned to be conducted to eliminate deficiencies identified by the Tiger Teams. A thirdmore » purpose is to consolidate (group) related findings and to identify priorities assigned to the planned actions for improved efficiency and enhanced management of the tasks. A fourth and final purpose is to merge the two original SNL Action Plans for the New Mexico and California sites into a single Action Plan as a major step toward managing all SNL ES&H activities more similarly. Included in this combined SNL Action Plan are descriptions of the actions to be taken by SNL to liminate all problems identified in the Tiger Teams` findings/concerns, as well as estimated costs and schedules for planned actions.« less

  3. Final consolidated action plan to Tiger Team. Volume 2, Change 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-04-01

    Two separate Tiger Team assessments were conducted at Sandia National Laboratories (SNL). The first was conducted at the California site in Livermore between April 30, 1990, and May 18, 1990. A second Tiger Team assessment was conducted at the New Mexico site in Albuquerque between April 15 and May 24, 1991. This report is volume two, change one. One purpose of this Action Plan is to provide a formal written response to each of the findings and/or concerns cited in the SNL Tiger Team assessment reports. A second purpose is to present actions planned to be conducted to eliminate deficienciesmore » identified by the Tiger Teams. A third purpose is to consolidate (group) related findings and to identify priorities assigned to the planned actions for improved efficiency and enhanced management of the tasks. A fourth and final purpose is to merge the two original SNL Action Plans for the New Mexico [Ref. a] and California [Ref. b] sites into a single Action Plan as a major step toward managing all SNL ES&H activities more similarly. Included in this combined SNL Action Plan are descriptions of the actions to be taken by SNL to liminate all problems identified in the Tiger Teams` findings/concerns, as well as estimated costs and schedules for planned actions.« less

  4. Using SFOC to fly the Magellan Venus mapping mission

    NASA Technical Reports Server (NTRS)

    Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.

    1993-01-01

    Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.

  5. Virtual operating room for team training in surgery.

    PubMed

    Abelson, Jonathan S; Silverman, Elliott; Banfelder, Jason; Naides, Alexandra; Costa, Ricardo; Dakin, Gregory

    2015-09-01

    We proposed to develop a novel virtual reality (VR) team training system. The objective of this study was to determine the feasibility of creating a VR operating room to simulate a surgical crisis scenario and evaluate the simulator for construct and face validity. We modified ICE STORM (Integrated Clinical Environment; Systems, Training, Operations, Research, Methods), a VR-based system capable of modeling a variety of health care personnel and environments. ICE STORM was used to simulate a standardized surgical crisis scenario, whereby participants needed to correct 4 elements responsible for loss of laparoscopic visualization. The construct and face validity of the environment were measured. Thirty-three participants completed the VR simulation. Attendings completed the simulation in less time than trainees (271 vs 201 seconds, P = .032). Participants felt the training environment was realistic and had a favorable impression of the simulation. All participants felt the workload of the simulation was low. Creation of a VR-based operating room for team training in surgery is feasible and can afford a realistic team training environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Model for Team Training Using the Advanced Trauma Operative Management Course: Pilot Study Analysis.

    PubMed

    Perkins, R Serene; Lehner, Kathryn A; Armstrong, Randy; Gardiner, Stuart K; Karmy-Jones, Riyad C; Izenberg, Seth D; Long, William B; Wackym, P Ashley

    2015-01-01

    Education and training of surgeons has traditionally focused on the development of individual knowledge, technical skills, and decision making. Team training with the surgeon's operating room staff has not been prioritized in existing educational paradigms, particularly in trauma surgery. We aimed to determine whether a pilot curriculum for surgical technicians and nurses, based on the American College of Surgeons' Advanced Trauma Operative Management (ATOM) course, would improve staff knowledge if conducted in a team-training environment. Between December 2012 and December 2014, 22 surgical technicians and nurses participated in a curriculum complementary to the ATOM course, consisting of 8 individual 8-hour training sessions designed by and conducted at our institution. Didactic and practical sessions included educational content, hands-on instruction, and alternating role play during 5 system-specific injury scenarios in a simulated operating room environment. A pre- and postcourse examination was administered to participants to assess for improvements in team members' didactic knowledge. Course participants displayed a significant improvement in didactic knowledge after working in a team setting with trauma surgeons during the ATOM course, with a 9-point improvement on the postcourse examination (83%-92%, p = 0.0008). Most participants (90.5%) completing postcourse surveys reported being "highly satisfied" with course content and quality after working in our simulated team-training setting. Team training is critical to improving the knowledge base of surgical technicians and nurses in the trauma operative setting. Improved communication, efficiency, appropriate equipment use, and staff awareness are the desired outcomes when shifting the paradigm from individual to surgical team training so that improved patient outcomes, decreased risk, and cost savings can be achieved. Determine whether a pilot curriculum for surgical technicians and nurses, based on the American College of Surgeons' ATOM course, improves staff knowledge if conducted in a team-training environment. Surgical technicians and nurses participated in a curriculum complementary to the ATOM course. In all, 8 individual 8-hour training sessions were conducted at our institution and contained both didactic and practical content, as well as alternating role play during 5 system-specific injury scenarios. A pre- and postcourse examination was administered to assess for improvements in didactic knowledge. The course was conducted in a simulated team-training setting at the Legacy Institute for Surgical Education and Innovation (Portland, OR), an American College of Surgeons Accredited Educational Institute. In all, 22 surgical technicians and operating room nurses participated in 8 separate ATOM(s) courses and had at least 1 year of surgical scrubbing experience in general surgery with little or no exposure to Level I trauma surgical care. Of these participants, 16 completed the postcourse examination. Participants displayed a significant improvement in didactic knowledge (83%-92%, p = 0.0008) after the ATOM(s) course. Of the 14 participants who completed postcourse surveys, 90.5% were "highly satisfied" with the course content and quality. Team training is critical to improving the knowledge base of surgical technicians and nurses in the trauma operative setting and may contribute to improved patient outcomes, decreased risk, and hospital cost savings. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  7. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Intrepid Systems Team member Mark Curry, left, talks with NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck, right, about his robot named "MXR - Mark's Exploration Robot" on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  8. The Surgeons' Leadership Inventory (SLI): a taxonomy and rating system for surgeons' intraoperative leadership skills.

    PubMed

    Henrickson Parker, Sarah; Flin, Rhona; McKinley, Aileen; Yule, Steven

    2013-06-01

    Surgeons must demonstrate leadership to optimize performance and maximize patient safety in the operating room, but no behavior rating tool is available to measure leadership. Ten focus groups with members of the operating room team discussed surgeons' intraoperative leadership. Surgeons' leadership behaviors were extracted and used to finalize the Surgeons' Leadership Inventory (SLI), which was checked by surgeons (n = 6) for accuracy and face validity. The SLI was used to code video recordings (n = 5) of operations to test reliability. Eight elements of surgeons' leadership were included in the SLI: (1) maintaining standards, (2) managing resources, (3) making decisions, (4) directing, (5) training, (6) supporting others, (7) communicating, and (8) coping with pressure. Interrater reliability to code videos of surgeons' behaviors while operating using this tool was acceptable (κ = .70). The SLI is empirically grounded in focus group data and both the leadership and surgical literature. The interrater reliability of the system was acceptable. The inventory could be used for rating surgeons' leadership in the operating room for research or as a basis for postoperative feedback on performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. The impact of team characteristics and context on team communication: An integrative literature review.

    PubMed

    Tiferes, Judith; Bisantz, Ann M

    2018-04-01

    Many studies on teams report measures of team communication; however, these studies vary widely in terms of the team characteristics, situations, and tasks studied making it difficult to understand impacts on team communication more generally. The objective of this review is systematically summarize relationships between measures of team communication and team characteristics and situational contexts. A literature review was conducted searching in four electronic databases (PsycINFO, MEDLINE, Ergonomics Abstracts, and SocINDEX). Additional studies were identified by cross-referencing. Articles included for final review had reported at least one team communication measure associated with some team and/or context dimension. Ninety-nine of 727 articles met the inclusion criteria. Data extracted from articles included characteristics of the studies and teams and the nature of each of the reported team and/or context dimensions-team communication properties relationships. Some dimensions (job role, situational stressors, training strategies, cognitive artifacts, and communication media) were found to be consistently linked to changes in team communication. A synthesized diagram that describes the possible associations between eleven team and context dimensions and nine team communication measures is provided along with research needs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Developing High-Functioning Teams: Factors Associated With Operating as a "Real Team" and Implications for Patient-Centered Medical Home Development.

    PubMed

    Stout, Somava; Zallman, Leah; Arsenault, Lisa; Sayah, Assaad; Hacker, Karen

    2017-01-01

    Team-based care is a foundation of health care redesign models like the patient-centered medical home (PCMH). Yet few practices rigorously examine how the implementation of PCMH relates to teamwork. We identified factors associated with the perception of a practice operating as a real team. An online workforce survey was conducted with all staff of 12 primary care sites of Cambridge Health Alliance at different stages of PCMH transformation. Bivariate and multivariate analyses of factors associated with teamwork perceptions were conducted. In multivariate models, having effective leadership was the main factor associated with practice teamwork perceptions (odds ratio [OR], 10.49; 95% confidence interval [CI], 5.39-20.43); in addition, practicing at a site in an intermediate stage of PCMH transformation was also associated with enhanced team perceptions (OR, 2.44; 95% CI, 1.28-4.64). In a model excluding effective leadership, respondents at sites in an intermediate stage of PCMH transformation (OR, 1.95; 95% CI, 1.1-3.4) and who had higher care team behaviors (such as huddles and weekly meetings; OR, 3.41; 95% CI, 1.30-8.92), higher care team perceptions (OR, 2.65; 95% CI, 1.15-6.11), and higher job satisfaction (OR, 2.00; 95% CI, 1.02-3.92) had higher practice teamwork perceptions. This study highlights the strong association between effective leadership, care team behaviors and perceptions, and job satisfaction with perceptions that practices operate as real teams. Although we cannot infer causality with these cross-sectional data, this study raises the possibility that providing attention to these factors may be important in augmenting practice teamwork perceptions.

  11. [Motivations and emotional experiences of the first hospital multidisciplinary team trained to care for people with Ebola in Andalusia, Spain (2014-2016)].

    PubMed

    Casado-Mejía, Rosa; Brea-Ruiz, Ma Teresa; Torres-Enamorado, Dolores; Albar-Marín, Ma Jesús; Botello-Hermosa, Alicia; Santos-Casado, María; Casado-Rojas, Irene

    2016-01-01

    The Hospital Universitario Virgen del Rocío (HUVR) of Seville was chosen as the reference Andalusian site to treat possible cases of Ebola. After the health alert (WHO, 2014), a voluntary group of healthcare and non-healthcare professionals was set up, which, after being trained, treated a possible case. In this light, the aim is to understand the motivations and emotional experiences of this group and to identify the facilitators of and obstacles to its operation. Qualitative, interpretative and phenomenological study. Observation unit: professional team of the HUVR trained to treat Ebola cases. Analysis units: teamwork, motivations and emotions. Three interviews with key informants were conducted, as well as three discussion groups involving 23 of the 60 team members (2014-2016). A content analysis of the motivations, emotions and elements affecting the team's operation was conducted with QSRNUDISTVivo10. data sources, techniques and disciplinary perspectives were triangulated. The results were presented to the team, which duly agreed with the findings. Training, professional responsibility, professional self-esteem, risk appetite or loyalty to the leader stood out as motivations to voluntarily join the team. Emotional experiences evolved from fear and stress to self-pressure control, while essential elements for the team's operation were found to be calmness and confidence based on training and teamwork. Family, source department, resources, communication media and emotional management were facilitators of or obstacles to the team's success. An understanding of the key motivational and influential factors may be important in the management of effective and successful multidisciplinary teams during health alerts. Copyright © 2016 SESPAS. Published by Elsevier Espana. All rights reserved.

