Thought beyond language: neural dissociation of algebra and natural language.
Monti, Martin M; Parsons, Lawrence M; Osherson, Daniel N
2012-08-01
A central question in cognitive science is whether natural language provides combinatorial operations that are essential to diverse domains of thought. In the study reported here, we addressed this issue by examining the role of linguistic mechanisms in forging the hierarchical structures of algebra. In a 3-T functional MRI experiment, we showed that processing of the syntax-like operations of algebra does not rely on the neural mechanisms of natural language. Our findings indicate that processing the syntax of language elicits the known substrate of linguistic competence, whereas algebraic operations recruit bilateral parietal brain regions previously implicated in the representation of magnitude. This double dissociation argues against the view that language provides the structure of thought across all cognitive domains.
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1994-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1996-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
A Relational Algebra Query Language for Programming Relational Databases
ERIC Educational Resources Information Center
McMaster, Kirby; Sambasivam, Samuel; Anderson, Nicole
2011-01-01
In this paper, we describe a Relational Algebra Query Language (RAQL) and Relational Algebra Query (RAQ) software product we have developed that allows database instructors to teach relational algebra through programming. Instead of defining query operations using mathematical notation (the approach commonly taken in database textbooks), students…
Image Algebra Matlab language version 2.3 for image processing and compression research
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric
2010-08-01
Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision algorithms and software. The University of Florida has been associated with development of the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the Matlab™ programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation, called Image Algebra Matlab (IAM), has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, IAM offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that IAM programs can employ versatile representations for the operands and operations of the algebra, which are supported by the underlying libraries written in Matlab. In a previous publication, we showed how the functionality of IAC++ could be carried forth into a Matlab implementation, and provided practical details of a prototype implementation called IAM Version 1. In this paper, we further elaborate the purpose and structure of image algebra, then present a maturing implementation of Image Algebra Matlab called IAM Version 2.3, which extends the previous implementation of IAM to include polymorphic operations over different point sets, as well as recursive convolution operations and functional composition. We also show how image algebra and IAM can be employed in image processing and compression research, as well as algorithm development and analysis.
Spatial-Operator Algebra For Robotic Manipulators
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.
1991-01-01
Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.
Relational Algebra and SQL: Better Together
ERIC Educational Resources Information Center
McMaster, Kirby; Sambasivam, Samuel; Hadfield, Steven; Wolthuis, Stuart
2013-01-01
In this paper, we describe how database instructors can teach Relational Algebra and Structured Query Language together through programming. Students write query programs consisting of sequences of Relational Algebra operations vs. Structured Query Language SELECT statements. The query programs can then be run interactively, allowing students to…
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan
1989-01-01
A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Jain, A.
1989-01-01
A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.
Quantum Sets and Clifford Algebras
NASA Astrophysics Data System (ADS)
Finkelstein, David
1982-06-01
The mathematical language presently used for quantum physics is a high-level language. As a lowest-level or basic language I construct a quantum set theory in three stages: (1) Classical set theory, formulated as a Clifford algebra of “ S numbers” generated by a single monadic operation, “bracing,” Br = {…}. (2) Indefinite set theory, a modification of set theory dealing with the modal logical concept of possibility. (3) Quantum set theory. The quantum set is constructed from the null set by the familiar quantum techniques of tensor product and antisymmetrization. There are both a Clifford and a Grassmann algebra with sets as basis elements. Rank and cardinality operators are analogous to Schroedinger coordinates of the theory, in that they are multiplication or “ Q-type” operators. “ P-type” operators analogous to Schroedinger momenta, in that they transform the Q-type quantities, are bracing (Br), Clifford multiplication by a set X, and the creator of X, represented by Grassmann multiplication c( X) by the set X. Br and its adjoint Br* form a Bose-Einstein canonical pair, and c( X) and its adjoint c( X)* form a Fermi-Dirac or anticanonical pair. Many coefficient number systems can be employed in this quantization. I use the integers for a discrete quantum theory, with the usual complex quantum theory as limit. Quantum set theory may be applied to a quantum time space and a quantum automaton.
Basic linear algebra subprograms for FORTRAN usage
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.
1977-01-01
A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.
Students’ Algebraic Thinking Process in Context of Point and Line Properties
NASA Astrophysics Data System (ADS)
Nurrahmi, H.; Suryadi, D.; Fatimah, S.
2017-09-01
Learning of schools algebra is limited to symbols and operating procedures, so students are able to work on problems that only require the ability to operate symbols but unable to generalize a pattern as one of part of algebraic thinking. The purpose of this study is to create a didactic design that facilitates students to do algebraic thinking process through the generalization of patterns, especially in the context of the property of point and line. This study used qualitative method and includes Didactical Design Research (DDR). The result is students are able to make factual, contextual, and symbolic generalization. This happen because the generalization arises based on facts on local terms, then the generalization produced an algebraic formula that was described in the context and perspective of each student. After that, the formula uses the algebraic letter symbol from the symbol t hat uses the students’ language. It can be concluded that the design has facilitated students to do algebraic thinking process through the generalization of patterns, especially in the context of property of the point and line. The impact of this study is this design can use as one of material teaching alternative in learning of school algebra.
Algebra for Enterprise Ontology: towards analysis and synthesis of enterprise models
NASA Astrophysics Data System (ADS)
Suga, Tetsuya; Iijima, Junichi
2018-03-01
Enterprise modeling methodologies have made enterprises more likely to be the object of systems engineering rather than craftsmanship. However, the current state of research in enterprise modeling methodologies lacks investigations of the mathematical background embedded in these methodologies. Abstract algebra, a broad subfield of mathematics, and the study of algebraic structures may provide interesting implications in both theory and practice. Therefore, this research gives an empirical challenge to establish an algebraic structure for one aspect model proposed in Design & Engineering Methodology for Organizations (DEMO), which is a major enterprise modeling methodology in the spotlight as a modeling principle to capture the skeleton of enterprises for developing enterprise information systems. The results show that the aspect model behaves well in the sense of algebraic operations and indeed constructs a Boolean algebra. This article also discusses comparisons with other modeling languages and suggests future work.
On a programming language for graph algorithms
NASA Technical Reports Server (NTRS)
Rheinboldt, W. C.; Basili, V. R.; Mesztenyi, C. K.
1971-01-01
An algorithmic language, GRAAL, is presented for describing and implementing graph algorithms of the type primarily arising in applications. The language is based on a set algebraic model of graph theory which defines the graph structure in terms of morphisms between certain set algebraic structures over the node set and arc set. GRAAL is modular in the sense that the user specifies which of these mappings are available with any graph. This allows flexibility in the selection of the storage representation for different graph structures. In line with its set theoretic foundation, the language introduces sets as a basic data type and provides for the efficient execution of all set and graph operators. At present, GRAAL is defined as an extension of ALGOL 60 (revised) and its formal description is given as a supplement to the syntactic and semantic definition of ALGOL. Several typical graph algorithms are written in GRAAL to illustrate various features of the language and to show its applicability.
ERIC Educational Resources Information Center
Hillegeist, Eleanor; Epstein, Kenneth
The study examined the relationship between language and mathematics with 11 classes of deaf students taking Algebra 1 or Algebra 2 at the Gallaudet University School of Preparatory Studies. Specifically, the study attempted to predict the difficulty of a variety of relatively simple algebra problems based on the abstractness of the math and the…
Lambda: A Mathematica package for operator product expansions in vertex algebras
NASA Astrophysics Data System (ADS)
Ekstrand, Joel
2011-02-01
We give an introduction to the Mathematica package Lambda, designed for calculating λ-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of λ-brackets is reviewed, and some simple examples are shown, both in component notation, and in N=1 superfield notation. Program summaryProgram title: Lambda Catalogue identifier: AEHF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 18 087 No. of bytes in distributed program, including test data, etc.: 131 812 Distribution format: tar.gz Programming language: Mathematica Computer: See specifications for running Mathematica V7 or above. Operating system: See specifications for running Mathematica V7 or above. RAM: Varies greatly depending on calculation to be performed. Classification: 4.2, 5, 11.1. Nature of problem: Calculate operator product expansions (OPEs) of composite fields in 2d conformal field theory. Solution method: Implementation of the algebraic formulation of OPEs given by vertex algebras, and especially by λ-brackets. Running time: Varies greatly depending on calculation requested. The example notebook provided takes about 3 s to run.
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-07
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
HAL/S - The programming language for Shuttle
NASA Technical Reports Server (NTRS)
Martin, F. H.
1974-01-01
HAL/S is a higher order language and system, now operational, adopted by NASA for programming Space Shuttle on-board software. Program reliability is enhanced through language clarity and readability, modularity through program structure, and protection of code and data. Salient features of HAL/S include output orientation, automatic checking (with strictly enforced compiler rules), the availability of linear algebra, real-time control, a statement-level simulator, and compiler transferability (for applying HAL/S to additional object and host computers). The compiler is described briefly.
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
Syntax and Meaning as Sensuous, Visual, Historical Forms of Algebraic Thinking
ERIC Educational Resources Information Center
Radford, Luis; Puig, Luis
2007-01-01
Before the advent of symbolism, i.e. before the end of the 16th Century, algebraic calculations were made using natural language. Through a kind of metaphorical process, a few terms from everyday life (e.g. thing, root) acquired a technical mathematical status and constituted the specialized language of algebra. The introduction of letters and…
Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology
NASA Astrophysics Data System (ADS)
Haehl, Felix M.; Loganayagam, R.; Rangamani, Mukund
2017-06-01
Causally ordered correlation functions of local operators in near-thermal quantum systems computed using the Schwinger-Keldysh formalism obey a set of Ward identities. These can be understood rather simply as the consequence of a topological (BRST) algebra, called the universal Schwinger-Keldysh superalgebra, as explained in our compan-ion paper [1]. In the present paper we provide a mathematical discussion of this topological algebra. In particular, we argue that the structures can be understood in the language of extended equivariant cohomology. To keep the discussion self-contained, we provide a ba-sic review of the algebraic construction of equivariant cohomology and explain how it can be understood in familiar terms as a superspace gauge algebra. We demonstrate how the Schwinger-Keldysh construction can be succinctly encoded in terms a thermal equivariant cohomology algebra which naturally acts on the operator (super)-algebra of the quantum system. The main rationale behind this exploration is to extract symmetry statements which are robust under renormalization group flow and can hence be used to understand low-energy effective field theory of near-thermal physics. To illustrate the general prin-ciples, we focus on Langevin dynamics of a Brownian particle, rephrasing some known results in terms of thermal equivariant cohomology. As described elsewhere, the general framework enables construction of effective actions for dissipative hydrodynamics and could potentially illumine our understanding of black holes.
ERIC Educational Resources Information Center
Veith, Velma
2013-01-01
English as a Second Language (ESL) learners' access and achievement in Algebra I was examined to determine whether ESL students continue to be denied equal opportunity-to-learn (OTL) as a result of unnecessary tracking practices. In this quasi-experiment, a pre-post retrospective comparison group design was used to determine the effects of the…
Computer-assisted instruction in programming: AID
NASA Technical Reports Server (NTRS)
Friend, J.; Atkinson, R. C.
1971-01-01
Lessons for training students on how to program and operate computers to and AID language are given. The course consists of a set of 50 lessons, plus summaries, reviews, tests, and extra credit problems. No prior knowledge is needed for the course, the only requirement being a strong background in algebra. A student manual, which includes instruction for operating the instructional program and a glossary of terms used in the course, is included in the appendices.
Differential Geometry and Lie Groups for Physicists
NASA Astrophysics Data System (ADS)
Fecko, Marián.
2006-10-01
Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.
Differential Geometry and Lie Groups for Physicists
NASA Astrophysics Data System (ADS)
Fecko, Marián.
2011-03-01
Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.
ERIC Educational Resources Information Center
Diaz, Marco Antonio
2013-01-01
This study examines the use of Spanish as the language of instruction with Spanish dominant EL students in a 9th grade Algebra 1 classroom. The study documents conceptions of mathematical symbols at the start and at the end of the academic year of two groups of students; one receiving primary language instruction and another receiving sheltered…
Vukovic, Rose K; Lesaux, Nonie K
2013-06-01
This longitudinal study examined how language ability relates to mathematical development in a linguistically and ethnically diverse sample of children from 6 to 9 years of age. Study participants were 75 native English speakers and 92 language minority learners followed from first to fourth grades. Autoregression in a structural equation modeling (SEM) framework was used to evaluate the relation between children's language ability and gains in different domains of mathematical cognition (i.e., arithmetic, data analysis/probability, algebra, and geometry). The results showed that language ability predicts gains in data analysis/probability and geometry, but not in arithmetic or algebra, after controlling for visual-spatial working memory, reading ability, and sex. The effect of language on gains in mathematical cognition did not differ between language minority learners and native English speakers. These findings suggest that language influences how children make meaning of mathematics but is not involved in complex arithmetical procedures whether presented with Arabic symbols as in arithmetic or with abstract symbols as in algebraic reasoning. The findings further indicate that early language experiences are important for later mathematical development regardless of language background, denoting the need for intensive and targeted language opportunities for language minority and native English learners to develop mathematical concepts and representations. Copyright © 2013. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Alshehri, Mohammed Ali; Ali, Hassan Shawki
2016-01-01
This study aimed to investigate the compatibility of developed mathematics textbooks' content (grades 6-8) in Saudi Arabia with NCTM standards in the areas of: number and operations, algebra, geometry, measurement, data analysis and probability. To achieve that goal, a list of (NCTM) standards for grades (6-8) were translated to Arabic language,…
NASA Astrophysics Data System (ADS)
Saveliev, M. V.; Vershik, A. M.
1989-12-01
We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras “continuum Lie algebras.” The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Emphasizing language and visualization in teaching linear algebra
NASA Astrophysics Data System (ADS)
Hannah, John; Stewart, Sepideh; Thomas, Mike
2013-06-01
Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his approach in both lectures and tutorials, and how he employed visualization and an emphasis on language to encourage conceptual thinking. We use Tall's framework of three worlds of mathematical thinking to reflect on the effect of these activities in students' learning. An analysis of students' attitudes to the course and their test and examination results help to answer questions about the value of such an approach, suggesting ways forward in teaching linear algebra.
Statecharts Via Process Algebra
NASA Technical Reports Server (NTRS)
Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance
1999-01-01
Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics
Labeled trees and the efficient computation of derivations
NASA Technical Reports Server (NTRS)
Grossman, Robert; Larson, Richard G.
1989-01-01
The effective parallel symbolic computation of operators under composition is discussed. Examples include differential operators under composition and vector fields under the Lie bracket. Data structures consisting of formal linear combinations of rooted labeled trees are discussed. A multiplication on rooted labeled trees is defined, thereby making the set of these data structures into an associative algebra. An algebra homomorphism is defined from the original algebra of operators into this algebra of trees. An algebra homomorphism from the algebra of trees into the algebra of differential operators is then described. The cancellation which occurs when noncommuting operators are expressed in terms of commuting ones occurs naturally when the operators are represented using this data structure. This leads to an algorithm which, for operators which are derivations, speeds up the computation exponentially in the degree of the operator. It is shown that the algebra of trees leads naturally to a parallel version of the algorithm.
Generalized -deformed correlation functions as spectral functions of hyperbolic geometry
NASA Astrophysics Data System (ADS)
Bonora, L.; Bytsenko, A. A.; Guimarães, M. E. X.
2014-08-01
We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with , is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to . With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry.
Emphasizing Language and Visualization in Teaching Linear Algebra
ERIC Educational Resources Information Center
Hannah, John; Stewart, Sepideh; Thomas, Mike
2013-01-01
Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his…
Operator bases, S-matrices, and their partition functions
NASA Astrophysics Data System (ADS)
Henning, Brian; Lu, Xiaochuan; Melia, Tom; Murayama, Hitoshi
2017-10-01
Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. In this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce a partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most na¨ıve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.
A double commutant theorem for Murray–von Neumann algebras
Liu, Zhe
2012-01-01
Murray–von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra of the Murray–von Neumann algebra associated with a finite von Neumann algebra is the Murray–von Neumann algebra , where is a maximal abelian self-adjoint subalgebra of and, in addition, is . We also prove that the Murray–von Neumann algebra with the center of is the center of the Murray–von Neumann algebra . Von Neumann’s celebrated double commutant theorem characterizes von Neumann algebras as those for which , where , the commutant of , is the set of bounded operators on the Hilbert space that commute with all operators in . At the end of this article, we present a double commutant theorem for Murray–von Neumann algebras. PMID:22543165
NASA Astrophysics Data System (ADS)
Sadrzadeh, Mehrnoosh
2017-07-01
Compact Closed categories and Frobenius and Bi algebras have been applied to model and reason about Quantum protocols. The same constructions have also been applied to reason about natural language semantics under the name: ``categorical distributional compositional'' semantics, or in short, the ``DisCoCat'' model. This model combines the statistical vector models of word meaning with the compositional models of grammatical structure. It has been applied to natural language tasks such as disambiguation, paraphrasing and entailment of phrases and sentences. The passage from the grammatical structure to vectors is provided by a functor, similar to the Quantization functor of Quantum Field Theory. The original DisCoCat model only used compact closed categories. Later, Frobenius algebras were added to it to model long distance dependancies such as relative pronouns. Recently, bialgebras have been added to the pack to reason about quantifiers. This paper reviews these constructions and their application to natural language semantics. We go over the theory and present some of the core experimental results.
BPS algebras, genus zero and the heterotic Monster
NASA Astrophysics Data System (ADS)
Paquette, Natalie M.; Persson, Daniel; Volpato, Roberto
2017-10-01
In this note, we expand on some technical issues raised in (Paquette et al 2016 Commun. Number Theory Phys. 10 433-526) by the authors, as well as providing a friendly introduction to and summary of our previous work. We construct a set of heterotic string compactifications to 0 + 1 dimensions intimately related to the Monstrous moonshine module of Frenkel, Lepowsky, and Meurman (and orbifolds thereof). Using this model, we review our physical interpretation of the genus zero property of Monstrous moonshine. Furthermore, we show that the space of (second-quantized) BPS-states forms a module over the Monstrous Lie algebras mg —some of the first and most prominent examples of Generalized Kac-Moody algebras—constructed by Borcherds and Carnahan. In particular, we clarify the structure of the module present in the second-quantized string theory. We also sketch a proof of our methods in the language of vertex operator algebras, for the interested mathematician.
Introducing Algebra through the Graphical Representation of Functions: A Study among LD Students
ERIC Educational Resources Information Center
Sauriol, Jennifer
2013-01-01
This longitudinal study evaluates the impact of a new Algebra 1 course at a High School for language-based learning-disabled (LD) students. The new course prioritized the teaching of relationship graphs and functions as an introduction to algebra. Across three studies, the dissertation documents and evaluates the progress made by LD high school…
A framework for modeling and optimizing dynamic systems under uncertainty
Nicholson, Bethany; Siirola, John
2017-11-11
Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less
A framework for modeling and optimizing dynamic systems under uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Bethany; Siirola, John
Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less
Spatial-Operator Algebra For Flexible-Link Manipulators
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Rodriguez, Guillermo
1994-01-01
Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.
Intertextuality and Sense Production in the Learning of Algebraic Methods
ERIC Educational Resources Information Center
Rojano, Teresa; Filloy, Eugenio; Puig, Luis
2014-01-01
In studies carried out in the 1980s the algebraic symbols and expressions are revealed through prealgebraic readers as non-independent texts, as texts that relate to other texts that in some cases belong to the reader's native language or to the arithmetic sign system. Such outcomes suggest that the act of reading algebraic texts submerges…
Metric 3-Leibniz algebras and M2-branes
NASA Astrophysics Data System (ADS)
Méndez-Escobar, Elena
2010-08-01
This thesis is concerned with superconformal Chern-Simons theories with matter in 3 dimensions. The interest in these theories is two-fold. On the one hand, it is a new family of theories in which to test the AdS/CFT correspondence and on the other, they are important to study one of the main objects of M-theory (M2-branes). All these theories have something in common: they can be written in terms of 3-Leibniz algebras. Here we study the structure theory of such algebras, paying special attention to a subclass of them that gives rise to maximal supersymmetry and that was the first to appear in this context: 3-Lie algebras. In chapter 2, we review the structure theory of metric Lie algebras and their unitary representations. In chapter 3, we study metric 3-Leibniz algebras and show, by specialising a construction originally due to Faulkner, that they are in one to one correspondence with pairs of real metric Lie algebras and unitary representations of them. We also show a third characterisation for six extreme cases of 3-Leibniz algebras as graded Lie (super)algebras. In chapter 4, we study metric 3-Lie algebras in detail. We prove a structural result and also classify those with a maximally isotropic centre, which is the requirement that ensures unitarity of the corresponding conformal field theory. Finally, in chapter 5, we study the universal structure of superpotentials in this class of superconformal Chern-Simons theories with matter in three dimensions. We provide a uniform formulation for all these theories and establish the connection between the amount of supersymmetry preserved and the gauge Lie algebra and the appropriate unitary representation to be used to write down the Lagrangian. The conditions for supersymmetry enhancement are then expressed equivalently in the language of representation theory of Lie algebras or the language of 3-Leibniz algebras.
Procedures for, and Experiences in, Introducing Algebra in New South Wales.
ERIC Educational Resources Information Center
Pegg, John; Redden, Edward
1990-01-01
Discussed are the philosophy and procedures behind the introduction of algebra to students in grade 7 in Australia. Included are the importance of concrete experiences, language development, and the consequences involved in this procedure. (CW)
Quantum mechanics on periodic and non-periodic lattices and almost unitary Schwinger operators
NASA Astrophysics Data System (ADS)
Arik, Metin; Ildes, Medine
2018-05-01
In this work, we uncover the mathematical structure of the Schwinger algebra and introduce almost unitary Schwinger operators which are derived by considering translation operators on a finite lattice. We calculate mathematical relations between these algebras and show that the almost unitary Schwinger operators are equivalent to the Schwinger algebra. We introduce new representations for MN(C) in terms of these algebras.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e
2008-05-15
By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.
ERIC Educational Resources Information Center
Khatri, Daryao
2011-01-01
Algebra is the language that must be mastered for any course that uses math because it is the gateway for entry into any science, technology, engineering, and mathematics (STEM) discipline. This book fosters mastery of critical math and algebraic concepts and skills essential to all of the STEM disciplines and some of the social sciences. This…
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
NASA Astrophysics Data System (ADS)
Alshammari, Fahad; Isaac, Phillip S.; Marquette, Ian
2018-02-01
We introduce a search algorithm that utilises differential operator realisations to find polynomial Casimir operators of Lie algebras. To demonstrate the algorithm, we look at two classes of examples: (1) the model filiform Lie algebras and (2) the Schrödinger Lie algebras. We find that an abstract form of dimensional analysis assists us in our algorithm, and greatly reduces the complexity of the problem.
Articulation Management for Intelligent Integration of Information
NASA Technical Reports Server (NTRS)
Maluf, David A.; Tran, Peter B.; Clancy, Daniel (Technical Monitor)
2001-01-01
When combining data from distinct sources, there is a need to share meta-data and other knowledge about various source domains. Due to semantic inconsistencies and heterogeneity of representations, problems arise in combining multiple domains when the domains are merged. The knowledge that is irrelevant to the task of interoperation will be included, making the result unnecessarily complex. This heterogeneity problem can be eliminated by mediating the conflicts and managing the intersections of the domains. For interoperation and intelligent access to heterogeneous information, the focus is on the intersection of the knowledge, since intersection will define the required articulation rules. An algebra over domain has been proposed to use articulation rules to support disciplined manipulation of domain knowledge resources. The objective of a domain algebra is to provide the capability for interrogating many domain knowledge resources, which are largely semantically disjoint. The algebra supports formally the tasks of selecting, combining, extending, specializing, and modifying Components from a diverse set of domains. This paper presents a domain algebra and demonstrates the use of articulation rules to link declarative interfaces for Internet and enterprise applications. In particular, it discusses the articulation implementation as part of a production system capable of operating over the domain described by the IDL (interface description language) of objects registered in multiple CORBA servers.
Geometry of quantum state manifolds generated by the Lie algebra operators
NASA Astrophysics Data System (ADS)
Kuzmak, A. R.
2018-03-01
The Fubini-Study metric of quantum state manifold generated by the operators which satisfy the Heisenberg Lie algebra is calculated. The similar problem is studied for the manifold generated by the so(3) Lie algebra operators. Using these results, we calculate the Fubini-Study metrics of state manifolds generated by the position and momentum operators. Also the metrics of quantum state manifolds generated by some spin systems are obtained. Finally, we generalize this problem for operators of an arbitrary Lie algebra.
A description of pseudo-bosons in terms of nilpotent Lie algebras
NASA Astrophysics Data System (ADS)
Bagarello, Fabio; Russo, Francesco G.
2018-02-01
We show how the one-mode pseudo-bosonic ladder operators provide concrete examples of nilpotent Lie algebras of dimension five. It is the first time that an algebraic-geometric structure of this kind is observed in the context of pseudo-bosonic operators. Indeed we do not find the well known Heisenberg algebras, which are involved in several quantum dynamical systems, but different Lie algebras which may be decomposed into the sum of two abelian Lie algebras in a prescribed way. We introduce the notion of semidirect sum (of Lie algebras) for this scope and find that it describes very well the behavior of pseudo-bosonic operators in many quantum models.
Research issues of geometry-based visual languages and some solutions
NASA Astrophysics Data System (ADS)
Green, Thorn G.
This dissertation addresses the problem of how to design visual language systems that are based upon Geometric Algebra, and provide a visual coupling of algebraic expressions and geometric depictions. This coupling of algebraic expressions and geometric depictions provides a new means for expressing both mathematical and geometric relationships present in mathematics, physics, and Computer-Aided Geometric Design (CAGD). Another significant feature of such a system is that the result of changing a parameter (by dragging the mouse) can be seen immediately in the depiction(s) of all expressions that use that parameter. This greatly aides the cognition of the relationships between variables. Systems for representing such a coupling of algebra and geometry have characteristics of both visual language systems, and systems for scientific visualization. Instead of using a parsing or dataflow paradigm for the visual language representation, the systems instead represent equations as manipulatible constrained diagrams for their visualization. This requires that the design of such a system have (but is not limited to) a means for parsing equations entered by the user, a scheme for producing a visual representation of these equations; techniques for maintaining the coupling between the expressions entered and the diagrams displayed; algorithms for maintaining the consistency of the diagrams; and, indexing capabilities that are efficient enough to allow diagrams to be created, and manipulated in a short enough period of time. The author proposes solutions for how such a design can be realized.
Operator bases, S-matrices, and their partition functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, Brian; Lu, Xiaochuan; Melia, Tom
Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less
Operator bases, S-matrices, and their partition functions
Henning, Brian; Lu, Xiaochuan; Melia, Tom; ...
2017-10-27
Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less
2002-06-01
techniques for addressing the software component retrieval problem. Steigerwald [Ste91] introduced the use of algebraic specifications for defining the...provided in terms of a specification written using Luqi’s Prototype Specification Description Language (PSDL) [LBY88] augmented with an algebraic
NASA Technical Reports Server (NTRS)
Stoutemyer, D. R.
1977-01-01
The computer algebra language MACSYMA enables the programmer to include symbolic physical units in computer calculations, and features automatic detection of dimensionally-inhomogeneous formulas and conversion of inconsistent units in a dimensionally homogeneous formula. Some examples illustrate these features.
Phonological reduplication in sign language: Rules rule
Berent, Iris; Dupuis, Amanda; Brentari, Diane
2014-01-01
Productivity—the hallmark of linguistic competence—is typically attributed to algebraic rules that support broad generalizations. Past research on spoken language has documented such generalizations in both adults and infants. But whether algebraic rules form part of the linguistic competence of signers remains unknown. To address this question, here we gauge the generalization afforded by American Sign Language (ASL). As a case study, we examine reduplication (X→XX)—a rule that, inter alia, generates ASL nouns from verbs. If signers encode this rule, then they should freely extend it to novel syllables, including ones with features that are unattested in ASL. And since reduplicated disyllables are preferred in ASL, such a rule should favor novel reduplicated signs. Novel reduplicated signs should thus be preferred to nonreduplicative controls (in rating), and consequently, such stimuli should also be harder to classify as nonsigns (in the lexical decision task). The results of four experiments support this prediction. These findings suggest that the phonological knowledge of signers includes powerful algebraic rules. The convergence between these conclusions and previous evidence for phonological rules in spoken language suggests that the architecture of the phonological mind is partly amodal. PMID:24959158
Literal algebra for satellite dynamics. [perturbation analysis
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.
1975-01-01
A description of the rather general class of operations available is given and the operations are related to problems in satellite dynamics. The implementation of an algebra processor is discussed. The four main categories of symbol processors are related to list processing, string manipulation, symbol manipulation, and formula manipulation. Fundamental required operations for an algebra processor are considered. It is pointed out that algebra programs have been used for a number of problems in celestial mechanics with great success. The advantage of computer algebra is its accuracy and speed.
Implementing Linear Algebra Related Algorithms on the TI-92+ Calculator.
ERIC Educational Resources Information Center
Alexopoulos, John; Abraham, Paul
2001-01-01
Demonstrates a less utilized feature of the TI-92+: its natural and powerful programming language. Shows how to implement several linear algebra related algorithms including the Gram-Schmidt process, Least Squares Approximations, Wronskians, Cholesky Decompositions, and Generalized Linear Least Square Approximations with QR Decompositions.…
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Differential calculus and gauge transformations on a deformed space
NASA Astrophysics Data System (ADS)
Wess, Julius
2007-08-01
We consider a formalism by which gauge theories can be constructed on noncommutative space time structures. The coordinates are supposed to form an algebra, restricted by certain requirements that allow us to realise the algebra in terms of star products. In this formulation it is useful to define derivatives and to extend the algebra of coordinates by these derivatives. The elements of this extended algebra are deformed differential operators. We then show that there is a morphism between these deformed differential operators and the usual higher order differential operators acting on functions of commuting coordinates. In this way we obtain deformed gauge transformations and a deformed version of the algebra of diffeomorphisms. The deformation of these algebras can be clearly seen in the category of Hopf algebras. The comultiplication will be twisted. These twisted algebras can be realised on noncommutative spaces and allow the construction of deformed gauge theories and deformed gravity theory.
A note on derivations of Murray-von Neumann algebras.
Kadison, Richard V; Liu, Zhe
2014-02-11
A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray-von Neumann algebras. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements.
Processes and Reasoning in Representations of Linear Functions
ERIC Educational Resources Information Center
Adu-Gyamfi, Kwaku; Bossé, Michael J.
2014-01-01
This study examined student actions, interpretations, and language in respect to questions raised regarding tabular, graphical, and algebraic representations in the context of functions. The purpose was to investigate students' interpretations and specific ways of working within table, graph, and the algebraic on notions fundamental to a…
A Discrete Global Grid System Programming Language Using MapReduce
NASA Astrophysics Data System (ADS)
Peterson, P.; Shatz, I.
2016-12-01
A discrete global grid system (DGGS) is a powerful mechanism for storing and integrating geospatial information. As a "pixelization" of the Earth, many image processing techniques lend themselves to the transformation of data values referenced to the DGGS cells. It has been shown that image algebra, as an example, and advanced algebra, like Fast Fourier Transformation, can be used on the DGGS tiling structure for geoprocessing and spatial analysis. MapReduce has been shown to provide advantages for processing and generating large data sets within distributed and parallel computing. The DGGS structure is ideally suited for big distributed Earth data. We proposed that basic expressions could be created to form the atoms of a generalized DGGS language using the MapReduce programming model. We created three very efficient expressions: Selectors (aka filter) - A selection function that generate a set of cells, cell collections, or geometries; Calculators (aka map) - A computational function (including quantization of raw measurements and data sources) that generate values in a DGGS cell; and Aggregators (aka reduce) - A function that generate spatial statistics from cell values within a cell. We found that these three basic MapReduce operations along with a forth function, the Iterator, for horizontal and vertical traversing of any DGGS structure, provided simple building block resulting in very efficient operations and processes that could be used with any DGGS. We provide examples and a demonstration of their effectiveness using the ISEA3H DGGS on the PYXIS Studio.
DI: An interactive debugging interpreter for applicative languages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skedzielewski, S.K.; Yates, R.K.; Oldehoeft, R.R.
1987-03-12
The DI interpreter is both a debugger and interpreter of SISLAL programs. Its use as a program interpreter is only a small part of its role; it is designed to be a tool for studying compilation techniques for applicative languages. DI interprets dataflow graphs expressed in the IF1 and IF2 languages, and is heavily instrumented to report the activity of dynamic storage activity, reference counting, copying and updating of structured data values. It also aids the SISAL language evaluation by providing an interim execution vehicle for SISAL programs. DI provides determinate, sequential interpretation of graph nodes for sequential and parallelmore » operations in a canonical order. As a debugging aid, DI allows tracing, breakpointing, and interactive display of program data values. DI handles creation of SISAL and IF1 error values for each data type and propagates them according to a well-defined algebra. We have begun to implement IF1 optimizers and have measured the improvements with DI.« less
A note on derivations of Murray–von Neumann algebras
Kadison, Richard V.; Liu, Zhe
2014-01-01
A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831
The quantum holonomy-diffeomorphism algebra and quantum gravity
NASA Astrophysics Data System (ADS)
Aastrup, Johannes; Grimstrup, Jesper Møller
2016-03-01
We introduce the quantum holonomy-diffeomorphism ∗-algebra, which is generated by holonomy-diffeomorphisms on a three-dimensional manifold and translations on a space of SU(2)-connections. We show that this algebra encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Furthermore, we show that semiclassical states exist on the holonomy-diffeomorphism part of the algebra but that these states cannot be extended to the full algebra. Via a Dirac-type operator we derive a certain class of unbounded operators that act in the GNS construction of the semiclassical states. These unbounded operators are the type of operators, which we have previously shown to entail the spatial three-dimensional Dirac operator and Dirac-Hamiltonian in a semiclassical limit. Finally, we show that the structure of the Hamilton constraint emerges from a Yang-Mills-type operator over the space of SU(2)-connections.
Operator algebra as an application of logarithmic representation of infinitesimal generators
NASA Astrophysics Data System (ADS)
Iwata, Yoritaka
2018-02-01
The operator algebra is introduced based on the framework of logarithmic representation of infinitesimal generators. In conclusion a set of generally-unbounded infinitesimal generators is characterized as a module over the Banach algebra.
Algebraic special functions and SO(3,2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-06-15
A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining inmore » this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.« less
Australian Curriculum Linked Lessons: Reasoning in Number and Algebra
ERIC Educational Resources Information Center
Day, Lorraine
2014-01-01
The Reasoning Proficiency in number and algebra is about children making sense of the mathematics by explaining their thinking, giving reasons for their decisions and describing mathematical situations and concepts. Lorraine Day notes, children need to be able to speak, read and write the language of mathematics while investigating pattern and…
Lack of Set Theory Relevant Prerequisite Knowledge
ERIC Educational Resources Information Center
Dogan-Dunlap, Hamide
2006-01-01
Many students struggle with college mathematics topics due to a lack of mastery of prerequisite knowledge. Set theory language is one such prerequisite for linear algebra courses. Many students' mistakes on linear algebra questions reveal a lack of mastery of set theory knowledge. This paper reports the findings of a qualitative analysis of a…
An Ada Linear-Algebra Software Package Modeled After HAL/S
NASA Technical Reports Server (NTRS)
Klumpp, Allan R.; Lawson, Charles L.
