Oppold, P; Rupp, M; Mouloua, M; Hancock, P A; Martin, J
2012-01-01
Unmanned (UAVs, UCAVs, and UGVs) systems still have major human factors and ergonomic challenges related to the effective design of their control interface systems, crucial to their efficient operation, maintenance, and safety. Unmanned system interfaces with a human centered approach promote intuitive interfaces that are easier to learn, and reduce human errors and other cognitive ergonomic issues with interface design. Automation has shifted workload from physical to cognitive, thus control interfaces for unmanned systems need to reduce mental workload on the operators and facilitate the interaction between vehicle and operator. Two-handed video game controllers provide wide usability within the overall population, prior exposure for new operators, and a variety of interface complexity levels to match the complexity level of the task and reduce cognitive load. This paper categorizes and provides taxonomy for 121 haptic interfaces from the entertainment industry that can be utilized as control interfaces for unmanned systems. Five categories of controllers were based on the complexity of the buttons, control pads, joysticks, and switches on the controller. This allows the selection of the level of complexity needed for a specific task without creating an entirely new design or utilizing an overly complex design.
Evolvable synthetic neural system
NASA Technical Reports Server (NTRS)
Curtis, Steven A. (Inventor)
2009-01-01
An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.
Chen, Chien-Hsu; Wang, Chuan-Po; Lee, I-Jui; Su, Chris Chun-Chin
2016-01-01
We analyzed the efficacy of the interface design of speech generating devices on three non-verbal adolescents with autism spectrum disorder (ASD), in hopes of improving their on-campus communication and cognitive disability. The intervention program was created based on their social and communication needs in school. Two operating interfaces were designed and compared: the Hierarchical Relating Menu and the Pie Abbreviation-Expansion Menu. The experiment used the ABCACB multiple-treatment reversal design. The test items included: (1) accuracy of operating identification; (2) interface operation in response to questions; (3) degree of independent completion. Each of these three items improved with both intervention interfaces. The children were able to operate the interfaces skillfully and respond to questions accurately, which evidenced the effectiveness of the interfaces. We conclude that both interfaces are efficacious enough to help nonverbal children with ASD at different levels.
Multi-interface Level Sensors and New Development in Monitoring and Control of Oil Separators
Bukhari, Syed Faisal Ahmed; Yang, Wuqiang
2006-01-01
In the oil industry, huge saving may be made if suitable multi-interface level measurement systems are employed for effectively monitoring crude oil separators and efficient control of their operation. A number of techniques, e.g. externally mounted displacers, differential pressure transmitters and capacitance rod devices, have been developed to measure the separation process with gas, oil, water and other components. Because of the unavailability of suitable multi-interface level measurement systems, oil separators are currently operated by the trial-and-error approach. In this paper some conventional techniques, which have been used for level measurement in industry, and new development are discussed.
Photovoltaic array: Power conditioner interface characteristics
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.
1982-01-01
The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.
NASA Technical Reports Server (NTRS)
Spradlin, G.
2000-01-01
The concept provides an overview of operational roles and responsibilities in a service system environment. It describes changed and new interfaces between the customers and the service system, and variations on these interfaces as a function of the level of support required by the customer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welcome, Michael L.; Bell, Christian S.
GASNet (Global-Address Space Networking) is a language-independent, low-level networking layer that provides network-independent, high-performance communication primitives tailored for implementing parallel global address space SPMD languages such as UPC and Titanium. The interface is primarily intended as a compilation target and for use by runtime library writers (as opposed to end users), and the primary goals are high performance, interface portability, and expressiveness. GASNet is designed specifically to support high-performance, portable implementations of global address space languages on modern high-end communication networks. The interface provides the flexibility and extensibility required to express a wide variety of communication patterns without sacrificing performancemore » by imposing large computational overheads in the interface. The design of the GASNet interface is partitioned into two layers to maximize porting ease without sacrificing performance: the lower level is a narrow but very general interface called the GASNet core API - the design is basedheavily on Active Messages, and is implemented directly on top of each individual network architecture. The upper level is a wider and more expressive interface called GASNet extended API, which provides high-level operations such as remote memory access and various collective operations. This release implements GASNet over MPI, the Quadrics "elan" API, the Myrinet "GM" API and the "LAPI" interface to the IBM SP switch. A template is provided for adding support for additional network interfaces.« less
Operator Performance Evaluation of Fault Management Interfaces for Next-Generation Spacecraft
NASA Technical Reports Server (NTRS)
Hayashi, Miwa; Ravinder, Ujwala; Beutter, Brent; McCann, Robert S.; Spirkovska, Lilly; Renema, Fritz
2008-01-01
In the cockpit of the NASA's next generation of spacecraft, most of vehicle commanding will be carried out via electronic interfaces instead of hard cockpit switches. Checklists will be also displayed and completed on electronic procedure viewers rather than from paper. Transitioning to electronic cockpit interfaces opens up opportunities for more automated assistance, including automated root-cause diagnosis capability. The paper reports an empirical study evaluating two potential concepts for fault management interfaces incorporating two different levels of automation. The operator performance benefits produced by automation were assessed. Also, some design recommendations for spacecraft fault management interfaces are discussed.
Modelling Situation Awareness Information for Naval Decision Support Design
2003-10-01
Modelling Situation Awareness Information for Naval Decision Support Design Dr.-Ing. Bernhard Doering, Dipl.-Ing. Gert Doerfel, Dipl.-Ing... knowledge -based user interfaces. For developing such interfaces information of the three different SA levels which operators need in performing their...large scale on situation awareness of operators which is defined as the state of operator knowledge about the external environment resulting from
Embedded controller for GEM detector readout system
NASA Astrophysics Data System (ADS)
Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek
2013-10-01
This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de
In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjaardema, Gregory; Bauer, David; Erik, & Illescas
2017-01-06
The Ioss is a database-independent package for providing an object-oriented, abstract interface to IO capabilities for a finite element application; and concrete database interfaces which provided input and/or output to exodusII, xdmf, generated, and heartbeat database formats. The Ioss provides an object-oriented C++-based IO interface for a finite element application code. The application code can perform all IO operations through the Ioss interface which is typically at a higher abstraction level than the concrete database formats. The Ioss then performs the needed operations to translate the finite element data to the specific format required by the concrete database implementations. Themore » Ioss currently supports interfaces to exodusII, xdmf, generated, and heartbeat formats, but additional formats can be easily added.« less
A software architecture for automating operations processes
NASA Technical Reports Server (NTRS)
Miller, Kevin J.
1994-01-01
The Operations Engineering Lab (OEL) at JPL has developed a software architecture based on an integrated toolkit approach for simplifying and automating mission operations tasks. The toolkit approach is based on building adaptable, reusable graphical tools that are integrated through a combination of libraries, scripts, and system-level user interface shells. The graphical interface shells are designed to integrate and visually guide a user through the complex steps in an operations process. They provide a user with an integrated system-level picture of an overall process, defining the required inputs and possible output through interactive on-screen graphics. The OEL has developed the software for building these process-oriented graphical user interface (GUI) shells. The OEL Shell development system (OEL Shell) is an extension of JPL's Widget Creation Library (WCL). The OEL Shell system can be used to easily build user interfaces for running complex processes, applications with extensive command-line interfaces, and tool-integration tasks. The interface shells display a logical process flow using arrows and box graphics. They also allow a user to select which output products are desired and which input sources are needed, eliminating the need to know which program and its associated command-line parameters must be executed in each case. The shells have also proved valuable for use as operations training tools because of the OEL Shell hypertext help environment. The OEL toolkit approach is guided by several principles, including the use of ASCII text file interfaces with a multimission format, Perl scripts for mission-specific adaptation code, and programs that include a simple command-line interface for batch mode processing. Projects can adapt the interface shells by simple changes to the resources configuration file. This approach has allowed the development of sophisticated, automated software systems that are easy, cheap, and fast to build. This paper will discuss our toolkit approach and the OEL Shell interface builder in the context of a real operations process example. The paper will discuss the design and implementation of a Ulysses toolkit for generating the mission sequence of events. The Sequence of Events Generation (SEG) system provides an adaptable multimission toolkit for producing a time-ordered listing and timeline display of spacecraft commands, state changes, and required ground activities.
Multi-level manual and autonomous control superposition for intelligent telerobot
NASA Technical Reports Server (NTRS)
Hirai, Shigeoki; Sato, T.
1989-01-01
Space telerobots are recognized to require cooperation with human operators in various ways. Multi-level manual and autonomous control superposition in telerobot task execution is described. The object model, the structured master-slave manipulation system, and the motion understanding system are proposed to realize the concept. The object model offers interfaces for task level and object level human intervention. The structured master-slave manipulation system offers interfaces for motion level human intervention. The motion understanding system maintains the consistency of the knowledge through all the levels which supports the robot autonomy while accepting the human intervention. The superposing execution of the teleoperational task at multi-levels realizes intuitive and robust task execution for wide variety of objects and in changeful environment. The performance of several examples of operating chemical apparatuses is shown.
NASA Astrophysics Data System (ADS)
Lin, Y.; Zhang, W. J.
2005-02-01
This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.
Fermi level pinning at epitaxial Si on GaAs(100) interfaces
NASA Astrophysics Data System (ADS)
Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.
1991-12-01
GaAs Schottky barrier contacts and metal-insulator-semiconductor structures that include thin epitaxial Si interfacial layers operate in a manner consistent with an unpinned Fermi level at the GaAs interface. These findings raise the question of whether this effect is an intrinsic property of the epitaxial GaAs(100)-Si interface. We have used x-ray photoemission spectroscopy to monitor the Fermi level position during in situ growth of thin epitaxial Si layers. In particular, films formed on heavily doped n- and p-type substrates were compared so as to use the large depletion layer fields available with high impurity concentration as a field-effect probe of the interface state density. The results demonstrate that epitaxial bonding at the interface alone is insufficient to eliminate Fermi level pinning, indicating that other mechanisms affect the interfacial charge balance in the devices that utilize Si interlayers.
Biased feedback in brain-computer interfaces.
Barbero, Alvaro; Grosse-Wentrup, Moritz
2010-07-27
Even though feedback is considered to play an important role in learning how to operate a brain-computer interface (BCI), to date no significant influence of feedback design on BCI-performance has been reported in literature. In this work, we adapt a standard motor-imagery BCI-paradigm to study how BCI-performance is affected by biasing the belief subjects have on their level of control over the BCI system. Our findings indicate that subjects already capable of operating a BCI are impeded by inaccurate feedback, while subjects normally performing on or close to chance level may actually benefit from an incorrect belief on their performance level. Our results imply that optimal feedback design in BCIs should take into account a subject's current skill level.
NASA Technical Reports Server (NTRS)
Addis, A. W.; Tatosian, C. G.; Lidsey, J. F.
1974-01-01
Orbiter/payload data and communications interface was examined. It was found that the Configuration Control Board Directive (CCBD) greatly increases the capability of the orbiter to communicate with a wide variety of projected shuttle payloads. Rather than being derived from individual payload communication requirements, the CCBD appears to be based on an operational philosophy that requires the orbiter to duplicate or augment the ground network/payload communication links. It is suggested that the implementation of the CCBD be reviewed and compared with the Level 1 Program Requirements Document, differences reconciled, and interface characteristics defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VAN ZEIJTS,J.; DOTTAVIO,T.; FRAK,B.
The Relativistic Heavy Ion Collider (RHIC) has a high level asynchronous time-line driven by a controlling program called the ''Sequencer''. Most high-level magnet and beam related issues are orchestrated by this system. The system also plays an important task in coordinated data acquisition and saving. We present the program, operator interface, operational impact and experience.
A model for the control mode man-computer interface dialogue
NASA Technical Reports Server (NTRS)
Chafin, R. L.
1981-01-01
A four stage model is presented for the control mode man-computer interface dialogue. It consists of context development, semantic development syntactic development, and command execution. Each stage is discussed in terms of the operator skill levels (naive, novice, competent, and expert) and pertinent human factors issues. These issues are human problem solving, human memory, and schemata. The execution stage is discussed in terms of the operators typing skills. This model provides an understanding of the human process in command mode activity for computer systems and a foundation for relating system characteristics to operator characteristics.
Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan
2012-04-24
Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.
1982-11-12
File 1/0 Prgram Invocation Other Access M and Control Services KAPSE/Host Interface most Operating System Peripherals/ 01 su ?eetworks 6282318-2 Figure 3...3.2.4.3.8.5 Transitory Windows The TRANSITORY flag is used to prevent permanent dependence on temporary windows created simply for focusing on a part of the...KAPSE/Tool interfaces in terms of these low-level host-independent interfaces. In addition, the KAPSE/Host interface packages prevent the application
Ada/POSIX binding: A focused Ada investigation
NASA Technical Reports Server (NTRS)
Legrand, Sue
1988-01-01
NASA is seeking an operating system interface definition (OSID) for the Space Station Program (SSP) in order to take advantage of the commercial off-the-shelf (COTS) products available today and the many that are expected in the future. NASA would also like to avoid the reliance on any one source for operating systems, information system, communication system, or instruction set architecture. The use of the Portable Operating System Interface for Computer Environments (POSIX) is examined as a possible solution to this problem. Since Ada is already the language of choice for SSP, the question of an Ada/POSIX binding is addressed. The intent of the binding is to provide access to the POSIX standard operation system (OS) interface and environment, by which application portability of Ada applications will be supported at the source code level. A guiding principle of Ada/POSIX binding development is a clear conformance of the Ada interface with the functional definition of POSIX. The interface is intended to be used by both application developers and system implementors. The objective is to provide a standard that allows a strictly conforming application source program that can be compiled to execute on any conforming implementation. Special emphasis is placed on first providing those functions and facilities that are needed in a wide variety of commercial applications
Zu, Fengshuo; Amsalem, Patrick; Ralaiarisoa, Maryline; Schultz, Thorsten; Schlesinger, Raphael; Koch, Norbert
2017-11-29
Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb 0 ) directly impact the energy level alignment at perovskite (CH 3 NH 3 PbI 3-x Cl x ) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.
Human-system Interfaces to Automatic Systems: Review Guidance and Technical Basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
OHara, J.M.; Higgins, J.C.
Automation has become ubiquitous in modern complex systems and commercial nuclear power plants are no exception. Beyond the control of plant functions and systems, automation is applied to a wide range of additional functions including monitoring and detection, situation assessment, response planning, response implementation, and interface management. Automation has become a 'team player' supporting plant personnel in nearly all aspects of plant operation. In light of the increasing use and importance of automation in new and future plants, guidance is needed to enable the NRC staff to conduct safety reviews of the human factors engineering (HFE) aspects of modern automation.more » The objective of the research described in this report was to develop guidance for reviewing the operator's interface with automation. We first developed a characterization of the important HFE aspects of automation based on how it is implemented in current systems. The characterization included five dimensions: Level of automation, function of automation, modes of automation, flexibility of allocation, and reliability of automation. Next, we reviewed literature pertaining to the effects of these aspects of automation on human performance and the design of human-system interfaces (HSIs) for automation. Then, we used the technical basis established by the literature to develop design review guidance. The guidance is divided into the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, we identified insights into the automaton design process, operator training, and operations.« less
CARMENES. IV: instrument control software
NASA Astrophysics Data System (ADS)
Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Hagen, Hans-Jürgen; Morales, Rafael; Abril, Miguel; Galadí-Enríquez, David; Seifert, Walter; Sánchez Carrasco, Miguel A.; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, Jose A.; Mandel, Holger
2012-09-01
The overall purpose of the CARMENES instrument is to perform high-precision measurements of radial velocities of late-type stars with long-term stability. CARMENES will be installed in 2014 at the 3.5 m telescope in the German- Spanish Astronomical Center at Calar Alto observatory (CAHA, Spain) and will be equipped with two spectrographs in the near-infrared and visible windows. The technology involved in such instrument represents a challenge at all levels. The instrument coordination and management is handled by the Instrument Control System (ICS), which is responsible of carrying out the operations of the different subsystems and providing a tool to operate the instrument from low to high user interaction level. The main goal of the ICS and the CARMENES control layer architecture is to maximize the instrument efficiency by reducing time overheads and by operating it in an integrated manner. The ICS implements the CARMENES operational design. A description of the ICS architecture and the application programming interfaces for low- and high-level communication is given. Internet Communications Engine is the technology selected to implement most of the interface protocols.
Petri net controllers for distributed robotic systems
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, George N.
1992-01-01
Petri nets are a well established modelling technique for analyzing parallel systems. When coupled with an event-driven operating system, Petri nets can provide an effective means for integrating and controlling the functions of distributed robotic applications. Recent work has shown that Petri net graphs can also serve as remarkably intuitive operator interfaces. In this paper, the advantages of using Petri nets as high-level controllers to coordinate robotic functions are outlined, the considerations for designing Petri net controllers are discussed, and simple Petri net structures for implementing an interface for operator supervision are presented. A detailed example is presented which illustrates these concepts for a sensor-based assembly application.
Experiments in cooperative manipulation: A system perspective
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Cannon, Robert H., Jr.
1989-01-01
In addition to cooperative dynamic control, the system incorporates real time vision feedback, a novel programming technique, and a graphical high level user interface. By focusing on the vertical integration problem, not only these subsystems are examined, but also their interfaces and interactions. The control system implements a multi-level hierarchical structure; the techniques developed for operator input, strategic command, and cooperative dynamic control are presented. At the highest level, a mouse-based graphical user interface allows an operator to direct the activities of the system. Strategic command is provided by a table-driven finite state machine; this methodology provides a powerful yet flexible technique for managing the concurrent system interactions. The dynamic controller implements object impedance control; an extension of Nevill Hogan's impedance control concept to cooperative arm manipulation of a single object. Experimental results are presented, showing the system locating and identifying a moving object catching it, and performing a simple cooperative assembly. Results from dynamic control experiments are also presented, showing the controller's excellent dynamic trajectory tracking performance, while also permitting control of environmental contact force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spires, S.
This code provides an application programming interface to the Macintosh OSX Carbon Databrowser from Macintosh Common Lisp. The Databrowser API is made available to Lisp via high level native CLOS classes and methods, obviating the need to write low-level Carbon code. This code is primarily glue in that its job is to provide an interface between two extant software tools: Macintosh Common Lisp and the OSX Databrowser, both of which are COTS products from private vendors. The Databrowser is an extremely useful user interface widget that is provided with Apples OSX (and to some extent, OS9) operating systems. One Apple-sanctionedmore » method for using the Databrowser is via an API called Carbon, which is designed for C and C++ programmers. We have translated the low-level Carbon programming interface to the Databrowser into high-level object-oriented Common Lisp calls, functions, methods. and classes to enable MCL programmers to more readily take advantage of the Databrowser from Lisp programs.« less
NASA Astrophysics Data System (ADS)
Lee, Sam; Lucas, Nathan P.; Ellis, R. Darin; Pandya, Abhilash
2012-06-01
This paper presents a seamlessly controlled human multi-robot system comprised of ground and aerial robots of semiautonomous nature for source localization tasks. The system combines augmented reality interfaces capabilities with human supervisor's ability to control multiple robots. The role of this human multi-robot interface is to allow an operator to control groups of heterogeneous robots in real time in a collaborative manner. It used advanced path planning algorithms to ensure obstacles are avoided and that the operators are free for higher-level tasks. Each robot knows the environment and obstacles and can automatically generate a collision-free path to any user-selected target. It displayed sensor information from each individual robot directly on the robot in the video view. In addition, a sensor data fused AR view is displayed which helped the users pin point source information or help the operator with the goals of the mission. The paper studies a preliminary Human Factors evaluation of this system in which several interface conditions are tested for source detection tasks. Results show that the novel Augmented Reality multi-robot control (Point-and-Go and Path Planning) reduced mission completion times compared to the traditional joystick control for target detection missions. Usability tests and operator workload analysis are also investigated.
Integrating critical interface elements for intuitive single-display aviation control of UAVs
NASA Astrophysics Data System (ADS)
Cooper, Joseph L.; Goodrich, Michael A.
2006-05-01
Although advancing levels of technology allow UAV operators to give increasingly complex commands with expanding temporal scope, it is unlikely that the need for immediate situation awareness and local, short-term flight adjustment will ever be completely superseded. Local awareness and control are particularly important when the operator uses the UAV to perform a search or inspection task. There are many different tasks which would be facilitated by search and inspection capabilities of a camera-equipped UAV. These tasks range from bridge inspection and news reporting to wilderness search and rescue. The system should be simple, inexpensive, and intuitive for non-pilots. An appropriately designed interface should (a) provide a context for interpreting video and (b) support UAV tasking and control, all within a single display screen. In this paper, we present and analyze an interface that attempts to accomplish this goal. The interface utilizes a georeferenced terrain map rendered from publicly available altitude data and terrain imagery to create a context in which the location of the UAV and the source of the video are communicated to the operator. Rotated and transformed imagery from the UAV provides a stable frame of reference for the operator and integrates cleanly into the terrain model. Simple icons overlaid onto the main display provide intuitive control and feedback when necessary but fade to a semi-transparent state when not in use to avoid distracting the operator's attention from the video signal. With various interface elements integrated into a single display, the interface runs nicely on a small, portable, inexpensive system with a single display screen and simple input device, but is powerful enough to allow a single operator to deploy, control, and recover a small UAV when coupled with appropriate autonomy. As we present elements of the interface design, we will identify concepts that can be leveraged into a large class of UAV applications.
Clustalnet: the joining of Clustal and CORBA.
Campagne, F
2000-07-01
Performing sequence alignment operations from a different program than the original sequence alignment code, and/or through a network connection, is often required. Interactive alignment editors and large-scale biological data analysis are common examples where such a flexibility is important. Interoperability between the alignment engine and the client should be obtained regardless of the architectures and programming languages of the server and client. Clustalnet, a Clustal alignment CORBA server is described, which was developed on the basis of Clustalw. This server brings the robustness of the algorithms and implementations of Clustal to a new level of reuse. A Clustalnet server object can be accessed from a program, transparently through the network. We present interfaces to perform the alignment operations and to control these operations via immutable contexts. The interfaces that select the contexts do not depend on the nature of the operation to be performed, making the design modular. The IDL interfaces presented here are not specific to Clustal and can be implemented on top of different sequence alignment algorithm implementations.
Kernel and System Procedures in Flex.
1983-08-01
System procedures on which the operating system for the Flex computer is based. These are the low level rOCedures Whbich are used to implement the compilers, file-store* coummand interpreters etc on Flex. 168 ... System procedures on which the operating system for the Flex computer is based. These are the low level procedures which are used to implement the...privileged mode. They form the interface between the user and a particular operating system written on top of the Kernel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshkati, N.; Buller, B.J.; Azadeh, M.A.
1995-04-01
The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and amore » mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.« less
NASA Astrophysics Data System (ADS)
Bashashati, Ali; Mason, Steve; Ward, Rabab K.; Birch, Gary E.
2006-06-01
The low-frequency asynchronous switch design (LF-ASD) has been introduced as a direct brain interface (BI) for asynchronous control applications. Asynchronous interfaces, as opposed to synchronous interfaces, have the advantage of being operational at all times and not only at specific system-defined periods. This paper modifies the LF-ASD design by incorporating into the system more knowledge about the attempted movements. Specifically, the history of feature values extracted from the EEG signal is used to detect a right index finger movement attempt. Using data collected from individuals with high-level spinal cord injuries and able-bodied subjects, it is shown that the error characteristics of the modified design are significantly better than the previous LF-ASD design. The true positive rate percentage increased by up to 15 which corresponds to 50% improvement when the system is operating with false positive rates in the 1-2% range.
NASA Technical Reports Server (NTRS)
Lewis, Clayton; Wilde, Nick
1989-01-01
Space construction will require heavy investment in the development of a wide variety of user interfaces for the computer-based tools that will be involved at every stage of construction operations. Using today's technology, user interface development is very expensive for two reasons: (1) specialized and scarce programming skills are required to implement the necessary graphical representations and complex control regimes for high-quality interfaces; (2) iteration on prototypes is required to meet user and task requirements, since these are difficult to anticipate with current (and foreseeable) design knowledge. We are attacking this problem by building a user interface development tool based on extensions to the spreadsheet model of computation. The tool provides high-level support for graphical user interfaces and permits dynamic modification of interfaces, without requiring conventional programming concepts and skills.
Jahn, Georg; Krems, Josef F; Gelau, Christhard
2009-04-01
This study tested whether the ease of learning to use human-machine interfaces of in-vehicle information systems (IVIS) can be assessed at standstill. Assessing the attentional demand of IVIS should include an evaluation of ease of learning, because the use of IVIS at low skill levels may create safety-relevant distractions. Skill acquisition in operating IVIS was quantified by fitting the power law of practice to training data sets collected in a driving study and at standstill. Participants practiced manual destination entry with two route guidance systems differing in cognitive demand. In Experiment 1, a sample of middle-aged participants was trained while steering routes of varying driving demands. In Experiment 2, another sample of middle-aged participants was trained at standstill. In Experiment 1, display glance times were less affected by driving demands than by total task times and decreased at slightly higher speed-up rates (0.02 higher on average) than task times collected at standstill in Experiment 2. The system interface that minimized cognitive demand was operated more quickly and was easier to learn. Its system delays increased static task times, which still predicted 58% of variance in display glance times compared with even 76% for the second system. The ease of learning to use an IVIS interface and the decrease in attentional demand with training can be assessed at standstill. Fitting the power law of practice to static task times yields parameters that predict display glance times while driving, which makes it possible to compare interfaces with regard to ease of learning.
PC-403: Pioneer Venus multiprobe spacecraft mission operational characteristics document, volume 1
NASA Technical Reports Server (NTRS)
Barker, F. C.
1978-01-01
The operational characteristics of the multiprobe system and its subsystem are described. System level, description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are presented. Bus spacecraft functional and operational descriptions at the subsystem and unit level are presented. The subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram identifies in symbolic logic all signal conditioning encountered along each command signal path into, and each telemetry signal path out of the subsystem.
Space Station module Power Management And Distribution (PMAD) system
NASA Technical Reports Server (NTRS)
Walls, Bryan
1990-01-01
This project consists of several tasks which are unified toward experimentally demonstrating the operation of a highly autonomous, user-supportive power management and distribution system for Space Station Freedom (SSF) habitation/laboratory modules. This goal will be extended to a demonstration of autonomous, cooperative power system operation for the whole SSF power system through a joint effort with NASA's Lewis Research Center, using their Autonomous Power System. Short term goals for the space station module power management and distribution include having an operational breadboard reflecting current plans for SSF, improving performance of the system communications, and improving the organization and mutability of the artificial intelligence (AI) systems. In the middle term, intermediate levels of autonomy will be added, user interfaces will be modified, and enhanced modeling capabilities will be integrated in the system. Long term goals involve conversion of all software into Ada, vigorous verification and validation efforts and, finally, seeing an impact of this research on the operation of SSF. Conversion of the system to a DC Star configuration is now in progress, and should be completed by the end of October, 1989. This configuration reflects the latest SSF module architecture. Hardware is now being procured which will improve system communications significantly. The Knowledge-Based Management System (KBMS) is initially developed and the rules from FRAMES have been implemented in the KBMS. Rules in the other two AI systems are also being grouped modularly, making them more tractable, and easier to eventually move into the KBMS. Adding an intermediate level of autonomy will require development of a planning utility, which will also be built using the KBMS. These changes will require having the user interface for the whole system available from one interface. An Enhanced Model will be developed, which will allow exercise of the system through the interface without requiring all of the power hardware to be operational. The functionality of the AI systems will continue to be advanced, including incipient failure detection. Ada conversion will begin with the lowest level processor (LLP) code. Then selected pieces of the higher level functionality will be recorded in Ada and, where possible, moved to the LLP level. Validation and verification will be done on the Ada code, and will complete sometimes after completion of the Ada conversion.
Development and Flight Testing of an Autonomous Landing Gear Health-Monitoring System
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.
2003-01-01
Development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation; and, data acquisition, storage and retrieval.
An operator interface design for a telerobotic inspection system
NASA Technical Reports Server (NTRS)
Kim, Won S.; Tso, Kam S.; Hayati, Samad
1993-01-01
The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.
NASA Astrophysics Data System (ADS)
Broccard, Frédéric D.; Joshi, Siddharth; Wang, Jun; Cauwenberghs, Gert
2017-08-01
Objective. Computation in nervous systems operates with different computational primitives, and on different hardware, than traditional digital computation and is thus subjected to different constraints from its digital counterpart regarding the use of physical resources such as time, space and energy. In an effort to better understand neural computation on a physical medium with similar spatiotemporal and energetic constraints, the field of neuromorphic engineering aims to design and implement electronic systems that emulate in very large-scale integration (VLSI) hardware the organization and functions of neural systems at multiple levels of biological organization, from individual neurons up to large circuits and networks. Mixed analog/digital neuromorphic VLSI systems are compact, consume little power and operate in real time independently of the size and complexity of the model. Approach. This article highlights the current efforts to interface neuromorphic systems with neural systems at multiple levels of biological organization, from the synaptic to the system level, and discusses the prospects for future biohybrid systems with neuromorphic circuits of greater complexity. Main results. Single silicon neurons have been interfaced successfully with invertebrate and vertebrate neural networks. This approach allowed the investigation of neural properties that are inaccessible with traditional techniques while providing a realistic biological context not achievable with traditional numerical modeling methods. At the network level, populations of neurons are envisioned to communicate bidirectionally with neuromorphic processors of hundreds or thousands of silicon neurons. Recent work on brain-machine interfaces suggests that this is feasible with current neuromorphic technology. Significance. Biohybrid interfaces between biological neurons and VLSI neuromorphic systems of varying complexity have started to emerge in the literature. Primarily intended as a computational tool for investigating fundamental questions related to neural dynamics, the sophistication of current neuromorphic systems now allows direct interfaces with large neuronal networks and circuits, resulting in potentially interesting clinical applications for neuroengineering systems, neuroprosthetics and neurorehabilitation.
Ultrasonic interface level analyzer shop test procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
STAEHR, T.W.
1999-05-24
The Royce Instrument Corporation Model 2511 Interface Level Analyzer (URSILLA) system uses an ultrasonic ranging technique (SONAR) to measure sludge depths in holding tanks. Three URSILLA instrument assemblies provided by the W-151 project are planned to be used during mixer pump testing to provide data for determining sludge mobilization effectiveness of the mixer pumps and sludge settling rates. The purpose of this test is to provide a documented means of verifying that the functional components of the three URSILLA instruments operate properly. Successful completion of this Shop Test Procedure (STP) is a prerequisite for installation in the AZ-101 tank. Themore » objective of the test is to verify the operation of the URSILLA instruments and to verify data collection using a stand alone software program.« less
Rajauria, Sukumar; Schreck, Erhard; Marchon, Bruno
2016-01-01
The understanding of tribo- and electro-chemical phenomenons on the molecular level at a sliding interface is a field of growing interest. Fundamental chemical and physical insights of sliding surfaces are crucial for understanding wear at an interface, particularly for nano or micro scale devices operating at high sliding speeds. A complete investigation of the electrochemical effects on high sliding speed interfaces requires a precise monitoring of both the associated wear and surface chemical reactions at the interface. Here, we demonstrate that head-disk interface inside a commercial magnetic storage hard disk drive provides a unique system for such studies. The results obtained shows that the voltage assisted electrochemical wear lead to asymmetric wear on either side of sliding interface. PMID:27150446
NASA Astrophysics Data System (ADS)
Rajauria, Sukumar; Schreck, Erhard; Marchon, Bruno
2016-05-01
The understanding of tribo- and electro-chemical phenomenons on the molecular level at a sliding interface is a field of growing interest. Fundamental chemical and physical insights of sliding surfaces are crucial for understanding wear at an interface, particularly for nano or micro scale devices operating at high sliding speeds. A complete investigation of the electrochemical effects on high sliding speed interfaces requires a precise monitoring of both the associated wear and surface chemical reactions at the interface. Here, we demonstrate that head-disk interface inside a commercial magnetic storage hard disk drive provides a unique system for such studies. The results obtained shows that the voltage assisted electrochemical wear lead to asymmetric wear on either side of sliding interface.
Intelligent command and control systems for satellite ground operations
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1994-01-01
The Georgia Tech portion of the Intelligent Control Center project includes several complementary activities. Two major activities entail thesis level research; the other activities are either support activities or preliminary explorations (e.g., task analyses) to support the research. The first research activity is the development of principles for the design of active interfaces to support monitoring during real-time supports. It is well known that as the operator's task becomes less active, i.e., more monitoring and less active control, there is concern that the operator will be less involved and less able to rapidly identify anomalous or failure situations. The research project to design active monitoring interfaces is an attempt to remediate this undesirable side-effect of increasingly automated control systems that still depend ultimately on operator supervision. The second research activity is the exploration of the use of case-based reasoning as a way to accumulate operator experience and make it available in computational form.
NASA Astrophysics Data System (ADS)
Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.
2017-11-01
The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.
Predictive Interfaces for Long-Distance Tele-Operations
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Martin, Rodney; Allan, Mark B.; Sunspiral, Vytas
2005-01-01
We address the development of predictive tele-operator interfaces for humanoid robots with respect to two basic challenges. Firstly, we address automating the transition from fully tele-operated systems towards degrees of autonomy. Secondly, we develop compensation for the time-delay that exists when sending telemetry data from a remote operation point to robots located at low earth orbit and beyond. Humanoid robots have a great advantage over other robotic platforms for use in space-based construction and maintenance because they can use the same tools as astronauts do. The major disadvantage is that they are difficult to control due to the large number of degrees of freedom, which makes it difficult to synthesize autonomous behaviors using conventional means. We are working with the NASA Johnson Space Center's Robonaut which is an anthropomorphic robot with fully articulated hands, arms, and neck. We have trained hidden Markov models that make use of the command data, sensory streams, and other relevant data sources to predict a tele-operator's intent. This allows us to achieve subgoal level commanding without the use of predefined command dictionaries, and to create sub-goal autonomy via sequence generation from generative models. Our method works as a means to incrementally transition from manual tele-operation to semi-autonomous, supervised operation. The multi-agent laboratory experiments conducted by Ambrose et. al. have shown that it is feasible to directly tele-operate multiple Robonauts with humans to perform complex tasks such as truss assembly. However, once a time-delay is introduced into the system, the rate of tele\\ioperation slows down to mimic a bump and wait type of activity. We would like to maintain the same interface to the operator despite time-delays. To this end, we are developing an interface which will allow for us to predict the intentions of the operator while interacting with a 3D virtual representation of the expected state of the robot. The predictive interface anticipates the intention of the operator, and then uses this prediction to initiate appropriate sub-goal autonomy tasks.
Towards the formal specification of the requirements and design of a processor interface unit
NASA Technical Reports Server (NTRS)
Fura, David A.; Windley, Phillip J.; Cohen, Gerald C.
1993-01-01
Work to formally specify the requirements and design of a Processor Interface Unit (PIU), a single-chip subsystem providing memory interface, bus interface, and additional support services for a commercial microprocessor within a fault-tolerant computer system, is described. This system, the Fault-Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance free operation, or both. The approaches that were developed for modeling the PIU requirements and for composition of the PIU subcomponents at high levels of abstraction are described. These approaches were used to specify and verify a nontrivial subset of the PIU behavior. The PIU specification in Higher Order Logic (HOL) is documented in a companion NASA contractor report entitled 'Towards the Formal Specification of the Requirements and Design of a Processor Interfacs Unit - HOL Listings.' The subsequent verification approach and HOL listings are documented in NASA contractor report entitled 'Towards the Formal Verification of the Requirements and Design of a Processor Interface Unit' and NASA contractor report entitled 'Towards the Formal Verification of the Requirements and Design of a Processor Interface Unit - HOL Listings.'
CMMI (Trademark) for Acquisition, Version 1.2
2007-11-01
operational concept to derive more detailed and prec inclu even t . The level of detail of contractual requirements is based on the acquisition...product components ma suppliers. idate Requirem Requirements Ana t the intended operational environment will have on the ability to satisfy stakeholder...es. Considerations such the t . , constraints, and interfaces and (2) to translate these e SP 3.1 Establish Operational Concepts and Scenarios
Overview of the joint services lightweight standoff chemical agent detector (JSLSCAD)
NASA Astrophysics Data System (ADS)
Hammond, Barney; Popa, Mirela
2005-05-01
This paper presents a system-level description of the Joint Services Lightweight Standoff Chemical Agent Detector (JSLSCAD). JSLSCAD is a passive Fourier Transform InfraRed (FTIR) based remote sensing system for detecting chemical warfare agents. Unlike predecessor systems, JSLSCAD is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The sensor is interfaced to a small, high performance spatial scanner that provides high-speed, two-axis area coverage. Command, control, and processing electronics have been coupled with real time control software and robust detection/discrimination algorithms. Operator interfaces include local and remote options in addition to interfaces to external communications networks. The modular system design facilitates interfacing to the many platforms targeted for JSLSCAD.
Autonomous Robot Control via Autonomy Levels (ARCAL)
2015-08-21
same simulated objects. VRF includes a detailed graphical user interface (GUI) front end that subscribes to objects over HLA and renders them, along...forces.html 8. Gao, H., LI, Z., and Zhao, X., "The User -defined and Func- tion-strengthened for CGF of VR -Forces [J]." Computer Simulation, vol. 6...info Scout vehicle commands Scout vehicle Sensor measurements Mission vehicle Mission goals Operator interface Scout belief update Logistics
Autonomous Robot Control via Autonomy Levels (ARCAL)
2015-06-25
simulated objects. VRF includes a detailed graphical user interface (GUI) front end that subscribes to objects over HLA and renders them, along...forces.html 8. Gao, H., LI, Z., and Zhao, X., "The User -defined and Func- tion-strengthened for CGF of VR -Forces [J]." Computer Simulation, vol. 6, 2007...info Scout vehicle commands Scout vehicle Sensor measurements Mission vehicle Mission goals Operator interface Scout belief update Logistics executive
Data management system DIU test system
NASA Technical Reports Server (NTRS)
1976-01-01
An operational and functional description is given of the data management system. Descriptions are included for the test control unit, analog stimulus panel, discrete stimulus panel, and the precision source. The mechanical configuration is defined and illustrated to provide card and component location for modification or repair. The unit level interfaces are mirror images of the DIU interfaces and are described in the Final Technical Report for NASA-MSFC contract NAS8-29155.
NASA Astrophysics Data System (ADS)
Dricker, I. G.; Friberg, P.; Hellman, S.
2001-12-01
Under the contract with the CTBTO, Instrumental Software Technologies Inc., (ISTI) has designed and developed a Standard Station Interface (SSI) - a set of executable programs and application programming interface libraries for acquisition, authentication, archiving and telemetry of seismic and infrasound data for stations of the CTBTO nuclear monitoring network. SSI (written in C) is fully supported under both the Solaris and Linux operating systems and will be shipped with fully documented source code. SSI consists of several interconnected modules. The Digitizer Interface Module maintains a near-real-time data flow between multiple digitizers and the SSI. The Disk Buffer Module is responsible for local data archival. The Station Key Management Module is a low-level tool for data authentication and verification of incoming signatures. The Data Transmission Module supports packetized near-real-time data transmission from the primary CTBTO stations to the designated Data Center. The AutoDRM module allows transport of seismic and infrasound signed data via electronic mail (auxiliary station mode). The Command Interface Module is used to pass the remote commands to the digitizers and other modules of SSI. A station operator has access to the state-of-health information and waveforms via an the Operator Interface Module. Modular design of SSI will allow painless extension of the software system within and outside the boundaries of CTBTO station requirements. Currently an alpha version of SSI undergoes extensive tests in the lab and onsite.
On the Evolutionary Bases of Consumer Reinforcement
ERIC Educational Resources Information Center
Nicholson, Michael; Xiao, Sarah Hong
2010-01-01
This article locates consumer behavior analysis within the modern neo-Darwinian synthesis, seeking to establish an interface between the ultimate-level theorizing of human evolutionary psychology and the proximate level of inquiry typically favored by operant learning theorists. Following an initial overview of the central tenets of neo-Darwinism,…
Space station automation of common module power management and distribution, volume 2
NASA Technical Reports Server (NTRS)
Ashworth, B.; Riedesel, J.; Myers, C.; Jakstas, L.; Smith, D.
1990-01-01
The new Space Station Module Power Management and Distribution System (SSM/PMAD) testbed automation system is described. The subjects discussed include testbed 120 volt dc star bus configuration and operation, SSM/PMAD automation system architecture, fault recovery and management expert system (FRAMES) rules english representation, the SSM/PMAD user interface, and the SSM/PMAD future direction. Several appendices are presented and include the following: SSM/PMAD interface user manual version 1.0, SSM/PMAD lowest level processor (LLP) reference, SSM/PMAD technical reference version 1.0, SSM/PMAD LLP visual control logic representation's (VCLR's), SSM/PMAD LLP/FRAMES interface control document (ICD) , and SSM/PMAD LLP switchgear interface controller (SIC) ICD.
Assessing performance of an Electronic Health Record (EHR) using Cognitive Task Analysis.
Saitwal, Himali; Feng, Xuan; Walji, Muhammad; Patel, Vimla; Zhang, Jiajie
2010-07-01
Many Electronic Health Record (EHR) systems fail to provide user-friendly interfaces due to the lack of systematic consideration of human-centered computing issues. Such interfaces can be improved to provide easy to use, easy to learn, and error-resistant EHR systems to the users. To evaluate the usability of an EHR system and suggest areas of improvement in the user interface. The user interface of the AHLTA (Armed Forces Health Longitudinal Technology Application) was analyzed using the Cognitive Task Analysis (CTA) method called GOMS (Goals, Operators, Methods, and Selection rules) and an associated technique called KLM (Keystroke Level Model). The GOMS method was used to evaluate the AHLTA user interface by classifying each step of a given task into Mental (Internal) or Physical (External) operators. This analysis was performed by two analysts independently and the inter-rater reliability was computed to verify the reliability of the GOMS method. Further evaluation was performed using KLM to estimate the execution time required to perform the given task through application of its standard set of operators. The results are based on the analysis of 14 prototypical tasks performed by AHLTA users. The results show that on average a user needs to go through 106 steps to complete a task. To perform all 14 tasks, they would spend about 22 min (independent of system response time) for data entry, of which 11 min are spent on more effortful mental operators. The inter-rater reliability analysis performed for all 14 tasks was 0.8 (kappa), indicating good reliability of the method. This paper empirically reveals and identifies the following finding related to the performance of AHLTA: (1) large number of average total steps to complete common tasks, (2) high average execution time and (3) large percentage of mental operators. The user interface can be improved by reducing (a) the total number of steps and (b) the percentage of mental effort, required for the tasks. 2010 Elsevier Ireland Ltd. All rights reserved.
Analysis of operational comfort in manual tasks using human force manipulability measure.
Tanaka, Yoshiyuki; Nishikawa, Kazuo; Yamada, Naoki; Tsuji, Toshio
2015-01-01
This paper proposes a scheme for human force manipulability (HFM) based on the use of isometric joint torque properties to simulate the spatial characteristics of human operation forces at an end-point of a limb with feasible magnitudes for a specified limb posture. This is also applied to the evaluation/prediction of operational comfort (OC) when manually operating a human-machine interface. The effectiveness of HFM is investigated through two experiments and computer simulations of humans generating forces by using their upper extremities. Operation force generation with maximum isometric effort can be roughly estimated with an HFM measure computed from information on the arm posture during a maintained posture. The layout of a human-machine interface is then discussed based on the results of operational experiments using an electric gear-shifting system originally developed for robotic devices. The results indicate a strong relationship between the spatial characteristics of the HFM and OC levels when shifting, and the OC is predicted by using a multiple regression model with HFM measures.
2014-09-01
efficient yet safe operations. • Further understanding of human psychology in the operation of autonomous systems. • Interfaces, be they visual...that system, especially when included in aspects or during times where automation backup is required, when the human-operators anticipatory skills...political and psychological domains, where it connotes self-determination (Christman 2009). The autonomous systems domain that has evolved since
Degree Audit Systems: Are They Worth It?
ERIC Educational Resources Information Center
Johns, Virginia
2006-01-01
A lot of various degree audit systems are available on the market and most often they have similar features such as the functionality they each provide, the technical platforms upon which they operate, their requirements for interfacing with the local SIS, the ease of use, and the level of effort required to implement and operate. However, the…
Human factor engineering based design and modernization of control rooms with new I and C systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larraz, J.; Rejas, L.; Ortega, F.
2012-07-01
Instrumentation and Control (I and C) systems of the latest nuclear power plants are based on the use of digital technology, distributed control systems and the integration of information in data networks (Distributed Control and Instrumentation Systems). This has a repercussion on Control Rooms (CRs), where the operations and monitoring interfaces correspond to these systems. These technologies are also used in modernizing I and C systems in currently operative nuclear power plants. The new interfaces provide additional capabilities for operation and supervision, as well as a high degree of flexibility, versatility and reliability. An example of this is the implementationmore » of solutions such as compact stations, high level supervision screens, overview displays, computerized procedures, new operational support systems or intelligent alarms processing systems in the modernized Man-Machine Interface (MMI). These changes in the MMI are accompanied by newly added Software (SW) controls and new solutions in automation. Tecnatom has been leading various projects in this area for several years, both in Asian countries and in the United States, using in all cases international standards from which Tecnatom own methodologies have been developed and optimized. The experience acquired in applying this methodology to the design of new control rooms is to a large extent applicable also to the modernization of current control rooms. An adequate design of the interface between the operator and the systems will facilitate safe operation, contribute to the prompt identification of problems and help in the distribution of tasks and communications between the different members of the operating shift. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (authors)« less
NASA Technical Reports Server (NTRS)
Nylen, W. E.
1974-01-01
Profile modification as a means of reducing ground level noise from jet aircraft in the landing approach is evaluated. A flight simulator was modified to incorporate the cockpit hardware which would be in the prototype airplane installation. The two-segment system operational and aircraft interface logic was accurately emulated in software. Programs were developed to permit data to be recorded in real time on the line printer, a 14-channel oscillograph, and an x-y plotter. The two-segment profile and procedures which were developed are described with emphasis on operational concepts and constraints. The two-segment system operational logic and the flight simulator capabilities are described. The findings influenced the ultimate system design and aircraft interface.
Electric Motors Maintenance Planning From Its Operating Variables
NASA Astrophysics Data System (ADS)
Rodrigues, Francisco; Fonseca, Inácio; Farinha, José Torres; Ferreira, Luís; Galar, Diego
2017-09-01
The maintenance planning corresponds to an approach that seeks to maximize the availability of equipment and, consequently, increase the levels of competitiveness of companies by increasing production times. This paper presents a maintenance planning based on operating variables (number of hours worked, duty cycles, number of revolutions) to maximizing the availability of operation of electrical motors. The reading of the operating variables and its sampling is done based on predetermined sampling cycles and subsequently is made the data analysis through time series algorithms aiming to launch work orders before reaching the variables limit values. This approach is supported by tools and technologies such as logical applications that enable a graphical user interface for access to relevant information about their Physical Asset HMI (Human Machine Interface), including the control and supervision by acquisition through SCADA (Supervisory Control And data acquisition) data, also including the communication protocols among different logical applications.
A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.
Hocraffer, Amy; Nam, Chang S
2017-01-01
A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Collier, Mark D.; Killough, Ronnie; Martin, Nancy L.
1990-01-01
NASA is currently using a set of applications called the Display Builder and Display Manager. They run on Concurrent systems and heavily depend on the Graphic Kernel System (GKS). At this time however, these two applications would more appropriately be developed in X Windows, in which a low X is used for all actual text and graphics display and a standard widget set (such as Motif) is used for the user interface. Use of the X Windows will increase performance, improve the user interface, enhance portability, and improve reliability. Prototype of X Window/Motif based Display Manager provides the following advantages over a GKS based application: improved performance by using a low level X Windows, display of graphic and text will be more efficient; improved user interface by using Motif; Improved portability by operating on both Concurrent and Sun workstations; and Improved reliability.
Development and Flight Testing of an Adaptive Vehicle Health-Monitoring Architecture
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.
2002-01-01
On going development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle, and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. The expert system is parameterized, which makes it adaptable to be trained to both a user's subject reasoning and existing quantitative analytic tools. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation and, data acquisition, storage and retrieval.
Operability engineering in the Deep Space Network
NASA Technical Reports Server (NTRS)
Wilkinson, Belinda
1993-01-01
Many operability problems exist at the three Deep Space Communications Complexes (DSCC's) of the Deep Space Network (DSN). Four years ago, the position of DSN Operability Engineer was created to provide the opportunity for someone to take a system-level approach to solving these problems. Since that time, a process has been developed for personnel and development engineers and for enforcing user interface standards in software designed for the DSCC's. Plans are for the participation of operations personnel in the product life-cycle to expand in the future.