  12. Conflicts in the operating theatre.

    PubMed

    Booij, Leo H D J

    2007-04-01

    Quality and safety of healthcare depend on team performance. Conflicts decrease team performance. A number of studied factors involved in the development and solution of conflicts are discussed. An operating team consists of individuals, with specific roles requiring specific expertise and skills, performing interdependent tasks with patient treatment as a common goal. Teams are prone to conflicts: a dispute, disagreement or difference of opinion related to patient management, requiring some decision or action. Many factors determine the character of the conflicts, and these vary between different countries, hospitals and teams. Factors include culture, professional social status, personality of members, etc. Conflicts can induce innovation, but can also result in job dissatisfaction. They even can affect the functioning of the hospital. On average, four conflicts can be observed per operation, which are mostly solved immediately. Communication in an open atmosphere is a major issue in dealing with conflicts. If conflicts are unresolved they grow into relationship conflicts, which are difficult to handle. Understanding the factors that contribute to the conflict is important for mediators. Most conflicts arise about theatre management, case acceptation, unexpected changes in the team or incapability of one of its members. There are many possible inductors of conflicts. Conflicts should be immediately resolved by open communication and respectful discussion.

  13. Coordinating Robot Teams for Disaster Relief

    DTIC Science & Technology

    2015-05-01

    eventually guide vehicles in cooperation with its Operator(s), but in this paper we assume static mission goals, a fixed number of vehicles, and a...is tedious and error prone. Kress-Gazit et al. (2009) instead synthesize an FSA from an LTL specification using a game theory approach (Bloem et al...helping an Operator coordinate a team of vehicles in Disaster Relief. Acknowledgements Thanks to OSD ASD (R&E) for sponsoring this research. The

  14. President Richard Nixon visits MSC to award Apollo 13 Mission Operations team

    NASA Technical Reports Server (NTRS)

    1970-01-01

    President Richard M. Nixon introduces Sigurd A. Sjoberg (far right), Director of Flight Operations at Manned Spacecraft Center (MSC), and the four Apollo 13 Flight Directors during the Presidnet's post-mission visit to MSC. The Flight Directors are (l.-r.) Glynn S. Lunney, Eugene A. Kranz, Gerald D. Griffin and Milton L. Windler. Dr. Thomas O. Paine, NASA Administrator, is seated at left. President Nixon was on the site to present the Presidential Medal of Freedom -- the nation's highest civilian honor -- to the Apollo 13 Mission Operations Team (35600); A wide-angle, overall view of the large crowd that was on hand to see President Richard M. Nixon present the Presidnetial Medal of Freedom to the Apollo 13 Mission Operations Team. A temporary speaker's platform was erected beside bldg 1 for the occasion (35601).

  15. Developing a Multidisciplinary Team for Disorders of Sex Development: Planning, Implementation, and Operation Tools for Care Providers

    PubMed Central

    Moran, Mary Elizabeth; Karkazis, Katrina

    2012-01-01

    In the treatment of patients with disorders of sex development (DSD), multidisciplinary teams (MDTs) represent a new standard of care. While DSDs are too complex for care to be delivered effectively without specialized team management, these conditions are often considered to be too rare for their medical management to be a hospital priority. Many specialists involved in DSD care want to create a clinic or team, but there is no available guidance that bridges the gap between a group of like-minded DSD providers who want to improve care and the formation of a functional MDT. This is an important dilemma, and one with serious implications for the future of DSD care. If a network of multidisciplinary DSD teams is to be a reality, those directly involved in DSD care must be given the necessary program planning and team implementation tools. This paper offers a protocol and set of tools to meet this need. We present a 6-step process to team formation, and a sample set of tools that can be used to guide, develop, and evaluate a team throughout the course of its operation. PMID:22792098

  16. Introduction to the Navigation Team: Johnson Space Center EG6 Internship

    NASA Technical Reports Server (NTRS)

    Gualdoni, Matthew

    2017-01-01

    The EG6 navigation team at NASA Johnson Space Center, like any team of engineers, interacts with the engineering process from beginning to end; from exploring solutions to a problem, to prototyping and studying the implementations, all the way to polishing and verifying a final flight-ready design. This summer, I was privileged enough to gain exposure to each of these processes, while also getting to truly experience working within a team of engineers. My summer can be broken up into three projects: i) Initial study and prototyping: investigating a manual navigation method that can be utilized onboard Orion in the event of catastrophic failure of navigation systems; ii) Finalizing and verifying code: altering a software routine to improve its robustness and reliability, as well as designing unit tests to verify its performance; and iii) Development of testing equipment: assisting in developing and integrating of a high-fidelity testbed to verify the performance of software and hardware.

  17. First year of ALMA site software deployment: where everything comes together

    NASA Astrophysics Data System (ADS)

    González, Víctor; Mora, Matias; Araya, Rodrigo; Arredondo, Diego; Bartsch, Marcelo; Burgos, Pablo; Ibsen, Jorge; Reveco, Johnny; Sáez, Norman; Schemrl, Anton; Sepulveda, Jorge; Shen, Tzu-Chiang; Soto, Rubén; Troncoso, Nicolás; Zambrano, Mauricio; Barriga, Nicolás; Glendenning, Brian; Raffi, Gianni; Kern, Jeff

    2010-07-01

    Starting 2009, the ALMA project initiated one of its most exciting phases within construction: the first antenna from one of the vendors was delivered to the Assembly, Integration and Verification team. With this milestone and the closure of the ALMA Test Facility in New Mexico, the JAO Computing Group in Chile found itself in the front line of the project's software deployment and integration effort. Among the group's main responsibilities are the deployment, configuration and support of the observation systems, in addition to infrastructure administration, all of which needs to be done in close coordination with the development groups in Europe, North America and Japan. Software support has been the primary interaction key with the current users (mainly scientists, operators and hardware engineers), as the software is normally the most visible part of the system. During this first year of work with the production hardware, three consecutive software releases have been deployed and commissioned. Also, the first three antennas have been moved to the Array Operations Site, at 5.000 meters elevation, and the complete end-to-end system has been successfully tested. This paper shares the experience of this 15-people group as part of the construction team at the ALMA site, and working together with Computing IPT, on the achievements and problems overcomed during this period. It explores the excellent results of teamwork, and also some of the troubles that such a complex and geographically distributed project can run into. Finally, it approaches the challenges still to come, with the transition to the ALMA operations plan.

  18. The Trans-African Hydro-Meteorological Observatory: Early results from the crowd sourcing competition

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Hilkhuijsen, Tanja; Hut, Rolf; Andreini, Marc; Selker, John

    2013-04-01

    The Trans-African Hydro-Meteorological Observatory (www.tahmo.org) is an international initiative with the objective to develop, build, and operate 20,000 hydro-meteorological measurement stations in sub-Saharan Africa. TAHMO tries to integrate science with education. At the same time, we try to make the initiative financially sustainable by developing and rolling out viable business development. Estimated total costs for establishing the network will be in the order of US 20 million, whereas operational costs will be around US 2 million per year. The stations need to be designed in accordance to a set of rules that serves easy deployment and operation, such as absence of moving parts and cavities, self- and cross calibration of sensors, and low cost (€ 200-300 per station). There are some promising first results in this respect. The presentation will focus on recent activities, specifically concerning crowd sourcing activities at African universities. This competition (http://tahmo.info/sensor-design-competition) consists of two rounds. The first round is open to any academic or research group in Africa and asks for the design of an innovative robust sensor in line with the TAHMO design criteria. The top twenty teams with the best designs will receive a "Maker Package" that will allow them to build and test the sensors. The final top ten design teams will meet in Nairobi in August 2013 to tinker and collaborate for one week and to integrate the sensors into a standard weather station. The deadline for the first round is 1 March 2013 and the results from this round will be presented.

  19. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  20. Towards "DRONE-BORNE" Disaster Management: Future Application Scenarios

    NASA Astrophysics Data System (ADS)

    Tanzi, Tullio Joseph; Chandra, Madhu; Isnard, Jean; Camara, Daniel; Sebastien, Olivier; Harivelo, Fanilo

    2016-06-01

    Information plays a key role in crisis management and relief efforts for natural disaster scenarios. Given their flight properties, UAVs (Unmanned Aerial Vehicles) provide new and interesting perspectives on the data gathering for disaster management. A new generation of UAVs may help to improve situational awareness and information assessment. Among the advantages UAVs may bring to the disaster management field, we can highlight the gain in terms of time and human resources, as they can free rescue teams from time-consuming data collection tasks and assist research operations with more insightful and precise guidance thanks to advanced sensing capabilities. However, in order to be useful, UAVs need to overcome two main challenges. The first one is to achieve a sufficient autonomy level, both in terms of navigation and interpretation of the data sensed. The second major challenge relates to the reliability of the UAV, with respect to accidental (safety) or malicious (security) risks. This paper first discusses the potential of UAV in assisting in different humanitarian relief scenarios, as well as possible issues in such situations. Based on recent experiments, we discuss the inherent advantages of autonomous flight operations, both lone flights and formation flights. The question of autonomy is then addressed and a secure embedded architecture and its specific hardware capabilities is sketched out. We finally present a typical use case based on the new detection and observation abilities that UAVs can bring to rescue teams. Although this approach still has limits that have to be addressed, technically speaking as well as operationally speaking, it seems to be a very promising one to enhance disaster management efforts activities.

  1. Terra Mission Operations: Launch to the Present (and Beyond)

    NASA Technical Reports Server (NTRS)

    Thome, Kurt; Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren

    2014-01-01

    The Terra satellite, flagship of NASAs long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASAs international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations.

  2. Technical aspects of the Space Telescope Imaging Spectrograph Repair (STIS-R)

    NASA Astrophysics Data System (ADS)

    Rinehart, S. A.; Domber, J.; Faulkner, T.; Gull, T.; Kimble, R.; Klappenberger, M.; Leckrone, D.; Niedner, M.; Proffitt, C.; Smith, H.; Woodgate, B.

    2008-07-01

    In August 2004, the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) ceased operation due to a failure of the 5V mechanism power converter in the Side 2 Low Voltage Power Supply (LVPS2). The failure precluded movement of any STIS mechanism and, because of the earlier (2001) loss of the Side 1 electronics chain, left the instrument shuttered and in safe mode after 7.5 years of science operations. A team was assembled to analyze the fault and to determine if STIS repair (STIS-R) was feasible. The team conclusively pinpointed the Side 2 failure to the 5V mechanism converter, and began studying EVA techniques for opening STIS during Servicing Mission 4 (SM4) to replace the failed LVPS2 board. The restoration of STIS functionality via surgical repair by astronauts has by now reached a mature and final design state, and will, along with a similar repair procedure for the Advanced Camera for Surveys (ACS), represent a first for Hubble servicing. STIS-R will restore full scientific functionality of the spectrograph on Side 2, while Side 1 will remain inoperative. Because of the high degree of complementarity between STIS and the new Cosmic Origins Spectrograph (COS, to be installed during SM4)), successful repair of the older spectrograph is an important scientific objective. In this presentation, we focus on the technical aspects associated with STIS-R.