1990-01-01
New avionics software written more easily. Software package extends Ada programming language to include linear-algebra capabilities similar to those of HAL/S programming language. Designed for such avionics applications as Space Station flight software. In addition to built-in functions of HAL/S, package incorporates quaternion functions used in Space Shuttle and Galileo projects and routines from LINPAK solving systems of equations involving general square matrices. Contains two generic programs: one for floating-point computations and one for integer computations. Written on IBM/AT personal computer running under PC DOS, v.3.1.
Schroedinger operators with the q-ladder symmetry algebras
NASA Technical Reports Server (NTRS)
Skorik, Sergei; Spiridonov, Vyacheslav
1994-01-01
A class of the one-dimensional Schroedinger operators L with the symmetry algebra LB(+/-) = q(+/-2)B(+/-)L, (B(+),B(-)) = P(sub N)(L), is described. Here B(+/-) are the 'q-ladder' operators and P(sub N)(L) is a polynomial of the order N. Peculiarities of the coherent states of this algebra are briefly discussed.
Tensor Algebra Library for NVidia Graphics Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry
This is a general purpose math library implementing basic tensor algebra operations on NVidia GPU accelerators. This software is a tensor algebra library that can perform basic tensor algebra operations, including tensor contractions, tensor products, tensor additions, etc., on NVidia GPU accelerators, asynchronously with respect to the CPU host. It supports a simultaneous use of multiple NVidia GPUs. Each asynchronous API function returns a handle which can later be used for querying the completion of the corresponding tensor algebra operation on a specific GPU. The tensors participating in a particular tensor operation are assumed to be stored in local RAMmore » of a node or GPU RAM. The main research area where this library can be utilized is the quantum many-body theory (e.g., in electronic structure theory).« less
ERIC Educational Resources Information Center
Lager, Carl A.
2006-01-01
English language learners (ELLs)--one of the lowest-achieving and fastest growing middle-school subpopulations--are challenged in the classroom by language components which could potentially jumpstart real mathematical growth for these and, eventually, all other students as well. Going beyond traditional word problems, this study documented and…
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Shaykhian, Gholam Ali
2011-01-01
MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.
Application of polynomial su(1, 1) algebra to Pöschl-Teller potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong-Biao, E-mail: zhanghb017@nenu.edu.cn; Lu, Lu
2013-12-15
Two novel polynomial su(1, 1) algebras for the physical systems with the first and second Pöschl-Teller (PT) potentials are constructed, and their specific representations are presented. Meanwhile, these polynomial su(1, 1) algebras are used as an algebraic technique to solve eigenvalues and eigenfunctions of the Hamiltonians associated with the first and second PT potentials. The algebraic approach explores an appropriate new pair of raising and lowing operators K-circumflex{sub ±} of polynomial su(1, 1) algebra as a pair of shift operators of our Hamiltonians. In addition, two usual su(1, 1) algebras associated with the first and second PT potentials are derivedmore » naturally from the polynomial su(1, 1) algebras built by us.« less
Higher Inductive Types as Homotopy-Initial Algebras
2016-08-01
Higher Inductive Types as Homotopy-Initial Algebras Kristina Sojakova CMU-CS-16-125 August 2016 School of Computer Science Carnegie Mellon University...talk at the Workshop on Logic, Language, Information and Computation (WoLLIC 2011). 1, 2.1 [38] M. Warren. Homotopy-Theoretic Aspects of Constructive Type Theory. PhD thesis, Carnegie Mellon University, 2008. 1 143
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, David; Hackebeil, Gabe; Laird, Carl Damon
Pyomo supports the formulation and analysis of mathematical models for complex optimization applications. This capability is commonly associated with algebraic modeling languages (AMLs), which support the description and analysis of mathematical models with a high-level language. Although most AMLs are implemented in custom modeling languages, Pyomo's modeling objects are embedded within Python, a full- featured high-level programming language that contains a rich set of supporting libraries.
Loget, François
2011-01-01
Bernard Salignac and Lazare Schöner both published a treatise based on La Ramée's Algebra. Why did they endeavour to republish a book that their master had abandoned ? What changes did they make in the original ? They turned algebra into apedagogical discipline at a time when Ramism was making its presence felt in some Northern European educational establishments. Salignac took La Ramée's thoughts concerning the language of mathematics further and offered an original and precocious contribution to what I call the "scriptural turn" of mathematics at the end of the 16(th) century.
A Electro-Optical Image Algebra Processing System for Automatic Target Recognition
NASA Astrophysics Data System (ADS)
Coffield, Patrick Cyrus
The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.
Commutative Algebras of Toeplitz Operators in Action
NASA Astrophysics Data System (ADS)
Vasilevski, Nikolai
2011-09-01
We will discuss a quite unexpected phenomenon in the theory of Toeplitz operators on the Bergman space: the existence of a reach family of commutative C*-algebras generated by Toeplitz operators with non-trivial symbols. As it tuns out the smoothness properties of symbols do not play any role in the commutativity, the symbols can be merely measurable. Everything is governed here by the geometry of the underlying manifold, the hyperbolic geometry of the unit disk. We mention as well that the complete characterization of these commutative C*-algebras of Toeplitz operators requires the Berezin quantization procedure. These commutative algebras come with a powerful research tool, the spectral type representation for the operators under study, which permit us to answer to many important questions in the area.
Image Processing Language. Phase 1
1988-05-01
their entirety. Nonetheless, they can serve as guidelines to which the construction of a useful and comprehensive imaging algebra might aspire. 3. TIH... guidelines to which the construction of a useful and comprehensive imaging algebra might aspire. * It was recognized that any structure which encompasses...Bernstein Polynomial Approximation Best Plane Fit ( BPF , Sobel, Roberts, Prewitt, Gradient) Boundary Finder Boundary Segmenter Chain Code Angle
Vector 33: A reduce program for vector algebra and calculus in orthogonal curvilinear coordinates
NASA Astrophysics Data System (ADS)
Harper, David
1989-06-01
This paper describes a package with enables REDUCE 3.3 to perform algebra and calculus operations upon vectors. Basic algebraic operations between vectors and between scalars and vectors are provided, including scalar (dot) product and vector (cross) product. The vector differential operators curl, divergence, gradient and Laplacian are also defined, and are valid in any orthogonal curvilinear coordinate system. The package is written in RLISP to allow algebra and calculus to be performed using notation identical to that for operations. Scalars and vectors can be mixed quite freely in the same expression. The package will be of interest to mathematicians, engineers and scientists who need to perform vector calculations in orthogonal curvilinear coordinates.
NPTool: Towards Scalability and Reliability of Business Process Management
NASA Astrophysics Data System (ADS)
Braghetto, Kelly Rosa; Ferreira, João Eduardo; Pu, Calton
Currently one important challenge in business process management is provide at the same time scalability and reliability of business process executions. This difficulty becomes more accentuated when the execution control assumes complex countless business processes. This work presents NavigationPlanTool (NPTool), a tool to control the execution of business processes. NPTool is supported by Navigation Plan Definition Language (NPDL), a language for business processes specification that uses process algebra as formal foundation. NPTool implements the NPDL language as a SQL extension. The main contribution of this paper is a description of the NPTool showing how the process algebra features combined with a relational database model can be used to provide a scalable and reliable control in the execution of business processes. The next steps of NPTool include reuse of control-flow patterns and support to data flow management.
NASA Astrophysics Data System (ADS)
Nazarov, Anton
2012-11-01
In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent algorithm based on generalization of Weyl character formula. We also offer alternative implementation based on the Freudenthal multiplicity formula which can be faster in some cases. Restrictions: Computational complexity grows fast with the rank of an algebra, so computations for algebras of ranks greater than 8 are not practical. Unusual features: We offer the possibility of using a traditional mathematical notation for the objects in representation theory of Lie algebras in computations if Affine.m is used in the Mathematica notebook interface. Running time: From seconds to days depending on the rank of the algebra and the complexity of the representation.
Geometric interpretation of vertex operator algebras.
Huang, Y Z
1991-01-01
In this paper, Vafa's approach to the formulation of conformal field theories is combined with the formal calculus developed in Frenkel, Lepowsky, and Meurman's work on the vertex operator construction of the Monster to give a geometric definition of vertex operator algebras. The main result announced is the equivalence between this definition and the algebraic one in the sense that the categories determined by these definitions are isomorphic. PMID:11607240
Natural differential operations on manifolds: an algebraic approach
NASA Astrophysics Data System (ADS)
Katsylo, P. I.; Timashev, D. A.
2008-10-01
Natural algebraic differential operations on geometric quantities on smooth manifolds are considered. A method for the investigation and classification of such operations is described, the method of IT-reduction. With it the investigation of natural operations reduces to the analysis of rational maps between k-jet spaces, which are equivariant with respect to certain algebraic groups. On the basis of the method of IT-reduction a finite generation theorem is proved: for tensor bundles \\mathscr{V},\\mathscr{W}\\to M all the natural differential operations D\\colon\\Gamma(\\mathscr{V})\\to\\Gamma(\\mathscr{W}) of degree at most d can be algebraically constructed from some finite set of such operations. Conceptual proofs of known results on the classification of natural linear operations on arbitrary and symplectic manifolds are presented. A non-existence theorem is proved for natural deformation quantizations on Poisson manifolds and symplectic manifolds.Bibliography: 21 titles.
A Rewriting Logic Approach to Type Inference
NASA Astrophysics Data System (ADS)
Ellison, Chucky; Şerbănuţă, Traian Florin; Roşu, Grigore
Meseguer and Roşu proposed rewriting logic semantics (RLS) as a programing language definitional framework that unifies operational and algebraic denotational semantics. RLS has already been used to define a series of didactic and real languages, but its benefits in connection with defining and reasoning about type systems have not been fully investigated. This paper shows how the same RLS style employed for giving formal definitions of languages can be used to define type systems. The same term-rewriting mechanism used to execute RLS language definitions can now be used to execute type systems, giving type checkers or type inferencers. The proposed approach is exemplified by defining the Hindley-Milner polymorphic type inferencer mathcal{W} as a rewrite logic theory and using this definition to obtain a type inferencer by executing it in a rewriting logic engine. The inferencer obtained this way compares favorably with other definitions or implementations of mathcal{W}. The performance of the executable definition is within an order of magnitude of that of highly optimized implementations of type inferencers, such as that of OCaml.
N = 2 and N = 4 subalgebras of super vertex operator algebras
NASA Astrophysics Data System (ADS)
Mason, Geoffrey; Tuite, Michael; Yamskulna, Gaywalee
2018-02-01
We develop criteria to decide if an N = 2 or N = 4 superconformal algebra is a subalgebra of a super vertex operator algebra in general, and of a super lattice theory in particular. We give some specific examples.
NASA Astrophysics Data System (ADS)
Arenas, Marcelo; Gutierrez, Claudio; Pérez, Jorge
The goal of this paper is to give an overview of the basics of the theory of RDF databases. We provide a formal definition of RDF that includes the features that distinguish this model from other graph data models. We then move into the fundamental issue of querying RDF data. We start by considering the RDF query language SPARQL, which is a W3C Recommendation since January 2008. We provide an algebraic syntax and a compositional semantics for this language, study the complexity of the evaluation problem for different fragments of SPARQL, and consider the problem of optimizing the evaluation of SPARQL queries, showing that a natural fragment of this language has some good properties in this respect. We furthermore study the expressive power of SPARQL, by comparing it with some well-known query languages such as relational algebra. We conclude by considering the issue of querying RDF data in the presence of RDFS vocabulary. In particular, we present a recently proposed extension of SPARQL with navigational capabilities.
Implementing the sine transform of fermionic modes as a tensor network
NASA Astrophysics Data System (ADS)
Epple, Hannes; Fries, Pascal; Hinrichsen, Haye
2017-09-01
Based on the algebraic theory of signal processing, we recursively decompose the discrete sine transform of the first kind (DST-I) into small orthogonal block operations. Using a diagrammatic language, we then second-quantize this decomposition to construct a tensor network implementing the DST-I for fermionic modes on a lattice. The complexity of the resulting network is shown to scale as 5/4 n logn (not considering swap gates), where n is the number of lattice sites. Our method provides a systematic approach of generalizing Ferris' spectral tensor network for nontrivial boundary conditions.
Yang-Baxter algebras, integrable theories and Bethe Ansatz
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vega, H.J.
1990-03-10
This paper presents the Yang-Baxter algebras (YBA) in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Behe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitly. The generalization of YB algebras to face language is considered. The algebraic BA for the SOS model of Andrews, Baxter and Forrester is described using these face YB algebras. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. This approachmore » permit to define and solve rigorously massive QFT as an appropriate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underlay the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized.« less
Algebraic Systems and Pushdown Automata
NASA Astrophysics Data System (ADS)
Petre, Ion; Salomaa, Arto
We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Powell, Sarah R.; Schumacher, Robin F.; Hamlett, Carol L.; Vernier, Emily; Namkung, Jessica M.; Vukovic, Rose K.
2012-01-01
The purpose of this study was to investigate the contributions of domain-general cognitive resources and different forms of arithmetic development to individual differences in pre-algebraic knowledge. Children (n=279; mean age=7.59 yrs) were assessed on 7 domain-general cognitive resources as well as arithmetic calculations and word problems at start of 2nd grade and on calculations, word problems, and pre-algebraic knowledge at end of 3rd grade. Multilevel path analysis, controlling for instructional effects associated with the sequence of classrooms in which students were nested across grades 2–3, indicated arithmetic calculations and word problems are foundational to pre-algebraic knowledge. Also, results revealed direct contributions of nonverbal reasoning and oral language to pre-algebraic knowledge, beyond indirect effects that are mediated via arithmetic calculations and word problems. By contrast, attentive behavior, phonological processing, and processing speed contributed to pre-algebraic knowledge only indirectly via arithmetic calculations and word problems. PMID:22409764
Automated speech understanding: the next generation
NASA Astrophysics Data System (ADS)
Picone, J.; Ebel, W. J.; Deshmukh, N.
1995-04-01
Modern speech understanding systems merge interdisciplinary technologies from Signal Processing, Pattern Recognition, Natural Language, and Linguistics into a unified statistical framework. These systems, which have applications in a wide range of signal processing problems, represent a revolution in Digital Signal Processing (DSP). Once a field dominated by vector-oriented processors and linear algebra-based mathematics, the current generation of DSP-based systems rely on sophisticated statistical models implemented using a complex software paradigm. Such systems are now capable of understanding continuous speech input for vocabularies of several thousand words in operational environments. The current generation of deployed systems, based on small vocabularies of isolated words, will soon be replaced by a new technology offering natural language access to vast information resources such as the Internet, and provide completely automated voice interfaces for mundane tasks such as travel planning and directory assistance.
Pawlak Algebra and Approximate Structure on Fuzzy Lattice
Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai
2014-01-01
The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties. PMID:25152922
Pawlak algebra and approximate structure on fuzzy lattice.
Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai
2014-01-01
The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mozrzymas, Marek; Horodecki, Michał; Studziński, Michał
We consider the structure of algebra of operators, acting in n-fold tensor product space, which are partially transposed on the last term. Using purely algebraical methods we show that this algebra is semi-simple and then, considering its regular representation, we derive basic properties of the algebra. In particular, we describe all irreducible representations of the algebra of partially transposed operators and derive expressions for matrix elements of the representations. It appears that there are two kinds of irreducible representations of the algebra. The first one is strictly connected with the representations of the group S(n − 1) induced by irreduciblemore » representations of the group S(n − 2). The second kind is structurally connected with irreducible representations of the group S(n − 1)« less
Enlarged symmetry algebras of spin chains, loop models, and S-matrices
NASA Astrophysics Data System (ADS)
Read, N.; Saleur, H.
2007-08-01
The symmetry algebras of certain families of quantum spin chains are considered in detail. The simplest examples possess m states per site ( m⩾2), with nearest-neighbor interactions with U(m) symmetry, under which the sites transform alternately along the chain in the fundamental m and its conjugate representation m¯. We find that these spin chains, even with arbitrary coefficients of these interactions, have a symmetry algebra A much larger than U(m), which implies that the energy eigenstates fall into sectors that for open chains (i.e., free boundary conditions) can be labeled by j=0,1,…,L, for the 2 L-site chain such that the degeneracies of all eigenvalues in the jth sector are generically the same and increase rapidly with j. For large j, these degeneracies are much larger than those that would be expected from the U(m) symmetry alone. The enlarged symmetry algebra A(2L) consists of operators that commute in this space of states with the Temperley-Lieb algebra that is generated by the set of nearest-neighbor interaction terms; A(2L) is not a Yangian. There are similar results for supersymmetric chains with gl(m+n|n) symmetry of nearest-neighbor interactions, and a richer representation structure for closed chains (i.e., periodic boundary conditions). The symmetries also apply to the loop models that can be obtained from the spin chains in a spacetime or transfer matrix picture. In the loop language, the symmetries arise because the loops cannot cross. We further define tensor products of representations (for the open chains) by joining chains end to end. The fusion rules for decomposing the tensor product of representations labeled j and j take the same form as the Clebsch-Gordan series for SU(2). This and other structures turn the symmetry algebra A into a ribbon Hopf algebra, and we show that this is "Morita equivalent" to the quantum group U(sl) for m=q+q. The open-chain results are extended to the cases |m|<2 for which the algebras are no longer semisimple; these possess continuum limits that are critical (conformal) field theories, or massive perturbations thereof. Such models, for open and closed boundary conditions, arise in connection with disordered fermions, percolation, and polymers (self-avoiding walks), and certain non-linear sigma models, all in two dimensions. A product operation is defined in a related way for the Temperley-Lieb representations also, and the fusion rules for this are related to those for A or U(sl) representations; this is useful for the continuum limits also, as we discuss in a companion paper.
On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2017-06-01
Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.
NASA Astrophysics Data System (ADS)
De Sole, Alberto; Kac, Victor G.; Valeri, Daniele
2018-06-01
We prove that any classical affine W-algebra W (g, f), where g is a classical Lie algebra and f is an arbitrary nilpotent element of g, carries an integrable Hamiltonian hierarchy of Lax type equations. This is based on the theories of generalized Adler type operators and of generalized quasideterminants, which we develop in the paper. Moreover, we show that under certain conditions, the product of two generalized Adler type operators is a Lax type operator. We use this fact to construct a large number of integrable Hamiltonian systems, recovering, as a special case, all KdV type hierarchies constructed by Drinfeld and Sokolov.
Computational Workbench for Multibody Dynamics
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2007-01-01
PyCraft is a computer program that provides an interactive, workbenchlike computing environment for developing and testing algorithms for multibody dynamics. Examples of multibody dynamic systems amenable to analysis with the help of PyCraft include land vehicles, spacecraft, robots, and molecular models. PyCraft is based on the Spatial-Operator- Algebra (SOA) formulation for multibody dynamics. The SOA operators enable construction of simple and compact representations of complex multibody dynamical equations. Within the Py-Craft computational workbench, users can, essentially, use the high-level SOA operator notation to represent the variety of dynamical quantities and algorithms and to perform computations interactively. PyCraft provides a Python-language interface to underlying C++ code. Working with SOA concepts, a user can create and manipulate Python-level operator classes in order to implement and evaluate new dynamical quantities and algorithms. During use of PyCraft, virtually all SOA-based algorithms are available for computational experiments.
Aspects of QCD current algebra on a null plane
NASA Astrophysics Data System (ADS)
Beane, S. R.; Hobbs, T. J.
2016-09-01
Consequences of QCD current algebra formulated on a light-like hyperplane are derived for the forward scattering of vector and axial-vector currents on an arbitrary hadronic target. It is shown that current algebra gives rise to a special class of sum rules that are direct consequences of the independent chiral symmetry that exists at every point on the two-dimensional transverse plane orthogonal to the lightlike direction. These sum rules are obtained by exploiting the closed, infinite-dimensional algebra satisfied by the transverse moments of null-plane axial-vector and vector charge distributions. In the special case of a nucleon target, this procedure leads to the Adler-Weisberger, Gerasimov-Drell-Hearn, Cabibbo-Radicati and Fubini-Furlan-Rossetti sum rules. Matching to the dispersion-theoretic language which is usually invoked in deriving these sum rules, the moment sum rules are shown to be equivalent to algebraic constraints on forward S-matrix elements in the Regge limit.
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
NASA Technical Reports Server (NTRS)
Iachello, Franco
1995-01-01
An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyadera, Takayuki; Imai, Hideki; Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551
This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloningmore » on effect algebras and hidden variables.« less
Highest-weight representations of Brocherd`s algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slansky, R.
1997-01-01
General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.
Artificial Neural Networks Equivalent to Fuzzy Algebra T-Norm Conjunction Operators
NASA Astrophysics Data System (ADS)
Iliadis, L. S.; Spartalis, S. I.
2007-12-01
This paper describes the construction of three Artificial Neural Networks with fuzzy input and output, imitating the performance of fuzzy algebra conjunction operators. More specifically, it is applied over the results of a previous research effort that used T-Norms in order to produce a characteristic torrential risk index that unified the partial risk indices for the area of Xanthi. Each one of the three networks substitutes a T-Norm and consequently they can be used as equivalent operators. This means that ANN performing Fuzzy Algebra operations can be designed and developed.
A Domain-Specific Language for Discrete Mathematics
NASA Astrophysics Data System (ADS)
Jha, Rohit; Samuel, Alfy; Pawar, Ashmee; Kiruthika, M.
2013-05-01
This paper discusses a Domain Specific Language (DSL) that has been developed to enable implementation of concepts of discrete mathematics. A library of data types and functions provides functionality which is frequently required by users. Covering the areas of Mathematical Logic, Set Theory, Functions, Graph Theory, Number Theory, Linear Algebra and Combinatorics, the language's syntax is close to the actual notation used in the specific fields.
ERIC Educational Resources Information Center
Education Development Center, Inc., 2016
2016-01-01
In the domain of "Operations & Algebraic Thinking," Common Core State Standards indicate that in kindergarten, first grade, and second grade, children should demonstrate and expand their ability to understand, represent, and solve problems using the operations of addition and subtraction, laying the foundation for operations using…
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
Generic, Type-Safe and Object Oriented Computer Algebra Software
NASA Astrophysics Data System (ADS)
Kredel, Heinz; Jolly, Raphael
Advances in computer science, in particular object oriented programming, and software engineering have had little practical impact on computer algebra systems in the last 30 years. The software design of existing systems is still dominated by ad-hoc memory management, weakly typed algorithm libraries and proprietary domain specific interactive expression interpreters. We discuss a modular approach to computer algebra software: usage of state-of-the-art memory management and run-time systems (e.g. JVM) usage of strongly typed, generic, object oriented programming languages (e.g. Java) and usage of general purpose, dynamic interactive expression interpreters (e.g. Python) To illustrate the workability of this approach, we have implemented and studied computer algebra systems in Java and Scala. In this paper we report on the current state of this work by presenting new examples.
Super-Laplacians and their symmetries
NASA Astrophysics Data System (ADS)
Howe, P. S.; Lindström, U.
2017-05-01
A super-Laplacian is a set of differential operators in superspace whose highestdimensional component is given by the spacetime Laplacian. Symmetries of super-Laplacians are given by linear differential operators of arbitrary finite degree and are determined by superconformal Killing tensors. We investigate these in flat superspaces. The differential operators determining the symmetries give rise to algebras which can be identified in many cases with the tensor algebras of the relevant superconformal Lie algebras modulo certain ideals. They have applications to Higher Spin theories.
Massless conformal fields, AdS (d+1)/CFT d higher spin algebras and their deformations
Fernando, Sudarshan; Gunaydin, Murat
2016-02-04
Here, we extend our earlier work on the minimal unitary representation of SO(d, 2)and its deformations for d=4, 5and 6to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d, 2)and its deformations and massless conformal fields in Minkowskian spacetimes in ddimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d+1)/CFT d higher spin algebra. For deformed minrepsmore » the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d–2)for massless representations.« less
Category-theoretic models of algebraic computer systems
NASA Astrophysics Data System (ADS)
Kovalyov, S. P.
2016-01-01
A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.
NASA Astrophysics Data System (ADS)
Kllogjeri, Pellumb
In present age we are witnesses and practioners of computer-based education which is highly speed progressing. The computer-based education allows educators and students to use educational programming language and e-tutors to teach and learn, to interact with one another and share together the results of their work. The computer-based education is done possible by special electronic tools among which the most important are the mathematical programmes. There are many mathematical programmes, but one which is being embraced and used by a daily increasing number of users throughout the world is GeoGebra. The recently published software GeoGebra by Markus Hohenwater (2004) explicitly links geometry and algebra. GeoGebra affords a bidirectional combination of geometry and algebra that differs from earlier software forms. The bidirectional combination means that, for instance, by typing in an equation in the algebra window, the graph of the equation will be shown in the dynamic and graphic window. This programme is so much preferred because of its three main features: the double representation of the mathematical object(geometric and algebraic), there are not strong requirements as to the age and the knowledge in using it(the students of the elementary school can use it as well) and, it is offered free of charge(simply by downloading it). In this paper we are concentrating in the double representation of the mathematical object and its advantages in explaining and forming mathematical concepts and performing operations, in the global opportunities for using GeoGebra and the benefits of using it by cooperating and sharing experiences.
Selecting reusable components using algebraic specifications
NASA Technical Reports Server (NTRS)
Eichmann, David A.
1992-01-01
A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline a mixed classification/axiomatic approach to this problem based upon our lattice-based faceted classification technique and Guttag and Horning's algebraic specification techniques. This approach selects candidates by natural language-derived classification, by their interfaces, using signatures, and by their behavior, using axioms. We briefly outline our problem domain and related work. Lattice-based faceted classifications are described; the reader is referred to surveys of the extensive literature for algebraic specification techniques. Behavioral support for reuse queries is presented, followed by the conclusions.
A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra
NASA Astrophysics Data System (ADS)
Foulis, David J.; Jenčová, Anna; Pulmannová, Sylvia
2017-10-01
A generalized Hermitian (GH-) algebra is a generalization of the partially ordered Jordan algebra of all Hermitian operators on a Hilbert space. We introduce the notion of a gh-tribe, which is a commutative GH-algebra of functions on a nonempty set X with pointwise partial order and operations, and we prove that every commutative GH-algebra is the image of a gh-tribe under a surjective GH-morphism. Using this result, we prove that each element a of a GH-algebra A corresponds to a real observable ξa on the σ-orthomodular lattice of projections in A and that ξa determines the spectral resolution of a. Also, if f is a continuous function defined on the spectrum of a, we formulate a definition of f (a), thus obtaining a continuous functional calculus for A.
Algebraic, geometric, and stochastic aspects of genetic operators
NASA Technical Reports Server (NTRS)
Foo, N. Y.; Bosworth, J. L.
1972-01-01
Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, Michael S
2017-11-08
HPC software for ab-initio, condensed-matter physics, quantum mechanics calculations needs to be built on top of well tested libraries some of which address requirements unique to the programming domain. During the development of the DCA++ code, that we use in our research, we have developed a collection of libraries that may be of use to other computational scientists working in the same or similar domains. The libraries include: a) a pythonic input-language system, b) tensors whose shape is constructed from generalized dimension objects such at time domains. frequency domains, momentum domains, vertex domains et. al. and c) linear algebra operationsmore » that resolve to BLA/LAPACK operations when possible. This supports the implementation of Greens functions and operations on them such as are used in condensed matter physics.« less
Flipped Instruction with English Language Learners at a Newcomer High School
ERIC Educational Resources Information Center
Graziano, Kevin J.; Hall, John D.
2017-01-01
Research on flipped instruction with English Language Learners (ELLs) is sparse. Data-driven flipped research conducted with ELLs primarily involves adult learners attending a college or university. This study examined the academic performance of secondary ELLs who received flipped instruction in an algebra course at a newcomer school compared to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernando, Sudarshan; Gunaydin, Murat
Here, we extend our earlier work on the minimal unitary representation of SO(d, 2)and its deformations for d=4, 5and 6to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d, 2)and its deformations and massless conformal fields in Minkowskian spacetimes in ddimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d+1)/CFT d higher spin algebra. For deformed minrepsmore » the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d–2)for massless representations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlichenmaier, M
Recently, Lax operator algebras appeared as a new class of higher genus current-type algebras. Introduced by Krichever and Sheinman, they were based on Krichever's theory of Lax operators on algebraic curves. These algebras are almost-graded Lie algebras of currents on Riemann surfaces with marked points (in-points, out-points and Tyurin points). In a previous joint article with Sheinman, the author classified the local cocycles and associated almost-graded central extensions in the case of one in-point and one out-point. It was shown that the almost-graded extension is essentially unique. In this article the general case of Lax operator algebras corresponding to several in- andmore » out-points is considered. As a first step they are shown to be almost-graded. The grading is given by splitting the marked points which are non-Tyurin points into in- and out-points. Next, classification results both for local and bounded cocycles are proved. The uniqueness theorem for almost-graded central extensions follows. To obtain this generalization additional techniques are needed which are presented in this article. Bibliography: 30 titles.« less
The conceptual basis of mathematics in cardiology: (I) algebra, functions and graphs.
Bates, Jason H T; Sobel, Burton E
2003-02-01
This is the first in a series of four articles developed for the readers of. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas. This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease, abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.
NASA Astrophysics Data System (ADS)
Baseilhac, Pascal; Tsuboi, Zengo
2018-04-01
We consider intertwining relations of the augmented q-Onsager algebra introduced by Ito and Terwilliger, and obtain generic (diagonal) boundary K-operators in terms of the Cartan element of Uq (sl2). These K-operators solve reflection equations. Taking appropriate limits of these K-operators in Verma modules, we derive K-operators for Baxter Q-operators and corresponding reflection equations.
A tensor Banach algebra approach to abstract kinetic equations
NASA Astrophysics Data System (ADS)
Greenberg, W.; van der Mee, C. V. M.
The study deals with a concrete algebraic construction providing the existence theory for abstract kinetic equation boundary-value problems, when the collision operator A is an accretive finite-rank perturbation of the identity operator in a Hilbert space H. An algebraic generalization of the Bochner-Phillips theorem is utilized to study solvability of the abstract boundary-value problem without any regulatory condition. A Banach algebra in which the convolution kernel acts is obtained explicitly, and this result is used to prove a perturbation theorem for bisemigroups, which then plays a vital role in solving the initial equations.
[Formian 2 and a Formian Function for Processing Polyhedric Configurations
NASA Technical Reports Server (NTRS)
Nooshin, H.; Disney, P. L.; Champion, O. C.
1996-01-01
The work began in October 1994 with the following objectives: (1) to produce an improved version of the programming language Formian; and (2) to create a means for computer aided handling of polyhedric configurations including the geodesic forms of all kinds. A new version of Formian, referred to as Formian 2, is being implemented to operate in the Windows 95 environment. It is an ideal tool for configuration management in a convenient and user-friendly manner. The second objective was achieved by creating a standard Formian function that allows convenient handling of all types of polyhedric configurations. In particular, the focus of attention is on polyhedric configurations that are of importance in architectural and structural engineering fields. The natural medium for processing of polyhedric configurations is a programming language that incorporates the concepts of 'formex algebra'. Formian is such a programming language in which the processing of polyhedric configurations can be carried out using the standard elements of the language. A description of this function is included in a chapter for a book entitled 'Beyond the Cube: the Architecture of space Frames and Polyhedra'. A copy of this chapter is appended.
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.
Computer Algebra Systems in Undergraduate Instruction.
ERIC Educational Resources Information Center
Small, Don; And Others
1986-01-01
Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)
NASA Astrophysics Data System (ADS)
Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał
2018-03-01
Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.
Kleene Monads: Handling Iteration in a Framework of Generic Effects
NASA Astrophysics Data System (ADS)
Goncharov, Sergey; Schröder, Lutz; Mossakowski, Till
Monads are a well-established tool for modelling various computational effects. They form the semantic basis of Moggi’s computational metalanguage, the metalanguage of effects for short, which made its way into modern functional programming in the shape of Haskell’s do-notation. Standard computational idioms call for specific classes of monads that support additional control operations. Here, we introduce Kleene monads, which additionally feature nondeterministic choice and Kleene star, i.e. nondeterministic iteration, and we provide a metalanguage and a sound calculus for Kleene monads, the metalanguage of control and effects, which is the natural joint extension of Kleene algebra and the metalanguage of effects. This provides a framework for studying abstract program equality focussing on iteration and effects. These aspects are known to have decidable equational theories when studied in isolation. However, it is well known that decidability breaks easily; e.g. the Horn theory of continuous Kleene algebras fails to be recursively enumerable. Here, we prove several negative results for the metalanguage of control and effects; in particular, already the equational theory of the unrestricted metalanguage of control and effects over continuous Kleene monads fails to be recursively enumerable. We proceed to identify a fragment of this language which still contains both Kleene algebra and the metalanguage of effects and for which the natural axiomatisation is complete, and indeed the equational theory is decidable.
Productive High Performance Parallel Programming with Auto-tuned Domain-Specific Embedded Languages
2013-01-02
Compilation JVM Java Virtual Machine KB Kilobyte KDT Knowledge Discovery Toolbox LAPACK Linear Algebra Package LLVM Low-Level Virtual Machine LOC Lines...different starting points. Leo Meyerovich also helped solidify some of the ideas here in discussions during Par Lab retreats. I would also like to thank...multi-timestep computations by blocking in both time and space. 88 Implementation Output Approx DSL Type Language Language Parallelism LoC Graphite
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
{ital R}-matrix theory, formal Casimirs and the periodic Toda lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morosi, C.; Pizzocchero, L.
The nonunitary {ital r}-matrix theory and the associated bi- and triHamiltonian schemes are considered. The language of Poisson pencils and of their formal Casimirs is applied in this framework to characterize the biHamiltonian chains of integrals of motion, pointing out the role of the Schur polynomials in these constructions. This formalism is subsequently applied to the periodic Toda lattice. Some different algebraic settings and Lax formulations proposed in the literature for this system are analyzed in detail, and their full equivalence is exploited. In particular, the equivalence between the loop algebra approach and the method of differential-difference operators is illustrated;more » moreover, two alternative Lax formulations are considered, and appropriate reduction algorithms are found in both cases, allowing us to derive the multiHamiltonian formalism from {ital r}-matrix theory. The systems of integrals for the periodic Toda lattice known after Flaschka and H{acute e}non, and their functional relations, are recovered through systematic application of the previously outlined schemes. {copyright} {ital 1996 American Institute of Physics.}« less
ERIC Educational Resources Information Center
Boiteau, Denise; Stansfield, David
This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative…
Generalizations of the classical Yang-Baxter equation and O-operators
NASA Astrophysics Data System (ADS)
Bai, Chengming; Guo, Li; Ni, Xiang
2011-06-01
Tensor solutions (r-matrices) of the classical Yang-Baxter equation (CYBE) in a Lie algebra, obtained as the classical limit of the R-matrix solution of the quantum Yang-Baxter equation, is an important structure appearing in different areas such as integrable systems, symplectic geometry, quantum groups, and quantum field theory. Further study of CYBE led to its interpretation as certain operators, giving rise to the concept of {O}-operators. The O-operators were in turn interpreted as tensor solutions of CYBE by enlarging the Lie algebra [Bai, C., "A unified algebraic approach to the classical Yang-Baxter equation," J. Phys. A: Math. Theor. 40, 11073 (2007)], 10.1088/1751-8113/40/36/007. The purpose of this paper is to extend this study to a more general class of operators that were recently introduced [Bai, C., Guo, L., and Ni, X., "Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras," Commun. Math. Phys. 297, 553 (2010)], 10.1007/s00220-010-0998-7 in the study of Lax pairs in integrable systems. Relations between O-operators, relative differential operators, and Rota-Baxter operators are also discussed.