NASA Technical Reports Server (NTRS)
Jellicorse, John J.; Rahman, Shamin A.
2016-01-01
NASA is currently developing the next generation crewed spacecraft and launch vehicle for exploration beyond earth orbit including returning to the Moon and making the transit to Mars. Managing the design integration of major hardware elements of a space transportation system is critical for overcoming both the technical and programmatic challenges in taking a complex system from concept to space operations. An established method of accomplishing this is formal interface management. In this paper we set forth an argument that the interface management process implemented by NASA between the Orion Multi-Purpose Crew Vehicle (MPCV) and the Space Launch System (SLS) achieves the Level 3 tier of the EIA 731.1 System Engineering Capability Model (SECM) for Generic Practices. We describe the relevant NASA systems and associated organizations, and define the EIA SECM Level 3 Generic Practices. We then provide evidence for our compliance with those practices. This evidence includes discussions of: NASA Systems Engineering Interface (SE) Management standard process and best practices; the tailoring of that process for implementation on the Orion to SLS interface; changes made over time to improve the tailored process, and; the opportunities to take the resulting lessons learned and propose improvements to our institutional processes and best practices. We compare this evidence against the practices to form the rationale for the declared SECM maturity level.
Digital Low Level RF Systems for Fermilab Main Ring and Tevatron
NASA Astrophysics Data System (ADS)
Chase, B.; Barnes, B.; Meisner, K.
1997-05-01
At Fermilab, a new Low Level RF system is successfully installed and operating in the Main Ring. Installation is proceeding for a Tevatron system. This upgrade replaces aging CAMAC/NIM components for an increase in accuracy, reliability, and flexibility. These VXI systems are based on a custom three channel direct digital synthesizer(DDS) module. Each synthesizer channel is capable of independent or ganged operation for both frequency and phase modulation. New frequency and phase values are computed at a 100kHz rate on the module's Analog Devices ADSP21062 (SHARC) digital signal processor. The DSP concurrently handles feedforward, feedback, and beam manipulations. Higher level state machines and the control system interface are handled at the crate level using the VxWorks operating system. This paper discusses the hardware, software and operational aspects of these LLRF systems.
Project Interface Requirements Process Including Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Bauch, Garland T.
2010-01-01
Most failures occur at interfaces between organizations and hardware. Processing interface requirements at the start of a project life cycle will reduce the likelihood of costly interface changes/failures later. This can be done by adding Interface Control Documents (ICDs) to the Project top level drawing tree, providing technical direction to the Projects for interface requirements, and by funding the interface requirements function directly from the Project Manager's office. The interface requirements function within the Project Systems Engineering and Integration (SE&I) Office would work in-line with the project element design engineers early in the life cycle to enhance communications and negotiate technical issues between the elements. This function would work as the technical arm of the Project Manager to help ensure that the Project cost, schedule, and risk objectives can be met during the Life Cycle. Some ICD Lessons Learned during the Space Shuttle Program (SSP) Life Cycle will include the use of hardware interface photos in the ICD, progressive life cycle design certification by analysis, test, & operations experience, assigning interface design engineers to Element Interface (EI) and Project technical panels, and linking interface design drawings with project build drawings
Jang, Kyung-In; Jung, Han Na; Lee, Jung Woo; Xu, Sheng; Liu, Yu Hao; Ma, Yinji; Jeong, Jae-Woong; Song, Young Min; Kim, Jeonghyun; Kim, Bong Hun; Banks, Anthony; Kwak, Jean Won; Yang, Yiyuan; Shi, Dawei; Wei, Zijun; Feng, Xue; Paik, Ungyu; Huang, Yonggang; Ghaffari, Roozbeh; Rogers, John A
2016-10-25
This paper introduces a class of ferromagnetic, folded, soft composite material for skin-interfaced electrodes with releasable interfaces to stretchable, wireless electronic measurement systems. These electrodes establish intimate, adhesive contacts to the skin, in dimensionally stable formats compatible with multiple days of continuous operation, with several key advantages over conventional hydrogel based alternatives. The reported studies focus on aspects ranging from ferromagnetic and mechanical behavior of the materials systems, to electrical properties associated with their skin interface, to system-level integration for advanced electrophysiological monitoring applications. The work combines experimental measurement and theoretical modeling to establish the key design considerations. These concepts have potential uses across a diverse set of skin-integrated electronic technologies.
Formal design specification of a Processor Interface Unit
NASA Technical Reports Server (NTRS)
Fura, David A.; Windley, Phillip J.; Cohen, Gerald C.
1992-01-01
This report describes work to formally specify the requirements and design of a processor interface unit (PIU), a single-chip subsystem providing memory-interface bus-interface, and additional support services for a commercial microprocessor within a fault-tolerant computer system. This system, the Fault-Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance-free operation, or both. The need for high-quality design assurance in such applications is an undisputed fact, given the disastrous consequences that even a single design flaw can produce. Thus, the further development and application of formal methods to fault-tolerant systems is of critical importance as these systems see increasing use in modern society.
The Gateway Paper--proposed health reforms in Pakistan--interface considerations.
Nishtar, Sania
2006-12-01
The Gateway Paper recognizes three system interfaces as being critical to the delivery of healthcare within Pakistan. These include the federal/provincial interface, the provincial-district interface and the public-private interface. A number of gaps in each area have been highlighted. At the federal-provincial interface lack of provincial ownership of federal initiatives, gaps in provincial counterpart arrangements, ambiguities about federal and provincial roles and responsibilities, conflicts over sharing of resources and gaps in understanding provincial requirements and poor coordination have been articulated as core issues. It is envisaged that the development of a broad based mechanism to develop a consensus on national policy positions, incorporation of appropriate guidance from the provinces, giving provinces an active participatory role in decision-making, garnering their support and clearly demarcating roles and responsibilities will obviate some of these issues as would the institutionalization of a federal-provincial coordinating mechanism to review actions at both levels with regards to progress on meeting stipulating goals. At a district level poor governance, limited capacity within the system, lag in granting full district level financial and administrative autonomy, and lack of operational clarity in the rules of business have contributed to the challenge. This is compounded by inadvertent centralization of some functions within the district, which political and administrative decentralization has paradoxically created and impediments to harnessing the role of communities. The clear delineation of these issues provides a substrate, which need to be at the heart of strategic reform within the context of the recent devolution initiative. At the public-private interface the absence of locally established principles, legislative frameworks, policies and operational strategies have been contributing to the adhoc nature of public-private engagement within the country, which leads to skewed powered relationships and lack of clarity in combined models of governance. Within this context the Gateway Paper makes a strong case for developing a set of norms and ethical principles, developing legislative and policy frameworks, and specific guidelines to steer such relationships with careful attention to accountability and sustainability related parameters.
Rickmann, M; Siklós, L; Joó, F; Wolff, J R
1990-09-01
An interface for IBM XT/AT-compatible computers is described which has been designed to read the actual specimen stage position of electron microscopes. The complete system consists of (i) optical incremental encoders attached to the x- and y-stage drivers of the microscope, (ii) two keypads for operator input, (iii) an interface card fitted to the bus of the personal computer, (iv) a standard configuration IBM XT (or compatible) personal computer optionally equipped with a (v) HP Graphic Language controllable colour plotter. The small size of the encoders and their connection to the stage drivers by simple ribbed belts allows an easy adaptation of the system to most electron microscopes. Operation of the interface card itself is supported by any high-level language available for personal computers. By the modular concept of these languages, the system can be customized to various applications, and no computer expertise is needed for actual operation. The present configuration offers an inexpensive attachment, which covers a wide range of applications from a simple notebook to high-resolution (200-nm) mapping of tissue. Since section coordinates can be processed in real-time, stereological estimations can be derived directly "on microscope". This is exemplified by an application in which particle numbers were determined by the disector method.
NIC atomic operation unit with caching and bandwidth mitigation
Hemmert, Karl Scott; Underwood, Keith D.; Levenhagen, Michael J.
2016-03-01
A network interface controller atomic operation unit and a network interface control method comprising, in an atomic operation unit of a network interface controller, using a write-through cache and employing a rate-limiting functional unit.
Energy level alignment at hybridized organic-metal interfaces from a GW projection approach
NASA Astrophysics Data System (ADS)
Chen, Yifeng; Tamblyn, Isaac; Quek, Su Ying
Energy level alignments at organic-metal interfaces are of profound importance in numerous (opto)electronic applications. Standard density functional theory (DFT) calculations generally give incorrect energy level alignments and missing long-range polarization effects. Previous efforts to address this problem using the many-electron GW method have focused on physisorbed systems where hybridization effects are insignificant. Here, we use state-of-the-art GW methods to predict the level alignment at the amine-Au interface, where molecular levels do hybridize with metallic states. This non-trivial hybridization implies that DFT result is a poor approximation to the quasiparticle states. However, we find that the self-energy operator is approximately diagonal in the molecular basis, allowing us to use a projection approach to predict the level alignments. Our results indicate that the metallic substrate reduces the HOMO-LUMO gap by 3.5 4.0 eV, depending on the molecular coverage/presence of Au adatoms. Our GW results are further compared with those of a simple image charge model that describes the level alignment in physisorbed systems. Syq and YC acknowledge Grant NRF-NRFF2013-07 and the medium-sized centre program from the National Research Foundation, Singapore.
The third level trigger and output event unit of the UA1 data-acquisition system
NASA Astrophysics Data System (ADS)
Cittolin, S.; Demoulin, M.; Fucci, A.; Haynes, W.; Martin, B.; Porte, J. P.; Sphicas, P.
1989-12-01
The upgraded UA1 experiment utilizes twelve 3081/E emulators for its third-level trigger system. The system is interfaced to VME, and is controlled by 68000 microprocessor VME boards on the input and output. The output controller communicates with an IBM 9375 mainframe via the CERN-IBM developed VICI interface. The events selected by the emulators are output on IBM-3480 cassettes. The user interface to this system is based on a series of Macintosh personal computer connected to the VME bus. These Macs are also used for developing software for the emulators and for monitoring the entire system. The same configuration has also been used for offline event reconstruction. A description of the system, together with details of both the online and offline modes of operation and an eveluation of its performance are presented.
Orbit targeting specialist function: Level C formulation requirements
NASA Technical Reports Server (NTRS)
Dupont, A.; Mcadoo, S.; Jones, H.; Jones, A. K.; Pearson, D.
1978-01-01
A definition of the level C requirements for onboard maneuver targeting software is provided. Included are revisions of the level C software requirements delineated in JSC IN 78-FM-27, Proximity Operations Software; Level C Requirements, dated May 1978. The software supports the terminal phase midcourse (TPM) maneuver, braking and close-in operations as well as supporting computation of the rendezvous corrective combination maneuver (NCC), and the terminal phase initiation (TPI). Specific formulation is contained here for the orbit targeting specialist function including the processing logic, linkage, and data base definitions for all modules. The crew interface with the software is through the keyboard and the ORBIT-TGT display.
Situation awareness-based agent transparency for human-autonomy teaming effectiveness
NASA Astrophysics Data System (ADS)
Chen, Jessie Y. C.; Barnes, Michael J.; Wright, Julia L.; Stowers, Kimberly; Lakhmani, Shan G.
2017-05-01
We developed the Situation awareness-based Agent Transparency (SAT) model to support human operators' situation awareness of the mission environment through teaming with intelligent agents. The model includes the agent's current actions and plans (Level 1), its reasoning process (Level 2), and its projection of future outcomes (Level 3). Human-inthe-loop simulation experiments have been conducted (Autonomous Squad Member and IMPACT) to illustrate the utility of the model for human-autonomy team interface designs. Across studies, the results consistently showed that human operators' task performance improved as the agents became more transparent. They also perceived transparent agents as more trustworthy.
Step 1: Human System Interface (HSI) Functional Requirements Document (FRD). Version 2
NASA Technical Reports Server (NTRS)
2006-01-01
This Functional Requirements Document (FRD) establishes a minimum set of Human System Interface (HSI) functional requirements to achieve the Access 5 Vision of "operating High Altitude, Long Endurance (HALE) Unmanned Aircraft Systems (UAS) routinely, safely, and reliably in the National Airspace System (NAS)". Basically, it provides what functions are necessary to fly UAS in the NAS. The framework used to identify the appropriate functions was the "Aviate, Navigate, Communicate, and Avoid Hazards" structure identified in the Access 5 FRD. As a result, fifteen high-level functional requirements were developed. In addition, several of them have been decomposed into low-level functional requirements to provide more detail.
A Graphical Operator Interface for a Telerobotic Inspection System
NASA Technical Reports Server (NTRS)
Kim, W. S.; Tso, K. S.; Hayati, S.
1993-01-01
Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.
POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. King
2000-06-19
The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less
Zito, Domenico; Pepe, Domenico; Neri, Bruno; De Rossi, Danilo; Lanatà, Antonio; Tognetti, Alessandro; Scilingo, Enzo Pasquale
2007-01-01
A new wearable system-on-a-chip UWB radar for health care systems is presented. The idea and its applications to the safety improvement of emergency operators are discussed. The system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is explained hereinafter. The results obtained by the feasibility study regarding its implementation on a modern standard silicon technology (CMOS 90 nm) are reported, demonstrating (at simulation level) the effectiveness of such an approach and enabling the standard silicon technology for new generations of wireless sensors for heath care and safeguard wearable systems.
The Aeronautical Data Link: Decision Framework for Architecture Analysis
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Goode, Plesent W.
2003-01-01
A decision analytic approach that develops optimal data link architecture configuration and behavior to meet multiple conflicting objectives of concurrent and different airspace operations functions has previously been developed. The approach, premised on a formal taxonomic classification that correlates data link performance with operations requirements, information requirements, and implementing technologies, provides a coherent methodology for data link architectural analysis from top-down and bottom-up perspectives. This paper follows the previous research by providing more specific approaches for mapping and transitioning between the lower levels of the decision framework. The goal of the architectural analysis methodology is to assess the impact of specific architecture configurations and behaviors on the efficiency, capacity, and safety of operations. This necessarily involves understanding the various capabilities, system level performance issues and performance and interface concepts related to the conceptual purpose of the architecture and to the underlying data link technologies. Efficient and goal-directed data link architectural network configuration is conditioned on quantifying the risks and uncertainties associated with complex structural interface decisions. Deterministic and stochastic optimal design approaches will be discussed that maximize the effectiveness of architectural designs.
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, C.W.
1985-02-19
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, Charles W.
1987-01-01
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
PC-402 Pioneer Venus orbiter spacecraft mission operational characteristics document
NASA Technical Reports Server (NTRS)
Barker, F. C.; Butterworth, L. W.; Daniel, R. E.; Drean, R. J.; Filetti, K. A.; Fisher, J. N.; Nowak, L. A.; Porzucki, J.; Salvatore, J. O.; Tadler, G. A.
1978-01-01
The operational characteristics of the Orbiter spacecraft and its subsystems are described. In extensive detail. Description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are included along with functional and operational descriptions at the subsystem and unit level the subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram encountered along each command signal path into, and each telemetry signal path out of the subsystem. Normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission are also discussed. Principal backup means of performing the normal Orbiter operating modes are included.
Designing an operator interface? Consider user`s `psychology`
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toffer, D.E.
The modern operator interface is a channel of communication between operators and the plant that, ideally, provides them with information necessary to keep the plant running at maximum efficiency. Advances in automation technology have increased information flow from the field to the screen. New and improved Supervisory Control and Data Acquisition (SCADA) packages provide designers with powerful and open design considerations. All too often, however, systems go to the field designed for the software rather than the operator. Plant operators` jobs have changed fundamentally, from controlling their plants from out in the field to doing so from within control rooms.more » Control room-based operation does not denote idleness. Trained operators should be engaged in examination of plant status and cognitive evaluation of plant efficiencies. Designers who are extremely computer literate, often do not consider demographics of field operators. Many field operators have little knowledge of modern computer systems. As a result, they do not take full advantage of the interface`s capabilities. Designers often fail to understand the true nature of how operators run their plants. To aid field operators, designers must provide familiar controls and intuitive choices. To achieve success in interface design, it is necessary to understand the ways in which humans think conceptually, and to understand how they process this information physically. The physical and the conceptual are closely related when working with any type of interface. Designers should ask themselves: {open_quotes}What type of information is useful to the field operator?{close_quotes} Let`s explore an integration model that contains the following key elements: (1) Easily navigated menus; (2) Reduced chances for misunderstanding; (3) Accurate representations of the plant or operation; (4) Consistent and predictable operation; (5) A pleasant and engaging interface that conforms to the operator`s expectations. 4 figs.« less
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1991-01-01
A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.
NASA Astrophysics Data System (ADS)
Mehring, James W.; Thomas, Scott D.
1995-11-01
The Data Services Segment of the Defense Mapping Agency's Digital Production System provides a digital archive of imagery source data for use by DMA's cartographic user's. This system was developed in the mid-1980's and is currently undergoing modernization. This paper addresses the modernization of the imagery buffer function that was performed by custom hardware in the baseline system and is being replaced by a RAID Server based on commercial off the shelf (COTS) hardware. The paper briefly describes the baseline DMA image system and the modernization program, that is currently under way. Throughput benchmark measurements were made to make design configuration decisions for a commercial off the shelf (COTS) RAID Server to perform as system image buffer. The test program began with performance measurements of the RAID read and write operations between the RAID arrays and the server CPU for RAID levels 0, 5 and 0+1. Interface throughput measurements were made for the HiPPI interface between the RAID Server and the image archive and processing system as well as the client side interface between a custom interface board that provides the interface between the internal bus of the RAID Server and the Input- Output Processor (IOP) external wideband network currently in place in the DMA system to service client workstations. End to end measurements were taken from the HiPPI interface through the RAID write and read operations to the IOP output interface.
Considerations on automation of coating machines
NASA Astrophysics Data System (ADS)
Tilsch, Markus K.; O'Donnell, Michael S.
2015-04-01
Most deposition chambers sold into the optical coating market today are outfitted with an automated control system. We surveyed several of the larger equipment providers, and nine of them responded with information about their hardware architecture, data logging, level of automation, error handling, user interface, and interfacing options. In this paper, we present a summary of the results of the survey and describe commonalities and differences together with some considerations of tradeoffs, such as between capability for high customization and simplicity of operation.
Integrating UniTree with the data migration API
NASA Technical Reports Server (NTRS)
Schrodel, David G.
1994-01-01
The Data Migration Application Programming Interface (DMAPI) has the potential to allow developers of open systems Hierarchical Storage Management (HSM) products to virtualize native file systems without the requirement to make changes to the underlying operating system. This paper describes advantages of virtualizing native file systems in hierarchical storage management systems, the DMAPI at a high level, what the goals are for the interface, and the integration of the Convex UniTree+HSM with DMAPI along with some of the benefits derived in the resulting product.
Thermal load leveling during silicon crystal growth from a melt using anisotropic materials
Carlson, Frederick M.; Helenbrook, Brian T.
2016-10-11
An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.
NASA Technical Reports Server (NTRS)
Mehrbach, E.; Turkel, S. H.
1972-01-01
A summary of the findings of the data management group of the orbital operations study is presented. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are described. The following interfacing activities are considered: (1) communications, (2) rendezvous, (3) stationkeeping, and (4) detached element operations.
Hajdukiewicz, John R; Vicente, Kim J
2002-01-01
Ecological interface design (EID) is a theoretical framework that aims to support worker adaptation to change and novelty in complex systems. Previous evaluations of EID have emphasized representativeness to enhance generalizability of results to operational settings. The research presented here is complementary, emphasizing experimental control to enhance theory building. Two experiments were conducted to test the impact of functional information and emergent feature graphics on adaptation to novelty and change in a thermal-hydraulic process control microworld. Presenting functional information in an interface using emergent features encouraged experienced participants to become perceptually coupled to the interface and thereby to exhibit higher-level control and more successful adaptation to unanticipated events. The absence of functional information or of emergent features generally led to lower-level control and less success at adaptation, the exception being a minority of participants who compensated by relying on analytical reasoning. These findings may have practical implications for shaping coordination in complex systems and fundamental implications for the development of a general unified theory of coordination for the technical, human, and social sciences. Actual or potential applications of this research include the design of human-computer interfaces that improve safety in complex sociotechnical systems.
Operator interface for vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissontz, Jay E
2015-03-10
A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.
Lowekamp, Bradley C; Chen, David T; Ibáñez, Luis; Blezek, Daniel
2013-01-01
SimpleITK is a new interface to the Insight Segmentation and Registration Toolkit (ITK) designed to facilitate rapid prototyping, education and scientific activities via high level programming languages. ITK is a templated C++ library of image processing algorithms and frameworks for biomedical and other applications, and it was designed to be generic, flexible and extensible. Initially, ITK provided a direct wrapping interface to languages such as Python and Tcl through the WrapITK system. Unlike WrapITK, which exposed ITK's complex templated interface, SimpleITK was designed to provide an easy to use and simplified interface to ITK's algorithms. It includes procedural methods, hides ITK's demand driven pipeline, and provides a template-less layer. Also SimpleITK provides practical conveniences such as binary distribution packages and overloaded operators. Our user-friendly design goals dictated a departure from the direct interface wrapping approach of WrapITK, toward a new facade class structure that only exposes the required functionality, hiding ITK's extensive template use. Internally SimpleITK utilizes a manual description of each filter with code-generation and advanced C++ meta-programming to provide the higher-level interface, bringing the capabilities of ITK to a wider audience. SimpleITK is licensed as open source software library under the Apache License Version 2.0 and more information about downloading it can be found at http://www.simpleitk.org.
Civilian Radioactive Waste Management System Requirements Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.A. Kouts
2006-05-10
The CRD addresses the requirements of Department of Energy (DOE) Order 413.3-Change 1, ''Program and Project Management for the Acquisition of Capital Assets'', by providing the Secretarial Acquisition Executive (Level 0) scope baseline and the Program-level (Level 1) technical baseline. The Secretarial Acquisition Executive approves the Office of Civilian Radioactive Waste Management's (OCRWM) critical decisions and changes against the Level 0 baseline; and in turn, the OCRWM Director approves all changes against the Level 1 baseline. This baseline establishes the top-level technical scope of the CRMWS and its three system elements, as described in section 1.3.2. The organizations responsible formore » design, development, and operation of system elements described in this document must therefore prepare subordinate project-level documents that are consistent with the CRD. Changes to requirements will be managed in accordance with established change and configuration control procedures. The CRD establishes requirements for the design, development, and operation of the CRWMS. It specifically addresses the top-level governing laws and regulations (e.g., ''Nuclear Waste Policy Act'' (NWPA), 10 Code of Federal Regulations (CFR) Part 63, 10 CFR Part 71, etc.) along with specific policy, performance requirements, interface requirements, and system architecture. The CRD shall be used as a vehicle to incorporate specific changes in technical scope or performance requirements that may have significant program implications. Such may include changes to the program mission, changes to operational capability, and high visibility stakeholder issues. The CRD uses a systems approach to: (1) identify key functions that the CRWMS must perform, (2) allocate top-level requirements derived from statutory, regulatory, and programmatic sources, and (3) define the basic elements of the system architecture and operational concept. Project-level documents address CRD requirements by further defining system element functions, decomposing requirements into significantly greater detail, and developing designs of system components, facilities, and equipment. The CRD addresses the identification and control of functional, physical, and operational boundaries between and within CRWMS elements. The CRD establishes requirements regarding key interfaces between the CRWMS and elements external to the CRWMS. Project elements define interfaces between CRWMS program elements. The Program has developed a change management process consistent with DOE Order 413.3-Change 1. Changes to the Secretarial Acquisition Executive and Program-level baselines must be approved by a Program Baseline Change Control Board. Specific thresholds have been established for identifying technical, cost, and schedule changes that require approval. The CRWMS continually evaluates system design and operational concepts to optimize performance and/or cost. The Program has developed systems analysis tools to assess potential enhancements to the physical system and to determine the impacts from cost saving initiatives, scientific and technological improvements, and engineering developments. The results of systems analyses, if appropriate, are factored into revisions to the CRD as revised Programmatic Requirements.« less
NASA Astrophysics Data System (ADS)
Jung, Yong Chan; Seong, Sejong; Lee, Taehoon; Kim, Seon Yong; Park, In-Sung; Ahn, Jinho
2018-03-01
The anode interface effects on the resistive switching characteristics of Pt/HfO2/Pt resistors are investigated by changing the forming and switching polarity. Resistive switching properties are evaluated and compared with the polarity operation procedures, such as the reset voltage (Vr), set voltage (Vs), and current levels at low and high resistance states. When the same forming and switching voltage polarity are applied to the resistor, their switching parameters are widely distributed. However, the opposite forming and switching voltage polarity procedures enhance the uniformity of the switching parameters. In particular, the Vs distribution is strongly affected by the voltage polarity variation. A model is proposed based on cone-shaped filament formation through the insulator and the cone diameter at the anode interface to explain the improved resistive switching characteristics under opposite polarity operation. The filament cone is thinner near the anode interface during the forming process; hence, the anode is altered by the application of a switching voltage with opposite polarity to the forming voltage polarity and the converted anode interface becomes the thicker part of the cone. The more uniform and stable switching behavior is attributed to control over the formation and rupture of the cone-shaped filaments at their thicker parts.
Orbital operations study. Appendix B: Operational procedures
NASA Technical Reports Server (NTRS)
Galvin, D. M.; Mattson, H. L.; True, D. M.; Anderson, N. R.; Mehrbach, E.; Gianformaggio, A.; Steinwachs, W. L.; Turkel, S. H.
1972-01-01
Operational procedures for each alternate approach for each interfacing activity of the orbital operations study are presented. The applicability of the procedures to interfacing element pairs is identified.
Systems Engineering Model and Training Application for Desktop Environment
NASA Technical Reports Server (NTRS)
May, Jeffrey T.
2010-01-01
Provide a graphical user interface based simulator for desktop training, operations and procedure development and system reference. This simulator allows for engineers to train and further understand the dynamics of their system from their local desktops. It allows the users to train and evaluate their system at a pace and skill level based on the user's competency and from a perspective based on the user's need. The simulator will not require any special resources to execute and should generally be available for use. The interface is based on a concept of presenting the model of the system in ways that best suits the user's application or training needs. The three levels of views are Component View, the System View (overall system), and the Console View (monitor). These views are portals into a single model, so changing the model from one view or from a model manager Graphical User Interface will be reflected on all other views.
NASA Technical Reports Server (NTRS)
1974-01-01
The work breakdown structure (WBS) dictionary for the Earth Observatory Satellite (EOS) is defined. The various elements of the EOS program are examined to include the aggregate of hardware, computer software, services, and data required to develop, produce, test, support, and operate the space vehicle and the companion ground data management system. A functional analysis of the EOS mission is developed. The operations for three typical EOS missions, Delta, Titan, and Shuttle launched are considered. The functions were determined for the top program elements, and the mission operations, function 2.0, was expanded to level one functions. Selection of ten level one functions for further analysis to level two and three functions were based on concern for the EOS operations and associated interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirske, R.D.; Hauck, P.C.; Kachmar, R.P.
In 1990, the federal government enacted the Clean Air Amendment. This required many public power utilities across the country to make modifications to their fossil fueled power plants to comply with the mandated emission levels by May 1995. At Pennsylvania Electric Company`s (PENELEC) Shawville Station, Units 3 and 4, the mandates established maximum nitrogen oxides (NOx) emission levels at 0.45 lbs/MMBTU. In an effort to comply with the new reduced emission levels, PENELEC chose to implement the Asea Brown Boveri-Combustion Engineering`s (ABB-CE) Low NOx Concentric Firing System III (LNCFS-III). PENELEC also took this opportunity to replace other controls because theirmore » implementation would have relatively little impact on the overall cost of the project and would enhance the ability of the operators to better control NOx emissions. This paper discusses the implementation of the new controls in a distributed control system (DCS), interfacing the DCS with the existing pneumatic combustion controls, and maintaining the boiler control benchboard as the primary operator interface, thereby, reducing the impact of the changes to the MMI and the overall cost of the project.« less
Charging system with galvanic isolation and multiple operating modes
Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.
2013-01-08
Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.
Parametric Modeling of the Safety Effects of NextGen Terminal Maneuvering Area Conflict Scenarios
NASA Technical Reports Server (NTRS)
Rogers, William H.; Waldron, Timothy P.; Stroiney, Steven R.
2011-01-01
The goal of this work was to analytically identify and quantify the issues, challenges, technical hurdles, and pilot-vehicle interface issues associated with conflict detection and resolution (CD&R)in emerging operational concepts for a NextGen terminal aneuvering area, including surface operations. To this end, the work entailed analytical and trade studies focused on modeling the achievable safety benefits of different CD&R strategies and concepts in the current and future airport environment. In addition, crew-vehicle interface and pilot performance enhancements and potential issues were analyzed based on review of envisioned NextGen operations, expected equipage advances, and human factors expertise. The results of perturbation analysis, which quantify the high-level performance impact of changes to key parameters such as median response time and surveillance position error, show that the analytical model developed could be useful in making technology investment decisions.
Some early perspectives on ground requirements of liquid hydrogen air transports
NASA Technical Reports Server (NTRS)
Korycinski, P. F.
1976-01-01
The paper examines the problem of liquid-hydrogen (LH2) subsonic long-range air transport from the perspectives of airplane manufacturers, the airline operator, the air terminal authority and the LH2 supplier. Emphasis is placed on identifying common problems and interfaces that are likely to occur in preparing for commercial airline operations of LH2 subsonic air transport in the 1990-1995 period. General considerations are discussed relative to sources and cost of gaseous hydrogen, hydrogen liquefaction, and LH2 availability. The fact that hydrogen sustains combustion at altitudes substantially higher than hydrocarbon fuels suggests that air transport can be designed to operate at higher enroute air traffic flight levels. This can be an advantage if only to relieve traffic congestion on heavily traveled routes. Pertinent interfaces in planning for the use of LH2 in air transportation are identified, including productivity and profitability, passenger-fuel compatibility, and lightning and electrical discharges.
Advanced Query and Data Mining Capabilities for MaROS
NASA Technical Reports Server (NTRS)
Wang, Paul; Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Hy, Franklin H.
2013-01-01
The Mars Relay Operational Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay network. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. As part of MaROS, the innovators have developed and implemented a feature set that operates on several levels of the software architecture. This new feature is an advanced querying capability through either the Web-based user interface, or through a back-end REST interface to access all of the data gathered from the network. This software is not meant to replace the REST interface, but to augment and expand the range of available data. The current REST interface provides specific data that is used by the MaROS Web application to display and visualize the information; however, the returned information from the REST interface has typically been pre-processed to return only a subset of the entire information within the repository, particularly only the information that is of interest to the GUI (graphical user interface). The new, advanced query and data mining capabilities allow users to retrieve the raw data and/or to perform their own data processing. The query language used to access the repository is a restricted subset of the structured query language (SQL) that can be built safely from the Web user interface, or entered as freeform SQL by a user. The results are returned in a CSV (Comma Separated Values) format for easy exporting to third party tools and applications that can be used for data mining or user-defined visualization and interpretation. This is the first time that a service is capable of providing access to all cross-project relay data from a single Web resource. Because MaROS contains the data for a variety of missions from the Mars network, which span both NASA and ESA, the software also establishes an access control list (ACL) on each data record in the database repository to enforce user access permissions through a multilayered approach.
Slow neutron mapping technique for level interface measurement
NASA Astrophysics Data System (ADS)
Zain, R. M.; Ithnin, H.; Razali, A. M.; Yusof, N. H. M.; Mustapha, I.; Yahya, R.; Othman, N.; Rahman, M. F. A.
2017-01-01
Modern industrial plant operations often require accurate level measurement of process liquids in production and storage vessels. A variety of advanced level indicators are commercially available to meet the demand, but these may not suit specific need of situations. The neutron backscatter technique is exceptionally useful for occasional and routine determination, particularly in situations such as pressure vessel with wall thickness up to 10 cm, toxic and corrosive chemical in sealed containers, liquid petroleum gas storage vessels. In level measurement, high energy neutrons from 241Am-Be radioactive source are beamed onto a vessel. Fast neutrons are slowed down mostly by collision with hydrogen atoms of material inside the vessel. Parts of thermal neutron are bounced back towards the source. By placing a thermal detector next to the source, these backscatter neutrons can be measured. The number of backscattered neutrons is directly proportional to the concentration of the hydrogen atoms in front of the neutron detector. As the source and detector moved by the matrix around the side of the vessel, interfaces can be determined as long as it involves a change in hydrogen atom concentration. This paper presents the slow neutron mapping technique to indicate level interface of a test vessel.
NASA Astrophysics Data System (ADS)
Yang, Zhixiao; Ito, Kazuyuki; Saijo, Kazuhiko; Hirotsune, Kazuyuki; Gofuku, Akio; Matsuno, Fumitoshi
This paper aims at constructing an efficient interface being similar to those widely used in human daily life, to fulfill the need of many volunteer rescuers operating rescue robots at large-scale disaster sites. The developed system includes a force feedback steering wheel interface and an artificial neural network (ANN) based mouse-screen interface. The former consists of a force feedback steering control and a six monitors’ wall. It provides a manual operation like driving cars to navigate a rescue robot. The latter consists of a mouse and a camera’s view displayed in a monitor. It provides a semi-autonomous operation by mouse clicking to navigate a rescue robot. Results of experiments show that a novice volunteer can skillfully navigate a tank rescue robot through both interfaces after 20 to 30 minutes of learning their operation respectively. The steering wheel interface has high navigating speed in open areas, without restriction of terrains and surface conditions of a disaster site. The mouse-screen interface is good at exact navigation in complex structures, while bringing little tension to operators. The two interfaces are designed to switch into each other at any time to provide a combined efficient navigation method.
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Fiorini, M.; Frezza, O.; Lonardo, A.; Lamanna, G.; Lo Cicero, F.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Tosoratto, L.; Vicini, P.
2016-03-01
A GPU-based low level (L0) trigger is currently integrated in the experimental setup of the RICH detector of the NA62 experiment to assess the feasibility of building more refined physics-related trigger primitives and thus improve the trigger discriminating power. To ensure the real-time operation of the system, a dedicated data transport mechanism has been implemented: an FPGA-based Network Interface Card (NaNet-10) receives data from detectors and forwards them with low, predictable latency to the memory of the GPU performing the trigger algorithms. Results of the ring-shaped hit patterns reconstruction will be reported and discussed.
CMMI (Trademark) for Acquisition, Version 1.2
2007-11-01
conjunction with the development of the operational concept to derive more detailed and prec inclu even t . The level of detail of contractual...technical solution, different products or product components ma suppliers. idate Requirem Requirements Ana t the intended operational environment will have...Technical Solutions SP 1.1 Select Technical So SP 1.2 Analyze Selected T SP 1.3 Conduct Technical SG 2 Perform Interface Managemen SP 2.1 Select
[Interface interconnection and data integration in implementing of digital operating room].
Feng, Jingyi; Chen, Hua; Liu, Jiquan
2011-10-01
The digital operating-room, with highly integrated clinical information, is very important for rescuing lives of patients and improving quality of operations. Since equipments in domestic operating-rooms have diversified interface and nonstandard communication protocols, designing and implementing an integrated data sharing program for different kinds of diagnosing, monitoring, and treatment equipments become a key point in construction of digital operating room. This paper addresses interface interconnection and data integration for commonly used clinical equipments from aspects of hardware interface, interface connection and communication protocol, and offers a solution for interconnection and integration of clinical equipments in heterogeneous environment. Based on the solution, a case of an optimal digital operating-room is presented in this paper. Comparing with the international solution for digital operating-room, the solution proposed in this paper is more economical and effective. And finally, this paper provides a proposal for the platform construction of digital perating-room as well as a viewpoint for standardization of domestic clinical equipments.
A procedure concept for local reflex control of grasping
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Chang, Jeffrey
1989-01-01
An architecture is proposed for the control of robotic devices, and in particular of anthropomorphic hands, characterized by a hierarchical structure in which every level of the architecture contains data and control function with varying degree of abstraction. Bottom levels of the hierarchy interface directly with sensors and actuators, and process raw data and motor commands. Higher levels perform more symbolic types of tasks, such as application of boolean rules and general planning operations. Layers implementation has to be consistent with the type of operation and its requirements for real time control. It is proposed to implement the rule level with a Boolean Artificial Neural Network characterized by a response time sufficient for producing reflex corrective action at the actuator level.
Decommissioning of the Northrop TRIGA reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozens, George B.; Woo, Harry; Benveniste, Jack
1986-07-01
An overview of the administrative and operational aspects of decommissioning and dismantling the Northrop Mark F TRIGA Reactor, including: planning and preparation, personnel requirements, government interfacing, costs, contractor negotiations, fuel shipments, demolition, disposal of low level waste, final survey and disposition of the concrete biological shielding. (author)
NASA Astrophysics Data System (ADS)
Shirai, Yasuhiro; Minami, Kosuke; Nakanishi, Waka; Yonamine, Yusuke; Joachim, Christian; Ariga, Katsuhiko
2016-11-01
Nanomachine and molecular machines are state-of-the-art objects in current physics and chemistry. The operation and manufacturing of nanosize machines are top-level technologies that we have desired to accomplish for a long time. There have been extensive attempts to design and synthesize nanomachines. In this paper, we review the these attempts using the concept of nanoarchitectonics toward the design, synthesis, and testing of molecular machinery, especially at interfacial media. In the first half of this review, various historical attempts to design and prepare nanomachines are introduced as well as their operation mechanisms from their basic principles. Furthermore, in order to emphasize the importance and possibilities of this research field, we also give examples of two new challenging topics in the second half of this review: (i) a world wide nanocar race and (ii) new modes of nanomachine operation on water. The nanocar race event involves actual use of nanomachines and will take place in the near future, and nanomachine operation of a dynamic fluidic interface will enable future advances in nanomachine science and technology.
Basic concepts and development of an all-purpose computer interface for ROC/FROC observer study.
Shiraishi, Junji; Fukuoka, Daisuke; Hara, Takeshi; Abe, Hiroyuki
2013-01-01
In this study, we initially investigated various aspects of requirements for a computer interface employed in receiver operating characteristic (ROC) and free-response ROC (FROC) observer studies which involve digital images and ratings obtained by observers (radiologists). Secondly, by taking into account these aspects, an all-purpose computer interface utilized for these observer performance studies was developed. Basically, the observer studies can be classified into three paradigms, such as one rating for one case without an identification of a signal location, one rating for one case with an identification of a signal location, and multiple ratings for one case with identification of signal locations. For these paradigms, display modes on the computer interface can be used for single/multiple views of a static image, continuous viewing with cascade images (i.e., CT, MRI), and dynamic viewing of movies (i.e., DSA, ultrasound). Various functions on these display modes, which include windowing (contrast/level), magnifications, and annotations, are needed to be selected by an experimenter corresponding to the purpose of the research. In addition, the rules of judgment for distinguishing between true positives and false positives are an important factor for estimating diagnostic accuracy in an observer study. We developed a computer interface which runs on a Windows operating system by taking into account all aspects required for various observer studies. This computer interface requires experimenters to have sufficient knowledge about ROC/FROC observer studies, but allows its use for any purpose of the observer studies. This computer interface will be distributed publicly in the near future.
Transitioning to Integrated Modular Avionics with a Mission Management System
2000-10-01
software structure, which is based on the use of a of interchangeable processing modules of a limited COTS Real - Time Operating System . number of...open standardised interfaces system hardware or the Real - Time Operating System directly supports the use of COTS components, which implementation, to...System RTOS Real - Time Operating System SMBP System Management Blueprint Interface SMOS System Management to Operating System Interface Figure 2: The ASAAC
Revisiting and Extending Interface Penalties for Multi-Domain Summation-by-Parts Operators
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Nordstrom, Jan; Gottlieb, David
2007-01-01
General interface coupling conditions are presented for multi-domain collocation methods, which satisfy the summation-by-parts (SBP) spatial discretization convention. The combined interior/interface operators are proven to be L2 stable, pointwise stable, and conservative, while maintaining the underlying accuracy of the interior SBP operator. The new interface conditions resemble (and were motivated by) those used in the discontinuous Galerkin finite element community, and maintain many of the same properties. Extensive validation studies are presented using two classes of high-order SBP operators: 1) central finite difference, and 2) Legendre spectral collocation.
The ADAM project: a generic web interface for retrieval and display of ATLAS TDAQ information
NASA Astrophysics Data System (ADS)
Harwood, A.; Lehmann Miotto, G.; Magnoni, L.; Vandelli, W.; Savu, D.
2012-06-01
This paper describes a new approach to the visualization of information about the operation of the ATLAS Trigger and Data Acquisition system. ATLAS is one of the two general purpose detectors positioned along the Large Hadron Collider at CERN. Its data acquisition system consists of several thousand computers interconnected via multiple gigabit Ethernet networks, that are constantly monitored via different tools. Operational parameters ranging from the temperature of the computers to the network utilization are stored in several databases for later analysis. Although the ability to view these data-sets individually is already in place, currently there is no way to view this data together, in a uniform format, from one location. The ADAM project has been launched in order to overcome this limitation. It defines a uniform web interface to collect data from multiple providers that have different structures. It is capable of aggregating and correlating the data according to user defined criteria. Finally, it visualizes the collected data using a flexible and interactive front-end web system. Structurally, the project comprises of 3 main levels of the data collection cycle: The Level 0 represents the information sources within ATLAS. These providers do not store information in a uniform fashion. The first step of the project was to define a common interface with which to expose stored data. The interface designed for the project originates from the Google Data Protocol API. The idea is to allow read-only access to data providers, through HTTP requests similar in format to the SQL query structure. This provides a standardized way to access this different information sources within ATLAS. The Level 1 can be considered the engine of the system. The primary task of the Level 1 is to gather data from multiple data sources via the common interface, to correlate this data together, or over a defined time series, and expose the combined data as a whole to the Level 2 web interface. The Level 2 is designed to present the data in a similar style and aesthetic, despite the different data sources. Pages can be constructed, edited and personalized by users to suit the specific data being shown. Pages can show a collection of graphs displaying data potentially coming from multiple sources. The project as a whole has a great amount of scope thanks to the uniform approach chosen for exposing data, and the flexibility of the Level 2 in presenting results. The paper will describe in detail the design and implementation of this new tool. In particular we will go through the project architecture, the implementation choices and the examples of usage of the system in place within the ATLAS TDAQ infrastructure.
Interface Design Optimization by an Improved Operating Model for College Students
ERIC Educational Resources Information Center
Ko, Ya-Chuan; Lo, Chi-Hung; Hsiao, Shih-Wen
2017-01-01
A method was proposed in this study for assessing the interface operating efficiency of a remote control. The operating efficiency of a product interface can be determined by the proposed approach in which the related dimensions of human palms were measured. The reachable range (blue zone) and the most comfortable range (green zone) were…
An Analysis for an Internet Grid to Support Space Based Operations
NASA Technical Reports Server (NTRS)
Bradford, Robert; McNair, Ann R. (Technical Monitor)
2002-01-01
Currently, and in the past, dedicated communication circuits and "network services" with very stringent performance requirements have been used to support manned and unmanned mission critical ground operations at GSFC, JSC, MSFC, KSC and other NASA facilities. Because of the evolution of network technology, it is time to investigate other approaches to providing mission services for space ground and flight operations. In various scientific disciplines, effort is under way to develop network/komputing grids. These grids consisting of networks and computing equipment are enabling lower cost science. Specifically, earthquake research is headed in this direction. With a standard for network and computing interfaces using a grid, a researcher would not be required to develop and engineer NASA/DoD specific interfaces with the attendant increased cost. Use of the Internet Protocol (IP), CCSDS packet spec, and reed-solomon for satellite error correction etc. can be adopted/standardized to provide these interfaces. Generally most interfaces are developed at least to some degree end to end. This study would investigate the feasibility of using existing standards and protocols necessary to implement a SpaceOps Grid. New interface definitions or adoption/modification of existing ones for the various space operational services is required for voice both space based and ground, video, telemetry, commanding and planning may play a role to some undefined level. Security will be a separate focus in the study since security is such a large issue in using public networks. This SpaceOps Grid would be transparent to users. It would be anagulous to the Ethernet protocol's ease of use in that a researcher would plug in their experiment or instrument at one end and would be connected to the appropriate host or server without further intervention. Free flyers would be in this category as well. They would be launched and would transmit without any further intervention with the researcher or ground ops personnel. The payback in developing these new approaches in support of manned and unmanned operations is lower cost and will enable direct participation by more people in organizations and educational institutions in space based science. By lowering the high cost of space based operations and networking, more resource will be available to the science community for science. With a specific grid in place, experiment development and operations would be much less costly by using standardized network interfaces. Because of the extensive connectivity on a global basis, significant numbers of people would participate in science who otherwise would not be able to participate.
Integrated mobile robot control
NASA Technical Reports Server (NTRS)
Amidi, Omead; Thorpe, Charles
1991-01-01
This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.
Integrated mobile robot control
NASA Astrophysics Data System (ADS)
Amidi, Omead; Thorpe, Chuck E.
1991-03-01
This paper describes the strucwre implementation and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation path specification and hacking human interfaces fast communication and multiple client support The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Naviab autonomous vehicle. In addition performance results from positioning and tracking systems are reported and analyzed.
Portable nuclear material detector and process
Hofstetter, Kenneth J [Aiken, SC; Fulghum, Charles K [Aiken, SC; Harpring, Lawrence J [North Augusta, SC; Huffman, Russell K [Augusta, GA; Varble, Donald L [Evans, GA
2008-04-01
A portable, hand held, multi-sensor radiation detector is disclosed. The detection apparatus has a plurality of spaced sensor locations which are contained within a flexible housing. The detection apparatus, when suspended from an elevation, will readily assume a substantially straight, vertical orientation and may be used to monitor radiation levels from shipping containers. The flexible detection array can also assume a variety of other orientations to facilitate any unique container shapes or to conform to various physical requirements with respect to deployment of the detection array. The output of each sensor within the array is processed by at least one CPU which provides information in a usable form to a user interface. The user interface is used to provide the power requirements and operating instructions to the operational components within the detection array.
ESM of ionic and electrochemical phenomena on the nanoscale
Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...
2011-01-01
Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less
Lowekamp, Bradley C.; Chen, David T.; Ibáñez, Luis; Blezek, Daniel
2013-01-01
SimpleITK is a new interface to the Insight Segmentation and Registration Toolkit (ITK) designed to facilitate rapid prototyping, education and scientific activities via high level programming languages. ITK is a templated C++ library of image processing algorithms and frameworks for biomedical and other applications, and it was designed to be generic, flexible and extensible. Initially, ITK provided a direct wrapping interface to languages such as Python and Tcl through the WrapITK system. Unlike WrapITK, which exposed ITK's complex templated interface, SimpleITK was designed to provide an easy to use and simplified interface to ITK's algorithms. It includes procedural methods, hides ITK's demand driven pipeline, and provides a template-less layer. Also SimpleITK provides practical conveniences such as binary distribution packages and overloaded operators. Our user-friendly design goals dictated a departure from the direct interface wrapping approach of WrapITK, toward a new facade class structure that only exposes the required functionality, hiding ITK's extensive template use. Internally SimpleITK utilizes a manual description of each filter with code-generation and advanced C++ meta-programming to provide the higher-level interface, bringing the capabilities of ITK to a wider audience. SimpleITK is licensed as open source software library under the Apache License Version 2.0 and more information about downloading it can be found at http://www.simpleitk.org. PMID:24416015
NASA Technical Reports Server (NTRS)
Stevens, H. D.; Miles, E. S.; Rock, S. J.; Cannon, R. H.
1994-01-01
Expanding man's presence in space requires capable, dexterous robots capable of being controlled from the Earth. Traditional 'hand-in-glove' control paradigms require the human operator to directly control virtually every aspect of the robot's operation. While the human provides excellent judgment and perception, human interaction is limited by low bandwidth, delayed communications. These delays make 'hand-in-glove' operation from Earth impractical. In order to alleviate many of the problems inherent to remote operation, Stanford University's Aerospace Robotics Laboratory (ARL) has developed the Object-Based Task-Level Control architecture. Object-Based Task-Level Control (OBTLC) removes the burden of teleoperation from the human operator and enables execution of tasks not possible with current techniques. OBTLC is a hierarchical approach to control where the human operator is able to specify high-level, object-related tasks through an intuitive graphical user interface. Infrequent task-level command replace constant joystick operations, eliminating communications bandwidth and time delay problems. The details of robot control and task execution are handled entirely by the robot and computer control system. The ARL has implemented the OBTLC architecture on a set of Free-Flying Space Robots. The capability of the OBTLC architecture has been demonstrated by controlling the ARL Free-Flying Space Robots from NASA Ames Research Center.