  3. A Human Factors Analysis of Technical and Team Skills Among Surgical Trainees During Procedural Simulations in a Simulated Operating Theatre

    PubMed Central

    Moorthy, Krishna; Munz, Yaron; Adams, Sally; Pandey, Vikas; Darzi, Ara

    2005-01-01

    Background: High-risk organizations such as aviation rely on simulations for the training and assessment of technical and team performance. The aim of this study was to develop a simulated environment for surgical trainees using similar principles. Methods: A total of 27 surgical trainees carried out a simulated procedure in a Simulated Operating Theatre with a standardized OR team. Observation of OR events was carried out by an unobtrusive data collection system: clinical data recorder. Assessment of performance consisted of blinded rating of technical skills, a checklist of technical events, an assessment of communication, and a global rating of team skills by a human factors expert and trained surgical research fellows. The participants underwent a debriefing session, and the face validity of the simulated environment was evaluated. Results: While technical skills rating discriminated between surgeons according to experience (P = 0.002), there were no differences in terms of the checklist and team skills (P = 0.70). While all trainees were observed to gown/glove and handle sharps correctly, low scores were observed for some key features of communication with other team members. Low scores were obtained by the entire cohort for vigilance. Interobserver reliability was 0.90 and 0.89 for technical and team skills ratings. Conclusions: The simulated operating theatre could serve as an environment for the development of surgical competence among surgical trainees. Objective, structured, and multimodal assessment of performance during simulated procedures could serve as a basis for focused feedback during training of technical and team skills. PMID:16244534

  4. Target Identification Support and Location Support Among Teams of Unmanned Systems Operators

    DTIC Science & Technology

    2008-12-01

    effectiveness and performance, many studies have highlighted the importance of attending to team process (Campion, Medsker, & Higgs, 1993, Campion, Papper ...work groups. Personnel Psychology, 46, 823-850. Campion, M., Papper , E., & Medsker, G., 1996: Relations between work team characteristics and

  5. Team building: conceptual, methodological, and applied considerations.

    PubMed

    Beauchamp, Mark R; McEwan, Desmond; Waldhauser, Katrina J

    2017-08-01

    Team building has been identified as an important method of improving the psychological climate in which teams operate, as well as overall team functioning. Within the context of sports, team building interventions have consistently been found to result in improvements in team effectiveness. In this paper we review the extant literature on team building in sport, and address a range of conceptual, methodological, and applied considerations that have the potential to advance theory, research, and applied intervention initiatives within the field. This involves expanding the scope of team building strategies that have, to date, primarily focused on developing group cohesion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Final matches of the FIRST regional robotic competition at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Students cheer their team during final matches at the 1999 Southeastern Regional robotic competition at the KSC Visitor Complex. Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow-like disks from the floor, climb onto a platform (with flags), as well as raise the cache of pillows, maneuvered by student teams behind protective walls. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers by pairing engineers and corporations with student teams.

  7. The role of decision influence and team performance in member self-efficacy, withdrawal, satisfaction with the leader, and willingness to return.

    PubMed

    Phillips, J M

    2001-01-01

    This study examines team performance as a moderator of the relationship between decision influence and outcomes relevant to team effectiveness in hierarchical teams with distributed ex pertise. In this type of team staff members have unique roles and make recommendations to the team leader, who ultimately makes the team's final decisions. It is suggested that the positive rela tionship between decision influence and favorable outcomes (e.g., satisfaction) consistently described in the literature is dependent on team performance in this type of team. Specifically, team effec tiveness outcomes are proposed to be consistently more favorable in higher performing than in lower performing teams. Decision influence is proposed to relate positively to member satisfaction with the leader, willingness to return, and self-efficacy and to relate negatively to withdrawal in higher performing teams. The opposite pattern of relationships is expected in lower performing teams. A laboratory study was conducted with 228 undergradu ates performing a computer task as subordinates in 76 four-person teams with a confederate leader. The results generally support the hypotheses and illustrate a dilemma for leaders attempting to manage team effectiveness. Copyright 2000 Academic Press.

  8. Using NVMe Gen3 PCIe SSD Cards in High-density Servers for High-performance Big Data Transfer Over Multiple Network Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Chin

    This Technical Note describes how the Zettar team came up with a data transfer cluster design that convincingly proved the feasibility of using high-density servers for high-performance Big Data transfers. It then outlines the tests, operations, and observations that address a potential over-heating concern regarding the use of Non-Volatile Memory Host Controller Interface Specification (NVMHCI aka NVM Express or NVMe) Gen 3 PCIe SSD cards in high-density servers. Finally, it points out the possibility of developing a new generation of high-performance Science DMZ data transfer system for the data-intensive research community and commercial enterprises.

  9. JWST Pathfinder Telescope Integration

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; hide

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  10. The contextualized self: how team-member exchange leads to coworker identification and helping OCB.

    PubMed

    Farmer, Steven M; Van Dyne, Linn; Kamdar, Dishan

    2015-03-01

    This article develops the argument that team-member exchange (TMX) relationships operate at both between- and within-group levels of analysis to influence an employee's sense of identification with coworkers in the group and their helping organizational citizenship behavior (OCB) directed at coworkers. Specifically, we propose that relatively higher quality TMX relationships of an employee as compared with other members of the group influence an employee's sense of positive uniqueness, whereas higher average level of TMX quality in the group creates a greater sense of belonging. Multilevel modeling analysis of field data from 236 bank managers and their subordinates supports the hypotheses and demonstrates 3 key findings. First, team members identify more with their coworkers when they have high relative TMX quality compared with other group members and are also embedded in groups with higher average TMX. Second, identification with coworkers is positively related to helping OCB directed toward team members. Finally, identification with coworkers mediates the interactive effect of relative TMX quality and group average TMX quality on helping. When TMX group relations allow individuals to feel a valued part of the group, but still unique, they engage in higher levels of helping. Overall moderated mediation analysis demonstrates that the mediated relationship linking relative TMX quality with helping OCB via identification with coworkers is stronger when group average TMX is high, but not present when group average TMX is low. We discuss theoretical and practical implications and recommend future research on multilevel conceptualizations of TMX. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  11. Qualitative study exploring surgical team members' perception of patient safety in conflict-ridden Eastern Democratic Republic of Congo

    PubMed Central

    Labat, Francoise; Sharma, Anjali

    2016-01-01

    Objective To identify potential barriers to patient safety (PS) interventions from the perspective of surgical team members working in an operating theatre in Eastern Democratic Republic of Congo (DRC). Design In-depth interviews were conducted and analysed using qualitative content analysis. Setting Governmental referral teaching hospital in Eastern DRC. Participants We purposively selected 2–4 national and expatriate surgical team members from each specialisation. Of the 31 eligible surgical health workers (HWs), 17 volunteered to be interviewed. Results Economics issues affected PS throughout the entire health system, from human resources and hospital management, to access to healthcare for patients. Surgical team members seemed embedded in a paternalistic organisational structure and blame culture accompanied by perceived inefficient support services and low salaries. The armed conflict did not only worsen these system failures, it also carried direct threats to patients and HWs, and resulted in complex indirect consequences compromising PS. The increased corruption within health organisations, and population impoverishment and substance abuse among health staff adversely altered safe care. Simultaneously, HWs’ reported resilience and resourcefulness to address barrier to PS. Participants had varying views on external aid depending on its relevance. Conclusions The complex links between war and PS emphasise the importance of a comprehensive approach including occupational health to strengthen HWs' resilience, external clinical audits to limit corruption, and educational programmes in PS to support patient-centred care and address blame culture. Finally, improvement of equity in the health financing system seems essential to ensure access to healthcare and safe perioperative outcomes for all. PMID:27113232

  12. Porter Takes Reins of the FNL Green Team | Poster

    Cancer.gov

    Courtesy of the FNL Green Team Melissa Porter, who recently joined the staff of Craig Reynolds, Ph.D., director, Office of Scientific Operations, as administrative manager, has stepped forward to lead the Frederick National Laboratory for Cancer Research (FNL) Green Team in its efforts to promote a “green” work environment. “I am excited to lead the FNL Green Team and have been impressed by the enthusiasm and commitment of the FNL Green Team,” Porter said.

  13. Simulation for the training of human performance and technical skills: the intersection of how we will train health care professionals in the future.

    PubMed

    Hamman, William R; Beaubien, Jeffrey M; Beaudin-Seiler, Beth M

    2009-12-01

    The aims of this research are to begin to understand health care teams in their operational environment, establish metrics of performance for these teams, and validate a series of scenarios in simulation that elicit team and technical skills. The focus is on defining the team model that will function in the operational environment in which health care professionals work. Simulations were performed across the United States in 70- to 1000-bed hospitals. Multidisciplinary health care teams analyzed more than 300 hours of videos of health care professionals performing simulations of team-based medical care in several different disciplines. Raters were trained to enhance inter-rater reliability. The study validated event sets that trigger team dynamics and established metrics for team-based care. Team skills were identified and modified using simulation scenarios that employed the event-set-design process. Specific skills (technical and team) were identified by criticality measurement and task analysis methodology. In situ simulation, which includes a purposeful and Socratic Method of debriefing, is a powerful intervention that can overcome inertia found in clinician behavior and latent environmental systems that present a challenge to quality and patient safety. In situ simulation can increase awareness of risks, personalize the risks, and encourage the reflection, effort, and attention needed to make changes to both behaviors and to systems.

  14. Cluster Development Test 2: An Assessment of a Failed Test

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo A.; Evans, Carol T.

    2009-01-01

    On 31 July 2008 the National Aeronautics and Space Administration Crew Exploration Vehicle Parachute Assembly System team conducted the final planned cluster test of the first generation parachute recovery system design. The two primary test objectives were to demonstrate the operation of the complete parachute system deployed from a full scale capsule simulator and to demonstrate the test technique of separating the capsule simulator from the Low Velocity Air Drop pallet used to extract the test article from a United States Air Force C-17 aircraft. The capsule simulator was the Parachute Test Vehicle with an accurate heat shield outer mold line and forward bay compartment of the Crew Exploration Vehicle Command Module. The Parachute Test Vehicle separated cleanly from the pallet following extraction, but failed to reach test conditions resulting in the failure of the test and the loss of the test assets. No personnel were injured. This paper will discuss the design of the test and the findings of the team that investigated the test, including a discussion of what were determined to be the root causes of the failure.

  15. Team Modelling: Survey of Experimental Platforms (Modelisation d’equipes : Examen de plate-formes experimentales)

    DTIC Science & Technology

    2006-09-01

    Control Force Agility Shared Situational Awareness Attentional Demand Interoperability Network Based Operations Effect Based Operations Speed of...Command Self Synchronization Reach Back Reach Forward Information Superiority Increased Mission Effectiveness Humansystems® Team Modelling...communication effectiveness and Distributed Mission Training (DMT) effectiveness . The NASA Ames Centre - Distributed Research Facilities platform could

  16. Heterogeneous Teams of Autonomous Vehicles: Advanced Sensing & Control

    DTIC Science & Technology

    2009-03-01

    Final Technical 3. DATES COVERED (From To) 7/1/05-12/31708 4. TITLE AND SUBTITLE Heterogeneous Teams of Autonomous Vehicles Advanced Sensing...assimilating data from underwater and surface autonomous vehicles in addition to the usual sources of Eulerian and Lagrangian systems into a small scale

  17. Towards a Better Distributed Framework for Learning Big Data

    DTIC Science & Technology

    2017-06-14

    UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT This work aimed at solving issues in distributed machine learning. The PI’s team proposed...communication load. Finally, the team proposed the parallel least-squares policy iteration (parallel LSPI) to parallelize a reinforcement policy learning. 15

  18. Improving Virtual Teams through Knowledge Management: A Case Study

    ERIC Educational Resources Information Center

    Laughridge, James F.

    2012-01-01

    Within the dynamic globalized operating environment, organizations are increasingly relying on virtual teams to solve their most difficult problems, leverage their expertise and expand their presence. The use of virtual teams by organizations continues to increase greatly as the technologies supporting them evolve. Despite improvements in…

  19. 77 FR 33016 - Agency Information Collection Activities: Requests for Comments; Clearance of New Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Safety Team Safety Enhancements AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice and... Aviation Safety Team (CAST) safety enhancements (SEs) from certificate holders conducting operations under... . SUPPLEMENTARY INFORMATION: OMB Control Number: 2120-XXXX. Title: Commercial Aviation Safety Team Safety...