Dynamic Order Algebras as an Axiomatization of Modal and Tense Logics
NASA Astrophysics Data System (ADS)
Chajda, Ivan; Paseka, Jan
2015-12-01
The aim of the paper is to introduce and describe tense operators in every propositional logic which is axiomatized by means of an algebra whose underlying structure is a bounded poset or even a lattice. We introduce the operators G, H, P and F without regard what propositional connectives the logic includes. For this we use the axiomatization of universal quantifiers as a starting point and we modify these axioms for our reasons. At first, we show that the operators can be recognized as modal operators and we study the pairs ( P, G) as the so-called dynamic order pairs. Further, we get constructions of these operators in the corresponding algebra provided a time frame is given. Moreover, we solve the problem of finding a time frame in the case when the tense operators are given. In particular, any tense algebra is representable in its Dedekind-MacNeille completion. Our approach is fully general, we do not relay on the logic under consideration and hence it is applicable in all the up to now known cases.
NASA Astrophysics Data System (ADS)
Nurhayati, D. M.; Herman, T.; Suhendra, S.
2017-09-01
This study aims to determine the difficulties of algebraic thinking ability of students in one of secondary school on quadrilateral subject and to describe Math-Talk Learning Community as the alternative way that can be done to overcome the difficulties of the students’ algebraic thinking ability. Research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and twenty three students as the sample that was chosen by purposive sampling technique. Data of algebraic thinking were collected through essay test. The results showed the percentage of achievement of students’ algebraic thinking’s indicators on three aspects: a) algebra as generalized arithmetic with the indicators (conceptually based computational strategies and estimation); b) algebra as the language of mathematics (meaning of variables, variable expressions and meaning of solution); c) algebra as a tool for functions and mathematical modelling (representing mathematical ideas using equations, tables, or words and generalizing patterns and rules in real-world contexts) is still low. It is predicted that because the secondary school students was not familiar with the abstract problem and they are still at a semi-concrete stage where the stage of cognitive development is between concrete and abstract. Based on the percentage achievement of each indicators, it can be concluded that the level of achievement of student’s mathematical communication using conventional learning is still low, so students’ algebraic thinking ability need to be improved.
Hopf-algebraic structure of combinatorial objects and differential operators
NASA Technical Reports Server (NTRS)
Grossman, Robert; Larson, Richard G.
1989-01-01
A Hopf-algebraic structure on a vector space which has as basis a family of trees is described. Some applications of this structure to combinatorics and to differential operators are surveyed. Some possible future directions for this work are indicated.
Genomic region operation kit for flexible processing of deep sequencing data.
Ovaska, Kristian; Lyly, Lauri; Sahu, Biswajyoti; Jänne, Olli A; Hautaniemi, Sampsa
2013-01-01
Computational analysis of data produced in deep sequencing (DS) experiments is challenging due to large data volumes and requirements for flexible analysis approaches. Here, we present a mathematical formalism based on set algebra for frequently performed operations in DS data analysis to facilitate translation of biomedical research questions to language amenable for computational analysis. With the help of this formalism, we implemented the Genomic Region Operation Kit (GROK), which supports various DS-related operations such as preprocessing, filtering, file conversion, and sample comparison. GROK provides high-level interfaces for R, Python, Lua, and command line, as well as an extension C++ API. It supports major genomic file formats and allows storing custom genomic regions in efficient data structures such as red-black trees and SQL databases. To demonstrate the utility of GROK, we have characterized the roles of two major transcription factors (TFs) in prostate cancer using data from 10 DS experiments. GROK is freely available with a user guide from >http://csbi.ltdk.helsinki.fi/grok/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less
Image-algebraic design of multispectral target recognition algorithms
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.
1994-06-01
In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be
2015-06-15
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less
NASA Astrophysics Data System (ADS)
Krsolarlak, Ilona
We analyze a certain class of von Neumann algebras generated by selfadjoint elements , for satisfying the general commutation relations:
Rota-Baxter operators on sl (2,C) and solutions of the classical Yang-Baxter equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Jun, E-mail: peitsun@163.com; Bai, Chengming, E-mail: baicm@nankai.edu.cn; Guo, Li, E-mail: liguo@rutgers.edu
2014-02-15
We explicitly determine all Rota-Baxter operators (of weight zero) on sl (2,C) under the Cartan-Weyl basis. For the skew-symmetric operators, we give the corresponding skew-symmetric solutions of the classical Yang-Baxter equation in sl (2,C), confirming the related study by Semenov-Tian-Shansky. In general, these Rota-Baxter operators give a family of solutions of the classical Yang-Baxter equation in the six-dimensional Lie algebra sl (2,C)⋉{sub ad{sup *}} sl (2,C){sup *}. They also give rise to three-dimensional pre-Lie algebras which in turn yield solutions of the classical Yang-Baxter equation in other six-dimensional Lie algebras.
Gartner, Daniel; Padman, Rema
2017-01-01
In this paper, we describe the development of a unified framework and a digital workbench for the strategic, tactical and operational hospital management plan driven by information technology and analytics. The workbench can be used not only by multiple stakeholders in the healthcare delivery setting, but also for pedagogical purposes on topics such as healthcare analytics, services management, and information systems. This tool combines the three classical hierarchical decision-making levels in one integrated environment. At each level, several decision problems can be chosen. Extensions of mathematical models from the literature are presented and incorporated into the digital platform. In a case study using real-world data, we demonstrate how we used the workbench to inform strategic capacity planning decisions in a multi-hospital, multi-stakeholder setting in the United Kingdom.
A New Approach to an Old Order.
ERIC Educational Resources Information Center
Rambhia, Sanjay
2002-01-01
Explains the difficulties middle school students face in algebra regarding the order of operations. Describes a more visual approach to teaching the order of operations so that students can better solve complex problems and be better prepared for the rigors of algebra. (YDS)
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
This is the student text for part one of a three-part SMSG algebra course for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include congruence; numbers and variables; operations;…
NASA Astrophysics Data System (ADS)
Kimura, Taro; Pestun, Vasily
2018-06-01
For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.
The theory of Enceladus and Dione: An application of computerized algebra in dynamical astronomy
NASA Technical Reports Server (NTRS)
Jefferys, W. H.; Ries, L. M.
1974-01-01
A theory of Saturn's satellites Enceladus and Dione is discussed which is literal (all constants of integration appear explicitly), canonically invariant (the Hori-Lie method is used), and which correctly handles the eccentricity-type resonance between the two satellites. Algebraic manipulations are designed to be performed using the TRIGMAN formula manipulation language, and computer programs were developed so that, with minor modifications, they can be used on the Mimas-Tethys and Titan-Hyperion systems.
Learning Activity Package, Algebra.
ERIC Educational Resources Information Center
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…
Algebra 1r, Mathematics (Experimental): 5215.13.
ERIC Educational Resources Information Center
Strachan, Florence
This third of six guidebooks on minimum course content for first-year algebra includes work with laws of exponents; multiplication, division, and factoring of polynomials; and fundamental operations with rational algebraic expressions. Course goals are stated, performance objectives listed, a course outline provided, testbook references specified…
NASA Astrophysics Data System (ADS)
Dragan, Laurentiu; Watt, Stephen M.
Computer algebra in scientific computation squarely faces the dilemma of natural mathematical expression versus efficiency. While higher-order programming constructs and parametric polymorphism provide a natural and expressive language for mathematical abstractions, they can come at a considerable cost. We investigate how deeply nested type constructions may be optimized to achieve performance similar to that of hand-tuned code written in lower-level languages.
ERIC Educational Resources Information Center
Parker, Catherine Frieda
2010-01-01
A possible contributing factor to students' difficulty in learning advanced mathematics is the conflict between students' "natural" learning styles and the formal structure of mathematics, which is based on definitions, theorems, and proofs. Students' natural learning styles may be a function of their intuition and language skills. The purpose of…
Chiral algebras in Landau-Ginzburg models
NASA Astrophysics Data System (ADS)
Dedushenko, Mykola
2018-03-01
Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.
Pre-Algebra Groups. Concepts & Applications.
ERIC Educational Resources Information Center
Montgomery County Public Schools, Rockville, MD.
Discussion material and exercises related to pre-algebra groups are provided in this five chapter manual. Chapter 1 (mappings) focuses on restricted domains, order of operations (parentheses and exponents), rules of assignment, and computer extensions. Chapter 2 considers finite number systems, including binary operations, clock arithmetic,…
NASA Astrophysics Data System (ADS)
Jurčo, B.; Schlieker, M.
1995-07-01
In this paper explicitly natural (from the geometrical point of view) Fock-space representations (contragradient Verma modules) of the quantized enveloping algebras are constructed. In order to do so, one starts from the Gauss decomposition of the quantum group and introduces the differential operators on the corresponding q-deformed flag manifold (assumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group are expressed as first-order differential operators on the q-deformed flag manifold.
Yangians and Yang-Baxter R-operators for ortho-symplectic superalgebras
NASA Astrophysics Data System (ADS)
Fuksa, J.; Isaev, A. P.; Karakhanyan, D.; Kirschner, R.
2017-04-01
Yang-Baxter relations symmetric with respect to the ortho-symplectic superalgebras are studied. We start with the formulation of graded algebras and the linear superspace carrying the vector (fundamental) representation of the ortho-symplectic supergroup. On this basis we study the analogy of the Yang-Baxter operators considered earlier for the cases of orthogonal and symplectic symmetries: the vector (fundamental) R-matrix, the L-operator defining the Yangian algebra and its first and second order evaluations. We investigate the condition for L (u) in the case of the truncated expansion in inverse powers of u and give examples of Lie algebra representations obeying these conditions. We construct the R-operator intertwining two superspinor representations and study the fusion of L-operators involving the tensor product of such representations.
Statistical Aspects of Coherent States of the Higgs Algebra
NASA Astrophysics Data System (ADS)
Shreecharan, T.; Kumar, M. Naveen
2018-04-01
We construct and study various aspects of coherent states of a polynomial angular momentum algebra. The coherent states are constructed using a new unitary representation of the nonlinear algebra. The new representation involves a parameter γ that shifts the eigenvalues of the diagonal operator J 0.
A C++11 implementation of arbitrary-rank tensors for high-performance computing
NASA Astrophysics Data System (ADS)
Aragón, Alejandro M.
2014-06-01
This article discusses an efficient implementation of tensors of arbitrary rank by using some of the idioms introduced by the recently published C++ ISO Standard (C++11). With the aims at providing a basic building block for high-performance computing, a single Array class template is carefully crafted, from which vectors, matrices, and even higher-order tensors can be created. An expression template facility is also built around the array class template to provide convenient mathematical syntax. As a result, by using templates, an extra high-level layer is added to the C++ language when dealing with algebraic objects and their operations, without compromising performance. The implementation is tested running on both CPU and GPU.
A C++11 implementation of arbitrary-rank tensors for high-performance computing
NASA Astrophysics Data System (ADS)
Aragón, Alejandro M.
2014-11-01
This article discusses an efficient implementation of tensors of arbitrary rank by using some of the idioms introduced by the recently published C++ ISO Standard (C++11). With the aims at providing a basic building block for high-performance computing, a single Array class template is carefully crafted, from which vectors, matrices, and even higher-order tensors can be created. An expression template facility is also built around the array class template to provide convenient mathematical syntax. As a result, by using templates, an extra high-level layer is added to the C++ language when dealing with algebraic objects and their operations, without compromising performance. The implementation is tested running on both CPU and GPU.
Quantum field theory and the linguistic Minimalist Program: a remarkable isomorphism
NASA Astrophysics Data System (ADS)
Piattelli-Palmarini, M.; Vitiello, G.
2017-08-01
By resorting to recent results, we show that an isomorphism exist between linguistic features of the Minimalist Program and the quantum field theory formalism of condensed matter physics. Specific linguistic features which admit a representation in terms of the many-body algebraic formalism are the unconstrained nature of recursive Merge, the operation of the Labeling Algorithm, the difference between pronounced and un-pronounced copies of elements in a sentence and the build-up of the Fibonacci sequence in the syntactic derivation of sentence structures. The collective dynamical nature of the formation process of Logical Forms leading to the individuation of the manifold of concepts and the computational self-consistency of languages are also discussed.
Quantum groups, Yang-Baxter maps and quasi-determinants
NASA Astrophysics Data System (ADS)
Tsuboi, Zengo
2018-01-01
For any quasi-triangular Hopf algebra, there exists the universal R-matrix, which satisfies the Yang-Baxter equation. It is known that the adjoint action of the universal R-matrix on the elements of the tensor square of the algebra constitutes a quantum Yang-Baxter map, which satisfies the set-theoretic Yang-Baxter equation. The map has a zero curvature representation among L-operators defined as images of the universal R-matrix. We find that the zero curvature representation can be solved by the Gauss decomposition of a product of L-operators. Thereby obtained a quasi-determinant expression of the quantum Yang-Baxter map associated with the quantum algebra Uq (gl (n)). Moreover, the map is identified with products of quasi-Plücker coordinates over a matrix composed of the L-operators. We also consider the quasi-classical limit, where the underlying quantum algebra reduces to a Poisson algebra. The quasi-determinant expression of the quantum Yang-Baxter map reduces to ratios of determinants, which give a new expression of a classical Yang-Baxter map.
On boundary fusion and functional relations in the Baxterized affine Hecke algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichenko, A., E-mail: babichen@weizmann.ac.il; Regelskis, V., E-mail: v.regelskis@surrey.ac.uk
2014-04-15
We construct boundary type operators satisfying fused reflection equation for arbitrary representations of the Baxterized affine Hecke algebra. These operators are analogues of the fused reflection matrices in solvable half-line spin chain models. We show that these operators lead to a family of commuting transfer matrices of Sklyanin type. We derive fusion type functional relations for these operators for two families of representations.
Phillips, Steven; Wilson, William H.
2012-01-01
Human cognitive capacity includes recursively definable concepts, which are prevalent in domains involving lists, numbers, and languages. Cognitive science currently lacks a satisfactory explanation for the systematic nature of such capacities (i.e., why the capacity for some recursive cognitive abilities–e.g., finding the smallest number in a list–implies the capacity for certain others–finding the largest number, given knowledge of number order). The category-theoretic constructs of initial F-algebra, catamorphism, and their duals, final coalgebra and anamorphism provide a formal, systematic treatment of recursion in computer science. Here, we use this formalism to explain the systematicity of recursive cognitive capacities without ad hoc assumptions (i.e., to the same explanatory standard used in our account of systematicity for non-recursive capacities). The presence of an initial algebra/final coalgebra explains systematicity because all recursive cognitive capacities, in the domain of interest, factor through (are composed of) the same component process. Moreover, this factorization is unique, hence no further (ad hoc) assumptions are required to establish the intrinsic connection between members of a group of systematically-related capacities. This formulation also provides a new perspective on the relationship between recursive cognitive capacities. In particular, the link between number and language does not depend on recursion, as such, but on the underlying functor on which the group of recursive capacities is based. Thus, many species (and infants) can employ recursive processes without having a full-blown capacity for number and language. PMID:22514704
Making Associativity Operational
ERIC Educational Resources Information Center
Asghari, Amir H.; Khosroshahi, Leyla G.
2017-01-01
The purpose of this paper is to propose an "operational" idea for developing algebraic thinking in the absence of alphanumeric symbols. The paper reports on a design experiment encouraging preschool children to use the associative property algebraically. We describe the theoretical basis of the design, the tasks used, and examples of…
Plethystic vertex operators and boson-fermion correspondences
NASA Astrophysics Data System (ADS)
Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.
2016-10-01
We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.
On the index of noncommutative elliptic operators over C*-algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savin, Anton Yu; Sternin, Boris Yu
2010-05-11
We consider noncommutative elliptic operators over C*-algebras, associated with a discrete group of isometries of a manifold. The main result of the paper is a formula expressing the Chern characters of the index (Connes invariants) in topological terms. As a corollary to this formula a simple proof of higher index formulae for noncommutative elliptic operators is obtained. Bibliography: 36 titles.
Vector-matrix-quaternion, array and arithmetic packages: All HAL/S functions implemented in Ada
NASA Technical Reports Server (NTRS)
Klumpp, Allan R.; Kwong, David D.
1986-01-01
The HAL/S avionics programmers have enjoyed a variety of tools built into a language tailored to their special requirements. Ada is designed for a broader group of applications. Rather than providing built-in tools, Ada provides the elements with which users can build their own. Standard avionic packages remain to be developed. These must enable programmers to code in Ada as they have coded in HAL/S. The packages under development at JPL will provide all of the vector-matrix, array, and arithmetic functions described in the HAL/S manuals. In addition, the linear algebra package will provide all of the quaternion functions used in Shuttle steering and Galileo attitude control. Furthermore, using Ada's extensibility, many quaternion functions are being implemented as infix operations; equivalent capabilities were never implemented in HAL/S because doing so would entail modifying the compiler and expanding the language. With these packages, many HAL/S expressions will compile and execute in Ada, unchanged. Others can be converted simply by replacing the implicit HAL/S multiply operator with the Ada *. Errors will be trapped and identified. Input/output will be convenient and readable.
Math 3013--Developmental Mathematics I and II. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course that requires some previous knowledge of algebra and the ability to work at a rapid pace. Topics include the basic operations with signed integers; fractions; decimals; literal expressions; algebraic fractions; radicals;…
Topology of the conceptual network of language
NASA Astrophysics Data System (ADS)
Motter, Adilson E.; de Moura, Alessandro P.; Lai, Ying-Cheng; Dasgupta, Partha
2002-06-01
We define two words in a language to be connected if they express similar concepts. The network of connections among the many thousands of words that make up a language is important not only for the study of the structure and evolution of languages, but also for cognitive science. We study this issue quantitatively, by mapping out the conceptual network of the English language, with the connections being defined by the entries in a Thesaurus dictionary. We find that this network presents a small-world structure, with an amazingly small average shortest path, and appears to exhibit an asymptotic scale-free feature with algebraic connectivity distribution.
Spectral relationships between kicked Harper and on-resonance double kicked rotor operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, Wayne; Mouritzen, Anders S.; Wang Jiao
2009-03-15
Kicked Harper operators and on-resonance double kicked rotor operators model quantum systems whose semiclassical limits exhibit chaotic dynamics. Recent computational studies indicate a striking resemblance between the spectra of these operators. In this paper we apply C*-algebra methods to explain this resemblance. We show that each pair of corresponding operators belongs to a common rotation C*-algebra B{sub {alpha}}, prove that their spectra are equal if {alpha} is irrational, and prove that the Hausdorff distance between their spectra converges to zero as q increases if {alpha}=p/q with p and q coprime integers. Moreover, we show that corresponding operators in B{sub {alpha}}more » are homomorphic images of mother operators in the universal rotation C*-algebra A{sub {alpha}} that are unitarily equivalent and hence have identical spectra. These results extend analogous results for almost Mathieu operators. We also utilize the C*-algebraic framework to develop efficient algorithms to compute the spectra of these mother operators for rational {alpha} and present preliminary numerical results that support the conjecture that their spectra are Cantor sets if {alpha} is irrational. This conjecture for almost Mathieu operators, called the ten Martini problem, was recently proven after intensive efforts over several decades. This proof for the almost Mathieu operators utilized transfer matrix methods, which do not exist for the kicked operators. We outline a strategy, based on a special property of loop groups of semisimple Lie groups, to prove this conjecture for the kicked operators.« less
Quantum superintegrable system with a novel chain structure of quadratic algebras
NASA Astrophysics Data System (ADS)
Liao, Yidong; Marquette, Ian; Zhang, Yao-Zhong
2018-06-01
We analyse the n-dimensional superintegrable Kepler–Coulomb system with non-central terms. We find a novel underlying chain structure of quadratic algebras formed by the integrals of motion. We identify the elements for each sub-structure and obtain the algebra relations satisfied by them and the corresponding Casimir operators. These quadratic sub-algebras are realized in terms of a chain of deformed oscillators with factorized structure functions. We construct the finite-dimensional unitary representations of the deformed oscillators, and give an algebraic derivation of the energy spectrum of the superintegrable system.
- XSUMMER- Transcendental functions and symbolic summation in FORM
NASA Astrophysics Data System (ADS)
Moch, S.; Uwer, P.
2006-05-01
Harmonic sums and their generalizations are extremely useful in the evaluation of higher-order perturbative corrections in quantum field theory. Of particular interest have been the so-called nested sums, where the harmonic sums and their generalizations appear as building blocks, originating for example, from the expansion of generalized hypergeometric functions around integer values of the parameters. In this paper we discuss the implementation of several algorithms to solve these sums by algebraic means, using the computer algebra system FORM. Program summaryTitle of program:XSUMMER Catalogue identifier:ADXQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXQ_v1_0 Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland License:GNU Public License and FORM License Computers:all Operating system:all Program language:FORM Memory required to execute:Depending on the complexity of the problem, recommended at least 64 MB RAM No. of lines in distributed program, including test data, etc.:9854 No. of bytes in distributed program, including test data, etc.:126 551 Distribution format:tar.gz Other programs called:none External files needed:none Nature of the physical problem:Systematic expansion of higher transcendental functions in a small parameter. The expansions arise in the calculation of loop integrals in perturbative quantum field theory. Method of solution:Algebraic manipulations of nested sums. Restrictions on complexity of the problem:Usually limited only by the available disk space. Typical running time:Dependent on the complexity of the problem.
A survey of functional programming language principles
NASA Technical Reports Server (NTRS)
Holloway, C. M.
1986-01-01
Research in the area of functional programming languages has intensified in the 8 years since John Backus' Turing Award Lecture on the topic was published. The purpose of this paper is to present a survey of the ideas of functional programming languages. The paper assumes the reader is comfortable with mathematics and has knowledge of the basic principles of traditional programming languages, but does not assume any prior knowledge of the ideas of functional languages. A simple functional language is defined and used to illustrate the basic ideas. Topics discussed include the reasons for developing functional languages, methods of expressing concurrency, the algebra of functional programming languages, program transformation techniques, and implementations of functional languages. Existing functional languages are also mentioned. The paper concludes with the author's opinions as to the future of functional languages. An annotated bibliography on the subject is also included.
Learning Activity Package, Algebra 93-94, LAPs 12-22.
ERIC Educational Resources Information Center
Evans, Diane
A set of 11 teacher-prepared Learning Activity Packages (LAPs) in beginning algebra, these units cover sets, properties of operations, operations over real numbers, open expressions, solution sets of equations and inequalities, equations and inequalities with two variables, solution sets of equations with two variables, exponents, factoring and…
Math 3007--Developmental Mathematics I. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course designed to develop student proficiency in the basic algebraic skills. This course is designed as the first of a two-semester sequence. Topics include operations with signed numbers; simple operations on monomials and…
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
The operator algebra approach to quantum groups
Kustermans, Johan; Vaes, Stefaan
2000-01-01
A relatively simple definition of a locally compact quantum group in the C*-algebra setting will be explained as it was recently obtained by the authors. At the same time, we put this definition in the historical and mathematical context of locally compact groups, compact quantum groups, Kac algebras, multiplicative unitaries, and duality theory. PMID:10639116
Introduction to Matrix Algebra, Student's Text, Unit 23.
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…
ERIC Educational Resources Information Center
McNeil, Nicole M.; Rittle-Johnson, Bethany; Hattikudur, Shanta; Petersen, Lori A.
2010-01-01
This study examined if solving arithmetic problems hinders undergraduates' accuracy on algebra problems. The hypothesis was that solving arithmetic problems would hinder accuracy because it activates an operational view of equations, even in educated adults who have years of experience with algebra. In three experiments, undergraduates (N = 184)…
Cubic map algebra functions for spatio-temporal analysis
Mennis, J.; Viger, R.; Tomlin, C.D.
2005-01-01
We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.
On Max-Plus Algebra and Its Application on Image Steganography
Santoso, Kiswara Agung
2018-01-01
We propose a new steganography method to hide an image into another image using matrix multiplication operations on max-plus algebra. This is especially interesting because the matrix used in encoding or information disguises generally has an inverse, whereas matrix multiplication operations in max-plus algebra do not have an inverse. The advantages of this method are the size of the image that can be hidden into the cover image, larger than the previous method. The proposed method has been tested on many secret images, and the results are satisfactory which have a high level of strength and a high level of security and can be used in various operating systems. PMID:29887761
On Max-Plus Algebra and Its Application on Image Steganography.
Santoso, Kiswara Agung; Fatmawati; Suprajitno, Herry
2018-01-01
We propose a new steganography method to hide an image into another image using matrix multiplication operations on max-plus algebra. This is especially interesting because the matrix used in encoding or information disguises generally has an inverse, whereas matrix multiplication operations in max-plus algebra do not have an inverse. The advantages of this method are the size of the image that can be hidden into the cover image, larger than the previous method. The proposed method has been tested on many secret images, and the results are satisfactory which have a high level of strength and a high level of security and can be used in various operating systems.
Fernando, Sudarshan; Günaydin, Murat
2014-11-28
We study the minimal unitary representation (minrep) of SO(5, 2), obtained by quantization of its geometric quasiconformal action, its deformations and supersymmetric extensions. The minrep of SO(5, 2) describes a massless conformal scalar field in five dimensions and admits a unique “deformation” which describes a massless conformal spinor. Scalar and spinor minreps of SO(5, 2) are the 5d analogs of Dirac’s singletons of SO(3, 2). We then construct the minimal unitary representation of the unique 5d supercon-formal algebra F(4) with the even subalgebra SO(5, 2) ×SU(2). The minrep of F(4) describes a massless conformal supermultiplet consisting of two scalar andmore » one spinor fields. We then extend our results to the construction of higher spin AdS 6/CFT 5 (super)-algebras. The Joseph ideal of the minrep of SO(5, 2) vanishes identically as operators and hence its enveloping algebra yields the AdS 6/CFT 5 bosonic higher spin algebra directly. The enveloping algebra of the spinor minrep defines a “deformed” higher spin algebra for which a deformed Joseph ideal vanishes identically as operators. These results are then extended to the construction of the unique higher spin AdS 6/CFT 5 superalgebra as the enveloping algebra of the minimal unitary realization of F(4) obtained by the quasiconformal methods.« less
Extensions of algebraic image operators: An approach to model-based vision
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morelli, Michael V.
1990-01-01
Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.
Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.
2016-01-01
The purpose of this study was to examine child-level pathways in development of pre-algebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of grade 2; calculation accuracy and calculation fluency at end of grade 2; and pre-algebraic knowledge and word-problem solving at end of grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than pre-algebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students’ foundational mathematics skills or cognitive processes. PMID:27786534
Projective formulation of Maggi's method for nonholonomic systems analysis
NASA Astrophysics Data System (ADS)
Blajer, Wojciech
1992-04-01
A projective interpretation of Maggi'a approach to dynamic analysis of nonholonomic systems is presented. Both linear and nonlinear constraint cases are treatment in unified fashion, using the language of vector spaces and tensor algebra analysis.
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Shaykhian, Gholam Ali
2011-01-01
MatLab(R) (MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many cou ntries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its re al strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbo x. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using s ymbolic operations. MatLab in its interpreter programming language fo rm (command interface) is similar with well known programming languag es such as C/C++, support data structures and cell arrays to define c lasses in object oriented programming. As such, MatLab is equipped with most ofthe essential constructs of a higher programming language. M atLab is packaged with an editor and debugging functionality useful t o perform analysis of large MatLab programs and find errors. We belie ve there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and ana lysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applicati ons. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientifi c problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabu lar format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed. The presentation will emphasize creating practIcal scripts (pro grams) that extend the basic features of MatLab TOPICS mclude (1) Ma trix and vector analysis and manipulations (2) Mathematical functions (3) Symbolic calculations & functions (4) Import/export data files (5) Program lOgic and flow control (6) Writing function and passing parameters (7) Test application programs
High-performance image processing architecture
NASA Astrophysics Data System (ADS)
Coffield, Patrick C.
1992-04-01
The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.
q-Derivatives, quantization methods and q-algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twarock, Reidun
1998-12-15
Using the example of Borel quantization on S{sup 1}, we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number {tau}. This extension is denoted as quasi-crystal Lie algebra, because thismore » is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed.« less
An algebra of discrete event processes
NASA Technical Reports Server (NTRS)
Heymann, Michael; Meyer, George
1991-01-01
This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.
ERIC Educational Resources Information Center
Crittenden, Barry D.
1991-01-01
A simple liquid-liquid equilibrium (LLE) system involving a constant partition coefficient based on solute ratios is used to develop an algebraic understanding of multistage contacting in a first-year separation processes course. This algebraic approach to the LLE system is shown to be operable for the introduction of graphical techniques…
Strategies for Solving Fraction Tasks and Their Link to Algebraic Thinking
ERIC Educational Resources Information Center
Pearn, Catherine; Stephens, Max
2015-01-01
Many researchers argue that a deep understanding of fractions is important for a successful transition to algebra. Teaching, especially in the middle years, needs to focus specifically on those areas of fraction knowledge and operations that support subsequent solution processes for algebraic equations. This paper focuses on the results of Year 6…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernando, Sudarshan; Günaydin, Murat
We study the minimal unitary representation (minrep) of SO(5, 2), obtained by quantization of its geometric quasiconformal action, its deformations and supersymmetric extensions. The minrep of SO(5, 2) describes a massless conformal scalar field in five dimensions and admits a unique “deformation” which describes a massless conformal spinor. Scalar and spinor minreps of SO(5, 2) are the 5d analogs of Dirac’s singletons of SO(3, 2). We then construct the minimal unitary representation of the unique 5d supercon-formal algebra F(4) with the even subalgebra SO(5, 2) ×SU(2). The minrep of F(4) describes a massless conformal supermultiplet consisting of two scalar andmore » one spinor fields. We then extend our results to the construction of higher spin AdS 6/CFT 5 (super)-algebras. The Joseph ideal of the minrep of SO(5, 2) vanishes identically as operators and hence its enveloping algebra yields the AdS 6/CFT 5 bosonic higher spin algebra directly. The enveloping algebra of the spinor minrep defines a “deformed” higher spin algebra for which a deformed Joseph ideal vanishes identically as operators. These results are then extended to the construction of the unique higher spin AdS 6/CFT 5 superalgebra as the enveloping algebra of the minimal unitary realization of F(4) obtained by the quasiconformal methods.« less
Quantum incompatibility of channels with general outcome operator algebras
NASA Astrophysics Data System (ADS)
Kuramochi, Yui
2018-04-01
A pair of quantum channels is said to be incompatible if they cannot be realized as marginals of a single channel. This paper addresses the general structure of the incompatibility of completely positive channels with a fixed quantum input space and with general outcome operator algebras. We define a compatibility relation for such channels by identifying the composite outcome space as the maximal (projective) C*-tensor product of outcome algebras. We show theorems that characterize this compatibility relation in terms of the concatenation and conjugation of channels, generalizing the recent result for channels with quantum outcome spaces. These results are applied to the positive operator valued measures (POVMs) by identifying each of them with the corresponding quantum-classical (QC) channel. We also give a characterization of the maximality of a POVM with respect to the post-processing preorder in terms of the conjugate channel of the QC channel. We consider another definition of compatibility of normal channels by identifying the composite outcome space with the normal tensor product of the outcome von Neumann algebras. We prove that for a given normal channel, the class of normally compatible channels is upper bounded by a special class of channels called tensor conjugate channels. We show the inequivalence of the C*- and normal compatibility relations for QC channels, which originates from the possibility and impossibility of copying operations for commutative von Neumann algebras in C*- and normal compatibility relations, respectively.
Realization of Uq(sp(2n)) within the Differential Algebra on Quantum Symplectic Space
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Hu, Naihong
2017-10-01
We realize the Hopf algebra U_q({sp}_{2n}) as an algebra of quantum differential operators on the quantum symplectic space X(f_s;R) and prove that X(f_s;R) is a U_q({sp}_{2n})-module algebra whose irreducible summands are just its homogeneous subspaces. We give a coherence realization for all the positive root vectors under the actions of Lusztig's braid automorphisms of U_q({sp}_{2n}).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, M.L.; Sun, C.P.; Xue, K.
1992-10-20
In this paper, through a general q-boson realization of quantum algebra sl[sub q](2) and its universal R matrix an operator R matrix with many parameters is obtained in terms of q-boson operators. Building finite-dimensional representations of q-boson algebra, the authors construct various colored R matrices associated with nongeneric representations of sl[sub q](2) with dimension-independent parameters. The nonstandard R matrices obtained by Lee-Couture and Murakami are their special examples.
Elliptic complexes over C∗-algebras of compact operators
NASA Astrophysics Data System (ADS)
Krýsl, Svatopluk
2016-03-01
For a C∗-algebra A of compact operators and a compact manifold M, we prove that the Hodge theory holds for A-elliptic complexes of pseudodifferential operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M. For these C∗-algebras and manifolds, we get a topological isomorphism between the cohomology groups of an A-elliptic complex and the space of harmonic elements of the complex. Consequently, the cohomology groups appear to be finitely generated projective C∗-Hilbert modules and especially, Banach spaces. We also prove that in the category of Hilbert A-modules and continuous adjointable Hilbert A-module homomorphisms, the property of a complex of being self-adjoint parametrix possessing characterizes the complexes of Hodge type.
Quantum group structure and local fields in the algebraic approach to 2D gravity
NASA Astrophysics Data System (ADS)
Schnittger, J.
1995-07-01
This review contains a summary of the work by J.-L. Gervais and the author on the operator approach to 2d gravity. Special emphasis is placed on the construction of local observables — the Liouville exponentials and the Liouville field itself — and the underlying algebra of chiral vertex operators. The double quantum group structure arising from the presence of two screening charges is discussed and the generalized algebra and field operators are derived. In the last part, we show that our construction gives rise to a natural definition of a quantum tau function, which is a noncommutative version of the classical group-theoretic representation of the Liouville fields by Leznov and Saveliev.