Operation of micro and molecular machines: a new concept with its origins in interface science.
Ariga, Katsuhiko; Ishihara, Shinsuke; Izawa, Hironori; Xia, Hong; Hill, Jonathan P
2011-03-21
A landmark accomplishment of nanotechnology would be successful fabrication of ultrasmall machines that can work like tweezers, motors, or even computing devices. Now we must consider how operation of micro- and molecular machines might be implemented for a wide range of applications. If these machines function only under limited conditions and/or require specialized apparatus then they are useless for practical applications. Therefore, it is important to carefully consider the access of functionality of the molecular or nanoscale systems by conventional stimuli at the macroscopic level. In this perspective, we will outline the position of micro- and molecular machines in current science and technology. Most of these machines are operated by light irradiation, application of electrical or magnetic fields, chemical reactions, and thermal fluctuations, which cannot always be applied in remote machine operation. We also propose strategies for molecular machine operation using the most conventional of stimuli, that of macroscopic mechanical force, achieved through mechanical operation of molecular machines located at an air-water interface. The crucial roles of the characteristics of an interfacial environment, i.e. connection between macroscopic dimension and nanoscopic function, and contact of media with different dielectric natures, are also described.
Planning and reasoning in the JPL telerobot testbed
NASA Technical Reports Server (NTRS)
Peters, Stephen; Mittman, David; Collins, Carol; Omeara, Jacquie; Rokey, Mark
1990-01-01
The Telerobot Interactive Planning System is developed to serve as the highest autonomous-control level of the Telerobot Testbed. A recent prototype is described which integrates an operator interface for supervisory control, a task planner supporting disassembly and re-assembly operations, and a spatial planner for collision-free manipulator motion through the workspace. Each of these components is described in detail. Descriptions of the technical problem, approach, and lessons learned are included.
Orbital operations study. Volume 1: Mission analysis
NASA Technical Reports Server (NTRS)
Steinwachs, W. L.
1972-01-01
The final report of the orbital operations study and a summary of the 25 elements in the study inventory are presented. Fourteen interfacing activities are defined. Eleven mission models encompassing all potential interfacing element pairs and interfacing activities are included.
State of the art in nuclear telerobotics: focus on the man/machine connection
NASA Astrophysics Data System (ADS)
Greaves, Amna E.
1995-12-01
The interface between the human controller and remotely operated device is a crux of telerobotic investigation today. This human-to-machine connection is the means by which we communicate our commands to the device, as well as the medium for decision-critical feedback to the operator. The amount of information transferred through the user interface is growing. This can be seen as a direct result of our need to support added complexities, as well as a rapidly expanding domain of applications. A user interface, or UI, is therefore subject to increasing demands to present information in a meaningful manner to the user. Virtual reality, and multi degree-of-freedom input devices lend us the ability to augment the man/machine interface, and handle burgeoning amounts of data in a more intuitive and anthropomorphically correct manner. Along with the aid of 3-D input and output devices, there are several visual tools that can be employed as part of a graphical UI that enhance and accelerate our comprehension of the data being presented. Thus an advanced UI that features these improvements would reduce the amount of fatigue on the teleoperator, increase his level of safety, facilitate learning, augment his control, and potentially reduce task time. This paper investigates the cutting edge concepts and enhancements that lead to the next generation of telerobotic interface systems.
Operator interface design considerations for a PACS information management system
NASA Astrophysics Data System (ADS)
Steinke, James E.; Nabijee, Kamal H.; Freeman, Rick H.; Prior, Fred W.
1990-08-01
As prototype PACS grow into fully digital departmental and hospital-wide systems, effective information storage and retrieval mechanisms become increasingly important. Thus far, designers of PACS workstations have concentrated on image communication and display functionality. The new challenge is to provide appropriate operator interface environments to facilitate information retrieval. The "Marburg Model" 1 provides a detailed analysis of the functions, control flows and data structures used in Radiology. It identifies a set of "actors" who perform information manipulation functions. Drawing on this model and its associated methodology it is possible to identify four modes of use of information systems in Radiology: Clinical Routine, Research, Consultation, and Administration. Each mode has its own specific access requirements and views of information. An operator interface strategy appropriate for each mode will be proposed. Clinical Routine mode is the principal concern of PACS primary diagnosis workstations. In a full PACS implementation, such workstations must provide a simple and consistent navigational aid for the on-line image database, a local work list of cases to be reviewed, and easy access to information from other hospital information systems. A hierarchical method of information access is preferred because it provides the ability to start at high-level entities and iteratively narrow the scope of information from which to select subsequent operations. An implementation using hierarchical, nested software windows which fulfills such requirements shall be examined.
ISS Interface Mechanisms and their Heritage
NASA Technical Reports Server (NTRS)
Cook, John G.; Aksamentov, Valery; Hoffman, Thomas; Bruner, Wes
2011-01-01
The International Space Station, by nurturing technological development of a variety of pressurized and unpressurized interface mechanisms fosters "competition at the technology level". Such redundancy and diversity allows for the development and testing of mechanisms that might be used for future exploration efforts. The International Space Station, as a test-bed for exploration, has 4 types of pressurized interfaces between elements and 6 unpressurized attachment mechanisms. Lessons learned from the design, test and operations of these mechanisms will help inform the design for a new international standard pressurized docking mechanism for the NASA Docking System. This paper will examine the attachment mechanisms on the ISS and their attributes. It will also look ahead at the new NASA docking system and trace its lineage to heritage mechanisms.
Transistor-based interface circuitry
Taubman, Matthew S [Richland, WA
2007-02-13
Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.
NASA Technical Reports Server (NTRS)
Fura, David A.; Windley, Phillip J.; Cohen, Gerald C.
1993-01-01
This technical report contains the Higher-Order Logic (HOL) listings of the partial verification of the requirements and design for a commercially developed processor interface unit (PIU). The PIU is an interface chip performing memory interface, bus interface, and additional support services for a commercial microprocessor within a fault tolerant computer system. This system, the Fault Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance-free operation, or both. This report contains the actual HOL listings of the PIU verification as it currently exists. Section two of this report contains general-purpose HOL theories and definitions that support the PIU verification. These include arithmetic theories dealing with inequalities and associativity, and a collection of tactics used in the PIU proofs. Section three contains the HOL listings for the completed PIU design verification. Section 4 contains the HOL listings for the partial requirements verification of the P-Port.
Issues in ATM Support of High-Performance, Geographically Distributed Computing
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Dowd, Patrick W.; Srinidhi, Saragur M.; Blade, Eric D.G
1995-01-01
This report experimentally assesses the effect of the underlying network in a cluster-based computing environment. The assessment is quantified by application-level benchmarking, process-level communication, and network file input/output. Two testbeds were considered, one small cluster of Sun workstations and another large cluster composed of 32 high-end IBM RS/6000 platforms. The clusters had Ethernet, fiber distributed data interface (FDDI), Fibre Channel, and asynchronous transfer mode (ATM) network interface cards installed, providing the same processors and operating system for the entire suite of experiments. The primary goal of this report is to assess the suitability of an ATM-based, local-area network to support interprocess communication and remote file input/output systems for distributed computing.
Sensory processing and world modeling for an active ranging device
NASA Technical Reports Server (NTRS)
Hong, Tsai-Hong; Wu, Angela Y.
1991-01-01
In this project, we studied world modeling and sensory processing for laser range data. World Model data representation and operation were defined. Sensory processing algorithms for point processing and linear feature detection were designed and implemented. The interface between world modeling and sensory processing in the Servo and Primitive levels was investigated and implemented. In the primitive level, linear features detectors for edges were also implemented, analyzed and compared. The existing world model representations is surveyed. Also presented is the design and implementation of the Y-frame model, a hierarchical world model. The interfaces between the world model module and the sensory processing module are discussed as well as the linear feature detectors that were designed and implemented.
Impact of Converter Interfaced Generation and Load on Grid Performance
NASA Astrophysics Data System (ADS)
Ramasubramanian, Deepak
Alternate sources of energy such as wind, solar photovoltaic and fuel cells are coupled to the power grid with the help of solid state converters. Continued deregulation of the power sector coupled with favorable government incentives has resulted in the rapid growth of renewable energy sources connected to the distribution system at a voltage level of 34.5kV or below. Of late, many utilities are also investing in these alternate sources of energy with the point of interconnection with the power grid being at the transmission level. These converter interfaced generation along with their associated control have the ability to provide the advantage of fast control of frequency, voltage, active, and reactive power. However, their ability to provide stability in a large system is yet to be investigated in detail. This is the primary objective of this research. In the future, along with an increase in the percentage of converter interfaced renewable energy sources connected to the transmission network, there exists a possibility of even connecting synchronous machines to the grid through converters. Thus, all sources of energy can be expected to be coupled to the grid through converters. The control and operation of such a grid will be unlike anything that has been encountered till now. In this dissertation, the operation and behavior of such a grid will be investigated. The first step in such an analysis will be to build an accurate and simple mathematical model to represent the corresponding components in commercial software. Once this bridge has been crossed, conventional machines will be replaced with their solid state interfaced counterparts in a phased manner. At each stage, attention will be devoted to the control of these sources and also on the stability performance of the large power system. This dissertation addresses various concerns regarding the control and operation of a futuristic power grid. In addition, this dissertation also aims to address the issue of whether a requirement may arise to redefine operational reliability criteria based on the results obtained.
Evaluation of the Next-Gen Exercise Software Interface in the NEEMO Analog
NASA Technical Reports Server (NTRS)
Hanson, Andrea; Kalogera, Kent; Sandor, Aniko; Hardy, Marc; Frank, Andrew; English, Kirk; Williams, Thomas; Perera, Jeevan; Amonette, William
2017-01-01
NSBRI (National Space Biomedical Research Institute) funded research grant to develop the 'NextGen' exercise software for the NEEMO (NASA Extreme Environment Mission Operations) analog. Develop a software architecture to integrate instructional, motivational and socialization techniques into a common portal to enhance exercise countermeasures in remote environments. Increase user efficiency and satisfaction, and institute commonality across multiple exercise systems. Utilized GUI (Graphical User Interface) design principals focused on intuitive ease of use to minimize training time and realize early user efficiency. Project requirement to test the software in an analog environment. Top Level Project Aims: 1) Improve the usability of crew interface software to exercise CMS (Crew Management System) through common app-like interfaces. 2) Introduce virtual instructional motion training. 3) Use virtual environment to provide remote socialization with family and friends, improve exercise technique, adherence, motivation and ultimately performance outcomes.
NASA Technical Reports Server (NTRS)
Bishop, Peter C.; Erickson, Lloyd
1990-01-01
The Management Information and Decision Support Environment (MIDSE) is a research activity to build and test a prototype of a generic human interface on the Johnson Space Center (JSC) Information Network (CIN). The existing interfaces were developed specifically to support operations rather than the type of data which management could use. The diversity of the many interfaces and their relative difficulty discouraged occasional users from attempting to use them for their purposes. The MIDSE activity approached this problem by designing and building an interface to one JSC data base - the personnel statistics tables of the NASA Personnel and Payroll System (NPPS). The interface was designed against the following requirements: generic (use with any relational NOMAD data base); easy to learn (intuitive operations for new users); easy to use (efficient operations for experienced users); self-documenting (help facility which informs users about the data base structure as well as the operation of the interface); and low maintenance (easy configuration to new applications). A prototype interface entitled the JSC Management Information Systems (JSCMIS) was produced. It resides on CIN/PROFS and is available to JSC management who request it. The interface has passed management review and is ready for early use. Three kinds of data are now available: personnel statistics, personnel register, and plan/actual cost.
Standardized Modular Power Interfaces for Future Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard
2015-01-01
Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but an essential part of defining physical building blocks of modular power. This presentation describes the AMPS projects progress towards standardized modular power interfaces.
Stand-alone digital data storage control system including user control interface
NASA Technical Reports Server (NTRS)
Wright, Kenneth D. (Inventor); Gray, David L. (Inventor)
1994-01-01
A storage control system includes an apparatus and method for user control of a storage interface to operate a storage medium to store data obtained by a real-time data acquisition system. Digital data received in serial format from the data acquisition system is first converted to a parallel format and then provided to the storage interface. The operation of the storage interface is controlled in accordance with instructions based on user control input from a user. Also, a user status output is displayed in accordance with storage data obtained from the storage interface. By allowing the user to control and monitor the operation of the storage interface, a stand-alone, user-controllable data storage system is provided for storing the digital data obtained by a real-time data acquisition system.
IUS/TUG orbital operations and mission support study. Volume 3: Space tug operations
NASA Technical Reports Server (NTRS)
1975-01-01
A study was conducted to develop space tug operational concepts and baseline operations plan, and to provide cost estimates for space tug operations. Background data and study results are presented along with a transition phase analysis (the transition from interim upper state to tug operations). A summary is given of the tug operational and interface requirements with emphasis on the on-orbit checkout requirements, external interface operational requirements, safety requirements, and system operational interface requirements. Other topics discussed include reference missions baselined for the tug and details for the mission functional flows and timelines derived for the tug mission, tug subsystems, tug on-orbit operations prior to the tug first burn, spacecraft deployment and retrieval by the tug, operations centers, mission planning, potential problem areas, and cost data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Garth M.; Saunders, Scott A.
2013-07-01
The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two differentmore » prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2; - Development of a set of alternatives to the current baseline that involve aspects of direct feed, feed conditioning, and design changes. The One System Technical Organization has served WTP, TOC, and DOE well in managing and resolving issues at the interface. This paper describes the organizational structure used to improve the interface and several examples of technical interface issues that have been successfully addressed by the new organization. (authors)« less
HIGH POWER BEAM DUMP AND TARGET / ACCELERATOR INTERFACE PROCEDURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokland, Willem; Plum, Michael A; Peters, Charles C
Satisfying operational procedures and limits for the beam target interface is a critical concern for high power operation at spallation neutron sources. At the Oak Ridge Spallation Neutron Source (SNS) a number of protective measures are instituted to ensure that the beam position, beam size and peak intensity are within acceptable limits at the target and high power Ring Injection Dump (RID). The high power beam dump typically handles up to 50 100 kW of beam power and its setup is complicated by the fact that there are two separate beam components simultaneously directed to the dump. The beam onmore » target is typically in the 800-1000 kW average power level, delivered in sub- s 60 Hz pulses. Setup techniques using beam measurements to quantify the beam parameters at the target and dump will be described. However, not all the instrumentation used for the setup and initial qualification is available during high power operation. Additional techniques are used to monitor the beam during high power operation to ensure the setup conditions are maintained, and these are also described.« less
The 2-6 semiconductor superlattices
NASA Astrophysics Data System (ADS)
Gunshor, R. L.; Otsuka, N.
1992-12-01
The first operational semiconductor diode lasers were demonstrated in the summer of 1991 independently by two U.S. groups, one at 3M and the other a team effort shared by Purdue and Brown Universities. As a result of the close collaboration between MBE and TEM groups within the grant, the structures for lasing and LED (as well as display device) operation were realized with the lowest defect concentrations ever reported for 2-6 structures grown on GaAs by MBE. The reduction of the dislocation levels resulted from an iterative process where the growth could be modified in response to the TEM analysis. The AFOSR funded interface studies have led to our appreciation of the electrical and microstructural considerations obtaining at 2-6/3-5 heterovalent interfaces. As a result the Purdue/Brown group has had equal success in making laser diodes with substrates of both doping types. The Purdue/Brown collaboration has obtained CW operations at 77 K as well as pulsed operation at room temperature using a Zn(S,Se)-based device configuration emitting in the blue (490 nm at room temperature).
Nellist, Michael R; Laskowski, Forrest A L; Lin, Fuding; Mills, Thomas J; Boettcher, Shannon W
2016-04-19
Light-absorbing semiconductor electrodes coated with electrocatalysts are key components of photoelectrochemical energy conversion and storage systems. Efforts to optimize these systems have been slowed by an inadequate understanding of the semiconductor-electrocatalyst (sem|cat) interface. The sem|cat interface is important because it separates and collects photoexcited charge carriers from the semiconductor. The photovoltage generated by the interface drives "uphill" photochemical reactions, such as water splitting to form hydrogen fuel. Here we describe efforts to understand the microscopic processes and materials parameters governing interfacial electron transfer between light-absorbing semiconductors, electrocatalysts, and solution. We highlight the properties of transition-metal oxyhydroxide electrocatalysts, such as Ni(Fe)OOH, because they are the fastest oxygen-evolution catalysts known in alkaline media and are (typically) permeable to electrolyte. We describe the physics that govern the charge-transfer kinetics for different interface types, and show how numerical simulations can explain the response of composite systems. Emphasis is placed on "limiting" behavior. Electrocatalysts that are permeable to electrolyte form "adaptive" junctions where the interface energetics change during operation as charge accumulates in the catalyst, but is screened locally by electrolyte ions. Electrocatalysts that are dense, and thus impermeable to electrolyte, form buried junctions where the interface physics are unchanged during operation. Experiments to directly measure the interface behavior and test the theory/simulations are challenging because conventional photoelectrochemical techniques do not measure the electrocatalyst potential during operation. We developed dual-working-electrode (DWE) photoelectrochemistry to address this limitation. A second electrode is attached to the catalyst layer to sense or control current/voltage independent from that of the semiconductor back ohmic contact. Consistent with simulations, electrolyte-permeable, redox-active catalysts such as Ni(Fe)OOH form "adaptive" junctions where the effective barrier height for electron exchange depends on the potential of the catalyst. This is in contrast to sem|cat interfaces with dense electrolyte-impermeable catalysts, such as nanocrystalline IrOx, that behave like solid-state buried (Schottky-like) junctions. These results elucidate a design principle for catalyzed photoelectrodes. The buried heterojunctions formed by dense catalysts are often limited by Fermi-level pinning and low photovoltages. Catalysts deposited by "soft" methods, such as electrodeposition, form adaptive junctions that tend to provide larger photovoltages and efficiencies. We also preview efforts to improve theory/simulations to account for the presence of surface states and discuss the prospect of carrier-selective catalyst contacts.
IUS/TUG orbital operations and mission support study. Volume 2: Interim upper stage operations
NASA Technical Reports Server (NTRS)
1975-01-01
Background data and study results are presented for the interim upper stage (IUS) operations phase of the IUS/tug orbital operations study. The study was conducted to develop IUS operational concepts and an IUS baseline operations plan, and to provide cost estimates for IUS operations. The approach used was to compile and evaluate baseline concepts, definitions, and system, and to use that data as a basis for the IUS operations phase definition, analysis, and costing analysis. Both expendable and reusable IUS configurations were analyzed and two autonomy levels were specified for each configuration. Topics discussed include on-orbit operations and interfaces with the orbiter, the tracking and data relay satellites and ground station support capability analysis, and flight control center sizing to support the IUS operations.
A study of usability principles and interface design for mobile e-books.
Wang, Chao-Ming; Huang, Ching-Hua
2015-01-01
This study examined usability principles and interface designs in order to understand the relationship between the intentions of mobile e-book interface designs and users' perceptions. First, this study summarised 4 usability principles and 16 interface attributes, in order to conduct usability testing and questionnaire survey by referring to Nielsen (1993), Norman (2002), and Yeh (2010), who proposed the usability principles. Second, this study used the interviews to explore the perceptions and behaviours of user operations through senior users of multi-touch prototype devices. The results of this study are as follows: (1) users' behaviour of operating an interactive interface is related to user prior experience; (2) users' rating of the visibility principle is related to users' subjective perception but not related to user prior experience; however, users' ratings of the ease, efficiency, and enjoyment principles are related to user prior experience; (3) the interview survey reveals that the key attributes affecting users' behaviour of operating an interface include aesthetics, achievement, and friendliness. This study conducts experiments to explore the effects of users’ prior multi-touch experience on users’ behaviour of operating a mobile e-book interface and users’ rating of usability principles. Both qualitative and quantitative data analyses were performed. By applying protocol analysis, key attributes affecting users’ behaviour of operation were determined.
A Sensemaking Perspective on Situation Awareness in Power Grid Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Schur, Anne; Paget, Mia L.
2008-07-21
With increasing complexity and interconnectivity of the electric power grid, the scope and complexity of grid operations continues to grow. New paradigms are needed to guide research to improve operations by enhancing situation awareness of operators. Research on human factors/situation awareness is described within a taxonomy of tools and approaches that address different levels of cognitive processing. While user interface features and visualization approaches represent the predominant focus of human factors studies of situation awareness, this paper argues that a complementary level, sensemaking, deserves further consideration by designers of decision support systems for power grid operations. A sensemaking perspective onmore » situation aware-ness may reveal new insights that complement ongoing human factors research, where the focus of the investigation of errors is to understand why the decision makers experienced the situation the way they did, or why what they saw made sense to them at the time.« less
Endsley, Mica R
2017-02-01
As autonomous and semiautonomous systems are developed for automotive, aviation, cyber, robotics and other applications, the ability of human operators to effectively oversee and interact with them when needed poses a significant challenge. An automation conundrum exists in which as more autonomy is added to a system, and its reliability and robustness increase, the lower the situation awareness of human operators and the less likely that they will be able to take over manual control when needed. The human-autonomy systems oversight model integrates several decades of relevant autonomy research on operator situation awareness, out-of-the-loop performance problems, monitoring, and trust, which are all major challenges underlying the automation conundrum. Key design interventions for improving human performance in interacting with autonomous systems are integrated in the model, including human-automation interface features and central automation interaction paradigms comprising levels of automation, adaptive automation, and granularity of control approaches. Recommendations for the design of human-autonomy interfaces are presented and directions for future research discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-07-01
The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of themore » physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.« less
Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.
Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H
2003-10-01
The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.
Peña-Tapia, Elena; Martín-Barrio, Andrés; Olivares-Méndez, Miguel A.
2017-01-01
Multi-robot missions are a challenge for operators in terms of workload and situational awareness. These operators have to receive data from the robots, extract information, understand the situation properly, make decisions, generate the adequate commands, and send them to the robots. The consequences of excessive workload and lack of awareness can vary from inefficiencies to accidents. This work focuses on the study of future operator interfaces of multi-robot systems, taking into account relevant issues such as multimodal interactions, immersive devices, predictive capabilities and adaptive displays. Specifically, four interfaces have been designed and developed: a conventional, a predictive conventional, a virtual reality and a predictive virtual reality interface. The four interfaces have been validated by the performance of twenty-four operators that supervised eight multi-robot missions of fire surveillance and extinguishing. The results of the workload and situational awareness tests show that virtual reality improves the situational awareness without increasing the workload of operators, whereas the effects of predictive components are not significant and depend on their implementation. PMID:28749407
Dust Tolerant Commodity Transfer Interface Mechanisms for Planetary Surfaces
NASA Technical Reports Server (NTRS)
Townsend, Ivan I.; Mueller, Robert P.; Tamasy, Gabor J.
2014-01-01
Regolith is present on most planetary surfaces such as Earth's moon, Mars, and Asteroids. If human crews and robotic machinery are to operate on these regolith covered surfaces, they must face the consequences of interacting with regolith fines which consist of particles below 100 microns in diameter down to as small as submicron scale particles. Such fine dust will intrude into mechanisms and interfaces causing a variety of problems such as contamination of clean fluid lines, jamming of mechanisms and damaging connector seals and couplings. Since multiple elements must be assembled in space for system level functionality, it will be inevitable that interfaces will be necessary for structural connections, and to pass commodities such as cryogenic liquid propellants, purge and buffer gases, water, breathing air, pressurizing gases, heat exchange fluids, power and data. When fine regolith dust is present in the environment it can be lofted into interfaces where it can compromise the utility of the interface by preventing the connections from being successfully mated, or by inducing fluid leaks or degradation of power and data transmission. A dust tolerant, hand held "quick-disconnect" cryogenic fluids connector housing has been developed at NASA KSC which can be used by astronaut crews to connect flex lines that will transfer propellants and other useful fluids to the end user. In addition, a dust tolerant, automated, cryogenic fluid, multiple connector, power and data interface mechanism prototype has been developed, fabricated and demonstrated by NASA at Kennedy Space Center (KSC). The design and operation of these prototypes are explained and discussed.
2010-10-01
An Empirical Study on Operator Interface Design for Handheld Devices to Control Micro Aerial Vehicles Ming Hou...Report DRDC Toronto TR 2010-075 October 2010 An Empirical Study on Operator Interface Design for Handheld Devices to...drives the need for a small and light controller which will not hinder a soldier carrying it. This requirement brings an issue of designing an
Orbital operations study. Appendix A: Interactivity analysis
NASA Technical Reports Server (NTRS)
1972-01-01
Supplemental analyses conducted to verify that safe, feasible, design concepts exist for accomplishing the attendant interface activities of the orbital operations mission are presented. The data are primarily concerned with functions and concepts common to more than one of the interfacing activities or elements. Specific consideration is given to state vector update, payload deployment, communications links, jet plume impingement, attached element operations, docking and structural interface assessment, and propellant transfer.
Aricò, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Colosimo, Alfredo; Bonelli, Stefano; Golfetti, Alessia; Pozzi, Simone; Imbert, Jean-Paul; Granger, Géraud; Benhacene, Raïlane; Babiloni, Fabio
2016-01-01
Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under - and over-load conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behavior (e.g., mental workload) of a subject by analyzing its neurophysiological signals (i.e., brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (É cole Nationale de l'Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e., overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator's workload level toward potentially dangerous conditions of underload.
Aricò, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Colosimo, Alfredo; Bonelli, Stefano; Golfetti, Alessia; Pozzi, Simone; Imbert, Jean-Paul; Granger, Géraud; Benhacene, Raïlane; Babiloni, Fabio
2016-01-01
Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under- and over-load conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behavior (e.g., mental workload) of a subject by analyzing its neurophysiological signals (i.e., brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (École Nationale de l'Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e., overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator's workload level toward potentially dangerous conditions of underload. PMID:27833542
Improved Quick Disconnect (QD) Interface Through Fail Safe Parts Identification
NASA Technical Reports Server (NTRS)
Blanch-Payne, Evelyn
2001-01-01
An extensive review of existing Quick Disconnects (QDs) mating and demating operations was performed to determine which shuttle part interface identifications and procedures contribute to human factor errors. The research methods used consisted of interviews with engineers and technicians, examination of incident reports, critiques of video and audio tapes of QD operations, and attendance of a Hyper QD operational course. The data strongly suggests that there are inherit human factor errors involved in QD operations. To promote fail-safe operations, QD interface problem areas and recommendations were outlined and reviewed. It is suggested that dialogue, investigations and recommendations continue.
NASA Technical Reports Server (NTRS)
Steinwachs, W. L.; Patrick, J. W.; Galvin, D. M.; Turkel, S. H.
1972-01-01
The findings of the support operations activity group of the orbital operations study are presented. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are presented. The following areas are considered: (1) crew transfer, (2) cargo transfer, (3) propellant transfer, (4) attached element operations, and (5) attached element transport.
Research the mobile phone operation interfaces for vision-impairment.
Yao, Yen-Ting; Leung, Cherng-Yee
2012-01-01
Due to the vision-impaired users commonly having difficulty with mobile-phone function operations and adaption any manufacturer's user interface design, the goals for this research are established for evaluating how to improve for them the function operation convenience and user interfaces of either mobile phones or electronic appliances in the market currently. After applying collecting back 30 effective questionnaires from 30 vision-impairment, the comments have been concluded from this research include: (1) All mobile phone manufactures commonly ignorant of the vision-impairment difficulty with operating mobile phone user interfaces; (2) The vision-impairment preferential with audio alert signals; (3) The vision-impairment incapable of mobile-phone procurement independently unless with assistance from others; (4) Preferential with adding touch-usage interface design by the vision-impairment; in contrast with the least requirement for such functions as braille, enlarging keystroke size and diversifying-function control panel. With exploring the vision-impairment's necessary improvements and obstacles for mobile phone interface operation, this research is established with goals for offering reference possibly applied in electronic appliance design and . Hopefully, the analysis results of this research could be used as data references for designing electronic and high-tech products and promoting more usage convenience for those vision-impaired.
NASA Technical Reports Server (NTRS)
Byrne, R.; Scharf, M.; Doan, D.; Liu, J.; Willems, A.
2004-01-01
An advanced network interface was designed and implemented by a team from the Jet Propulsion Lab with support from the European Space Operations Center. This poster shows the requirements for the interface, the design, the topology, the testing and lessons learned from the whole implementation.
Compensation for electrical converter nonlinearities
Perisic, Milun; Ransom, Ray M; Kajouke, Lateef A
2013-11-19
Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module between the input interface and the output interface, an inductive element between the input interface and the energy conversion module, and a control module. The control module determines a compensated duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface and operates the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value. The compensated duty cycle control value is influenced by the current through the inductive element and accounts for voltage across the switching elements of the energy conversion module.
Deflection amplifier for image dissectors
NASA Technical Reports Server (NTRS)
Salomon, P. M.
1977-01-01
Balanced symmetrical y-axis amplifier uses zener-diode level shifting to interface operational amplifiers to high voltage bipolar output stages. Nominal voltage transfer characteristic is 40 differential output volts per input volt; bandwidth, between -3-dB points, is approximately 8 kHz; loop gain is nominally 89 dB with closed loop gain of 26 dB.
Statistical Indicators for Religious Studies: Indicators of Level and Structure
ERIC Educational Resources Information Center
Herteliu, Claudiu; Isaic-Maniu, Alexandru
2009-01-01
Using statistic indicators as vectors of information relative to the operational status of a phenomenon, including a religious one, is unanimously accepted. By introducing a system of statistic indicators we can also analyze the interfacing areas of a phenomenon. In this context, we have elaborated a system of statistic indicators specific to the…
Knowledge-based load leveling and task allocation in human-machine systems
NASA Technical Reports Server (NTRS)
Chignell, M. H.; Hancock, P. A.
1986-01-01
Conventional human-machine systems use task allocation policies which are based on the premise of a flexible human operator. This individual is most often required to compensate for and augment the capabilities of the machine. The development of artificial intelligence and improved technologies have allowed for a wider range of task allocation strategies. In response to these issues a Knowledge Based Adaptive Mechanism (KBAM) is proposed for assigning tasks to human and machine in real time, using a load leveling policy. This mechanism employs an online workload assessment and compensation system which is responsive to variations in load through an intelligent interface. This interface consists of a loading strategy reasoner which has access to information about the current status of the human-machine system as well as a database of admissible human/machine loading strategies. Difficulties standing in the way of successful implementation of the load leveling strategy are examined.
2009-05-30
d’interface fondées sur le comportement et sur la psychologie , ainsi que des méthodes de conception et de mise en œuvre d’interfaces multi-agents. On a mis...réseaucentriques. Ces technologies comprennent des approches de conception d’interface fondées sur le comportement et sur la psychologie , ainsi que des
Continuation of research into software for space operations support, volume 1
NASA Technical Reports Server (NTRS)
Collier, Mark D.; Killough, Ronnie; Martin, Nancy L.
1990-01-01
A prototype workstation executive called the Hardware Independent Software Development Environment (HISDE) was developed. Software technologies relevant to workstation executives were researched and evaluated and HISDE was used as a test bed for prototyping efforts. New X Windows software concepts and technology were introduced into workstation executives and related applications. The four research efforts performed included: (1) Research into the usability and efficiency of Motif (an X Windows based graphic user interface) which consisted of converting the existing Athena widget based HISDE user interface to Motif demonstrating the usability of Motif and providing insight into the level of effort required to translate an application from widget to another; (2) Prototype a real time data display widget which consisted of research methods for and prototyping the selected method of displaying textual values in an efficient manner; (3) X Windows performance evaluation which consisted of a series of performance measurements which demonstrated the ability of low level X Windows to display textural information; (4) Convert the Display Manager to X Window/Motif which is the application used by NASA for data display during operational mode.
How to Create, Modify, and Interface Aspen In-House and User Databanks for System Configuration 1:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camp, D W
2000-10-27
The goal of this document is to provide detailed instructions to create, modify, interface, and test Aspen User and In-House databanks with minimal frustration. The level of instructions are aimed at a novice Aspen Plus simulation user who is neither a programming nor computer-system expert. The instructions are tailored to Version 10.1 of Aspen Plus and the specific computing configuration summarized in the Title of this document and detailed in Section 2. Many details of setting up databanks depend on the computing environment specifics, such as the machines, operating systems, command languages, directory structures, inter-computer communications software, the version ofmore » the Aspen Engine and Graphical User Interface (GUI), and the directory structure of how these were installed.« less
Principles to Products: Toward Realizing MOS 2.0
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Delp, Christopher L.
2012-01-01
This is a report on the Operations Revitalization Initiative, part of the ongoing NASA-funded Advanced Multi-Mission Operations Systems (AMMOS) program. We are implementing products that significantly improve efficiency and effectiveness of Mission Operations Systems (MOS) for deep-space missions. We take a multi-mission approach, in keeping with our organization's charter to "provide multi-mission tools and services that enable mission customers to operate at a lower total cost to NASA." Focusing first on architectural fundamentals of the MOS, we review the effort's progress. In particular, we note the use of stakeholder interactions and consideration of past lessons learned to motivate a set of Principles that guide the evolution of the AMMOS. Thus guided, we have created essential patterns and connections (detailed in companion papers) that are explicitly modeled and support elaboration at multiple levels of detail (system, sub-system, element...) throughout a MOS. This architecture is realized in design and implementation products that provide lifecycle support to a Mission at the system and subsystem level. The products include adaptable multi-mission engineering documentation that describes essentials such as operational concepts and scenarios, requirements, interfaces and agreements, information models, and mission operations processes. Because we have adopted a model-based system engineering method, these documents and their contents are meaningfully related to one another and to the system model. This means they are both more rigorous and reusable (from mission to mission) than standard system engineering products. The use of models also enables detailed, early (e.g., formulation phase) insight into the impact of changes (e.g., to interfaces or to software) that is rigorous and complete, allowing better decisions on cost or technical trades. Finally, our work provides clear and rigorous specification of operations needs to software developers, further enabling significant gains in productivity.
NASA Technical Reports Server (NTRS)
Wright, E. Alvey
1974-01-01
Hawaii, an archipelago where transportation distances are short but the interfaces are many, seeks elimination of modal changes by totally-submerged hydrofoil craft operating at the water surface directly between tourist resort destinations, by dual mode rapid transit vehicles operating directly between the deplaning bridges at Honolulu International Airport and hotel porte-cochere at Waikiki, by demand responsive vehicles for collection and distribution operating on fixed guideways for line haul, and by roll-on/roll-off inter-island ferries for all models of manually operated ground vehicles. The paper also describes facilitation of unavoidable interfaces by innovative sub-systems.
The Jet Propulsion Laboratory shared control architecture and implementation
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Hayati, Samad
1990-01-01
A hardware and software environment for shared control of telerobot task execution has been implemented. Modes of task execution range from fully teleoperated to fully autonomous as well as shared where hand controller inputs from the human operator are mixed with autonomous system inputs in real time. The objective of the shared control environment is to aid the telerobot operator during task execution by merging real-time operator control from hand controllers with autonomous control to simplify task execution for the operator. The operator is the principal command source and can assign as much autonomy for a task as desired. The shared control hardware environment consists of two PUMA 560 robots, two 6-axis force reflecting hand controllers, Universal Motor Controllers for each of the robots and hand controllers, a SUN4 computer, and VME chassis containing 68020 processors and input/output boards. The operator interface for shared control, the User Macro Interface (UMI), is a menu driven interface to design a task and assign the levels of teleoperated and autonomous control. The operator also sets up the system monitor which checks safety limits during task execution. Cartesian-space degrees of freedom for teleoperated and/or autonomous control inputs are selected within UMI as well as the weightings for the teleoperation and autonmous inputs. These are then used during task execution to determine the mix of teleoperation and autonomous inputs. Some of the autonomous control primitives available to the user are Joint-Guarded-Move, Cartesian-Guarded-Move, Move-To-Touch, Pin-Insertion/Removal, Door/Crank-Turn, Bolt-Turn, and Slide. The operator can execute a task using pure teleoperation or mix control execution from the autonomous primitives with teleoperated inputs. Presently the shared control environment supports single arm task execution. Work is presently underway to provide the shared control environment for dual arm control. Teleoperation during shared control is only Cartesian space control and no force-reflection is provided. Force-reflecting teleoperation and joint space operator inputs are planned extensions to the environment.
Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josh A. Salmond
2009-08-07
The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and lowmore » residual stresses. The products fabricated are used on multiple programs.« less
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Kaukler, William; Whitaker, Ann (Technical Monitor)
2001-01-01
A Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. A mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. Ultimately, the goal is to measure the forces between a particle and the crystal-melt interface. Two modes of AFM operation are considered in this paper - a stationary and a "tapping" one. The continuous mechanics approach to model tip-surface interaction is presented. At microscopic levels, tip contamination and details of tip-surface interaction are modeled using a molecular dynamics approach for the case of polystyrene - succinonitrile contact. Integration of the mesoscale model with a molecular dynamic model is discussed.
NASA Technical Reports Server (NTRS)
Tighe, Michael F.
1986-01-01
Intermetrics' experience is that the Ada package construct, which allows separation of specification and implementation allows specification of a CAIS that is transportable across varying hardware and software bases. Additionally, the CAIS is an excellent basis for providing operating system functionality to Ada applications. By allowing the Byron APSE to be moved easily from system to system, and allowing significant re-writes of underlying code. Ada and the CAIS provide portability as well as transparency to change at the application operating system interface level.
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Martensen, Anna L.
1992-01-01
FTC, Fault-Tree Compiler program, is reliability-analysis software tool used to calculate probability of top event of fault tree. Five different types of gates allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language of FTC easy to understand and use. Program supports hierarchical fault-tree-definition feature simplifying process of description of tree and reduces execution time. Solution technique implemented in FORTRAN, and user interface in Pascal. Written to run on DEC VAX computer operating under VMS operating system.
Deep Space Network Antenna Logic Controller
NASA Technical Reports Server (NTRS)
Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick
2007-01-01
The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.
Modular Integrated Stackable Layers (MISL) 1.1 Design Specification. Design Guideline Document
NASA Technical Reports Server (NTRS)
Yim, Hester J.
2012-01-01
This document establishes the design guideline of the Modular Instrumentation Data Acquisition (MI-DAQ) system in utilization of several designs available in EV. The MI- DAQ provides the options to the customers depending on their system requirements i.e. a 28V interface power supply, a low power battery operated system, a low power microcontroller, a higher performance microcontroller, a USB interface, a Ethernet interface, a wireless communication, various sensor interfaces, etc. Depending on customer's requirements, the each functional board can be stacked up from a bottom level of power supply to a higher level of stack to provide user interfaces. The stack up of boards are accomplished by a predefined and standardized power bus and data bus connections which are included in this document along with other physical and electrical guidelines. This guideline also provides information for a new design options. This specification is the product of a collaboration between NASA/JSC/EV and Texas A&M University. The goal of the collaboration is to open source the specification and allow outside entities to design, build, and market modules that are compatible with the specification. NASA has designed and is using numerous modules that are compatible to this specification. A limited number of these modules will also be released as open source designs to support the collaboration. The released designs are listed in the Applicable Documents.
Enhanced operator interface for hand-held landmine detector
NASA Astrophysics Data System (ADS)
Herman, Herman; McMahill, Jeffrey D.; Kantor, George
2001-10-01
As landmines get harder to detect, the complexity of landmine detectors has also been increasing. To increase the probability of detection and decrease the false alarm rate of low metallic landmines, many detectors employ multiple sensing modalities, which include radar and metal detector. Unfortunately, the operator interface for these new detectors stays pretty much the same as for the older detectors. Although the amount of information that the new detectors acquire has increased significantly, the interface has been limited to a simple audio interface. We are currently developing a hybrid audiovisual interface for enhancing the overall performance of the detector. The hybrid audiovisual interface combines the simplicity of the audio output with the rich spatial content of the video display. It is designed to optimally present the output of the detector and also to give the proper feedback to the operator. Instead of presenting all the data to the operator simultaneously, the interface allows the operator to access the information as needed. This capability is critical to avoid information overload, which can significantly reduce the performance of the operator. The audio is used as the primary notification signal, while the video is used for further feedback, discrimination, localization and sensor fusion. The idea is to let the operator gets the feedback that he needs and enable him to look at the data in the most efficient way. We are also looking at a hybrid man-machine detection system which utilizes precise sweeping by the machine and powerful human cognitive ability. In such a hybrid system, the operator is free to concentrate on discriminant task, such as manually fusing the output of the different sensing modalities, instead of worrying about the proper sweep technique. In developing this concept, we have been using the virtual mien lane to validate some of these concepts. We obtained some very encouraging results form our preliminary test. It clearly shows that with the proper feedback, the performance of the operator can be improved significantly in a very short time.
Interface design in the process industries
NASA Technical Reports Server (NTRS)
Beaverstock, M. C.; Stassen, H. G.; Williamson, R. A.
1977-01-01
Every operator runs his plant in accord with his own mental model of the process. In this sense, one characteristic of an ideal man-machine interface is that it be in harmony with that model. With this theme in mind, the paper first reviews the functions of the process operator and compares them with human operators involved in control situations previously studied outside the industrial environment (pilots, air traffic controllers, helmsmen, etc.). A brief history of the operator interface in the process industry and the traditional methodology employed in its design is then presented. Finally, a much more fundamental approach utilizing a model definition of the human operator's behavior is presented.
Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring
NASA Astrophysics Data System (ADS)
Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin
2017-04-01
Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.
Ubiquitous remote operation collaborative interface for MRI scanners
NASA Astrophysics Data System (ADS)
Morris, H. Douglas
2001-05-01
We have developed a remote control interface for research class magnetic resonance imaging (MRI) spectrometers. The goal of the interface is to provide a better collaborative environment for geographically dispersed researchers and a tool that can teach students of medical imaging in a network-based laboratory using state-of-the-art MR instrumentation that would not otherwise be available. The interface for the remote operator(s) is now ubiquitous web browser, which was chosen for the ease of controlling the operator interface, the display of both image and text information, and the wide availability on many computer platforms. The remote operator is presented with an active display in which they may select and control most of the parameters in the MRI experiment. The MR parameters are relayed via web browser to a CGI program running in a standard web server, which passes said parameters to the MRI manufacturers control software. The data returned to the operator(s) consists of the parameters used in acquiring that image, a flat 8-bit grayscale GIF representation of the image, and a 16-bit grayscale image that can be viewed by an appropriate application. It is obvious that the utility of this interface would be helpful for researchers of regional and national facilities to more closely collaborate with colleagues across their region, the nation, or the world. And medical imaging students can put much of their classroom discussions into practice on machinery that would not normally be available to them.
New generation of 3D desktop computer interfaces
NASA Astrophysics Data System (ADS)
Skerjanc, Robert; Pastoor, Siegmund
1997-05-01
Today's computer interfaces use 2-D displays showing windows, icons and menus and support mouse interactions for handling programs and data files. The interface metaphor is that of a writing desk with (partly) overlapping sheets of documents placed on its top. Recent advances in the development of 3-D display technology give the opportunity to take the interface concept a radical stage further by breaking the design limits of the desktop metaphor. The major advantage of the envisioned 'application space' is, that it offers an additional, immediately perceptible dimension to clearly and constantly visualize the structure and current state of interrelations between documents, videos, application programs and networked systems. In this context, we describe the development of a visual operating system (VOS). Under VOS, applications appear as objects in 3-D space. Users can (graphically connect selected objects to enable communication between the respective applications. VOS includes a general concept of visual and object oriented programming for tasks ranging from, e.g., low-level programming up to high-level application configuration. In order to enable practical operation in an office or at home for many hours, the system should be very comfortable to use. Since typical 3-D equipment used, e.g., in virtual-reality applications (head-mounted displays, data gloves) is rather cumbersome and straining, we suggest to use off-head displays and contact-free interaction techniques. In this article, we introduce an autostereoscopic 3-D display and connected video based interaction techniques which allow viewpoint-depending imaging (by head tracking) and visually controlled modification of data objects and links (by gaze tracking, e.g., to pick, 3-D objects just by looking at them).
Systems and methods for compensating for electrical converter nonlinearities
Perisic, Milun; Ransom, Ray M.; Kajouke, Lateef A.
2013-06-18
Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module coupled between the input interface and the output interface, and a control module. The control module determines a duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface. The control module determines an input power error at the input interface and adjusts the duty cycle control value in a manner that is influenced by the input power error, resulting in a compensated duty cycle control value. The control module operates switching elements of the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value.
The Mission Operations Planning Assistant
NASA Technical Reports Server (NTRS)
Schuetzle, James G.
1987-01-01
The Mission Operations Planning Assistant (MOPA) is a knowledge-based system developed to support the planning and scheduling of instrument activities on the Upper Atmospheric Research Satellite (UARS). The MOPA system represents and maintains instrument plans at two levels of abstraction in order to keep plans comprehensible to both UARS Principal Investigators and Command Management personnel. The hierarchical representation of plans also allows MOPA to automatically create detailed instrument activity plans from which spacecraft command loads may be generated. The MOPA system was developed on a Symbolics 3640 computer using the ZetaLisp and ART languages. MOPA's features include a textual and graphical interface for plan inspection and modification, recognition of instrument operational constraint violations during the planning process, and consistency maintenance between the different planning levels. This paper describes the current MOPA system.
The mission operations planning assistant
NASA Technical Reports Server (NTRS)
Schuetzle, James G.
1987-01-01
The Mission Operations Planning Assistant (MOPA) is a knowledge-based system developed to support the planning and scheduling of instrument activities on the Upper Atmospheric Research Satellite (UARS). The MOPA system represents and maintains instrument plans at two levels of abstraction in order to keep plans comprehensible to both UARS Prinicpal Investigators and Command Management personnel. The hierarchical representation of plans also allows MOPA to automatically create detailed instrument activity plans from which spacecraft command loads may be generated. The MOPA system was developed on a Symbolics 3640 computer using the ZETALISP and ART languages. MOPA's features include a textual and graphical interface for plan inspection and modification, recognition of instrument operational constraint violations during the planning process, and consistency maintenance between the different planning levels. This paper describes the current MOPA system.
NASA Astrophysics Data System (ADS)
Minagawa, Masahiro; Takahashi, Noriko
2016-02-01
To investigate the lifetime improvement mechanism caused by mixing at the heterojunction interface, organic light-emitting diodes (OLEDs) with stacked and mixed 4,4‧-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl (α-NPD)/tris(8-hydroxyquinoline)aluminum (Alq3) interfaces were fabricated, and changes in their displacement current due to continuous operation were measured. A decrease in accumulated holes at the α-NPD/Alq3 interface was observed in the stacked configuration devices over longer operations. These results indicate that the injected hole density was reduced during continuous operation, implying that the carrier balance became uneven in the emission region. However, few accumulated holes and changes in the displacement current due to continuous operation were observed in the devices having the mixed layer. Therefore, it was deduced that the number of holes concentrated between the α-NPD and Alq3 layers was decreased by mixing at the heterojunction interface, and that the change in the number of holes was smaller during continuous operation, resulting in less degradation.
Design and validation of an improved graphical user interface with the 'Tool ball'.
Lee, Kuo-Wei; Lee, Ying-Chu
2012-01-01
The purpose of this research is introduce the design of an improved graphical user interface (GUI) and verifies the operational efficiency of the proposed interface. Until now, clicking the toolbar with the mouse is the usual way to operate software functions. In our research, we designed an improved graphical user interface - a tool ball that is operated by a mouse wheel to perform software functions. Several experiments are conducted to measure the time needed to operate certain software functions with the traditional combination of "mouse click + tool button" and the proposed integration of "mouse wheel + tool ball". The results indicate that the tool ball design can accelerate the speed of operating software functions, decrease the number of icons on the screen, and enlarge the applications of the mouse wheel. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
User interface and operational issues with thermionic space power systems
NASA Technical Reports Server (NTRS)
Dahlberg, R. C.; Fisher, C. R.
1987-01-01
Thermionic space power systems have unique features which facilitate predeployment operations, provide operational flexibility and simplify the interface with the user. These were studied in some detail during the SP-100 program from 1983 to 1985. Three examples are reviewed in this paper: (1) system readiness verification in the prelaunch phase; (2) startup, shutdown, and dormancy in the operations phase; (3) part-load operation in the operations phase.
High school students as a seismic network analysts
NASA Astrophysics Data System (ADS)
Filatov, P.; Fedorenko, Yu.; Beketova, E.; Husebye, E.