  20. Determining team cognition from delay analysis using cross recurrence plot.

    PubMed

    Hajari, Nasim; Cheng, Irene; Bin Zheng; Basu, Anup

    2016-08-01

    Team cognition is an important factor in evaluating and determining team performance. Forming a team with good shared cognition is even more crucial for laparoscopic surgery applications. In this study, we analyzed the eye tracking data of two surgeons during a laparoscopic simulation operation, then performed Cross Recurrence Analysis (CRA) on the recorded data to study the delay behaviour for good performer and poor performer teams. Dual eye tracking data for twenty two dyad teams were recorded during a laparoscopic task and then the teams were divided into good performer and poor performer teams based on the task times. Eventually we studied the delay between two team members for good and poor performer teams. The results indicated that the good performer teams show a smaller delay comparing to poor performer teams. This study is compatible with gaze overlap analysis between team members and therefore it is a good evidence of shared cognition between team members.

  1. The Role of Jedburgh Teams in Operations Market Garden

    DTIC Science & Technology

    1990-06-01

    with XXX Corps, the British 1st Airborne encountered powerful opposition at Arnhem and sustained heavy losses . (6) Five Jedburgh teams deployed to...stored in a suitcase with its accessories (total weight of suitcase: 9 pounds). This device had a five watt output with a range of 500 miles. For...rather than of real operational need-the need for a formation of sufficient status to ensure that airborne operations were given their full weight . (32

  2. Education and Training of Emergency Medical Teams: Recommendations for a Global Operational Learning Framework.

    PubMed

    Amat Camacho, Nieves; Hughes, Amy; Burkle, Frederick M; Ingrassia, Pier Luigi; Ragazzoni, Luca; Redmond, Anthony; Norton, Ian; von Schreeb, Johan

    2016-10-21

    An increasing number of international emergency medical teams are deployed to assist disaster-affected populations worldwide. Since Haiti earthquake those teams have been criticised for ill adapted care, lack of preparedness in addition to not coordinating with the affected country healthcare system. The Emergency Medical Teams (EMTs) initiative, as part of the Word Health Organization's Global Health Emergency Workforce program, aims to address these shortcomings by improved EMT coordination, and mechanisms to ensure quality and accountability of national and international EMTs. An essential component to reach this goal is appropriate education and training. Multiple disaster education and training programs are available. However, most are centred on individuals' professional development rather than on the EMTs operational performance. Moreover, no common overarching or standardised training frameworks exist. In this report, an expert panel review and discuss the current approaches to disaster education and training and propose a three-step operational learning framework that could be used for EMTs globally. The proposed framework includes the following steps: 1) ensure professional competence and license to practice, 2) support adaptation of technical and non-technical professional capacities into the low-resource and emergency context and 3) prepare for an effective team performance in the field. A combination of training methodologies is also recommended, including individual theory based education, immersive simulations and team training. Agreed curriculum and open access training materials for EMTs need to be further developed, ideally through collaborative efforts between WHO, operational EMT organizations, universities, professional bodies and training agencies.  Keywords: disasters; education; emergencies; global health; learning.

  3. Education and Training of Emergency Medical Teams: Recommendations for a Global Operational Learning Framework

    PubMed Central

    Amat Camacho, Nieves; Hughes, Amy; Burkle, Frederick M.; Ingrassia, Pier Luigi; Ragazzoni, Luca; Redmond, Anthony; Norton, Ian; von Schreeb, Johan

    2016-01-01

    An increasing number of international emergency medical teams are deployed to assist disaster-affected populations worldwide. Since Haiti earthquake those teams have been criticised for ill adapted care, lack of preparedness in addition to not coordinating with the affected country healthcare system. The Emergency Medical Teams (EMTs) initiative, as part of the Word Health Organization’s Global Health Emergency Workforce program, aims to address these shortcomings by improved EMT coordination, and mechanisms to ensure quality and accountability of national and international EMTs. An essential component to reach this goal is appropriate education and training. Multiple disaster education and training programs are available. However, most are centred on individuals’ professional development rather than on the EMTs operational performance. Moreover, no common overarching or standardised training frameworks exist. In this report, an expert panel review and discuss the current approaches to disaster education and training and propose a three-step operational learning framework that could be used for EMTs globally. The proposed framework includes the following steps: 1) ensure professional competence and license to practice, 2) support adaptation of technical and non-technical professional capacities into the low-resource and emergency context and 3) prepare for an effective team performance in the field. A combination of training methodologies is also recommended, including individual theory based education, immersive simulations and team training. Agreed curriculum and open access training materials for EMTs need to be further developed, ideally through collaborative efforts between WHO, operational EMT organizations, universities, professional bodies and training agencies.  Keywords: disasters; education; emergencies; global health; learning PMID:27917306

  4. Hybrid simulation: bringing motivation to the art of teamwork training in the operating room.

    PubMed

    Kjellin, A; Hedman, L; Escher, C; Felländer-Tsai, L

    2014-12-01

    Crew resource management-based operating room team training will be an evident part of future surgical training. Hybrid simulation in the operating room enables the opportunity for trainees to perform higher fidelity training of technical and non-technical skills in a realistic context. We focus on situational motivation and self-efficacy, two important factors for optimal learning in light of a prototype course for teams of residents in surgery and anesthesiology and nurses. Authentic operating room teams consisting of residents in anesthesia (n = 2), anesthesia nurses (n = 3), residents in surgery (n = 2), and scrub nurses (n = 6) were, during a one-day course, exposed to four different scenarios. Their situational motivation was self-assessed (ranging from 1 = does not correspond at all to 7 = corresponds exactly) immediately after training, and their self-efficacy (graded from 1 to 7) before and after training. Training was performed in a mock-up operating theater equipped with a hybrid patient simulator (SimMan 3G; Laerdal) and a laparoscopic simulator (Lap Mentor Express; Simbionix). The functionality of the systematic hybrid procedure simulation scenario was evaluated by an exit questionnaire (graded from 1 = disagree entirely to 5 = agree completely). The trainees were mostly intrinsically motivated, engaged for their own sake, and had a rather great degree of self-determination toward the training situation. Self-efficacy among the team members improved significantly from 4 to 6 (median). Overall evaluation showed very good result with a median grading of 5. We conclude that hybrid simulation is feasible and has the possibility to train an authentic operating team in order to improve individual motivation and confidence. © The Finnish Surgical Society 2014.

  5. History of POIC Capabilities and Limitations to Conduct International Space Station Payload Operations

    NASA Technical Reports Server (NTRS)

    Grimaldi, Rebecca; Horvath, Tim; Morris, Denise; Willis, Emily; Stacy, Lamar; Shell, Mike; Faust, Mark; Norwood, Jason

    2011-01-01

    Payload science operations on the International Space Station (ISS) have been conducted continuously twenty-four hours per day, 365 days a year beginning February, 2001 and continuing through present day. The Payload Operations Integration Center (POIC), located at the Marshall Space Flight Center in Huntsville, Alabama, has been a leader in integrating and managing NASA distributed payload operations. The ability to conduct science operations is a delicate balance of crew time, onboard vehicle resources, hardware up-mass to the vehicle, and ground based flight control team manpower. Over the span of the last ten years, the POIC flight control team size, function, and structure has been modified several times commensurate with the capabilities and limitations of the ISS program. As the ISS vehicle has been expanded and its systems changed throughout the assembly process, the resources available to conduct science and research have also changed. Likewise, as ISS program financial resources have demanded more efficiency from organizations across the program, utilization organizations have also had to adjust their functionality and structure to adapt accordingly. The POIC has responded to these often difficult challenges by adapting our team concept to maximize science research return within the utilization allocations and vehicle limitations that existed at the time. In some cases, the ISS and systems limitations became the limiting factor in conducting science. In other cases, the POIC structure and flight control team size were the limiting factors, so other constraints had to be put into place to assure successful science operations within the capabilities of the POIC. This paper will present the POIC flight control team organizational changes responding to significant events of the ISS and Shuttle programs.

  6. The Implementation of Crisis Resolution Home Treatment Teams in Wales: Results of the National Survey 2007-2008

    PubMed Central

    Jones, Richard; Jordan, Sue

    2010-01-01

    Background: In mental health nursing, Crisis Resolution and Home Treatment (CRHT) services are key components of the shift from in-patient to community care. CRHT has been developed mainly in urban settings, and deployment in more rural areas has not been examined. Aim: We aimed to evaluate CRHT services’ progress towards policy targets. Participants and Setting: All 18 CRHT teams in Wales were surveyed. Methods: A service profile questionnaire was distributed to team leaders. Findings: Fourteen of 18 teams responded in full. All but one were led by nurses, who formed the main professional group. All teams reported providing an alternative to hospital admission and assisting early discharge. With one exception, teams were ‘gatekeeping’ hospital beds. There was some divergence in clients seen, perceived impact of the service, operational hours, distances travelled, team structure, input of consultant psychiatrists and caseloads. We found some differences between the 8 urban teams and the 6 teams serving rural or mixed areas: rural teams travelled more, had fewer inpatient beds, and less medical input (0.067 compared to 0.688 whole time equivalents).. Most respondents felt that resource constraints were limiting further developments. Implications: Teams met standards for CHRT services in Wales; however, these are less onerous than those in England, particularly in relation to operational hours and staffing complement. As services develop, it will be important to ensure that rural and mixed areas receive the same level of input as urban areas. PMID:20502646

  7. The implementation of crisis resolution home treatment teams in wales: results of the national survey 2007-2008.

    PubMed

    Jones, Richard; Jordan, Sue

    2010-02-18

    In mental health nursing, Crisis Resolution and Home Treatment (CRHT) services are key components of the shift from in-patient to community care. CRHT has been developed mainly in urban settings, and deployment in more rural areas has not been examined. We aimed to evaluate CRHT services' progress towards policy targets. All 18 CRHT teams in Wales were surveyed. A service profile questionnaire was distributed to team leaders. Fourteen of 18 teams responded in full. All but one were led by nurses, who formed the main professional group. All teams reported providing an alternative to hospital admission and assisting early discharge. With one exception, teams were 'gatekeeping' hospital beds. There was some divergence in clients seen, perceived impact of the service, operational hours, distances travelled, team structure, input of consultant psychiatrists and caseloads. We found some differences between the 8 urban teams and the 6 teams serving rural or mixed areas: rural teams travelled more, had fewer inpatient beds, and less medical input (0.067 compared to 0.688 whole time equivalents).. Most respondents felt that resource constraints were limiting further developments. Teams met standards for CHRT services in Wales; however, these are less onerous than those in England, particularly in relation to operational hours and staffing complement. As services develop, it will be important to ensure that rural and mixed areas receive the same level of input as urban areas.

  8. Job satisfaction among mental healthcare professionals: The respective contributions of professional characteristics, team attributes, team processes, and team emergent states.

    PubMed

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie

    2017-01-01

    The aim of this study was to determine the respective contribution of professional characteristics, team attributes, team processes, and team emergent states on the job satisfaction of 315 mental health professionals from Quebec (Canada). Job satisfaction was measured with the Job Satisfaction Survey. Independent variables were organized into four categories according to a conceptual framework inspired from the Input-Mediator-Outcomes-Input Model. The contribution of each category of variables was assessed using hierarchical regression analysis. Variations in job satisfaction were mostly explained by team processes, with minimal contribution from the other three categories. Among the six variables significantly associated with job satisfaction in the final model, four were team processes: stronger team support, less team conflict, deeper involvement in the decision-making process, and more team collaboration. Job satisfaction was also associated with nursing and, marginally, male gender (professional characteristics) as well as with a stronger affective commitment toward the team (team emergent states). Results confirm the importance for health managers of offering adequate support to mental health professionals, and creating an environment favorable to collaboration and decision-sharing, and likely to reduce conflicts between team members.