An Interpreted Language and System for the Visualization of Unstructured Meshes
NASA Technical Reports Server (NTRS)
Moran, Patrick J.; Gerald-Yamasaki, Michael (Technical Monitor)
1998-01-01
We present an interpreted language and system supporting the visualization of unstructured meshes and the manipulation of shapes defined in terms of mesh subsets. The language features primitives inspired by geometric modeling, mathematical morphology and algebraic topology. The adaptation of the topology ideas to an interpreted environment, along with support for programming constructs such, as user function definition, provide a flexible system for analyzing a mesh and for calculating with shapes defined in terms of the mesh. We present results demonstrating some of the capabilities of the language, based on an implementation called the Shape Calculator, for tetrahedral meshes in R^3.
Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE
NASA Astrophysics Data System (ADS)
Jiang, Yunfeng; Zhang, Yang
2018-03-01
In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.
W-algebra for solving problems with fuzzy parameters
NASA Astrophysics Data System (ADS)
Shevlyakov, A. O.; Matveev, M. G.
2018-03-01
A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.
ERIC Educational Resources Information Center
Leung, Issic Kui Chiu; Ding, Lin; Leung, Allen Yuk Lun; Wong, Ngai Ying
2016-01-01
This study is part of a larger study investigating the subject matter knowledge and pedagogical content knowledge of Hong Kong prospective mathematics teachers, the relationship between the knowledge of algebraic operation and its inverse, and their teaching competency. In this paper, we address the subject matter knowledge and pedagogical content…
Analysis on singular spaces: Lie manifolds and operator algebras
NASA Astrophysics Data System (ADS)
Nistor, Victor
2016-07-01
We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called ;Lie manifolds; -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory.
A round trip from Caldirola to Bateman systems
NASA Astrophysics Data System (ADS)
Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.; Cossío, F.
2011-03-01
For the quantum Caldirola-Kanai Hamiltonian, describing a quantum damped harmonic oscillator, a couple of constant of motion operators generating the Heisenberg algebra can be found. The inclusion in this algebra, in a unitary manner, of the standard time evolution generator , which is not a constant of motion, requires a non-trivial extension of this basic algebra and the physical system itself, which now includes a new dual particle. This enlarged algebra, when exponentiated, leads to a group, named the Bateman group, which admits unitary representations with support in the Hilbert space of functions satisfying the Schrodinger equation associated with the quantum Bateman Hamiltonian, either as a second order differential operator as well as a first order one. The classical Bateman Hamiltonian describes a dual system of a damped (losing energy) particle and a dual (gaining energy) particle. The classical Bateman system has a solution submanifold containing the trajectories of the original system as a submanifold. When restricted to this submanifold, the Bateman dual classical Hamiltonian leads to the Caldirola-Kanai Hamiltonian for a single damped particle. This construction can also be done at the quantum level, and the Caldirola-Kanai Hamiltonian operator can be derived from the Bateman Hamiltonian operator when appropriate constraints are imposed.
Absolute continuity for operator valued completely positive maps on C∗-algebras
NASA Astrophysics Data System (ADS)
Gheondea, Aurelian; Kavruk, Ali Şamil
2009-02-01
Motivated by applicability to quantum operations, quantum information, and quantum probability, we investigate the notion of absolute continuity for operator valued completely positive maps on C∗-algebras, previously introduced by Parthasarathy [in Athens Conference on Applied Probability and Time Series Analysis I (Springer-Verlag, Berlin, 1996), pp. 34-54]. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maximal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Lebesgue decomposition, and we point out the nonuniqueness of the Lebesgue decomposition as well as a sufficient condition for uniqueness. In addition, we consider Radon-Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon-Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi's matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained.
Alphan, Hakan
2011-11-01
The aim of this study is to compare various image algebra procedures for their efficiency in locating and identifying different types of landscape changes on the margin of a Mediterranean coastal plain, Cukurova, Turkey. Image differencing and ratioing were applied to the reflective bands of Landsat TM datasets acquired in 1984 and 2006. Normalized Difference Vegetation index (NDVI) and Principal Component Analysis (PCA) differencing were also applied. The resulting images were tested for their capacity to detect nine change phenomena, which were a priori defined in a three-level classification scheme. These change phenomena included agricultural encroachment, sand dune afforestation, coastline changes and removal/expansion of reed beds. The percentage overall accuracies of different algebra products for each phenomenon were calculated and compared. The results showed that some of the changes such as sand dune afforestation and reed bed expansion were detected with accuracies varying between 85 and 97% by the majority of the algebra operations, while some other changes such as logging could only be detected by mid-infrared (MIR) ratioing. For optimizing change detection in similar coastal landscapes, underlying causes of these changes were discussed and the guidelines for selecting band and algebra operations were provided. Copyright © 2011 Elsevier Ltd. All rights reserved.
Transfer Functions Via Laplace- And Fourier-Borel Transforms
NASA Technical Reports Server (NTRS)
Can, Sumer; Unal, Aynur
1991-01-01
Approach to solution of nonlinear ordinary differential equations involves transfer functions based on recently-introduced Laplace-Borel and Fourier-Borel transforms. Main theorem gives transform of response of nonlinear system as Cauchy product of transfer function and transform of input function of system, together with memory effects. Used to determine responses of electrical circuits containing variable inductances or resistances. Also possibility of doing all noncommutative algebra on computers in such symbolic programming languages as Macsyma, Reduce, PL1, or Lisp. Process of solution organized and possibly simplified by algebraic manipulations reducing integrals in solutions to known or tabulated forms.
Robot Control Based On Spatial-Operator Algebra
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan
1992-01-01
Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.
Switching chiral solitons for algebraic operation of topological quaternary digits
NASA Astrophysics Data System (ADS)
Kim, Tae-Hwan; Cheon, Sangmo; Yeom, Han Woong
2017-02-01
Chiral objects can be found throughout nature; in condensed matter chiral objects are often excited states protected by a system's topology. The use of chiral topological excitations to carry information has been demonstrated, where the information is robust against external perturbations. For instance, reading, writing, and transfer of binary information have been demonstrated with chiral topological excitations in magnetic systems, skyrmions, for spintronic devices. The next step is logic or algebraic operations of such topological bits. Here, we show experimentally the switching between chiral topological excitations or chiral solitons of different chirality in a one-dimensional electronic system with Z4 topological symmetry. We found that a fast-moving achiral soliton merges with chiral solitons to switch their handedness. This can lead to the realization of algebraic operation of Z4 topological charges. Chiral solitons could be a platform for storage and operation of robust topological multi-digit information.
On Correspondence of BRST-BFV, Dirac, and Refined Algebraic Quantizations of Constrained Systems
NASA Astrophysics Data System (ADS)
Shvedov, O. Yu.
2002-11-01
The correspondence between BRST-BFV, Dirac, and refined algebraic (group averaging, projection operator) approaches to quantizing constrained systems is analyzed. For the closed-algebra case, it is shown that the component of the BFV wave function corresponding to maximal (minimal) value of number of ghosts and antighosts in the Schrodinger representation may be viewed as a wave function in the refined algebraic (Dirac) quantization approach. The Giulini-Marolf group averaging formula for the inner product in the refined algebraic quantization approach is obtained from the Batalin-Marnelius prescription for the BRST-BFV inner product, which should be generally modified due to topological problems. The considered prescription for the correspondence of states is observed to be applicable to the open-algebra case. The refined algebraic quantization approach is generalized then to the case of nontrivial structure functions. A simple example is discussed. The correspondence of observables for different quantization methods is also investigated.
Lattice Virasoro algebra and corner transfer matrices in the Baxter eight-vertex model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoyama, H.; Thacker, H.B.
1987-04-06
A lattice Virasoro algebra is constructed for the Baxter eight-vertex model. The operator L/sub 0/ is obtained from the logarithm of the corner transfer matrix and is given by the first moment of the XYZ spin-chain Hamiltonian. The algebra is valid even when the Hamiltonian includes a mass term, in which case it represents lattice coordinate transformations which distinguish between even and odd sublattices. We apply the quantum inverse scattering method to demonstrate that the Virasoro algebra follows from the Yang-Baxter relations.
Operator pencil passing through a given operator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biggs, A., E-mail: khudian@manchester.ac.uk, E-mail: adam.biggs@student.manchester.ac.uk; Khudaverdian, H. M., E-mail: khudian@manchester.ac.uk, E-mail: adam.biggs@student.manchester.ac.uk
Let Δ be a linear differential operator acting on the space of densities of a given weight λ{sub 0} on a manifold M. One can consider a pencil of operators Π-circumflex(Δ)=(Δ{sub λ}) passing through the operator Δ such that any Δ{sub λ} is a linear differential operator acting on densities of weight λ. This pencil can be identified with a linear differential operator Δ-circumflex acting on the algebra of densities of all weights. The existence of an invariant scalar product in the algebra of densities implies a natural decomposition of operators, i.e., pencils of self-adjoint and anti-self-adjoint operators. We studymore » lifting maps that are on one hand equivariant with respect to divergenceless vector fields, and, on the other hand, with values in self-adjoint or anti-self-adjoint operators. In particular, we analyze the relation between these two concepts, and apply it to the study of diff (M)-equivariant liftings. Finally, we briefly consider the case of liftings equivariant with respect to the algebra of projective transformations and describe all regular self-adjoint and anti-self-adjoint liftings. Our constructions can be considered as a generalisation of equivariant quantisation.« less
Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
Sasaki, Ryu
2011-03-28
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.
Visual Thinking, Algebraic Thinking, and a Full Unit-Circle Diagram.
ERIC Educational Resources Information Center
Shear, Jonathan
1985-01-01
The study of trigonometric functions in terms of the unit circle offer an example of how students can learn algebraic relations and operations while using visually oriented thinking. Illustrations are included. (MNS)
Macdonald index and chiral algebra
NASA Astrophysics Data System (ADS)
Song, Jaewon
2017-08-01
For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.
Macdonald index and chiral algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jaewon
For any 4dN = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. Here, we conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type (A 1, A 2n) and (A 1, D 2n+1) where the chiral algebras are given by Virasoro andmore » $$ˆ\\atop{su}$$(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.« less
Macdonald index and chiral algebra
Song, Jaewon
2017-08-10
For any 4dN = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. Here, we conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type (A 1, A 2n) and (A 1, D 2n+1) where the chiral algebras are given by Virasoro andmore » $$ˆ\\atop{su}$$(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.« less
Many-core graph analytics using accelerated sparse linear algebra routines
NASA Astrophysics Data System (ADS)
Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric
2016-05-01
Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.
Austin ISD. Integrated Lesson Plans.
ERIC Educational Resources Information Center
East Texas State Univ., Commerce. Educational Development and Training Center.
This packet contains 14 lesson plans for integrated academic and vocational education courses. Lesson plans for the following courses are included: integrated physics and principles of technology; algebra and principles of technology; principles of technology, language arts, and economics; physics and industrial electronics; physics and…
A universal exchange language for healthcare.
Robson, Barry; Caruso, Thomas P
2013-01-01
We have defined a Universal Exchange Language (UEL) for healthcare that takes a green field approach to the development of a novel "XML-like" language. We consider here what given a free hand might mean: a UEL that incorporates an advanced mathematical foundation that uses Dirac's notation and algebra. For consented and public information, it allows probabilistic inference from UEL semantic web triplet tags. But also it is possible to use similar thinking to maximize the security and analytic characteristics of private health data by disaggregating or "shredding" it. Both are scalable to millions of records that could be spread across the Internet.
Unification of the general non-linear sigma model and the Virasoro master equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, J. de; Halpern, M.B.
1997-06-01
The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affinie Lie algebra) of the WZW model, while the einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form L{sub ij}{partial_derivative}x{sup i}{partial_derivative}x{sup j} in the background of a general sigma model. The requirement that these operators satisfymore » the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field L{sub ij} cuples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.« less
Egri-Nagy, Attila; Nehaniv, Chrystopher L
2008-01-01
Biochemical and genetic regulatory networks are often modeled by Petri nets. We study the algebraic structure of the computations carried out by Petri nets from the viewpoint of algebraic automata theory. Petri nets comprise a formalized graphical modeling language, often used to describe computation occurring within biochemical and genetic regulatory networks, but the semantics may be interpreted in different ways in the realm of automata. Therefore, there are several different ways to turn a Petri net into a state-transition automaton. Here, we systematically investigate different conversion methods and describe cases where they may yield radically different algebraic structures. We focus on the existence of group components of the corresponding transformation semigroups, as these reflect symmetries of the computation occurring within the biological system under study. Results are illustrated by applications to the Petri net modelling of intermediary metabolism. Petri nets with inhibition are shown to be computationally rich, regardless of the particular interpretation method. Along these lines we provide a mathematical argument suggesting a reason for the apparent all-pervasiveness of inhibitory connections in living systems.
Software for Training in Pre-College Mathematics
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Moebes, Travis A.; VanAlstine, Scot
2003-01-01
The Intelligent Math Tutor (IMT) is a computer program for training students in pre-college and college-level mathematics courses, including fundamentals, intermediate algebra, college algebra, and trigonometry. The IMT can be executed on a server computer for access by students via the Internet; alternatively, it can be executed on students computers equipped with compact- disk/read-only-memory (CD-ROM) drives. The IMT provides interactive exercises, assessment, tracking, and an on-line graphing calculator with algebraic-manipulation capabilities. The IMT provides an innovative combination of content, delivery mechanism, and artificial intelligence. Careful organization and presentation of the content make it possible to provide intelligent feedback to the student based on performance on exercises and tests. The tracking and feedback mechanisms are implemented within the capabilities of a commercial off-the-shelf development software tool and are written in the Unified Modeling Language to maximize reuse and minimize development cost. The graphical calculator is a standard feature of most college and pre-college algebra and trigonometry courses. Placing this functionality in a Java applet decreases the cost, provides greater capabilities, and provides an opportunity to integrate the calculator with the lessons.
Mathematical models for space shuttle ground systems
NASA Technical Reports Server (NTRS)
Tory, E. G.
1985-01-01
Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes.
Liu, Xiaoji; Qin, Xiaolan
2015-01-01
We investigate additive properties of the generalized Drazin inverse in a Banach algebra A. We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new conditions on a, b ∈ A. As an application we give some new representations for the generalized Drazin inverse of an operator matrix. PMID:25729767
Liu, Xiaoji; Qin, Xiaolan
2015-01-01
We investigate additive properties of the generalized Drazin inverse in a Banach algebra A. We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new conditions on a, b ∈ A. As an application we give some new representations for the generalized Drazin inverse of an operator matrix.
Spherical Hecke algebra in the Nekrasov-Shatashvili limit
NASA Astrophysics Data System (ADS)
Bourgine, Jean-Emile
2015-01-01
The Spherical Hecke central (SHc) algebra has been shown to act on the Nekrasov instanton partition functions of gauge theories. Its presence accounts for both integrability and AGT correspondence. On the other hand, a specific limit of the Omega background, introduced by Nekrasov and Shatashvili (NS), leads to the appearance of TBA and Bethe like equations. To unify these two points of view, we study the NS limit of the SHc algebra. We provide an expression of the instanton partition function in terms of Bethe roots, and define a set of operators that generates infinitesimal variations of the roots. These operators obey the commutation relations defining the SHc algebra at first order in the equivariant parameter ɛ 2. Furthermore, their action on the bifundamental contributions reproduces the Kanno-Matsuo-Zhang transformation. We also discuss the connections with the Mayer cluster expansion approach that leads to TBA-like equations.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1994-01-01
Ten families of subprograms are bundled together for the General-Purpose Ada Packages. The families bring to Ada many features from HAL/S, PL/I, FORTRAN, and other languages. These families are: string subprograms (INDEX, TRIM, LOAD, etc.); scalar subprograms (MAX, MIN, REM, etc.); array subprograms (MAX, MIN, PROD, SUM, GET, and PUT); numerical subprograms (EXP, CUBIC, etc.); service subprograms (DATE_TIME function, etc.); Linear Algebra II; Runge-Kutta integrators; and three text I/O families of packages. In two cases, a family consists of a single non-generic package. In all other cases, a family comprises a generic package and its instances for a selected group of scalar types. All generic packages are designed to be easily instantiated for the types declared in the user facility. The linear algebra package is LINRAG2. This package includes subprograms supplementing those in NPO-17985, An Ada Linear Algebra Package Modeled After HAL/S (LINRAG). Please note that LINRAG2 cannot be compiled without LINRAG. Most packages have widespread applicability, although some are oriented for avionics applications. All are designed to facilitate writing new software in Ada. Several of the packages use conventions introduced by other programming languages. A package of string subprograms is based on HAL/S (a language designed for the avionics software in the Space Shuttle) and PL/I. Packages of scalar and array subprograms are taken from HAL/S or generalized current Ada subprograms. A package of Runge-Kutta integrators is patterned after a built-in MAC (MIT Algebraic Compiler) integrator. Those packages modeled after HAL/S make it easy to translate existing HAL/S software to Ada. The General-Purpose Ada Packages program source code is available on two 360K 5.25" MS-DOS format diskettes. The software was developed using VAX Ada v1.5 under DEC VMS v4.5. It should be portable to any validated Ada compiler and it should execute either interactively or in batch. The largest package requires 205K of main memory on a DEC VAX running VMS. The software was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
The conceptual basis of mathematics in cardiology: (II). Calculus and differential equations.
Bates, Jason H T; Sobel, Burton E
2003-04-01
This is the second in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas. This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.
Bates, Jason H T; Sobel, Burton E
2003-05-01
This is the third in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas.This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.
The conceptual basis of mathematics in cardiology IV: statistics and model fitting.
Bates, Jason H T; Sobel, Burton E
2003-06-01
This is the fourth in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas. This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.
Simplifications for hydronic system models in modelica
Jorissen, F.; Wetter, M.; Helsen, L.
2018-01-12
Building systems and their heating, ventilation and air conditioning flow networks, are becoming increasingly complex. Some building energy simulation tools simulate these flow networks using pressure drop equations. These flow network models typically generate coupled algebraic nonlinear systems of equations, which become increasingly more difficult to solve as their sizes increase. This leads to longer computation times and can cause the solver to fail. These problems also arise when using the equation-based modelling language Modelica and Annex 60-based libraries. This may limit the applicability of the library to relatively small problems unless problems are restructured. This paper discusses two algebraicmore » loop types and presents an approach that decouples algebraic loops into smaller parts, or removes them completely. The approach is applied to a case study model where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of five iteration variables.« less
ERIC Educational Resources Information Center
Benjamin, Carl; And Others
Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…
NASA Astrophysics Data System (ADS)
Khosropour, B.
2016-07-01
In this work, we consider a D-dimensional ( β, β^' -two-parameters deformed Heisenberg algebra, which was introduced by Kempf et al. The angular-momentum operator in the presence of a minimal length scale based on the Kempf-Mann-Mangano algebra is obtained in the special case of β^' = 2β up to the first order over the deformation parameter β . It is shown that each of the components of the modified angular-momentum operator, commutes with the modified operator {L}2 . We find the magnetostatic field in the presence of a minimal length. The Zeeman effect in the deformed space is studied and also Lande's formula for the energy shift in the presence of a minimal length is obtained. We estimate an upper bound on the isotropic minimal length.
NASA Technical Reports Server (NTRS)
Nieten, Joseph L.; Seraphine, Kathleen M.
1991-01-01
Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.
IBM system/360 assembly language interval arithmetic software
NASA Technical Reports Server (NTRS)
Phillips, E. J.
1972-01-01
Computer software designed to perform interval arithmetic is described. An interval is defined as the set of all real numbers between two given numbers including or excluding one or both endpoints. Interval arithmetic consists of the various elementary arithmetic operations defined on the set of all intervals, such as interval addition, subtraction, union, etc. One of the main applications of interval arithmetic is in the area of error analysis of computer calculations. For example, it has been used sucessfully to compute bounds on sounding errors in the solution of linear algebraic systems, error bounds in numerical solutions of ordinary differential equations, as well as integral equations and boundary value problems. The described software enables users to implement algorithms of the type described in references efficiently on the IBM 360 system.
Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chuanzhong, E-mail: lichuanzhong@nbu.edu.cn; He, Jingsong, E-mail: hejingsong@nbu.edu.cn
We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.
From Quantum Fields to Local Von Neumann Algebras
NASA Astrophysics Data System (ADS)
Borchers, H. J.; Yngvason, Jakob
The subject of the paper is an old problem of the general theory of quantized fields: When can the unbounded operators of a Wightman field theory be associated with local algebras of bounded operators in the sense of Haag? The paper reviews and extends previous work on this question, stressing its connections with a noncommutive generalization of the classical Hamburger moment problem. Necessary and sufficient conditions for the existence of a local net of von Neumann algebras corresponding to a given Wightman field are formulated in terms of strengthened versions of the usual positivity property of Wightman functionals. The possibility that the local net has to be defined in an enlarged Hilbert space cannot be ruled out in general. Under additional hypotheses, e.g., if the field operators obey certain energy bounds, such an extension of the Hilbert space is not necessary, however. In these cases a fairly simple condition for the existence of a local net can be given involving the concept of “central positivity” introduced by Powers. The analysis presented here applies to translationally covariant fields with an arbitrary number of components, whereas Lorentz covariance is not needed. The paper contains also a brief discussion of an approach to noncommutative moment problems due to Dubois-Violette, and concludes with some remarks on modular theory for algebras of unbounded operators.
The theory of Enceladus and Dione - An application of computerized algebra in dynamical astronomy
NASA Technical Reports Server (NTRS)
Jefferys, W. H.; Ries, L. M.
1975-01-01
The orbits of the satellites of the outer planets are poorly known, due to lack of attention over the past half century. We have been developing a new theory of Saturn's satellites Enceladus and Dione which is literal (all constants of integration appear explicitly), canonically invariant (the Hori-Lie method is used), and which correctly handles the eccentricity-type resonance between the two satellites. The algebraic manipulations are being performed using the TRIGMAN formula manipulation language, and the programs have been developed so that with minor modifications they can be used on the Mimas-Tethys and Titan-Hyperion systems.
NASA Astrophysics Data System (ADS)
Haxton, Wick; Lunardini, Cecilia
2008-09-01
Semi-leptonic electroweak interactions in nuclei—such as β decay, μ capture, charged- and neutral-current neutrino reactions, and electron scattering—are described by a set of multipole operators carrying definite parity and angular momentum, obtained by projection from the underlying nuclear charge and three-current operators. If these nuclear operators are approximated by their one-body forms and expanded in the nucleon velocity through order |p→|/M, where p→ and M are the nucleon momentum and mass, a set of seven multipole operators is obtained. Nuclear structure calculations are often performed in a basis of Slater determinants formed from harmonic oscillator orbitals, a choice that allows translational invariance to be preserved. Harmonic-oscillator single-particle matrix elements of the multipole operators can be evaluated analytically and expressed in terms of finite polynomials in q, where q is the magnitude of the three-momentum transfer. While results for such matrix elements are available in tabular form, with certain restriction on quantum numbers, the task of determining the analytic form of a response function can still be quite tedious, requiring the folding of the tabulated matrix elements with the nuclear density matrix, and subsequent algebra to evaluate products of operators. Here we provide a Mathematica script for generating these matrix elements, which will allow users to carry out all such calculations by symbolic manipulation. This will eliminate the errors that may accompany hand calculations and speed the calculation of electroweak nuclear cross sections and rates. We illustrate the use of the new script by calculating the cross sections for charged- and neutral-current neutrino scattering in 12C. Program summaryProgram title: SevenOperators Catalogue identifier: AEAY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2227 No. of bytes in distributed program, including test data, etc.: 19 382 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer running Mathematica; tested on Mac OS X PowerPC (32-bit) running Mathematica 6.0.0 Operating system: Any running Mathematica RAM: Memory requirements determined by Mathematica; 512 MB or greater RAM and hard drive space of at least 3.0 GB recommended Classification: 17.16, 17.19 Nature of problem: Algebraic evaluation of harmonic oscillator nuclear matrix elements for the one-body multipole operators governing semi-leptonic weak interactions, such as charged- or neutral-current neutrino scattering off nuclei. Solution method: Mathematica evaluation of associated angular momentum algebra and spherical Bessel function radial integrals. Running time: Depends on the complexity of the one-body density matrix employed, but times of a few seconds are typical.
A natural history of mathematics: George Peacock and the making of English algebra.
Lambert, Kevin
2013-06-01
In a series of papers read to the Cambridge Philosophical Society through the 1820s, the Cambridge mathematician George Peacock laid the foundation for a natural history of arithmetic that would tell a story of human progress from counting to modern arithmetic. The trajectory of that history, Peacock argued, established algebraic analysis as a form of universal reasoning that used empirically warranted operations of mind to think with symbols on paper. The science of counting would suggest arithmetic, arithmetic would suggest arithmetical algebra, and, finally, arithmetical algebra would suggest symbolic algebra. This philosophy of suggestion provided the foundation for Peacock's "principle of equivalent forms," which justified the practice of nineteenth-century English symbolic algebra. Peacock's philosophy of suggestion owed a considerable debt to the early Cambridge Philosophical Society culture of natural history. The aim of this essay is to show how that culture of natural history was constitutively significant to the practice of nineteenth-century English algebra.
46 CFR 310.55 - Scholastic requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SAT. A candidate electing to use the ACT, shall take all the tests, namely, English, Mathematics... Mathematics (from algebra, geometry and trigonometry); (B) 3 units of English; and (C) 1 unit of Physics or... science; (B) Foreign language; (C) Economics; and, (D) Social science. (2) Evidence of academic work...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meurer, Aaron; Smith, Christopher P.; Paprocki, Mateusz
Here, SymPy is a full featured computer algebra system (CAS) written in the Python programming language. It is open source, being licensed under the extremely permissive 3-clause BSD license. SymPy was started by Ondrej Certik in 2005, and it has since grown into a large open source project, with over 500 contributors.
Bulk locality and quantum error correction in AdS/CFT
NASA Astrophysics Data System (ADS)
Almheiri, Ahmed; Dong, Xi; Harlow, Daniel
2015-04-01
We point out a connection between the emergence of bulk locality in AdS/CFT and the theory of quantum error correction. Bulk notions such as Bogoliubov transformations, location in the radial direction, and the holographic entropy bound all have natural CFT interpretations in the language of quantum error correction. We also show that the question of whether bulk operator reconstruction works only in the causal wedge or all the way to the extremal surface is related to the question of whether or not the quantum error correcting code realized by AdS/CFT is also a "quantum secret sharing scheme", and suggest a tensor network calculation that may settle the issue. Interestingly, the version of quantum error correction which is best suited to our analysis is the somewhat nonstandard "operator algebra quantum error correction" of Beny, Kempf, and Kribs. Our proposal gives a precise formulation of the idea of "subregion-subregion" duality in AdS/CFT, and clarifies the limits of its validity.
Difficulties in initial algebra learning in Indonesia
NASA Astrophysics Data System (ADS)
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-12-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.
The Grammatical Universe and the Laws of Thermodynamics and Quantum Entanglement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcer, Peter J.; Rowlands, Peter
2010-11-24
The universal nilpotent computational rewrite system (UNCRS) is shown to formalize an irreversible process of evolution in conformity with the First, Second and Third Laws of Thermodynamics, in terms of a single algebraic creation operator (ikE+ip+jm) which delivers the whole quantum mechanical language apparatus, where k, i, j are quaternions units and E, p, m are energy, momentum and rest mass. This nilpotent evolution describes 'a dynamic zero totality universe' in terms of its fermion states (each of which, by Pauli exclusion, is unique and nonzero), where, together with their boson interactions, these define physics at the fundamental level. (Themore » UNCRS implies that the inseparability of objects and fields in the quantum universe is based on the fact that the only valid mathematical representations are all automorphisms of the universe itself, and that this is the mathematical meaning of quantum entanglement. It thus appears that the nilpotent fermion states are in fact what is called the splitting field in Quantum Mechanics of the Galois group which leads to the roots of the corresponding algebraic equation, and concerns in this case the alternating group of even permutations which are themselves automorphisms). In the nilpotent evolutionary process: (i) the Quantum Carnot Engine (QCE) extended model of thermodynamic irreversibility, consisting of a single heat bath of an ensemble of Standard Model elementary particles, retains a small amount of quantum coherence / entanglement, so as to constitute new emergent fermion states of matter, and (ii) the metric (E{sup 2}-p{sup 2}m{sup 2}) = 0 ensures the First Law of the conservation of energy operates at each nilpotent stage, so that (iii) prior to each creation (and implied corresponding annihilation / conserve operation), E and m can be postulated to constitute dark energy and matter respectively. It says that the natural language form of the rewrite grammar of the evolution consists of the well known precepts of the Laws of Thermodynamics, formalized by the UNCRS regress, so as to become (as UNCRS rewrites already published at CASYS), firstly the Quantum Laws of Physics in the form of the generalized Dirac equation and later at higher stages of QCE ensemble complexity, the Laws of Life in the form of Nature's (DNA / RNA genetic) Code and then subsequently those of Intelligence and Consciousness (Nature's Rules).« less
Subalgebras of BCK/BCI-Algebras Based on Cubic Soft Sets
Muhiuddin, G.; Jun, Young Bae
2014-01-01
Operations of cubic soft sets including “AND” operation and “OR” operation based on P-orders and R-orders are introduced and some related properties are investigated. An example is presented to show that the R-union of two internal cubic soft sets might not be internal. A sufficient condition is provided, which ensure that the R-union of two internal cubic soft sets is also internal. Moreover, some properties of cubic soft subalgebras of BCK/BCI-algebras based on a given parameter are discussed. PMID:24895652
The Standard Model in noncommutative geometry: fundamental fermions as internal forms
NASA Astrophysics Data System (ADS)
Dąbrowski, Ludwik; D'Andrea, Francesco; Sitarz, Andrzej
2018-05-01
Given the algebra, Hilbert space H, grading and real structure of the finite spectral triple of the Standard Model, we classify all possible Dirac operators such that H is a self-Morita equivalence bimodule for the associated Clifford algebra.
NASA Technical Reports Server (NTRS)
Freudenthal, H.
1974-01-01
A language for cosmic contacts is envisioned that utilizes radio signals of different wavelengths as sounds to form words. These words are in most cases abbreviations of Latin words understood from their English and French cognates. The logistic syntax uses pauses for punctuation in a binary system; pairs of algebraic formulas are transmitted where in a such pair the second element is always derived from the first; between them is transmitted a word that is understood as -follows- by the listener. The concepts of difference in position, of motion, of space, and of mass can be mathematically described by this language.
García-Jacas, César R; Marrero-Ponce, Yovani; Acevedo-Martínez, Liesner; Barigye, Stephen J; Valdés-Martiní, José R; Contreras-Torres, Ernesto
2014-07-05
The present report introduces the QuBiLS-MIDAS software belonging to the ToMoCoMD-CARDD suite for the calculation of three-dimensional molecular descriptors (MDs) based on the two-linear (bilinear), three-linear, and four-linear (multilinear or N-linear) algebraic forms. Thus, it is unique software that computes these tensor-based indices. These descriptors, establish relations for two, three, and four atoms by using several (dis-)similarity metrics or multimetrics, matrix transformations, cutoffs, local calculations and aggregation operators. The theoretical background of these N-linear indices is also presented. The QuBiLS-MIDAS software was developed in the Java programming language and employs the Chemical Development Kit library for the manipulation of the chemical structures and the calculation of the atomic properties. This software is composed by a desktop user-friendly interface and an Abstract Programming Interface library. The former was created to simplify the configuration of the different options of the MDs, whereas the library was designed to allow its easy integration to other software for chemoinformatics applications. This program provides functionalities for data cleaning tasks and for batch processing of the molecular indices. In addition, it offers parallel calculation of the MDs through the use of all available processors in current computers. The studies of complexity of the main algorithms demonstrate that these were efficiently implemented with respect to their trivial implementation. Lastly, the performance tests reveal that this software has a suitable behavior when the amount of processors is increased. Therefore, the QuBiLS-MIDAS software constitutes a useful application for the computation of the molecular indices based on N-linear algebraic maps and it can be used freely to perform chemoinformatics studies. Copyright © 2014 Wiley Periodicals, Inc.
Two- and four-dimensional representations of the PT - and CPT -symmetric fermionic algebras
NASA Astrophysics Data System (ADS)
Beygi, Alireza; Klevansky, S. P.; Bender, Carl M.
2018-03-01
Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that T2=-1 for fermionic systems. In PT -symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators η , which are quadratically nilpotent (η2=0 ), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: η ηPT+ηPTη =-1 , where ηPT is the PT adjoint of η , and η ηCPT+ηCPTη =1 , where ηCPT is the CPT adjoint of η . This paper presents matrix representations for the operator η and its PT and CPT adjoints in two and four dimensions. A PT -symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.
NASA Astrophysics Data System (ADS)
Rosas-Ortiz, Oscar; Zelaya, Kevin
2018-01-01
A set of Hamiltonians that are not self-adjoint but have the spectrum of the harmonic oscillator is studied. The eigenvectors of these operators and those of their Hermitian conjugates form a bi-orthogonal system that provides a mathematical procedure to satisfy the superposition principle. In this form the non-Hermitian oscillators can be studied in much the same way as in the Hermitian approaches. Two different nonlinear algebras generated by properly constructed ladder operators are found and the corresponding generalized coherent states are obtained. The non-Hermitian oscillators can be steered to the conventional one by the appropriate selection of parameters. In such limit, the generators of the nonlinear algebras converge to generalized ladder operators that would represent either intensity-dependent interactions or multi-photon processes if the oscillator is associated with single mode photon fields in nonlinear media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry I
While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locallymore » supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).« less
Quantum theory of the generalised uncertainty principle
NASA Astrophysics Data System (ADS)
Bruneton, Jean-Philippe; Larena, Julien
2017-04-01
We extend significantly previous works on the Hilbert space representations of the generalized uncertainty principle (GUP) in 3 + 1 dimensions of the form [X_i,P_j] = i F_{ij} where F_{ij} = f({{P}}^2) δ _{ij} + g({{P}}^2) P_i P_j for any functions f. However, we restrict our study to the case of commuting X's. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus specifically on whether they exhibit a minimal length. We carry the functional analysis of the various operators involved, and show that the appearance of a minimal length critically depends on the relationship between the generators of translations and the physical momenta. In particular, because this relationship is preserved by the algebraic mapping presented in this paper, when a minimal length is present in the standard GUP, it is also present in the corresponding Aquadratic Hamiltonian formulation, despite the perfectly standard algebra of this model. In general, a minimal length requires bounded generators of translations, i.e. a specific kind of quantization of space, and this depends on the precise shape of the function f defined previously. This result provides an elegant and unambiguous classification of which universal quantum gravity corrections lead to the emergence of a minimal length.
NASA Astrophysics Data System (ADS)
Latha, P. G.; Anand, S. R.; Imthias, Ahamed T. P.; Sreejith, P. S., Dr.