2003-04-01
Many research organizations have a large amount of collected seismological data. Some data centers keep data closed from scientists, others have a specific interfaces for access, what is not acceptable for education. For SeisSchool Network in Norway we have developed an universal interface for research and study. The main principles of our interface are: bullet Accessibility - it should provides data access for everybody any where via Internet without restrictions of hardware platform, operational system, Internet browser or bandwidth of connection. bullet Informativity - it should visualize data, have examples of processing routines (filters, envelopes) including phase picking and event location. Also it provides access to various seismology information. bullet Scalability - provide storage for various types of seismic data and a multitude of services for many user levels. This interface (http://pcg1.ifjf.uib.no) helps analysts in basic research and together with information of our Web site we introduces students to theory and practice of seismology. Based on our Web interface group of students won a Norwegian Young Scientists award. In this presentation we demonstrate advantages of our interface, on-line data processing and how to monitoring our network in near real time.
Revealing the semiconductor–catalyst interface in buried platinum black silicon photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Anderson, Nicholas C.; Neale, Nathan R.
2016-01-01
Nanoporous 'black' silicon semiconductors interfaced with buried platinum nanoparticle catalysts have exhibited stable activity for photoelectrochemical hydrogen evolution even after months of exposure to ambient conditions. The mechanism behind this stability has not been explained in detail, but is thought to involve a Pt/Si interface free from SiOx layer that would adversely affect interfacial charge transfer kinetics. In this paper, we resolve the chemical composition and structure of buried Pt/Si interfaces in black silicon photocathodes from a micron to sub-nanometer level using aberration corrected analytical scanning transmission electron microscopy. Through a controlled electrodeposition of copper on samples aged for onemore » month in ambient conditions, we demonstrate that the main active catalytic sites are the buried Pt nanoparticles located below the 400-800 nm thick nanoporous SiOx layer. Though hydrogen production performance degrades over 100 h under photoelectrochemical operating conditions, this burying strategy preserves an atomically clean catalyst/Si interface free of oxide or other phases under air exposure and provides an example of a potential method for stabilizing silicon photoelectrodes from oxidative degradation in photoelectrochemical applications.« less
The Operator Guide: An Ambient Persuasive Interface in the Factory
NASA Astrophysics Data System (ADS)
Meschtscherjakov, Alexander; Reitberger, Wolfgang; Pöhr, Florian; Tscheligi, Manfred
In this paper we introduce the context of a semiconductor factory as a promising area for the application of innovative interaction approaches. In order to increase efficiency ambient persuasive interfaces, which influence the operators' behaviour to perform in an optimized way, could constitute a potential strategy. We present insights gained from qualitative studies conducted in a specific semiconductor factory and provide a description of typical work processes and already deployed interfaces in this context. These findings informed the design of a prototype of an ambient persuasive interface within this realm - the "Operator Guide". Its overall aim is to improve work efficiency, while still maintaining a minimal error rate. We provide a detailed description of the Operator Guide along with an outlook of the next steps within a user-centered design approach.
Computational Workbench for Multibody Dynamics
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2007-01-01
PyCraft is a computer program that provides an interactive, workbenchlike computing environment for developing and testing algorithms for multibody dynamics. Examples of multibody dynamic systems amenable to analysis with the help of PyCraft include land vehicles, spacecraft, robots, and molecular models. PyCraft is based on the Spatial-Operator- Algebra (SOA) formulation for multibody dynamics. The SOA operators enable construction of simple and compact representations of complex multibody dynamical equations. Within the Py-Craft computational workbench, users can, essentially, use the high-level SOA operator notation to represent the variety of dynamical quantities and algorithms and to perform computations interactively. PyCraft provides a Python-language interface to underlying C++ code. Working with SOA concepts, a user can create and manipulate Python-level operator classes in order to implement and evaluate new dynamical quantities and algorithms. During use of PyCraft, virtually all SOA-based algorithms are available for computational experiments.
Considerations for human-machine interfaces in tele-operations
NASA Technical Reports Server (NTRS)
Newport, Curt
1991-01-01
Numerous factors impact on the efficiency of tele-operative manipulative work. Generally, these are related to the physical environment of the tele-operator and how he interfaces with robotic control consoles. The capabilities of the operator can be influenced by considerations such as temperature, eye strain, body fatigue, and boredom created by repetitive work tasks. In addition, the successful combination of man and machine will, in part, be determined by the configuration of the visual and physical interfaces available to the teleoperator. The design and operation of system components such as full-scale and mini-master manipulator controllers, servo joysticks, and video monitors will have a direct impact on operational efficiency. As a result, the local environment and the interaction of the operator with the robotic control console have a substantial effect on mission productivity.
NASA Technical Reports Server (NTRS)
1976-01-01
General physical, functional, and operational interface control requirements for instruments on the first AMPS payload are presented. Interface specifications are included to satisfy ground handling, prelaunch, launch, stowage, operation, and landing activities. Applicable supporting documentation to implement the information is also given.
ERIC Educational Resources Information Center
Cullen, Eileen M.
2010-01-01
The role of land-grant university Extension specialist originates in a community of place, enters into communities of interest to leverage resources or partnership opportunities, and returns to the local level with more effective outcomes than possible by operating solely within the community of place. A case study describes synergistic specialist…
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Fink, D. Hill, J. O'Hara
2004-11-30
Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.
Dual mode ion mobility spectrometer and method for ion mobility spectrometry
Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID
2007-08-21
Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.
The scientific data acquisition system of the GAMMA-400 space project
NASA Astrophysics Data System (ADS)
Bobkov, S. G.; Serdin, O. V.; Gorbunov, M. S.; Arkhangelskiy, A. I.; Topchiev, N. P.
2016-02-01
The description of scientific data acquisition system (SDAS) designed by SRISA for the GAMMA-400 space project is presented. We consider the problem of different level electronics unification: the set of reliable fault-tolerant integrated circuits fabricated on Silicon-on-Insulator 0.25 mkm CMOS technology and the high-speed interfaces and reliable modules used in the space instruments. The characteristics of reliable fault-tolerant very large scale integration (VLSI) technology designed by SRISA for the developing of computation systems for space applications are considered. The scalable net structure of SDAS based on Serial RapidIO interface including real-time operating system BAGET is described too.
ATCA-based ATLAS FTK input interface system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okumura, Yasuyuki; Liu, Tiehui Ted; Olsen, Jamieson
The first stage of the ATLAS Fast TracKer (FTK) is an ATCA-based input interface system, where hits from the entire silicon tracker are clustered and organized into overlapping eta-phi trigger towers before being sent to the tracking engines. First, FTK Input Mezzanine cards receive hit data and perform clustering to reduce data volume. Then, the ATCA-based Data Formatter system will organize the trigger tower data, sharing data among boards over full mesh backplanes and optic fibers. The board and system level design concepts and implementation details, as well as the operation experiences from the FTK full-chain testing, will be presented.
NASA Astrophysics Data System (ADS)
Arkhipkin, D.; Lauret, J.
2017-10-01
One of the STAR experiment’s modular Messaging Interface and Reliable Architecture framework (MIRA) integration goals is to provide seamless and automatic connections with the existing control systems. After an initial proof of concept and operation of the MIRA system as a parallel data collection system for online use and real-time monitoring, the STAR Software and Computing group is now working on the integration of Experimental Physics and Industrial Control System (EPICS) with MIRA’s interfaces. This integration goals are to allow functional interoperability and, later on, to replace the existing/legacy Detector Control System components at the service level. In this report, we describe the evolutionary integration process and, as an example, will discuss the EPICS Alarm Handler conversion. We review the complete upgrade procedure starting with the integration of EPICS-originated alarm signals propagation into MIRA, followed by the replacement of the existing operator interface based on Motif Editor and Display Manager (MEDM) with modern portable web-based Alarm Handler interface. To achieve this aim, we have built an EPICS-to-MQTT [8] bridging service, and recreated the functionality of the original Alarm Handler using low-latency web messaging technologies. The integration of EPICS alarm handling into our messaging framework allowed STAR to improve the DCS alarm awareness of existing STAR DAQ and RTS services, which use MIRA as a primary source of experiment control information.
Thermal Vacuum Testing of Swift XRT Ethane Heat Pipes
NASA Technical Reports Server (NTRS)
Kobel, Mark; Ku, Jentung
2003-01-01
This paper presents the results obtained from a recent ethane heat pipe program. Three identical ethane heat pipes were tested individually, and then two selected heat pipes were tested collectively in their system configuration. Heat transport, thermal conductance, and non-condensable gas tests were performed on each heat pipe. To gain insight into the reflux operation as seen at spacecraft level ground testing, the test fixture was oriented in a vertical configuration. The system level test included a computer-controlled heater designed to emulate the heat load generated at the thermoelectric cooler interface. The system performance was successfully characterized for a wide range of environmental conditions while staying within the operating limits.
Private sector involvement in civil space remote sensing. Volume 1: Report
NASA Technical Reports Server (NTRS)
1979-01-01
A survey of private sector developers, users, and interpreters of Earth resources data was conducted in an effort to encourage private investment and participation in remote sensing systems. Results indicate positive interest in participation beyond the current hardware contracting level, however, there is a substantial gap between current market levels and system costs. Issues identified include the selection process for an operating entity, the public/private interface, data collection and access policies, price and profit regulation in a subsidized system, international participation, and the responsibility for research and development. It was agreed that the cost, complexity, and security implications of integrated systems need not be an absolute bar to their private operation.
User productivity as a function of AutoCAD interface design.
Mitta, D A; Flores, P L
1995-12-01
Increased operator productivity is a desired outcome of user-CAD interaction scenarios. Two objectives of this research were to (1) define a measure of operator productivity and (2) empirically investigate the potential effects of CAD interface design on operator productivity, where productivity is defined as the percentage of a drawing session correctly completed per unit time. Here, AutoCAD provides the CAD environment of interest. Productivity with respect to two AutoCAD interface designs (menu, template) and three task types (draw, dimension, display) was investigated. Analysis of user productivity data revealed significantly higher productivity under the menu interface condition than under the template interface condition. A significant effect of task type was also discovered, where user productivity under display tasks was higher than productivity under the draw and dimension tasks. Implications of these results are presented.
NASA Astrophysics Data System (ADS)
McNamara, Laura A.; Berg, Leif; Butler, Karin; Klein, Laura
2017-05-01
Even as remote sensing technology has advanced in leaps and bounds over the past decade, the remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.
Orbital operation study. Volume 2: Interfacing activities analysis. Part 1: Introduction and summary
NASA Technical Reports Server (NTRS)
Anderson, N. R.
1972-01-01
The summary of the interfacing activity analyses for the orbital operations study is presented. The significant analyses are grouped into categories as follows: (1) structural and mechanical activity, (2) data management, and (3) support operations. Specific subjects concerning payload deployment, communications, rendezvous, and stationkeeping are discussed.
USDI DCS technical support: Mississippi Test Facility
NASA Technical Reports Server (NTRS)
Preble, D. M.
1975-01-01
The objective of the technical support effort is to provide hardware and data processing support to DCS users so that application of the system may be simply and effectively implemented. Technical support at Mississippi Test Facility (MTF) is concerned primarily with on-site hardware. The first objective of the DCP hardware support was to assure that standard measuring apparatus and techniques used by the USGS could be adapted to the DCS. The second objective was to try to standardize the miscellaneous variety of parameters into a standard instrument set. The third objective was to provide the necessary accessories to simplify the use and complement the capabilities of the DCP. The standard USGS sites have been interfaced and are presently operating. These sites are stream gauge, ground water level and line operated quality of water. Evapotranspiration, meteorological and battery operated quality of water sites are planned for near future DCP operation. Three accessories which are under test or development are the Chu antenna, solar power supply and add-on memory. The DCP has proven to be relatively easy to interface with many monitors. The large antenna is awkward to install and transport. The DCS has met the original requirements well; it has and is proving that an operation, satellite-based data collection system is feasible.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.
2010-01-01
Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts, because organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. Assessment of astronauts organ doses and ARS from the exposure to historically large SPEs is in support of mission design and operation planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI product, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.
NASA Technical Reports Server (NTRS)
Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.
A compact electroencephalogram recording device with integrated audio stimulation system.
Paukkunen, Antti K O; Kurttio, Anttu A; Leminen, Miika M; Sepponen, Raimo E
2010-06-01
A compact (96 x 128 x 32 mm(3), 374 g), battery-powered, eight-channel electroencephalogram recording device with an integrated audio stimulation system and a wireless interface is presented. The recording device is capable of producing high-quality data, while the operating time is also reasonable for evoked potential studies. The effective measurement resolution is about 4 nV at 200 Hz sample rate, typical noise level is below 0.7 microV(rms) at 0.16-70 Hz, and the estimated operating time is 1.5 h. An embedded audio decoder circuit reads and plays wave sound files stored on a memory card. The activities are controlled by an 8 bit main control unit which allows accurate timing of the stimuli. The interstimulus interval jitter measured is less than 1 ms. Wireless communication is made through bluetooth and the data recorded are transmitted to an external personal computer (PC) interface in real time. The PC interface is implemented with LABVIEW and in addition to data acquisition it also allows online signal processing, data storage, and control of measurement activities such as contact impedance measurement, for example. The practical application of the device is demonstrated in mismatch negativity experiment with three test subjects.
A compact electroencephalogram recording device with integrated audio stimulation system
NASA Astrophysics Data System (ADS)
Paukkunen, Antti K. O.; Kurttio, Anttu A.; Leminen, Miika M.; Sepponen, Raimo E.
2010-06-01
A compact (96×128×32 mm3, 374 g), battery-powered, eight-channel electroencephalogram recording device with an integrated audio stimulation system and a wireless interface is presented. The recording device is capable of producing high-quality data, while the operating time is also reasonable for evoked potential studies. The effective measurement resolution is about 4 nV at 200 Hz sample rate, typical noise level is below 0.7 μVrms at 0.16-70 Hz, and the estimated operating time is 1.5 h. An embedded audio decoder circuit reads and plays wave sound files stored on a memory card. The activities are controlled by an 8 bit main control unit which allows accurate timing of the stimuli. The interstimulus interval jitter measured is less than 1 ms. Wireless communication is made through bluetooth and the data recorded are transmitted to an external personal computer (PC) interface in real time. The PC interface is implemented with LABVIEW® and in addition to data acquisition it also allows online signal processing, data storage, and control of measurement activities such as contact impedance measurement, for example. The practical application of the device is demonstrated in mismatch negativity experiment with three test subjects.
Intelligent user interface concept for space station
NASA Technical Reports Server (NTRS)
Comer, Edward; Donaldson, Cameron; Bailey, Elizabeth; Gilroy, Kathleen
1986-01-01
The space station computing system must interface with a wide variety of users, from highly skilled operations personnel to payload specialists from all over the world. The interface must accommodate a wide variety of operations from the space platform, ground control centers and from remote sites. As a result, there is a need for a robust, highly configurable and portable user interface that can accommodate the various space station missions. The concept of an intelligent user interface executive, written in Ada, that would support a number of advanced human interaction techniques, such as windowing, icons, color graphics, animation, and natural language processing is presented. The user interface would provide intelligent interaction by understanding the various user roles, the operations and mission, the current state of the environment and the current working context of the users. In addition, the intelligent user interface executive must be supported by a set of tools that would allow the executive to be easily configured and to allow rapid prototyping of proposed user dialogs. This capability would allow human engineering specialists acting in the role of dialog authors to define and validate various user scenarios. The set of tools required to support development of this intelligent human interface capability is discussed and the prototyping and validation efforts required for development of the Space Station's user interface are outlined.
Operator Interface for the ALMA Observing System
NASA Astrophysics Data System (ADS)
Grosbøl, P.; Schilling, M.
2009-09-01
The Atacama Large Millimeter/submillimeter Array (ALMA) is a major new ground-based radio-astronomical facility being constructed in Chile in an international collaboration between Europe, Japan and North America in cooperation with the Republic of Chile. The facility will include 54 12m and 12 7m antennas at the Altiplano de Chajnantor and be operated from the Operations Support Facilities (OSF) near San Pedro. This paper describes design and baseline implementation of the Graphical User Interface (GUI) used by operators to monitor and control the observing facility. It is written in Java and provides a simple plug-in interface which allows different subsystems to add their own panels to the GUI. The design is based on a client/server concept and supports multiple operators to share or monitor operations.
MODIS information, data and control system (MIDACS) operations concepts
NASA Technical Reports Server (NTRS)
Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.
1988-01-01
The MODIS Information, Data, and Control System (MIDACS) Operations Concepts Document provides a basis for the mutual understanding between the users and the designers of the MIDACS, including the requirements, operating environment, external interfaces, and development plan. In defining the concepts and scope of the system, how the MIDACS will operate as an element of the Earth Observing System (EOS) within the EosDIS environment is described. This version follows an earlier release of a preliminary draft version. The individual operations concepts for planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, data archive and distribution, and user access do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams are not yet formed; however, it is possible to develop the operations concepts based on the present concept of EosDIS, the level 1 and level 2 Functional Requirements Documents, and through interviews and meetings with key members of the scientific community. The operations concepts were exercised through the application of representative scenarios.
Systems and methods for commutating inductor current using a matrix converter
Ransom, Ray M; Kajouke, Lateef A; Perisic, Milun
2012-10-16
Systems and methods are provided for delivering current using a matrix converter in a vehicle. An electrical system comprises an AC interface, a first conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the first conversion module, and a control module coupled to the first conversion module. The control module is configured to operate the first conversion module in a bidirectional operating mode to commutate current bidirectionally. When a magnitude of the current through the inductive element is greater than a first threshold value, the control module operates the conversion module in a unidirectional operating mode, wherein current is commutated unidirectionally.
NASA Technical Reports Server (NTRS)
Swenson, Paul
2017-01-01
Satellite/Payload Ground Systems - Typically highly-customized to a specific mission's use cases - Utilize hundreds (or thousands!) of specialized point-to-point interfaces for data flows / file transfers Documentation and tracking of these complex interfaces requires extensive time to develop and extremely high staffing costs Implementation and testing of these interfaces are even more cost-prohibitive, and documentation often lags behind implementation resulting in inconsistencies down the road With expanding threat vectors, IT Security, Information Assurance and Operational Security have become key Ground System architecture drivers New Federal security-related directives are generated on a daily basis, imposing new requirements on current / existing ground systems - These mandated activities and data calls typically carry little or no additional funding for implementation As a result, Ground System Sustaining Engineering groups and Information Technology staff continually struggle to keep up with the rolling tide of security Advancing security concerns and shrinking budgets are pushing these large stove-piped ground systems to begin sharing resources - I.e. Operational / SysAdmin staff, IT security baselines, architecture decisions or even networks / hosting infrastructure Refactoring these existing ground systems into multi-mission assets proves extremely challenging due to what is typically very tight coupling between legacy components As a result, many "Multi-Mission" ops. environments end up simply sharing compute resources and networks due to the difficulty of refactoring into true multi-mission systems Utilizing continuous integration / rapid system deployment technologies in conjunction with an open architecture messaging approach allows System Engineers and Architects to worry less about the low-level details of interfaces between components and configuration of systems GMSEC messaging is inherently designed to support multi-mission requirements, and allows components to aggregate data across multiple homogeneous or heterogeneous satellites or payloads - The highly-successful Goddard Science and Planetary Operations Control Center (SPOCC) utilizes GMSEC as the hub for it's automation and situational awareness capability Shifts focus towards getting GS to a final configuration-managed baseline, as well as multi-mission / big-picture capabilities that help increase situational awareness, promote cross-mission sharing and establish enhanced fleet management capabilities across all levels of the enterprise.
NASA Astrophysics Data System (ADS)
Hiatt, Keith L.; Rash, Clarence E.
2011-06-01
Background: Army Aviators rely on the ANVIS for night operations. Human factors literature notes that the ANVIS man-machine interface results in reports of visual and spinal complaints. This is the first study that has looked at these issues in the much harsher combat environment. Last year, the authors reported on the statistically significant (p<0.01) increased complaints of visual discomfort, degraded visual cues, and incidence of static and dynamic visual illusions in the combat environment [Proc. SPIE, Vol. 7688, 76880G (2010)]. In this paper we present the findings regarding increased spinal complaints and other man-machine interface issues found in the combat environment. Methods: A survey was administered to Aircrew deployed in support of Operation Enduring Freedom (OEF). Results: 82 Aircrew (representing an aggregate of >89,000 flight hours of which >22,000 were with ANVIS) participated. Analysis demonstrated high complaints of almost all levels of back and neck pain. Additionally, the use of body armor and other Aviation Life Support Equipment (ALSE) caused significant ergonomic complaints when used with ANVIS. Conclusions: ANVIS use in a combat environment resulted in higher and different types of reports of spinal symptoms and other man-machine interface issues over what was previously reported. Data from this study may be more operationally relevant than that of the peacetime literature as it is derived from actual combat and not from training flights, and it may have important implications about making combat predictions based on performance in training scenarios. Notably, Aircrew remarked that they could not execute the mission without ANVIS and ALSE and accepted the degraded ergonomic environment.
Performance evaluation of a robot-assisted catheter operating system with haptic feedback.
Song, Yu; Guo, Shuxiang; Yin, Xuanchun; Zhang, Linshuai; Hirata, Hideyuki; Ishihara, Hidenori; Tamiya, Takashi
2018-06-20
In this paper, a novel robot-assisted catheter operating system (RCOS) has been proposed as a method to reduce physical stress and X-ray exposure time to physicians during endovascular procedures. The unique design of this system allows the physician to apply conventional bedside catheterization skills (advance, retreat and rotate) to an input catheter, which is placed at the master side to control another patient catheter placed at the slave side. For this purpose, a magnetorheological (MR) fluids-based master haptic interface has been developed to measure the axial and radial motions of an input catheter, as well as to provide the haptic feedback to the physician during the operation. In order to achieve a quick response of the haptic force in the master haptic interface, a hall sensor-based closed-loop control strategy is employed. In slave side, a catheter manipulator is presented to deliver the patient catheter, according to position commands received from the master haptic interface. The contact forces between the patient catheter and blood vessel system can be measured by designed force sensor unit of catheter manipulator. Four levels of haptic force are provided to make the operator aware of the resistance encountered by the patient catheter during the insertion procedure. The catheter manipulator was evaluated for precision positioning. The time lag from the sensed motion to replicated motion is tested. To verify the efficacy of the proposed haptic feedback method, the evaluation experiments in vitro are carried out. The results demonstrate that the proposed system has the ability to enable decreasing the contact forces between the catheter and vasculature.
System level mechanical testing of the Clementine spacecraft
NASA Technical Reports Server (NTRS)
Haughton, James; Hauser, Joseph; Raynor, William; Lynn, Peter
1994-01-01
This paper discusses the system level structural testing that was performed to qualify the Clementine Spacecraft for flight. These tests included spin balance, combined acoustic and axial random vibration, lateral random vibration, quasi-static loads, pyrotechnic shock, modal survey and on-orbit jitter simulation. Some innovative aspects of this effort were: the simultaneously combined acoustic and random vibration test; the mass loaded interface modal survey test; and the techniques used to assess how operating on board mechanisms and thrusters affect sensor vision.
Factors associated with interest in novel interfaces for upper limb prosthesis control
Engdahl, Susannah M.; Chestek, Cynthia A.; Kelly, Brian; Davis, Alicia
2017-01-01
Background Surgically invasive interfaces for upper limb prosthesis control may allow users to operate advanced, multi-articulated devices. Given the potential medical risks of these invasive interfaces, it is important to understand what factors influence an individual’s decision to try one. Methods We conducted an anonymous online survey of individuals with upper limb loss. A total of 232 participants provided personal information (such as age, amputation level, etc.) and rated how likely they would be to try noninvasive (myoelectric) and invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces) interfaces for prosthesis control. Bivariate relationships between interest in each interface and 16 personal descriptors were examined. Significant variables from the bivariate analyses were then entered into multiple logistic regression models to predict interest in each interface. Results While many of the bivariate relationships were significant, only a few variables remained significant in the regression models. The regression models showed that participants were more likely to be interested in all interfaces if they had unilateral limb loss (p ≤ 0.001, odds ratio ≥ 2.799). Participants were more likely to be interested in the three invasive interfaces if they were younger (p < 0.001, odds ratio ≤ 0.959) and had acquired limb loss (p ≤ 0.012, odds ratio ≥ 3.287). Participants who used a myoelectric device were more likely to be interested in myoelectric control than those who did not (p = 0.003, odds ratio = 24.958). Conclusions Novel prosthesis control interfaces may be accepted most readily by individuals who are young, have unilateral limb loss, and/or have acquired limb loss However, this analysis did not include all possible factors that may have influenced participant’s opinions on the interfaces, so additional exploration is warranted. PMID:28767716
Factors associated with interest in novel interfaces for upper limb prosthesis control.
Engdahl, Susannah M; Chestek, Cynthia A; Kelly, Brian; Davis, Alicia; Gates, Deanna H
2017-01-01
Surgically invasive interfaces for upper limb prosthesis control may allow users to operate advanced, multi-articulated devices. Given the potential medical risks of these invasive interfaces, it is important to understand what factors influence an individual's decision to try one. We conducted an anonymous online survey of individuals with upper limb loss. A total of 232 participants provided personal information (such as age, amputation level, etc.) and rated how likely they would be to try noninvasive (myoelectric) and invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces) interfaces for prosthesis control. Bivariate relationships between interest in each interface and 16 personal descriptors were examined. Significant variables from the bivariate analyses were then entered into multiple logistic regression models to predict interest in each interface. While many of the bivariate relationships were significant, only a few variables remained significant in the regression models. The regression models showed that participants were more likely to be interested in all interfaces if they had unilateral limb loss (p ≤ 0.001, odds ratio ≥ 2.799). Participants were more likely to be interested in the three invasive interfaces if they were younger (p < 0.001, odds ratio ≤ 0.959) and had acquired limb loss (p ≤ 0.012, odds ratio ≥ 3.287). Participants who used a myoelectric device were more likely to be interested in myoelectric control than those who did not (p = 0.003, odds ratio = 24.958). Novel prosthesis control interfaces may be accepted most readily by individuals who are young, have unilateral limb loss, and/or have acquired limb loss However, this analysis did not include all possible factors that may have influenced participant's opinions on the interfaces, so additional exploration is warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallen, Robert B; Lambert, Scott R; Gevorgian, Vahan
This report details the commissioning of the 5-megawatt dynamometer at the National Wind Technology Center at the National Renewable Energy Laboratory. The purpose of these characterization tests were to verify the dynamometer's performance over the widest possible range of operating conditions, gain insight into system-level behavior, and establish confidence in measurement data.
Operator learning effects in teleoperated rendezvous & docking
NASA Astrophysics Data System (ADS)
Wilde, M.; Harder, J.; Purschke, R.
Teleoperation of spacecraft proximity operations and docking requires delicate timing and coordination of spacecraft maneuvers. Experience has shown that human operators show large performance fluctuations in these areas, which are a major factor to be addressed in operator training. In order to allow the quantification of the impact of these human fluctuations on control system performance and the human perception of this performance, a learning curve study was conducted with teleoperated final approach and docking scenarios. Over a period of ten experiment days, three test participants were tasked with repeatedly completing a set of three training scenarios. The scenarios were designed to contain different combinations of the major elements of any final approach and docking situation, and to feature an increasing difficulty level. The individual difficulty levels for the three operators furthermore differed in the level of operator support functions available in their human-machine interfaces. Operator performance in the test scenarios were evaluated in the fields approach success and precision, docking safety, and approach efficiency by a combination of recorded maneuver data and questionnaires. The results show that operator experience and the associated learning curves increase operator performance substantially, regardless of the support system used. The paper also shows that the fluctuations in operator performance and self-perception are substantial between as well as within experiment days, and must be reckoned with in teleoperation system design and mission planning.
NASA Astrophysics Data System (ADS)
Witkowski, Marcin; Lenar, Janusz; Sitnik, Robert; Verdonschot, Nico
2012-03-01
We present a human-computer interface that enables the operator to plan a surgical procedure on the musculoskeletal (MS) model of the patient's lower limbs, send the modified model to the bio-mechanical analysis module, and export the scenario parameters to the surgical navigation system. The interface provides the operator with tools for: importing customized MS model of the patient, cutting bones and manipulating/removal of bony fragments, repositioning muscle insertion points, muscle removal and placing implants. After planning the operator exports the modified MS model for bio-mechanical analysis of the functional outcome. If the simulation result is satisfactory the exported scenario data may be directly used during the actual surgery. The advantages of the developed interface are the possibility of installing it in various hardware configurations and coherent operation regardless of the devices used. The hardware configurations proposed to be used with the interface are: (a) a standard computer keyboard and mouse, and a 2-D display, (b) a touch screen as a single device for both input and output, or (c) a 3-D display and a haptic device for natural manipulation of 3-D objects. The interface may be utilized in two main fields. Experienced surgeons may use it to simulate their intervention plans and prepare input data for a surgical navigation system while student or novice surgeons can use it for simulating results of their hypothetical procedure. The interface has been developed in the TLEMsafe project (www.tlemsafe.eu) funded by the European Commission FP7 program.
NASA Technical Reports Server (NTRS)
Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)
1993-01-01
This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.
Interface effects on calculated defect levels for oxide defects
NASA Astrophysics Data System (ADS)
Edwards, Arthur; Barnaby, Hugh; Schultz, Peter; Pineda, Andrew
2014-03-01
Density functional theory (DFT) has had impressive recent success predicting defect levels in insulators and semiconductors [Schultz and von Lillienfeld, 2009]. Such success requires care in accounting for long-range electrostatic effects. Recently, Komsa and Pasquarello have started to address this problem in systems with interfaces. We report a multiscale technique for calculating electrostatic energies for charged defects in oxide of the metal-oxide-silicon (MOS) system, but where account is taken of substrate doping density, oxide thickness, and gate bias. We use device modeling to calculate electric fields for a point charge a fixed distance from the interface, and used the field to numerically calculate the long-range electrostatic interactions. We find, for example, that defect levels in the oxide do depend on both the magnitude and the polarity the substrate doping density. Furthermore, below 20 Å, oxide thickness also has significant effects. So, transferring results directly from bulk calculations leads to inaccuracies up to 0.5 eV- half of the silicon band gap. We will present trends in defect levels as a function of device parameters. We show that these results explain previous experimental results, and we comment on their potential impact on models for NBTI. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under co.
Development and Flight Testing of an Adaptable Vehicle Health-Monitoring Architecture
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.; Taylor, B. Douglas; Brett, Rube R.
2003-01-01
Development and testing of an adaptable wireless health-monitoring architecture for a vehicle fleet is presented. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained adaptable expert system. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate, and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear.
Interface Anywhere: Development of a Voice and Gesture System for Spaceflight Operations
NASA Technical Reports Server (NTRS)
Thompson, Shelby; Haddock, Maxwell; Overland, David
2013-01-01
The Interface Anywhere Project was funded through Innovation Charge Account (ICA) at NASA JSC in the Fall of 2012. The project was collaboration between human factors and engineering to explore the possibility of designing an interface to control basic habitat operations through gesture and voice control; (a) Current interfaces require the users to be physically near an input device in order to interact with the system; and (b) By using voice and gesture commands, the user is able to interact with the system anywhere they want within the work environment.
High accuracy electronic material level sensor
McEwan, T.E.
1997-03-11
The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.
High accuracy electronic material level sensor
McEwan, Thomas E.
1997-01-01
The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.
S-Band POSIX Device Drivers for RTEMS
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.
2011-01-01
This is a set of POSIX device driver level abstractions in the RTEMS RTOS (Real-Time Executive for Multiprocessor Systems real-time operating system) to SBand radio hardware devices that have been instantiated in an FPGA (field-programmable gate array). These include A/D (analog-to-digital) sample capture, D/A (digital-to-analog) sample playback, PLL (phase-locked-loop) tuning, and PWM (pulse-width-modulation)-controlled gain. This software interfaces to Sband radio hardware in an attached Xilinx Virtex-2 FPGA. It uses plug-and-play device discovery to map memory to device IDs. Instead of interacting with hardware devices directly, using direct-memory mapped access at the application level, this driver provides an application programming interface (API) offering that easily uses standard POSIX function calls. This simplifies application programming, enables portability, and offers an additional level of protection to the hardware. There are three separate device drivers included in this package: sband_device (ADC capture and DAC playback), pll_device (RF front end PLL tuning), and pwm_device (RF front end AGC control).
Integration of space weather into space situational awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Geoffrey D
Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent com plexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts.more » The penetrating radiation environment is highly dynamic and highly orbit-dependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which will allow operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather was the cause of anomalous operations, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This allows users to rapidly rule in or out environmental causes of anomalies. The same user interface can also allow users to drill down for more detailed quantitative information. DREAM can be run either from a distributed web-based user interface or as a stand-alone application for secure operations. In this paper we discuss the underlying structure of the DREAM model and demonstrate the user interface that we have developed . We also present some prototype data products and user interfaces for DREAM and discuss how space environment information can be seamlessly integrated into operational SSA systems.« less
Neutron Source Facility Training Simulator Based on EPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.
A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less
Power and Energy Management Strategy for Solid State Transformer Interfaced DC Microgrid
NASA Astrophysics Data System (ADS)
Yu, Xunwei
As a result of more and more applications of renewable energy into our ordinary life, how to construct a microgrid (MG) based on the distributed renewable energy resources and energy storages, and then to supply a reliable and flexible power to the conventional power system are the hottest topics nowadays. Comparing to the AC microgrid (AC MG), DC microgrid (DC MG) gets more attentions, because it has its own advantages, such as high efficiency, easy to integrate the DC energy sources and energy storages, and so on. Furthermore, the interaction between DC MG system and the distribution system is also an important and practical issue. In Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM), the Solid State Transformer (SST) is built, which can transform the distribution system to the low AC and DC system directly (usually home application level). Thus, the SST gives a new promising solution for low voltage level MG to interface the distribution level system instead of the traditional transformer. So a SST interfaced DC MG is proposed. However, it also brings new challenges in the design and control fields for this system because the system gets more complicated, which includes distributed energy sources and storages, load, and SST. The purpose of this dissertation is to design a reliable and flexible SST interfaced DC MG based on the renewable energy sources and energy storages, which can operate in islanding mode and SST-enabled mode. Dual Half Bridge (DHB) is selected as the topology for DC/DC converter in DC MG. The DHB operation procedure and average model are analyzed, which is the basis for the system modeling, control and operation. Furthermore, two novel power and energy management strategies are proposed. The first one is a distributed energy management strategy for the DC MG operating in the SST-enabled mode. In this method, the system is not only in distributed control to increase the system reliability, but the power sharing between DC MG and SST, State of Charge (SOC) for battery, are both considered in the system energy management strategy. Then the DC MG output power is controllable and the battery is autonomous charged and discharged based on its SOC and system information without communication. The system operation modes are defined, analyzed and the simulation results verify the strategy. The second power and energy management strategy is the hierarchical control. In this control strategy, three-layer control structure is presented and defined. The first layer is the primary control for the DC MG in islanding mode, which is to guarantee the DC MG system power balance without communication to increase the system reliability. The second control layer is to implement the seamless switch for DC MG system from islanding mode to SST-enabled mode. The third control layer is the tertiary control for the system energy management and the communication is also involved. The tertiary layer not only controls the whole DC MG output power, but also manages battery module charge and discharge statuses based on its SOC. The simulation and experimental results verify the methods. Some practical issues for the SST interfaced DC MG are also investigated. Power unbalance issue of SST is analyzed and a distributed control strategy is presented to solve this problem. Simulation and experimental results verify it. Furthermore, the control strategy for SST interfaced DC MG blackout is presented and the simulation results are shown to valid it. Also a plug and play SST interfaced DC MG is constructed and demonstrated. Several battery and PV modules construct a typical DC MG and a DC source is adopted to simulate the SST. The system is in distributed control and can operate in islanding mode and SST-enabled mode. The experimental results verify that individual module can plug into and unplug from the DC MG randomly without affecting the system stability. Furthermore, the communication ports are embedded into the system and a universal communication protocol is proposed to implement the plug and play function. Specified ID is defined for individual PV and battery for system recognition. A database is built to store the whole system date for visual display, monitor and history query.
Current conserving theory at the operator level
NASA Astrophysics Data System (ADS)
Yuan, Jiangtao; Wang, Yin; Wang, Jian
The basic assumption of quantum transport in mesoscopic systems is that the total charge inside the scattering region is zero. This means that the potential deep inside reservoirs is effectively screened and therefore the electric field at interface of scattering region is zero. Thus the current conservation condition can be satisfied automatically which is an important condition in mesoscopic transport. So far the current conserving ac theory is well developed by considering the displacement current which is due to Coulomb interaction if we just focus on the average current. However, the frequency dependent shot noise does not satisfy the conservation condition since we do not consider the current conservation at the operator level. In this work, we formulate a generalized current conserving theory at the operator level using non-equilibrium Green's function theory which could be applied to both average current and frequency dependent shot noise. A displacement operator is derived for the first time so that the frequency dependent correlation of displacement currents could be investigated. Moreover, the equilibrium shot noise is investigated and a generalized fluctuation-dissipation relationship is presented.
Gala: A Python package for galactic dynamics
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.
2017-10-01
Gala is an Astropy-affiliated Python package for galactic dynamics. Python enables wrapping low-level languages (e.g., C) for speed without losing flexibility or ease-of-use in the user-interface. The API for Gala was designed to provide a class-based and user-friendly interface to fast (C or Cython-optimized) implementations of common operations such as gravitational potential and force evaluation, orbit integration, dynamical transformations, and chaos indicators for nonlinear dynamics. Gala also relies heavily on and interfaces well with the implementations of physical units and astronomical coordinate systems in the Astropy package (astropy.units and astropy.coordinates). Gala was designed to be used by both astronomical researchers and by students in courses on gravitational dynamics or astronomy. It has already been used in a number of scientific publications and has also been used in graduate courses on Galactic dynamics to, e.g., provide interactive visualizations of textbook material.
Modeling Complex Cross-Systems Software Interfaces Using SysML
NASA Technical Reports Server (NTRS)
Mandutianu, Sanda; Morillo, Ron; Simpson, Kim; Liepack, Otfrid; Bonanne, Kevin
2013-01-01
The complex flight and ground systems for NASA human space exploration are designed, built, operated and managed as separate programs and projects. However, each system relies on one or more of the other systems in order to accomplish specific mission objectives, creating a complex, tightly coupled architecture. Thus, there is a fundamental need to understand how each system interacts with the other. To determine if a model-based system engineering approach could be utilized to assist with understanding the complex system interactions, the NASA Engineering and Safety Center (NESC) sponsored a task to develop an approach for performing cross-system behavior modeling. This paper presents the results of applying Model Based Systems Engineering (MBSE) principles using the System Modeling Language (SysML) to define cross-system behaviors and how they map to crosssystem software interfaces documented in system-level Interface Control Documents (ICDs).
NASA Astrophysics Data System (ADS)
Jeong, Ja Hoon; Kang, In Seok
2000-09-01
Effects of the operating conditions on the crystal-melt interface shape are analytically investigated for the Czochralski process of the oxide single crystals. The ideas, which were used for the silicon single-crystal growth by Jeong et al. (J. Crystal Growth 177 (1997) 157), are extended to the oxide single-crystal growth problem by considering the internal radiation in the crystal phase and the melt phase heat transfer with the high Prandtl number. The interface shape is approximated in the simplest form as a quadratic function of radial position and an expression for the deviation from the flat interface shape is derived as a function of operating conditions. The radiative heat transfer rate between the interface and the ambient is computed by calculating the view factors for the curved interface shape with the assumption that the crystal phase is completely transparent. For the melt phase, the well-known results from the thermal boundary layer analysis are applied for the asymptotic case of high Prandtl number based on the idea that the flow field near the crystal-melt interface can be modeled as either a uniaxial or a biaxial flow. Through this work, essential information on the interface shape deformation and the effects of operating conditions are brought out for the oxide single-crystal growth.
NASA Technical Reports Server (NTRS)
Lux, James P.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.
2011-01-01
An FPGA module leverages the previous work from Goddard Space Flight Center (GSFC) relating to NASA s Space Telecommunications Radio System (STRS) project. The STRS SpaceWire FPGA Module is written in the Verilog Register Transfer Level (RTL) language, and it encapsulates an unmodified GSFC core (which is written in VHDL). The module has the necessary inputs/outputs (I/Os) and parameters to integrate seamlessly with the SPARC I/O FPGA Interface module (also developed for the STRS operating environment, OE). Software running on the SPARC processor can access the configuration and status registers within the SpaceWire module. This allows software to control and monitor the SpaceWire functions, but it is also used to give software direct access to what is transmitted and received through the link. SpaceWire data characters can be sent/received through the software interface, as well as through the dedicated interface on the GSFC core. Similarly, SpaceWire time codes can be sent/received through the software interface or through a dedicated interface on the core. This innovation is designed for plug-and-play integration in the STRS OE. The SpaceWire module simplifies the interfaces to the GSFC core, and synchronizes all I/O to a single clock. An interrupt output (with optional masking) identifies time-sensitive events within the module. Test modes were added to allow internal loopback of the SpaceWire link and internal loopback of the client-side data interface.
Modular System to Enable Extravehicular Activity
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2011-01-01
The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space system (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower earth orbit (BLEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular extravehicular activity system (MEVAS) that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs and define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suitport technologies.
NASA Technical Reports Server (NTRS)
Mattson, H. L.; Gianformaggio, A.; Anderson, N. R.
1972-01-01
The activities of the structural and mechanical activity group of the orbital operations study project are discussed. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are presented. The following areas are considered: (1) mating, (2) orbital assembly, (3) separation, EOS payload deployment, and EOS payload retraction.
NASA Technical Reports Server (NTRS)
Fura, David A.; Windley, Phillip J.; Cohen, Gerald C.
1993-01-01
This technical report contains the HOL listings of the specification of the design and major portions of the requirements for a commercially developed processor interface unit (or PIU). The PIU is an interface chip performing memory interface, bus interface, and additional support services for a commercial microprocessor within a fault-tolerant computer system. This system, the Fault-Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance-free operation, or both. This report contains the actual HOL listings of the PIU specification as it currently exists. Section two of this report contains general-purpose HOL theories that support the PIU specification. These theories include definitions for the hardware components used in the PIU, our implementation of bit words, and our implementation of temporal logic. Section three contains the HOL listings for the PIU design specification. Aside from the PIU internal bus (I-Bus), this specification is complete. Section four contains the HOL listings for a major portion of the PIU requirements specification. Specifically, it contains most of the definition for the PIU behavior associated with memory accesses initiated by the local processor.
GMT azimuth bogie wheel-rail interface wear study
NASA Astrophysics Data System (ADS)
Teran, Jose; Lindh, Cory; Morgan, Chris; Manuel, Eric; Bigelow, Bruce C.; Burgett, William S.
2016-07-01
Performance of the GMT azimuth drive system is vital for the operation of the telescope and, as such, all components subject to wear at the drive interface merit a high level of scrutiny for achieving a proper balance between capital costs, maintenance costs, and the risk for downtime during planned and unplanned maintenance or replacement procedures. Of particular importance is the interface between the azimuth wheels and rail, as usage frequency is high, the full weight of the enclosure must be transferred through small patches of contact, and replacement of the rail would pose a greater logistical challenge than the replacement of smaller components such as bearings and gearmotors. This study investigates tradeoffs between various wheel-rail and roller-track interfaces, including performance, complexity, and anticipated wear considerations. First, a survey of railway and overhead crane industry literature is performed and general detailing recommendations are made to minimize wear and the risk of rolling contact fatigue. Second, Adams/VI-Rail is used to simulate lifetime wear of four specific configurations under consideration for the GMT azimuth wheel-rail interface; all studied configurations are shown to be viable, and their relative merits are discussed.
Towards a new modality-independent interface for a robotic wheelchair.
Bastos-Filho, Teodiano Freire; Cheein, Fernando Auat; Müller, Sandra Mara Torres; Celeste, Wanderley Cardoso; de la Cruz, Celso; Cavalieri, Daniel Cruz; Sarcinelli-Filho, Mário; Amaral, Paulo Faria Santos; Perez, Elisa; Soria, Carlos Miguel; Carelli, Ricardo
2014-05-01
This work presents the development of a robotic wheelchair that can be commanded by users in a supervised way or by a fully automatic unsupervised navigation system. It provides flexibility to choose different modalities to command the wheelchair, in addition to be suitable for people with different levels of disabilities. Users can command the wheelchair based on their eye blinks, eye movements, head movements, by sip-and-puff and through brain signals. The wheelchair can also operate like an auto-guided vehicle, following metallic tapes, or in an autonomous way. The system is provided with an easy to use and flexible graphical user interface onboard a personal digital assistant, which is used to allow users to choose commands to be sent to the robotic wheelchair. Several experiments were carried out with people with disabilities, and the results validate the developed system as an assistive tool for people with distinct levels of disability.
A novel approach in formulation of special transition elements: Mesh interface elements
NASA Technical Reports Server (NTRS)
Sarigul, Nesrin
1991-01-01
The objective of this research program is in the development of more accurate and efficient methods for solution of singular problems encountered in various branches of mechanics. The research program can be categorized under three levels. The first two levels involve the formulation of a new class of elements called 'mesh interface elements' (MIE) to connect meshes of traditional elements either in three dimensions or in three and two dimensions. The finite element formulations are based on boolean sum and blending operators. MEI are being formulated and tested in this research to account for the steep gradients encountered in aircraft and space structure applications. At present, the heat transfer and structural analysis problems are being formulated from uncoupled theory point of view. The status report: (1) summarizes formulation for heat transfer and structural analysis; (2) explains formulation of MEI; (3) examines computational efficiency; and (4) shows verification examples.
Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles
NASA Technical Reports Server (NTRS)
Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.
2001-01-01
The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.
Interfaces - Weak Links, Yet Great Opportunities
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Dimofte, Florin; Chupp, Raymond E.; Steinetz, Bruce M.
2011-01-01
Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed.
A Galerkin formulation of the MIB method for three dimensional elliptic interface problems
Xia, Kelin; Wei, Guo-Wei
2014-01-01
We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting. PMID:25309038
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewari, Somesh Vinayak, E-mail: somesh-vinayak@yahoo.com, E-mail: svtewari@barc.gov.in; Sharma, Archana; Mittal, K. C.
An experimental investigation of surface flashover characteristics of PMMA and POM is studied in compressed nitrogen gas environment with nitrogen as the background gas. The operating pressure range is from 1kg/cm{sup 2} to 4kg/cm{sup 2}. It is observed that the breakdown voltage of PMMA is higher than POM owing to a higher permittivity mismatch between POM- nitrogen interface as compared to the PMMA- nitrogen interface. The reduction in spacer efficiency with pressure for PMMA is 11% as compared to POM which shows a higher reduction of 18%. This paper further emphasizes on the role of energy level and density ofmore » charge carrier trapping centers for a reduced breakdown voltage in POM as compared to PMMA.« less
Computerized procedures system
Lipner, Melvin H.; Mundy, Roger A.; Franusich, Michael D.
2010-10-12
An online data driven computerized procedures system that guides an operator through a complex process facility's operating procedures. The system monitors plant data, processes the data and then, based upon this processing, presents the status of the current procedure step and/or substep to the operator. The system supports multiple users and a single procedure definition supports several interface formats that can be tailored to the individual user. Layered security controls access privileges and revisions are version controlled. The procedures run on a server that is platform independent of the user workstations that the server interfaces with and the user interface supports diverse procedural views.
User interface for a tele-operated robotic hand system
Crawford, Anthony L
2015-03-24
Disclosed here is a user interface for a robotic hand. The user interface anchors a user's palm in a relatively stationary position and determines various angles of interest necessary for a user's finger to achieve a specific fingertip location. The user interface additionally conducts a calibration procedure to determine the user's applicable physiological dimensions. The user interface uses the applicable physiological dimensions and the specific fingertip location, and treats the user's finger as a two link three degree-of-freedom serial linkage in order to determine the angles of interest. The user interface communicates the angles of interest to a gripping-type end effector which closely mimics the range of motion and proportions of a human hand. The user interface requires minimal contact with the operator and provides distinct advantages in terms of available dexterity, work space flexibility, and adaptability to different users.
The integrated analysis capability (IAC Level 2.0)
NASA Technical Reports Server (NTRS)
Frisch, Harold P.; Vos, Robert G.
1988-01-01
The critical data management issues involved in the development of the integral analysis capability (IAC), Level 2, to support the design analysis and performance evaluation of large space structures, are examined. In particular, attention is given to the advantages and disadvantages of the formalized data base; merging of the matrix and relational data concepts; data types, query operators, and data handling; sequential versus direct-access files; local versus global data access; programming languages and host machines; and data flow techniques. The discussion also covers system architecture, recent system level enhancements, executive/user interface capabilities, and technology applications.