  9. Porter Takes Reins of the FNL Green Team | Poster

    Cancer.gov

    Courtesy of the FNL Green Team Melissa Porter, who recently joined the staff of Craig Reynolds, Ph.D., director, Office of Scientific Operations, as administrative manager, has stepped forward to lead the Frederick National Laboratory for Cancer Research (FNL) Green Team in its efforts to promote a “green” work environment. “I am excited to lead the FNL Green Team and have

  10. The Czech Provincial Reconstruction Team: Civil-Military Teaming in Logar Province

    DTIC Science & Technology

    2013-03-01

    which authorized ISAF forces to assist Afghan authorities in providing security through ISAF operations across Afghanistan. Alexandr Vondra, the...Ministry of Defense Alexandr Vondra, web site Provincional Reconstruction Team Logar news, the Czech Republic, http://www.mzv.cz/prtlogar/cz...Meade Avenue, Building 50 Fort Leavenworth, 1-3. 4 Handbook Afghanistan Provincial Reconstruction Team No.11-16, Feb.11 published by Center for

  11. Multi-team dynamics and distributed expertise in imission operations.

    PubMed

    Caldwell, Barrett S

    2005-06-01

    The evolution of space exploration has brought an increased awareness of the social and socio-technical issues associated with team performance and task coordination, both for the onboard astronauts and in mission control. Spaceflight operations create a unique environment in which to address classic group dynamics topics including communication, group process, knowledge development and sharing, and time-critical task performance. Mission operations in the early years of the 21st century have developed into a set of complex, multi-team task settings incorporating multiple mission control teams and flight crews interacting in novel ways. These more complex operational settings help highlight the emergence of a new paradigm of distributed supervisory coordination, and the need to consider multiple dimensions of expertise being supported and exchanged among team members. The creation of new mission profiles with very long-duration time scales (months, rather than days) for the International Space Station, as well as planned exploration missions to the Moon and Mars, emphasize fundamental distinctions from the 40 yr from Mercury to the Space Shuttle. Issues in distributed expertise and information flow in mission control settings from two related perspectives are described. A general conceptual view of knowledge sharing and task synchronization is presented within the context of the mission control environment. This conceptual presentation is supplemented by analysis of quasi-experimental data collected from actual flight controllers at NASA-Johnson Space Center, Houston, TX.

  12. Breakdowns in coordinated decision making at and above the incident management team level: an analysis of three large scale Australian wildfires.

    PubMed

    Bearman, Chris; Grunwald, Jared A; Brooks, Benjamin P; Owen, Christine

    2015-03-01

    Emergency situations are by their nature difficult to manage and success in such situations is often highly dependent on effective team coordination. Breakdowns in team coordination can lead to significant disruption to an operational response. Breakdowns in coordination were explored in three large-scale bushfires in Australia: the Kilmore East fire, the Wangary fire, and the Canberra Firestorm. Data from these fires were analysed using a top-down and bottom-up qualitative analysis technique. Forty-four breakdowns in coordinated decision making were identified, which yielded 83 disconnects grouped into three main categories: operational, informational and evaluative. Disconnects were specific instances where differences in understanding existed between team members. The reasons why disconnects occurred were largely consistent across the three sets of data. In some cases multiple disconnects occurred in a temporal manner, which suggested some evidence of disconnects creating states that were conducive to the occurrence of further disconnects. In terms of resolution, evaluative disconnects were nearly always resolved however operational and informational disconnects were rarely resolved effectively. The exploratory data analysis and discussion presented here represents the first systematic research to provide information about the reasons why breakdowns occur in emergency management and presents an account of how team processes can act to disrupt coordination and the operational response. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Rosetta science operations in support of the Philae mission

    NASA Astrophysics Data System (ADS)

    Ashman, Mike; Barthélémy, Maud; O`Rourke, Laurence; Almeida, Miguel; Altobelli, Nicolas; Costa Sitjà, Marc; García Beteta, Juan José; Geiger, Bernhard; Grieger, Björn; Heather, David; Hoofs, Raymond; Küppers, Michael; Martin, Patrick; Moissl, Richard; Múñoz Crego, Claudio; Pérez-Ayúcar, Miguel; Sanchez Suarez, Eduardo; Taylor, Matt; Vallat, Claire

    2016-08-01

    The international Rosetta mission was launched on 2nd March 2004 and after its ten year journey, arrived at its target destination of comet 67P/Churyumov-Gerasimenko, during 2014. Following the January 2014 exit from a two and half year hibernation period, Rosetta approached and arrived at the comet in August 2014. In November 2014, the Philae lander was deployed from Rosetta onto the comet's surface after which the orbiter continued its approximately one and a half year comet escort phase. The Rosetta Science Ground Segment's primary roles within the project are to support the Project Scientist and the Science Working Team, in order to ensure the coordination, development, validation and delivery of the desired science operations plans and their associated operational products throughout the mission., whilst also providing support to the Principle Investigator teams (including the Philae lander team) in order to ensure the provision of adequate data to the Planetary Science Archive. The lead up to, and execution of, the November 2014 Philae landing, and the subsequent Philae activities through 2015, have presented numerous unique challenges to the project teams. This paper discusses these challenges, and more specifically, their impact on the overall mission science planning activities. It details how the Rosetta Science Ground Segment has addressed these issues in collaboration with the other project teams in order to accommodate Philae operations within the continually evolving Rosetta science planning process.

  14. Multimodal interaction for human-robot teams

    NASA Astrophysics Data System (ADS)

    Burke, Dustin; Schurr, Nathan; Ayers, Jeanine; Rousseau, Jeff; Fertitta, John; Carlin, Alan; Dumond, Danielle

    2013-05-01

    Unmanned ground vehicles have the potential for supporting small dismounted teams in mapping facilities, maintaining security in cleared buildings, and extending the team's reconnaissance and persistent surveillance capability. In order for such autonomous systems to integrate with the team, we must move beyond current interaction methods using heads-down teleoperation which require intensive human attention and affect the human operator's ability to maintain local situational awareness and ensure their own safety. This paper focuses on the design, development and demonstration of a multimodal interaction system that incorporates naturalistic human gestures, voice commands, and a tablet interface. By providing multiple, partially redundant interaction modes, our system degrades gracefully in complex environments and enables the human operator to robustly select the most suitable interaction method given the situational demands. For instance, the human can silently use arm and hand gestures for commanding a team of robots when it is important to maintain stealth. The tablet interface provides an overhead situational map allowing waypoint-based navigation for multiple ground robots in beyond-line-of-sight conditions. Using lightweight, wearable motion sensing hardware either worn comfortably beneath the operator's clothing or integrated within their uniform, our non-vision-based approach enables an accurate, continuous gesture recognition capability without line-of-sight constraints. To reduce the training necessary to operate the system, we designed the interactions around familiar arm and hand gestures.

  15. MH17: the Malaysian experience.

    PubMed

    Khoo, L S; Hasmi, A H; Abdul Ghani Aziz, S A; Ibrahim, M A; Mahmood, M S

    2016-04-01

    A disaster is a natural or man-made (or technological) hazard resulting in an event of substantial extent causing significant physical damage or destruction, loss of life, or drastic change to the environment. It is a phenomenon that can cause damage to life and property and destroy the economic, social and cultural life of the people; and overwhelms the capacity of the community to cope with the event. The recent tragic aviation accidents in 2014 involving Malaysia Airlines flights MH370 and MH17 shocked the world in an unprecedented manner. This paper focuses on the Malaysian experience in the MH17 mission in Ukraine as well as the first ever international Disaster Victim Identification (DVI) operation for the Malaysian DVI team. The DVI operations in Hilversum, the Netherlands were well described in stages. The Netherlands' Landelijk Team Forensische Opsporing as the lead DVI team in Hilversum operated systematically, ensuring the success of the whole mission. This paper discusses the lessons learned by the Malaysian team on proper DVI structure, inter- and intra-agency cooperation, facilities planning and set up, logistics and health and safety aspects, as well as effective communication and collaboration with other international delegates. Several issues and challenges faced by the Malaysian team were also documented. In addition, the authors shared views, opinions and recommendations for a more comprehensive DVI operation in the future.

  16. A simple non-Markovian computational model of the statistics of soccer leagues: Emergence and scaling effects

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto; Vainstein, Mendeli H.; Lamb, Luis C.; Prado, Sandra D.

    2013-03-01

    We propose a novel probabilistic model that outputs the final standings of a soccer league, based on a simple dynamics that mimics a soccer tournament. In our model, a team is created with a defined potential (ability) which is updated during the tournament according to the results of previous games. The updated potential modifies a team future winning/losing probabilities. We show that this evolutionary game is able to reproduce the statistical properties of final standings of actual editions of the Brazilian tournament (Brasileirão) if the starting potential is the same for all teams. Other leagues such as the Italian (Calcio) and the Spanish (La Liga) tournaments have notoriously non-Gaussian traces and cannot be straightforwardly reproduced by this evolutionary non-Markovian model with simple initial conditions. However, we show that by setting the initial abilities based on data from previous tournaments, our model is able to capture the stylized statistical features of double round robin system (DRRS) tournaments in general. A complete understanding of these phenomena deserves much more attention, but we suggest a simple explanation based on data collected in Brazil: here several teams have been crowned champion in previous editions corroborating that the champion typically emerges from random fluctuations that partly preserve the Gaussian traces during the tournament. On the other hand, in the Italian and Spanish cases, only a few teams in recent history have won their league tournaments. These leagues are based on more robust and hierarchical structures established even before the beginning of the tournament. For the sake of completeness, we also elaborate a totally Gaussian model (which equalizes the winning, drawing, and losing probabilities) and we show that the scores of the Brazilian tournament “Brasileirão” cannot be reproduced. This shows that the evolutionary aspects are not superfluous and play an important role which must be considered in other alternative models. Finally, we analyze the distortions of our model in situations where a large number of teams is considered, showing the existence of a transition from a single to a double peaked histogram of the final classification scores. An interesting scaling is presented for different sized tournaments.

  17. Converter Compressor Building, SWMU 089, Hot Spot Areas 1, 2, and 5 Operations, Maintenance, and Monitoring Report, Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Wilson, Deborah M.

    2015-01-01

    This Operations, Maintenance, and Monitoring Report (OMMR) presents the findings, observations, and results from operation of the air sparging (AS) interim measure (IM) for Hot Spot (HS) Areas 1, 2, and 5 at the Converter Compressor Building (CCB) located at Kennedy Space Center (KSC), Florida. The objective of the IM at CCB HS Areas 1, 2, and 5 is to decrease concentrations of volatile organic compounds (VOCs) in groundwater in the treatment zones via AS to levels that will enable a transition to a monitored natural attenuation (MNA) phase. This OMMR presents system operations and maintenance (O&M) information and performance monitoring results since full-scale O&M began in June 2014 (2 months after initial system startup in April 2014), including quarterly performance monitoring events in July and October 2014 and January and May 2015. Based on the results to date, the AS system is operating as designed and is meeting the performance criteria and IM objective. The performance monitoring network is adequately constructed for assessment of IM performance at CCB HS Areas 1, 2, and 5. At the March 2014 KSC Remediation Team (KSCRT) Meeting, team consensus was reached for the design prepared for expansion of the system to treat the HS 4 area, and at the November 2014 KSCRT Meeting, team consensus was reached that HS 3 was adequately delineated horizontally and vertically and for selection of AS for the remedial approach for HS 3. At the July 2015 KSCRT meeting, team consensus was reached to continue IM operations in all zones until HSs 3 and 4 is operational, once HS 3 and 4 zones are operational discontinue operations in HS 1, 2, and 5 zones where concentrations are less than GCTLs to observe whether rebounding conditions occur. Team consensus was also reached to continue quarterly performance monitoring to determine whether operational zones achieve GCTLs and to continue annual IGWM of CCB-MW0012, CCBMW0013, and CCB-MW0056, located south of the treatment area. The next performance monitoring event is scheduled for July 2015.