2013-06-01
This paper attempts to study the commercial impact of pumped storage hydro plant on the operation of a stressed power system. The paper further attempts to compute the optimum capacity of the pumped storage scheme that can be provided on commercial basis for a practical power system. Unlike the analysis of commercial aspects of pumped storage scheme attempted in several papers, this paper is presented from the point of view of power system management of a practical system considering the impact of the scheme on the economic operation of the system. A realistic case study is presented as the many factors that influence the pumped storage operation vary widely from one system to another. The suitability of pumped storage for the particular generation mix of a system is well explored in the paper. To substantiate the economic impact of pumped storage on the system, the problem is formulated as a short-term hydrothermal scheduling problem involving power purchase which optimizes the quantum of power to be scheduled and the duration of operation. The optimization model is formulated using an algebraic modeling language, AMPL, which is then solved using the advanced MILP solver CPLEX.
BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1994-01-01
The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.
On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets. PMID:25143964
On some nonclassical algebraic properties of interval-valued fuzzy soft sets.
Liu, Xiaoyan; Feng, Feng; Zhang, Hui
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation = L . We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.
1979-09-01
without determinantal divisors, Linear and Multilinear Algebra 7(1979), 107-109. 4. The use of integral operators in number theory (with C. Ryavec and...Gersgorin revisited, to appear in Letters in Linear Algebra. 15. A surprising determinantal inequality for real matrices (with C.R. Johnson), to appear in...Analysis: An Essay Concerning the Limitations of Some Mathematical Methods in the Social , Political and Biological Sciences, David Berlinski, MIT Press
Student Performance in Computer-Assisted Instruction in Programming.
ERIC Educational Resources Information Center
Friend, Jamesine E.; And Others
A computer-assisted instructional system to teach college students the computer language, AID (Algebraic Interpretive Dialogue), two control programs, and data collected by the two control programs are described. It was found that although first response errors were often those of AID syntax, such errors were easily corrected. Secondly, while…
Teaching Pascal's Triangle from a Computer Science Perspective
ERIC Educational Resources Information Center
Skurnick, Ronald
2004-01-01
Pascal's Triangle is named for the seventeenth-century French philosopher and mathematician Blaise Pascal (the same person for whom the computer programming language is named). Students are generally introduced to Pascal's Triangle in an algebra or precalculus class in which the Binomial Theorem is presented. This article, presents a new method…
Flipping Math in a Secondary Classroom
ERIC Educational Resources Information Center
Graziano, Kevin J.; Hall, John D.
2017-01-01
Research on flipped instruction with K-12 English Language Learners (ELLs) is limited. The purpose of this study was to examine the academic performance of ELLs who received flipped instruction in an algebra course at a newcomer high school, and to investigate ELLs' perceptions of flipped learning. Results indicate flipped instruction engaged…
Making Connections: Integrating Computer Applications with the Academic Core
ERIC Educational Resources Information Center
Harter, Christi
2011-01-01
In order to improve the quality of technology instruction, the Career and Technical Education (CTE) Business Department in the Spokane Public School district has aligned its Computer Applications (CA) course to the district's ninth-grade Springboard (Language Arts) curriculum, Algebra I curriculum, and the Culminating Project (senior project)…
Dolan Grady relations and noncommutative quasi-exactly solvable systems
NASA Astrophysics Data System (ADS)
Klishevich, Sergey M.; Plyushchay, Mikhail S.
2003-11-01
We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.
Applications of rigged Hilbert spaces in quantum mechanics and signal processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid; Gadella, M., E-mail: manuelgadella1@gmail.com
Simultaneous use of discrete and continuous bases in quantum systems is not possible in the context of Hilbert spaces, but only in the more general structure of rigged Hilbert spaces (RHS). In addition, the relevant operators in RHS (but not in Hilbert space) are a realization of elements of a Lie enveloping algebra and support representations of semigroups. We explicitly construct here basis dependent RHS of the line and half-line and relate them to the universal enveloping algebras of the Weyl-Heisenberg algebra and su(1, 1), respectively. The complete sub-structure of both RHS and of the operators acting on them ismore » obtained from their algebraic structures or from the related fractional Fourier transforms. This allows us to describe both quantum and signal processing states and their dynamics. Two relevant improvements are introduced: (i) new kinds of filters related to restrictions to subspaces and/or the elimination of high frequency fluctuations and (ii) an operatorial structure that, starting from fix objects, describes their time evolution.« less
Iterants, Fermions and Majorana Operators
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.
Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.
On the Difficulties of Concurrent-System Design, Illustrated with a 2×2 Switch Case Study
NASA Astrophysics Data System (ADS)
Daylight, Edgar G.; Shukla, Sandeep K.
While various specification languages for concurrent-system design exist today, it is often not clear which specification language is more suitable than another for a particular case study. To address this problem, we study four different specification languages for the same 2×2 Switch case study:
On τ-Compactness of Products of τ-Measurable Operators
NASA Astrophysics Data System (ADS)
Bikchentaev, Airat M.
2017-12-01
Let M be a von Neumann algebra of operators on a Hilbert space H, τ be a faithful normal semifinite trace on M. We obtain some new inequalities for rearrangements of τ-measurable operators products. We also establish some sufficient τ-compactness conditions for products of selfadjoint τ-measurable operators. Next we obtain a τ-compactness criterion for product of a nonnegative τ-measurable operator with an arbitrary τ-measurable operator. We construct an example that shows importance of nonnegativity for one of the factors. The similar results are obtained also for elementary operators from M. We apply our results to symmetric spaces on (M, τ ). The results are new even for the *-algebra B(H) of all linear bounded operators on H endowed with the canonical trace τ = tr.
Spatial operator algebra framework for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, Abhinandan; Kreutz, K.
1989-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Spatial Operator Algebra for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1992-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul; ...
2017-12-20
We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul
We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less
Quantum privacy and Schur product channels
NASA Astrophysics Data System (ADS)
Levick, Jeremy; Kribs, David W.; Pereira, Rajesh
2017-12-01
We investigate the quantum privacy properties of an important class of quantum channels, by making use of a connection with Schur product matrix operations and associated correlation matrix structures. For channels implemented by mutually commuting unitaries, which cannot privatise qubits encoded directly into subspaces, we nevertheless identify private algebras and subsystems that can be privatised by the channels. We also obtain further results by combining our analysis with tools from the theory of quasi-orthogonal operator algebras and graph theory.
ERIC Educational Resources Information Center
Kirshner, David
1989-01-01
A structured system of visual features is seen to parallel the propositional hierarchy of operations usually associated with the parsing of algebraic expressions. Women more than men were found to depend on these visual cues. Possible causes and consequences are discussed. Subjects were secondary and college students. (Author/DC)
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
Using trees to compute approximate solutions to ordinary differential equations exactly
NASA Technical Reports Server (NTRS)
Grossman, Robert
1991-01-01
Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.
Algebraic approach to electronic spectroscopy and dynamics.
Toutounji, Mohamad
2008-04-28
Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F(tau(1),tau(2),tau(3),tau(4)), of which the optical nonlinear response function may be procured, as evaluating F(tau(1),tau(2),tau(3),tau(4)) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.
NASA Astrophysics Data System (ADS)
Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong
2015-11-01
We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.
The elastic theory of shells using geometric algebra
Lasenby, J.; Agarwal, A.
2017-01-01
We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible. PMID:28405404
The elastic theory of shells using geometric algebra.
Gregory, A L; Lasenby, J; Agarwal, A
2017-03-01
We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.
Undecidability of the elementary theory of the semilattice of GLP-words
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakhomov, Fedor N
The Lindenbaum algebra of Peano PA can be enriched by the n-consistency operators which assign, to a given formula, the statement that the formula is compatible with the theory PA extended by the set of all true {Pi}{sub n}-sentences. In the Lindenbaum algebra of PA, a lower semilattice is generated from 1 by the n-consistency operators. We prove the undecidability of the elementary theory of this semilattice and the decidability of the elementary theory of the subsemilattice (of this semilattice) generated by the 0-consistency and 1-consistency operators only. Bibliography: 16 titles.
Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving
ERIC Educational Resources Information Center
Engerman, Jason; Rusek, Matthew; Clariana, Roy
2014-01-01
This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…
Math 3008--Developmental Mathematics II. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course designed to develop student proficiency in the basic algebraic skills. This is designed as the second of a two-semester sequence. Topics include performing operations with radicals and exponents; learning to solve equations;…
The SU(2) action-angle variables
NASA Technical Reports Server (NTRS)
Ellinas, Demosthenes
1993-01-01
Operator angle-action variables are studied in the frame of the SU(2) algebra, and their eigenstates and coherent states are discussed. The quantum mechanical addition of action-angle variables is shown to lead to a noncommutative Hopf algebra. The group contraction is used to make the connection with the harmonic oscillator.
ERIC Educational Resources Information Center
Caglayan, Günhan
2013-01-01
This study is about prospective secondary mathematics teachers' understanding and sense making of representational quantities generated by algebra tiles, the quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative addition and multiplication operations--referent preserving versus referent…
Conformal field algebras with quantum symmetry from the theory of superselection sectors
NASA Astrophysics Data System (ADS)
Mack, Gerhard; Schomerus, Volker
1990-11-01
According to the theory of superselection sectors of Doplicher, Haag, and Roberts, field operators which make transitions between different superselection sectors—i.e. different irreducible representations of the observable algebra—are to be constructed by adjoining localized endomorphisms to the algebra of local observables. We find the relevant endomorphisms of the chiral algebra of observables in the minimal conformal model with central charge c=1/2 (Ising model). We show by explicit and elementary construction how they determine a representation of the braid group B ∞ which is associated with a Temperley-Lieb-Jones algebra. We recover fusion rules, and compute the quantum dimensions of the superselection sectors. We exhibit a field algebra which is quantum group covariant and acts in the Hilbert space of physical states. It obeys local braid relations in an appropriate weak sense.
Barrenechea, Gabriel R; Burman, Erik; Karakatsani, Fotini
2017-01-01
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.
Hamiltonian structure of Dubrovin's equation of associativity in 2-d topological field theory
NASA Astrophysics Data System (ADS)
Galvão, C. A. P.; Nutku, Y.
1996-12-01
A third order Monge-Ampère type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac's theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra.
Singular vectors for the WN algebras
NASA Astrophysics Data System (ADS)
Ridout, David; Siu, Steve; Wood, Simon
2018-03-01
In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.
Reduction of quantum systems and the local Gauss law
NASA Astrophysics Data System (ADS)
Stienstra, Ruben; van Suijlekom, Walter D.
2018-05-01
We give an operator-algebraic interpretation of the notion of an ideal generated by the unbounded operators associated with the elements of the Lie algebra of a Lie group that implements the symmetries of a quantum system. We use this interpretation to establish a link between Rieffel induction and the implementation of a local Gauss law in lattice gauge theories similar to the method discussed by Kijowski and Rudolph (J Math Phys 43:1796-1808, 2002; J Math Phys 46:032303, 2004).
A Snowflake Project: Calculating, Analyzing, and Optimizing with the Koch Snowflake.
ERIC Educational Resources Information Center
Bolte, Linda A.
2002-01-01
Presents a project that addresses several components of the Algebra and Communication Standards for Grades 9-12 presented in Principles and Standards for School Mathematics (NCTM, 2000). Describes doing mathematical modeling and using the language of mathematics to express a recursive relationship in the perimeter and area of the Koch snowflake.…
SymPy: Symbolic computing in python
Meurer, Aaron; Smith, Christopher P.; Paprocki, Mateusz; ...
2017-01-02
Here, SymPy is a full featured computer algebra system (CAS) written in the Python programming language. It is open source, being licensed under the extremely permissive 3-clause BSD license. SymPy was started by Ondrej Certik in 2005, and it has since grown into a large open source project, with over 500 contributors.
The Koslowski-Sahlmann representation: quantum configuration space
NASA Astrophysics Data System (ADS)
Campiglia, Miguel; Varadarajan, Madhavan
2014-09-01
The Koslowski-Sahlmann (KS) representation is a generalization of the representation underlying the discrete spatial geometry of loop quantum gravity (LQG), to accommodate states labelled by smooth spatial geometries. As shown recently, the KS representation supports, in addition to the action of the holonomy and flux operators, the action of operators which are the quantum counterparts of certain connection dependent functions known as ‘background exponentials’. Here we show that the KS representation displays the following properties which are the exact counterparts of LQG ones: (i) the abelian * algebra of SU(2) holonomies and ‘U(1)’ background exponentials can be completed to a C* algebra, (ii) the space of semianalytic SU(2) connections is topologically dense in the spectrum of this algebra, (iii) there exists a measure on this spectrum for which the KS Hilbert space is realized as the space of square integrable functions on the spectrum, (iv) the spectrum admits a characterization as a projective limit of finite numbers of copies of SU(2) and U(1), (v) the algebra underlying the KS representation is constructed from cylindrical functions and their derivations in exactly the same way as the LQG (holonomy-flux) algebra except that the KS cylindrical functions depend on the holonomies and the background exponentials, this extra dependence being responsible for the differences between the KS and LQG algebras. While these results are obtained for compact spaces, they are expected to be of use for the construction of the KS representation in the asymptotically flat case.
Spectral geometry of {kappa}-Minkowski space
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Andrea, Francesco
After recalling Snyder's idea [Phys. Rev. 71, 38 (1947)] of using vector fields over a smooth manifold as 'coordinates on a noncommutative space', we discuss a two-dimensional toy-model whose 'dual' noncommutative coordinates form a Lie algebra: this is the well-known {kappa}-Minkowski space [Phys. Lett. B 334, 348 (1994)]. We show how to improve Snyder's idea using the tools of quantum groups and noncommutative geometry. We find a natural representation of the coordinate algebra of {kappa}-Minkowski as linear operators on an Hilbert space (a major problem in the construction of a physical theory), study its 'spectral properties', and discuss how tomore » obtain a Dirac operator for this space. We describe two Dirac operators. The first is associated with a spectral triple. We prove that the cyclic integral of Dimitrijevic et al. [Eur. Phys. J. C 31, 129 (2003)] can be obtained as Dixmier trace associated to this triple. The second Dirac operator is equivariant for the action of the quantum Euclidean group, but it has unbounded commutators with the algebra.« less
Quantum processes: A Whiteheadian interpretation of quantum field theory
NASA Astrophysics Data System (ADS)
Bain, Jonathan
Quantum processes: A Whiteheadian interpretation of quantum field theory is an ambitious and thought-provoking exercise in physics and metaphysics, combining an erudite study of the very complex metaphysics of A.N. Whitehead with a well-informed discussion of contemporary issues in the philosophy of algebraic quantum field theory. Hättich's overall goal is to construct an interpretation of quantum field theory. He does this by translating key concepts in Whitehead's metaphysics into the language of algebraic quantum field theory. In brief, this Hättich-Whitehead (H-W, hereafter) interpretation takes "actual occasions" as the fundamental ontological entities of quantum field theory. An actual occasion is the result of two types of processes: a "transition process" in which a set of initial possibly-possessed properties for the occasion (in the form of "eternal objects") is localized to a space-time region; and a "concrescence process" in which a subset of these initial possibly-possessed properties is selected and actualized to produce the occasion. Essential to these processes is the "underlying activity", which conditions the way in which properties are initially selected and subsequently actualized. In short, under the H-W interpretation of quantum field theory, an initial set of possibly-possessed eternal objects is represented by a Boolean sublattice of the lattice of projection operators determined by a von Neumann algebra R (O) associated with a region O of Minkowski space-time, and the underlying activity is represented by a state on R (O) obtained by conditionalizing off of the vacuum state. The details associated with the H-W interpretation involve imposing constraints on these representations motivated by principles found in Whitehead's metaphysics. These details are spelled out in the three sections of the book. The first section is a summary and critique of Whitehead's metaphysics, the second section introduces the formalism of algebraic quantum field theory, and the third section consists of a translation between the first two sections. This review will concentrate on the first and third sections, with an eye on making explicit the essential characteristics of the H-W interpretation.
Symmetry operators of Killing spinors and superalgebras in AdS5
NASA Astrophysics Data System (ADS)
Ertem, Ümit
2016-04-01
We construct the first-order symmetry operators of Killing spinor equation in terms of odd Killing-Yano forms. By modifying the Schouten-Nijenhuis bracket of Killing-Yano forms, we show that the symmetry operators of Killing spinors close into an algebra in AdS5 spacetime. Since the symmetry operator algebra of Killing spinors corresponds to a Jacobi identity in extended Killing superalgebras, we investigate the possible extensions of Killing superalgebras to include higher-degree Killing-Yano forms. We found that there is a superalgebra extension but no Lie superalgebra extension of the Killing superalgebra constructed out of Killing spinors and odd Killing-Yano forms in AdS5 background.
Workflows in bioinformatics: meta-analysis and prototype implementation of a workflow generator.
Garcia Castro, Alexander; Thoraval, Samuel; Garcia, Leyla J; Ragan, Mark A
2005-04-07
Computational methods for problem solving need to interleave information access and algorithm execution in a problem-specific workflow. The structures of these workflows are defined by a scaffold of syntactic, semantic and algebraic objects capable of representing them. Despite the proliferation of GUIs (Graphic User Interfaces) in bioinformatics, only some of them provide workflow capabilities; surprisingly, no meta-analysis of workflow operators and components in bioinformatics has been reported. We present a set of syntactic components and algebraic operators capable of representing analytical workflows in bioinformatics. Iteration, recursion, the use of conditional statements, and management of suspend/resume tasks have traditionally been implemented on an ad hoc basis and hard-coded; by having these operators properly defined it is possible to use and parameterize them as generic re-usable components. To illustrate how these operations can be orchestrated, we present GPIPE, a prototype graphic pipeline generator for PISE that allows the definition of a pipeline, parameterization of its component methods, and storage of metadata in XML formats. This implementation goes beyond the macro capacities currently in PISE. As the entire analysis protocol is defined in XML, a complete bioinformatic experiment (linked sets of methods, parameters and results) can be reproduced or shared among users. http://if-web1.imb.uq.edu.au/Pise/5.a/gpipe.html (interactive), ftp://ftp.pasteur.fr/pub/GenSoft/unix/misc/Pise/ (download). From our meta-analysis we have identified syntactic structures and algebraic operators common to many workflows in bioinformatics. The workflow components and algebraic operators can be assimilated into re-usable software components. GPIPE, a prototype implementation of this framework, provides a GUI builder to facilitate the generation of workflows and integration of heterogeneous analytical tools.
NASA Astrophysics Data System (ADS)
Gerber, Florian; Mösinger, Kaspar; Furrer, Reinhard
2017-07-01
Software packages for spatial data often implement a hybrid approach of interpreted and compiled programming languages. The compiled parts are usually written in C, C++, or Fortran, and are efficient in terms of computational speed and memory usage. Conversely, the interpreted part serves as a convenient user-interface and calls the compiled code for computationally demanding operations. The price paid for the user friendliness of the interpreted component is-besides performance-the limited access to low level and optimized code. An example of such a restriction is the 64-bit vector support of the widely used statistical language R. On the R side, users do not need to change existing code and may not even notice the extension. On the other hand, interfacing 64-bit compiled code efficiently is challenging. Since many R packages for spatial data could benefit from 64-bit vectors, we investigate strategies to efficiently pass 64-bit vectors to compiled languages. More precisely, we show how to simply extend existing R packages using the foreign function interface to seamlessly support 64-bit vectors. This extension is shown with the sparse matrix algebra R package spam. The new capabilities are illustrated with an example of GIMMS NDVI3g data featuring a parametric modeling approach for a non-stationary covariance matrix.
Boolean Operations with Prism Algebraic Patches
Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi
2009-01-01
In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C1-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262
Object-oriented biomedical system modelling--the language.
Hakman, M; Groth, T
1999-11-01
The paper describes a new object-oriented biomedical continuous system modelling language (OOBSML). It is fully object-oriented and supports model inheritance, encapsulation, and model component instantiation and behaviour polymorphism. Besides the traditional differential and algebraic equation expressions the language includes also formal expressions for documenting models and defining model quantity types and quantity units. It supports explicit definition of model input-, output- and state quantities, model components and component connections. The OOBSML model compiler produces self-contained, independent, executable model components that can be instantiated and used within other OOBSML models and/or stored within model and model component libraries. In this way complex models can be structured as multilevel, multi-component model hierarchies. Technically the model components produced by the OOBSML compiler are executable computer code objects based on distributed object and object request broker technology. This paper includes both the language tutorial and the formal language syntax and semantic description.
Maximizing algebraic connectivity in air transportation networks
NASA Astrophysics Data System (ADS)
Wei, Peng
In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the weight assignment can not be studied separately for the problem with operating cost constraint. Therefore a relaxed SDP method with golden section search is developed to solve both at the same time. The cluster decomposition is utilized to solve large scale networks.
Algebraic Functions, Computer Programming, and the Challenge of Transfer
ERIC Educational Resources Information Center
Schanzer, Emmanuel Tanenbaum
2015-01-01
Students' struggles with algebra are well documented. Prior to the introduction of functions, mathematics is typically focused on applying a set of arithmetic operations to compute an answer. The introduction of functions, however, marks the point at which mathematics begins to focus on building up abstractions as a way to solve complex problems.…
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turbiner, Alexander; Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado, Postal 70-543, 04510 Mexico, D. F.
1996-02-20
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.
Fractions as a Foundation for Algebra within a Sample of Prospective Teachers
ERIC Educational Resources Information Center
Zientek, Linda Reichwein; Younes, Rayya; Nimon, Kim; Mittag, Kathleen Cage; Taylor, Sharon
2013-01-01
Improving the mathematical skills of the next generation of students will require that elementary and middle school teachers are competent and confident in their abilities to perform fraction operations and to solve algebra equations The present study was conducted to (a) quantify relationships between prospective teachers' abilities to perform…
Algebraic Activities Aid Discovery Lessons
ERIC Educational Resources Information Center
Wallace-Gomez, Patricia
2013-01-01
After a unit on the rules for positive and negative numbers and the order of operations for evaluating algebraic expressions, many students believe that they understand these principles well enough, but they really do not. They clearly need more practice, but not more of the same kind of drill. Wallace-Gomez provides three graphing activities that…
Mathematics: Algebra and Geometry. GED Scoreboost.
ERIC Educational Resources Information Center
Hoyt, Cathy
GED "Scoreboost" materials target exactly the skills one needs to pass the General Educational Development (GED) tests. This book focuses on the GED Mathematics test. To prepare for the test, the test taker needs to learn skills in number and operation sense, data and statistics, geometry and measurement, and algebra. To pass the test,…
Geometric properties of commutative subalgebras of partial differential operators
NASA Astrophysics Data System (ADS)
Zheglov, A. B.; Kurke, H.
2015-05-01
We investigate further algebro-geometric properties of commutative rings of partial differential operators, continuing our research started in previous articles. In particular, we start to explore the simplest and also certain known examples of quantum algebraically completely integrable systems from the point of view of a recent generalization of Sato's theory, developed by the first author. We give a complete characterization of the spectral data for a class of 'trivial' commutative algebras and strengthen geometric properties known earlier for a class of known examples. We also define a kind of restriction map from the moduli space of coherent sheaves with fixed Hilbert polynomial on a surface to an analogous moduli space on a divisor (both the surface and the divisor are part of the spectral data). We give several explicit examples of spectral data and corresponding algebras of commuting (completed) operators, producing as a by-product interesting examples of surfaces that are not isomorphic to spectral surfaces of any (maximal) commutative ring of partial differential operators of rank one. Finally, we prove that any commutative ring of partial differential operators whose normalization is isomorphic to the ring of polynomials k \\lbrack u,t \\rbrack is a Darboux transformation of a ring of operators with constant coefficients. Bibliography: 39 titles.
Recurrence approach and higher order polynomial algebras for superintegrable monopole systems
NASA Astrophysics Data System (ADS)
Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong
2018-05-01
We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.
A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies
NASA Astrophysics Data System (ADS)
Lu, Wei
2017-09-01
We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.
A braided monoidal category for free super-bosons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runkel, Ingo, E-mail: ingo.runkel@uni-hamburg.de
The chiral conformal field theory of free super-bosons is generated by weight one currents whose mode algebra is the affinisation of an abelian Lie super-algebra h with non-degenerate super-symmetric pairing. The mode algebras of a single free boson and of a single pair of symplectic fermions arise for even|odd dimension 1|0 and 0|2 of h, respectively. In this paper, the representations of the untwisted mode algebra of free super-bosons are equipped with a tensor product, a braiding, and an associator. In the symplectic fermion case, i.e., if h is purely odd, the braided monoidal structure is extended to representations ofmore » the Z/2Z-twisted mode algebra. The tensor product is obtained by computing spaces of vertex operators. The braiding and associator are determined by explicit calculations from three- and four-point conformal blocks.« less
ERIC Educational Resources Information Center
Alexander, John W., Jr.; Rosenberg, Nancy S.
This document consists of two modules. The first of these views applications of algebra and elementary calculus to curve fitting. The user is provided with information on how to: 1) construct scatter diagrams; 2) choose an appropriate function to fit specific data; 3) understand the underlying theory of least squares; 4) use a computer program to…
Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields
NASA Astrophysics Data System (ADS)
Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs
2015-12-01
We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.
NASA Astrophysics Data System (ADS)
Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong
2018-04-01
We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.
Symbolic Algebra Development for Higher-Order Electron Propagator Formulation and Implementation.
Tamayo-Mendoza, Teresa; Flores-Moreno, Roberto
2014-06-10
Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods.
Games for Engaged Learning of Middle School Children with Special Learning Needs
ERIC Educational Resources Information Center
Ke, Fengfeng; Abras, Tatiana
2013-01-01
In this paper, we describe an in situ study that examined the diverse design features and effects of three pre-algebra games for middle school children who have either challenges with learning or different language backgrounds. Data were collected through in-field observation, artifact analysis, school performance report and knowledge test during…
Dimensional Analysis in Mathematical Modeling Systems: A Simple Numerical Method
1991-02-01
US Army Ballistic Research Laboratories, Aberden Proving Ground , NID, August 1975. [18] Hi1irlimann, T., and .J. lKohlas "LPL: A Structured Language...such systems can prove that (a’ + ab + b2 + ba) = (a + b) 2 . With some effort, since the laws of physical algebra are a minor variant on those of
Influence of Additive and Multiplicative Structure and Direction of Comparison on the Reversal Error
ERIC Educational Resources Information Center
González-Calero, José Antonio; Arnau, David; Laserna-Belenguer, Belén
2015-01-01
An empirical study has been carried out to evaluate the potential of word order matching and static comparison as explanatory models of reversal error. Data was collected from 214 undergraduate students who translated a set of additive and multiplicative comparisons expressed in Spanish into algebraic language. In these multiplicative comparisons…
Insights into the School Mathematics Tradition from Solving Linear Equations
ERIC Educational Resources Information Center
Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth
2015-01-01
In this article, we explore how the solving of linear equations is represented in English-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…
Submicron Systems Architecture Project
1981-11-01
This project is concerned with the architecture , design , and testing of VLSI Systems. The principal activities in this report period include: The Tree Machine; COPE, The Homogeneous Machine; Computational Arrays; Switch-Level Model for MOS Logic Design; Testing; Local Network and Designer Workstations; Self-timed Systems; Characterization of Deadlock Free Resource Contention; Concurrency Algebra; Language Design and Logic for Program Verification.
NASA Astrophysics Data System (ADS)
Benkrid, K.; Belkacemi, S.; Sukhsawas, S.
2005-06-01
This paper proposes an integrated framework for the high level design of high performance signal processing algorithms' implementations on FPGAs. The framework emerged from a constant need to rapidly implement increasingly complicated algorithms on FPGAs while maintaining the high performance needed in many real time digital signal processing applications. This is particularly important for application developers who often rely on iterative and interactive development methodologies. The central idea behind the proposed framework is to dynamically integrate high performance structural hardware description languages with higher level hardware languages in other to help satisfy the dual requirement of high level design and high performance implementation. The paper illustrates this by integrating two environments: Celoxica's Handel-C language, and HIDE, a structural hardware environment developed at the Queen's University of Belfast. On the one hand, Handel-C has been proven to be very useful in the rapid design and prototyping of FPGA circuits, especially control intensive ones. On the other hand, HIDE, has been used extensively, and successfully, in the generation of highly optimised parameterisable FPGA cores. In this paper, this is illustrated in the construction of a scalable and fully parameterisable core for image algebra's five core neighbourhood operations, where fully floorplanned efficient FPGA configurations, in the form of EDIF netlists, are generated automatically for instances of the core. In the proposed combined framework, highly optimised data paths are invoked dynamically from within Handel-C, and are synthesized using HIDE. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware description languages.
A non-symmetric Yang-Baxter algebra for the quantum nonlinear Schrödinger model
NASA Astrophysics Data System (ADS)
Vlaar, Bart
2013-06-01
We study certain non-symmetric wavefunctions associated with the quantum nonlinear Schrödinger model, introduced by Komori and Hikami using Gutkin’s propagation operator, which involves representations of the degenerate affine Hecke algebra. We highlight how these functions can be generated using a vertex-type operator formalism similar to the recursion defining the symmetric (Bethe) wavefunction in the quantum inverse scattering method. Furthermore, some of the commutation relations encoded in the Yang-Baxter equation for the relevant monodromy matrix are generalized to the non-symmetric case.
Monotonically improving approximate answers to relational algebra queries
NASA Technical Reports Server (NTRS)
Smith, Kenneth P.; Liu, J. W. S.
1989-01-01
We present here a query processing method that produces approximate answers to queries posed in standard relational algebra. This method is monotone in the sense that the accuracy of the approximate result improves with the amount of time spent producing the result. This strategy enables us to trade the time to produce the result for the accuracy of the result. An approximate relational model that characterizes appromimate relations and a partial order for comparing them is developed. Relational operators which operate on and return approximate relations are defined.
Algebraic approach to electronic spectroscopy and dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutounji, Mohamad
Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponentialmore » operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a{sup +}. While exp(a{sup +}) translates coherent states, exp(a{sup +}a{sup +}) operation on coherent states has always been a challenge, as a{sup +} has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}), of which the optical nonlinear response function may be procured, as evaluating F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.« less
Solving Equations of Multibody Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Lim, Christopher
2007-01-01
Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.
Mr.CAS-A minimalistic (pure) Ruby CAS for fast prototyping and code generation
NASA Astrophysics Data System (ADS)
Ragni, Matteo
There are Computer Algebra System (CAS) systems on the market with complete solutions for manipulation of analytical models. But exporting a model that implements specific algorithms on specific platforms, for target languages or for particular numerical library, is often a rigid procedure that requires manual post-processing. This work presents a Ruby library that exposes core CAS capabilities, i.e. simplification, substitution, evaluation, etc. The library aims at programmers that need to rapidly prototype and generate numerical code for different target languages, while keeping separated mathematical expression from the code generation rules, where best practices for numerical conditioning are implemented. The library is written in pure Ruby language and is compatible with most Ruby interpreters.
Bridging the Vector Calculus Gap
NASA Astrophysics Data System (ADS)
Dray, Tevian; Manogue, Corinne
2003-05-01
As with Britain and America, mathematicians and physicists are separated from each other by a common language. In a nutshell, mathematics is about functions, but physics is about things. For the last several years, we have led an NSF-supported effort to "bridge the vector calculus gap" between mathematics and physics. The unifying theme we have discovered is to emphasize geometric reasoning, not (just) algebraic computation. In this talk, we will illustrate the language differences between mathematicians and physicists, and how we are trying reconcile them in the classroom. For further information about the project go to: http://www.physics.orst.edu/bridge
Intermediate grouping on remotely sensed data using Gestalt algebra
NASA Astrophysics Data System (ADS)
Michaelsen, Eckart
2014-10-01
Human observers often achieve striking recognition performance on remotely sensed data unmatched by machine vision algorithms. This holds even for thermal images (IR) or synthetic aperture radar (SAR). Psychologists refer to these capabilities as Gestalt perceptive skills. Gestalt Algebra is a mathematical structure recently proposed for such laws of perceptual grouping. It gives operations for mirror symmetry, continuation in rows and rotational symmetric patterns. Each of these operations forms an aggregate-Gestalt of a tuple of part-Gestalten. Each Gestalt is attributed with a position, an orientation, a rotational frequency, a scale, and an assessment respectively. Any Gestalt can be combined with any other Gestalt using any of the three operations. Most often the assessment of the new aggregate-Gestalt will be close to zero. Only if the part-Gestalten perfectly fit into the desired pattern the new aggregate-Gestalt will be assessed with value one. The algebra is suitable in both directions: It may render an organized symmetric mandala using random numbers. Or it may recognize deep hidden visual relationships between meaningful parts of a picture. For the latter primitives must be obtained from the image by some key-point detector and a threshold. Intelligent search strategies are required for this search in the combinatorial space of possible Gestalt Algebra terms. Exemplarily, maximal assessed Gestalten found in selected aerial images as well as in IR and SAR images are presented.
Which Q-analogue of the squeezed oscillator?
NASA Technical Reports Server (NTRS)
Solomon, Allan I.
1993-01-01
The noise (variance squared) of a component of the electromagnetic field - considered as a quantum oscillator - in the vacuum is equal to one half, in appropriate units (taking Planck's constant and the mass and frequency of the oscillator all equal to 1). A practical definition of a squeezed state is one for which the noise is less than the vacuum value - and the amount of squeezing is determined by the appropriate ratio. Thus the usual coherent (Glauber) states are not squeezed, as they produce the same variance as the vacuum. However, it is not difficult to define states analogous to coherent states which do have this noise-reducing effect. In fact, they are coherent states in the more general group sense but with respect to groups other than the Heisenberg-Weyl Group which defines the Glauber states. The original, conventional squeezed state in quantum optics is that associated with the group SU(1,1). Just as the annihilation operator a of a single photon mode (and its hermitian conjugate a, the creation operator) generates the Heisenberg Weyl algebra, so the pair-photon operator a(sup 2) and its conjugate generates the algebra of the group SU(1,1). Another viewpoint, more productive from the calculational stance, is to note that the automorphism group of the Heisenberg-Weyl algebra is SU(1,1). Needless to say, each of these viewpoints generalizes differently to the quantum group context. Both are discussed. The following topics are addressed: conventional coherent and squeezed states; eigenstate definitions; exponential definitions; algebra (group) definitions; automorphism group definition; example: signal-to-noise ratio; q-coherent and q-squeezed states; M and P q-bosons; eigenstate definitions; exponential definitions; algebra (q-group) definitions; and automorphism q-group definition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baykara, N. A.
Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraicmore » equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadella, M.; Negro, J.; Santander, M.
In this paper, we construct a Spectrum Generating Algebra (SGA) for a quantum system with purely continuous spectrum: the quantum free particle in a Lobachevski space with constant negative curvature. The SGA contains the geometrical symmetry algebra of the system plus a subalgebra of operators that give the spectrum of the system and connects the eigenfunctions of the Hamiltonian among themselves. In our case, the geometrical symmetry algebra is so(3,1) and the SGA is so(4,2). We start with a representation of so(4,2) by functions on a realization of the Lobachevski space given by a two-sheeted hyperboloid, where the Lie algebramore » commutators are the usual Poisson-Dirac brackets. Then, we introduce a quantized version of the representation in which functions are replaced by operators on a Hilbert space and Poisson-Dirac brackets by commutators. Eigenfunctions of the Hamiltonian are given and 'naive' ladder operators are identified. The previously defined 'naive' ladder operators shift the eigenvalues by a complex number so that an alternative approach is necessary. This is obtained by a non-self-adjoint function of a linear combination of the ladder operators, which gives the correct relation among the eigenfunctions of the Hamiltonian. We give an eigenfunction expansion of functions over the upper sheet of a two-sheeted hyperboloid in terms of the eigenfunctions of the Hamiltonian.« less
Dynamical Correspondence in a Generalized Quantum Theory
NASA Astrophysics Data System (ADS)
Niestegge, Gerd
2015-05-01
In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.