NASA Astrophysics Data System (ADS)
Kattoju, Ravi Kiran; Barber, Daniel J.; Abich, Julian; Harris, Jonathan
2016-05-01
With increasing necessity for intuitive Soldier-robot communication in military operations and advancements in interactive technologies, autonomous robots have transitioned from assistance tools to functional and operational teammates able to service an array of military operations. Despite improvements in gesture and speech recognition technologies, their effectiveness in supporting Soldier-robot communication is still uncertain. The purpose of the present study was to evaluate the performance of gesture and speech interface technologies to facilitate Soldier-robot communication during a spatial-navigation task with an autonomous robot. Gesture and speech semantically based spatial-navigation commands leveraged existing lexicons for visual and verbal communication from the U.S Army field manual for visual signaling and a previously established Squad Level Vocabulary (SLV). Speech commands were recorded by a Lapel microphone and Microsoft Kinect, and classified by commercial off-the-shelf automatic speech recognition (ASR) software. Visual signals were captured and classified using a custom wireless gesture glove and software. Participants in the experiment commanded a robot to complete a simulated ISR mission in a scaled down urban scenario by delivering a sequence of gesture and speech commands, both individually and simultaneously, to the robot. Performance and reliability of gesture and speech hardware interfaces and recognition tools were analyzed and reported. Analysis of experimental results demonstrated the employed gesture technology has significant potential for enabling bidirectional Soldier-robot team dialogue based on the high classification accuracy and minimal training required to perform gesture commands.
SOA approach to battle command: simulation interoperability
NASA Astrophysics Data System (ADS)
Mayott, Gregory; Self, Mid; Miller, Gordon J.; McDonnell, Joseph S.
2010-04-01
NVESD is developing a Sensor Data and Management Services (SDMS) Service Oriented Architecture (SOA) that provides an innovative approach to achieve seamless application functionality across simulation and battle command systems. In 2010, CERDEC will conduct a SDMS Battle Command demonstration that will highlight the SDMS SOA capability to couple simulation applications to existing Battle Command systems. The demonstration will leverage RDECOM MATREX simulation tools and TRADOC Maneuver Support Battle Laboratory Virtual Base Defense Operations Center facilities. The battle command systems are those specific to the operation of a base defense operations center in support of force protection missions. The SDMS SOA consists of four components that will be discussed. An Asset Management Service (AMS) will automatically discover the existence, state, and interface definition required to interact with a named asset (sensor or a sensor platform, a process such as level-1 fusion, or an interface to a sensor or other network endpoint). A Streaming Video Service (SVS) will automatically discover the existence, state, and interfaces required to interact with a named video stream, and abstract the consumers of the video stream from the originating device. A Task Manager Service (TMS) will be used to automatically discover the existence of a named mission task, and will interpret, translate and transmit a mission command for the blue force unit(s) described in a mission order. JC3IEDM data objects, and software development kit (SDK), will be utilized as the basic data object definition for implemented web services.
Online monitoring of oil film using electrical capacitance tomography and level set method.
Xue, Q; Sun, B Y; Cui, Z Q; Ma, M; Wang, H X
2015-08-01
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for online monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.
Online monitoring of oil film using electrical capacitance tomography and level set method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Q., E-mail: xueqian@tju.edu.cn; Ma, M.; Sun, B. Y.
2015-08-15
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for onlinemore » monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.« less
Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces
NASA Technical Reports Server (NTRS)
Ellman, Alvin; Carlton, Magdi
1993-01-01
The Network Operations Control Center (NOCC) of the DSN is responsible for scheduling the resources of DSN, and monitoring all multi-mission spacecraft tracking activities in real-time. Operations performs this job with computer systems at JPL connected to over 100 computers at Goldstone, Australia and Spain. The old computer system became obsolete, and the first version of the new system was installed in 1991. Significant improvements for the computer-human interfaces became the dominant theme for the replacement project. Major issues required innovating problem solving. Among these issues were: How to present several thousand data elements on displays without overloading the operator? What is the best graphical representation of DSN end-to-end data flow? How to operate the system without memorizing mnemonics of hundreds of operator directives? Which computing environment will meet the competing performance requirements? This paper presents the technical challenges, engineering solutions, and results of the NOCC computer-human interface design.
Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface (ER200422)
2008-01-01
discharge to surface water associated with groundwater leachate from coastal landfills, and (3) assessment of remedy effectiveness for treatment of...reduce contaminant concentrations to levels where natural attenuation (NA) and the phytoremediation plantation can effectively control the... phytoremediation plantation was established in March 2002. The in situ chemical oxidation (ISCO) system, which operated from March 2003 to October 2003, was
Ecological Interfaces for Improving Mobile Robot Teleoperation
2007-10-01
reviewers’ comments. C. W. Nielsen is with the Idaho National Laboratory, Idaho Falls, ID 83415 USA (e-mail: curtis.nielsen@inl.gov). M . A. Goodrich is with...tele- operation. Section III presents the ecological interface paradigm and describes the 3-D interface. Section IV presents the sum- maries from new...in an empty laboratory environment that was filled with cardboard boxes and was more than 700 m from the operator. The display that the test subjects
Open multi-agent control architecture to support virtual-reality-based man-machine interfaces
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel
2001-10-01
Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.
Recommendations for a service framework to access astronomical archives
NASA Technical Reports Server (NTRS)
Travisano, J. J.; Pollizzi, J.
1992-01-01
There are a large number of astronomical archives and catalogs on-line for network access, with many different user interfaces and features. Some systems are moving towards distributed access, supplying users with client software for their home sites which connects to servers at the archive site. Many of the issues involved in defining a standard framework of services that archive/catalog suppliers can use to achieve a basic level of interoperability are described. Such a framework would simplify the development of client and server programs to access the wide variety of astronomical archive systems. The primary services that are supplied by current systems include: catalog browsing, dataset retrieval, name resolution, and data analysis. The following issues (and probably more) need to be considered in establishing a standard set of client/server interfaces and protocols: Archive Access - dataset retrieval, delivery, file formats, data browsing, analysis, etc.; Catalog Access - database management systems, query languages, data formats, synchronous/asynchronous mode of operation, etc.; Interoperability - transaction/message protocols, distributed processing mechanisms (DCE, ONC/SunRPC, etc), networking protocols, etc.; Security - user registration, authorization/authentication mechanisms, etc.; Service Directory - service registration, lookup, port/task mapping, parameters, etc.; Software - public vs proprietary, client/server software, standard interfaces to client/server functions, software distribution, operating system portability, data portability, etc. Several archive/catalog groups, notably the Astrophysics Data System (ADS), are already working in many of these areas. In the process of developing StarView, which is the user interface to the Space Telescope Data Archive and Distribution Service (ST-DADS), these issues and the work of others were analyzed. A framework of standard interfaces for accessing services on any archive system which would benefit archive user and supplier alike is proposed.
Multi-camera synchronization core implemented on USB3 based FPGA platform
NASA Astrophysics Data System (ADS)
Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado
2015-03-01
Centered on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a new technique to synchronize up to 8 individual self-timed cameras with minimal error. Small form factor self-timed camera modules of 1 mm x 1 mm or smaller do not normally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge of synchronizing multiple selftimed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames, a Master-Slave interface was implemented. A single camera is defined as the Master, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the implementation of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.
Image synchronization for 3D application using the NanEye sensor
NASA Astrophysics Data System (ADS)
Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado
2015-03-01
Based on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a novel technique to perfectly synchronize up to 8 individual self-timed cameras. Minimal form factor self-timed camera modules of 1 mm x 1 mm or smaller do not generally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge to synchronize multiple self-timed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras to synchronize their frame rate and frame phase. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames of multiple cameras, a Master-Slave interface was implemented. A single camera is defined as the Master entity, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the realization of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.
Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs)
NASA Astrophysics Data System (ADS)
Valov, Ilia
2017-09-01
Redox-based resistive switching memories are nowadays one of the most studied systems in both academia and industrial communities. These devices are scalable down to an almost atomic level and are supposed to be applicable not only for next-generation nonvolatile memories, but also for neuromorphic computing, alternative logic operations and selector devices. The main characteristic feature of these cells is their nano- to sub-nano dimension. This makes the control and especially prediction of their properties very challenging. One of the ways to achieve better understanding and to improve the control of these systems is to study and modify their interfaces. In this review, first the fundamentals will be discussed, as these are essential for understanding which factors control the nanoscale interface properties. Further, different types of interactions at the electrode/solid electrolyte interface reported for ECM- and VCM-type cells will be exemplarily shown. Finally, the strategies and different solutions used to modify the interfaces and overcome the existing problems on the way to more stable and reliable devices will be highlighted.
IAC - INTEGRATED ANALYSIS CAPABILITY
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1994-01-01
The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. With the goal of supporting the unique needs of engineering analysis groups concerned with interdisciplinary problems, IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a data base, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automatic data transfer among analysis programs. IAC 2.5, designed to be compatible as far as possible with Level 1.5, contains a major upgrade in executive and database management system capabilities, and includes interfaces to enable thermal, structures, optics, and control interaction dynamics analysis. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation interfaces are supplied for building and viewing models. Advanced graphics capabilities are provided within particular analysis modules such as INCA and NASTRAN. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files, object code, etc. The user can define groups of data and relations between them. A full data manipulation and query system operates with the database. The current interface modules comprise five groups: 1) Structural analysis - IAC contains a NASTRAN interface for standalone analysis or certain structural/control/thermal combinations. IAC provides enhanced structural capabilities for normal modes and static deformation analysis via special DMAP sequences. IAC 2.5 contains several specialized interfaces from NASTRAN in support of multidisciplinary analysis. 2) Thermal analysis - IAC supports finite element and finite difference techniques for steady state or transient analysis. There are interfaces for the NASTRAN thermal analyzer, SINDA/SINFLO, and TRASYS II. FEMNET, which converts finite element structural analysis models to finite difference thermal analysis models, is also interfaced with the IAC database. 3) System dynamics - The DISCOS simulation program which allows for either nonlinear time domain analysis or linear frequency domain analysis, is fully interfaced to the IAC database management capability. 4) Control analysis - Interfaces for the ORACLS, SAMSAN, NBOD2, and INCA programs allow a wide range of control system analyses and synthesis techniques. Level 2.5 includes EIGEN, which provides tools for large order system eigenanalysis, and BOPACE, which allows for geometric capabilities and finite element analysis with nonlinear material. Also included in IAC level 2.5 is SAMSAN 3.1, an engineering analysis program which contains a general purpose library of over 600 subroutin
Knowledge representation system for assembly using robots
NASA Technical Reports Server (NTRS)
Jain, A.; Donath, M.
1987-01-01
Assembly robots combine the benefits of speed and accuracy with the capability of adaptation to changes in the work environment. However, an impediment to the use of robots is the complexity of the man-machine interface. This interface can be improved by providing a means of using a priori-knowledge and reasoning capabilities for controlling and monitoring the tasks performed by robots. Robots ought to be able to perform complex assembly tasks with the help of only supervisory guidance from human operators. For such supervisory quidance, it is important to express the commands in terms of the effects desired, rather than in terms of the motion the robot must undertake in order to achieve these effects. A suitable knowledge representation can facilitate the conversion of task level descriptions into explicit instructions to the robot. Such a system would use symbolic relationships describing the a priori information about the robot, its environment, and the tasks specified by the operator to generate the commands for the robot.
A universal six-joint robot controller
NASA Technical Reports Server (NTRS)
Bihn, D. G.; Hsia, T. C.
1987-01-01
A general purpose six-axis robotic manipulator controller was designed and implemented to serve as a research tool for the investigation of the practical and theoretical aspects of various control strategies in robotics. A 80286-based Intel System 310 running the Xenix operating servo software as well as the higher level software (e.g., kinematics and path planning) were employed. A Multibus compatible interface board was designed and constructed to handle I/O signals from the robot manipulator's joint motors. From the design point of view, the universal controller is capable of driving robot manipulators equipped with D.C. joint motors and position optical encoders. To test its functionality, the controller is connected to the joint motor D.C. power amplifier of a PUMA 560 arm bypassing completely the manufacturer-supplied Unimation controller. A controller algorithm consisting of local PD control laws was written and installed into the Xenix operating system. Additional software drivers were implemented to allow application programs access to the interface board. All software was written in the C language.
Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research
Degenhart, Alan D.; Kelly, John W.; Ashmore, Robin C.; Collinger, Jennifer L.; Tyler-Kabara, Elizabeth C.; Weber, Douglas J.; Wang, Wei
2011-01-01
This paper presents “Craniux,” an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development. PMID:21687575
Craniux: a LabVIEW-based modular software framework for brain-machine interface research.
Degenhart, Alan D; Kelly, John W; Ashmore, Robin C; Collinger, Jennifer L; Tyler-Kabara, Elizabeth C; Weber, Douglas J; Wang, Wei
2011-01-01
This paper presents "Craniux," an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.
Gaze-independent brain-computer interfaces based on covert attention and feature attention
NASA Astrophysics Data System (ADS)
Treder, M. S.; Schmidt, N. M.; Blankertz, B.
2011-10-01
There is evidence that conventional visual brain-computer interfaces (BCIs) based on event-related potentials cannot be operated efficiently when eye movements are not allowed. To overcome this limitation, the aim of this study was to develop a visual speller that does not require eye movements. Three different variants of a two-stage visual speller based on covert spatial attention and non-spatial feature attention (i.e. attention to colour and form) were tested in an online experiment with 13 healthy participants. All participants achieved highly accurate BCI control. They could select one out of thirty symbols (chance level 3.3%) with mean accuracies of 88%-97% for the different spellers. The best results were obtained for a speller that was operated using non-spatial feature attention only. These results show that, using feature attention, it is possible to realize high-accuracy, fast-paced visual spellers that have a large vocabulary and are independent of eye gaze.
Airborne Precision Spacing (APS) Dependent Parallel Arrivals (DPA)
NASA Technical Reports Server (NTRS)
Smith, Colin L.
2012-01-01
The Airborne Precision Spacing (APS) team at the NASA Langley Research Center (LaRC) has been developing a concept of operations to extend the current APS concept to support dependent approaches to parallel or converging runways along with the required pilot and controller procedures and pilot interfaces. A staggered operations capability for the Airborne Spacing for Terminal Arrival Routes (ASTAR) tool was developed and designated as ASTAR10. ASTAR10 has reached a sufficient level of maturity to be validated and tested through a fast-time simulation. The purpose of the experiment was to identify and resolve any remaining issues in the ASTAR10 algorithm, as well as put the concept of operations through a practical test.
Simulation of the human-telerobot interface
NASA Technical Reports Server (NTRS)
Stuart, Mark A.; Smith, Randy L.
1988-01-01
A part of NASA's Space Station will be a Flight Telerobotic Servicer (FTS) used to help assemble, service, and maintain the Space Station. Since the human operator will be required to control the FTS, the design of the human-telerobot interface must be optimized from a human factors perspective. Simulation has been used as an aid in the development of complex systems. Simulation has been especially useful when it has been applied to the development of complex systems. Simulation should ensure that the hardware and software components of the human-telerobot interface have been designed and selected so that the operator's capabilities and limitations have been accommodated for since this is a complex system where few direct comparisons to existent systems can be made. Three broad areas of the human-telerobot interface where simulation can be of assistance are described. The use of simulation not only can result in a well-designed human-telerobot interface, but also can be used to ensure that components have been selected to best meet system's goals, and for operator training.
Lee, Hiang Kwee; Lee, Yih Hong; Morabito, Joseph V; Liu, Yejing; Koh, Charlynn Sher Lin; Phang, In Yee; Pedireddy, Srikanth; Han, Xuemei; Chou, Lien-Yang; Tsung, Chia-Kuang; Ling, Xing Yi
2017-08-23
We demonstrate a molecular-level observation of driving CO 2 molecules into a quasi-condensed phase on the solid surface of metal nanoparticles (NP) under ambient conditions of 1 bar and 298 K. This is achieved via a CO 2 accumulation in the interface between a metal-organic framework (MOF) and a metal NP surface formed by coating NPs with a MOF. Using real-time surface-enhanced Raman scattering spectroscopy, a >18-fold enhancement of surface coverage of CO 2 is observed at the interface. The high surface concentration leads CO 2 molecules to be in close proximity with the probe molecules on the metal surface (4-methylbenzenethiol), and transforms CO 2 molecules into a bent conformation without the formation of chemical bonds. Such linear-to-bent transition of CO 2 is unprecedented at ambient conditions in the absence of chemical bond formation, and is commonly observed only in pressurized systems (>10 5 bar). The molecular-level observation of a quasi-condensed phase induced by MOF coating could impact the future design of hybrid materials in diverse applications, including catalytic CO 2 conversion and ambient solid-gas operation.
IAC - INTEGRATED ANALYSIS CAPABILITY
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1994-01-01
The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. With the goal of supporting the unique needs of engineering analysis groups concerned with interdisciplinary problems, IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a data base, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automatic data transfer among analysis programs. IAC 2.5, designed to be compatible as far as possible with Level 1.5, contains a major upgrade in executive and database management system capabilities, and includes interfaces to enable thermal, structures, optics, and control interaction dynamics analysis. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation interfaces are supplied for building and viewing models. Advanced graphics capabilities are provided within particular analysis modules such as INCA and NASTRAN. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files, object code, etc. The user can define groups of data and relations between them. A full data manipulation and query system operates with the database. The current interface modules comprise five groups: 1) Structural analysis - IAC contains a NASTRAN interface for standalone analysis or certain structural/control/thermal combinations. IAC provides enhanced structural capabilities for normal modes and static deformation analysis via special DMAP sequences. IAC 2.5 contains several specialized interfaces from NASTRAN in support of multidisciplinary analysis. 2) Thermal analysis - IAC supports finite element and finite difference techniques for steady state or transient analysis. There are interfaces for the NASTRAN thermal analyzer, SINDA/SINFLO, and TRASYS II. FEMNET, which converts finite element structural analysis models to finite difference thermal analysis models, is also interfaced with the IAC database. 3) System dynamics - The DISCOS simulation program which allows for either nonlinear time domain analysis or linear frequency domain analysis, is fully interfaced to the IAC database management capability. 4) Control analysis - Interfaces for the ORACLS, SAMSAN, NBOD2, and INCA programs allow a wide range of control system analyses and synthesis techniques. Level 2.5 includes EIGEN, which provides tools for large order system eigenanalysis, and BOPACE, which allows for geometric capabilities and finite element analysis with nonlinear material. Also included in IAC level 2.5 is SAMSAN 3.1, an engineering analysis program which contains a general purpose library of over 600 subroutines for numerical analysis. 5) Graphics - The graphics package IPLOT is included in IAC. IPLOT generates vector displays of tabular data in the form of curves, charts, correlation tables, etc. Either DI3000 or PLOT-10 graphics software is required for full graphic capability. In addition to these analysis tools, IAC 2.5 contains an IGES interface which allows the user to read arbitrary IGES files into an IAC database and to edit and output new IGES files. IAC is available by license for a period of 10 years to approved U.S. licensees. The licensed program product includes one set of supporting documentation. Additional copies may be purchased separately. IAC is written in FORTRAN 77 and has been implemented on a DEC VAX series computer operating under VMS. IAC can be executed by multiple concurrent users in batch or interactive mode. The program is structured to allow users to easily delete those program capabilities and "how to" examples they do not want in order to reduce the size of the package. The basic central memory requirement for IAC is approximately 750KB. The following programs are also available from COSMIC as separate packages: NASTRAN, SINDA/SINFLO, TRASYS II, DISCOS, ORACLS, SAMSAN, NBOD2, and INCA. The development of level 2.5 of IAC was completed in 1989.
Airborne Precision Spacing for Dependent Parallel Operations Interface Study
NASA Technical Reports Server (NTRS)
Volk, Paul M.; Takallu, M. A.; Hoffler, Keith D.; Weiser, Jarold; Turner, Dexter
2012-01-01
This paper describes a usability study of proposed cockpit interfaces to support Airborne Precision Spacing (APS) operations for aircraft performing dependent parallel approaches (DPA). NASA has proposed an airborne system called Pair Dependent Speed (PDS) which uses their Airborne Spacing for Terminal Arrival Routes (ASTAR) algorithm to manage spacing intervals. Interface elements were designed to facilitate the input of APS-DPA spacing parameters to ASTAR, and to convey PDS system information to the crew deemed necessary and/or helpful to conduct the operation, including: target speed, guidance mode, target aircraft depiction, and spacing trend indication. In the study, subject pilots observed recorded simulations using the proposed interface elements in which the ownship managed assigned spacing intervals from two other arriving aircraft. Simulations were recorded using the Aircraft Simulation for Traffic Operations Research (ASTOR) platform, a medium-fidelity simulator based on a modern Boeing commercial glass cockpit. Various combinations of the interface elements were presented to subject pilots, and feedback was collected via structured questionnaires. The results of subject pilot evaluations show that the proposed design elements were acceptable, and that preferable combinations exist within this set of elements. The results also point to potential improvements to be considered for implementation in future experiments.
Monitoring operational data production applying Big Data tooling
NASA Astrophysics Data System (ADS)
Som de Cerff, Wim; de Jong, Hotze; van den Berg, Roy; Bos, Jeroen; Oosterhoff, Rijk; Klein Ikkink, Henk Jan; Haga, Femke; Elsten, Tom; Verhoef, Hans; Koutek, Michal; van de Vegte, John
2015-04-01
Within the KNMI Deltaplan programme for improving the KNMI operational infrastructure an new fully automated system for monitoring the KNMI operational data production systems is being developed: PRISMA (PRocessflow Infrastructure Surveillance and Monitoring Application). Currently the KNMI operational (24/7) production systems consist of over 60 applications, running on different hardware systems and platforms. They are interlinked for the production of numerous data products, which are delivered to internal and external customers. All applications are individually monitored by different applications, complicating root cause and impact analysis. Also, the underlying hardware and network is monitored separately using Zabbix. Goal of the new system is to enable production chain monitoring, which enables root cause analysis (what is the root cause of the disruption) and impact analysis (what other products will be effected). The PRISMA system will make it possible to dispose all the existing monitoring applications, providing one interface for monitoring the data production. For modeling the production chain, the Neo4j Graph database is used to store and query the model. The model can be edited through the PRISMA web interface, but is mainly automatically provided by the applications and systems which are to be monitored. The graph enables us to do root case and impact analysis. The graph can be visualized in the PRISMA web interface on different levels. Each 'monitored object' in the model will have a status (OK, error, warning, unknown). This status is derived by combing all log information available. For collecting and querying the log information Splunk is used. The system is developed using Scrum, by a multi-disciplinary team consisting of analysts, developers, a tester and interaction designer. In the presentation we will focus on the lessons learned working with the 'Big data' tooling Splunk and Neo4J.
An approach to a real-time distribution system
NASA Technical Reports Server (NTRS)
Kittle, Frank P., Jr.; Paddock, Eddie J.; Pocklington, Tony; Wang, Lui
1990-01-01
The requirements of a real-time data distribution system are to provide fast, reliable delivery of data from source to destination with little or no impact to the data source. In this particular case, the data sources are inside an operational environment, the Mission Control Center (MCC), and any workstation receiving data directly from the operational computer must conform to the software standards of the MCC. In order to supply data to development workstations outside of the MCC, it is necessary to use gateway computers that prevent unauthorized data transfer back to the operational computers. Many software programs produced on the development workstations are targeted for real-time operation. Therefore, these programs must migrate from the development workstation to the operational workstation. It is yet another requirement for the Data Distribution System to ensure smooth transition of the data interfaces for the application developers. A standard data interface model has already been set up for the operational environment, so the interface between the distribution system and the application software was developed to match that model as closely as possible. The system as a whole therefore allows the rapid development of real-time applications without impacting the data sources. In summary, this approach to a real-time data distribution system provides development users outside of the MCC with an interface to MCC real-time data sources. In addition, the data interface was developed with a flexible and portable software design. This design allows for the smooth transition of new real-time applications to the MCC operational environment.
Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.
Deng, Li; Wang, Guohua; Chen, Bo
2015-01-01
In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.
Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP
Wang, Guohua; Chen, Bo
2015-01-01
In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740
International Space Station Alpha user payload operations concept
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Crysel, William B.; Duncan, Elaine F.; Rider, James W.
1994-01-01
International Space Station Alpha (ISSA) will accommodate a variety of user payloads investigating diverse scientific and technology disciplines on behalf of five international partners: Canada, Europe, Japan, Russia, and the United States. A combination of crew, automated systems, and ground operations teams will control payload operations that require complementary on-board and ground systems. This paper presents the current planning for the ISSA U.S. user payload operations concept and the functional architecture supporting the concept. It describes various NASA payload operations facilities, their interfaces, user facility flight support, the payload planning system, the onboard and ground data management system, and payload operations crew and ground personnel training. This paper summarizes the payload operations infrastructure and architecture developed at the Marshall Space Flight Center (MSFC) to prepare and conduct ISSA on-orbit payload operations from the Payload Operations Integration Center (POIC), and from various user operations locations. The authors pay particular attention to user data management, which includes interfaces with both the onboard data management system and the ground data system. Discussion covers the functional disciplines that define and support POIC payload operations: Planning, Operations Control, Data Management, and Training. The paper describes potential interfaces between users and the POIC disciplines, from the U.S. user perspective.
NASA Technical Reports Server (NTRS)
Baron, S.; Levison, W. H.
1977-01-01
Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.
Phase C/D program development plan. Volume 1: Program plan
NASA Technical Reports Server (NTRS)
1971-01-01
The Phase C/D definition of the Modular Space Station has been developed. The modular approach selected during the option period was evaluated, requirements were defined, and program definition and preliminary design were accomplished. The Space Station Project is covered in depth, the research applications module is limited to a project-level definition, and the shuttle operations are included for interface requirements identification, scheduling, and costing. Discussed in detail are: (1) baseline program and project descriptions; (2) phase project planning; (3) modular space station program schedule; (4) program management plan; (5) operations; (6) facilities; (7) logistics; and (8) manpower.
The Automation-by-Expertise-by-Training Interaction.
Strauch, Barry
2017-03-01
I introduce the automation-by-expertise-by-training interaction in automated systems and discuss its influence on operator performance. Transportation accidents that, across a 30-year interval demonstrated identical automation-related operator errors, suggest a need to reexamine traditional views of automation. I review accident investigation reports, regulator studies, and literature on human computer interaction, expertise, and training and discuss how failing to attend to the interaction of automation, expertise level, and training has enabled operators to commit identical automation-related errors. Automated systems continue to provide capabilities exceeding operators' need for effective system operation and provide interfaces that can hinder, rather than enhance, operator automation-related situation awareness. Because of limitations in time and resources, training programs do not provide operators the expertise needed to effectively operate these automated systems, requiring them to obtain the expertise ad hoc during system operations. As a result, many do not acquire necessary automation-related system expertise. Integrating automation with expected operator expertise levels, and within training programs that provide operators the necessary automation expertise, can reduce opportunities for automation-related operator errors. Research to address the automation-by-expertise-by-training interaction is needed. However, such research must meet challenges inherent to examining realistic sociotechnical system automation features with representative samples of operators, perhaps by using observational and ethnographic research. Research in this domain should improve the integration of design and training and, it is hoped, enhance operator performance.
DESIGN AND EVALUATION OF INDIVIDUAL ELEMENTS OF THE INTERFACE FOR AN AGRICULTURAL MACHINE.
Rakhra, Aadesh K; Mann, Danny D
2018-01-29
If a user-centered approach is not used to design information displays, the quantity and quality of information presented to the user may not match the needs of the user, or it may exceed the capability of the human operator for processing and using that information. The result may be an excessive mental workload and reduced situation awareness of the operator, which can negatively affect the machine performance and operational outcomes. The increasing use of technology in agricultural machines may expose the human operator to excessive and undesirable information if the operator's information needs and information processing capabilities are ignored. In this study, a user-centered approach was used to design specific interface elements for an agricultural air seeder. Designs of the interface elements were evaluated in a laboratory environment by developing high-fidelity prototypes. Evaluations of the user interface elements yielded significant improvement in situation awareness (up to 11%; overall mean difference = 5.0 (4.8%), 95% CI (6.4728, 3.5939), p 0.0001). Mental workload was reduced by up to 19.7% (overall mean difference = -5.2 (-7.9%), n = 30, a = 0.05). Study participants rated the overall performance of the newly designed user-centered interface elements higher in comparison to the previous designs (overall mean difference = 27.3 (189.8%), 99% CI (35.150, 19.384), p 0.0001. Copyright© by the American Society of Agricultural Engineers.
Re-Engineering of the Hubble Space Telescope (HST) to Reduce Operational Costs
NASA Technical Reports Server (NTRS)
Garvis, Michael; Dougherty, Andrew; Whittier, Wallace
1996-01-01
Satellite telemetry processing onboard the Hubble Space Telescope (HST) is carried out using dedicated software and hardware. The current ground system is expensive to operate and maintain. The mandate to reduce satellite ground system operations and maintenance costs by the year 2000 led NASA to upgrade the command and control systems in order to improve the data processing capabilities, reduce operator experience levels and increase system standardization. As a result, a command and control system product development team was formed to redesign and develop the HST ground system. The command and control system ground system development consists of six elements. The results of the prototyping phase carried out for the following of these elements are presented: the front end processor; middleware, and the graphical user interface.
Earth Observatory Satellite system definition study. Report 6: Space shuttle interfaces/utilization
NASA Technical Reports Server (NTRS)
1974-01-01
An analysis was conducted to determine the compatibility of the Earth Observatory Satellite (EOS) with the space shuttle. The mechanical interfaces and provisions required for a launch or retrieval of the EOS by the space shuttle are summarized. The space shuttle flight support equipment required for the operation is defined. Diagrams of the space shuttle in various configurations are provised to show the mission capability with the EOS. The subjects considered are as follows: (1) structural and mechanical interfaces, (2) spacecraft retention and deployment, (3) spacecraft retrieval, (4) electrical interfaces, (5) payload shuttle operations, (6) shuttle mode cost analysis, (7) shuttle orbit trades, and (8) safety considerations.
Transfer of control system interface solutions from other domains to the thermal power industry.
Bligård, L-O; Andersson, J; Osvalder, A-L
2012-01-01
In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain.
Human-Robot Interaction Directed Research Project
NASA Technical Reports Server (NTRS)
Sandor, Aniko; Cross, Ernest V., II; Chang, M. L.
2014-01-01
Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of navigational guidance (CG and SG) on operator task performance and attention allocation during teleoperation of a robot arm through uplinked commands. Although this study complements the first study on navigational guidance with hand controllers, it is a separate investigation due to the distinction in intended operators (i.e., crewmembers versus ground-operators). A third study looked at superimposed and integrated overlays for teleoperation of a mobile robot using a hand controller. When AR is superimposed on the external world, it appears to be fixed onto the display and internal to the operators' workstation. Unlike superimposed overlays, integrated overlays often appear as three-dimensional objects and move as if part of the external world. Studies conducted in the aviation domain show that integrated overlays can improve situation awareness and reduce the amount of deviation from the optimal path. The purpose of the study was to investigate whether these results apply to HRI tasks, such as navigation with a mobile robot. HRP GAPS This HRI research contributes to closure of HRP gaps by providing information on how display and control characteristics - those related to guidance, feedback, and command modalities - affect operator performance. The overarching goals are to improve interface usability, reduce operator error, and develop candidate guidelines to design effective human-robot interfaces.
Technology advancement of the electrochemical CO2 concentrating process
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.
1978-01-01
The overall objectives of the present program are to: (1) improve the performance of the electrochemical CO2 removal technique by increasing CO2 removal efficiencies at pCO2 levels below 400 Pa, increasing cell power output and broadening the tolerance of electrochemical cells for operation over wide ranges of cabin relative humidity; (2) design, fabricate, and assemble development hardware to continue the evolution of the electrochemical concentrating technique from the existing level to an advanced level able to efficiently meet the CO2 removal needs of a spacecraft air revitalization system (ARS); (3) develop and incorporate into the EDC the components and concepts that allow for the efficient integration of the electrochemical technique with other subsystems to form a spacecraft ARS; (4) combine ARS functions to enable the elimination of subsystem components and interfaces; and (5) demonstrate the integration concepts through actual operation of a functionally integrated ARS.
Hierarchy of on-orbit servicing interfaces
NASA Technical Reports Server (NTRS)
Moe, Rud V.
1989-01-01
A series of equipment interfaces is involved in on-orbit servicing operations. The end-to-end hierarchy of servicing interfaces is presented. The interface concepts presented include structure and handling, and formats for transfer of resources (power, data, fluids, etc.). Consequences on cost, performance, and service ability of the use of standard designs or unique designs with interface adapters are discussed. Implications of the interface designs compatibility with remote servicing using telerobotic servicers are discussed.
Bednar, James A.
2008-01-01
Many neural regions are arranged into two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered by the lack of appropriate tools. It has been particularly difficult to bridge across levels of detail, because simulators are typically geared to a specific level, while interfacing between simulators has been a major technical challenge. In this paper, we show that the Python-based Topographica simulator makes it straightforward to build systems that cross levels of analysis, as well as providing a common framework for evaluating and comparing models implemented in other simulators. These results rely on the general-purpose abstractions around which Topographica is designed, along with the Python interfaces becoming available for many simulators. In particular, we present a detailed, general-purpose example of how to wrap an external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines of Python code, making it possible to use any of the extensive input presentation, analysis, and plotting tools of Topographica. Additional examples show how to interface easily with models in other types of simulators. Researchers simulating topographic maps externally should consider using Topographica's analysis tools (such as preference map, receptive field, or tuning curve measurement) to compare results consistently, and for connecting models at different levels. This seamless interoperability will help neuroscientists and computational scientists to work together to understand how neurons in topographic maps organize and operate. PMID:19352443
IUS/TUG orbital operations and mission support study. Volume 4: Project planning data
NASA Technical Reports Server (NTRS)
1975-01-01
Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.
A High-Level Symbolic Representation for Intelligent Agents Across Multiple Architectures
2004-07-01
components of Soar that map to these concepts (instantiation support, selected operator). Fik Ed" Vie Go Boolbmo .’ lookb Wind , Help 1B w ,’ F:ld 1.ý fie...AnswerSpeedRequest ((msg> isa RequestSpeedChange consider (sel’>. pmsg (msg> end 0 St=ndadd irttezf•cc fo1.1 goals . ~interface lGoal s l’n sa,,invq this goail Ys "rt
Guidelines and Capabilities for Designing Human Missions
NASA Technical Reports Server (NTRS)
Allen, Christopher S.; Burnett, Rebeka; Charles, John; Cucinotta, Frank; Fullerton, Richard; Goodman, Jerry R.; Griffith, Anthony D., Sr.; Kosmo, Joseph J.; Perchonok, Michele; Railsback, Jan;
2003-01-01
These guidelines and capabilities identify the points of intersection between human spaceflight crews and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. In these chapters, we will provide clear, top-level guidelines for human-related exploration studies and technology research that will address common questions and requirements. As a result, we hope that ongoing mission trade studies will consider common, standard, and practical criteria for human interfaces.
Human Operator Interface with FLIR Displays.
1980-03-01
model (Ratches, et al., 1976) used to evaluate FUIR system performanmce. SECURITY CLASSIFICATION OF THIS PAOE(When Does Bntoff. PREFACE The research...the minimum resolv- able temperature (MRT) paradigm to test two modeled FLIR systems. Twelve male subjects with 20/20 uncorrected vision served as...varying iv levels of size, contrast, noise, and MTF. The test results were compared with the NVL predictive model (Ratches, et al., 1975) used to
BiCMOS circuit technology for a 704 MHz ATM switch LSI
NASA Astrophysics Data System (ADS)
Ohtomo, Yusuke; Yasuda, Sadayuki; Togashi, Minoru; Ino, Masayuki; Tanabe, Yasuyuki; Inoue, Jun-Ichi; Nogawa, Masafumi; Hino, Shigeki
1994-05-01
This paper describes BiCMOS level-converter circuits and clock circuits that increase VLSI interface speed to 1 GHz, and their application to a 704 MHz ATM switch LSI. An LSI with high speed interface requires a BiCMOS multiplexer/demultiplexer (MUX/DEMUX) on the chip to reduce internal operation speed. A MUX/DEMUX with minimum power dissipation and a minimum pattern area can be designed using the proposed converter circuits. The converter circuits, using weakly cross-coupled CMOS inverters and a voltage regulator circuit, can convert signal levels between LCML and positive CMOS at a speed of 500 MHz. Data synchronization in the high speed region is ensured by a new BiCMOS clock circuit consisting of a pure ECL path and retiming circuits. The clock circuit reduces the chip latency fluctuation of the clock signal and absorbs the delay difference between the ECL clock and data through the CMOS circuits. A rerouting-Banyan (RRB) ATM switch, employing both the proposed converter circuits and the clock circuits, has been fabricated with 0.5 micron BiCMOS technology. The LSI, composed of CMOS 15 K gate LOGIC, 8 Kb RAM, 1 Kb FIFO and ECL 1.6 K gate LOGIC, achieved an operation speed of 704-MHz with power dissipation of 7.2 W.
NASA Technical Reports Server (NTRS)
1976-01-01
Physical, functional, and operational interfaces between the space shuttle orbiter and the AMPS payload are described for the ground handling and test phases, prelaunch, launch and ascent, operational, stowage, and reentry and landing activities.
NASA Technical Reports Server (NTRS)
Emmons, T. E.
1976-01-01
The results are presented of an investigation of the factors which affect the determination of Spacelab (S/L) minimum interface main dc voltage and available power from the orbiter. The dedicated fuel cell mode of powering the S/L is examined along with the minimum S/L interface voltage and available power using the predicted fuel cell power plant performance curves. The values obtained are slightly lower than current estimates and represent a more marginal operating condition than previously estimated.
The intelligent user interface for NASA's advanced information management systems
NASA Technical Reports Server (NTRS)
Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.
1987-01-01
NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.
ORELA data acquisition system hardware. Vol. 5. SEL 810B/PDP-4/PDP-9 intercomputer link
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, J.W.; Holladay, J.H.
1977-01-01
A report is given describing the IOT assignments and programming for the PDP-4 and PDP-9, the ground isolation wiring, the connector pin assignments, a simplified theory of operation for the SEL 810B link interface, a detailed theory of operation for the link interfaces at the PDP-4 and the PDP-9, and the use of the PDP-4 and PDP-9 link interfaces as an input to the SEL 810B Four-Channel Priority Multiplexer.
NASA Technical Reports Server (NTRS)
1978-01-01
Low energy conceptual stage designs and adaptations to existing/planned shuttle upper stages were developed and their performance established. Selected propulsion modes and subsystems were used as a basis to develop airborne support equipment (ASE) design concepts. Orbiter installation and integration (both physical and electrical interfaces) were defined. Low energy stages were adapted to the orbiter and ASE interfaces. Selected low energy stages were then used to define and describe typical ground and flight operations.
The NASA Mission Operations and Control Architecture Program
NASA Technical Reports Server (NTRS)
Ondrus, Paul J.; Carper, Richard D.; Jeffries, Alan J.
1994-01-01
The conflict between increases in space mission complexity and rapidly declining space mission budgets has created strong pressures to radically reduce the costs of designing and operating spacecraft. A key approach to achieving such reductions is through reducing the development and operations costs of the supporting mission operations systems. One of the efforts which the Communications and Data Systems Division at NASA Headquarters is using to meet this challenge is the Mission Operations Control Architecture (MOCA) project. Technical direction of this effort has been delegated to the Mission Operations Division (MOD) of the Goddard Space Flight Center (GSFC). MOCA is to develop a mission control and data acquisition architecture, and supporting standards, to guide the development of future spacecraft and mission control facilities at GSFC. The architecture will reduce the need for around-the-clock operations staffing, obtain a high level of reuse of flight and ground software elements from mission to mission, and increase overall system flexibility by enabling the migration of appropriate functions from the ground to the spacecraft. The end results are to be an established way of designing the spacecraft-ground system interface for GSFC's in-house developed spacecraft, and a specification of the end to end spacecraft control process, including data structures, interfaces, and protocols, suitable for inclusion in solicitation documents for future flight spacecraft. A flight software kernel may be developed and maintained in a condition that it can be offered as Government Furnished Equipment in solicitations. This paper describes the MOCA project, its current status, and the results to date.
A curriculum for real-time computer and control systems engineering
NASA Technical Reports Server (NTRS)
Halang, Wolfgang A.
1990-01-01
An outline of a syllabus for the education of real-time-systems engineers is given. This comprises the treatment of basic concepts, real-time software engineering, and programming in high-level real-time languages, real-time operating systems with special emphasis on such topics as task scheduling, hardware architectures, and especially distributed automation structures, process interfacing, system reliability and fault-tolerance, and integrated project development support systems. Accompanying course material and laboratory work are outlined, and suggestions for establishing a laboratory with advanced, but low-cost, hardware and software are provided. How the curriculum can be extended into a second semester is discussed, and areas for possible graduate research are listed. The suitable selection of a high-level real-time language and supporting operating system for teaching purposes is considered.
Real-time UNIX in HEP data acquisition
NASA Astrophysics Data System (ADS)
Buono, S.; Gaponenko, I.; Jones, R.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P. Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Aguer, M.; Huet, M.
1994-12-01
Today's experimentation in high energy physics is characterized by an increasing need for sensitivity to rare phenomena and complex physics signatures, which require the use of huge and sophisticated detectors and consequently a high performance readout and data acquisition. Multi-level triggering, hierarchical data collection and an always increasing amount of processing power, distributed throughout the data acquisition layers, will impose a number of features on the software environment, especially the need for a high level of standardization. Real-time UNIX seems, today, the best solution for the platform independence, operating system interface standards and real-time features necessary for data acquisition in HEP experiments. We present the results of the evaluation, in a realistic application environment, of a Real-Time UNIX operating system: the EP/LX real-time UNIX system.
Characterization of the electrical output of flat-plate photovoltaic arrays
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.
1982-01-01
The electric output of flat-plate photovoltaic arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as direct-current to alternating-current power conditioners must be able to accommodate widely varying input levels, while maintaining operation at or near the array maximum power point.The results of an extensive computer simulation study that was used to define the parameters necessary for the systematic design of array/power-conditioner interfaces are presented as normalized ratios of power-conditioner parameters to array parameters, to make the results universally applicable to a wide variety of system sizes, sites, and operating modes. The advantages of maximum power tracking and a technique for computing average annual power-conditioner efficiency are discussed.
A validated methodology for determination of laboratory instrument computer interface efficacy
NASA Astrophysics Data System (ADS)
1984-12-01
This report is intended to provide a methodology for determining when, and for which instruments, direct interfacing of laboratory instrument and laboratory computers is beneficial. This methodology has been developed to assist the Tri-Service Medical Information Systems Program Office in making future decisions regarding laboratory instrument interfaces. We have calculated the time savings required to reach a break-even point for a range of instrument interface prices and corresponding average annual costs. The break-even analyses used empirical data to estimate the number of data points run per day that are required to meet the break-even point. The results indicate, for example, that at a purchase price of $3,000, an instrument interface will be cost-effective if the instrument is utilized for at least 154 data points per day if operated in the continuous mode, or 216 points per day if operated in the discrete mode. Although this model can help to ensure that instrument interfaces are cost effective, additional information should be considered in making the interface decisions. A reduction in results transcription errors may be a major benefit of instrument interfacing.
NASA Astrophysics Data System (ADS)
Osada, Masakazu; Kaise, Mitsuru; Ozeki, Takeshi; Tsunakawa, Hirofumi; Tsunakawa, Kiyoshi; Takayanagi, Takashi; Suzuki, Nobuaki; Miwa, Jun; Ohta, Yasuhiko; Kanai, Koichi
1999-07-01
We have proposed a new user interface with workflow customization, implemented and evaluted in Endoscopy Department Mini-PACS that has been introduced and routinely used for two years at Toshiba General Hospital. We have set some task at endoscopy image acquisition units during examinations for two different types of user interfaces and compared performance. One is a command-button based operation using a remote control, and another is that with eight graphic buttons which are displayed on a CRT monitor and can be customized. Results of the two-year study show that mean number of input diagnosis codes per examination with graphic and customized interface is significantly greater than that with conventional interface. Also, mean time to complete one upper gastric endoscopy examination with new user interface is about 17 percent less than that with conventional interface. These result suggest that systems with the visualized and customized operation and feedback encourages physicians to use more functions and to compete tasks more efficiently than systems with conventional command-button based user interfaces.
NASA Astrophysics Data System (ADS)
Abdullah, U. N. N.; Handroos, H.
2017-09-01
Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.
VEVI: A Virtual Reality Tool For Robotic Planetary Explorations
NASA Technical Reports Server (NTRS)
Piguet, Laurent; Fong, Terry; Hine, Butler; Hontalas, Phil; Nygren, Erik
1994-01-01
The Virtual Environment Vehicle Interface (VEVI), developed by the NASA Ames Research Center's Intelligent Mechanisms Group, is a modular operator interface for direct teleoperation and supervisory control of robotic vehicles. Virtual environments enable the efficient display and visualization of complex data. This characteristic allows operators to perceive and control complex systems in a natural fashion, utilizing the highly-evolved human sensory system. VEVI utilizes real-time, interactive, 3D graphics and position / orientation sensors to produce a range of interface modalities from the flat panel (windowed or stereoscopic) screen displays to head mounted/head-tracking stereo displays. The interface provides generic video control capability and has been used to control wheeled, legged, air bearing, and underwater vehicles in a variety of different environments. VEVI was designed and implemented to be modular, distributed and easily operated through long-distance communication links, using a communication paradigm called SYNERGY.
Customizing graphical user interface technology for spacecraft control centers
NASA Technical Reports Server (NTRS)
Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald
1993-01-01
The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.
UAS Integration into the NAS Project
NASA Technical Reports Server (NTRS)
Bauer, Jeff
2010-01-01
The goal of the UAS Integration in the NAS Project is to contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS This goal will be accomplished through a two-phased approach of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Technical objectives include: PHASE 1: a) Validating the key technical areas identified by this project. System-level analyses, a State of the Art Analysis (SOAA), and a ConOps will identify the challenges and barriers preventing routine UAS access to the NAS. b) Developing a national roadmap and gap analysis identifying specific deliverables in the area of operations, procedures, and technologies that will impact future policy decisions. PHASE 2: a) Provide regulators with a methodology for developing airworthiness requirements for UAS and data to support development of certifications standards and regulatory guidance. b) Provide systems-level integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and Pilot Aircraft Interfaces (PAIs) in operationally relevant environments
Flat-panel display solutions for ground-environment military displays (Invited Paper)
NASA Astrophysics Data System (ADS)
Thomas, J., II; Roach, R.
2005-05-01
Displays for military vehicles have very distinct operational and cost requirements that differ from other military applications. These requirements demand that display suppliers to Army and Marine ground-environments provide low cost equipment that is capable of operation across environmental extremes. Inevitably, COTS components form the foundation of these "affordable" display solutions. This paper will outline the major display requirements and review the options that satisfy conflicting and difficult operational demands, using newly developed equipment as an example. Recently, a new supplier was selected for the Drivers Vision Enhancer (DVE) equipment, including the Display Control Module (DCM). The paper will outline the DVE and describe development of a new DCM solution. The DVE programme, with several thousand units presently in service and operational in conflicts such as "Operation Iraqi Freedom", represents a critical balance between cost and performance. We shall describe design considerations that include selection of COTS sources, the need to minimise display modification; video interfaces, power interfaces, operator interfaces and new provisions to optimise displayed video content.
Takano, Kouji; Hata, Naoki; Kansaku, Kenji
2011-01-01
The brain–machine interface (BMI) or brain–computer interface is a new interface technology that uses neurophysiological signals from the brain to control external machines or computers. This technology is expected to support daily activities, especially for persons with disabilities. To expand the range of activities enabled by this type of interface, here, we added augmented reality (AR) to a P300-based BMI. In this new system, we used a see-through head-mount display (HMD) to create control panels with flicker visual stimuli to support the user in areas close to controllable devices. When the attached camera detects an AR marker, the position and orientation of the marker are calculated, and the control panel for the pre-assigned appliance is created by the AR system and superimposed on the HMD. The participants were required to control system-compatible devices, and they successfully operated them without significant training. Online performance with the HMD was not different from that using an LCD monitor. Posterior and lateral (right or left) channel selections contributed to operation of the AR–BMI with both the HMD and LCD monitor. Our results indicate that AR–BMI systems operated with a see-through HMD may be useful in building advanced intelligent environments. PMID:21541307
NASA Technical Reports Server (NTRS)
Nissley, L. E.