  18. The role of metrics and measurements in a software intensive total quality management environment

    NASA Technical Reports Server (NTRS)

    Daniels, Charles B.

    1992-01-01

    Paramax Space Systems began its mission as a member of the Rockwell Space Operations Company (RSOC) team which was the successful bidder on a massive operations consolidation contract for the Mission Operations Directorate (MOD) at JSC. The contract awarded to the team was the Space Transportation System Operations Contract (STSOC). Our initial challenge was to accept responsibility for a very large, highly complex and fragmented collection of software from eleven different contractors and transform it into a coherent, operational baseline. Concurrently, we had to integrate a diverse group of people from eleven different companies into a single, cohesive team. Paramax executives recognized the absolute necessity to develop a business culture based on the concept of employee involvement to execute and improve the complex process of our new environment. Our executives clearly understood that management needed to set the example and lead the way to quality improvement. The total quality management policy and the metrics used in this endeavor are presented.

  19. The Development of Cockpit Display and Alerting Concepts for Interval Management (IM) in a Near-Term Environment

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Shay, Richard F.; Swieringa, Kurt A.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) Interval Management (IM) research team has conducted a wide spectrum of work in the recent past, ranging from development and testing of the concept, procedures, and algorithm. This document focuses on the research and evaluation of the IM pilot interfaces, cockpit displays, indications, and alerting concepts for conducting IM spacing operations. The research team incorporated knowledge of human factors research, industry standards for cockpit design, and cockpit design philosophies to develop innovative displays for conducting these spacing operations. The research team also conducted a series of human-in-the-loop (HITL) experiments with commercial pilots and air traffic controllers, in as realistic a high-density arrival operation environment as could be simulated, to evaluate the spacing guidance display features and interface requirements needed to conduct spacing operations.

  20. How to choose the right operational police behavioral health specialist (OPBHS).

    PubMed

    Greenstone, James L

    2012-01-01

    A recent article (Dennis, December 2011) stressed the need to consider the factors necessary when selecting an operational police physician. It seems apparent that equal attention should be given to the selection of the Operational Police Behavioral Health Specialist or Police Psychologist (OPBHS). This is intended to round-out selection considerations for these two important and essential positions on both Special Weapons and Tactics Teams as well as on Police Hostage and Crisis Negotiations Teams. Such considerations are crucial whether these teams are operationalized together separately, or as part of the same unit. The previous outline headings, with some additions, will be utilized specifically to deal with the Operational Police Behavioral Health Specialist. Also, see Greenstone (2005). The issues to be considered for the OPBHS are: Candidate selection. (Also see Greenstone, 2005), Duties, Administrative, Clinical, Training involvement, Relationships, Liability and coverage (Dennis, 2011), Other considerations.

  1. Rendezvous, proximity operations and capture quality function deployment report

    NASA Technical Reports Server (NTRS)

    Lamkin, Stephen L. (Editor)

    1991-01-01

    Rendezvous, Proximity Operations, and Capture (RPOC) is a missions operations area which is extremely important to present and future space initiatives and must be well planned and coordinated. To support this, a study team was formed to identify a specific plan of action using the Quality Function Deployment (QFD) process. This team was composed of members from a wide spectrum of engineering and operations organizations which are involved in the RPOC technology area. The key to this study's success is an understanding of the needs of potential programmatic customers and the technology base available for system implementation. To this end, the study team conducted interviews with a variety of near term and future programmatic customers and technology development sponsors. The QFD activity led to a thorough understanding of the needs of these customers in the RPOC area, as well as the relative importance of these needs.

  2. Observation Planning Made Simple with Science Opportunity Analyzer (SOA)

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Polanskey, Carol A.

    2004-01-01

    As NASA undertakes the exploration of the Moon and Mars as well as the rest of the Solar System while continuing to investigate Earth's oceans, winds, atmosphere, weather, etc., the ever-existing need to allow operations users to easily define their observations increases. Operation teams need to be able to determine the best time to perform an observation, as well as its duration and other parameters such as the observation target. In addition, operations teams need to be able to check the observation for validity against objectives and intent as well as spacecraft constraints such as turn rates and acceleration or pointing exclusion zones. Science Opportunity Analyzer (SOA), in development for the last six years, is a multi-mission toolset that has been built to meet those needs. The operations team can follow six simple steps and define his/her observation without having to know the complexities of orbital mechanics, coordinate transformations, or the spacecraft itself.

  3. CTEPP STANDARD OPERATING PROCEDURE FOR SETTING UP A HOUSEHOLD SAMPLING SCHEDULE (SOP-2.10)

    EPA Science Inventory

    This SOP describes the method for scheduling study subjects for field sampling activities in North Carolina (NC) and Ohio (OH). There are three field sampling teams with two staff members on each team. Two field sampling teams collect the field data simultaneously. A third fiel...

  4. U.S. Navy Live Blog

    Science.gov Websites

    for the Navy Team Inside the Navy Aviation Energy & Environment Expeditionary Faces of the Fleet Navy Team Your Navy Operating Forward - Navy Recruit Graduation: May 25, 2018 Resilience, Freedom Corpsmen Join Team Navy for 2018 DoD Warrior Games Civilian, Navy Military Leaders Engage at Leadership

  5. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media andmore » all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs.« less

  6. Environmental Survey preliminary report, Pantex Facility, Amarillo, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Pantex Facility, conducted November 3 through 14, 1986.The Survey is being conducted by an interdisciplinary team of environmental specialist, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Pantex Facility. The Survey covers all environmental media and all areas of environmental regulation.more » It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Pantex Facility, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Oak Ridge National Laboratory. When completed, the results will be incorporated into the Pantex Facility Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the Pantex Facility. 65 refs., 44 figs., 27 tabs.« less

  7. TNT: Teams Need Training.

    ERIC Educational Resources Information Center

    Centre County Vocational-Technical School, Pleasant Gap, PA. CIU 10 Bi-County Development Center for Adults.

    This document includes a final report and curriculum manual from a project to help adult educators teach team training by developing a curriculum for use in teaching teamwork skills in work force literacy programs and by providing two half-day seminars to assist adult educators with effectively using the curriculum. The manual for work force…

  8. Measuring and Improving School Climate. Final Report.

    ERIC Educational Resources Information Center

    Madoff, Marjorie; Genova, William

    A school climate project was initiated in three vocational training schools in Connecticut. Within each of the schools, a school climate team was established with eight-twelve representative administrator, teacher, student, and parent members. This team, with the support of on-going training, conducted a survey of approximately 400 students and…

  9. Project T.E.A.M. (Technical Education Advancement Modules). Final Report.

    ERIC Educational Resources Information Center

    Greenville Technical Coll., SC.

    Project TEAM (Technical Education Advancement Modules), a cooperative demonstration program for high technology training, created an introductory technical training program and a consumer education package emphasizing the benefits of technical training. The curriculum and training focus of the project began with an assessment of employee needs in…

  10. Using Classroom Competitions to Prepare Students for the Competitive Business World

    ERIC Educational Resources Information Center

    Gibson, Fay Y.; Kincade, Doris H.; Frasier, Pamela Y.

    2013-01-01

    This paper describes how a university, collaborating with industry, integrated research with active learning (e.g., collaboration in teams and competitions) for fashion majors. The redesigned introductory course uses two strategies: team competitions and a genius bar to guide students, give ongoing feedback, and judge final competitions. Active…

  11. River Protection Project (RPP) Readiness to Proceed 2 Internal Independent Review Team Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    This report describes the results of an independent review team brought in to assess CH2M Hill Hanford Group's readiness and ability to support the RPP's move into its next major phase - retrieval and delivery of tank waste to the Privatization Contractor

  12. A Student's Perspective: The Green Team's Project

    ERIC Educational Resources Information Center

    Pratt, Kyle

    2011-01-01

    In Mr. Wood's technology class, students learned about many aspects of engineering, including design of a product, teamwork, testing hypotheses, and testing the final product. In this article, the author describes how his class, particularly his team, applied everything they learned about the process to their kayak design challenge using the IDEAL…

  13. 28 CFR 505.7 - Procedures for final disposition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADMINISTRATION COST OF INCARCERATION FEE § 505.7 Procedures for final disposition. Before the inmate completes his or her sentence, Unit Team staff must review the status of the inmate's fee. Any unpaid amount...

  14. Increases in efficiency and enhancements to the Mars Observer non-stored commanding process

    NASA Technical Reports Server (NTRS)

    Brooks, Robert N., Jr.; Torgerson, J. Leigh

    1994-01-01

    The Mars Observer team was, until the untimely loss of the spacecraft on August 21, 1993, performing flight operations with greater efficiency and speed than any previous JPL mission of its size. This level of through-put was made possible by a mission operations system which was composed of skilled personnel using sophisticated sequencing and commanding tools. During cruise flight operations, however, it was realized by the project that this commanding level was not going to be sufficient to support the activities planned for mapping operations. The project had committed to providing the science instrument principle investigators with a much higher level of commanding during mapping. Thus, the project began taking steps to enhance the capabilities of the flight team. One mechanism used by project management was a tool available from total quality management (TQM). This tool is known as a process action team (PAT). The Mars Observer PAT was tasked to increase the capacity of the flight team's nonstored commanding process by fifty percent with no increase in staffing and a minimal increase in risk. The outcome of this effort was, in fact, to increase the capacity by a factor of 2.5 rather than the desired fifty percent and actually reduce risk. The majority of these improvements came from the automation of the existing command process. These results required very few changes to the existing mission operations system. Rather, the PAT was able to take advantage of automation capabilities inherent in the existing system and make changes to the existing flight team procedures.

  15. Hypermedia and intelligent tutoring applications in a mission operations environment

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Baker, Clifford

    1990-01-01

    Hypermedia, hypertext and Intelligent Tutoring System (ITS) applications to support all phases of mission operations are investigated. The application of hypermedia and ITS technology to improve system performance and safety in supervisory control is described - with an emphasis on modeling operator's intentions in the form of goals, plans, tasks, and actions. Review of hypermedia and ITS technology is presented as may be applied to the tutoring of command and control languages. Hypertext based ITS is developed to train flight operation teams and System Test and Operation Language (STOL). Specific hypermedia and ITS application areas are highlighted, including: computer aided instruction of flight operation teams (STOL ITS) and control center software development tools (CHIMES and STOL Certification Tool).

  16. Computer support for cooperative tasks in Mission Operations Centers

    NASA Technical Reports Server (NTRS)

    Fox, Jeffrey; Moore, Mike

    1994-01-01

    Traditionally, spacecraft management has been performed by fixed teams of operators in Mission Operations Centers. The team cooperatively: (1) ensures that payload(s) on spacecraft perform their work; and (2) maintains the health and safety of the spacecraft through commanding and monitoring the spacecraft's subsystems. In the future, the task demands will increase and overload the operators. This paper describes the traditional spacecraft management environment and describes a new concept in which groupware will be used to create a Virtual Mission Operations Center. Groupware tools will be used to better utilize available resources through increased automation and dynamic sharing of personnel among missions.

  17. Using Rituals to Strengthen Your Medical Practice Team.

    PubMed

    Hills, Laura

    2015-01-01

    Rituals can cement the identity of and strengthen the bonds between any people, including the members of the medical practice team. This article presents the idea that the medical practice manager is in the ideal position to create and use rituals for team building. It defines the term ritual, and explores how rituals differ from customs or traditions. As well, it describes six benefits of rituals and the hallmarks of the most effective team rituals; describes seven creative and interesting corporate rituals that medical practice managers can study for inspiration; suggests 20 excellent opportunities within the medical practice calendar year for medical practice team rituals; and identifies six kinds of rituals that are used in organizations. Finally, this article provides a four-step action plan for ritualizing your medical practice team's morning huddles.