The smooth entropy formalism for von Neumann algebras
NASA Astrophysics Data System (ADS)
Berta, Mario; Furrer, Fabian; Scholz, Volkher B.
2016-01-01
We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.
Surface defects and chiral algebras
NASA Astrophysics Data System (ADS)
Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng
2017-05-01
We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.
The smooth entropy formalism for von Neumann algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berta, Mario, E-mail: berta@caltech.edu; Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp; Scholz, Volkher B., E-mail: scholz@phys.ethz.ch
2016-01-15
We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.
NASA Astrophysics Data System (ADS)
Plymen, Roger; Robinson, Paul
1995-01-01
Infinite-dimensional Clifford algebras and their Fock representations originated in the quantum mechanical study of electrons. In this book, the authors give a definitive account of the various Clifford algebras over a real Hilbert space and of their Fock representations. A careful consideration of the latter's transformation properties under Bogoliubov automorphisms leads to the restricted orthogonal group. From there, a study of inner Bogoliubov automorphisms enables the authors to construct infinite-dimensional spin groups. Apart from assuming a basic background in functional analysis and operator algebras, the presentation is self-contained with complete proofs, many of which offer a fresh perspective on the subject.
On superintegrable monopole systems
NASA Astrophysics Data System (ADS)
Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong
2018-02-01
Superintegrable systems with monopole interactions in flat and curved spaces have attracted much attention. For example, models in spaces with a Taub-NUT metric are well-known to admit the Kepler-type symmetries and provide non-trivial generalizations of the usual Kepler problems. In this paper, we overview new families of superintegrable Kepler, MIC-harmonic oscillator and deformed Kepler systems interacting with Yang-Coulomb monopoles in the flat and curved Taub-NUT spaces. We present their higher-order, algebraically independent integrals of motion via the direct and constructive approaches which prove the superintegrability of the models. The integrals form symmetry polynomial algebras of the systems with structure constants involving Casimir operators of certain Lie algebras. Such algebraic approaches provide a deeper understanding to the degeneracies of the energy spectra and connection between wave functions and differential equations and geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrypnyk, T.
2009-10-15
We analyze symmetries of the integrable generalizations of Jaynes-Cummings and Dicke models associated with simple Lie algebras g and their reductive subalgebras g{sub K}[T. Skrypnyk, 'Generalized n-level Jaynes-Cummings and Dicke models, classical rational r-matrices and nested Bethe ansatz', J. Phys. A: Math. Theor. 41, 475202 (2008)]. We show that their symmetry algebras contain commutative subalgebras isomorphic to the Cartan subalgebras of g, which can be added to the commutative algebras of quantum integrals generated with the help of the quantum Lax operators. We diagonalize additional commuting integrals and constructed with their help the most general integrable quantum Hamiltonian of themore » generalized n-level many-mode Jaynes-Cummings and Dicke-type models using nested algebraic Bethe ansatz.« less
Argyres-Douglas theories, chiral algebras and wild Hitchin characters
NASA Astrophysics Data System (ADS)
Fredrickson, Laura; Pei, Du; Yan, Wenbin; Ye, Ke
2018-01-01
We use Coulomb branch indices of Argyres-Douglas theories on S 1 × L( k, 1) to quantize moduli spaces M_H of wild/irregular Hitchin systems. In particular, we obtain formulae for the "wild Hitchin characters" — the graded dimensions of the Hilbert spaces from quantization — for four infinite families of M_H , giving access to many interesting geometric and topological data of these moduli spaces. We observe that the wild Hitchin characters can always be written as a sum over fixed points in M_H under the U(1) Hitchin action, and a limit of them can be identified with matrix elements of the modular transform ST k S in certain two-dimensional chiral algebras. Although naturally fitting into the geometric Langlands program, the appearance of chiral algebras, which was known previously to be associated with Schur operators but not Coulomb branch operators, is somewhat surprising.
An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy
NASA Astrophysics Data System (ADS)
Matsushima, Masatomo; Ohmiya, Mayumi
2009-09-01
The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.
Fusion of Positive Energy Representations of LSpin(2n)
NASA Astrophysics Data System (ADS)
Toledano-Laredo, V.
2004-09-01
Building upon the Jones-Wassermann program of studying Conformal Field Theory using operator algebraic tools, and the work of A. Wassermann on the loop group of LSU(n) (Invent. Math. 133 (1998), 467-538), we give a solution to the problem of fusion for the loop group of Spin(2n). Our approach relies on the use of A. Connes' tensor product of bimodules over a von Neumann algebra to define a multiplicative operation (Connes fusion) on the (integrable) positive energy representations of a given level. The notion of bimodules arises by restricting these representations to loops with support contained in an interval I of the circle or its complement. We study the corresponding Grothendieck ring and show that fusion with the vector representation is given by the Verlinde rules. The computation rests on 1) the solution of a 6-parameter family of Knizhnik-Zamolodchikhov equations and the determination of its monodromy, 2) the explicit construction of the primary fields of the theory, which allows to prove that they define operator-valued distributions and 3) the algebraic theory of superselection sectors developed by Doplicher-Haag-Roberts.
SU(3)_C× SU(2)_L× U(1)_Y( × U(1)_X ) as a symmetry of division algebraic ladder operators
NASA Astrophysics Data System (ADS)
Furey, C.
2018-05-01
We demonstrate a model which captures certain attractive features of SU(5) theory, while providing a possible escape from proton decay. In this paper we show how ladder operators arise from the division algebras R, C, H, and O. From the SU( n) symmetry of these ladder operators, we then demonstrate a model which has much structural similarity to Georgi and Glashow's SU(5) grand unified theory. However, in this case, the transitions leading to proton decay are expected to be blocked, given that they coincide with presumably forbidden transformations which would incorrectly mix distinct algebraic actions. As a result, we find that we are left with G_{sm} = SU(3)_C× SU(2)_L× U(1)_Y / Z_6. Finally, we point out that if U( n) ladder symmetries are used in place of SU( n), it may then be possible to find this same G_{sm}=SU(3)_C× SU(2)_L× U(1)_Y / Z_6, together with an extra U(1)_X symmetry, related to B-L.
Entanglement classification with algebraic geometry
NASA Astrophysics Data System (ADS)
Sanz, M.; Braak, D.; Solano, E.; Egusquiza, I. L.
2017-05-01
We approach multipartite entanglement classification in the symmetric subspace in terms of algebraic geometry, its natural language. We show that the class of symmetric separable states has the structure of a Veronese variety and that its k-secant varieties are SLOCC invariants. Thus SLOCC classes gather naturally into families. This classification presents useful properties such as a linear growth of the number of families with the number of particles, and nesting, i.e. upward consistency of the classification. We attach physical meaning to this classification through the required interaction length of parent Hamiltonians. We show that the states W N and GHZ N are in the same secant family and that, effectively, the former can be obtained in a limit from the latter. This limit is understood in terms of tangents, leading to a refinement of the previous families. We compute explicitly the classification of symmetric states with N≤slant4 qubits in terms of both secant families and its refinement using tangents. This paves the way to further use of projective varieties in algebraic geometry to solve open problems in entanglement theory.
ERIC Educational Resources Information Center
Hewitt, Dave
2014-01-01
This article analyzes the use of the software Grid Algebra with a mixed ability class of 21 nine-to-ten-year-old students who worked with complex formal notation involving all four arithmetic operations. Unlike many other models to support learning, Grid Algebra has formal notation ever present and allows students to "look through" that…
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turbiner, A.
1996-02-01
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland {ital N}-body problems ass ociated with an existence of the hidden algebra {ital sl}{sub {ital N}} is discussed extensively. {copyright} {ital 1996 American Institute of Physics.}
Competence with Fractions in Fifth or Sixth Grade as a Unique Predictor of Algebraic Thinking?
ERIC Educational Resources Information Center
Pearn, Catherine; Stephens, Max
2016-01-01
Researchers have argued that there are strong links between primary school students' competence with fraction concepts and operations and their algebraic readiness. This study involving 162 Years 5/6 students in three primary schools examined the strength of that relationship using a test based on familiar fraction tasks and a test of algebraic…
ERIC Educational Resources Information Center
Billings, Tawny J.
2014-01-01
This mixed-method research study sought to investigate the relationship between middle school configuration and the academic achievement of eighth grade students in English Language Arts (ELA) and Algebra 1. The California Content Standards exam scores of 646 elementary middle schools (K-8) and 1,282 traditional middle schools (6-8, 7-8) in…
Some Applications of Gröbner Bases in Robotics and Engineering
NASA Astrophysics Data System (ADS)
Abłamowicz, Rafał
Gröbner bases in polynomial rings have numerous applications in geometry, applied mathematics, and engineering. We show a few applications of Gröbner bases in robotics, formulated in the language of Clifford algebras, and in engineering to the theory of curves, including Fermat and Bézier cubics, and interpolation functions used in finite element theory.
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.
2008-01-01
Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3rd graders’ development of mathematics problem solving. In the fall, 122 3rd-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities. PMID:19884957
NASA Astrophysics Data System (ADS)
Motoyui, Nobuyuki; Yamada, Mitsuru
We investigate a two-dimensional N = 2 supersymmetric model which consists of n chiral superfields with Kähler potential. When we define quantum observables, we are always plagued by operator ordering problem. Among various ways to fix the operator order, we rely upon the supersymmetry. We demonstrate that the correct operator order is given by requiring the super-Poincaré algebra by carrying out the canonical Dirac bracket quantization. This is shown to be also true when the supersymmetry algebra has a central extension by the presence of topological soliton. It is also shown that the path of soliton is a straight line in the complex plane of superpotential W and triangular mass inequality holds. One half of supersymmetry is broken by the presence of soliton.
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag
2017-10-01
Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.
xPerm: fast index canonicalization for tensor computer algebra
NASA Astrophysics Data System (ADS)
Martín-García, José M.
2008-10-01
We present a very fast implementation of the Butler-Portugal algorithm for index canonicalization with respect to permutation symmetries. It is called xPerm, and has been written as a combination of a Mathematica package and a C subroutine. The latter performs the most demanding parts of the computations and can be linked from any other program or computer algebra system. We demonstrate with tests and timings the effectively polynomial performance of the Butler-Portugal algorithm with respect to the number of indices, though we also show a case in which it is exponential. Our implementation handles generic tensorial expressions with several dozen indices in hundredths of a second, or one hundred indices in a few seconds, clearly outperforming all other current canonicalizers. The code has been already under intensive testing for several years and has been essential in recent investigations in large-scale tensor computer algebra. Program summaryProgram title: xPerm Catalogue identifier: AEBH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 93 582 No. of bytes in distributed program, including test data, etc.: 1 537 832 Distribution format: tar.gz Programming language: C and Mathematica (version 5.0 or higher) Computer: Any computer running C and Mathematica (version 5.0 or higher) Operating system: Linux, Unix, Windows XP, MacOS RAM:: 20 Mbyte Word size: 64 or 32 bits Classification: 1.5, 5 Nature of problem: Canonicalization of indexed expressions with respect to permutation symmetries. Solution method: The Butler-Portugal algorithm. Restrictions: Multiterm symmetries are not considered. Running time: A few seconds with generic expressions of up to 100 indices. The xPermDoc.nb notebook supplied with the distribution takes approximately one and a half hours to execute in full.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvao, C.A.; Nutku, Y.
1996-12-01
mA third order Monge-Amp{grave e}re type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac{close_quote}s theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra. {copyright} {ital 1996 American Institute of Physics.}
Kato type operators and Weyl's theorem
NASA Astrophysics Data System (ADS)
Duggal, B. P.; Djordjevic, S. V.; Kubrusly, Carlos
2005-09-01
A Banach space operator T satisfies Weyl's theorem if and only if T or T* has SVEP at all complex numbers [lambda] in the complement of the Weyl spectrum of T and T is Kato type at all [lambda] which are isolated eigenvalues of T of finite algebraic multiplicity. If T* (respectively, T) has SVEP and T is Kato type at all [lambda] which are isolated eigenvalues of T of finite algebraic multiplicity (respectively, T is Kato type at all [lambda][set membership, variant]iso[sigma](T)), then T satisfies a-Weyl's theorem (respectively, T* satisfies a-Weyl's theorem).
Novel symmetries in Christ-Lee model
NASA Astrophysics Data System (ADS)
Kumar, R.; Shukla, A.
2016-07-01
We demonstrate that the gauge-fixed Lagrangian of the Christ-Lee model respects four fermionic symmetries, namely; (anti-)BRST symmetries, (anti-)co-BRST symmetries within the framework of BRST formalism. The appropriate anticommutators amongst the fermionic symmetries lead to a unique bosonic symmetry. It turns out that the algebra obeyed by the symmetry transformations (and their corresponding conserved charges) is reminiscent of the algebra satisfied by the de Rham cohomological operators of differential geometry. We also provide the physical realizations of the cohomological operators in terms of the symmetry properties. Thus, the present model provides a simple model for the Hodge theory.
Exact joint density-current probability function for the asymmetric exclusion process.
Depken, Martin; Stinchcombe, Robin
2004-07-23
We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society
Contiguity and Entire Separability of States on von Neumann Algebras
NASA Astrophysics Data System (ADS)
Haliullin, Samigulla
2017-12-01
We introduce the notions of the contiguity and entirely separability for two sequences of states on von Neumann algebras. The ultraproducts technique allows us to reduce the study of the contiguity to investigation of the equivalence for two states. Here we apply the Ocneanu ultraproduct and the Groh-Raynaud ultraproduct (see Ocneanu (1985), Groh (J. Operator Theory, 11, 2, 395-404 1984), Raynaud (J. Operator Theory, 48, 1, 41-68, 2002), Ando and Haagerup (J. Funct. Anal., 266, 12, 6842-6913, 2014)), as well as the technique developed in Mushtari and Haliullin (Lobachevskii J. Math., 35, 2, 138-146, 2014).
Symmetries of hyper-Kähler (or Poisson gauge field) hierarchy
NASA Astrophysics Data System (ADS)
Takasaki, K.
1990-08-01
Symmetry properties of the space of complex (or formal) hyper-Kähler metrics are studied in the language of hyper-Kähler hierarchies. The construction of finite symmetries is analogous to the theory of Riemann-Hilbert transformations, loop group elements now taking values in a (pseudo-) group of canonical transformations of a simplectic manifold. In spite of their highly nonlinear and involved nature, infinitesimal expressions of these symmetries are shown to have a rather simple form. These infinitesimal transformations are extended to the Plebanski key functions to give rise to a nonlinear realization of a Poisson loop algebra. The Poisson algebra structure turns out to originate in a contact structure behind a set of symplectic structures inherent in the hyper-Kähler hierarchy. Possible relations to membrane theory are briefly discussed.
Topologically massive gravity and galilean conformal algebra: a study of correlation functions
NASA Astrophysics Data System (ADS)
Bagchi, Arjun
2011-02-01
The Galilean Conformal Algebra (GCA) arises from the conformal algebra in the non-relativistic limit. In two dimensions, one can view it as a limit of linear combinations of the two copies Virasoro algebra. Recently, it has been argued that Topologically Massive Gravity (TMG) realizes the quantum 2d GCA in a particular scaling limit of the gravitational Chern-Simons term. To add strength to this claim, we demonstrate a matching of correlation functions on both sides of this correspondence. A priori looking for spatially dependent correlators seems to force us to deal with high spin operators in the bulk. We get around this difficulty by constructing the non-relativistic Energy-Momentum tensor and considering its correlation functions. On the gravity side, our analysis makes heavy use of recent results of Holographic Renormalization in Topologically Massive Gravity.
Measurements and mathematical formalism of quantum mechanics
NASA Astrophysics Data System (ADS)
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
New features in the design code Tlie
NASA Astrophysics Data System (ADS)
van Zeijts, Johannes
1993-12-01
We present features recently installed in the arbitrary-order accelerator design code Tlie. The code uses the MAD input language, and implements programmable extensions modeled after the C language that make it a powerful tool in a wide range of applications: from basic beamline design to high precision-high order design and even control room applications. The basic quantities important in accelerator design are easily accessible from inside the control language. Entities like parameters in elements (strength, current), transfer maps (either in Taylor series or in Lie algebraic form), lines, and beams (either as sets of particles or as distributions) are among the type of variables available. These variables can be set, used as arguments in subroutines, or just typed out. The code is easily extensible with new datatypes.
Conformal Galilei algebras, symmetric polynomials and singular vectors
NASA Astrophysics Data System (ADS)
Křižka, Libor; Somberg, Petr
2018-01-01
We classify and explicitly describe homomorphisms of Verma modules for conformal Galilei algebras cga_ℓ (d,C) with d=1 for any integer value ℓ \\in N. The homomorphisms are uniquely determined by singular vectors as solutions of certain differential operators of flag type and identified with specific polynomials arising as coefficients in the expansion of a parametric family of symmetric polynomials into power sum symmetric polynomials.
Mathematics of Quantization and Quantum Fields
NASA Astrophysics Data System (ADS)
Dereziński, Jan; Gérard, Christian
2013-03-01
Preface; 1. Vector spaces; 2. Operators in Hilbert spaces; 3. Tensor algebras; 4. Analysis in L2(Rd); 5. Measures; 6. Algebras; 7. Anti-symmetric calculus; 8. Canonical commutation relations; 9. CCR on Fock spaces; 10. Symplectic invariance of CCR in finite dimensions; 11. Symplectic invariance of the CCR on Fock spaces; 12. Canonical anti-commutation relations; 13. CAR on Fock spaces; 14. Orthogonal invariance of CAR algebras; 15. Clifford relations; 16. Orthogonal invariance of the CAR on Fock spaces; 17. Quasi-free states; 18. Dynamics of quantum fields; 19. Quantum fields on space-time; 20. Diagrammatics; 21. Euclidean approach for bosons; 22. Interacting bosonic fields; Subject index; Symbols index.
Anomaly cancellation for super- W -gravity
NASA Astrophysics Data System (ADS)
Mansfield, P.; Spence, B.
1991-08-01
We generalise the description of minimal superconformal models coupled to supergravity, due to Distler, Hlousek and Kawaii, to super- W -gravity. When the chiral algebra is the generalisation of the W-algebra associated to any contragredient Lie superalgebra the total central charge vanishes as a result of Lie superalgebra identities. When the algebra has only fermionic simple roots there is N = 1 superconformal invariance and for this case we describe the Lax operators and construct gravitationally dressed primary superfields of weight zero. We also prove the anomaly cancellation associated with the generalised non-abelian Toda theories. Address from 1 October 1991: Physics Department, Imperial College, London SW7 2BZ, UK.
Beauty and the beast: Superconformal symmetry in a monster module
NASA Astrophysics Data System (ADS)
Dixon, L.; Ginsparg, P.; Harvey, J.
1988-06-01
Frenkel, Lepowsky, and Meurman have constructed a representation of the largest sporadic simple finite group, the Fischer-Griess monster, as the automorphism group of the operator product algebra of a conformal field theory with central charge c=24. In string terminology, their construction corresponds to compactification on a Z 2 asymmetric orbifold constructed from the torus R 24/∧, where ∧ is the Leech lattice. In this note we point out that their construction naturally embodies as well a larger algebraic structure, namely a super-Virasoro algebra with central charge ĉ=16, with the supersymmetry generator constructed in terms of bosonic twist fields.
Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras
NASA Astrophysics Data System (ADS)
Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin
2018-03-01
We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.
Surface defects and chiral algebras
Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng
2017-05-26
Here, we investigate superconformal surface defects in four-dimensional N = 2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfield-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. We find perfect agreement with the predicted characters, in eachmore » case.« less
Surface defects and chiral algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng
Here, we investigate superconformal surface defects in four-dimensional N = 2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfield-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. We find perfect agreement with the predicted characters, in eachmore » case.« less
NASA Astrophysics Data System (ADS)
Smirnov, Mikhail
1995-01-01
The problems solved in this thesis originated from combinatorial formulas for characteristic classes. This thesis deals with Chern-Simons classes, their generalizations and related algebraic and analytic problems. (1) In this thesis, I describe a new class of algebras whose elements contain Chern and generalized Chern -Simons classes. There is a Poisson bracket in these algebras, similar to the bracket in Kontsevich's noncommutative symplectic geometry (Kon). I prove that the Poisson bracket gives rise to a graded Lie algebra containing differential forms representing Chern and Chern-Simons classes. This is a new result. I describe algebraic analogs of the dilogarithm and higher polylogarithms in the algebra corresponding to Chern-Simons classes. (2) I study the properties of this bracket. It is possible to write the exterior differential and other operations in the algebra using this bracket. The bracket of any two Chern classes is zero and the bracket of a Chern class and a Chern-Simons class is d-closed. The construction developed here easily gives explicit formulas for known secondary classes and makes it possible to construct new ones. (3) I develop an algebraic model for the action of the gauge group and describe how elements of algebra corresponding to the secondary characteristic classes change under this action (see theorem 3 page xi). (4) It is possible give new explicit formulas for cocycles on a gauge group of a bundle and for the corresponding cocycles on the Lie algebra of the gauge group. I use formulas for secondary characteristic classes and an algebraic approach developed in chapter 1. I also use the work of Faddeev, Reiman and Semyonov-Tian-Shanskii (FRS) on cocycles as quantum anomalies. (5) I apply the methods of differential geometry of formal power series to construct universal characteristic and secondary characteristic classes. Given a pair of gauge equivalent connections using local formulas I obtain dilogarithmic and trilogarithmic analogs of Chern-Simons classes.
Quantum group symmetry of the quantum Hall effect on non-flat surfaces
NASA Astrophysics Data System (ADS)
Alimohammadi, M.; Shafei Deh Abad, A.
1996-02-01
After showing that the magnetic translation operators are not the symmetries of the quantum Hall effect (QHE) on non-flat surfaces, we show that another set of operators which leads to the quantum group symmetries for some of these surfaces exists. As a first example we show that the su(2) symmetry of the QHE on a sphere leads to 0305-4470/29/3/010/img6(2) algebra in the equator. We explain this result by a contraction of su(2). Second, with the help of the symmetry operators of QHE on the Poincaré upper half plane, we will show that the ground-state wavefunctions form a representation of the 0305-4470/29/3/010/img6(2) algebra.
A Module Language for Typing by Contracts
NASA Technical Reports Server (NTRS)
Glouche, Yann; Talpin, Jean-Pierre; LeGuernic, Paul; Gautier, Thierry
2009-01-01
Assume-guarantee reasoning is a popular and expressive paradigm for modular and compositional specification of programs. It is becoming a fundamental concept in some computer-aided design tools for embedded system design. In this paper, we elaborate foundations for contract-based embedded system design by proposing a general-purpose module language based on a Boolean algebra allowing to define contracts. In this framework, contracts are used to negotiate the correctness of assumptions made on the definition of a component at the point where it is used and provides guarantees to its environment. We illustrate this presentation with the specification of a simplified 4-stroke engine model.
Model Driven Development of Web Services and Dynamic Web Services Composition
2005-01-01
27 2.4.1 Feature-Oriented Domain Analysis ( FODA ).......................................27 2.4.2 The need of automation for Feature-Oriented...Diagram Algebra FDL Feature Description Language FODA Feature-Oriented Domain Analysis FSM Finite State Machine GDM Generative Domain...Oriented Domain Analysis ( FODA ) in Section 2.4 and Aspect-Oriented Generative Do- main Modeling (AOGDM) in Section 2.5, which not only represent two
Cut and join operator ring in tensor models
NASA Astrophysics Data System (ADS)
Itoyama, H.; Mironov, A.; Morozov, A.
2018-07-01
Recent advancement of rainbow tensor models based on their superintegrability (manifesting itself as the existence of an explicit expression for a generic Gaussian correlator) has allowed us to bypass the long-standing problem seen as the lack of eigenvalue/determinant representation needed to establish the KP/Toda integrability. As the mandatory next step, we discuss in this paper how to provide an adequate designation to each of the connected gauge-invariant operators that form a double coset, which is required to cleverly formulate a tree-algebra generalization of the Virasoro constraints. This problem goes beyond the enumeration problem per se tied to the permutation group, forcing us to introduce a few gauge fixing procedures to the coset. We point out that the permutation-based labeling, which has proven to be relevant for the Gaussian averages is, via interesting complexity, related to the one based on the keystone trees, whose algebra will provide the tensor counterpart of the Virasoro algebra for matrix models. Moreover, our simple analysis reveals the existence of nontrivial kernels and co-kernels for the cut operation and for the join operation respectively that prevent a straightforward construction of the non-perturbative RG-complete partition function and the identification of truly independent time variables. We demonstrate these problems by the simplest non-trivial Aristotelian RGB model with one complex rank-3 tensor, studying its ring of gauge-invariant operators, generated by the keystone triple with the help of four operations: addition, multiplication, cut and join.
Kleene Algebra and Bytecode Verification
2016-04-27
computing the star (Kleene closure) of a matrix of transfer functions. In this paper we show how this general framework applies to the problem of Java ...bytecode verification. We show how to specify transfer functions arising in Java bytecode verification in such a way that the Kleene algebra operations...potentially improve the performance over the standard worklist algorithm when a small cutset can be found. Key words: Java , bytecode, verification, static
On the Chern-Gauss-Bonnet Theorem and Conformally Twisted Spectral Triples for C*-Dynamical Systems
NASA Astrophysics Data System (ADS)
Fathizadeh, Farzad; Gabriel, Olivier
2016-02-01
The analog of the Chern-Gauss-Bonnet theorem is studied for a C^*-dynamical system consisting of a C^*-algebra A equipped with an ergodic action of a compact Lie group G. The structure of the Lie algebra g of G is used to interpret the Chevalley-Eilenberg complex with coefficients in the smooth subalgebra A subset A as noncommutative differential forms on the dynamical system. We conformally perturb the standard metric, which is associated with the unique G-invariant state on A, by means of a Weyl conformal factor given by a positive invertible element of the algebra, and consider the Hermitian structure that it induces on the complex. A Hodge decomposition theorem is proved, which allows us to relate the Euler characteristic of the complex to the index properties of a Hodge-de Rham operator for the perturbed metric. This operator, which is shown to be selfadjoint, is a key ingredient in our construction of a spectral triple on A and a twisted spectral triple on its opposite algebra. The conformal invariance of the Euler characteristic is interpreted as an indication of the Chern-Gauss-Bonnet theorem in this setting. The spectral triples encoding the conformally perturbed metrics are shown to enjoy the same spectral summability properties as the unperturbed case.
Generalized Heisenberg Algebras, SUSYQM and Degeneracies: Infinite Well and Morse Potential
NASA Astrophysics Data System (ADS)
Hussin, Véronique; Marquette, Ian
2011-03-01
We consider classical and quantum one and two-dimensional systems with ladder operators that satisfy generalized Heisenberg algebras. In the classical case, this construction is related to the existence of closed trajectories. In particular, we apply these results to the infinite well and Morse potentials. We discuss how the degeneracies of the permutation symmetry of quantum two-dimensional systems can be explained using products of ladder operators. These products satisfy interesting commutation relations. The two-dimensional Morse quantum system is also related to a generalized two-dimensional Morse supersymmetric model. Arithmetical or accidental degeneracies of such system are shown to be associated to additional supersymmetry.
The hit problem for symmetric polynomials over the Steenrod algebra
NASA Astrophysics Data System (ADS)
Janfada, A. S.; Wood, R. M. W.
2002-09-01
We cite [18] for references to work on the hit problem for the polynomial algebra P(n) = [open face F]2[x1, ;…, xn] = [oplus B: plus sign in circle]d[gt-or-equal, slanted]0 Pd(n), viewed as a graded left module over the Steenrod algebra [script A] at the prime 2. The grading is by the homogeneous polynomials Pd(n) of degree d in the n variables x1, …, xn of grading 1. The present article investigates the hit problem for the [script A]-submodule of symmetric polynomials B(n) = P(n)[sum L: summation operator]n , where [sum L: summation operator]n denotes the symmetric group on n letters acting on the right of P(n). Among the main results is the symmetric version of the well-known Peterson conjecture. For a positive integer d, let [mu](d) denote the smallest value of k for which d = [sum L: summation operator]ki=1(2[lambda]i[minus sign]1), where [lambda]i [gt-or-equal, slanted] 0.
Two-spectral Yang-Baxter operators in topological quantum computation
NASA Astrophysics Data System (ADS)
Sanchez, William F.
2011-05-01
One of the current trends in quantum computing is the application of algebraic topological methods in the design of new algorithms and quantum computers, giving rise to topological quantum computing. One of the tools used in it is the Yang-Baxter equation whose solutions are interpreted as universal quantum gates. Lately, more general Yang-Baxter equations have been investigated, making progress as two-spectral equations and Yang-Baxter systems. This paper intends to apply these new findings to the field of topological quantum computation, more specifically, the proposition of the two-spectral Yang-Baxter operators as universal quantum gates for 2 qubits and 2 qutrits systems, obtaining 4x4 and 9x9 matrices respectively, and further elaboration of the corresponding Hamiltonian by the use of computer algebra software Mathematica® and its Qucalc package. In addition, possible physical systems to which the Yang-Baxter operators obtained can be applied are considered. In the present work it is demonstrated the utility of the Yang-Baxter equation to generate universal quantum gates and the power of computer algebra to design them; it is expected that these mathematical studies contribute to the further development of quantum computers
Hypotrochoids in conformal restriction systems and Virasoro descendants
NASA Astrophysics Data System (ADS)
Doyon, Benjamin
2013-09-01
A conformal restriction system is a commutative, associative, unital algebra equipped with a representation of the groupoid of univalent conformal maps on connected open sets of the Riemann sphere, along with a family of linear functionals on subalgebras, satisfying a set of properties including conformal invariance and a type of restriction. This embodies some expected properties of expectation values in conformal loop ensembles CLEκ (at least for 8/3 < κ ≤ 4). In the context of conformal restriction systems, we study certain algebra elements associated with hypotrochoid simple curves (a family of curves including the ellipse). These have the CLE interpretation of being ‘renormalized random variables’ that are nonzero only if there is at least one loop of hypotrochoid shape. Each curve has a center w, a scale ɛ and a rotation angle θ, and we analyze the renormalized random variable as a function of u = ɛeiθ and w. We find that it has an expansion in positive powers of u and \\bar {u}, and that the coefficients of pure u (\\bar {u}) powers are holomorphic in w (\\bar {w}). We identify these coefficients (the ‘hypotrochoid fields’) with certain Virasoro descendants of the identity field in conformal field theory, thereby showing that they form part of a vertex operator algebraic structure. This largely generalizes works by the author (in CLE), and the author with his collaborators Riva and Cardy (in SLE8/3 and other restriction measures), where the case of the ellipse, at the order u2, led to the stress-energy tensor of CFT. The derivation uses in an essential way the Virasoro vertex operator algebra structure of conformal derivatives established recently by the author. The results suggest in particular the exact evaluation of CLE expectations of products of hypotrochoid fields as well as nontrivial relations amongst them through the vertex operator algebra, and further shed light onto the relationship between CLE and CFT.
Multicriteria Decision-Making Approach with Hesitant Interval-Valued Intuitionistic Fuzzy Sets
Peng, Juan-juan; Wang, Jian-qiang; Wang, Jing; Chen, Xiao-hong
2014-01-01
The definition of hesitant interval-valued intuitionistic fuzzy sets (HIVIFSs) is developed based on interval-valued intuitionistic fuzzy sets (IVIFSs) and hesitant fuzzy sets (HFSs). Then, some operations on HIVIFSs are introduced in detail, and their properties are further discussed. In addition, some hesitant interval-valued intuitionistic fuzzy number aggregation operators based on t-conorms and t-norms are proposed, which can be used to aggregate decision-makers' information in multicriteria decision-making (MCDM) problems. Some valuable proposals of these operators are studied. In particular, based on algebraic and Einstein t-conorms and t-norms, some hesitant interval-valued intuitionistic fuzzy algebraic aggregation operators and Einstein aggregation operators can be obtained, respectively. Furthermore, an approach of MCDM problems based on the proposed aggregation operators is given using hesitant interval-valued intuitionistic fuzzy information. Finally, an illustrative example is provided to demonstrate the applicability and effectiveness of the developed approach, and the study is supported by a sensitivity analysis and a comparison analysis. PMID:24983009
Closure of the operator product expansion in the non-unitary bootstrap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esterlis, Ilya; Fitzpatrick, A. Liam; Ramirez, David M.
We use the numerical conformal bootstrap in two dimensions to search for finite, closed sub-algebras of the operator product expansion (OPE), without assuming unitarity. We find the minimal models as special cases, as well as additional lines of solutions that can be understood in the Coulomb gas formalism. All the solutions we find that contain the vacuum in the operator algebra are cases where the external operators of the bootstrap equation are degenerate operators, and we argue that this follows analytically from the expressions in arXiv:1202.4698 for the crossing matrices of Virasoro conformal blocks. Our numerical analysis is a specialmore » case of the “Gliozzi” bootstrap method, and provides a simpler setting in which to study technical challenges with the method. In the supplementary material, we provide a Mathematica notebook that automates the calculation of the crossing matrices and OPE coefficients for degenerate operators using the formulae of Dotsenko and Fateev.« less
Closure of the operator product expansion in the non-unitary bootstrap
Esterlis, Ilya; Fitzpatrick, A. Liam; Ramirez, David M.
2016-11-07
We use the numerical conformal bootstrap in two dimensions to search for finite, closed sub-algebras of the operator product expansion (OPE), without assuming unitarity. We find the minimal models as special cases, as well as additional lines of solutions that can be understood in the Coulomb gas formalism. All the solutions we find that contain the vacuum in the operator algebra are cases where the external operators of the bootstrap equation are degenerate operators, and we argue that this follows analytically from the expressions in arXiv:1202.4698 for the crossing matrices of Virasoro conformal blocks. Our numerical analysis is a specialmore » case of the “Gliozzi” bootstrap method, and provides a simpler setting in which to study technical challenges with the method. In the supplementary material, we provide a Mathematica notebook that automates the calculation of the crossing matrices and OPE coefficients for degenerate operators using the formulae of Dotsenko and Fateev.« less
Hilbert space structure in quantum gravity: an algebraic perspective
Giddings, Steven B.
2015-12-16
If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less
Hilbert space structure in quantum gravity: an algebraic perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giddings, Steven B.