1979-01-01
The Aerospace Ground Equipment (AGE) provides an interface between a human operator and a complete spaceborne sequence timing device with a memory storage program. The AGE provides a means for composing, editing, syntax checking, and storing timing device programs. The AGE is implemented with a standard Hewlett-Packard 2649A terminal system and a minimum of special hardware. The terminal's dual tape interface is used to store timing device programs and to read in special AGE operating system software. To compose a new program for the timing device the keyboard is used to fill in a form displayed on the screen.
Interface circuit for a multiple-beam tuning-fork gyroscope with high quality factors
NASA Astrophysics Data System (ADS)
Wang, Ren
This research work presents the design, theoretical analysis, fabrication, interface electronics, and experimental results of a Silicon-On-Insulator (SOI) based Multiple-Beam Tuning-Fork Gyroscope (MB-TFG). Based on a numerical model of Thermo-Elastic Damping (TED), a Multiple-Beam Tuning-Fork Structure (MB-TFS) is designed with high Quality factors (Qs) in its two operation modes. A comprehensive theoretical analysis of the MB-TFG design is conducted to relate the design parameters to its operation parameters and further performance parameters. In conjunction with a mask that defines the device through trenches to alleviate severe fabrication effect on anchor loss, a simple one-mask fabrication process is employed to implement this MB-TFG design on SOI wafers. The fabricated MB-TFGs are tested with PCB-level interface electronics and a thorough comparison between the experimental results and a theoretical analysis is conducted to verify the MB-TFG design and accurately interpret the measured performance. The highest measured Qs of the fabricated MB-TFGs in vacuum are 255,000 in the drive-mode and 103,000 in the sense-mode, at a frequency of 15.7kHz. Under a frequency difference of 4Hz between the two modes (operation frequency is 16.8kHz) and a drive-mode vibration amplitude of 3.0um, the measured rate sensitivity is 80mVpp/°/s with an equivalent impedance of 6MQ. The calculated overall rate resolution of this device is 0.37/hrhiElz, while the measured Angle Random Walk (ARW) and bias instability are 6.67°/'vhr and 95°/hr, respectively.
CoNNeCT Baseband Processor Module Boot Code SoftWare (BCSW)
NASA Technical Reports Server (NTRS)
Yamamoto, Clifford K.; Orozco, David S.; Byrne, D. J.; Allen, Steven J.; Sahasrabudhe, Adit; Lang, Minh
2012-01-01
This software provides essential startup and initialization routines for the CoNNeCT baseband processor module (BPM) hardware upon power-up. A command and data handling (C&DH) interface is provided via 1553 and diagnostic serial interfaces to invoke operational, reconfiguration, and test commands within the code. The BCSW has features unique to the hardware it is responsible for managing. In this case, the CoNNeCT BPM is configured with an updated CPU (Atmel AT697 SPARC processor) and a unique set of memory and I/O peripherals that require customized software to operate. These features include configuration of new AT697 registers, interfacing to a new HouseKeeper with a flash controller interface, a new dual Xilinx configuration/scrub interface, and an updated 1553 remote terminal (RT) core. The BCSW is intended to provide a "safe" mode for the BPM when initially powered on or when an unexpected trap occurs, causing the processor to reset. The BCSW allows the 1553 bus controller in the spacecraft or payload controller to operate the BPM over 1553 to upload code; upload Xilinx bit files; perform rudimentary tests; read, write, and copy the non-volatile flash memory; and configure the Xilinx interface. Commands also exist over 1553 to cause the CPU to jump or call a specified address to begin execution of user-supplied code. This may be in the form of a real-time operating system, test routine, or specific application code to run on the BPM.
Connecting Interface Structure to Energy Level Alignment at Aqueous Semiconductor Interfaces
NASA Astrophysics Data System (ADS)
Hybertsen, Mark
Understanding structure-function relationships at aqueous semiconductor interfaces presents fundamental challenges, including the discovery of the key interface structure motifs themselves. Important examples include the alignment of electrochemical redox levels with the semiconductor band edges and the identification of catalytic active sites. We have developed a multistep approach, initially demonstrated for GaN, ZnO and their alloys, motivated by measured high efficiency for photocatalytic water oxidation. The interface structure is simulated using ab initio molecular dynamics (AIMD). The calculated, average interface dipole is combined with the GW approach from many-body perturbation theory to calculate the energy level alignment between the semiconductor band edges and the centroid of the occupied 1b1 energy level of water and thus, the electrochemical levels. Cluster models are used to study reaction pathways. The emergent interface motif is the full (GaN) or partial (ZnO) dissociated interface water layer. Here I will focus on the aqueous interfaces to the stable TiO2 anatase (101) and rutile (110) facets. The AIMD calculations reveal interface water dissociation and reassociation processes through distinct pathways: one direct at the interface and the other via a spectator water molecule from the hydration layer. Comparisons between the two interfaces shows that the energy landscape for these pathways depends on the local hydrogen bonding patterns and the interplay with the interface template. Combined results from different initial conditions and AIMD temperatures demonstrate a partially dissociated interface water layer in both cases. Specifically for rutile, structure and the GW-based analysis of the interface energy level alignment agree with experiment. Finally, hole localization at different interface structure motifs will be discussed. Work performed in collaboration with J. Lyons, N. Kharche, M. Ertem and J. Muckerman, done in part at the CFN, which is a U.S. DOE Office of Science Facility, at BNL under Contract No. DE-SC0012704 and with resources from NERSC under Contract No. DE-AC02-05CH11231.
NASA Astrophysics Data System (ADS)
Endo, Yoichiro; Balloch, Jonathan C.; Grushin, Alexander; Lee, Mun Wai; Handelman, David
2016-05-01
Control of current tactical unmanned ground vehicles (UGVs) is typically accomplished through two alternative modes of operation, namely, low-level manual control using joysticks and high-level planning-based autonomous control. Each mode has its own merits as well as inherent mission-critical disadvantages. Low-level joystick control is vulnerable to communication delay and degradation, and high-level navigation often depends on uninterrupted GPS signals and/or energy-emissive (non-stealth) range sensors such as LIDAR for localization and mapping. To address these problems, we have developed a mid-level control technique where the operator semi-autonomously drives the robot relative to visible landmarks that are commonly recognizable by both humans and machines such as closed contours and structured lines. Our novel solution relies solely on optical and non-optical passive sensors and can be operated under GPS-denied, communication-degraded environments. To control the robot using these landmarks, we developed an interactive graphical user interface (GUI) that allows the operator to select landmarks in the robot's view and direct the robot relative to one or more of the landmarks. The integrated UGV control system was evaluated based on its ability to robustly navigate through indoor environments. The system was successfully field tested with QinetiQ North America's TALON UGV and Tactical Robot Controller (TRC), a ruggedized operator control unit (OCU). We found that the proposed system is indeed robust against communication delay and degradation, and provides the operator with steady and reliable control of the UGV in realistic tactical scenarios.
Method and apparatus for operating an improved thermocline storage unit
Copeland, R.J.
1982-09-30
A method and apparatus for operating a thermocline storage unit in which an insulated barrier member is provided substantially at the interface region between the hot and cold liquids in the storage tank. The barrier member physically and thermally separates the hot and cold liquids substantially preventing any diffusing or mixing between them and substantially preventing any heat transfer there between. The barrier member follows the rise and fall of the interface region between the liquids as the tank is charged and discharged. Two methods of maintaining it in the interface region are disclosed. With the structure and operation of the present invention and in particular the significant reduction in diffusing or mixing between the hot and cold liquids as well as the significant reduction in the thermal heat transfer between them, the performance of the storage tank is improved. More specifically, the stability of the interface region or thermocline is enhanced and the thickness of the thermocline is reduced producing a corresponding increase in the steepness of the temperature gradient across the thermocline and a more efficiently operating thermocline storage unit.
Method and apparatus for operating an improved thermocline storage unit
Copeland, Robert J.
1985-01-01
A method and apparatus for operating a thermocline storage unit in which an insulated barrier member is provided substantially at the interface region between the hot and cold liquids in the storage tank. The barrier member physically and thermally separates the hot and cold liquids substantially preventing any diffusing or mixing between them and substantially preventing any heat transfer therebetween. The barrier member follows the rise and fall of the interface region between the liquids as the tank is charged and discharged. Two methods of maintaining it in the interface region are disclosed. With the structure and operation of the present invention and in particular the significant reduction in diffusing or mixing between the hot and cold liquids as well as the significant reduction in the thermal heat transfer between them, the performance of the storage tank is improved. More specifically, the stability of the interface region or thermocline is enhanced and the thickness of the thermocline is reduced producing a corresponding increase in the steepness of the temperature gradient across the thermocline and a more efficiently operating thermocline storage unit.
Numerical simulation of CdTe vertical Bridgman growth
NASA Astrophysics Data System (ADS)
Ouyang, Hong; Shyy, Wei
1997-04-01
Numerical simulation has been conducted for steady-state Bridgman growth of the CdTe crystal with two ampoule configurations, namely, flat base and semi-spherical base. The present model accounts for conduction, convection and radiation, as well as phase change dynamics. The enthalpy formulation for phase change has been incorporated into a pressure-based algorithm with multi-zone curvilinear grid systems. The entire system which consists of the furnace enclosure wall, the encapsulated gas and the ampoule, contains irregularly configured domains. To meet the competing needs of producing accurate solutions with reasonable computing resources, a two-level approach is employed. The present study reveals that although the two ampoule configurations are quite different, their influence on the melt-solid interface shape is modest, and the undesirable concave interface appears in both cases. Since the interface shape strongly depends on thermal conductivities between the melt and the crystal, as well as ampoule wall temperature, accurate prescriptions of materials transport properties and operating environment are crucial for successful numerical predictions.
A robust molecular probe for Ångstrom-scale analytics in liquids
Nirmalraj, Peter; Thompson, Damien; Dimitrakopoulos, Christos; Gotsmann, Bernd; Dumcenco, Dumitru; Kis, Andras; Riel, Heike
2016-01-01
Traditionally, nanomaterial profiling using a single-molecule-terminated scanning probe is performed at the vacuum–solid interface often at a few Kelvin, but is not a notion immediately associated with liquid–solid interface at room temperature. Here, using a scanning tunnelling probe functionalized with a single C60 molecule stabilized in a high-density liquid, we resolve low-dimensional surface defects, atomic interfaces and capture Ångstrom-level bond-length variations in single-layer graphene and MoS2. Atom-by-atom controllable imaging contrast is demonstrated at room temperature and the electronic structure of the C60–metal probe complex within the encompassing liquid molecules is clarified using density functional theory. Our findings demonstrates that operating a robust single-molecular probe is not restricted to ultra-high vacuum and cryogenic settings. Hence the scope of high-precision analytics can be extended towards resolving sub-molecular features of organic elements and gauging ambient compatibility of emerging layered materials with atomic-scale sensitivity under experimentally less stringent conditions. PMID:27516157
NASA Astrophysics Data System (ADS)
Lee, Michael; Freed, Adrian; Wessel, David
1992-08-01
In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.
Advanced warfighter machine interface (Invited Paper)
NASA Astrophysics Data System (ADS)
Franks, Erin
2005-05-01
Future military crewmen may have more individual and shared tasks to complete throughout a mission as a result of smaller crew sizes and an increased number of technology interactions. To maintain reasonable workload levels, the Warfighter Machine Interface (WMI) must provide information in a consistent, logical manner, tailored to the environment in which the soldier will be completing their mission. This paper addresses design criteria for creating an advanced, multi-modal warfighter machine interface for on-the-move mounted operations. The Vetronics Technology Integration (VTI) WMI currently provides capabilities such as mission planning and rehearsal, voice and data communications, and manned/unmanned vehicle payload and mobility control. A history of the crewstation and more importantly, the WMI software will be provided with an overview of requirements and criteria used for completing the design. Multiple phases of field and laboratory testing provide the opportunity to evaluate the design and hardware in stationary and motion environments. Lessons learned related to system usability and user performance are presented with mitigation strategies to be tested in the future.
NASA Technical Reports Server (NTRS)
2005-01-01
The document provides the Human System Integration(HSI) high-level functional C3 HSI requirements for the interface to the pilot. Description includes (1) the information required by the pilot to have knowledge C3 system status, and (2) the control capability needed by the pilot to obtain C3 information. Fundamentally, these requirements provide the candidate C3 technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how C3 operations and functions should interface with the pilot to provide the necessary C3 functionality to the UA-pilot system. Requirements and guidelines for C3 are partitioned into three categories: (1) Pilot-Air Traffic Control (ATC) Voice Communications (2) Pilot-ATC Data Communications, and (3) command and control of the unmanned aircraft (UA). Each requirement is stated and is supported with a rationale and associated reference(s).
Menon, Samir; Zhu, Jack; Goyal, Deeksha; Khatib, Oussama
2017-07-01
Haptic interfaces compatible with functional magnetic resonance imaging (Haptic fMRI) promise to enable rich motor neuroscience experiments that study how humans perform complex manipulation tasks. Here, we present a large-scale study (176 scans runs, 33 scan sessions) that characterizes the reliability and performance of one such electromagnetically actuated device, Haptic fMRI Interface 3 (HFI-3). We outline engineering advances that ensured HFI-3 did not interfere with fMRI measurements. Observed fMRI temporal noise levels with HFI-3 operating were at the fMRI baseline (0.8% noise to signal). We also present results from HFI-3 experiments demonstrating that high resolution fMRI can be used to study spatio-temporal patterns of fMRI blood oxygenation dependent (BOLD) activation. These experiments include motor planning, goal-directed reaching, and visually-guided force control. Observed fMRI responses are consistent with existing literature, which supports Haptic fMRI's effectiveness at studying the brain's motor regions.
Autonomous caregiver following robotic wheelchair
NASA Astrophysics Data System (ADS)
Ratnam, E. Venkata; Sivaramalingam, Sethurajan; Vignesh, A. Sri; Vasanth, Elanthendral; Joans, S. Mary
2011-12-01
In the last decade, a variety of robotic/intelligent wheelchairs have been proposed to meet the need in aging society. Their main research topics are autonomous functions such as moving toward some goals while avoiding obstacles, or user-friendly interfaces. Although it is desirable for wheelchair users to go out alone, caregivers often accompany them. Therefore we have to consider not only autonomous functions and user interfaces but also how to reduce caregivers' load and support their activities in a communication aspect. From this point of view, we have proposed a robotic wheelchair moving with a caregiver side by side based on the MATLAB process. In this project we discussing about robotic wheel chair to follow a caregiver by using a microcontroller, Ultrasonic sensor, keypad, Motor drivers to operate robot. Using camera interfaced with the DM6437 (Davinci Code Processor) image is captured. The captured image are then processed by using image processing technique, the processed image are then converted into voltage levels through MAX 232 level converter and given it to the microcontroller unit serially and ultrasonic sensor to detect the obstacle in front of robot. In this robot we have mode selection switch Automatic and Manual control of robot, we use ultrasonic sensor in automatic mode to find obstacle, in Manual mode to use the keypad to operate wheel chair. In the microcontroller unit, c language coding is predefined, according to this coding the robot which connected to it was controlled. Robot which has several motors is activated by using the motor drivers. Motor drivers are nothing but a switch which ON/OFF the motor according to the control given by the microcontroller unit.
Service offerings and interfaces for the ACTS network of earth stations
NASA Technical Reports Server (NTRS)
Coney, T. A.; Dobyns, T. R.; Chitre, D. M.; Lindstrom, R.
1988-01-01
The NASA Advanced Communications Technology Satellite (ACTS) will use a network of about 20 earth stations to operate as a Mode 1 network. This network will support two ACTS program objectives: to verify the technical performance of ACTS Mode 1 operation in GEO and to demonstrate the types and quality of services that can be provided by an ACTS Mode 1 communications system. The terrestrial interface design is a critical element in assuring that these network earth stations will meet the objectives. In this paper, the applicable terrestrial interface design requirements, the resulting interface specifications, and the associated terrestrial input/output hardware are discussed. A functional block diagram of a network earth station is shown.
User interaction with the LUCIFER control software
NASA Astrophysics Data System (ADS)
Knierim, Volker; Jütte, Marcus; Polsterer, Kai; Schimmelmann, Jan
2006-06-01
We present the concept and design of the interaction between users and the LUCIFER Control Software Package. The necessary functionality that must be provided to a user depends on and differs greatly for the different user types (i.e., engineers and observers). While engineers want total control over every service provided by the software system, observers are typically only interested in a fault tolerant and efficient user interface that helps them to carry out their observations in the best possible way during the night. To provide the functionality engineers need, direct access to a service is necessary. This may harbor a possible threat to the instrument in the case of a faulty operation by the engineer, but is the only way to test every unit during integration and commissioning of the instrument, and for service time later on. The observer on the other hand should only have indirect access to the instrument, controlled by an instrument manager service that ensures the necessary safety checks so that no harm can be done to the instrument. Our design of the user interaction provides such an approach on a level that is transparent to any interaction component regardless of interface type (i.e., textual or graphical). Using the interface and inheritance concepts of the Java Programming Language and its tools to create graphical user interfaces, it is possible to provide the necessary level of flexibility for the different user types on one side, while ensuring maximum reusability of code on the other side.
ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS)
NASA Astrophysics Data System (ADS)
Metcalfe, L.; Aberasturi, M.; Alonso, E.; Álvarez, R.; Ashman, M.; Barbarisi, I.; Brumfitt, J.; Cardesín, A.; Coia, D.; Costa, M.; Fernández, R.; Frew, D.; Gallegos, J.; García Beteta, J. J.; Geiger, B.; Heather, D.; Lim, T.; Martin, P.; Muñoz Crego, C.; Muñoz Fernandez, M.; Villacorta, A.; Svedhem, H.
2018-06-01
The ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS), comprised of payload Instrument Team, ESA and Russian operational centres, is responsible for planning the science operations of the TGO mission and for the generation and archiving of the scientific data products to levels meeting the scientific aims and criteria specified by the ESA Project Scientist as advised by the Science Working Team (SWT). The ExoMars SGS builds extensively upon tools and experience acquired through earlier ESA planetary missions like Mars and Venus Express, and Rosetta, but also is breaking ground in various respects toward the science operations of future missions like BepiColombo or JUICE. A productive interaction with the Russian partners in the mission facilitates broad and effective collaboration. This paper describes the global organisation and operation of the SGS, with reference to its principal systems, interfaces and operational processes.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-01-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-06-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
Flight Telerobotic Servicer prototype simulator
NASA Astrophysics Data System (ADS)
Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob
A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.
ARC SDK: A toolbox for distributed computing and data applications
NASA Astrophysics Data System (ADS)
Skou Andersen, M.; Cameron, D.; Lindemann, J.
2014-06-01
Grid middleware suites provide tools to perform the basic tasks of job submission and retrieval and data access, however these tools tend to be low-level, operating on individual jobs or files and lacking in higher-level concepts. User communities therefore generally develop their own application-layer software catering to their specific communities' needs on top of the Grid middleware. It is thus important for the Grid middleware to provide a friendly, well documented and simple to use interface for the applications to build upon. The Advanced Resource Connector (ARC), developed by NorduGrid, provides a Software Development Kit (SDK) which enables applications to use the middleware for job and data management. This paper presents the architecture and functionality of the ARC SDK along with an example graphical application developed with the SDK. The SDK consists of a set of libraries accessible through Application Programming Interfaces (API) in several languages. It contains extensive documentation and example code and is available on multiple platforms. The libraries provide generic interfaces and rely on plugins to support a given technology or protocol and this modular design makes it easy to add a new plugin if the application requires supporting additional technologies.The ARC Graphical Clients package is a graphical user interface built on top of the ARC SDK and the Qt toolkit and it is presented here as a fully functional example of an application. It provides a graphical interface to enable job submission and management at the click of a button, and allows data on any Grid storage system to be manipulated using a visual file system hierarchy, as if it were a regular file system.
MATLAB/Simulink Pulse-Echo Ultrasound System Simulator Based on Experimentally Validated Models.
Kim, Taehoon; Shin, Sangmin; Lee, Hyongmin; Lee, Hyunsook; Kim, Heewon; Shin, Eunhee; Kim, Suhwan
2016-02-01
A flexible clinical ultrasound system must operate with different transducers, which have characteristic impulse responses and widely varying impedances. The impulse response determines the shape of the high-voltage pulse that is transmitted and the specifications of the front-end electronics that receive the echo; the impedance determines the specification of the matching network through which the transducer is connected. System-level optimization of these subsystems requires accurate modeling of pulse-echo (two-way) response, which in turn demands a unified simulation of the ultrasonics and electronics. In this paper, this is realized by combining MATLAB/Simulink models of the high-voltage transmitter, the transmission interface, the acoustic subsystem which includes wave propagation and reflection, the receiving interface, and the front-end receiver. To demonstrate the effectiveness of our simulator, the models are experimentally validated by comparing the simulation results with the measured data from a commercial ultrasound system. This simulator could be used to quickly provide system-level feedback for an optimized tuning of electronic design parameters.
NASA Technical Reports Server (NTRS)
2005-01-01
This document involves definition of technology interface requirements for Contingency Management. This was performed through a review of Contingency Management-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Contingency Management Work Package were considered. Beginning with HSI high-level functional requirements for Contingency Management, and Contingency Management technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of system failures and associated contingency procedures, and (2) the control capability needed by the pilot to obtain system status and procedure information. Fundamentally, these requirements provide the candidate Contingency Management technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Contingency Management operations and functions should interface with the pilot to provide the necessary Contingency Management functionality to the UA-pilot system. Requirements and guidelines for Contingency Management are partitioned into four categories: (1) Health and Status and (2) Contingency Management. Each requirement is stated and is supported with a rationale and associated reference(s).
NASA Technical Reports Server (NTRS)
2007-01-01
This document provides definition of technology human interface requirements for Collision Avoidance (CA). This was performed through a review of CA-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Access 5 CA work package were considered... Beginning with the HSI high-level functional requirement for CA, and CA technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge CA system status, and (2) the control capability needed by the pilot to obtain CA information and affect an avoidance maneuver. Fundamentally, these requirements provide the candidate CA technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how CA operations and functions should interface with the pilot to provide the necessary CA functionality to the UA-pilot system .Requirements and guidelines for CA are partitioned into four categories: (1) General, (2) Alerting, (3) Guidance, and (4) Cockpit Display of Traffic Information. Each requirement is stated and is supported with a rationale and associated reference(s).
Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry
Dietle, Lannie; Gobeli, Jeffrey D.
1993-07-27
A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.
Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management
NASA Technical Reports Server (NTRS)
2005-01-01
This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).
NASA Technical Reports Server (NTRS)
Santiago-Espada, Yamira; Myer, Robert R.; Latorella, Kara A.; Comstock, James R., Jr.
2011-01-01
The Multi-Attribute Task Battery (MAT Battery). is a computer-based task designed to evaluate operator performance and workload, has been redeveloped to operate in Windows XP Service Pack 3, Windows Vista and Windows 7 operating systems.MATB-II includes essentially the same tasks as the original MAT Battery, plus new configuration options including a graphical user interface for controlling modes of operation. MATB-II can be executed either in training or testing mode, as defined by the MATB-II configuration file. The configuration file also allows set up of the default timeouts for the tasks, the flow rates of the pumps and tank levels of the Resource Management (RESMAN) task. MATB-II comes with a default event file that an experimenter can modify and adapt
Quasi-multi-pulse voltage source converter design with two control degrees of freedom
NASA Astrophysics Data System (ADS)
Vural, A. M.; Bayindir, K. C.
2015-05-01
In this article, the design details of a quasi-multi-pulse voltage source converter (VSC) switched at line frequency of 50 Hz are given in a step-by-step process. The proposed converter is comprised of four 12-pulse converter units, which is suitable for the simulation of single-/multi-converter flexible alternating current transmission system devices as well as high voltage direct current systems operating at the transmission level. The magnetic interface of the converter is originally designed with given all parameters for 100 MVA operation. The so-called two-angle control method is adopted to control the voltage magnitude and the phase angle of the converter independently. PSCAD simulation results verify both four-quadrant converter operation and closed-loop control of the converter operated as static synchronous compensator (STATCOM).
Madapana, Naveen; Gonzalez, Glebys; Rodgers, Richard; Zhang, Lingsong; Wachs, Juan P
2018-01-01
Gestural interfaces allow accessing and manipulating Electronic Medical Records (EMR) in hospitals while keeping a complete sterile environment. Particularly, in the Operating Room (OR), these interfaces enable surgeons to browse Picture Archiving and Communication System (PACS) without the need of delegating functions to the surgical staff. Existing gesture based medical interfaces rely on a suboptimal and an arbitrary small set of gestures that are mapped to a few commands available in PACS software. The objective of this work is to discuss a method to determine the most suitable set of gestures based on surgeon's acceptability. To achieve this goal, the paper introduces two key innovations: (a) a novel methodology to incorporate gestures' semantic properties into the agreement analysis, and (b) a new agreement metric to determine the most suitable gesture set for a PACS. Three neurosurgical diagnostic tasks were conducted by nine neurosurgeons. The set of commands and gesture lexicons were determined using a Wizard of Oz paradigm. The gestures were decomposed into a set of 55 semantic properties based on the motion trajectory, orientation and pose of the surgeons' hands and their ground truth values were manually annotated. Finally, a new agreement metric was developed, using the known Jaccard similarity to measure consensus between users over a gesture set. A set of 34 PACS commands were found to be a sufficient number of actions for PACS manipulation. In addition, it was found that there is a level of agreement of 0.29 among the surgeons over the gestures found. Two statistical tests including paired t-test and Mann Whitney Wilcoxon test were conducted between the proposed metric and the traditional agreement metric. It was found that the agreement values computed using the former metric are significantly higher (p < 0.001) for both tests. This study reveals that the level of agreement among surgeons over the best gestures for PACS operation is higher than the previously reported metric (0.29 vs 0.13). This observation is based on the fact that the agreement focuses on main features of the gestures rather than the gestures themselves. The level of agreement is not very high, yet indicates a majority preference, and is better than using gestures based on authoritarian or arbitrary approaches. The methods described in this paper provide a guiding framework for the design of future gesture based PACS systems for the OR.
RTEMS CENTRE- Support and Maintenance CENTRE to RTEMS Operating System
NASA Astrophysics Data System (ADS)
Silva, H.; Constantino, A.; Coutunho, M.; Freitas, D.; Faustino, S.; Mota, M.; Colaço, P.; Zulianello, M.
2008-08-01
RTEMS stands for Real-Time Operating System for Multiprocessor Systems. It is a full featured Real Time Operating System that supports a variety of open APIs and interface standards. It provides a high performance environment for embedded applications, including a fixed-priority preemptive/non-preemptive scheduler, a comprehensive set of multitasking operations and a large range of supported architectures. Support and maintenance CENTRE to RTEMS operating system (RTEMS CENTRE) is a joint initiative of ESA-Portugal Task force, aiming to build a strong technical competence in the space flight (on- board) software, to offer support, maintenance and improvements to RTEMS. This paper provides a high level description of the current and future activities of the RTEMS CENTRE. It presents a brief description of the RTEMS operating system, a description of the tools developed and distributed to the community [1] and the improvements to be made to the operating system, including facilitation for the qualification of RTEMS (4.8.0) [2] for the space missions.
Melidis, Christos; Iizuka, Hiroyuki; Marocco, Davide
2018-05-01
In this paper, we present a novel approach to human-robot control. Taking inspiration from behaviour-based robotics and self-organisation principles, we present an interfacing mechanism, with the ability to adapt both towards the user and the robotic morphology. The aim is for a transparent mechanism connecting user and robot, allowing for a seamless integration of control signals and robot behaviours. Instead of the user adapting to the interface and control paradigm, the proposed architecture allows the user to shape the control motifs in their way of preference, moving away from the case where the user has to read and understand an operation manual, or it has to learn to operate a specific device. Starting from a tabula rasa basis, the architecture is able to identify control patterns (behaviours) for the given robotic morphology and successfully merge them with control signals from the user, regardless of the input device used. The structural components of the interface are presented and assessed both individually and as a whole. Inherent properties of the architecture are presented and explained. At the same time, emergent properties are presented and investigated. As a whole, this paradigm of control is found to highlight the potential for a change in the paradigm of robotic control, and a new level in the taxonomy of human in the loop systems.
NASA Astrophysics Data System (ADS)
Novosel, Jelena; Wang, Ziyuan; de Jong, Henk; Vermeer, Koenraad A.; van Vliet, Lucas J.
2016-03-01
Optical coherence tomography (OCT) is used to produce high-resolution three-dimensional images of the retina, which permit the investigation of retinal irregularities. In dry age-related macular degeneration (AMD), a chronic eye disease that causes central vision loss, disruptions such as drusen and changes in retinal layer thicknesses occur which could be used as biomarkers for disease monitoring and diagnosis. Due to the topology disrupting pathology, existing segmentation methods often fail. Here, we present a solution for the segmentation of retinal layers in dry AMD subjects by extending our previously presented loosely coupled level sets framework which operates on attenuation coefficients. In eyes affected by AMD, Bruch's membrane becomes visible only below the drusen and our segmentation framework is adapted to delineate such a partially discernible interface. Furthermore, the initialization stage, which tentatively segments five interfaces, is modified to accommodate the appearance of drusen. This stage is based on Dijkstra's algorithm and combines prior knowledge on the shape of the interface, gradient and attenuation coefficient in the newly proposed cost function. This prior knowledge is incorporated by varying the weights for horizontal, diagonal and vertical edges. Finally, quantitative evaluation of the accuracy shows a good agreement between manual and automated segmentation.
''Towards a High-Performance and Robust Implementation of MPI-IO on Top of GPFS''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prost, J.P.; Tremann, R.; Blackwore, R.
2000-01-11
MPI-IO/GPFS is a prototype implementation of the I/O chapter of the Message Passing Interface (MPI) 2 standard. It uses the IBM General Parallel File System (GPFS), with prototyped extensions, as the underlying file system. this paper describes the features of this prototype which support its high performance and robustness. The use of hints at the file system level and at the MPI-IO level allows tailoring the use of the file system to the application needs. Error handling in collective operations provides robust error reporting and deadlock prevention in case of returning errors.
Transient Turbine Engine Modeling with Hardware-in-the-Loop Power Extraction (PREPRINT)
2008-07-01
Furthermore, it must be compatible with a real - time operating system that is capable of running the simulation. For some models, especially those that use...problem of interfacing the engine/control model to a real - time operating system and associated lab hardware becomes a problem of interfacing these...model in real-time. This requires the use of a real - time operating system and a compatible I/O (input/output) board. Figure 1 illustrates the HIL
Interaction design challenges and solutions for ALMA operations monitoring and control
NASA Astrophysics Data System (ADS)
Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar
2012-09-01
The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.
2009-12-01
Human-Computer Interface (AHCI) Style Guide, (Report No. 64201-97U/61223), Veridian, Veda Operations, Dayton Ohio. [13] CSFAB Osga, G. and Kellmeyer, D...Interface (AHCI) Style Guide, (Report No. 64201-97U/61223), Veridian, Veda Operations, Dayton Ohio. [14] Osga, G. and Kellmeyer, D. (2000), Combat
The Evolvable Advanced Multi-Mission Operations System (AMMOS): Making Systems Interoperable
NASA Technical Reports Server (NTRS)
Ko, Adans Y.; Maldague, Pierre F.; Bui, Tung; Lam, Doris T.; McKinney, John C.
2010-01-01
The Advanced Multi-Mission Operations System (AMMOS) provides a common Mission Operation System (MOS) infrastructure to NASA deep space missions. The evolution of AMMOS has been driven by two factors: increasingly challenging requirements from space missions, and the emergence of new IT technology. The work described in this paper focuses on three key tasks related to IT technology requirements: first, to eliminate duplicate functionality; second, to promote the use of loosely coupled application programming interfaces, text based file interfaces, web-based frameworks and integrated Graphical User Interfaces (GUI) to connect users, data, and core functionality; and third, to build, develop, and deploy AMMOS services that are reusable, agile, adaptive to project MOS configurations, and responsive to industrially endorsed information technology standards.
NASA Technical Reports Server (NTRS)
Hansen, R. F. (Principal Investigator)
1981-01-01
The use of the wheat stress indicator model CCAD data base interface driver is described. The purpose of this system is to interface the wheat stress indicator model with the CCAD operational data base. The interface driver routine decides what meteorological stations should be processed and calls the proper subroutines to process the stations.
Cognitive task load in a naval ship control centre: from identification to prediction.
Grootjen, M; Neerincx, M A; Veltman, J A
Deployment of information and communication technology will lead to further automation of control centre tasks and an increasing amount of information to be processed. A method for establishing adequate levels of cognitive task load for the operators in such complex environments has been developed. It is based on a model distinguishing three load factors: time occupied, task-set switching, and level of information processing. Application of the method resulted in eight scenarios for eight extremes of task load (i.e. low and high values for each load factor). These scenarios were performed by 13 teams in a high-fidelity control centre simulator of the Royal Netherlands Navy. The results show that the method provides good prediction of the task load that will actually appear in the simulator. The model allowed identification of under- and overload situations showing negative effects on operator performance corresponding to controlled experiments in a less realistic task environment. Tools proposed to keep the operator at an optimum task load are (adaptive) task allocation and interface support.
Modular System to Enable Extravehicular Activity
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2012-01-01
The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space systems (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower Earth orbit (LEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular EVA system that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs, and to define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Space Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suit port technologies.
A software-based sensor for combined sewer overflows.
Leonhardt, G; Fach, S; Engelhard, C; Kinzel, H; Rauch, W
2012-01-01
A new methodology for online estimation of excess flow from combined sewer overflow (CSO) structures based on simulation models is presented. If sufficient flow and water level data from the sewer system is available, no rainfall data are needed to run the model. An inverse rainfall-runoff model was developed to simulate net rainfall based on flow and water level data. Excess flow at all CSO structures in a catchment can then be simulated with a rainfall-runoff model. The method is applied to a case study and results show that the inverse rainfall-runoff model can be used instead of missing rain gauges. Online operation is ensured by software providing an interface to the SCADA-system of the operator and controlling the model. A water quality model could be included to simulate also pollutant concentrations in the excess flow.
User participation in the development of the human/computer interface for control centers
NASA Technical Reports Server (NTRS)
Broome, Richard; Quick-Campbell, Marlene; Creegan, James; Dutilly, Robert
1996-01-01
Technological advances coupled with the requirements to reduce operations staffing costs led to the demand for efficient, technologically-sophisticated mission operations control centers. The control center under development for the earth observing system (EOS) is considered. The users are involved in the development of a control center in order to ensure that it is cost-efficient and flexible. A number of measures were implemented in the EOS program in order to encourage user involvement in the area of human-computer interface development. The following user participation exercises carried out in relation to the system analysis and design are described: the shadow participation of the programmers during a day of operations; the flight operations personnel interviews; and the analysis of the flight operations team tasks. The user participation in the interface prototype development, the prototype evaluation, and the system implementation are reported on. The involvement of the users early in the development process enables the requirements to be better understood and the cost to be reduced.
NASA Astrophysics Data System (ADS)
Klein, Laura M.; McNamara, Laura A.
2017-05-01
In this paper, we address the needed components to create usable engineering and operational user interfaces (UIs) for airborne Synthetic Aperture Radar (SAR) systems. As airborne SAR technology gains wider acceptance in the remote sensing and Intelligence, Surveillance, and Reconnaissance (ISR) communities, the need for effective and appropriate UIs to command and control these sensors has also increased. However, despite the growing demand for SAR in operational environments, the technology still faces an adoption roadblock, in large part due to the lack of effective UIs. It is common to find operational interfaces that have barely grown beyond the disparate tools engineers and technologists developed to demonstrate an initial concept or system. While sensor usability and utility are common requirements to engineers and operators, their objectives for interacting with the sensor are different. As such, the amount and type of information presented ought to be tailored to the specific application.
Unraveling atomic-level self-organization at the plasma-material interface
NASA Astrophysics Data System (ADS)
Allain, J. P.; Shetty, A.
2017-07-01
The intrinsic dynamic interactions at the plasma-material interface and critical role of irradiation-driven mechanisms at the atomic scale during exposure to energetic particles require a priori the use of in situ surface characterization techniques. Characterization of ‘active’ surfaces during modification at atomic-scale levels is becoming more important as advances in processing modalities are limited by an understanding of the behavior of these surfaces under realistic environmental conditions. Self-organization from exposure to non-equilibrium and thermalized plasmas enable dramatic control of surface morphology, topography, composition, chemistry and structure yielding the ability to tune material properties with an unprecedented level of control. Deciphering self-organization mechanisms of nanoscale morphology (e.g. nanodots, ripples) and composition on a variety of materials including: compound semiconductors, semiconductors, ceramics, polymers and polycrystalline metals via low-energy ion-beam assisted plasma irradiation are critical to manipulate functionality in nanostructured systems. By operating at ultra-low energies near the damage threshold, irradiation-driven defect engineering can be optimized and surface-driven mechanisms controlled. Tunability of optical, electronic, magnetic and bioactive properties is realized by reaching metastable phases controlled by atomic-scale irradiation-driven mechanisms elucidated by novel in situ diagnosis coupled to atomistic-level computational tools. Emphasis will be made on tailored surface modification from plasma-enhanced environments on particle-surface interactions and their subsequent modification of hard and soft matter interfaces. In this review, we examine current trends towards in situ and in operando surface and sub-surface characterization to unravel atomic-scale mechanisms at the plasma-material interface. This work will emphasize on recent advances in the field of plasma and ion-induced nanopatterning and nanostructuring as well as ultra-thin film deposition. Future outlook will examine the critical role of complementary surface-sensitive techniques and trends towards advances in both in situ and in operando tooling.
Multichannel Networked Phasemeter Readout and Analysis
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2008-01-01
Netmeter software reads a data stream from up to 250 networked phasemeters, synchronizes the data, saves the reduced data to disk (after applying a low-pass filter), and provides a Web server interface for remote control. Unlike older phasemeter software that requires a special, real-time operating system, this program can run on any general-purpose computer. It needs about five percent of the CPU (central processing unit) to process 20 channels because it adds built-in data logging and network-based GUIs (graphical user interfaces) that are implemented in Scalable Vector Graphics (SVG). Netmeter runs on Linux and Windows. It displays the instantaneous displacements measured by several phasemeters at a user-selectable rate, up to 1 kHz. The program monitors the measure and reference channel frequencies. For ease of use, levels of status in Netmeter are color coded: green for normal operation, yellow for network errors, and red for optical misalignment problems. Netmeter includes user-selectable filters up to 4 k samples, and user-selectable averaging windows (after filtering). Before filtering, the program saves raw data to disk using a burst-write technique.
Man-machine interface issues in space telerobotics: A JPL research and development program
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1987-01-01
Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.
Software Tools to Support Research on Airport Departure Planning
NASA Technical Reports Server (NTRS)
Carr, Francis; Evans, Antony; Feron, Eric; Clarke, John-Paul
2003-01-01
A simple, portable and useful collection of software tools has been developed for the analysis of airport surface traffic. The tools are based on a flexible and robust traffic-flow model, and include calibration, validation and simulation functionality for this model. Several different interfaces have been developed to help promote usage of these tools, including a portable Matlab(TM) implementation of the basic algorithms; a web-based interface which provides online access to automated analyses of airport traffic based on a database of real-world operations data which covers over 250 U.S. airports over a 5-year period; and an interactive simulation-based tool currently in use as part of a college-level educational module. More advanced applications for airport departure traffic include taxi-time prediction and evaluation of "windowing" congestion control.
Current at Metal-Organic Interfaces
NASA Astrophysics Data System (ADS)
Kern, Klaus
2012-02-01
Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.
A chip-scale, telecommunications-band frequency conversion interface for quantum emitters.
Agha, Imad; Ates, Serkan; Davanço, Marcelo; Srinivasan, Kartik
2013-09-09
We describe a chip-scale, telecommunications-band frequency conversion interface designed for low-noise operation at wavelengths desirable for common single photon emitters. Four-wave-mixing Bragg scattering in silicon nitride waveguides is used to demonstrate frequency upconversion and downconversion between the 980 nm and 1550 nm wavelength regions, with signal-to-background levels > 10 and conversion efficiency of ≈ -60 dB at low continuous wave input pump powers (< 50 mW). Finite element simulations and the split-step Fourier method indicate that increased input powers of ≈ 10 W (produced by amplified nanosecond pulses, for example) will result in a conversion efficiency > 25 % in existing geometries. Finally, we present waveguide designs that can be used to connect shorter wavelength (637 nm to 852 nm) quantum emitters with 1550 nm.
Functional description of a command and control language tutor
NASA Technical Reports Server (NTRS)
Elke, David R.; Seamster, Thomas L.; Truszkowski, Walter
1990-01-01
The status of an ongoing project to explore the application of Intelligent Tutoring System (ITS) technology to NASA command and control languages is described. The primary objective of the current phase of the project is to develop a user interface for an ITS to assist NASA control center personnel in learning Systems Test and Operations Language (STOL). Although this ITS will be developed for Gamma Ray Observatory operators, it will be designed with sufficient flexibility so that its modules may serve as an ITS for other control languages such as the User Interface Language (UIL). The focus of this phase is to develop at least one other form of STOL representation to complement the operational STOL interface. Such an alternative representation would be adaptively employed during the tutoring session to facilitate the learning process. This is a key feature of this ITS which distinguishes it from a simulator that is only capable of representing the operational environment.
Integration Of Space Weather Into Space Situational Awareness
NASA Astrophysics Data System (ADS)
Reeves, G.
2010-09-01
Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent complexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts. The penetrating radiation environment is highly dynamic and highly orbitdependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which allows operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather effects, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This allows users to rapidly rule in or out environmental causes of anomalies. The same user interface can also allow users to drill down for more detailed quantitative information. DREAM can be run either from a distributed web-based user interface or as a stand-alone application for secure operations. We will discuss the underlying structure of the DREAM model and demonstrate the user interface that we have developed. We will also discuss future development plans for DREAM and how the same paradigm can be applied to integrating other space environment information into operational SSA systems.
Switch Panel wear loading - a parametric study regarding governing train operational factors
NASA Astrophysics Data System (ADS)
Hiensch, E. J. M.; Burgelman, N.
2017-09-01
The acting forces and resulting material degradation at the running surfaces of wheels and rail are determined by vehicle, track, interface and operational characteristics. To effectively manage the experienced wear, plastic deformation and crack development at wheels and rail, the interaction between vehicle and track demands a system approach both in maintenance and in design. This requires insight into the impact of train operational parameters on rail- and wheel degradation, in particular at switches and crossings due to the complex dynamic behaviour of a railway vehicle at a turnout. A parametric study was carried out by means of vehicle-track simulations within the VAMPIRE® multibody simulation software, performing a sensitivity analysis regarding operational factors and their impact on expected switch panel wear loading. Additionally, theoretical concepts were cross-checked with operational practices by means of a case study in response to a dramatic change in lateral rail wear development at specific switches in Dutch track. Data from train operation, track maintenance and track inspection were analysed, providing further insight into the operational dependencies. From the simulations performed in this study, it was found that switch rail lateral wear loading at the diverging route of a 1:9 type turnout is significantly influenced by the level of wheel-rail friction and to a lesser extent by the direction of travel (facing or trailing). The influence of other investigated parameters, being vehicle speed, traction, gauge widening and track layout is found to be small. Findings from the case study further confirm the simulation outcome. This research clearly demonstrates the contribution flange lubrication can have in preventing abnormal lateral wear at locations where the wheel-rail interface is heavily loaded.
NASA deep space network operations planning and preparation
NASA Technical Reports Server (NTRS)
Jensen, W. N.
1982-01-01
The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.
WRAP low level waste (LLW) glovebox operational test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kersten, J.K.
1998-02-19
The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into anothermore » 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.« less
Low-cost USB interface for operant research using Arduino and Visual Basic.
Escobar, Rogelio; Pérez-Herrera, Carlos A
2015-03-01
This note describes the design of a low-cost interface using Arduino microcontroller boards and Visual Basic programming for operant conditioning research. The board executes one program in Arduino programming language that polls the state of the inputs and generates outputs in an operant chamber. This program communicates through a USB port with another program written in Visual Basic 2010 Express Edition running on a laptop, desktop, netbook computer, or even a tablet equipped with Windows operating system. The Visual Basic program controls schedules of reinforcement and records real-time data. A single Arduino board can be used to control a total of 52 inputs/output lines, and multiple Arduino boards can be used to control multiple operant chambers. An external power supply and a series of micro relays are required to control 28-V DC devices commonly used in operant chambers. Instructions for downloading and using the programs to generate simple and concurrent schedules of reinforcement are provided. Testing suggests that the interface is reliable, accurate, and could serve as an inexpensive alternative to commercial equipment. © Society for the Experimental Analysis of Behavior.
Science Goal Driven Observing and Spacecraft Autonomy
NASA Technical Reports Server (NTRS)
Koratkar, Amuradha; Grosvenor, Sandy; Jones, Jeremy; Wolf, Karl
2002-01-01
Spacecraft autonomy will be an integral part of mission operations in the coming decade. While recent missions have made great strides in the ability to autonomously monitor and react to changing health and physical status of spacecraft, little progress has been made in responding quickly to science driven events. For observations of inherently variable targets and targets of opportunity, the ability to recognize early if an observation will meet the science goals of a program, and react accordingly, can have a major positive impact on the overall scientific returns of an observatory and on its operational costs. If the onboard software can reprioritize the schedule to focus on alternate targets, discard uninteresting observations prior to downloading, or download a subset of observations at a reduced resolution, the spacecraft's overall efficiency will be dramatically increased. The science goal monitoring (SGM) system is a proof-of-concept effort to address the above challenge. The SGM will have an interface to help capture higher level science goals from the scientists and translate them into a flexible observing strategy that SGM can execute and monitor. We are developing an interactive distributed system that will use on-board processing and storage combined with event-driven interfaces with ground-based processing and operations, to enable fast re-prioritization of observing schedules, and to minimize time spent on non-optimized observations.
Development of the Computer Interface Literacy Measure.
ERIC Educational Resources Information Center
Turner, G. Marc; Sweany, Noelle Wall; Husman, Jenefer
2000-01-01
Discussion of computer literacy and the rapidly changing face of technology focuses on a study that redefined computer literacy to include competencies for using graphical user interfaces for operating systems, hypermedia applications, and the Internet. Describes the development and testing of the Computer Interface Literacy Measure with…
User interface issues in supporting human-computer integrated scheduling
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.; Biefeld, Eric W.
1991-01-01
The topics are presented in view graph form and include the following: characteristics of Operations Mission Planner (OMP) schedule domain; OMP architecture; definition of a schedule; user interface dimensions; functional distribution; types of users; interpreting user interaction; dynamic overlays; reactive scheduling; and transitioning the interface.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.
1990-01-01
The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.
NASA Astrophysics Data System (ADS)
Hur, Ji-Hyun; Park, Junghak; Kim, Deok-kee; Jeon, Sanghun
2017-04-01
We propose a model that describes the operation characteristics of a two-dimensional electron gas (2DEG) in a monolayer transition-metal dichalcogenide thin-film transistor (TFT) having trapped charges near the channel interface. We calculate the drift mobility of the carriers scattered by charged defects located in the channel or near the channel interfaces. The calculated drift mobility is a function of the 2DEG areal density of interface traps. Finally, we calculate the model transfer (ID-VG S ) and output (ID-VS D ) characteristics and verify them by comparing with the experimental results performed with monolayer MoS2 TFTs. We find the modeled results to be excellently consistent with the experiments. This proposed model can be utilized for measuring the interface-trapped charge and trap site densities from the measured transfer curves directly, avoiding more complicated and expensive measurement methods.
A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery
NASA Astrophysics Data System (ADS)
Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.
2007-03-01
This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.
Aircraft Capability Management
NASA Technical Reports Server (NTRS)
Mumaw, Randy; Feary, Mike
2018-01-01
This presentation presents an overview of work performed at NASA Ames Research Center in 2017. The work concerns the analysis of current aircraft system management displays, and the initial development of an interface for providing information about aircraft system status. The new interface proposes a shift away from current aircraft system alerting interfaces that report the status of physical components, and towards displaying the implications of degradations on mission capability. The proposed interface describes these component failures in terms of operational consequences of aircraft system degradations. The research activity was an effort to examine the utility of different representations of complex systems and operating environments to support real-time decision making of off-nominal situations. A specific focus was to develop representations that provide better integrated information to allow pilots to more easily reason about the operational consequences of the off-nominal situations. The work is also seen as a pathway to autonomy, as information is integrated and understood in a form that automated responses could be developed for the off-nominal situations in the future.