  18. Marine Geology and Geophysics Field Course Offered by The University of Texas Institute for Geophysics

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Davis, M. B.; Allison, M. A.; Gulick, S. P.; Goff, J. A.; Saustrup, S.

    2012-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year six, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students participate in an initial period of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas and Galveston, Texas, and Grand Isle, Louisiana, have provided ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf through application of geophysical techniques. In the field, students rotate between two research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, and is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibrocoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for particle size analysis and initial post-processing of geophysical data. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Focus, Landmark, Caris, and Fledermaus. The course concludes with a series of professional-level final presentations and discussions with academic and industry supporters in which students examine the geologic history and sedimentary processes of the studied area of the Gulf Coast continental shelf. After completion, students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (12 students, three faculty, and three teaching assistants). This course satisfies field experience requirements for some degree programs and thus provides a unique alternative to land-based field courses.

  19. The Lunar Crater Observation and Sensing Satellite (LCROSS) Payload Development and Performance in Flight

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly; Shirley, Mark; Colaprete, Anthony; Osetinsky, Leonid

    2012-05-01

    The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) was to confirm the presence or absence of water ice in a permanently shadowed region (PSR) at a lunar pole. LCROSS was classified as a NASA Class D mission. Its payload, the subject of this article, was designed, built, tested and operated to support a condensed schedule, risk tolerant mission approach, a new paradigm for NASA science missions. All nine science instruments, most of them ruggedized commercial-off-the-shelf (COTS), successfully collected data during all in-flight calibration campaigns, and most importantly, during the final descent to the lunar surface on October 9, 2009, after 112 days in space. LCROSS demonstrated that COTS instruments and designs with simple interfaces, can provide high-quality science at low-cost and in short development time frames. Building upfront into the payload design, flexibility, redundancy where possible even with the science measurement approach, and large margins, played important roles for this new type of payload. The environmental and calibration approach adopted by the LCROSS team, compared to existing standard programs, is discussed. The description, capabilities, calibration and in-flight performance of each instrument are summarized. Finally, this paper goes into depth about specific areas where the instruments worked differently than expected and how the flexibility of the payload team, the knowledge of instrument priority and science trades, and proactive margin maintenance, led to a successful science measurement by the LCROSS payload's instrument complement.

  20. Situation awareness-based agent transparency for human-autonomy teaming effectiveness

    NASA Astrophysics Data System (ADS)

    Chen, Jessie Y. C.; Barnes, Michael J.; Wright, Julia L.; Stowers, Kimberly; Lakhmani, Shan G.

    2017-05-01

    We developed the Situation awareness-based Agent Transparency (SAT) model to support human operators' situation awareness of the mission environment through teaming with intelligent agents. The model includes the agent's current actions and plans (Level 1), its reasoning process (Level 2), and its projection of future outcomes (Level 3). Human-inthe-loop simulation experiments have been conducted (Autonomous Squad Member and IMPACT) to illustrate the utility of the model for human-autonomy team interface designs. Across studies, the results consistently showed that human operators' task performance improved as the agents became more transparent. They also perceived transparent agents as more trustworthy.

  1. Apollo experience report: Communications system flight evaluation and verification

    NASA Technical Reports Server (NTRS)

    Travis, D.; Royston, C. L., Jr.

    1972-01-01

    Flight tests of the synergetic operation of the spacecraft and earth based communications equipment were accomplished during Apollo missions AS-202 through Apollo 12. The primary goals of these tests were to verify that the communications system would adequately support lunar landing missions and to establish the inflight communications system performance characteristics. To attain these goals, a communications system flight verification and evaluation team was established. The concept of the team operations, the evolution of the evaluation processes, synopses of the team activities associated with each mission, and major conclusions and recommendations resulting from the performance evaluation are represented.

  2. High-fidelity, simulation-based, interdisciplinary operating room team training at the point of care.

    PubMed

    Paige, John T; Kozmenko, Valeriy; Yang, Tong; Paragi Gururaja, Ramnarayan; Hilton, Charles W; Cohn, Isidore; Chauvin, Sheila W

    2009-02-01

    The operating room (OR) is a dynamic, high risk setting requiring effective teamwork for the safe delivery of care. Teamwork in the modern OR, however, is less than ideal. High fidelity simulation is an attractive approach to training key teamwork competencies. We have developed a portable simulation platform, the mobile mock OR (MMOR) that permits bringing team training over long distances to the point of care. We examined the effectiveness of this innovative, simulation-based interdisciplinary operating room (OR) team training model on its participants. All general surgical OR team members at an academic affiliated medical center underwent scenario-based training using a mobile mock OR. Pre- and post-session mean scores were calculated and analyzed for 15 Likert-type items measuring self-efficacy in teamwork competencies using t test. The mean gain in pre-post item scores for 38 participants averaged 0.4 units on a 6-point Likert scale. The significance was demonstrated in 4 of the items: role clarity (Delta = 0.6 units, P = .02), anticipatory response (Delta = 0.6 units, P = .01), cross monitoring (Delta = 0.6 units, P < .01), and team cohesion and interaction (Delta = 0.7 units, P < .01). High-fidelity, simulation-based OR team training at the point of care positively impacts self-efficacy for effective teamwork performance in everyday practice.

  3. Surgeons' Leadership Styles and Team Behavior in the Operating Room

    PubMed Central

    Hu, Yue-Yung; Parker, Sarah Henrickson; Lipsitz, Stuart R; Arriaga, Alexander F; Peyre, Sarah E; Corso, Katherine A; Roth, Emilie M; Yule, Steven J; Greenberg, Caprice C

    2016-01-01

    Background The importance of leadership is recognized in surgery, but the specific impact of leadership style on team behavior is not well understood. In other industries, leadership is a well-characterized construct. One dominant theory proposes that transactional (task-focused) leaders achieve minimum standards, whereas transformational (team-oriented) leaders inspire performance beyond expectations. Study Design We video-recorded 5 surgeons performing complex operations. Each surgeon was scored on the Multifactor Leadership Questionnaire, a validated method for scoring transformational and transactional leadership style, by an organizational psychologist and a surgeon-researcher. Independent coders assessed surgeons' leadership behaviors according to the Surgical Leadership Inventory and team behaviors (information-sharing, cooperative, and voice behaviors). All coders were blinded. Leadership style (MLQ) was correlated with surgeon behavior (SLI) and team behavior using Poisson regression, controlling for time and the total number of behaviors, respectively. Results All surgeons scored similarly on transactional leadership (2.38-2.69), but varied more widely on transformational leadership (1.98-3.60). Each 1-point increase in transformational score corresponded to 3× more information-sharing behaviors (p<0.0001) and 5.4× more voice behaviors (p=0.0005) amongst the team. With each 1-point increase in transformational score, leaders displayed 10× more supportive behaviors (p<0.0001) and 12.5× less frequently displayed poor behaviors (p<0.0001). Excerpts of representative dialogue are included for illustration. Conclusions We provide a framework for evaluating surgeons' leadership and its impact on team performance in the OR. As in other fields, our data suggest that transformational leadership is associated with improved team behavior. Surgeon leadership development therefore has the potential to improve the efficiency and safety of operative care. PMID:26481409

  4. A validated pediatric transport survey: how is your team performing?

    PubMed

    McPherson, Mona L; Jefferson, Larry S; Graf, Jeanine M

    2008-01-01

    Understanding referring practitioners' satisfaction with pediatric transport services is useful for quality improvement. Formal survey methodology was applied to develop a pediatric transport satisfaction survey. Large metropolitan area in the Southwestern United States. A four-stage process was used to create a 20-item pediatric transport satisfaction survey. The final survey was analyzed for test-retest and internal consistency reliability, and surveys were mailed to a large practitioner base. The survey encompassed three domains: patient care, accessing the transport system, and communication. Test-retest and internal consistency reliability were good (final Cronbach alpha coefficient of 0.88.) Of the 229 providers responding, 69% were local (<60 miles), and 31% were served by our long distance transport team (>60 miles). Respondents reported that physicians selected the transport team in 82% of cases, whereas 9% reported that the charge nurse decided. Transport team selection was based on: (1) ease of initiation, (2) fastest arrival, (3) presence of a physician on the team, (4) stabilization time at the referring facility, and (5) team providing best follow-up. Satisfaction with our transport service was high, with a median survey score of 83 (interquartile [IQ] range, 74-92). Physicians and nurses reported equal satisfaction. Survey design methodology was successfully applied to assess satisfaction with pediatric transport. This transport survey offers a reliable measurement of providers' satisfaction with transport services.

  5. The Effects of 10 Communication Modes on the Behavior of Teams During Co-Operative Problem-Solving

    ERIC Educational Resources Information Center

    Ochsman, Richard B.; Chapanis, Alphonse

    1974-01-01

    Sixty teams of two college students each solved credible "real world" problems co-operatively. Conversations were carried on in one of 10 modes of communication: (1) typewriting only, (2) handwriting only, (3) handwriting and typewriting, (4) typewriting and video, (5) handwriting and video, (6) voice only, (7) voice and typewriting, (8) voice and…

  6. Factors Surgical Team Members Perceive Influence Choices of Wearing or Not Wearing Personal Protective Equipment during Operative/Invasive Procedures

    ERIC Educational Resources Information Center

    Cuming, Richard G.

    2009-01-01

    Exposure to certain bloodborne pathogens can prematurely end a person's life. Healthcare workers (HCWs), especially those who are members of surgical teams, are at increased risk of exposure to these pathogens. The proper use of personal protective equipment (PPE) during operative/invasive procedures reduces that risk. Despite this, some HCWs fail…

  7. Coordinating a Team of Robots for Urban Reconnaisance

    DTIC Science & Technology

    2010-11-01

    Land Warfare Conference 2010 Brisbane November 2010 Coordinating a Team of Robots for Urban Reconnaisance Pradeep Ranganathan , Ryan...without inundating him with micro- management . Behavorial autonomy is also critical for the human operator to productively interact Figure 1: A...today’s systems, a human operator controls a single robot, micro- managing every action. This micro- management becomes impossible with more robots: in

  8. A strategic value management approach for energy and maintenance management in a building

    NASA Astrophysics Data System (ADS)

    Nawi, Mohd Nasrun Mohd; Dahlan, Nofri Yenita; Nadarajan, Santhirasegaran

    2015-05-01

    Fragmentation process is always been highlighted by the stakeholders in the construction industry as one of the `critical' issue that diminishing the opportunity for stakeholders that involved during the operation and maintenance stage to influence design decisions. Failure of design professionals to consider how a maintenance contractor or facility manager will construct the design thus results in higher operating cost, wastage, defects during the maintenance and operation process. Moving towards team integration is considered a significant strategy for overcoming the issue. Value Management is a style of management dedicated to guiding people and promoting innovation with the aim to improve overall building performance through structured, team-oriented exercises which make explicit, and appraise subsequent decisions, by reference to the value requirements of the clients. Accordingly, this paper discusses the fragmentation issue in more detail including the definition, causes and effects to the maintenance and operation of building and at the same time will highlighted the potential of VM integrated team approach as a strategic management approach for overcoming that issue. It also explores that the team integration strategy alleviates scheduling problems, delays and disputes during the construction process, and, hence, prevent harming the overall building performance.