If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less
Beyond Aztec Castles: Toric Cascades in the dP 3 Quiver
NASA Astrophysics Data System (ADS)
Lai, Tri; Musiker, Gregg
2017-12-01
Given one of an infinite class of supersymmetric quiver gauge theories, string theorists can associate a corresponding toric variety (which is a Calabi-Yau 3-fold) as well as an associated combinatorial model known as a brane tiling. In combinatorial language, a brane tiling is a bipartite graph on a torus and its perfect matchings are of interest to both combinatorialists and physicists alike. A cluster algebra may also be associated to such quivers and in this paper we study the generators of this algebra, known as cluster variables, for the quiver associated to the cone over the del Pezzo surface d P 3. In particular, mutation sequences involving mutations exclusively at vertices with two in-coming arrows and two out-going arrows are referred to as toric cascades in the string theory literature. Such toric cascades give rise to interesting discrete integrable systems on the level of cluster variable dynamics. We provide an explicit algebraic formula for all cluster variables that are reachable by toric cascades as well as a combinatorial interpretation involving perfect matchings of subgraphs of the d P 3 brane tiling for these formulas in most cases.
A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.
NASA Astrophysics Data System (ADS)
Tate, Ranjeet Shekhar
1992-01-01
General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact) general relativity, the Hamiltonian is constrained to vanish. I present various approaches one can take to obtain an interpretation of the quantum theory of such "dynamically constrained" systems. I apply some of these ideas to the Bianchi I cosmology, and analyze the issue of the initial singularity in quantum theory.
Rings of h-deformed differential operators
NASA Astrophysics Data System (ADS)
Ogievetsky, O. V.; Herlemont, B.
2017-08-01
We describe the center of the ring Diff h ( n) of h- deformed differential operators of type A. We establish an isomorphism between certain localizations of Diff h ( n) and the Weyl algebra W n , extended by n indeterminates.
NASA Astrophysics Data System (ADS)
Hamhalter, Jan; Turilova, Ekaterina
2014-10-01
It is shown that any order isomorphism between the structures of unital associative JB subalgebras of JB algebras is given naturally by a partially linear Jordan isomorphism. The same holds for nonunital subalgebras and order isomorphisms preserving the unital subalgebra. Finally, we recover usual action of time evolution group on a von Neumann factor from group of automorphisms of the structure of Abelian subalgebras.
Modular forms, Schwarzian conditions, and symmetries of differential equations in physics
NASA Astrophysics Data System (ADS)
Abdelaziz, Y.; Maillard, J.-M.
2017-05-01
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
2016-04-01
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less
A Toolkit for Active Object-Oriented Databases with Application to Interoperability
NASA Technical Reports Server (NTRS)
King, Roger
1996-01-01
In our original proposal we stated that our research would 'develop a novel technology that provides a foundation for collaborative information processing.' The essential ingredient of this technology is the notion of 'deltas,' which are first-class values representing collections of proposed updates to a database. The Heraclitus framework provides a variety of algebraic operators for building up, combining, inspecting, and comparing deltas. Deltas can be directly applied to the database to yield a new state, or used 'hypothetically' in queries against the state that would arise if the delta were applied. The central point here is that the step of elevating deltas to 'first-class' citizens in database programming languages will yield tremendous leverage on the problem of supporting updates in collaborative information processing. In short, our original intention was to develop the theoretical and practical foundation for a technology based on deltas in an object-oriented database context, develop a toolkit for active object-oriented databases, and apply this toward collaborative information processing.
A Toolkit for Active Object-Oriented Databases with Application to Interoperability
NASA Technical Reports Server (NTRS)
King, Roger
1996-01-01
In our original proposal we stated that our research would 'develop a novel technology that provides a foundation for collaborative information processing.' The essential ingredient of this technology is the notion of 'deltas,' which are first-class values representing collections of proposed updates to a database. The Heraclitus framework provides a variety of algebraic operators for building up, combining, inspecting, and comparing deltas. Deltas can be directly applied to the database to yield a new state, or used 'hypothetically' in queries against the state that would arise if the delta were applied. The central point here is that the step of elevating deltas to 'first-class' citizens in database programming languages will yield tremendous leverage on the problem of supporting updates in collaborative information processing. In short, our original intention was to develop the theoretical and practical foundation for a technology based on deltas in an object- oriented database context, develop a toolkit for active object-oriented databases, and apply this toward collaborative information processing.
NASA Astrophysics Data System (ADS)
Angeli, C.; Cimiraglia, R.
2013-02-01
A symbolic program performing the Formal Reduction of Density Operators (FRODO), formerly developed in the MuPAD computer algebra system with the purpose of evaluating the matrix elements of the electronic Hamiltonian between internally contracted functions in a complete active space (CAS) scheme, has been rewritten in Mathematica. New version : A program summaryProgram title: FRODO Catalogue identifier: ADV Y _v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVY_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3878 No. of bytes in distributed program, including test data, etc.: 170729 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer on which the Mathematica computer algebra system can be installed Operating system: Linux Classification: 5 Catalogue identifier of previous version: ADV Y _v1_0 Journal reference of previous version: Comput. Phys. Comm. 171(2005)63 Does the new version supersede the previous version?: No Nature of problem. In order to improve on the CAS-SCF wavefunction one can resort to multireference perturbation theory or configuration interaction based on internally contracted functions (ICFs) which are obtained by application of the excitation operators to the reference CAS-SCF wavefunction. The previous formulation of such matrix elements in the MuPAD computer algebra system, has been rewritten using Mathematica. Solution method: The method adopted consists in successively eliminating all occurrences of inactive orbital indices (core and virtual) from the products of excitation operators which appear in the definition of the ICFs and in the electronic Hamiltonian expressed in the second quantization formalism. Reasons for new version: Some years ago we published in this journal a couple of papers [1, 2] hereafter to be referred to as papers I and II, respectively dedicated to the automated evaluation of the matrix elements of the molecular electronic Hamiltonian between internally contracted functions [3] (ICFs). In paper II the program FRODO (after Formal Reduction Of Density Operators) was presented with the purpose of providing working formulas for each occurrence of the ICFs. The original FRODO program was written in the MuPAD computer algebra system [4] and was actively used in our group for the generation of the matrix elements to be employed in the third-order n-electron valence state perturbation theory (NEVPT) [5-8] as well as in the internally contracted configuration interaction (IC-CI) [9]. We present a new version of the program FRODO written in the Mathematica system [10]. The reason for the rewriting of the program lies in the fact that, on the one hand, MuPAD does not seem to be any longer available as a stand-alone system and, on the other hand, Mathematica, due to its ubiquitousness, appears to be increasingly the computer algebra system most widely used nowadays. Restrictions: The program is limited to no more than doubly excited ICFs. Running time: The examples described in the Readme file take a few seconds to run. References: [1] C. Angeli, R. Cimiraglia, Comp. Phys. Comm. 166 (2005) 53. [2] C. Angeli, R. Cimiraglia, Comp. Phys. Comm. 171 (2005) 63. [3] H.-J. Werner, P. J. Knowles, Adv. Chem. Phys. 89 (1988) 5803. [4] B. Fuchssteiner, W. Oevel: http://www.mupad.de Mupad research group, university of Paderborn. Mupad version 2.5.3 for Linux. [5] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P. Malrieu, J. Chem. Phys. 114 (2001) 10252. [6] C. Angeli, R. Cimiraglia, J.-P. Malrieu, J. Chem. Phys. 117 (2002) 9138. [7] C. Angeli, B. Bories, A. Cavallini, R. Cimiraglia, J. Chem. Phys. 124 (2006) 054108. [8] C. Angeli, M. Pastore, R. Cimiraglia, Theor. Chem. Acc. 117 (2007) 743. [9] C. Angeli, R. Cimiraglia, Mol. Phys. in press, DOI:10.1080/00268976.2012.689872 [10] http://www.wolfram.com/Mathematica. Mathematica version 8 for Linux.
Generalized Browder's and Weyl's theorems for Banach space operators
NASA Astrophysics Data System (ADS)
Curto, Raúl E.; Han, Young Min
2007-12-01
We find necessary and sufficient conditions for a Banach space operator T to satisfy the generalized Browder's theorem. We also prove that the spectral mapping theorem holds for the Drazin spectrum and for analytic functions on an open neighborhood of [sigma](T). As applications, we show that if T is algebraically M-hyponormal, or if T is algebraically paranormal, then the generalized Weyl's theorem holds for f(T), where f[set membership, variant]H((T)), the space of functions analytic on an open neighborhood of [sigma](T). We also show that if T is reduced by each of its eigenspaces, then the generalized Browder's theorem holds for f(T), for each f[set membership, variant]H([sigma](T)).
The oscillator model for the Lie superalgebra sh(2|2) and Charlier polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafarov, E. I.; Van der Jeugt, J.
2013-10-15
We investigate an algebraic model for the quantum oscillator based upon the Lie superalgebra sh(2|2), known as the Heisenberg–Weyl superalgebra or “the algebra of supersymmetric quantum mechanics,” and its Fock representation. The model offers some freedom in the choice of a position and a momentum operator, leading to a free model parameter γ. Using the technique of Jacobi matrices, we determine the spectrum of the position operator, and show that its wavefunctions are related to Charlier polynomials C{sub n} with parameter γ{sup 2}. Some properties of these wavefunctions are discussed, as well as some other properties of the current oscillatormore » model.« less
Applications of algebraic topology to compatible spatial discretizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochev, Pavel Blagoveston; Hyman, James M.
We provide a common framework for compatible discretizations using algebraic topology to guide our analysis. The main concept is the natural inner product on cochains, which induces a combinatorial Hodge theory. The framework comprises of mutually consistent operations of differentiation and integration, has a discrete Stokes theorem, and preserves the invariants of the DeRham cohomology groups. The latter allows for an elementary calculation of the kernel of the discrete Laplacian. Our framework provides an abstraction that includes examples of compatible finite element, finite volume and finite difference methods. We describe how these methods result from the choice of a reconstructionmore » operator and when they are equivalent.« less
Continuous-spin mixed-symmetry fields in AdS(5)
NASA Astrophysics Data System (ADS)
Metsaev, R. R.
2018-05-01
Free mixed-symmetry continuous-spin fields propagating in AdS(5) space and flat R(4,1) space are studied. In the framework of a light-cone gauge formulation of relativistic dynamics, we build simple actions for such fields. The realization of relativistic symmetries on the space of light-cone gauge mixed-symmetry continuous-spin fields is also found. Interrelations between constant parameters entering the light-cone gauge actions and eigenvalues of the Casimir operators of space-time symmetry algebras are obtained. Using these interrelations and requiring that the field dynamics in AdS(5) be irreducible and classically unitary, we derive restrictions on the constant parameters and eigenvalues of the second-order Casimir operator of the algebra.
A graph algebra for scalable visual analytics.
Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V
2012-01-01
Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.
Dual algebraic formulation of differential GPS
NASA Astrophysics Data System (ADS)
Lannes, A.; Dur, S.
2003-05-01
A new approach to differential GPS is presented. The corresponding theoretical framework calls on elementary concepts of algebraic graph theory. The notion of double difference, which is related to that of closure in the sense of Kirchhoff, is revisited in this context. The Moore-Penrose pseudo-inverse of the closure operator plays a key role in the corresponding dual formulation. This approach, which is very attractive from a conceptual point of view, sheds a new light on the Teunissen formulation.
Secret Sharing Schemes and Advanced Encryption Standard
2015-09-01
commutative . Definition 1.2.2. [3, pp. 167] The most general algebraic structure, ring < R,+, · >, is a set R together with two binary operations + and...Abstract Algebra, 7th ed. Pearson Education India , 2003. [4] A. Herschfeld, “The equation 2x− 3y = d,” Bulletin of the American Mathematical Society, vol...R.Balasubramaniam and R. Thangadurai, Eds. India : Ra- manujan Mathematical Society, pp. xxii–xlvii, 2009. [6] R. Stroeker and R. Tijdeman, “Diophantine
NASA Astrophysics Data System (ADS)
Dias, David P.
2008-08-01
Given a C^*-dynamical system (A, G, α) one defines a homomorphism, called the Chern-Connes character, that take an element in K_0(A) oplus K_1(A), the K-theory groups of the C^*-algebra A, and maps it into H_{{R}}^*(G), the real deRham cohomology ring of G. We explictly compute this homomorphism for the examples (overline{Psi_{cl}^0(S^1)}, S^1, α) and (overline{Psi_{cl}^0(S^2)}, SO(3), α), where overline{Psi_{cl}^0(M)} denotes the C^*-algebra generated by the classical pseudodifferential operators of zero order in the manifold M and α the action of conjugation by the regular representation (translations).
An algebraic interpretation of PSP composition.
Vaucher, G
1998-01-01
The introduction of time in artificial neurons is a delicate problem on which many groups are working. Our approach combines some properties of biological models and the algebraic properties of McCulloch and Pitts artificial neuron (AN) (McCulloch and Pitts, 1943) to produce a new model which links both characteristics. In this extended artificial neuron, postsynaptic potentials (PSPs) are considered as numerical elements, having two degrees of freedom, on which the neuron computes operations. Modelled in this manner, a group of neurons can be seen as a computer with an asynchronous architecture. To formalize the functioning of this computer, we propose an algebra of impulses. This approach might also be interesting in the modelling of the passive electrical properties in some biological neurons.
ERIC Educational Resources Information Center
Thompson, Patrick W.; Dreyfus, Tommy
1988-01-01
Investigates whether elementary school students can construct operations of thought for integers and integer addition crucial for understanding elementary algebra. Two sixth graders were taught using a computer. Results included both students being able to construct mental operations for negating arbitrary integers and determining sign and…
ONRASIA Scientific Information Bulletin, Volume 16, Number 1
1991-03-01
be expressed naturally in an and hence the programs produced by pline. They range from computing the algebraic language such as Fortran, these efforts...years devel- gram an iterative scheme to solve the function satisfies oping vectorizing compilers for Hitachi. problem. This is quite natural to do in...for it ential equations to be expressed in a on the plate, with 0,=1 at the outside to compile into efficient vectorizable natural mathematical syntax
Symmetries of the quantum damped harmonic oscillator
NASA Astrophysics Data System (ADS)
Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.; Cossío, F.
2012-11-01
For the non-conservative Caldirola-Kanai system, describing a quantum damped harmonic oscillator, a couple of constant-of-motion operators generating the Heisenberg-Weyl algebra can be found. The inclusion of the standard time evolution generator (which is not a symmetry) as a symmetry in this algebra, in a unitary manner, requires a non-trivial extension of this basic algebra and hence of the physical system itself. Surprisingly, this extension leads directly to the so-called Bateman dual system, which now includes a new particle acting as an energy reservoir. In addition, the Caldirola-Kanai dissipative system can be retrieved by imposing constraints. The algebra of symmetries of the dual system is presented, as well as a quantization that implies, in particular, a first-order Schrödinger equation. As opposed to other approaches, where it is claimed that the spectrum of the Bateman Hamiltonian is complex and discrete, we obtain that it is real and continuous, with infinite degeneracy in all regimes.
The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator
NASA Astrophysics Data System (ADS)
Borzov, V. V.; Damaskinsky, E. V.
2014-10-01
In the previous works of Borzov and Damaskinsky ["Chebyshev-Koornwinder oscillator," Theor. Math. Phys. 175(3), 765-772 (2013)] and ["Ladder operators for Chebyshev-Koornwinder oscillator," in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators.
Djurfeldt, Mikael
2012-07-01
The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.
Towards a visual modeling approach to designing microelectromechanical system transducers
NASA Astrophysics Data System (ADS)
Dewey, Allen; Srinivasan, Vijay; Icoz, Evrim
1999-12-01
In this paper, we address initial design capture and system conceptualization of microelectromechanical system transducers based on visual modeling and design. Visual modeling frames the task of generating hardware description language (analog and digital) component models in a manner similar to the task of generating software programming language applications. A structured topological design strategy is employed, whereby microelectromechanical foundry cell libraries are utilized to facilitate the design process of exploring candidate cells (topologies), varying key aspects of the transduction for each topology, and determining which topology best satisfies design requirements. Coupled-energy microelectromechanical system characterizations at a circuit level of abstraction are presented that are based on branch constitutive relations and an overall system of simultaneous differential and algebraic equations. The resulting design methodology is called visual integrated-microelectromechanical VHDL-AMS interactive design (VHDL-AMS is visual hardware design language for analog and mixed signal).
Noncommutative Differential Geometry of Generalized Weyl Algebras
NASA Astrophysics Data System (ADS)
Brzeziński, Tomasz
2016-06-01
Elements of noncommutative differential geometry of Z-graded generalized Weyl algebras A(p;q) over the ring of polynomials in two variables and their zero-degree subalgebras B(p;q), which themselves are generalized Weyl algebras over the ring of polynomials in one variable, are discussed. In particular, three classes of skew derivations of A(p;q) are constructed, and three-dimensional first-order differential calculi induced by these derivations are described. The associated integrals are computed and it is shown that the dimension of the integral space coincides with the order of the defining polynomial p(z). It is proven that the restriction of these first-order differential calculi to the calculi on B(p;q) is isomorphic to the direct sum of degree 2 and degree -2 components of A(p;q). A Dirac operator for B(p;q) is constructed from a (strong) connection with respect to this differential calculus on the (free) spinor bimodule defined as the direct sum of degree 1 and degree -1 components of A(p;q). The real structure of KO-dimension two for this Dirac operator is also described.
Uncertainty principle in loop quantum cosmology by Moyal formalism
NASA Astrophysics Data System (ADS)
Perlov, Leonid
2018-03-01
In this paper, we derive the uncertainty principle for the loop quantum cosmology homogeneous and isotropic Friedmann-Lemaiter-Robertson-Walker model with the holonomy-flux algebra. The uncertainty principle is between the variables c, with the meaning of connection and μ having the meaning of the physical cell volume to the power 2/3, i.e., v2 /3 or a plaquette area. Since both μ and c are not operators, but rather the random variables, the Robertson uncertainty principle derivation that works for hermitian operators cannot be used. Instead we use the Wigner-Moyal-Groenewold phase space formalism. The Wigner-Moyal-Groenewold formalism was originally applied to the Heisenberg algebra of the quantum mechanics. One can derive it from both the canonical and path integral quantum mechanics as well as the uncertainty principle. In this paper, we apply it to the holonomy-flux algebra in the case of the homogeneous and isotropic space. Another result is the expression for the Wigner function on the space of the cylindrical wave functions defined on Rb in c variables rather than in dual space μ variables.
Deformed quantum double realization of the toric code and beyond
NASA Astrophysics Data System (ADS)
Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo
2016-09-01
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
Application of symbolic and algebraic manipulation software in solving applied mechanics problems
NASA Technical Reports Server (NTRS)
Tsai, Wen-Lang; Kikuchi, Noboru
1993-01-01
As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.
A Hodge-de Rham Dirac operator on the quantum SU(2)
NASA Astrophysics Data System (ADS)
di Cosmo, Fabio; Marmo, Giuseppe; Pérez-Pardo, Juan Manuel; Zampini, Alessandro
We describe how it is possible to define a Hodge-de Rham Dirac operator associated to a suitable Cartan-Killing metric form upon the exterior algebra over the quantum spheres SUq(2) equipped with a three-dimensional left covariant calculus.
Unpacking Referent Units in Fraction Operations
ERIC Educational Resources Information Center
Philipp, Randolph A.; Hawthorne, Casey
2015-01-01
Although fraction operations are procedurally straightforward, they are complex, because they require learners to conceptualize different units and view quantities in multiple ways. Prospective secondary school teachers sometimes provide an algebraic explanation for inverting and multiplying when dividing fractions. That authors of this article…
New Ro-Vibrational Kinetic Energy Operators using Polyspherical Coordinates for Polyatomic Molecules
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2002-01-01
We illustrate how one can easily derive kinetic energy operators for polyatomic molecules using polyspherical coordinates with very general choices for z-axis embeddings arid angles used to specify relative orientations of internal vectors. Computer algebra is not required.
Correlation Decay in Fermionic Lattice Systems with Power-Law Interactions at Nonzero Temperature
NASA Astrophysics Data System (ADS)
Hernández-Santana, Senaida; Gogolin, Christian; Cirac, J. Ignacio; Acín, Antonio
2017-09-01
We study correlations in fermionic lattice systems with long-range interactions in thermal equilibrium. We prove a bound on the correlation decay between anticommuting operators and generalize a long-range Lieb-Robinson-type bound. Our results show that in these systems of spatial dimension D with, not necessarily translation invariant, two-site interactions decaying algebraically with the distance with an exponent α ≥2 D , correlations between such operators decay at least algebraically to 0 with an exponent arbitrarily close to α at any nonzero temperature. Our bound is asymptotically tight, which we demonstrate by a high temperature expansion and by numerically analyzing density-density correlations in the one-dimensional quadratic (free, exactly solvable) Kitaev chain with long-range pairing.
NASA Astrophysics Data System (ADS)
Dumansky, Alexander M.; Tairova, Lyudmila P.
2008-09-01
A method for the construction of hereditary constitutive equation is proposed for the laminate on the basis of hereditary constitutive equations of a layer. The method is developed from the assumption that in the directions of axes of orthotropy the layer follows elastic behavior, and obeys hereditary constitutive equations under shear. The constitutive equations of the laminate are constructed on the basis of classical laminate theory and algebra of resolvent operators. Effective matrix algorithm and relationships of operator algebra are used to derive visco-elastic stiffness and compliance of the laminate. The example of construction of hereditary constitutive equations of cross-ply carbon fiber-reinforced plastic is presented.
NASA Astrophysics Data System (ADS)
Meljanac, Daniel; Meljanac, Stjepan; Mignemi, Salvatore; Pikutić, Danijel; Štrajn, Rina
2018-03-01
We construct the twist operator for the Snyder space. Our starting point is a non-associative star product related to a Hermitian realisation of the noncommutative coordinates originally introduced by Snyder. The corresponding coproduct of momenta is non-coassociative. The twist is constructed using a general definition of the star product in terms of a bi-differential operator in the Hopf algebroid approach. The result is given by a closed analytical expression. We prove that this twist reproduces the correct coproducts of the momenta and the Lorentz generators. The twisted Poincaré symmetry is described by a non-associative Hopf algebra, while the twisted Lorentz symmetry is described by the undeformed Hopf algebra. This new twist might be important in the construction of different types of field theories on Snyder space.
Intrinsic non-commutativity of closed string theory
Freidel, Laurent; Leigh, Robert G.; Minic, Djordje
2017-09-14
We show that the proper interpretation of the cocycle operators appearing in the physical vertex operators of compactified strings is that the closed string target is noncommutative. We track down the appearance of this non-commutativity to the Polyakov action of the at closed string in the presence of translational monodromies (i.e., windings). Here, in view of the unexpected nature of this result, we present detailed calculations from a variety of points of view, including a careful understanding of the consequences of mutual locality in the vertex operator algebra, as well as a detailed analysis of the symplectic structure of themore » Polyakov string. Finally, we also underscore why this non-commutativity was not emphasized previously in the existing literature. This non-commutativity can be thought of as a central extension of the zero-mode operator algebra, an effect set by the string length scale $-$ it is present even in trivial backgrounds. Clearly, this result indicates that the α'→0 limit is more subtle than usually assumed.« less
Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers
NASA Astrophysics Data System (ADS)
Oyarzun, Guillermo; Borrell, Ricard; Gorobets, Andrey; Oliva, Assensi
2017-10-01
Nowadays, high performance computing (HPC) systems experience a disruptive moment with a variety of novel architectures and frameworks, without any clarity of which one is going to prevail. In this context, the portability of codes across different architectures is of major importance. This paper presents a portable implementation model based on an algebraic operational approach for direct numerical simulation (DNS) and large eddy simulation (LES) of incompressible turbulent flows using unstructured hybrid meshes. The strategy proposed consists in representing the whole time-integration algorithm using only three basic algebraic operations: sparse matrix-vector product, a linear combination of vectors and dot product. The main idea is based on decomposing the nonlinear operators into a concatenation of two SpMV operations. This provides high modularity and portability. An exhaustive analysis of the proposed implementation for hybrid CPU/GPU supercomputers has been conducted with tests using up to 128 GPUs. The main objective consists in understanding the challenges of implementing CFD codes on new architectures.
A Process Algebraic Approach to Software Architecture Design
NASA Astrophysics Data System (ADS)
Aldini, Alessandro; Bernardo, Marco; Corradini, Flavio
Process algebra is a formal tool for the specification and the verification of concurrent and distributed systems. It supports compositional modeling through a set of operators able to express concepts like sequential composition, alternative composition, and parallel composition of action-based descriptions. It also supports mathematical reasoning via a two-level semantics, which formalizes the behavior of a description by means of an abstract machine obtained from the application of structural operational rules and then introduces behavioral equivalences able to relate descriptions that are syntactically different. In this chapter, we present the typical behavioral operators and operational semantic rules for a process calculus in which no notion of time, probability, or priority is associated with actions. Then, we discuss the three most studied approaches to the definition of behavioral equivalences - bisimulation, testing, and trace - and we illustrate their congruence properties, sound and complete axiomatizations, modal logic characterizations, and verification algorithms. Finally, we show how these behavioral equivalences and some of their variants are related to each other on the basis of their discriminating power.
Intrinsic non-commutativity of closed string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freidel, Laurent; Leigh, Robert G.; Minic, Djordje
We show that the proper interpretation of the cocycle operators appearing in the physical vertex operators of compactified strings is that the closed string target is noncommutative. We track down the appearance of this non-commutativity to the Polyakov action of the at closed string in the presence of translational monodromies (i.e., windings). Here, in view of the unexpected nature of this result, we present detailed calculations from a variety of points of view, including a careful understanding of the consequences of mutual locality in the vertex operator algebra, as well as a detailed analysis of the symplectic structure of themore » Polyakov string. Finally, we also underscore why this non-commutativity was not emphasized previously in the existing literature. This non-commutativity can be thought of as a central extension of the zero-mode operator algebra, an effect set by the string length scale $-$ it is present even in trivial backgrounds. Clearly, this result indicates that the α'→0 limit is more subtle than usually assumed.« less
Differences of Idempotents In C*-Algebras and the Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Bikchentaev, A. M.
2018-04-01
Let ϕ be a trace on the unital C*-algebra A and M ϕ be the ideal of the definition of the trace ϕ. We obtain a C*analogue of the quantum Hall effect: if P, Q ∈ A are idempotents and P - Q ∈ M ϕ , then ϕ(( P - Q)2n+1) = ϕ( P - Q) ∈ R for all n ∈ N. Let the isometries U ∈ A and A = A*∈ A be such that I+ A is invertible and U- A ∈ M ϕ with ϕ( U- A) ∈ R. Then I- A, I-U ∈ M ϕ and ϕ( I- U) ∈ R. Let n ∈ N, dim H = 2 n + 1, the symmetry operators U, V ∈ B( H), and W = U - V. Then the operator W is not a symmetry, and if V = V*, then the operator W is nonunitary.
Dynamics for a 2-vertex quantum gravity model
NASA Astrophysics Data System (ADS)
Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.
2010-12-01
We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.
Automated ILA design for synchronous sequential circuits
NASA Technical Reports Server (NTRS)
Liu, M. N.; Liu, K. Z.; Maki, G. K.; Whitaker, S. R.
1991-01-01
An iterative logic array (ILA) architecture for synchronous sequential circuits is presented. This technique utilizes linear algebra to produce the design equations. The ILA realization of synchronous sequential logic can be fully automated with a computer program. A programmable design procedure is proposed to fullfill the design task and layout generation. A software algorithm in the C language has been developed and tested to generate 1 micron CMOS layouts using the Hewlett-Packard FUNGEN module generator shell.
Development of abstract mathematical reasoning: the case of algebra
Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja
2014-01-01
Algebra typically represents the students’ first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students’ ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16–17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15–16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students’ transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition. PMID:25228874
Development of abstract mathematical reasoning: the case of algebra.
Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja
2014-01-01
Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.
Understanding measurement in light of its origins.
Humphry, Stephen
2013-01-01
During the course of history, the natural sciences have seen the development of increasingly convenient short-hand symbolic devices for denoting physical quantities. These devices ultimately took the form of physical algebra. However, the convenience of algebra arguably came at a cost - a loss of the clarity of direct insights by Euclid, Galileo, and Newton into natural quantitative relations. Physical algebra is frequently interpreted as ordinary algebra; i.e., it is interpreted as though symbols denote (a) numbers and operations on numbers, as opposed to (b) physical quantities and quantitative relations. The paper revisits the way in which Newton understood and expressed physical definitions and laws. Accordingly, it reviews a compact form of notation that has been used to denote both: (a) ratios of physical quantities; and (b) compound ratios, involving two or more kinds of quantity. The purpose is to show that it is consistent with historical developments to regard physical algebra as a device for denoting relations among ratios. Understood in the historical context, the objective of measurement is to establish that a physical quantity stands in a specific ratio to another quantity of the same kind. To clarify the meaning of measurement in terms of the historical origins of physics carries basic implications for the way in which measurement is understood and approached. Possible implications for the social sciences are considered.
Image model: new perspective for image processing and computer vision
NASA Astrophysics Data System (ADS)
Ziou, Djemel; Allili, Madjid
2004-05-01
We propose a new image model in which the image support and image quantities are modeled using algebraic topology concepts. The image support is viewed as a collection of chains encoding combination of pixels grouped by dimension and linking different dimensions with the boundary operators. Image quantities are encoded using the notion of cochain which associates values for pixels of given dimension that can be scalar, vector, or tensor depending on the problem that is considered. This allows obtaining algebraic equations directly from the physical laws. The coboundary and codual operators, which are generic operations on cochains allow to formulate the classical differential operators as applied for field functions and differential forms in both global and local forms. This image model makes the association between the image support and the image quantities explicit which results in several advantages: it allows the derivation of efficient algorithms that operate in any dimension and the unification of mathematics and physics to solve classical problems in image processing and computer vision. We show the effectiveness of this model by considering the isotropic diffusion.
Analytical Energy Gradients for Excited-State Coupled-Cluster Methods
NASA Astrophysics Data System (ADS)
Wladyslawski, Mark; Nooijen, Marcel
The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit equations for the wavefunction amplitudes, the Lagrange multipliers, and the analytical gradient via the perturbation-independent generalized Hellmann-Feynman effective density matrix. This systematic automated derivation procedure is applied to obtain the detailed gradient equations for the excitation energy (EE-), double ionization potential (DIP-), and double electron affinity (DEA-) similarity transformed equation-of-motion coupled-cluster singles-and-doubles (STEOM-CCSD) methods. In addition, the derivatives of the closed-shell-reference excitation energy (EE-), ionization potential (IP-), and electron affinity (EA-) equation-of-motion coupled-cluster singles-and-doubles (EOM-CCSD) methods are derived. Furthermore, the perturbative EOM-PT and STEOM-PT gradients are obtained. The algebraic derivative expressions for these dozen methods are all derived here uniformly through the automated Lagrange multiplier process and are expressed compactly in a chain-rule/intermediate-density formulation, which facilitates a unified modular implementation of analytic energy gradients for CCSD/PT-based electronic methods. The working equations for these analytical gradients are presented in full detail, and their factorization and implementation into an efficient computer code are discussed.
A non-commutative *-algebra of Borel functions
NASA Astrophysics Data System (ADS)
Hart, Robert
To the pair (E, sigma), where E is a countable Borel equivalence relation on a standard Borel space ( X, A ) and sigma a normalized Borel T -valued 2-cocycle on E, we associate a sequentially weakly closed Borel *-algebra B*r (E, sigma), contained in the bounded linear operators on ℓ2(E). Associated to B*r (E, sigma) is a natural (Borel) Cartan subalgebra (Definition 6.4.10) L( Bo (X)) isomorphic to the bounded Borel functions on X. Then L( Bo (X)) and its normalizer (the set of the unitaries u ∈ B*r (E, sigma) such that u* fu ∈ L( Bo (X)), f ∈ L( Bo (X))) countably generates the Borel *-algebra B*r (E, sigma). In this thesis, we study B*r (E, sigma) and in particular prove that: i) If E is smooth, then B*r (E, sigma) is a type I Borel *-algebra (Definition 6.3.10). ii) If E is a hyperfinite, then B*r (E, sigma) is a Borel AF-algebra (Definition 7.5.1). iii) Generalizing Kumjian's definition, we define a Borel twist Gamma over E and its associated sequentially closed Borel *-algebra B*r (Gamma). iv) Let a Borel Cartan pair ( B,B0 ) denote a sequentially closed Borel *-algebra B with a Borel Cartan subalgebra B0 , where B is countably B0 -generated. Generalizing Feldman-Moore's result, we prove that any pair ( B,B0 ) can be realized uniquely as a pair ( B*r (E, sigma), L( Bo (X))). Moreover, we show that the pair ( B*r (E), L( Bo (X))) is a complete invariant of the countable Borel equivalence relation E. v) We prove a Krieger type theorem, by showing that two aperiodic hyperfinite countable equivalence relations are isomorphic if and only if their associated Borel *-algebras B*r (E1) and B*r (E2) are isomorphic.
Strings on complex multiplication tori and rational conformal field theory with matrix level
NASA Astrophysics Data System (ADS)
Nassar, Ali
Conformal invariance in two dimensions is a powerful symmetry. Two-dimensional quantum field theories which enjoy conformal invariance, i.e., conformal field theories (CFTs) are of great interest in both physics and mathematics. CFTs describe the dynamics of the world sheet in string theory where conformal symmetry arises as a remnant of reparametrization invariance of the world-sheet coordinates. In statistical mechanics, CFTs describe the critical points of second order phase transitions. On the mathematics side, conformal symmetry gives rise to infinite dimensional chiral algebras like the Virasoro algebra or extensions thereof. This gave rise to the study of vertex operator algebras (VOAs) which is an interesting branch of mathematics. Rational conformal theories are a simple class of CFTs characterized by a finite number of representations of an underlying chiral algebra. The chiral algebra leads to a set of Ward identities which gives a complete non-perturbative solution of the RCFT. Identifying the chiral algebra of an RCFT is a very important step in solving it. Particularly interesting RCFTs are the ones which arise from the compactification of string theory as sigma-models on a target manifold M. At generic values of the geometric moduli of M, the corresponding CFT is not rational. Rationality can arise at particular values of the moduli of M. At these special values of the moduli, the chiral algebra is extended. This interplay between the geometric picture and the algebraic description encoded in the chiral algebra makes CFTs/RCFTs a perfect link between physics and mathematics. It is always useful to find a geometric interpretation of a chiral algebra in terms of a sigma-model on some target manifold M. Then the next step is to figure out the conditions on the geometric moduli of M which gives a RCFT. In this thesis, we limit ourselves to the simplest class of string compactifications, i.e., strings on tori. As Gukov and Vafa proved, rationality selects the complex-multiplication tori. On the other hand, the study of the matrix-level affine algebra Um,K is motivated by conformal field theory and the fractional quantum Hall effect. Gannon completed the classification of U m,K modular-invariant partition functions. Here we connect the algebra U2,K to strings on 2-tori describable by rational conformal field theories. We point out that the rational conformal field theories describing strings on complex-multiplication tori have characters and partition functions identical to those of the matrix-level algebra Um,K. This connection makes obvious that the rational theories are dense in the moduli space of strings on Tm, and may prove useful in other ways.