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1990-01-01
The design, implementation, and empirical evaluation of task-analytic models and intelligent aids for operators in the control of complex dynamic systems, specifically aerospace systems, are studied. Three related activities are included: (1) the models of operator decision making in complex and predominantly automated space systems were used and developed; (2) the Operator Function Model (OFM) was used to represent operator activities; and (3) Operator Function Model Expert System (OFMspert), a stand-alone knowledge-based system was developed, that interacts with a human operator in a manner similar to a human assistant in the control of aerospace systems. OFMspert is an architecture for an operator's assistant that uses the OFM as its system and operator knowledge base and a blackboard paradigm of problem solving to dynamically generate expectations about upcoming operator activities and interpreting actual operator actions. An experiment validated the OFMspert's intent inferencing capability and showed that it inferred the intentions of operators in ways comparable to both a human expert and operators themselves. OFMspert was also augmented with control capabilities. An interface allowed the operator to interact with OFMspert, delegating as much or as little control responsibility as the operator chose. With its design based on the OFM, OFMspert's control capabilities were available at multiple levels of abstraction and allowed the operator a great deal of discretion over the amount and level of delegated control. An experiment showed that overall system performance was comparable for teams consisting of two human operators versus a human operator and OFMspert team.
NASA Technical Reports Server (NTRS)
Pelfrey, Joseph J.; Jordan, Lee P.
2008-01-01
The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System has provided accommodations and facilitated operations for microgravity-based research payloads for over 6 years on the International Space Station (ISS). The EXPRESS Rack accepts Space Shuttle middeck type lockers and International Subrack Interface Standard (ISIS) drawers, providing a modular-type interface on the ISS. The EXPRESS Rack provides 28Vdc power, Ethernet and RS-422 data interfaces, thermal conditioning, vacuum exhaust, and Nitrogen supply for payload use. The EXPRESS Rack system also includes payload checkout capability with a flight rack or flight rack emulator prior to launch, providing a high degree of confidence in successful operations once an-orbit. In addition, EXPRESS trainer racks are provided to support crew training of both rack systems and subrack operations. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes for ISS payload development. The EXPRESS Rack is designed to accommodate multidiscipline research, allowing for the independent operation of each subrack payload within a single rack. On-orbit operations began for the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support high-priority payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Over 50 multi-discipline payloads have now been supported on-orbit by the EXPRESS Rack Program. Sustaining engineering, logistics, and maintenance functions are in place to maintain hardware, operations and provide software upgrades. Additional EXPRESS Racks are planned for launch prior to ISS completion in support of long-term operations and the planned transition of the U.S. Segment to a National Laboratory.
Mars mission science operations facilities design
NASA Technical Reports Server (NTRS)
Norris, Jeffrey S.; Wales, Roxana; Powell, Mark W.; Backes, Paul G.; Steinke, Robert C.
2002-01-01
A variety of designs for Mars rover and lander science operations centers are discussed in this paper, beginning with a brief description of the Pathfinder science operations facility and its strengths and limitations. Particular attention is then paid to lessons learned in the design and use of operations facilities for a series of mission-like field tests of the FIDO prototype Mars rover. These lessons are then applied to a proposed science operations facilities design for the 2003 Mars Exploration Rover (MER) mission. Issues discussed include equipment selection, facilities layout, collaborative interfaces, scalability, and dual-purpose environments. The paper concludes with a discussion of advanced concepts for future mission operations centers, including collaborative immersive interfaces and distributed operations. This paper's intended audience includes operations facility and situation room designers and the users of these environments.
NASA Technical Reports Server (NTRS)
Moss, Thomas; Nurge, Mark; Perusich, Stephen
2011-01-01
The In-Situ Resource Utilization (ISRU) Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) software provides operation of the physical plant from a remote location with a high-level interface that can access and control the data from external software applications of other subsystems. This software allows autonomous control over the entire system with manual computer control of individual system/process components. It gives non-programmer operators the capability to easily modify the high-level autonomous sequencing while the software is in operation, as well as the ability to modify the low-level, file-based sequences prior to the system operation. Local automated control in a distributed system is also enabled where component control is maintained during the loss of network connectivity with the remote workstation. This innovation also minimizes network traffic. The software architecture commands and controls the latest generation of RESOLVE processes used to obtain, process, and quantify lunar regolith. The system is grouped into six sub-processes: Drill, Crush, Reactor, Lunar Water Resource Demonstration (LWRD), Regolith Volatiles Characterization (RVC) (see example), and Regolith Oxygen Extraction (ROE). Some processes are independent, some are dependent on other processes, and some are independent but run concurrently with other processes. The first goal is to analyze the volatiles emanating from lunar regolith, such as water, carbon monoxide, carbon dioxide, ammonia, hydrogen, and others. This is done by heating the soil and analyzing and capturing the volatilized product. The second goal is to produce water by reducing the soil at high temperatures with hydrogen. This is done by raising the reactor temperature in the range of 800 to 900 C, causing the reaction to progress by adding hydrogen, and then capturing the water product in a desiccant bed. The software needs to run the entire unit and all sub-processes; however, throughout testing, many variables and parameters need to be changed as more is learned about the system operation. The Master Events Controller (MEC) is run on a standard laptop PC using Windows XP. This PC runs in parallel to another laptop that monitors the GC, and a third PC that monitors the drilling/ crushing operation. These three PCs interface to the process through a CompactRIO, OPC Servers, and modems.
NASA Technical Reports Server (NTRS)
Newsom, B. D.
1978-01-01
A biological system proposed to restrain a monkey in the Spacelab was tested under operational conditions using typical metabolic and telemetered cardiovascular instrumentation. Instrumentation, interfaced with other electronics, and data gathering during a very active operational mission were analyzed for adequacy of procedure and success of data handling by the onboard computer.
A Macintosh based data system for array spectrometers (Poster)
NASA Astrophysics Data System (ADS)
Bregman, J.; Moss, N.
An interactive data aquisition and reduction system has been assembled by combining a Macintosh computer with an instrument controller (an Apple II computer) via an RS-232 interface. The data system provides flexibility for operating different linear array spectrometers. The standard Macintosh interface is used to provide ease of operation and to allow transferring the reduced data to commercial graphics software.
Optimizing real-time Web-based user interfaces for observatories
NASA Astrophysics Data System (ADS)
Gibson, J. Duane; Pickering, Timothy E.; Porter, Dallan; Schaller, Skip
2008-08-01
In using common HTML/Ajax approaches for web-based data presentation and telescope control user interfaces at the MMT Observatory (MMTO), we rapidly were confronted with web browser performance issues. Much of the operational data at the MMTO is highly dynamic and is constantly changing during normal operations. Status of telescope subsystems must be displayed with minimal latency to telescope operators and other users. A major motivation of migrating toward web-based applications at the MMTO is to provide easy access to current and past observatory subsystem data for a wide variety of users on their favorite operating system through a familiar interface, their web browser. Performance issues, especially for user interfaces that control telescope subsystems, led to investigations of more efficient use of HTML/Ajax and web server technologies as well as other web-based technologies, such as Java and Flash/Flex. The results presented here focus on techniques for optimizing HTML/Ajax web applications with near real-time data display. This study indicates that direct modification of the contents or "nodeValue" attribute of text nodes is the most efficient method of updating data values displayed on a web page. Other optimization techniques are discussed for web-based applications that display highly dynamic data.
The JPL telerobot operator control station. Part 1: Hardware
NASA Technical Reports Server (NTRS)
Kan, Edwin P.; Tower, John T.; Hunka, George W.; Vansant, Glenn J.
1989-01-01
The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The hardware design, system architecture, and its integration and interface with the rest of the Telerobot Demonstrator System are discussed.
1980-05-01
andcoptrpormigfrteublne nra ls fpoeue nacrac with Federal Standard 1003 fTelecommunications: Synchronous Bit Oriented Data Link Control Procedures...and the higher level user. The solution to the producer/consumer problem involves the use of PASS and SICHAL primitives and event variables or... semaphores . The event variables have been defined for the LS-microprocessor interface as part of I-1 the internal registers that are included in the F6856
Yeung, Ka Yee
2016-01-01
Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface. PMID:27045593
Hung, Ling-Hong; Kristiyanto, Daniel; Lee, Sung Bong; Yeung, Ka Yee
2016-01-01
Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface.
Adaptation of a Control Center Development Environment for Industrial Process Control
NASA Technical Reports Server (NTRS)
Killough, Ronnie L.; Malik, James M.
1994-01-01
In the control center, raw telemetry data is received for storage, display, and analysis. This raw data must be combined and manipulated in various ways by mathematical computations to facilitate analysis, provide diversified fault detection mechanisms, and enhance display readability. A development tool called the Graphical Computation Builder (GCB) has been implemented which provides flight controllers with the capability to implement computations for use in the control center. The GCB provides a language that contains both general programming constructs and language elements specifically tailored for the control center environment. The GCB concept allows staff who are not skilled in computer programming to author and maintain computer programs. The GCB user is isolated from the details of external subsystem interfaces and has access to high-level functions such as matrix operators, trigonometric functions, and unit conversion macros. The GCB provides a high level of feedback during computation development that improves upon the often cryptic errors produced by computer language compilers. An equivalent need can be identified in the industrial data acquisition and process control domain: that of an integrated graphical development tool tailored to the application to hide the operating system, computer language, and data acquisition interface details. The GCB features a modular design which makes it suitable for technology transfer without significant rework. Control center-specific language elements can be replaced by elements specific to industrial process control.
An Architectural Experience for Interface Design
ERIC Educational Resources Information Center
Gong, Susan P.
2016-01-01
The problem of human-computer interface design was brought to the foreground with the emergence of the personal computer, the increasing complexity of electronic systems, and the need to accommodate the human operator in these systems. With each new technological generation discovering the interface design problems of its own technologies, initial…
Implementing TCP/IP and a socket interface as a server in a message-passing operating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hipp, E.; Wiltzius, D.
1990-03-01
The UNICOS 4.3BSD network code and socket transport interface are the basis of an explicit network server for NLTSS, a message passing operating system on the Cray YMP. A BSD socket user library provides access to the network server using an RPC mechanism. The advantages of this server methodology are its modularity and extensibility to migrate to future protocol suites (e.g. OSI) and transport interfaces. In addition, the network server is implemented in an explicit multi-tasking environment to take advantage of the Cray YMP multi-processor platform. 19 refs., 5 figs.
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Wong, Edmond; Simon, Donald L.
1994-01-01
A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.
A Functional Approach to Hyperspectral Image Analysis in the Cloud
NASA Astrophysics Data System (ADS)
Wilson, A.; Lindholm, D. M.; Coddington, O.; Pilewskie, P.
2017-12-01
Hyperspectral image volumes are very large. A hyperspectral image analysis (HIA) may use 100TB of data, a huge barrier to their use. Hylatis is a new NASA project to create a toolset for HIA. Through web notebook and cloud technology, Hylatis will provide a more interactive experience for HIA by defining and implementing concepts and operations for HIA, identified and vetted by subject matter experts, and callable within a general purpose language, particularly Python. Hylatis leverages LaTiS, a data access framework developed at LASP. With an OPeNDAP compliant interface plus additional server side capabilities, the LaTiS API provides a uniform interface to virtually any data source, and has been applied to various storage systems, including: file systems, databases, remote servers, and in various domains including: space science, systems administration and stock quotes. In the LaTiS architecture, data `adapters' read data into a data model, where server-side computations occur. Data `writers' write data from the data model into the desired format. The Hylatis difference is the data model. In LaTiS, data are represented as mathematical functions of independent and dependent variables. Domain semantics are not present at this level, but are instead present in higher software layers. The benefit of a domain agnostic, mathematical representation is having the power of math, particularly functional algebra, unconstrained by domain semantics. This agnosticism supports reusable server side functionality applicable in any domain, such as statistical, filtering, or projection operations. Algorithms to aggregate or fuse data can be simpler because domain semantics are separated from the math. Hylatis will map the functional model onto the Spark relational interface, thereby adding a functional interface to that big data engine.This presentation will discuss Hylatis goals, strategies, and current state.
MARTe: A Multiplatform Real-Time Framework
NASA Astrophysics Data System (ADS)
Neto, André C.; Sartori, Filippo; Piccolo, Fabio; Vitelli, Riccardo; De Tommasi, Gianmaria; Zabeo, Luca; Barbalace, Antonio; Fernandes, Horacio; Valcarcel, Daniel F.; Batista, Antonio J. N.
2010-04-01
Development of real-time applications is usually associated with nonportable code targeted at specific real-time operating systems. The boundary between hardware drivers, system services, and user code is commonly not well defined, making the development in the target host significantly difficult. The Multithreaded Application Real-Time executor (MARTe) is a framework built over a multiplatform library that allows the execution of the same code in different operating systems. The framework provides the high-level interfaces with hardware, external configuration programs, and user interfaces, assuring at the same time hard real-time performances. End-users of the framework are required to define and implement algorithms inside a well-defined block of software, named Generic Application Module (GAM), that is executed by the real-time scheduler. Each GAM is reconfigurable with a set of predefined configuration meta-parameters and interchanges information using a set of data pipes that are provided as inputs and required as output. Using these connections, different GAMs can be chained either in series or parallel. GAMs can be developed and debugged in a non-real-time system and, only once the robustness of the code and correctness of the algorithm are verified, deployed to the real-time system. The software also supplies a large set of utilities that greatly ease the interaction and debugging of a running system. Among the most useful are a highly efficient real-time logger, HTTP introspection of real-time objects, and HTTP remote configuration. MARTe is currently being used to successfully drive the plasma vertical stabilization controller on the largest magnetic confinement fusion device in the world, with a control loop cycle of 50 ?s and a jitter under 1 ?s. In this particular project, MARTe is used with the Real-Time Application Interface (RTAI)/Linux operating system exploiting the new ?86 multicore processors technology.
Multi-interface level in oil tanks and applications of optical fiber sensors
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Marques, Carlos; Frizera, Anselmo; Pontes, Maria José
2018-01-01
On the oil production also involves the production of water, gas and suspended solids, which are separated from the oil on three-phase separators. However, the control strategies of an oil separator are limited due to unavailability of suitable multi-interface level sensors. This paper presents a description of the multi-phase level problem on the oil industry and a review of the current technologies for multi-interface level assessment. Since optical fiber sensors present chemical stability, intrinsic safety, electromagnetic immunity, lightweight and multiplexing capabilities, it can be an alternative for multi-interface level measurement that can overcome some of the limitations of the current technologies. For this reason, Fiber Bragg Gratings (FBGs) based optical fiber sensor system for multi-interface level assessment is proposed, simulated and experimentally assessed. The results show that the proposed sensor system is capable of measuring interface level with a relative error of only 2.38%. Furthermore, the proposed sensor system is also capable of measuring the oil density with an error of 0.8 kg/m3.
NASA Astrophysics Data System (ADS)
Bejaoui, Najoua
The pressurized water nuclear reactors (PWRs) is the largest fleet of nuclear reactors in operation around the world. Although these reactors have been studied extensively by designers and operators using efficient numerical methods, there are still some calculation weaknesses, given the geometric complexity of the core, still unresolved such as the analysis of the neutron flux's behavior at the core-reflector interface. The standard calculation scheme is a two steps process. In the first step, a detailed calculation at the assembly level with reflective boundary conditions, provides homogenized cross-sections for the assemblies, condensed to a reduced number of groups; this step is called the lattice calculation. The second step uses homogenized properties in each assemblies to calculate reactor properties at the core level. This step is called the full-core calculation or whole-core calculation. This decoupling of the two calculation steps is the origin of methodological bias particularly at the interface core reflector: the periodicity hypothesis used to calculate cross section librairies becomes less pertinent for assemblies that are adjacent to the reflector generally represented by these two models: thus the introduction of equivalent reflector or albedo matrices. The reflector helps to slowdown neutrons leaving the reactor and returning them to the core. This effect leads to two fission peaks in fuel assemblies localised at the core/reflector interface, the fission rate increasing due to the greater proportion of reentrant neutrons. This change in the neutron spectrum arises deep inside the fuel located on the outskirts of the core. To remedy this we simulated a peripheral assembly reflected with TMI-PWR reflector and developed an advanced calculation scheme that takes into account the environment of the peripheral assemblies and generate equivalent neutronic properties for the reflector. This scheme is tested on a core without control mechanisms and charged with fresh fuel. The results of this study showed that explicit representation of reflector and calculation of peripheral assembly with our advanced scheme allow corrections to the energy spectrum at the core interface and increase the peripheral power by up to 12% compared with that of the reference scheme.
MyOcean Information System : achievements and perspectives
NASA Astrophysics Data System (ADS)
Loubrieu, T.; Dorandeu, J.; Claverie, V.; Cordier, K.; Barzic, Y.; Lauret, O.; Jolibois, T.; Blower, J.
2012-04-01
MyOcean system (http://www.myocean.eu) objective is to provide a Core Service for the Ocean. This means MyOcean is setting up an operational service for forecasts, analysis and expertise on ocean currents, temperature, salinity, sea level, primary ecosystems and ice coverage. The production of observation and forecasting data is distributed through 12 production centres. The interface with the external users (including web portal) and the coordination of the overall service is managed by a component called service desk. Besides, a transverse component called MIS (myOcean Information System) aims at connecting the production centres and service desk together, manage the shared information for the overall system and implement a standard Inspire interface for the external world. 2012 is a key year for the system. The MyOcean, 3-year project, which has set up the first versions of the system is ending. The MyOcean II, 2-year project, which will upgrade and consolidate the system is starting. Both projects are granted by the European commission within the GMES Program (7th Framework Program). At the end of the MyOcean project, the system has been designed and the 2 first versions have been implemented. The system now offers an integrated service composed with 237 ocean products. The ocean products are homogeneously described in a catalogue. They can be visualized and downloaded by the user (identified with a unique login) through a seamless web interface. The discovery and viewing interfaces are INSPIRE compliant. The data production, subsystems availability and audience are continuously monitored. The presentation will detail the implemented information system architecture and the chosen software solutions. Regarding the information system, MyOcean II is mainly aiming at consolidating the existing functions and promoting the operations cost-effectiveness. In addition, a specific effort will be done so that the less common data features of the system (ocean in-situ observations, remote-sensing along track observations) reach the same level of interoperability for view and download function as the gridded features. The presentation will detail the envisioned plans.
Bi-directional communication interface for microprocessor-to-system/370
NASA Technical Reports Server (NTRS)
Fischer, J. P.
1981-01-01
The design and operation of a bi-directional communication interface between a microcomputer and the IBM System/370 is documented. The hardware unit interconnects a modem to interface to the S/370, the microcomputer with an EIA I/O port, and a terminal for sending and receiving data from either the microcomputer or the S/370. Also described is the software necessary for the two-way interface. This interface is designed so that no modifications need to be made to the terminal, modem, or microcomputer.
First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces.
Kharche, Neerav; Muckerman, James T; Hybertsen, Mark S
2014-10-24
A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water. The application to the specific cases of nonpolar (101¯0) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.
2010-01-01
The space radiation environment, particularly solar particle events (SPEs), poses the risk of acute radiation sickness (ARS) to humans; and organ doses from SPE exposure may reach critical levels during extra vehicular activities (EVAs) or within lightly shielded spacecraft. NASA has developed an organ dose projection model using the BRYNTRN with SUMDOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUMDOSE, written in FORTRAN, are a Baryon transport code and an output data processing code, respectively. The ARR code is written in C. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. BRYNTRN code operation requires extensive input preparation. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN in friendly way. A GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. The ARRBOD GUI will serve as a proof-of-concept example for future integration of other human space applications risk projection models. The current version of the ARRBOD GUI is a new self-contained product and will have follow-on versions, as options are added: 1) human geometries of MAX/FAX in addition to CAM/CAF; 2) shielding distributions for spacecraft, Mars surface and atmosphere; 3) various space environmental and biophysical models; and 4) other response models to be connected to the BRYNTRN. The major components of the overall system, the subsystem interconnections, and external interfaces are described in this report; and the ARRBOD GUI product is explained step by step in order to serve as a tutorial.
Research on Intelligent Interface in Double-front Work Machines
NASA Astrophysics Data System (ADS)
Kamezaki, Mitsuhiro; Iwata, Hiroyasu; Sugano, Shigeki
This paper proposes a work state identification method with full independent of work environmental conditions and operator skill levels for construction machinery. Advanced operated-work machines, which have been designed for complicated tasks, require intelligent systems that can provide the quantitative work analysis needed to determine effective work procedures and that can provide operational and cognitive support for operators. Construction work environments are extremely complicated, however, and this makes state identification, which is a key technology for an intelligent system, difficult. We therefore defined primitive static states (PSS) that are determined using on-off information for the lever inputs and manipulator loads for each part of the grapple and front and that are completely independent of the various environmental conditions and variation in operator skill level that can cause an incorrect work state identification. To confirm the usefulness of PSS, we performed experiments with a demolition task by using our virtual reality simulator. We confirmed that PSS could robustly and accurately identify the work states and that untrained skills could be easily inferred from the results of PSS-based work analysis. We also confirmed in skill-training experiments that advice information based on PSS-based skill analysis greatly improved operator's work performance. We thus confirmed that PSS can adequately identify work states and are useful for work analysis and skill improvement.
Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration
NASA Technical Reports Server (NTRS)
DeGregorio, Kelly; Wilson, Dale G.
2009-01-01
Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand-alone ReBiLS chip will allow system designers to provide efficient bi-directional communication between components operating at different voltages. Embedding the ReBiLS cells into the proven Reed-Solomon encoder will demonstrate the ability to support new product development in a commercially viable, rad-hard, scalable 180-nm SOI CMOS process.
NASA Technical Reports Server (NTRS)
Shafer, Jaclyn A.; Brock, Tyler M.
2013-01-01
The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF requested the Applied Meteorology Unit (AMU) analyze VAFB sounding data to determine the probability of violating (PoV) upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a graphical user interface (GUI) that will calculate the PoV of each constraint on the day of launch. The AMU suggested also including forecast sounding data from the Rapid Refresh (RAP) model. This would provide further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours, and help to improve the overall upper winds forecast on launch day.
Alloy Design Workbench-Surface Modeling Package Developed
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Noebe, Ronald D.; Bozzolo, Guillermo H.; Good, Brian S.; Daugherty, Elaine S.
2003-01-01
NASA Glenn Research Center's Computational Materials Group has integrated a graphical user interface with in-house-developed surface modeling capabilities, with the goal of using computationally efficient atomistic simulations to aid the development of advanced aerospace materials, through the modeling of alloy surfaces, surface alloys, and segregation. The software is also ideal for modeling nanomaterials, since surface and interfacial effects can dominate material behavior and properties at this level. Through the combination of an accurate atomistic surface modeling methodology and an efficient computational engine, it is now possible to directly model these types of surface phenomenon and metallic nanostructures without a supercomputer. Fulfilling a High Operating Temperature Propulsion Components (HOTPC) project level-I milestone, a graphical user interface was created for a suite of quantum approximate atomistic materials modeling Fortran programs developed at Glenn. The resulting "Alloy Design Workbench-Surface Modeling Package" (ADW-SMP) is the combination of proven quantum approximate Bozzolo-Ferrante-Smith (BFS) algorithms (refs. 1 and 2) with a productivity-enhancing graphical front end. Written in the portable, platform independent Java programming language, the graphical user interface calls on extensively tested Fortran programs running in the background for the detailed computational tasks. Designed to run on desktop computers, the package has been deployed on PC, Mac, and SGI computer systems. The graphical user interface integrates two modes of computational materials exploration. One mode uses Monte Carlo simulations to determine lowest energy equilibrium configurations. The second approach is an interactive "what if" comparison of atomic configuration energies, designed to provide real-time insight into the underlying drivers of alloying processes.
14 CFR § 1215.102 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., and the necessary TDRSS operational areas, interface devices, and NASA communication circuits that... interface. (c) Bit stream. The electronic signals acquired by TDRSS from the user craft or the user...
System and methods for reducing harmonic distortion in electrical converters
Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M
2013-12-03
Systems and methods are provided for delivering energy using an energy conversion module. An exemplary method for delivering energy from an input interface to an output interface using an energy converison module coupled between the input interface and the output interface comprises the steps of determining an input voltage reference for the input interface based on a desired output voltage and a measured voltage and the output interface, determining a duty cycle control value based on a ratio of the input voltage reference and the measured voltage, operating one or more switching elements of the energy conversion module to deliver energy from the input interface to the output interface to the output interface with a duty cycle influenced by the dute cycle control value.
Newell, Matthew R [Los Alamos, NM; Jones, David Carl [Los Alamos, NM
2009-09-01
A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.
Intelligent interface design and evaluation
NASA Technical Reports Server (NTRS)
Greitzer, Frank L.
1988-01-01
Intelligent interface concepts and systematic approaches to assessing their functionality are discussed. Four general features of intelligent interfaces are described: interaction efficiency, subtask automation, context sensitivity, and use of an appropriate design metaphor. Three evaluation methods are discussed: Functional Analysis, Part-Task Evaluation, and Operational Testing. Design and evaluation concepts are illustrated with examples from a prototype expert system interface for environmental control and life support systems for manned space platforms.
The effects of time delays on a telepathology user interface.
Carr, D.; Hasegawa, H.; Lemmon, D.; Plaisant, C.
1992-01-01
Telepathology enables a pathologist to examine physically distant tissue samples by microscope operation over a communication link. Communication links can impose time delays which cause difficulties in controlling the remote device. Such difficulties were found in a microscope teleoperation system. Since the user interface is critical to pathologist's acceptance of telepathology, we redesigned the user interface for this system, built two different versions (a keypad whose movement commands operated by specifying a start command followed by a stop command and a trackball interface whose movement commands were incremental and directly proportional to the rotation of the trackball). We then conducted a pilot study to determine the effect of time delays on the new user interfaces. In our experiment, the keypad was the faster interface when the time delay is short. There was no evidence to favor either the keypad or trackball when the time delay was longer. Inexperienced participants benefitted by allowing them to move long distances over the microscope slide by dragging the field-of-view indicator on the touchscreen control panel. The experiment suggests that changes could be made to the trackball interface which would improve its performance. PMID:1482878
Improvements in analysis techniques for segmented mirror arrays
NASA Astrophysics Data System (ADS)
Michels, Gregory J.; Genberg, Victor L.; Bisson, Gary R.
2016-08-01
The employment of actively controlled segmented mirror architectures has become increasingly common in the development of current astronomical telescopes. Optomechanical analysis of such hardware presents unique issues compared to that of monolithic mirror designs. The work presented here is a review of current capabilities and improvements in the methodology of the analysis of mechanically induced surface deformation of such systems. The recent improvements include capability to differentiate surface deformation at the array and segment level. This differentiation allowing surface deformation analysis at each individual segment level offers useful insight into the mechanical behavior of the segments that is unavailable by analysis solely at the parent array level. In addition, capability to characterize the full displacement vector deformation of collections of points allows analysis of mechanical disturbance predictions of assembly interfaces relative to other assembly interfaces. This capability, called racking analysis, allows engineers to develop designs for segment-to-segment phasing performance in assembly integration, 0g release, and thermal stability of operation. The performance predicted by racking has the advantage of being comparable to the measurements used in assembly of hardware. Approaches to all of the above issues are presented and demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.
NASA Technical Reports Server (NTRS)
Mckay, C. W.; Bown, R. L.
1985-01-01
The paper discusses the importance of linking Ada Run Time Support Environments to the Common Ada Programming Support Environment (APSE) Interface Set (CAIS). A non-stop network operating systems scenario is presented to serve as a forum for identifying the important issues. The network operating system exemplifies the issues involved in the NASA Space Station data management system.
Cooperative Data Sharing: Simple Support for Clusters of SMP Nodes
NASA Technical Reports Server (NTRS)
DiNucci, David C.; Balley, David H. (Technical Monitor)
1997-01-01
Libraries like PVM and MPI send typed messages to allow for heterogeneous cluster computing. Lower-level libraries, such as GAM, provide more efficient access to communication by removing the need to copy messages between the interface and user space in some cases. still lower-level interfaces, such as UNET, get right down to the hardware level to provide maximum performance. However, these are all still interfaces for passing messages from one process to another, and have limited utility in a shared-memory environment, due primarily to the fact that message passing is just another term for copying. This drawback is made more pertinent by today's hybrid architectures (e.g. clusters of SMPs), where it is difficult to know beforehand whether two communicating processes will share memory. As a result, even portable language tools (like HPF compilers) must either map all interprocess communication, into message passing with the accompanying performance degradation in shared memory environments, or they must check each communication at run-time and implement the shared-memory case separately for efficiency. Cooperative Data Sharing (CDS) is a single user-level API which abstracts all communication between processes into the sharing and access coordination of memory regions, in a model which might be described as "distributed shared messages" or "large-grain distributed shared memory". As a result, the user programs to a simple latency-tolerant abstract communication specification which can be mapped efficiently to either a shared-memory or message-passing based run-time system, depending upon the available architecture. Unlike some distributed shared memory interfaces, the user still has complete control over the assignment of data to processors, the forwarding of data to its next likely destination, and the queuing of data until it is needed, so even the relatively high latency present in clusters can be accomodated. CDS does not require special use of an MMU, which can add overhead to some DSM systems, and does not require an SPMD programming model. unlike some message-passing interfaces, CDS allows the user to implement efficient demand-driven applications where processes must "fight" over data, and does not perform copying if processes share memory and do not attempt concurrent writes. CDS also supports heterogeneous computing, dynamic process creation, handlers, and a very simple thread-arbitration mechanism. Additional support for array subsections is currently being considered. The CDS1 API, which forms the kernel of CDS, is built primarily upon only 2 communication primitives, one process initiation primitive, and some data translation (and marshalling) routines, memory allocation routines, and priority control routines. The entire current collection of 28 routines provides enough functionality to implement most (or all) of MPI 1 and 2, which has a much larger interface consisting of hundreds of routines. still, the API is small enough to consider integrating into standard os interfaces for handling inter-process communication in a network-independent way. This approach would also help to solve many of the problems plaguing other higher-level standards such as MPI and PVM which must, in some cases, "play OS" to adequately address progress and process control issues. The CDS2 API, a higher level of interface roughly equivalent in functionality to MPI and to be built entirely upon CDS1, is still being designed. It is intended to add support for the equivalent of communicators, reduction and other collective operations, process topologies, additional support for process creation, and some automatic memory management. CDS2 will not exactly match MPI, because the copy-free semantics of communication from CDS1 will be supported. CDS2 application programs will be free to carefully also use CDS1. CDS1 has been implemented on networks of workstations running unmodified Unix-based operating systems, using UDP/IP and vendor-supplied high- performance locks. Although its inter-node performance is currently unimpressive due to rudimentary implementation technique, it even now outperforms highly-optimized MPI implementation on intra-node communication due to its support for non-copy communication. The similarity of the CDS1 architecture to that of other projects such as UNET and TRAP suggests that the inter-node performance can be increased significantly to surpass MPI or PVM, and it may be possible to migrate some of its functionality to communication controllers.
Interactive Webmap-Based Science Planning for BepiColombo
NASA Astrophysics Data System (ADS)
McAuliffe, J.; Martinez, S.; Ortiz de Landaluce, I.; de la Fuente, S.
2015-10-01
For BepiColombo, ESA's Mission to Mercury, we will build a web-based, map-based interface to the Science Planning System. This interface will allow the mission's science teams to visually define targets for observations and interactively specify what operations will make up the given observation. This will be a radical departure from previous ESA mission planning methods. Such an interface will rely heavily on GIS technologies. This interface will provide footprint coverage of all existing archived data for Mercury, including a set of built-in basemaps. This will allow the science teams to analyse their planned observations and operational constraints with relevant contextual information from their own instrument, other BepiColombo instruments or from previous missions. The interface will allow users to import and export data in commonly used GIS formats, such that it can be visualised together with the latest planning information (e.g. import custom basemaps) or analysed in other GIS software. The interface will work with an object-oriented concept of an observation that will be a key characteristic of the overall BepiColombo scienceplanning concept. Observation templates or classes will be tracked right through the planning-executionprocessing- archiving cycle to the final archived science products. By using an interface that synthesises all relevant available information, the science teams will have a better understanding of the operational environment; it will enhance their ability to plan efficiently minimising or removing manual planning. Interactive 3D visualisation of the planned, scheduled and executed observations, simulation of the viewing conditions and interactive modification of the observation parameters are also being considered.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... Statement for Land-Water Interface and Service Pier Extension, Naval Base Kitsap Bangor, Silverdale, WA and... Land-Water Interface (LWI) structures and (2) the proposed construction and operation of a Service Pier... waterfront. Construction is anticipated to take two years. Construction activities occurring in the water...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... an Interface Control Working Group (ICWG) Meeting for Document ICD-GPS-870 AGENCY: Interface Control Working Group (ICWG) meeting for document ICD-GPS-870. ACTION: Meeting Notice. SUMMARY: This notice... Working Group (ICWG) meeting for document ICD-GPS-870, Navstar Next Generation GPS Operational Control...
Diverse applications of advanced man-telerobot interfaces
NASA Technical Reports Server (NTRS)
Mcaffee, Douglas A.
1991-01-01
Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.
Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.
Eom, Hwisoo; Lee, Sang Hun
2015-06-12
A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.
Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles
Eom, Hwisoo; Lee, Sang Hun
2015-01-01
A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406
ECLSS evolution: Advanced instrumentation interface requirements. Volume 3: Appendix C
NASA Technical Reports Server (NTRS)
1991-01-01
An Advanced ECLSS (Environmental Control and Life Support System) Technology Interfaces Database was developed primarily to provide ECLSS analysts with a centralized and portable source of ECLSS technologies interface requirements data. The database contains 20 technologies which were previously identified in the MDSSC ECLSS Technologies database. The primary interfaces of interest in this database are fluid, electrical, data/control interfaces, and resupply requirements. Each record contains fields describing the function and operation of the technology. Fields include: an interface diagram, description applicable design points and operating ranges, and an explaination of data, as required. A complete set of data was entered for six of the twenty components including Solid Amine Water Desorbed (SAWD), Thermoelectric Integrated Membrane Evaporation System (TIMES), Electrochemical Carbon Dioxide Concentrator (EDC), Solid Polymer Electrolysis (SPE), Static Feed Electrolysis (SFE), and BOSCH. Additional data was collected for Reverse Osmosis Water Reclaimation-Potable (ROWRP), Reverse Osmosis Water Reclaimation-Hygiene (ROWRH), Static Feed Solid Polymer Electrolyte (SFSPE), Trace Contaminant Control System (TCCS), and Multifiltration Water Reclamation - Hygiene (MFWRH). A summary of the database contents is presented in this report.
Fusion interfaces for tactical environments: An application of virtual reality technology
NASA Technical Reports Server (NTRS)
Haas, Michael W.
1994-01-01
The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.
Natural interaction for unmanned systems
NASA Astrophysics Data System (ADS)
Taylor, Glenn; Purman, Ben; Schermerhorn, Paul; Garcia-Sampedro, Guillermo; Lanting, Matt; Quist, Michael; Kawatsu, Chris
2015-05-01
Military unmanned systems today are typically controlled by two methods: tele-operation or menu-based, search-andclick interfaces. Both approaches require the operator's constant vigilance: tele-operation requires constant input to drive the vehicle inch by inch; a menu-based interface requires eyes on the screen in order to search through alternatives and select the right menu item. In both cases, operators spend most of their time and attention driving and minding the unmanned systems rather than on being a warfighter. With these approaches, the platform and interface become more of a burden than a benefit. The availability of inexpensive sensor systems in products such as Microsoft Kinect™ or Nintendo Wii™ has resulted in new ways of interacting with computing systems, but new sensors alone are not enough. Developing useful and usable human-system interfaces requires understanding users and interaction in context: not just what new sensors afford in terms of interaction, but how users want to interact with these systems, for what purpose, and how sensors might enable those interactions. Additionally, the system needs to reliably make sense of the user's inputs in context, translate that interpretation into commands for the unmanned system, and give feedback to the user. In this paper, we describe an example natural interface for unmanned systems, called the Smart Interaction Device (SID), which enables natural two-way interaction with unmanned systems including the use of speech, sketch, and gestures. We present a few example applications SID to different types of unmanned systems and different kinds of interactions.
Interface evaluation for soft robotic manipulators
NASA Astrophysics Data System (ADS)
Moore, Kristin S.; Rodes, William M.; Csencsits, Matthew A.; Kwoka, Martha J.; Gomer, Joshua A.; Pagano, Christopher C.
2006-05-01
The results of two usability experiments evaluating an interface for the operation of OctArm, a biologically inspired robotic arm modeled after an octopus tentacle, are reported. Due to the many degrees-of-freedom (DOF) for the operator to control, such 'continuum' robotic limbs provide unique challenges for human operators because they do not map intuitively. Two modes have been developed to control the arm and reduce the DOF under the explicit direction of the operator. In coupled velocity (CV) mode, a joystick controls changes in arm curvature. In end-effector (EE) mode, a joystick controls the arm by moving the position of an endpoint along a straight line. In Experiment 1, participants used the two modes to grasp objects placed at different locations in a virtual reality modeling language (VRML). Objective measures of performance and subjective preferences were recorded. Results revealed lower grasp times and a subjective preference for the CV mode. Recommendations for improving the interface included providing additional feedback and implementation of an error recovery function. In Experiment 2, only the CV mode was tested with improved training of participants and several changes to the interface. The error recovery function was implemented, allowing participants to reverse through previously attained positions. The mean time to complete the trials in the second usability test was reduced by more than 4 minutes compared with the first usability test, confirming the interface changes improved performance. The results of these tests will be incorporated into future versions of the arm and improve future usability tests.
Mark 3 VLBI system: Tropospheric calibration subsystems
NASA Technical Reports Server (NTRS)
Resch, G. M.
1980-01-01
Tropospheric delay calibrations are implemented in the Mark 3 system with two subsystems. Estimates of the dry component of tropospheric delay are provided by accurate barometric data from a subsystem of surface meteorological sensors (SMS). An estimate of the wet component of tropospheric delay is provided by a water vapor radiometer (WVR). Both subsystems interface directly to the ASCII Transceiver bus of the Mark 3 system and are operated by the control computer. Seven WVR's under construction are designed to operate in proximity to a radio telescope and can be commanded to point along the line-of-sight to a radio source. They should provide a delay estimate that is accurate to the + or - 2 cm level.
LUMIS Interactive graphics operating instructions and system specifications
NASA Technical Reports Server (NTRS)
Bryant, N. A.; Yu, T. C.; Landini, A. J.
1976-01-01
The LUMIS program has designed an integrated geographic information system to assist program managers and planning groups in metropolitan regions. Described is the system designed to interactively interrogate a data base, display graphically a portion of the region enclosed in the data base, and perform cross tabulations of variables within each city block, block group, or census tract. The system is designed to interface with U. S. Census DIME file technology, but can accept alternative districting conventions. The system is described on three levels: (1) introduction to the systems's concept and potential applications; (2) the method of operating the system on an interactive terminal; and (3) a detailed system specification for computer facility personnel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.R.
1976-01-12
The Nads FSK Modem is a compact unit designed to operate in conjunction with EIA standard interfacing and the data terminal equipment of the 1200 Baud digital communications network of the Nevada Automated Diagnostics System (NADS). The modem is constructed in a Nuclear Instrumentation Module System (NIMS) module for compatability with the NADS system. The modulator section of the modem accepts serial, digital signals at 1200 Baud which may be either standard TTL levels or bipolar signals meeting either the EIA RS-232C or RS-232B standards. The output of the modulator is a Frequency-Shift Keyed (FSK) signal having frequencies of 2.2more » kHz for Mark and 1.2 kHz for Space. The demodulator section accepts the above FSK signal as input, and outputs serial, digital signals at 1200 Baud at either TTL or EIA RS-232C levels. Specifications and operation and calibration instructions are given. (WHK)« less
First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces
Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.
2014-10-21
A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1 b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation andmore » the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less
Description of the SSF PMAD DC testbed control system data acquisition function
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Mackin, Michael; Wright, Theodore
1992-01-01
The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data requirements are dictated by the control system algorithms being implemented at each level. A functional description of the various levels of the testbed control system architecture, the data acquisition function, and the status of its implementationis presented.
Single-channel ground airborne radio system (SINCGARS) based remote control for the M1 Abrahms
NASA Astrophysics Data System (ADS)
Urda, Joseph R.
1995-04-01
Remote control of the Ml Abrahms Main Battle Tank through a minefield breach operation will remove the vehicle crew from the inherent hazard. A successful remote control system will provide automotive control yet not impair normal operation. This requires a minimum of physical parts, and an unobtrusive installation. Most importantly, a system failure must not impair the regular operation as a manned system. The system itself need not be complex. A minefield breach only requires simple control of automotive function and a mine plow interface. Control hardware for the Ml-Al can be reduced to two linear actuators, an electrical interface for the engine control unit, an interface for the mine plow, and the associated cables. Communication between vehicle control and operator control takes place over the vehicles organic radio (typically SINCGARS). This helps reduce the number of special purpose components for the remote control device. The device is currently awaiting an automotive safety test to prepare for its safety release. Because of the specific nature of the MDL-STD 1553-B data bus the device will not control an M1-A2 Main Battle Tank. The architecture will allow control of the M1-A2 through the 1553-B data bus however the physical hardware has not been constructed. The control scheme will not change. The communication interface will provide greater flexibility when interfacing to the vehicle tactical radio. Operational utility will be determined by U.S. Army Training and Doctrine Command personnel. The obvious benefit is that if a remote tank is lost during a minefield breach the crew is saved.
Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.
2016-01-01
Entropy stable (SS) discontinuous spectral collocation formulations of any order are developed for the compressible Navier-Stokes equations on hexahedral elements. Recent progress on two complementary efforts is presented. The first effort is a generalization of previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Although being more costly to implement, it is shown that the LG operators are significantly more accurate on comparable grids. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort generalizes previous SS work to include the possibility of p-refinement at non-conforming interfaces. A generalization of existing entropy stability machinery is developed to accommodate the nuances of fully multi-dimensional summation-by-parts (SBP) operators. The entropy stability of the compressible Euler equations on non-conforming interfaces is demonstrated using the newly developed LG operators and multi-dimensional interface interpolation operators.
Integrating medical devices in the operating room using service-oriented architectures.
Ibach, Bastian; Benzko, Julia; Schlichting, Stefan; Zimolong, Andreas; Radermacher, Klaus
2012-08-01
Abstract With the increasing documentation requirements and communication capabilities of medical devices in the operating room, the integration and modular networking of these devices have become more and more important. Commercial integrated operating room systems are mainly proprietary developments using usually proprietary communication standards and interfaces, which reduce the possibility of integrating devices from different vendors. To overcome these limitations, there is a need for an open standardized architecture that is based on standard protocols and interfaces enabling the integration of devices from different vendors based on heterogeneous software and hardware components. Starting with an analysis of the requirements for device integration in the operating room and the techniques used for integrating devices in other industrial domains, a new concept for an integration architecture for the operating room based on the paradigm of a service-oriented architecture is developed. Standardized communication protocols and interface descriptions are used. As risk management is an important factor in the field of medical engineering, a risk analysis of the developed concept has been carried out and the first prototypes have been implemented.
Combined virtual and real robotic test-bed for single operator control of multiple robots
NASA Astrophysics Data System (ADS)
Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash
2010-04-01
Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, B.; /Fermilab
1999-10-08
A user interface is created to monitor and operate the heating, ventilation, and air conditioning system. The interface is networked to the system's programmable logic controller. The controller maintains automated control of the system. The user through the interface is able to see the status of the system and override or adjust the automatic control features. The interface is programmed to show digital readouts of system equipment as well as visual queues of system operational statuses. It also provides information for system design and component interaction. The interface is made easier to read by simple designs, color coordination, and graphics.more » Fermi National Accelerator Laboratory (Fermi lab) conducts high energy particle physics research. Part of this research involves collision experiments with protons, and anti-protons. These interactions are contained within one of two massive detectors along Fermilab's largest particle accelerator the Tevatron. The D-Zero Assembly Building houses one of these detectors. At this time detector systems are being upgraded for a second experiment run, titled Run II. Unlike the previous run, systems at D-Zero must be computer automated so operators do not have to continually monitor and adjust these systems during the run. Human intervention should only be necessary for system start up and shut down, and equipment failure. Part of this upgrade includes the heating, ventilation, and air conditioning system (HVAC system). The HVAC system is responsible for controlling two subsystems, the air temperatures of the D-Zero Assembly Building and associated collision hall, as well as six separate water systems used in the heating and cooling of the air and detector components. The BYAC system is automated by a programmable logic controller. In order to provide system monitoring and operator control a user interface is required. This paper will address methods and strategies used to design and implement an effective user interface. Background material pertinent to the BYAC system will cover the separate water and air subsystems and their purposes. In addition programming and system automation will also be covered.« less
Discrete structural features among interface residue-level classes.
Sowmya, Gopichandran; Ranganathan, Shoba
2015-01-01
Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs.
Discrete structural features among interface residue-level classes
2015-01-01
Background Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Results Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Conclusions Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs. PMID:26679043
Creating an AI modeling application for designers and developers
NASA Astrophysics Data System (ADS)
Houlette, Ryan; Fu, Daniel; Jensen, Randy
2003-09-01
Simulation developers often realize an entity's AI by writing a program that exhibits the intended behavior. These behaviors are often the product of design documents written by designers. These individuals, while possessing a vast knowledge of the subject matter, might not have any programming knowledge whatsoever. To address this disconnect between design and subsequent development, we have created an AI application whereby a designer or developer sketches an entity's AI using a graphical "drag and drop" interface to quickly articulate behavior using a UML-like representation of state charts. Aside from the design-level benefits, the application also features a runtime engine that takes the application's data as input along with a simulation or game interface, and makes the AI operational. We discuss our experience in creating such an application for both designer and developer.
Formal specification of human-computer interfaces
NASA Technical Reports Server (NTRS)
Auernheimer, Brent
1990-01-01
A high-level formal specification of a human computer interface is described. Previous work is reviewed and the ASLAN specification language is described. Top-level specifications written in ASLAN for a library and a multiwindow interface are discussed.
An XML-based Generic Tool for Information Retrieval in Solar Databases
NASA Astrophysics Data System (ADS)
Scholl, Isabelle F.; Legay, Eric; Linsolas, Romain
This paper presents the current architecture of the `Solar Web Project' now in its development phase. This tool will provide scientists interested in solar data with a single web-based interface for browsing distributed and heterogeneous catalogs of solar observations. The main goal is to have a generic application that can be easily extended to new sets of data or to new missions with a low level of maintenance. It is developed with Java and XML is used as a powerful configuration language. The server, independent of any database scheme, can communicate with a client (the user interface) and several local or remote archive access systems (such as existing web pages, ftp sites or SQL databases). Archive access systems are externally described in XML files. The user interface is also dynamically generated from an XML file containing the window building rules and a simplified database description. This project is developed at MEDOC (Multi-Experiment Data and Operations Centre), located at the Institut d'Astrophysique Spatiale (Orsay, France). Successful tests have been conducted with other solar archive access systems.
NASA Astrophysics Data System (ADS)
Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.
2009-03-01
Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.
mirEX: a platform for comparative exploration of plant pri-miRNA expression data.
Bielewicz, Dawid; Dolata, Jakub; Zielezinski, Andrzej; Alaba, Sylwia; Szarzynska, Bogna; Szczesniak, Michal W; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Karlowski, Wojciech M
2012-01-01
mirEX is a comprehensive platform for comparative analysis of primary microRNA expression data. RT-qPCR-based gene expression profiles are stored in a universal and expandable database scheme and wrapped by an intuitive user-friendly interface. A new way of accessing gene expression data in mirEX includes a simple mouse operated querying system and dynamic graphs for data mining analyses. In contrast to other publicly available databases, the mirEX interface allows a simultaneous comparison of expression levels between various microRNA genes in diverse organs and developmental stages. Currently, mirEX integrates information about the expression profile of 190 Arabidopsis thaliana pri-miRNAs in seven different developmental stages: seeds, seedlings and various organs of mature plants. Additionally, by providing RNA structural models, publicly available deep sequencing results, experimental procedure details and careful selection of auxiliary data in the form of web links, mirEX can function as a one-stop solution for Arabidopsis microRNA information. A web-based mirEX interface can be accessed at http://bioinfo.amu.edu.pl/mirex.
NASA Astrophysics Data System (ADS)
Riccio, A.; Leotta, F.; Bianchi, L.; Aloise, F.; Zickler, C.; Hoogerwerf, E.-J.; Kübler, A.; Mattia, D.; Cincotti, F.