  9. Flight Team Development in Support of LCROSS - A Class D Mission

    NASA Technical Reports Server (NTRS)

    Tompkins, Paul D.; Hunt, Rusty; Bresina, John; Galal, Ken; Shirley, Mark; Munger, James; Sawyer, Scott

    2010-01-01

    The LCROSS (Lunar Crater Observation and Sensing Satellite) project presented a number of challenges to the preparation for mission operations. A class D mission under NASA s risk tolerance scale, LCROSS was governed by a $79 million cost cap and a 29 month schedule from "authority to proceed" to flight readiness. LCROSS was NASA Ames Research Center s flagship mission in its return to spacecraft flight operations after many years of pursuing other strategic goals. As such, ARC needed to restore and update its mission support infrastructure, and in parallel, the LCROSS project had to newly define operational practices and to select and train a flight team combining experienced operators and staff from other arenas of ARC research. This paper describes the LCROSS flight team development process, which deeply involved team members in spacecraft and ground system design, implementation and test; leveraged collaborations with strategic partners; and conducted extensive testing and rehearsals that scaled in realism and complexity in coordination with ground system and spacecraft development. As a testament to the approach, LCROSS successfully met its full mission objectives, despite many in-flight challenges, with its impact on the lunar south pole on October 9, 2009.

  10. Assessing Chronic Illness Care Education (ACIC-E): a tool for tracking educational re-design for improving chronic care education.

    PubMed

    Bowen, Judith L; Provost, Lloyd; Stevens, David P; Johnson, Julie K; Woods, Donna M; Sixta, Connie S; Wagner, Edward H

    2010-09-01

    Recent Breakthrough Series Collaboratives have focused on improving chronic illness care, but few have included academic practices, and none have specifically targeted residency education in parallel with improving clinical care. Tools are available for assessing progress with clinical improvements, but no similar instruments have been developed for monitoring educational improvements for chronic care education. To design a survey to assist teaching practices with identifying curricular gaps in chronic care education and monitor efforts to address those gaps. During a national academic chronic care collaborative, we used an iterative method to develop and pilot test a survey instrument modeled after the Assessing Chronic Illness Care (ACIC). We implemented this instrument, the ACIC-Education, in a second collaborative and assessed the relationship of survey results with reported educational measures. A combined 57 self-selected teams from 37 teaching hospitals enrolled in one of two collaboratives. We used descriptive statistics to report mean ACIC-E scores and educational measurement results, and Pearson's test for correlation between the final ACIC-E score and reported educational measures. A total of 29 teams from the national collaborative and 15 teams from the second collaborative in California completed the final ACIC-E. The instrument measured progress on all sub-scales of the Chronic Care Model. Fourteen California teams (70%) reported using two to six education measures (mean 4.3). The relationship between the final survey results and the number of educational measures reported was weak (R(2) = 0.06, p = 0.376), but improved when a single outlier was removed (R(2) = 0.37, p = 0.022). The ACIC-E instrument proved feasible to complete. Participating teams, on average, recorded modest improvement in all areas measured by the instrument over the duration of the collaboratives. The relationship between the final ACIC-E score and the number of educational measures was weak. Further research on its utility and validity is required.

  11. Intelligent Command and Control Systems for Satellite Ground Operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1999-01-01

    This grant, Intelligent Command and Control Systems for Satellite Ground Operations, funded by NASA Goddard Space Flight Center, has spanned almost a decade. During this time, it has supported a broad range of research addressing the changing needs of NASA operations. It is important to note that many of NASA's evolving needs, for example, use of automation to drastically reduce (e.g., 70%) operations costs, are similar requirements in both government and private sectors. Initially the research addressed the appropriate use of emerging and inexpensive computational technologies, such as X Windows, graphics, and color, together with COTS (commercial-off-the-shelf) hardware and software such as standard Unix workstations to re-engineer satellite operations centers. The first phase of research supported by this grant explored the development of principled design methodologies to make effective use of emerging and inexpensive technologies. The ultimate performance measures for new designs were whether or not they increased system effectiveness while decreasing costs. GT-MOCA (The Georgia Tech Mission Operations Cooperative Associate) and GT-VITA (Georgia Tech Visual and Inspectable Tutor and Assistant), whose latter stages were supported by this research, explored model-based design of collaborative operations teams and the design of intelligent tutoring systems, respectively. Implemented in proof-of-concept form for satellite operations, empirical evaluations of both, using satellite operators for the former and personnel involved in satellite control operations for the latter, demonstrated unequivocally the feasibility and effectiveness of the proposed modeling and design strategy underlying both research efforts. The proof-of-concept implementation of GT-MOCA showed that the methodology could specify software requirements that enabled a human-computer operations team to perform without any significant performance differences from the standard two-person satellite operations team. GT-VITA, using the same underlying methodology, the operator function model (OFM), and its computational implementation, OFMspert, successfully taught satellite control knowledge required by flight operations team members. The tutor structured knowledge in three ways: declarative knowledge (e.g., What is this? What does it do?), procedural knowledge, and operational skill. Operational skill is essential in real-time operations. It combines the two former knowledge types, assisting a student to use them effectively in a dynamic, multi-tasking, real-time operations environment. A high-fidelity simulator of the operator interface to the ground control system, including an almost full replication of both the human-computer interface and human interaction with the dynamic system, was used in the GT-MOCA and GT-VITA evaluations. The GT-VITA empirical evaluation, conducted with a range of'novices' that included GSFC operations management, GSFC operations software developers, and new flight operations team members, demonstrated that GT-VITA effectively taught a wide range of knowledge in a succinct and engaging manner.

  12. Leading the Team You Inherit.

    PubMed

    Watkins, Michael D

    2016-06-01

    Most leaders don't have the luxury of building their teams from scratch. Instead they're put in charge of an existing group, and they need guidance on the best way to take over and improve performance. Watkins, an expert on transitions, suggests a three-step approach: Assess. Act quickly to size up the personnel you've inherited, systematically gathering data from one-on-one chats, team meetings, and other sources. Reflect, too, on the business challenges you face, the kinds of people you want in various roles, and the degree to which they need to collaborate. Reshape. Adjust the makeup of the team by moving people to new positions, shifting their responsibilities, or replacing them. Make sure that everyone is aligned on goals and how to achieve them--you may need to change the team's stated direction. Consider also making changes in the way the team operates (reducing the frequency of meetings, for example, or creating new subteams). Then establish ground rules and processes to sustain desired behaviors, and revisit those periodically. Accelerate team development. Set your people up for some early wins. Initial successes will boost everyone's confidence and reinforce the value of your new operating model, thus paving the way for ongoing growth.

  13. AERL Baseball Team

    NASA Image and Video Library

    1943-10-21

    The NACA’s Aircraft Engine Research Laboratory’s baseball team photographed with director Raymond Sharp. The Exchange, which operated the non-profit cafeteria, sponsored several sports teams that participated in local leagues. The laboratory also had several intramural sports leagues. The baseball team, seen here in 1943, was suspended shortly thereafter as many of its members entered the military during World War II. The team was reconstituted after the war and became somewhat successful in the Class A Westlake League. After winning the championship in 1949 and 1950, the team was placed in the more advanced Middleberg League where they struggled.

  14. Future In-Space Operations (FISO): A Working Group and Community Engagement

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Dan

    2013-01-01

    Long-duration human capabilities beyond low Earth orbit (LEO), either in support of or as an alternative to lunar surface operations, have been assessed at least since the late 1960s. Over the next few months, we will present short histories of concepts for long-duration, free-space human habitation beyond LEO from the end of the Apollo program to the Decadal Planning Team (DPT)/NASA Exploration Team (NExT), which was active in 1999 2000 (see Forging a vision: NASA s Decadal Planning Team and the origins of the Vision for Space Exploration , The Space Review, December 19, 2005). Here we summarize the brief existence of the Future In-Space Operations (FISO) working group in 2005 2006 and its successor, a telecon-based colloquium series, which we co-moderate.

  15. Multi-kernel aggregation of local and global features in long-wave infrared for detection of SWAT teams in challenging environments

    NASA Astrophysics Data System (ADS)

    Arya, Ankit S.; Anderson, Derek T.; Bethel, Cindy L.; Carruth, Daniel

    2013-05-01

    A vision system was designed for people detection to provide support to SWAT team members operating in challenging environments such as low-to-no light, smoke, etc. When the vision system is mounted on a mobile robot platform: it will enable the robot to function as an effective member of the SWAT team; to provide surveillance information; to make first contact with suspects; and provide safe entry for team members. The vision task is challenging because SWAT team members are typically concealed, carry various equipment such as shields, and perform tactical and stealthy maneuvers. Occlusion is a particular challenge because team members operate in close proximity to one another. An uncooled electro-opticaljlong wav e infrared (EO/ LWIR) camera, 7.5 to 13.5 m, was used. A unique thermal dataset was collected of SWAT team members from multiple teams performing tactical maneuvers during monthly training exercises. Our approach consisted of two stages: an object detector trained on people to find candidate windows, and a secondary feature extraction, multi-kernel (MK) aggregation and classification step to distinguish between SWAT team members and civilians. Two types of thermal features, local and global, are presented based on ma ximally stable extremal region (MSER) blob detection. Support vector machine (SVM) classification results of approximately [70, 93]% for SWAT team member detection are reported based on the exploration of different combinations of visual information in terms of training data.

  16. Resistance is Futile: STScI's Science Planning and Scheduling Team Switches From VMS to Unix Operations

    NASA Astrophysics Data System (ADS)

    Adler, D. S.

    2000-12-01

    The Science Planning and Scheduling Team (SPST) of the Space Telescope Science Institute (STScI) has historically operated exclusively under VMS. Due to diminished support for VMS-based platforms at STScI, SPST is in the process of transitioning to Unix operations. In the summer of 1999, SPST selected Python as the primary scripting language for the operational tools and began translation of the VMS DCL code. As of October 2000, SPST has installed a utility library of 16 modules consisting of 8000 lines of code and 80 Python tools consisting of 13000 lines of code. All tasks related to calendar generation have been switched to Unix operations. Current work focuses on translating the tools used to generate the Science Mission Specifications (SMS). The software required to generate the Mission Schedule and Command Loads (PASS), maintained by another team at STScI, will take longer to translate than the rest of the SPST operational code. SPST is planning on creating tools to access PASS from Unix in the short term. We are on schedule to complete the work needed to fully transition SPST to Unix operations (while remotely accessing PASS on VMS) by the fall of 2001.

  17. The Perspective of Women Managing Research Teams in Social Sciences

    ERIC Educational Resources Information Center

    Tomas, Marina; Castro, Diego

    2013-01-01

    This article presents a research study that focuses on how women manage research teams. More specifically, the study aims to ascertain the perception of female researchers who are leaders of research groups in social sciences with regard to the formation, operation and management of their research teams. Fifteen interviews were carried out, eight…

  18. Action Learning, Team Learning and Co-Operation in the Czech Republic

    ERIC Educational Resources Information Center

    Kubatova, Slava

    2012-01-01

    This account of practice presents two cases of the application of Action Learning (AL) communication methodology as described by Marquardt [2004. "Optimising the power of action learning". Mountain View, CA: Davies-Black Publishing]. The teams were Czech and international top management teams. The AL methodology was used to improve…

  19. Developing and Sharing Team Mental Models in a Profession-Driven and Value-Laden Organization

    ERIC Educational Resources Information Center

    Tzeng, Jeng-Yi

    2006-01-01

    While team mental models have been shown to be effective in facilitating team operations in ordinary transactive organizations, their impact on loosely coupled yet value-laden organizations is relatively under studied. Using qualitative inquiry methodology, this study investigates the three referential frameworks (i.e., theoretical knowledge,…

  20. Self-Managed Teams for Library Management: Increasing Employee Participation via Empowerment.

    ERIC Educational Resources Information Center

    Poon-Richards, Craig

    1995-01-01

    Investigates the growing prevalence of participatory management in libraries. The operation of self-managed teams is discussed both in theory and in practice, the latter with examples from Sterling Library at Yale University. Research is summarized that relates to management teams and how they create a sense of empowerment by building shared…

Top