Observables and microscopic entropy of higher spin black holes
NASA Astrophysics Data System (ADS)
Compère, Geoffrey; Jottar, Juan I.; Song, Wei
2013-11-01
In the context of recently proposed holographic dualities between higher spin theories in AdS3 and (1 + 1)-dimensional CFTs with symmetry algebras, we revisit the definition of higher spin black hole thermodynamics and the dictionary between bulk fields and dual CFT operators. We build a canonical formalism based on three ingredients: a gauge-invariant definition of conserved charges and chemical potentials in the presence of higher spin black holes, a canonical definition of entropy in the bulk, and a bulk-to-boundary dictionary aligned with the asymptotic symmetry algebra. We show that our canonical formalism shares the same formal structure as the so-called holomorphic formalism, but differs in the definition of charges and chemical potentials and in the bulk-to-boundary dictionary. Most importantly, we show that it admits a consistent CFT interpretation. We discuss the spin-2 and spin-3 cases in detail and generalize our construction to theories based on the hs[ λ] algebra, and on the sl( N,[InlineMediaObject not available: see fulltext.]) algebra for any choice of sl(2 ,[InlineMediaObject not available: see fulltext.]) embedding.
On a question of Brown, Douglas, and Fillmore
NASA Astrophysics Data System (ADS)
Kim, Jaewoong; Lee, Woo Young
2007-12-01
In this note we answer an old question of Brown, Douglas, and Fillmore [L. Brown, R.G. Douglas, P. Fillmore, Unitary equivalence modulo the compact operators and extensions of C*-algebras, in: Proc. Conf. Operator Theory, in: Lecture Notes in Math., vol. 345, Springer, Berlin, 1973, pp. 58-128].
Physics for Water and Wastewater Operators.
ERIC Educational Resources Information Center
Koundakjian, Philip
This physics course covers the following main subject areas: (1) liquids; (2) pressure; (3) liquid flow; (4) temperature and heat; and (5) electric currents. The prerequisites for understanding this material are basic algebra and geometry. The lessons are composed mostly of sample problems and calculations that water and wastewater operators have…
Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator
Omar, Mohamed A.
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732
Modeling electron fractionalization with unconventional Fock spaces.
Cobanera, Emilio
2017-08-02
It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.
Omar, Mohamed A
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
NASA Technical Reports Server (NTRS)
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
Dual-scale topology optoelectronic processor.
Marsden, G C; Krishnamoorthy, A V; Esener, S C; Lee, S H
1991-12-15
The dual-scale topology optoelectronic processor (D-STOP) is a parallel optoelectronic architecture for matrix algebraic processing. The architecture can be used for matrix-vector multiplication and two types of vector outer product. The computations are performed electronically, which allows multiplication and summation concepts in linear algebra to be generalized to various nonlinear or symbolic operations. This generalization permits the application of D-STOP to many computational problems. The architecture uses a minimum number of optical transmitters, which thereby reduces fabrication requirements while maintaining area-efficient electronics. The necessary optical interconnections are space invariant, minimizing space-bandwidth requirements.
Methods of mathematical modeling using polynomials of algebra of sets
NASA Astrophysics Data System (ADS)
Kazanskiy, Alexandr; Kochetkov, Ivan
2018-03-01
The article deals with the construction of discrete mathematical models for solving applied problems arising from the operation of building structures. Security issues in modern high-rise buildings are extremely serious and relevant, and there is no doubt that interest in them will only increase. The territory of the building is divided into zones for which it is necessary to observe. Zones can overlap and have different priorities. Such situations can be described using formulas algebra of sets. Formulas can be programmed, which makes it possible to work with them using computer models.
Some applications of mathematics in theoretical physics - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bora, Kalpana
2016-06-21
Mathematics is a very beautiful subject−very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like−differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical toolsmore » are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.« less
Higher symmetries of the Schrödinger operator in Newton-Cartan geometry
NASA Astrophysics Data System (ADS)
Gundry, James
2017-03-01
We establish several relationships between the non-relativistic conformal symmetries of Newton-Cartan geometry and the Schrödinger equation. In particular we discuss the algebra sch(d) of vector fields conformally-preserving a flat Newton-Cartan spacetime, and we prove that its curved generalisation generates the symmetry group of the covariant Schrödinger equation coupled to a Newtonian potential and generalised Coriolis force. We provide intrinsic Newton-Cartan definitions of Killing tensors and conformal Schrödinger-Killing tensors, and we discuss their respective links to conserved quantities and to the higher symmetries of the Schrödinger equation. Finally we consider the role of conformal symmetries in Newtonian twistor theory, where the infinite-dimensional algebra of holomorphic vector fields on twistor space corresponds to the symmetry algebra cnc(3) on the Newton-Cartan spacetime.
Some applications of mathematics in theoretical physics - A review
NASA Astrophysics Data System (ADS)
Bora, Kalpana
2016-06-01
Mathematics is a very beautiful subject-very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like-differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical tools are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Periwal, V.
1988-01-01
The author proves that bosonic string perturbation theory diverges and is not Borel summable. This is an indication of a non-perturbative instability of the bosonic string vacuum. He formulates two-dimensional sigma models in terms of algebras of functions. He extends this formulation to general C* algebras. He illustrates the utility of these algebraic notions by calculating some determinants of interest in the study of string propagation in orbifold backgrounds. He studies the geometry of spaces of field theories and show that the vanishing of the curvature of the natural Gel'fand-Naimark-Segal metric on such spaces is exactly the strong associativity conditionmore » of the operator product expansion.He shows that string scattering amplitudes arise as invariants of renormalization, when he formulates renormalization in terms of rescalings of the metric on the string world-sheet.« less
Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C
2010-09-21
We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.
NASA Astrophysics Data System (ADS)
Pezelier, Baptiste
2018-02-01
In this proceeding, we recall the notion of quantum integrable systems on a lattice and then introduce the Sklyanin’s Separation of Variables method. We sum up the main results for the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. These results apply as well to the spectral analysis of the lattice sine-Gordon model with open boundary conditions. The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations. We state an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation, allowing us to rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form.
Action Algebras and Model Algebras in Denotational Semantics
NASA Astrophysics Data System (ADS)
Guedes, Luiz Carlos Castro; Haeusler, Edward Hermann
This article describes some results concerning the conceptual separation of model dependent and language inherent aspects in a denotational semantics of a programming language. Before going into the technical explanation, the authors wish to relate a story that illustrates how correctly and precisely posed questions can influence the direction of research. By means of his questions, Professor Mosses aided the PhD research of one of the authors of this article and taught the other, who at the time was a novice supervisor, the real meaning of careful PhD supervision. The student’s research had been partially developed towards the implementation of programming languages through denotational semantics specification, and the student had developed a prototype [12] that compared relatively well to some industrial compilers of the PASCAL language. During a visit to the BRICS lab in Aarhus, the student’s supervisor gave Professor Mosses a draft of an article describing the prototype and its implementation experiments. The next day, Professor Mosses asked the supervisor, “Why is the generated code so efficient when compared to that generated by an industrial compiler?” and “You claim that the efficiency is simply a consequence of the Object- Orientation mechanisms used by the prototype programming language (C++); this should be better investigated. Pay more attention to the class of programs that might have this good comparison profile.” As a result of these aptly chosen questions and comments, the student and supervisor made great strides in the subsequent research; the advice provided by Professor Mosses made them perceive that the code generated for certain semantic domains was efficient because it mapped to the “right aspect” of the language semantics. (Certain functional types, used to represent mappings such as Stores and Environments, were pushed to the level of the object language (as in
Spin Number Coherent States and the Problem of Two Coupled Oscillators
NASA Astrophysics Data System (ADS)
Ojeda-Guillén, D.; Mota, R. D.; Granados, V. D.
2015-07-01
From the definition of the standard Perelomov coherent states we introduce the Perelomov number coherent states for any su(2) Lie algebra. With the displacement operator we apply a similarity transformation to the su(2) generators and construct a new set of operators which also close the su(2) Lie algebra, being the Perelomov number coherent states the new basis for its unitary irreducible representation. We apply our results to obtain the energy spectrum, the eigenstates and the partition function of two coupled oscillators. We show that the eigenstates of two coupled oscillators are the SU(2) Perelomov number coherent states of the two-dimensional harmonic oscillator with an appropriate choice of the coherent state parameters. Supported by SNI-México, COFAA-IPN, EDD-IPN, EDI-IPN, SIP-IPN Project No. 20150935
From integrability to conformal symmetry: Bosonic superconformal Toda theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo-Yu Hou; Liu Chao
In this paper the authors study the conformal integrable models obtained from conformal reductions of WZNW theory associated with second order constraints. These models are called bosonic superconformal Toda models due to their conformal spectra and their resemblance to the usual Toda theories. From the reduction procedure they get the equations of motion and the linearized Lax equations in a generic Z gradation of the underlying Lie algebra. Then, in the special case of principal gradation, they derive the classical r matrix, fundamental Poisson relation, exchange algebra of chiral operators and find out the classical vertex operators. The result showsmore » that their model is very similar to the ordinary Toda theories in that one can obtain various conformal properties of the model from its integrability.« less
OBJ-1, A Study in Executable Algebraic Formal Specification.
1981-07-01
natural way; 2. Achievement of a high level of abstraction in a natural way; 3. The possibility of executing test cases; 4I. User definition of data types...languages. Goguen has defined a new data type, called symboltree, in OBJ. The purpose of this data type is to provide for fast checking of certain... data type work, is given in Appendix C of this report. K. Parsaye-Ghomi, with A. B. C. Sampaio of UCLA, has written a specification of a hardware
Interpreting Quantum Logic as a Pragmatic Structure
NASA Astrophysics Data System (ADS)
Garola, Claudio
2017-12-01
Many scholars maintain that the language of quantum mechanics introduces a quantum notion of truth which is formalized by (standard, sharp) quantum logic and is incompatible with the classical (Tarskian) notion of truth. We show that quantum logic can be identified (up to an equivalence relation) with a fragment of a pragmatic language LGP of assertive formulas, that are justified or unjustified rather than trueor false. Quantum logic can then be interpreted as an algebraic structure that formalizes properties of the notion of empirical justification according to quantum mechanics rather than properties of a quantum notion of truth. This conclusion agrees with a general integrationist perspective that interprets nonstandard logics as theories of metalinguistic notions different from truth, thus avoiding incompatibility with classical notions and preserving the globality of logic.
Correlation functions from a unified variational principle: Trial Lie groups
NASA Astrophysics Data System (ADS)
Balian, R.; Vénéroni, M.
2015-11-01
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie-Poisson structure. At second order, the variational expression for two-time correlation functions separates-as does its exact counterpart-the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balian, R., E-mail: roger.balian@cea.fr; Vénéroni, M.
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces themore » original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.« less
NASA Astrophysics Data System (ADS)
Temme, F. P.
1991-06-01
For many-body spin cluster problems, dual-symmetry recoupled tensors over Liouville space provide suitable bases for a generalized torque formalism using the Sn-adapted density operator in which to discuss NMR and related techniques. The explicit structure of such tensors is considered in the context of the Cayley algebra of scalar invariants over a field, specified by the inner ki rank labels of the Tkq(kl-kn)s. The pertinence of both lexical combinatorial architectures over inner rank sets and SU2 propagative topologies in specifying the structure of dual recoupling tensors is considered in the context of the Sn partitional aspects of spin clusters. The form of Heisenberg superoperator generators whose algebra underlies the Gel'fand pattern algebra of SU(2) and SU(2)×Sn tensor bases over Liouville space is presented together with both the related s-boson algebras and a description of the associated {||2k 0>>} pattern sets of CF29H carrier space under the appropriate symmetry. These concepts are correlated with recent work on SU(2)×Sn induced symmetry hierarchies over Liouville spin space. The pertinence of this theoretical work to an understanding of multiquantum NMR in Liouville space formalisms is stressed in a discussion of the nature of pathways for intracluster J coupling, which also gives a valuable physical insight into the nature of coherence transfer in more general spin-1/2 systems.
Bond Order Correlations in the 2D Hubbard Model
NASA Astrophysics Data System (ADS)
Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark
We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.
The holographic dual of the Penrose transform
NASA Astrophysics Data System (ADS)
Neiman, Yasha
2018-01-01
We consider the holographic duality between type-A higher-spin gravity in AdS4 and the free U( N) vector model. In the bulk, linearized solutions can be translated into twistor functions via the Penrose transform. We propose a holographic dual to this transform, which translates between twistor functions and CFT sources and operators. We present a twistorial expression for the partition function, which makes global higher-spin symmetry manifest, and appears to automatically include all necessary contact terms. In this picture, twistor space provides a fully nonlocal, gauge-invariant description underlying both bulk and boundary spacetime pictures. While the bulk theory is handled at the linear level, our formula for the partition function includes the effects of bulk interactions. Thus, the CFT is used to solve the bulk, with twistors as a language common to both. A key ingredient in our result is the study of ordinary spacetime symmetries within the fundamental representation of higher-spin algebra. The object that makes these "square root" spacetime symmetries manifest becomes the kernel of our boundary/twistor transform, while the original Penrose transform is identified as a "square root" of CPT.
Using Python Packages in 6D (Py)Ferret: EOF Analysis, OPeNDAP Sequence Data
NASA Astrophysics Data System (ADS)
Smith, K. M.; Manke, A.; Hankin, S. C.
2012-12-01
PyFerret was designed to provide the easy methods of access, analysis, and display of data found in the Ferret under the simple yet powerful Python scripting/programming language. This has enabled PyFerret to take advantage of a large and expanding collection of third-party scientific Python modules. Furthermore, ensemble and forecast axes have been added to Ferret and PyFerret for creating and working with collections of related data in Ferret's delayed-evaluation and minimal-data-access mode of operation. These axes simplify processing and visualization of these collections of related data. As one example, an empirical orthogonal function (EOF) analysis Python module was developed, taking advantage of the linear algebra module and other standard functionality in NumPy for efficient numerical array processing. This EOF analysis module is used in a Ferret function to provide an ensemble of levels of data explained by each EOF and Time Amplitude Function (TAF) product. Another example makes use of the PyDAP Python module to provide OPeNDAP sequence data for use in Ferret with minimal data access characteristic of Ferret.
Cognitive Load in Algebra: Element Interactivity in Solving Equations
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing
2015-01-01
Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…
Think Inside the Box. Integrating Math in Your Classroom
ERIC Educational Resources Information Center
Naylor, Michael
2005-01-01
This brief article describes a few entertaining math "puzzles" that are easy to use with students at any grade level and with any operation. Not only do these puzzles help provide practice with facts and operations, they are also self-checking and may lead to some interesting big ideas in algebra.
Spatial operator algebra for flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1993-01-01
This paper presents an approach to modeling the dynamics of flexible multibody systems such as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom and complex dynamic interactions are typical in these systems. This paper uses spatial operators to develop efficient recursive algorithms for the dynamics of these systems. This approach very efficiently manages complexity by means of a hierarchy of mathematical operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, J.A.
This report is a sequel to ORNL/CSD-106 in the ongoing supplements to Professor A.S. Householder's KWIC Index for Numerical Algebra. Beginning with the previous supplement, the subject has been restricted to Numerical Linear Algebra, roughly characterized by the American Mathematical Society's classification sections 15 and 65F but with little coverage of infinite matrices, matrices over fields of characteristics other than zero, operator theory, optimization and those parts of matrix theory primarily combinatorial in nature. Some consideration is given to the uses of graph theory in Numerical Linear Algebra, particularly with respect to algorithms for sparse matrix computations. The period coveredmore » by this report is roughly the calendar year 1982 as measured by the appearance of the articles in the American Mathematical Society's Contents of Mathematical Publications lagging actual appearance dates by up to nearly half a year. The review citations are limited to the Mathematical Reviews (MR).« less
Toric Calabi-Yau threefolds as quantum integrable systems. R-matrix and RTT relations
NASA Astrophysics Data System (ADS)
Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor
2016-10-01
R-matrix is explicitly constructed for simplest representations of the Ding-Iohara-Miki algebra. Calculation is straightforward and significantly simpler than the one through the universal R-matrix used for a similar calculation in the Yangian case by A. Smirnov but less general. We investigate the interplay between the R-matrix structure and the structure of DIM algebra intertwiners, i.e. of refined topological vertices and show that the R-matrix is diagonalized by the action of the spectral duality belonging to the SL(2, ℤ) group of DIM algebra automorphisms. We also construct the T-operators satisfying the RTT relations with the R-matrix from refined amplitudes on resolved conifold. We thus show that topological string theories on the toric Calabi-Yau threefolds can be naturally interpreted as lattice integrable models. Integrals of motion for these systems are related to q-deformation of the reflection matrices of the Liouville/Toda theories.
NASA Astrophysics Data System (ADS)
Gao, Longfei; Ketcheson, David; Keyes, David
2018-02-01
We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.
Gauge choices and entanglement entropy of two dimensional lattice gauge fields
NASA Astrophysics Data System (ADS)
Yang, Zhi; Hung, Ling-Yan
2018-03-01
In this paper, we explore the question of how different gauge choices in a gauge theory affect the tensor product structure of the Hilbert space in configuration space. In particular, we study the Coulomb gauge and observe that the naive gauge potential degrees of freedom cease to be local operators as soon as we impose the Dirac brackets. We construct new local set of operators and compute the entanglement entropy according to this algebra in 2 + 1 dimensions. We find that our proposal would lead to an entanglement entropy that behave very similar to a single scalar degree of freedom if we do not include further centers, but approaches that of a gauge field if we include non-trivial centers. We explore also the situation where the gauge field is Higgsed, and construct a local operator algebra that again requires some deformation. This should give us some insight into interpreting the entanglement entropy in generic gauge theories and perhaps also in gravitational theories.
AGT relations for abelian quiver gauge theories on ALE spaces
NASA Astrophysics Data System (ADS)
Pedrini, Mattia; Sala, Francesco; Szabo, Richard J.
2016-05-01
We construct level one dominant representations of the affine Kac-Moody algebra gl̂k on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the orbifold compactification of the minimal resolution Xk of the Ak-1 toric singularity C2 /Zk. We show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector for gl̂k, which proves the AGT correspondence for pure N = 2 U(1) gauge theory on Xk. We consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their Euler classes to define vertex operators. Under the decomposition gl̂k ≃ h ⊕sl̂k, these vertex operators decompose as products of bosonic exponentials associated to the Heisenberg algebra h and primary fields of sl̂k. We use these operators to prove the AGT correspondence for N = 2 superconformal abelian quiver gauge theories on Xk.
Explicit resolutions for the complex of several Fueter operators
NASA Astrophysics Data System (ADS)
Bureš, Jarolim; Damiano, Alberto; Sabadini, Irene
2007-02-01
An analogue of the Dolbeault complex is introduced for regular functions of several quaternionic variables and studied by means of two different methods. The first one comes from algebraic analysis (for a thorough treatment see the book [F. Colombo, I. Sabadini, F. Sommen, D.C. Struppa, Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004]), while the other one relies on the symmetry of the equations and the methods of representation theory (see [F. Colombo, V. Souček, D.C. Struppa, Invariant resolutions for several Fueter operators, J. Geom. Phys. 56 (2006) 1175-1191; R.J. Baston, Quaternionic Complexes, J. Geom. Phys. 8 (1992) 29-52]). The comparison of the two results allows one to describe the operators appearing in the complex in an explicit form. This description leads to a duality theorem which is the generalization of the classical Martineau-Harvey theorem and which is related to hyperfunctions of several quaternionic variables.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false May schools operate a language development program... Formula Language Development Programs § 39.137 May schools operate a language development program without a specific appropriation from Congress? Yes, a school may operate a language development program...
Observables and dispersion relations in κ-Minkowski spacetime
NASA Astrophysics Data System (ADS)
Aschieri, Paolo; Borowiec, Andrzej; Pachoł, Anna
2017-10-01
We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommutative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of κ-Minkowski spacetime. The corresponding quantum Poincaré-Weyl Lie algebra of in-finitesimal translations, rotations and dilatations is obtained. The d'Alembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.
Lie algebraic similarity transformed Hamiltonians for lattice model systems
NASA Astrophysics Data System (ADS)
Wahlen-Strothman, Jacob M.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2015-01-01
We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni ↑ni ↓ , and two-site products of density (ni ↑+ni ↓) and spin (ni ↑-ni ↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.
NASA Astrophysics Data System (ADS)
Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad
2017-01-01
In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.
G-sequentially connectedness for topological groups with operations
NASA Astrophysics Data System (ADS)
Mucuk, Osman; Cakalli, Huseyin
2016-08-01
It is a well-known fact that for a Hausdorff topological group X, the limits of convergent sequences in X define a function denoted by lim from the set of all convergent sequences in X to X. This notion has been modified by Connor and Grosse-Erdmann for real functions by replacing lim with an arbitrary linear functional G defined on a linear subspace of the vector space of all real sequences. Recently some authors have extended the concept to the topological group setting and introduced the concepts of G-sequential continuity, G-sequential compactness and G-sequential connectedness. In this work, we present some results about G-sequentially closures, G-sequentially connectedness and fundamental system of G-sequentially open neighbourhoods for topological group with operations which include topological groups, topological rings without identity, R-modules, Lie algebras, Jordan algebras, and many others.
A method to perform a fast fourier transform with primitive image transformations.
Sheridan, Phil
2007-05-01
The Fourier transform is one of the most important transformations in image processing. A major component of this influence comes from the ability to implement it efficiently on a digital computer. This paper describes a new methodology to perform a fast Fourier transform (FFT). This methodology emerges from considerations of the natural physical constraints imposed by image capture devices (camera/eye). The novel aspects of the specific FFT method described include: 1) a bit-wise reversal re-grouping operation of the conventional FFT is replaced by the use of lossless image rotation and scaling and 2) the usual arithmetic operations of complex multiplication are replaced with integer addition. The significance of the FFT presented in this paper is introduced by extending a discrete and finite image algebra, named Spiral Honeycomb Image Algebra (SHIA), to a continuous version, named SHIAC.
Fu, Jian; Schleede, Simone; Tan, Renbo; Chen, Liyuan; Bech, Martin; Achterhold, Klaus; Gifford, Martin; Loewen, Rod; Ruth, Ronald; Pfeiffer, Franz
2013-09-01
Iterative reconstruction has a wide spectrum of proven advantages in the field of conventional X-ray absorption-based computed tomography (CT). In this paper, we report on an algebraic iterative reconstruction technique for grating-based differential phase-contrast CT (DPC-CT). Due to the differential nature of DPC-CT projections, a differential operator and a smoothing operator are added to the iterative reconstruction, compared to the one commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured at a two-grating interferometer setup. Since the algorithm is easy to implement and allows for the extension to various regularization possibilities, we expect a significant impact of the method for improving future medical and industrial DPC-CT applications. Copyright © 2012. Published by Elsevier GmbH.
A conceptual data model and modelling language for fields and agents
NASA Astrophysics Data System (ADS)
de Bakker, Merijn; de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek
2016-04-01
Modelling is essential in order to understand environmental systems. Environmental systems are heterogeneous because they consist of fields and agents. Fields have a value defined everywhere at all times, for example surface elevation and temperature. Agents are bounded in space and time and have a value only within their bounds, for example biomass of a tree crown or the speed of a car. Many phenomena have properties of both fields and agents. Although many systems contain both fields and agents and integration of these concepts would be required for modelling, existing modelling frameworks concentrate on either agent-based or field-based modelling and are often low-level programming frameworks. A concept is lacking that integrates fields and agents in a way that is easy to use for modelers who are not software engineers. To address this issue, we develop a conceptual data model that represents fields and agents uniformly. We then show how the data model can be used in a high-level modelling language. The data model represents fields and agents in space-time. Also relations and networks can be represented using the same concepts. Using the conceptual data model we can represent static and mobile agents that may have spatial and temporal variation within their extent. The concepts we use are phenomenon, property set, item, property, domain and value. The phenomenon is the thing that is modelled, which can be any real world thing, for example trees. A phenomenon usually consists of several items, e.g. single trees. The domain is the spatiotemporal location and/or extent for which the items in the phenomenon are defined. Multiple different domains can coexist for a given phenomenon. For example a domain describing the extent of the trees and a domain describing the stem locations. The same goes for the property, which is an attribute of the thing that is being modeled. A property has a value, which is possibly discretized, for example the biomass over the tree crown extent. Properties sharing the same domain are grouped into a property set. The conceptual data model is translated into a physical data model in de Jong et al. (2016, presented in the same session). We have designed a modelling language that allows domain specialists to build models without the programming efforts required by many programming environments. The language is based on the ideas of map algebra. We have defined data types that are associated with a phenomenon. These data types determine the behavior of the language when used as arguments in operations. The result is a concise language in which fields and agents can be combined in operations. We test the language in a case study modelling exposure to air pollution of commuting children. References De Jong, K, M. de Bakker, D. Karssenberg. 2016. A physical data model for fields and agents. European Geosciences Union, EGU General Assembly, 2016, Vienna.
Algebraic multigrid methods applied to problems in computational structural mechanics
NASA Technical Reports Server (NTRS)
Mccormick, Steve; Ruge, John
1989-01-01
The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.
Generalized scalar particle quantization in 1+1 dimensions and D(2,1;α)
NASA Astrophysics Data System (ADS)
Corney, S. P.; Jarvis, P. D.; Tsohantjis, I.; McAnally, D. S.
2001-05-01
The exceptional superalgebra D(2,1;α) has been classified as a candidate conformal supersymmetry algebra in two dimensions. We propose an alternative interpretation of it as an extended BFV-BRST quantization superalgebra in 2D (D(2,1;1)≃osp(2,2|2)). A superfield realization is presented wherein the standard extended phase space coordinates can be identified. The physical states are studied via the cohomology of the BRST operator. Finally we reverse engineer a classical action corresponding to the algebraic model we have constructed, and identify the Lagrangian equations of motion.
Elementary operators on self-adjoint operators
NASA Astrophysics Data System (ADS)
Molnar, Lajos; Semrl, Peter
2007-03-01
Let H be a Hilbert space and let and be standard *-operator algebras on H. Denote by and the set of all self-adjoint operators in and , respectively. Assume that and are surjective maps such that M(AM*(B)A)=M(A)BM(A) and M*(BM(A)B)=M*(B)AM*(B) for every pair , . Then there exist an invertible bounded linear or conjugate-linear operator and a constant c[set membership, variant]{-1,1} such that M(A)=cTAT*, , and M*(B)=cT*BT, .
Lie-algebraic Approach to Dynamics of Closed Quantum Systems and Quantum-to-Classical Correspondence
NASA Astrophysics Data System (ADS)
Galitski, Victor
2012-02-01
I will briefly review our recent work on a Lie-algebraic approach to various non-equilibrium quantum-mechanical problems, which has been motivated by continuous experimental advances in the field of cold atoms. First, I will discuss non-equilibrium driven dynamics of a generic closed quantum system. It will be emphasized that mathematically a non-equilibrium Hamiltonian represents a trajectory in a Lie algebra, while the evolution operator is a trajectory in a Lie group generated by the underlying algebra via exponentiation. This turns out to be a constructive statement that establishes, in particular, the fact that classical and quantum unitary evolutions are two sides of the same coin determined uniquely by the same dynamic generators in the group. An equation for these generators - dubbed dual Schr"odinger-Bloch equation - will be derived and analyzed for a few of specific examples. This non-linear equation allows one to construct new exact non-linear solutions to quantum-dynamical systems. An experimentally-relevant example of a family of exact solutions to the many-body Landau-Zener problem will be presented. One practical application of the latter result includes dynamical means to optimize molecular production rate following a quench across the Feshbach resonance.
Higher spin black holes with soft hair
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Pérez, Alfredo; Prohazka, Stefan; Tempo, David; Troncoso, Ricardo
2016-10-01
We construct a new set of boundary conditions for higher spin gravity, inspired by a recent "soft Heisenberg hair"-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin- N , many of which resemble the spin-2 results: the generators of the asymptotic W 3 algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call "higher spin black flowers", are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W -algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.
Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics
NASA Astrophysics Data System (ADS)
Mylonas, Dionysios; Schupp, Peter; Szabo, Richard J.
2014-12-01
We analyse the symmetries underlying nonassociative deformations of geometry in non-geometric R-flux compactifications which arise via T-duality from closed strings with constant geometric fluxes. Starting from the non-abelian Lie algebra of translations and Bopp shifts in phase space, together with a suitable cochain twist, we construct the quasi-Hopf algebra of symmetries that deforms the algebra of functions and the exterior differential calculus in the phase space description of nonassociative R-space. In this setting, nonassociativity is characterised by the associator 3-cocycle which controls non-coassociativity of the quasi-Hopf algebra. We use abelian 2-cocycle twists to construct maps between the dynamical nonassociative star product and a family of associative star products parametrized by constant momentum surfaces in phase space. We define a suitable integration on these nonassociative spaces and find that the usual cyclicity of associative noncommutative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. Using this star product quantization on phase space together with 3-cyclicity, we formulate a consistent version of nonassociative quantum mechanics, in which we calculate the expectation values of area and volume operators, and find coarse-graining of the string background due to the R-flux.
NASA Astrophysics Data System (ADS)
Miller, W., Jr.; Li, Q.
2015-04-01
The Wilson and Racah polynomials can be characterized as basis functions for irreducible representations of the quadratic symmetry algebra of the quantum superintegrable system on the 2-sphere, HΨ = EΨ, with generic 3-parameter potential. Clearly, the polynomials are expansion coefficients for one eigenbasis of a symmetry operator L2 of H in terms of an eigenbasis of another symmetry operator L1, but the exact relationship appears not to have been made explicit. We work out the details of the expansion to show, explicitly, how the polynomials arise and how the principal properties of these functions: the measure, 3-term recurrence relation, 2nd order difference equation, duality of these relations, permutation symmetry, intertwining operators and an alternate derivation of Wilson functions - follow from the symmetry of this quantum system. This paper is an exercise to show that quantum mechancal concepts and recurrence relations for Gausian hypergeometrc functions alone suffice to explain these properties; we make no assumptions about the structure of Wilson polynomial/functions, but derive them from quantum principles. There is active interest in the relation between multivariable Wilson polynomials and the quantum superintegrable system on the n-sphere with generic potential, and these results should aid in the generalization. Contracting function space realizations of irreducible representations of this quadratic algebra to the other superintegrable systems one can obtain the full Askey scheme of orthogonal hypergeometric polynomials. All of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2,C). All of the polynomials produced are interpretable as quantum expansion coefficients. It is important to extend this process to higher dimensions.
Vertex operator algebras of Argyres-Douglas theories from M5-branes
NASA Astrophysics Data System (ADS)
Song, Jaewon; Xie, Dan; Yan, Wenbin
2017-12-01
We study aspects of the vertex operator algebra (VOA) corresponding to Argyres-Douglas (AD) theories engineered using the 6d N=(2, 0) theory of type J on a punctured sphere. We denote the AD theories as ( J b [ k], Y), where J b [ k] and Y represent an irregular and a regular singularity respectively. We restrict to the `minimal' case where J b [ k] has no associated mass parameters, and the theory does not admit any exactly marginal deformations. The VOA corresponding to the AD theory is conjectured to be the W-algebra W^{k_{2d}}(J, Y ) , where {k}_{2d}=-h+b/b+k with h being the dual Coxeter number of J. We verify this conjecture by showing that the Schur index of the AD theory is identical to the vacuum character of the corresponding VOA, and the Hall-Littlewood index computes the Hilbert series of the Higgs branch. We also find that the Schur and Hall-Littlewood index for the AD theory can be written in a simple closed form for b = h. We also test the conjecture that the associated variety of such VOA is identical to the Higgs branch. The M5-brane construction of these theories and the corresponding TQFT structure of the index play a crucial role in our computations.
Robust algebraic image enhancement for intelligent control systems
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morrelli, Michael
1993-01-01
Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.
Martiník, Ivo
2015-01-01
Rich-media describes a broad range of digital interactive media that is increasingly used in the Internet and also in the support of education. Last year, a special pilot audiovisual lecture room was built as a part of the MERLINGO (MEdia-rich Repository of LearnING Objects) project solution. It contains all the elements of the modern lecture room determined for the implementation of presentation recordings based on the rich-media technologies and their publication online or on-demand featuring the access of all its elements in the automated mode including automatic editing. Property-preserving Petri net process algebras (PPPA) were designed for the specification and verification of the Petri net processes. PPPA does not need to verify the composition of the Petri net processes because all their algebraic operators preserve the specified set of the properties. These original PPPA are significantly generalized for the newly introduced class of the SNT Petri process and agent nets in this paper. The PLACE-SUBST and ASYNC-PROC algebraic operators are defined for this class of Petri nets and their chosen properties are proved. The SNT Petri process and agent nets theory were significantly applied at the design, verification, and implementation of the programming system ensuring the pilot audiovisual lecture room functionality.
Martiník, Ivo
2015-01-01
Rich-media describes a broad range of digital interactive media that is increasingly used in the Internet and also in the support of education. Last year, a special pilot audiovisual lecture room was built as a part of the MERLINGO (MEdia-rich Repository of LearnING Objects) project solution. It contains all the elements of the modern lecture room determined for the implementation of presentation recordings based on the rich-media technologies and their publication online or on-demand featuring the access of all its elements in the automated mode including automatic editing. Property-preserving Petri net process algebras (PPPA) were designed for the specification and verification of the Petri net processes. PPPA does not need to verify the composition of the Petri net processes because all their algebraic operators preserve the specified set of the properties. These original PPPA are significantly generalized for the newly introduced class of the SNT Petri process and agent nets in this paper. The PLACE-SUBST and ASYNC-PROC algebraic operators are defined for this class of Petri nets and their chosen properties are proved. The SNT Petri process and agent nets theory were significantly applied at the design, verification, and implementation of the programming system ensuring the pilot audiovisual lecture room functionality. PMID:26258164
A Jigsaw Lesson for Operations of Complex Numbers.
ERIC Educational Resources Information Center
Lucas, Carol A.
2000-01-01
Explains the cooperative learning technique of jigsaw. Details the use of a jigsaw lesson for explaining complex numbers to intermediate algebra students. Includes copies of the handouts given to the expert groups. (Author/ASK)
DNA algorithms of implementing biomolecular databases on a biological computer.
Chang, Weng-Long; Vasilakos, Athanasios V
2015-01-01
In this paper, DNA algorithms are proposed to perform eight operations of relational algebra (calculus), which include Cartesian product, union, set difference, selection, projection, intersection, join, and division, on biomolecular relational databases.
Misuse of the Equals Sign: An Entrenched Practice from Early Primary Years to Tertiary Mathematics
ERIC Educational Resources Information Center
Vincent, Jill; Bardini, Caroline; Pierce, Robyn; Pearn, Catherine
2015-01-01
In this article, the authors begin by considering symbolic literacy in mathematics. Next, they examine the origins of misuse of the equals sign by primary and junior secondary students, where "=" has taken on an operational meaning. They explain that in algebra, students need both the operational and relational meanings of the equals…
Using SPARK as a Solver for Modelica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael; Wetter, Michael; Haves, Philip
Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulationmore » environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.« less