2011-04-01
Advancing the brain-computer interface (BCI) towards practical applications in technology-based assistive solutions for people with disabilities requires coping with problems of accessibility and usability to increase user acceptance and satisfaction. The main objective of this study was to introduce a usability-oriented approach in the assessment of BCI technology development by focusing on evaluation of the user's subjective workload and satisfaction. The secondary aim was to compare two applications for a P300-based BCI. Eight healthy subjects were asked to use an assistive technology solution which integrates the P300-based BCI with commercially available software under two conditions—visual stimuli needed to evoke the P300 response were either overlaid onto the application's graphical user interface or presented on a separate screen. The two conditions were compared for effectiveness (level of performance), efficiency (subjective workload measured by means of NASA-TXL) and satisfaction of the user. Although no significant difference in usability could be detected between the two conditions, the methodology proved to be an effective tool to highlight weaknesses in the technical solution.
Free-surface flow of liquid oxygen under non-uniform magnetic field
NASA Astrophysics Data System (ADS)
Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min
2017-01-01
The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.
1995-01-01
This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.
2000-04-01
two week test was a part of an The Boeing Company is studying a concept that on- going Boeing internal research and development involves teaming a...study and effectiveness of attack/reconnaissance teams. A assessment of employment modes and their major concern is the level of crew interaction...Based on the UAV control mode, these controls will Test subjects received training concerning the operate either the TADS sensors (control mode mne
2017-11-10
A heavy-load transport truck carrying the Orion crew access arm nears the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The crew access arm will be installed at about the 274-foot level on the mobile launcher tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower to prepare for Exploration Mission-1.
2013-03-01
Sequencing; and 5) Taxi Routing (with Conformance Monitoring). Third, the impact of these DSTs on tower cab operational activities, sub-activities...keystroke or interface level. Fourth, the impact of the DSTs on aptitudes required of controllers is evaluated. The importance of the following aptitudes...Analysis of Mid-Term NextGen Impact on Aptitudes Required in the ATCT Cab ---------------- 36 Mid-Term DST Impact on Tower Cab Controller Roles
A standard satellite control reference model
NASA Technical Reports Server (NTRS)
Golden, Constance
1994-01-01
This paper describes a Satellite Control Reference Model that provides the basis for an approach to identify where standards would be beneficial in supporting space operations functions. The background and context for the development of the model and the approach are described. A process for using this reference model to trace top level interoperability directives to specific sets of engineering interface standards that must be implemented to meet these directives is discussed. Issues in developing a 'universal' reference model are also identified.
1983-12-01
Initializes the data tables shared by both the Local and Netowrk Operating Systems. 3. Invint: Written in Assembly Language. Initializes the Input/Output...connection with an appropriate type and grade of transport service and appropriate security authentication (Ref 6:38). Data Transfer within a session...V.; Kent, S. Security in oihr Level Protocolst Anorgaches. Alternatives and Recommendations, Draft Report ICST/HLNP-81-19, Wash ingt on,,D.C.: Dept
The graphene-gold interface and its implications for nanoelectronics.
Sundaram, Ravi S; Steiner, Mathias; Chiu, Hsin-Ying; Engel, Michael; Bol, Ageeth A; Krupke, Ralph; Burghard, Marko; Kern, Klaus; Avouris, Phaedon
2011-09-14
We combine optical microspectroscopy and electronic measurements to study how gold deposition affects the physical properties of graphene. We find that the electronic structure, the electron-phonon coupling, and the doping level in gold-plated graphene are largely preserved. The transfer lengths for electrons and holes at the graphene-gold contact have values as high as 1.6 μm. However, the interfacial coupling of graphene and gold causes local temperature drops of up to 500 K in operating electronic devices.
NASA Technical Reports Server (NTRS)
Tobey, G. L.
1978-01-01
Tests were performed to evaluate the operating characteristics of the interface between the Space Lab Bus Interface Unit (SL/BIU) and the Orbiter Multiplexer-Demultiplexer (MDM) serial data input-output (SIO) module. This volume contains the test equipment preparation procedures and a detailed description of the Nova/Input Output Processor Simulator (IOPS) software used during the data transfer tests to determine word error rates (WER).
Crew interface analysis: Selected articles on space human factors research, 1987 - 1991
NASA Technical Reports Server (NTRS)
Bagian, Tandi (Compiler)
1993-01-01
As part of the Flight Crew Support Division at NASA, the Crew Interface Analysis Section is dedicated to the study of human factors in the manned space program. It assumes a specialized role that focuses on answering operational questions pertaining to NASA's Space Shuttle and Space Station Freedom Programs. One of the section's key contributions is to provide knowledge and information about human capabilities and limitations that promote optimal spacecraft and habitat design and use to enhance crew safety and productivity. The section provides human factors engineering for the ongoing missions as well as proposed missions that aim to put human settlements on the Moon and Mars. Research providing solutions to operational issues is the primary objective of the Crew Interface Analysis Section. The studies represent such subdisciplines as ergonomics, space habitability, man-computer interaction, and remote operator interaction.
Cryogenic and radiation-hard asic for interfacing large format NIR/SWIR detector arrays
NASA Astrophysics Data System (ADS)
Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses
2017-11-01
For scientific and earth observation space missions, weight and power consumption is usually a critical factor. In order to obtain better vehicle integration, efficiency and controllability for large format NIR/SWIR detector arrays, a prototype ASIC is designed. It performs multiple detector array interfacing, power regulation and data acquisition operations inside the cryogenic chambers. Both operation commands and imaging data are communicated via the SpaceWire interface which will significantly reduce the number of wire goes in and out the cryogenic chamber. This "ASIC" prototype is realized in 0.18um CMOS technology and is designed for radiation hardness.
The Transportable Applications Environment - An interactive design-to-production development system
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C.; Howell, David R.; Szczur, Martha R.
1988-01-01
An account is given of the design philosophy and architecture of the Transportable Applications Environment (TAE), an executive program binding a system of applications programs into a single, easily operable whole. TAE simplifies the job of a system developer by furnishing a stable framework for system-building; it also integrates system activities, and cooperates with the host operating system in order to perform such functions as task-scheduling and I/O. The initial TAE human/computer interface supported command and menu interfaces, data displays, parameter-prompting, error-reporting, and online help. Recent extensions support graphics workstations with a window-based, modeless user interface.
Development of Ada language control software for the NASA power management and distribution test bed
NASA Technical Reports Server (NTRS)
Wright, Ted; Mackin, Michael; Gantose, Dave
1989-01-01
The Ada language software developed to control the NASA Lewis Research Center's Power Management and Distribution testbed is described. The testbed is a reduced-scale prototype of the electric power system to be used on space station Freedom. It is designed to develop and test hardware and software for a 20-kHz power distribution system. The distributed, multiprocessor, testbed control system has an easy-to-use operator interface with an understandable English-text format. A simple interface for algorithm writers that uses the same commands as the operator interface is provided, encouraging interactive exploration of the system.
Husain, Abdul Rashid; Hadad, Yaser; Zainal Alam, Muhd Nazrul Hisham
2016-10-01
This article presents the development of a low-cost microcontroller-based interface for a microbioreactor operation. An Arduino MEGA 2560 board with 54 digital input/outputs, including 15 pulse-width-modulation outputs, has been chosen to perform the acquisition and control of the microbioreactor. The microbioreactor (volume = 800 µL) was made of poly(dimethylsiloxane) and poly(methylmethacrylate) polymers. The reactor was built to be equipped with sensors and actuators for the control of reactor temperature and the mixing speed. The article discusses the circuit of the microcontroller-based platform, describes the signal conditioning steps, and evaluates the capacity of the proposed low-cost microcontroller-based interface in terms of control accuracy and system responses. It is demonstrated that the proposed microcontroller-based platform is able to operate parallel microbioreactor operation with satisfactory performances. Control accuracy at a deviation less than 5% of the set-point values and responses in the range of few seconds have been recorded. © 2015 Society for Laboratory Automation and Screening.
Universal MOSFET parameter analyzer
NASA Astrophysics Data System (ADS)
Klekachev, A. V.; Kuznetsov, S. N.; Pikulev, V. B.; Gurtov, V. A.
2006-05-01
MOSFET analyzer is developed to extract most important parameters of transistors. Instead of routine DC transfer and output characteristics, analyzer provides an evaluation of interface states density by applying charge pumping technique. There are two features that outperform the analyzer among similar products of other vendors. It is compact (100 × 80 × 50 mm 3 in dimensions) and lightweight (< 200 gram) instrument with ultra low power supply (< 2.5 W). The analyzer operates under control of IBM PC by means of USB interface that simultaneously provides power supply. Owing to the USB-compatible microcontroller as the basic element, designed analyzer offers cost-effective solution for diverse applications. The enclosed software runs under Windows 98/2000/XP operating systems, it has convenient graphical interface simplifying measurements for untrained user. Operational characteristics of analyzer are as follows: gate and drain output voltage within limits of +/-10V measuring current range of 1pA ÷ 10 mA; lowest limit of interface states density characterization of ~10 9 cm -2 • eV -1. The instrument was designed on the base of component parts from CYPRESS and ANALOG DEVICES (USA).
Flexible software architecture for user-interface and machine control in laboratory automation.
Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E
1998-10-01
We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.
MaROS Strategic Relay Planning and Coordination Interfaces
NASA Technical Reports Server (NTRS)
Allard, Daniel A.
2010-01-01
The Mars Relay Operations Service (MaROS) is designed to provide planning and analysis tools in support of ongoing Mars Network relay operations. Strategic relay planning requires coordination between lander and orbiter mission ground data system (GDS) teams to schedule and execute relay communications passes. MaROS centralizes this process, correlating all data relevant to relay coordination to provide a cohesive picture of the relay state. Service users interact with the system through thin-layer command line and web user interface client applications. Users provide and utilize data such as lander view periods of orbiters, Deep Space Network (DSN) antenna tracks, and reports of relay pass performance. Users upload and download relevant relay data via formally defined and documented file structures including some described in Extensible Markup Language (XML). Clients interface with the system via an http-based Representational State Transfer (ReST) pattern using Javascript Object Notation (JSON) formats. This paper will provide a general overview of the service architecture and detail the software interfaces and considerations for interface design.
Reward-based hypertension control by a synthetic brain-dopamine interface.
Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin
2013-11-05
Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.
NASA Technical Reports Server (NTRS)
Malone, T. B.; Micocci, A.
1975-01-01
The alternate methods of conducting a man-machine interface evaluation are classified as static and dynamic, and are evaluated. A dynamic evaluation tool is presented to provide for a determination of the effectiveness of the man-machine interface in terms of the sequence of operations (task and task sequences) and in terms of the physical characteristics of the interface. This dynamic checklist approach is recommended for shuttle and shuttle payload man-machine interface evaluations based on reduced preparation time, reduced data, and increased sensitivity of critical problems.
Orbiter CIU/IUS communications hardware evaluation
NASA Technical Reports Server (NTRS)
Huth, G. K.
1979-01-01
The DOD and NASA inertial upper stage communication system design, hardware specifications and interfaces were analyzed to determine their compatibility with the Orbiter payload communications equipment (Payload Interrogator, Payload Signal Processors, Communications Interface Unit, and the Orbiter operational communications equipment (the S-Band and Ku-band systems). Topics covered include (1) IUS/shuttle Orbiter communications interface definition; (2) Orbiter avionics equipment serving the IUS; (3) IUS communication equipment; (4) IUS/shuttle Orbiter RF links; (5) STDN/TDRS S-band related activities; and (6) communication interface unit/Orbiter interface issues. A test requirement plan overview is included.
Man-machine interface requirements - advanced technology
NASA Technical Reports Server (NTRS)
Remington, R. W.; Wiener, E. L.
1984-01-01
Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.
Analysis and Development of a Web-Enabled Planning and Scheduling Database Application
2013-09-01
establishes an entity—relationship diagram for the desired process, constructs an operable database using MySQL , and provides a web- enabled interface for...development, develop, design, process, re- engineering, reengineering, MySQL , structured query language, SQL, myPHPadmin. 15. NUMBER OF PAGES 107 16...relationship diagram for the desired process, constructs an operable database using MySQL , and provides a web-enabled interface for the population of
Positive-Buoyancy Rover for Under Ice Mobility
NASA Technical Reports Server (NTRS)
Leichty, John M.; Klesh, Andrew T.; Berisford, Daniel F.; Matthews, Jaret B.; Hand, Kevin P.
2013-01-01
A buoyant rover has been developed to traverse the underside of ice-covered lakes and seas. The rover operates at the ice/water interface and permits direct observation and measurement of processes affecting freeze- over and thaw events in lake and marine environments. Operating along the 2- D ice-water interface simplifies many aspects of underwater exploration, especially when compared to submersibles, which have difficulty in station-keeping and precision mobility. The buoyant rover consists of an all aluminum body with two aluminum sawtooth wheels. The two independent body segments are sandwiched between four actuators that permit isolation of wheel movement from movement of the central tether spool. For normal operations, the wheels move while the tether spool feeds out line and the cameras on each segment maintain a user-controlled fixed position. Typically one camera targets the ice/water interface and one camera looks down to the lake floor to identify seep sources. Each wheel can be operated independently for precision turning and adjustments. The rover is controlled by a touch- tablet interface and wireless goggles enable real-time viewing of video streamed from the rover cameras. The buoyant rover was successfully deployed and tested during an October 2012 field campaign to investigate methane trapped in ice in lakes along the North Slope of Alaska.
Interfaces of electrical contacts in organic semiconductor devices
NASA Astrophysics Data System (ADS)
Demirkan, Korhan
Progress in organic semiconductor devices relies on better understanding of interfaces as well as material development. The engineering of interfaces that exhibit low resistance, low operating voltage and long-term stability to minimize device degradation is one of the crucial requirements. Photoelectron spectroscopy is a powerful technique to study the metal-semiconductor interfaces, allowing: (i) elucidation of the energy levels of the semiconductor and the contacts that determine Schottky barrier height, (ii) inspection of electrical interactions (such as charge transfer, dipole formation, formation of induced density of states or formation of polaron/bi-polaron states) that effect the energy level alignment, (iii) determination of interfacial chemistry, and (iv) estimation of interface morphology. In this thesis, we have used photoelectron spectroscopy extensively for detailed analysis of the metal organic semiconductor interfaces. In this study, we demonstrate the use of photoelectron spectroscopy for construction of energy level diagrams and display some results related to chemical tailoring of materials for engineering interfaces with lowered Schottky barriers. Following our work on the energy level alignment of poly(p-phenyene vinylene) based organic semiconductors on various substrates [Au, indium tin oxide, Si (with native oxide) and Al (with native oxide)], we tested controlling the energy level alignment by using polar self assembled molecules (SAMs). Photoelectron spectroscopy showed that, by introducing SAMs on the Au surface, we successfully changed the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. To investigate the chemical interactions at the metal/organic interface, we studied the metallization of poly(2-methoxy-5,2'-ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene (PS) and ozone treated polystyrene (PS-O3) surfaces by thermal deposition of aluminum. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer, for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of Al with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Formation of metal oxide and metal-organic compound is detected during the Al metallization of MEH-PPV and ozone-treated PS surfaces. Our results showed that the condensation of Al on polymer surfaces is highly dependent on surface reactivity. Enormous differences were observed for the condensation coefficient of Al on PS and PS-O3 surfaces. For the inert PS surface, results showed that Al atoms poorly wet the polymer surface and form distributed clusters at the surface. Results on reactive polymer surfaces suggest morphology reminiscent of a Stranski-Krastanov-type growth and high contact area. Many studies have shown that the insertion of a thin interlayer of the oxide or fluoride of alkali or alkaline metals between the low work function electrode and the organic semiconductor layers dramatically lowers the onset voltage and increases the efficiency compared to identical devices without the insulating layer. Various modes have been suggested for the mechanism of device performance enhancement. We have investigated the chemical and electrical interaction of (i) LiF with MEH-PPV, (ii) Al with MEH-PPV in the presence of a thin LiF layer at the interface, and finally (iii) the interaction of Al with LiF. AFM and XPS data showed that LiF forms island on the surface. Our data in agreement with various existing models suggested the (i) alteration in the electronic properties under applied bias, (ii) doping of the organic semiconductor, (iii) formation of metal alloy (Au-Li). In addition to the possible electrical modifications at the interface suggested previously, our data also suggest a change in the film growth on LiF modified surfaces.
OPALS: Mission System Operations Architecture for an Optical Communications Demonstration on the ISS
NASA Technical Reports Server (NTRS)
Abrahamson, Matthew J.; Sindiy, Oleg V.; Oaida, Bogdan V.; Fregoso, Santos; Bowles-Martinez, Jessica N.; Kokorowski, Michael; Wilkerson, Marcus W.; Konyha, Alexander L.
2014-01-01
In spring 2014, the Optical PAyload for Lasercomm Science (OPALS) will launch to the International Space Station (ISS) to demonstrate space-to-ground optical communications. During a 90-day baseline mission, OPALS will downlink high quality, short duration videos to the Optical Communications Telescope Laboratory (OCTL) in Wrightwood, California. To achieve mission success, interfaces to the ISS payload operations infrastructure are established. For OPALS, the interfaces facilitate activity planning, hazardous laser operations, commanding, and telemetry transmission. In addition, internal processes such as pointing prediction and data processing satisfy the technical requirements of the mission. The OPALS operations team participates in Operational Readiness Tests (ORTs) with external partners to exercise coordination processes and train for the overall mission. The tests have provided valuable insight into operational considerations on the ISS.
Expert systems and advanced automation for space missions operations
NASA Technical Reports Server (NTRS)
Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas
1990-01-01
Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.
NASA Technical Reports Server (NTRS)
Kirshten, P. M.; Black, S.; Pearson, R.
1979-01-01
The ESS-EDS and EDS-Sigma interfaces within the standalone engine simulator are described. The operation of these interfaces, including the definition and use of special function signals and data flow paths within them during data transfers, is presented along with detailed schematics and circuit layouts of the described equipment.
ERIC Educational Resources Information Center
Garcia Laborda, Jesus
2007-01-01
Interface design and ergonomics, while already studied in much of educational theory, have not until recently been considered in language testing (Fulcher, 2003). In this paper, we revise the design principles of PLEVALEX, a fully operational prototype Internet based language testing platform. Our focus here is to show PLEVALEX's interfaces and…
[Health surveillance: foundations, interfaces and tendencies].
Arreaza, Antonio Luis Vicente; de Moraes, José Cássio
2010-07-01
The present article rescues initially the forms, content and operational projection of the epidemiological surveillance as indispensable tool for the knowledge field and public health practices. After that, we verify that the health surveillance model establishes an enlargement of this operational concept of surveillance by integrating the collectives and individuals practices in different health necessities dimensions, which includes beyond of the risks and damages control also the eco-socials determinants. In the sequence, we search to dimension the distinct levels of actuation of this sanitary practice articulated to the interventions of promotion, protection and recovery under a located and integrated logic of the unique system of Brazilian health. Finally, we argue that all the conceptual-operational model framework of public health surveillance itself constitutes as a politics and sanitary base for the consolidation of the health promotion paradigm in the collective health field.
xLuna - D emonstrator on ESA Mars Rover
NASA Astrophysics Data System (ADS)
Braga, P.; Henriques, L.; Carvalho, B.; Chevalley, P.; Zulianello, M.
2008-08-01
There is a significant gap between the services offered by existing space qualified Real-Time Operating Systems (RTOS) and those required by the most demanding future space applications. New requirements for autonomy, terrain mapping and navigation, Simultaneous Location and Mapping (SLAM), improvement of the throughput of science tasks, all demand high level services such as file systems or POSIX compliant interfaces. xLuna is an operating system that aims fulfilling these new requirements. Besides providing the typical services that of an RTOS (tasks and interrupts management, timers, message queues, etc), it also includes most of the features available in modern general-purpose operating systems, such as Linux. This paper describes a case study that proposes to demonstrate the usage of xLuna on board a rover currently in use for the development of algorithms in preparation of a mission to Mars.
AESA diagnostics in operational environments
NASA Astrophysics Data System (ADS)
Hull, W. P.
The author discusses some possible solutions to ASEA (active electronically scanned array) diagnostics in the operational environment using built-in testing (BIT), which can play a key role in reducing life-cycle cost if accurately implemented. He notes that it is highly desirable to detect and correct in the operational environment all degradation that impairs mission performance. This degradation must be detected with low false alarm rate and the appropriate action initiated consistent with low life-cycle cost. Mutual coupling is considered as a BIT signal injection method and is shown to have potential. However, the limits of the diagnostic capability using this method clearly depend on its stability and on the level of multipath for a specific application. BIT using mutual coupling may need to be supplemented on the ground by an externally mounted passive antenna that interfaces with onboard avionics.
Overview of the Smart Network Element Architecture and Recent Innovations
NASA Technical Reports Server (NTRS)
Perotti, Jose M.; Mata, Carlos T.; Oostdyk, Rebecca L.
2008-01-01
In industrial environments, system operators rely on the availability and accuracy of sensors to monitor processes and detect failures of components and/or processes. The sensors must be networked in such a way that their data is reported to a central human interface, where operators are tasked with making real-time decisions based on the state of the sensors and the components that are being monitored. Incorporating health management functions at this central location aids the operator by automating the decision-making process to suggest, and sometimes perform, the action required by current operating conditions. Integrated Systems Health Management (ISHM) aims to incorporate data from many sources, including real-time and historical data and user input, and extract information and knowledge from that data to diagnose failures and predict future failures of the system. By distributing health management processing to lower levels of the architecture, there is less bandwidth required for ISHM, enhanced data fusion, make systems and processes more robust, and improved resolution for the detection and isolation of failures in a system, subsystem, component, or process. The Smart Network Element (SNE) has been developed at NASA Kennedy Space Center to perform intelligent functions at sensors and actuators' level in support of ISHM.
User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
NASA Technical Reports Server (NTRS)
Frederick, Dean K.; DeCastro, Jonathan A.; Litt, Jonathan S.
2007-01-01
This report is a Users Guide for the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.
Testing of felt-ceramic materials for combustor applications
NASA Technical Reports Server (NTRS)
Venkat, R. S.; Roffe, G.
1983-01-01
The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.
Plan Execution Interchange Language (PLEXIL)
NASA Technical Reports Server (NTRS)
Estlin, Tara; Jonsson, Ari; Pasareanu, Corina; Simmons, Reid; Tso, Kam; Verma, Vandi
2006-01-01
Plan execution is a cornerstone of spacecraft operations, irrespective of whether the plans to be executed are generated on board the spacecraft or on the ground. Plan execution frameworks vary greatly, due to both different capabilities of the execution systems, and relations to associated decision-making frameworks. The latter dependency has made the reuse of execution and planning frameworks more difficult, and has all but precluded information sharing between different execution and decision-making systems. As a step in the direction of addressing some of these issues, a general plan execution language, called the Plan Execution Interchange Language (PLEXIL), is being developed. PLEXIL is capable of expressing concepts used by many high-level automated planners and hence provides an interface to multiple planners. PLEXIL includes a domain description that specifies command types, expansions, constraints, etc., as well as feedback to the higher-level decision-making capabilities. This document describes the grammar and semantics of PLEXIL. It includes a graphical depiction of this grammar and illustrative rover scenarios. It also outlines ongoing work on implementing a universal execution system, based on PLEXIL, using state-of-the-art rover functional interfaces and planners as test cases.
An IEEE 1451.1 Architecture for ISHM Applications
NASA Technical Reports Server (NTRS)
Morris, Jon A.; Turowski, Mark; Schmalzel, John L.; Figueroa, Jorge F.
2007-01-01
The IEEE 1451.1 Standard for a Smart Transducer Interface defines a common network information model for connecting and managing smart elements in control and data acquisition networks using network-capable application processors (NCAPs). The Standard is a network-neutral design model that is easily ported across operating systems and physical networks for implementing complex acquisition and control applications by simply plugging in the appropriate network level drivers. To simplify configuration and tracking of transducer and actuator details, the family of 1451 standards defines a Transducer Electronic Data Sheet (TEDS) that is associated with each physical element. The TEDS contains all of the pertinent information about the physical operations of a transducer (such as operating regions, calibration tables, and manufacturer information), which the NCAP uses to configure the system to support a specific transducer. The Integrated Systems Health Management (ISHM) group at NASA's John C. Stennis Space Center (SSC) has been developing an ISHM architecture that utilizes IEEE 1451.1 as the primary configuration and data acquisition mechanism for managing and collecting information from a network of distributed intelligent sensing elements. This work has involved collaboration with other NASA centers, universities and aerospace industries to develop IEEE 1451.1 compliant sensors and interfaces tailored to support health assessment of complex systems. This paper and presentation describe the development and implementation of an interface for the configuration, management and communication of data, information and knowledge generated by a distributed system of IEEE 1451.1 intelligent elements monitoring a rocket engine test system. In this context, an intelligent element is defined as one incorporating support for the IEEE 1451.x standards and additional ISHM functions. Our implementation supports real-time collection of both measurement data (raw ADC counts and converted engineering units) and health statistics produced by each intelligent element. The handling of configuration, calibration and health information is automated by using the TEDS in combination with other electronic data sheets extensions to convey health parameters. By integrating the IEEE 1451.1 Standard for a Smart Transducer Interface with ISHM technologies, each element within a complex system becomes a highly flexible computation engine capable of self-validation and performing other measures of the quality of information it is producing.
Satellite Docking Simulator with Generic Contact Dynamics Capabilities
NASA Astrophysics Data System (ADS)
Ma, O.; Crabtree, D.; Carr, R.; Gonthier, Y.; Martin, E.; Piedboeuf, J.-C.
2002-01-01
Satellite docking (and capture) systems are critical for the servicing or salvage of satellites. Satellite servicing has comparatively recently become a realistic and promising space operation/mission. Satellite servicing includes several of the following operations: rendezvous; docking (capturing); inspection; towing (transporting); refueling; refurbishing (replacement of faulty or "used-up" modules/boxes); and un-docking (releasing). Because spacecraft servicing has been, until recently non-feasible or non-economical, spacecraft servicing technology has been neglected. Accordingly, spacecraft designs have featured self- contained systems without consideration for operational servicing. Consistent with this view, most spacecrafts were designed and built without docking interfaces. If, through some mishap, a spacecraft was rendered non-operational, it was simply considered expendable. Several feasibility studies are in progress on salvaging stranded satellites (which, in fact had led to this project). The task of the designer of the docking system for a salvaging task is difficult. He/she has to work with whatever it is on orbit, and this excludes any special docking interfaces, which might have made his/her task easier. As satellite servicing becomes an accepted design requirement, many future satellites will be equipped with appropriate docking interfaces. The designer of docking systems will be faced with slightly different challenges: reliable, cost-effective, docking (and re-supply) systems. Thus, the role of designers of docking systems will increase from one of a kind, ad-hoc interfaces intended for salvaging operations, to docking systems for satellites and "caretaker" spacecraft which are meant for servicing and are produced in larger numbers. As in any space system (for which full and representative ground hardware test-beds are very expensive and often impossible to develop), simulations are mandatory for the development of systems and operations for satellite servicing. Simulations are also instrumental in concept studies during proposals and early development stages. Finally, simulations are useful during the operational phase of satellite servicing: improving the operational procedures; training ground operators; command and control, etc. Hence the need exists for a Satellite Servicing Simulator, which will support a project throughout its lifecycle. The paper addresses a project to develop a Simulink-based Satellite Docking Simulator (SDS) with generic Contact Dynamics (CD) capabilities. The simulator is intended to meet immediate practical demands for development of complex docking systems and operations at MD Robotics. The docking phase is the most critical and complex phase of the entire servicing sequence, and without docking there is no servicing. Docking mechanisms are often quite complex, especially when built to dock with a satellite manufactured without special docking interfaces. For successful docking operations, the design of a docking system must take into consideration: complexity of 3D geometric shapes defining the contact interfaces; sophistication of the docking mechanism; friction and stiction at the contacting surfaces; compliance (stiffness) and damping, in all axes; positional (translation and rotation) misalignments and relative velocities, in all axes; inertial properties of the docking satellites (including their distribution); complexity of the drive mechanisms and control sub-systems for the overall docking system; fully autonomous or tele-operated docking from the ground; etc. The docking simulator, which makes use of the proven Contact Dynamics Toolkit (CDT) developed by MD Robotics, is thus practically indispensable for the docking system designer. The use of the simulator could greatly reduce the prototyping and development time of a docking interface. A special feature of the simulator, which required an update of CDT, is variable step-size integration. This new capability permits increases in speed to accomplish all the simulation tasks.
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1998-01-01
Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.
High-resolution method for evolving complex interface networks
NASA Astrophysics Data System (ADS)
Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.
2018-04-01
In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.
LabVIEW Interface for PCI-SpaceWire Interface Card
NASA Technical Reports Server (NTRS)
Lux, James; Loya, Frank; Bachmann, Alex
2005-01-01
This software provides a LabView interface to the NT drivers for the PCISpaceWire card, which is a peripheral component interface (PCI) bus interface that conforms to the IEEE-1355/ SpaceWire standard. As SpaceWire grows in popularity, the ability to use SpaceWire links within LabVIEW will be important to electronic ground support equipment vendors. In addition, there is a need for a high-level LabVIEW interface to the low-level device- driver software supplied with the card. The LabVIEW virtual instrument (VI) provides graphical interfaces to support all (1) SpaceWire link functions, including message handling and routing; (2) monitoring as a passive tap using specialized hardware; and (3) low-level access to satellite mission-control subsystem functions. The software is supplied in a zip file that contains LabVIEW VI files, which provide various functions of the PCI-SpaceWire card, as well as higher-link-level functions. The VIs are suitably named according to the matching function names in the driver manual. A number of test programs also are provided to exercise various functions.
Standard interface: Twin-coaxial converter
NASA Technical Reports Server (NTRS)
Lushbaugh, W. A.
1976-01-01
The network operations control center standard interface has been adopted as a standard computer interface for all future minicomputer based subsystem development for the Deep Space Network. Discussed is an intercomputer communications link using a pair of coaxial cables. This unit is capable of transmitting and receiving digital information at distances up to 600 m with complete ground isolation between the communicating devices. A converter is described that allows a computer equipped with the standard interface to use the twin coaxial link.
User interface issues in supporting human-computer integrated scheduling
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.; Biefeld, Eric W.
1991-01-01
Explored here is the user interface problems encountered with the Operations Missions Planner (OMP) project at the Jet Propulsion Laboratory (JPL). OMP uses a unique iterative approach to planning that places additional requirements on the user interface, particularly to support system development and maintenance. These requirements are necessary to support the concepts of heuristically controlled search, in-progress assessment, and iterative refinement of the schedule. The techniques used to address the OMP interface needs are given.
Turbomachine Interface Sealing
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Chupp, Raymond E.; Lattime, Scott B.; Steinetz, Bruce M.
2005-01-01
Sealing interfaces and coatings, like lubricants, are sacrificial, giving up their integrity for the benefit of the component. Clearance control is a major issue in power systems turbomachine design and operational life. Sealing becomes the most cost-effective way to enhance system performance. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining interface clearances in turbomachine sealing and component life. This paper focuses on conventional and innovative materials and design practices for sealing interfaces.
NASA Astrophysics Data System (ADS)
Lan, Chunbo; Tang, Lihua; Harne, Ryan L.
2018-05-01
Nonlinear piezoelectric energy harvester (PEH) has been widely investigated during the past few years. Among the majority of these researches, a pure resistive load is used to evaluate power output. To power conventional electronics in practical application, the alternating current (AC) generated by nonlinear PEH needs to be transformed into a direct current (DC) and rectifying circuits are required to interface the device and electronic load. This paper aims at exploring the critical influences of AC and DC interface circuits on nonlinear PEH. As a representative nonlinear PEH, we fabricate and evaluate a monostable PEH in terms of generated power and useful operating bandwidth when it is connected to AC and DC interface circuits. Firstly, the harmonic balance analysis and equivalent circuit representation method are utilized to tackle the modeling of nonlinear energy harvesters connected to AC and DC interface circuits. The performances of the monostable PEH connected to these interface circuits are then analyzed and compared, focusing on the influences of the varying load, excitation and electromechanical coupling strength on the nonlinear dynamics, bandwidth and harvested power. Subsequently, the behaviors of the monostable PEH with AC and DC interface circuits are verified by experiment. Results indicate that both AC and DC interface circuits have a peculiar influence on the power peak shifting and operational bandwidth of the monostable PEH, which is quite different from that on the linear PEH.
Apparatus and method to reduce wear and friction between CMC-to-metal attachment and interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairo, Ronald Ralph; Parolini, Jason Robert; Delvaux, John McConnell
An apparatus to reduce wear and friction between CMC-to-metal attachment and interface, including a metal layer configured for insertion between a surface interface between a CMC component and a metal component. The surface interface of the metal layer is compliant relative to asperities of the surface interface of the CMC component. A coefficient of friction between the surface interface of the CMC component and the metal component is about 1.0 or less at an operating temperature between about 300.degree. C. to about 325.degree. C. and a limiting temperature of the metal component.
An approach to developing an integrated pyroprocessing simulator
NASA Astrophysics Data System (ADS)
Lee, Hyo Jik; Ko, Won Il; Choi, Sung Yeol; Kim, Sung Ki; Kim, In Tae; Lee, Han Soo
2014-02-01
Pyroprocessing has been studied for a decade as one of the promising fuel recycling options in Korea. We have built a pyroprocessing integrated inactive demonstration facility (PRIDE) to assess the feasibility of integrated pyroprocessing technology and scale-up issues of the processing equipment. Even though such facility cannot be replaced with a real integrated facility using spent nuclear fuel (SF), many insights can be obtained in terms of the world's largest integrated pyroprocessing operation. In order to complement or overcome such limited test-based research, a pyroprocessing Modelling and simulation study began in 2011. The Korea Atomic Energy Research Institute (KAERI) suggested a Modelling architecture for the development of a multi-purpose pyroprocessing simulator consisting of three-tiered models: unit process, operation, and plant-level-model. The unit process model can be addressed using governing equations or empirical equations as a continuous system (CS). In contrast, the operation model describes the operational behaviors as a discrete event system (DES). The plant-level model is an integrated model of the unit process and an operation model with various analysis modules. An interface with different systems, the incorporation of different codes, a process-centered database design, and a dynamic material flow are discussed as necessary components for building a framework of the plant-level model. As a sample model that contains methods decoding the above engineering issues was thoroughly reviewed, the architecture for building the plant-level-model was verified. By analyzing a process and operation-combined model, we showed that the suggested approach is effective for comprehensively understanding an integrated dynamic material flow. This paper addressed the current status of the pyroprocessing Modelling and simulation activity at KAERI, and also predicted its path forward.
An approach to developing an integrated pyroprocessing simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyo Jik; Ko, Won Il; Choi, Sung Yeol
Pyroprocessing has been studied for a decade as one of the promising fuel recycling options in Korea. We have built a pyroprocessing integrated inactive demonstration facility (PRIDE) to assess the feasibility of integrated pyroprocessing technology and scale-up issues of the processing equipment. Even though such facility cannot be replaced with a real integrated facility using spent nuclear fuel (SF), many insights can be obtained in terms of the world's largest integrated pyroprocessing operation. In order to complement or overcome such limited test-based research, a pyroprocessing Modelling and simulation study began in 2011. The Korea Atomic Energy Research Institute (KAERI) suggestedmore » a Modelling architecture for the development of a multi-purpose pyroprocessing simulator consisting of three-tiered models: unit process, operation, and plant-level-model. The unit process model can be addressed using governing equations or empirical equations as a continuous system (CS). In contrast, the operation model describes the operational behaviors as a discrete event system (DES). The plant-level model is an integrated model of the unit process and an operation model with various analysis modules. An interface with different systems, the incorporation of different codes, a process-centered database design, and a dynamic material flow are discussed as necessary components for building a framework of the plant-level model. As a sample model that contains methods decoding the above engineering issues was thoroughly reviewed, the architecture for building the plant-level-model was verified. By analyzing a process and operation-combined model, we showed that the suggested approach is effective for comprehensively understanding an integrated dynamic material flow. This paper addressed the current status of the pyroprocessing Modelling and simulation activity at KAERI, and also predicted its path forward.« less
NASA Technical Reports Server (NTRS)
Hinton, David A.; Lohr, Gary W.
1988-01-01
Studies have shown that radio communications between pilots and air traffic control contribute to high pilot workload and are subject to various errors. These errors result from congestion on the voice radio channel, and missed and misunderstood messages. The use of digital data link has been proposed as a means of reducing this workload and error rate. A critical factor, however, in determining the potential benefit of data link will be the interface between future data link systems and the operator of those systems, both in the air and on the ground. The purpose of this effort was to evaluate the pilot interface with various levels of data link capability, in simulated general aviation, single-pilot instrument flight rule operations. Results show that the data link reduced demands on pilots' short-term memory, reduced the number of communication transmissions, and permitted the pilots to more easily allocate time to critical cockpit tasks while receiving air traffic control messages. The pilots who participated unanimously indicated a preference for data link communications over voice-only communications. There were, however, situations in which the pilot preferred the use of voice communications, and the ability for pilots to delay processing the data link messages, during high workload events, caused delays in the acknowledgement of messages to air traffic control.
Chan, Chetwyn C H; Wong, Alex W K; Lee, Tatia M C; Chi, Iris
2009-03-01
The goal of this study was to enhance an existing automated teller machine (ATM) human-machine interface in order to accommodate the needs of older adults. Older adults were involved in the design and field test of the modified ATM prototype. The design of the user interface and functionality took the cognitive and physical abilities of older adults into account. The modified ATM system included only "cash withdrawal" and "transfer" functions based on the task demands and needs for services of older adults. One hundred and forty-one older adults (aged 60 or above) participated in the field test by operating modified or existing ATM systems. Those who operated the modified system were found to have significantly higher success rates than those who operated the existing system. The enhancement was most significant among older adults who had lower ATM-related abilities, a lower level of education, and no prior experience of using ATMs. This study demonstrates the usefulness of using a universal design and participatory approach to modify the existing ATM system for use by older adults. However, it also leads to a reduction in functionality of the enhanced system. Future studies should explore ways to develop a universal design ATM system which can satisfy the abilities and needs of all users in the entire population.
Advanced crew procedures development techniques: Procedures and performance program description
NASA Technical Reports Server (NTRS)
Arbet, J. D.; Mangiaracina, A. A.
1975-01-01
The Procedures and Performance Program (PPP) for operation in conjunction with the Shuttle Procedures Simulator (SPS) is described. The PPP user interface, the SPS/PPP interface, and the PPP applications software are discussed.
A portable toolbox to monitor and evaluate signal operations.
DOT National Transportation Integrated Search
2011-10-01
Researchers from the Texas Transportation Institute developed a portable tool consisting of a fieldhardened : computer interfacing with the traffic signal cabinet through special enhanced Bus Interface Units. : The toolbox consisted of a monitoring t...
Radiation-Tolerant, SpaceWire-Compatible Switching Fabric
NASA Technical Reports Server (NTRS)
Katzman, Vladimir
2011-01-01
Current and future near-Earth and deep space exploration programs and space defense programs require the development of robust intra-spacecraft serial data transfer electronics that must be reconfigurable, fault-tolerant, and have the ability to operate effectively for long periods of time in harsh environmental conditions. Existing data transfer systems based on state-of-the-art serial data transfer protocols or passive backplanes are slow, power-hungry, and poorly reconfigurable. They provide limited expandability and poor tolerance to radiation effects and total ionizing dose (TID) in particular, which presents harmful threats to modern submicron electronics. This novel approach is based on a standard library of differential cells tolerant to TID, and patented, multi-level serial interface architecture that ensures the reliable operation of serial interconnects without application of a data-strobe or other encoding techniques. This proprietary, high-speed differential interface presents a lowpower solution fully compatible with the SpaceWire (SW) protocol. It replaces a dual data-strobe link with two identical independent data channels, thus improving the system s tolerance to harsh environments through additional double redundancy. Each channel incorporates an automatic line integrity control circuitry that delivers error signals in case of broken or shorted lines.
Enabling end-user network monitoring via the multicast consolidated proxy monitor
NASA Astrophysics Data System (ADS)
Kanwar, Anshuman; Almeroth, Kevin C.; Bhattacharyya, Supratik; Davy, Matthew
2001-07-01
The debugging of problems in IP multicast networks relies heavily on an eclectic set of stand-alone tools. These tools traditionally neither provide a consistent interface nor do they generate readily interpretable results. We propose the ``Multicast Consolidated Proxy Monitor''(MCPM), an integrated system for collecting, analyzing and presenting multicast monitoring results to both the end user and the network operator at the user's Internet Service Provider (ISP). The MCPM accesses network state information not normally visible to end users and acts as a proxy for disseminating this information. Functionally, through this architecture, we aim to a) provide a view of the multicast network at varying levels of granularity, b) provide end users with a limited ability to query the multicast infrastructure in real time, and c) protect the infrastructure from overwhelming amount of monitoring load through load control. Operationally, our scheme allows scaling to the ISPs dimensions, adaptability to new protocols (introduced as multicast evolves), threshold detection for crucial parameters and an access controlled, customizable interface design. Although the multicast scenario is used to illustrate the benefits of consolidated monitoring, the ultimate aim is to scale the scheme to unicast IP networks.
A user interface framework for the Square Kilometre Array: concepts and responsibilities
NASA Astrophysics Data System (ADS)
Marassi, Alessandro; Brajnik, Giorgio; Nicol, Mark; Alberti, Valentina; Le Roux, Gerhard
2016-07-01
The Square Kilometre Array (SKA) project is responsible for developing the SKA Observatory, the world's largest radio telescope, with eventually over a square kilometre of collecting area and including a general headquarters as well as two radio telescopes: SKA1-Mid in South Africa and SKA1-Low in Australia. The SKA project consists of a number of subsystems (elements) among which the Telescope Manager (TM) is the one involved in controlling and monitoring the SKA telescopes. The TM element has three primary responsibilities: management of astronomical observations, management of telescope hardware and software subsystems, management of data to support system operations and all stakeholders (operators, maintainers, engineers and science users) in achieving operational, maintenance and engineering goals. Operators, maintainers, engineers and science users will interact with TM via appropriate user interfaces (UI). The TM UI framework envisaged is a complete set of general technical solutions (components, technologies and design information) for implementing a generic computing system (UI platform). Such a system will enable UI components to be instantiated to allow for human interaction via screens, keyboards, mouse and to implement the necessary logic for acquiring or deriving the information needed for interaction. It will provide libraries and specific Application Programming Interfaces (APIs) to implement operator and engineer interactive interfaces. This paper will provide a status update of the TM UI framework, UI platform and UI components design effort, including the technology choices, and discuss key challenges in the TM UI architecture, as well as our approaches to addressing them.
Computer interface for mechanical arm
NASA Technical Reports Server (NTRS)
Derocher, W. L.; Zermuehlen, R. O.
1978-01-01
Man/machine interface commands computer-controlled mechanical arm. Remotely-controlled arm has six degrees of freedom and is controlled through "supervisory-control" mode, in which all motions of arm follow set of preprogramed sequences. For simplicity, few prescribed commands are required to accomplish entire operation. Applications include operating computer-controlled arm to handle radioactive of explosive materials or commanding arm to perform functions in hostile environments. Modified version using displays may be applied in medicine.
Profex: a graphical user interface for the Rietveld refinement program BGMN.
Doebelin, Nicola; Kleeberg, Reinhard
2015-10-01
Profex is a graphical user interface for the Rietveld refinement program BGMN . Its interface focuses on preserving BGMN 's powerful and flexible scripting features by giving direct access to BGMN input files. Very efficient workflows for single or batch refinements are achieved by managing refinement control files and structure files, by providing dialogues and shortcuts for many operations, by performing operations in the background, and by providing import filters for CIF and XML crystal structure files. Refinement results can be easily exported for further processing. State-of-the-art graphical export of diffraction patterns to pixel and vector graphics formats allows the creation of publication-quality graphs with minimum effort. Profex reads and converts a variety of proprietary raw data formats and is thus largely instrument independent. Profex and BGMN are available under an open-source license for Windows, Linux and OS X operating systems.
Profex: a graphical user interface for the Rietveld refinement program BGMN
Doebelin, Nicola; Kleeberg, Reinhard
2015-01-01
Profex is a graphical user interface for the Rietveld refinement program BGMN. Its interface focuses on preserving BGMN’s powerful and flexible scripting features by giving direct access to BGMN input files. Very efficient workflows for single or batch refinements are achieved by managing refinement control files and structure files, by providing dialogues and shortcuts for many operations, by performing operations in the background, and by providing import filters for CIF and XML crystal structure files. Refinement results can be easily exported for further processing. State-of-the-art graphical export of diffraction patterns to pixel and vector graphics formats allows the creation of publication-quality graphs with minimum effort. Profex reads and converts a variety of proprietary raw data formats and is thus largely instrument independent. Profex and BGMN are available under an open-source license for Windows, Linux and OS X operating systems. PMID:26500466
Filan, David
2018-01-01
ABSTRACT Arthroscopic labral ‘takedown’ and refixation is utilized to permit adequate visualization and resection of the acetabular rim deformity, in patients with pincer or mixed femoroacetabular impingement. Deficiencies exist in present techniques, which include disruption of vital anatomical support and vascular structures to the labrum and chondrolabral junction, drill or anchor articular penetration risk, bunching, elevation and instability of the labrum. A new operative technique is described which preserves the important chondrolabral interface, accurately restoring the ‘flap seal’ of the acetabular labrum while minimizing vascular disruption and reducing the risk of drill and anchor penetration. A prospective series of 123 consecutive cases of pincer or mixed femoroacetabular impingement, treated with arthroscopic labral cuff refixation and preservation of the chondrolabral interface, is reported; operative technique and 2-year outcomes are presented. PMID:29423255
Human-Robot Interaction Directed Research Project
NASA Technical Reports Server (NTRS)
Sandor, Aniko; Cross, Ernest V., II; Chang, Mai Lee
2014-01-01
Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of navigational guidance (CG and SG) on operator task performance and attention allocation during teleoperation of a robot arm through uplinked commands. Although this study complements the first study on navigational guidance with hand controllers, it is a separate investigation due to the distinction in intended operators (i.e., crewmembers versus ground-operators). A third study looked at superimposed and integrated overlays for teleoperation of a mobile robot using a hand controller. When AR is superimposed on the external world, it appears to be fixed onto the display and internal to the operators' workstation. Unlike superimposed overlays, integrated overlays often appear as three-dimensional objects and move as if part of the external world. Studies conducted in the aviation domain show that integrated overlays can improve situation awareness and reduce the amount of deviation from the optimal path. The purpose of the study was to investigate whether these results apply to HRI tasks, such as navigation with a mobile robot.
A Distributed Laboratory for Event-Driven Coastal Prediction and Hazard Planning
NASA Astrophysics Data System (ADS)
Bogden, P.; Allen, G.; MacLaren, J.; Creager, G. J.; Flournoy, L.; Sheng, Y. P.; Graber, H.; Graves, S.; Conover, H.; Luettich, R.; Perrie, W.; Ramakrishnan, L.; Reed, D. A.; Wang, H. V.
2006-12-01
The 2005 Atlantic hurricane season was the most active in recorded history. Collectively, 2005 hurricanes caused more than 2,280 deaths and record damages of over 100 billion dollars. Of the storms that made landfall, Dennis, Emily, Katrina, Rita, and Wilma caused most of the destruction. Accurate predictions of storm-driven surge, wave height, and inundation can save lives and help keep recovery costs down, provided the information gets to emergency response managers in time. The information must be available well in advance of landfall so that responders can weigh the costs of unnecessary evacuation against the costs of inadequate preparation. The SURA Coastal Ocean Observing and Prediction (SCOOP) Program is a multi-institution collaboration implementing a modular, distributed service-oriented architecture for real time prediction and visualization of the impacts of extreme atmospheric events. The modular infrastructure enables real-time prediction of multi- scale, multi-model, dynamic, data-driven applications. SURA institutions are working together to create a virtual and distributed laboratory integrating coastal models, simulation data, and observations with computational resources and high speed networks. The loosely coupled architecture allows teams of computer and coastal scientists at multiple institutions to innovate complex system components that are interconnected with relatively stable interfaces. The operational system standardizes at the interface level to enable substantial innovation by complementary communities of coastal and computer scientists. This architectural philosophy solves a long-standing problem associated with the transition from research to operations. The SCOOP Program thereby implements a prototype laboratory consistent with the vision of a national, multi-agency initiative called the Integrated Ocean Observing System (IOOS). Several service- oriented components of the SCOOP enterprise architecture have already been designed and implemented, including data archive and transport services, metadata registry and retrieval (catalog), resource management, and portal interfaces. SCOOP partners are integrating these at the service level and implementing reconfigurable workflows for several kinds of user scenarios, and are working with resource providers to prototype new policies and technologies for on-demand computing.