Hardware enabled performance counters with support for operating system context switching
Salapura, Valentina; Wisniewski, Robert W.
2015-06-30
A device for supporting hardware enabled performance counters with support for context switching include a plurality of performance counters operable to collect information associated with one or more computer system related activities, a first register operable to store a memory address, a second register operable to store a mode indication, and a state machine operable to read the second register and cause the plurality of performance counters to copy the information to memory area indicated by the memory address based on the mode indication.
2017-03-07
H 7 , 2 0 1 7 Report No. DODIG-2017-062 The Army Did Not Effectively Monitor Contractor Performance for the Kuwait Base Operations and Security...The Army Did Not Effectively Monitor Contractor Performance for the Kuwait Base Operations and Security Support Services Contract March 7, 2017... contractor performance for the Kuwait Base Operations and Security Support Services (KBOSSS) contract. The KBOSSS contract is a cost-plus-award-fee
Operator Performance Support System (OPSS)
NASA Technical Reports Server (NTRS)
Conklin, Marlen Z.
1993-01-01
In the complex and fast reaction world of military operations, present technologies, combined with tactical situations, have flooded the operator with assorted information that he is expected to process instantly. As technologies progress, this flow of data and information have both guided and overwhelmed the operator. However, the technologies that have confounded many operators today can be used to assist him -- thus the Operator Performance Support Team. In this paper we propose an operator support station that incorporates the elements of Video and Image Databases, productivity Software, Interactive Computer Based Training, Hypertext/Hypermedia Databases, Expert Programs, and Human Factors Engineering. The Operator Performance Support System will provide the operator with an integrating on-line information/knowledge system that will guide expert or novice to correct systems operations. Although the OPSS is being developed for the Navy, the performance of the workforce in today's competitive industry is of major concern. The concepts presented in this paper which address ASW systems software design issues are also directly applicable to industry. the OPSS will propose practical applications in how to more closely align the relationships between technical knowledge and equipment operator performance.
MSFC Skylab operations support summary
NASA Technical Reports Server (NTRS)
Martin, J. R.
1974-01-01
A summary of the actions and problems involved in preparing the Skylab-one vehicle is presented. The subjects discussed are: (1) flight operations support functions and organization, (2) launch operations and booster flight support functions and organization, (3) Skylab launch vehicle support teams, (4) Skylab orbital operations support performance analysis, (5) support manning and procedures, and (6) data support and facilities.
Usability of Operational Performance Support Tools - Findings from Sea Test II
NASA Technical Reports Server (NTRS)
Byrne, Vicky; Litaker, Harry; McGuire, Kerry
2014-01-01
Sea Test II, aka NASA Extreme Environment Mission Operations 17(NEEMO 17) took place in the Florida Aquarius undersea habitat. This confined underwater environment provides a excellent analog for space habitation providing similarities to space habitation such as hostile environment, difficult logistics, autonomous operations, and remote communications. This study collected subjective feedback on the usability of two performance support tools during the Sea Test II mission, Sept 10-14, 2013; Google Glass and iPAD. The two main objectives: - Assess the overall functionality and usability of each performance support tool in a mission analog environment. - Assess the advantages and disadvantages of each tool when performing operational procedures and Just-In-Time-Training (JITT).
Real-Time Embedded High Performance Computing: Communications Scheduling.
1995-06-01
real - time operating system must explicitly limit the degradation of the timing performance of all processes as the number of processes...adequately supported by a real - time operating system , could compound the development problems encountered in the past. Many experts feel that the... real - time operating system support for an MPP, although they all provide some support for distributed real-time applications. A distributed real
NASA Technical Reports Server (NTRS)
Dugala, Gina M.
2009-01-01
The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sun power Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. In the past year, NASA GRC has been building a test facility to support extended operation of a pair of engineering level ASCs. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. Mechanical support hardware, data acquisition software, and an instrumentation rack were developed to prepare the pair of convertors for continuous extended operation. Short-term tests were performed to gather baseline performance data before extended operation was initiated. These tests included workmanship vibration, insulation thermal loss characterization, low-temperature checkout, and fUll-power operation. Hardware and software features are implemented to ensure reliability of support systems. This paper discusses the mechanical support hardware, instrumentation rack, data acquisition software, short-term tests, and safety features designed to support continuous unattended operation of a pair of ASCs.
Operational modes, health, and status monitoring
NASA Astrophysics Data System (ADS)
Taljaard, Corrie
2016-08-01
System Engineers must fully understand the system, its support system and operational environment to optimise the design. Operations and Support Managers must also identify the correct metrics to measure the performance and to manage the operations and support organisation. Reliability Engineering and Support Analysis provide methods to design a Support System and to optimise the Availability of a complex system. Availability modelling and Failure Analysis during the design is intended to influence the design and to develop an optimum maintenance plan for a system. The remote site locations of the SKA Telescopes place emphasis on availability, failure identification and fault isolation. This paper discusses the use of Failure Analysis and a Support Database to design a Support and Maintenance plan for the SKA Telescopes. It also describes the use of modelling to develop an availability dashboard and performance metrics.
NASA Technical Reports Server (NTRS)
Rediess, Herman A.; Hewett, M. D.
1991-01-01
The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations.
A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques V Hugo; David I Gertman; Jeffrey C Joe
2014-08-01
This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less
Hardware support for collecting performance counters directly to memory
Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.
2012-09-25
Hardware support for collecting performance counters directly to memory, in one aspect, may include a plurality of performance counters operable to collect one or more counts of one or more selected activities. A first storage element may be operable to store an address of a memory location. A second storage element may be operable to store a value indicating whether the hardware should begin copying. A state machine may be operable to detect the value in the second storage element and trigger hardware copying of data in selected one or more of the plurality of performance counters to the memory location whose address is stored in the first storage element.
Sebok, Angelia; Wickens, Christopher D
2017-03-01
The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.
Operational Assessment of Apollo Lunar Surface Extravehicular Activity
NASA Technical Reports Server (NTRS)
Miller, Matthew James; Claybrook, Austin; Greenlund, Suraj; Marquez, Jessica J.; Feigh, Karen M.
2017-01-01
Quantifying the operational variability of extravehicular activity (EVA) execution is critical to help design and build future support systems to enable astronauts to monitor and manage operations in deep-space, where ground support operators will no longer be able to react instantly and manage execution deviations due to the significant communication latency. This study quantifies the operational variability exhibited during Apollo 14-17 lunar surface EVA operations to better understand the challenges and natural tendencies of timeline execution and life support system performance involved in surface operations. Each EVA (11 in total) is individually summarized as well as aggregated to provide descriptive trends exhibited throughout the Apollo missions. This work extends previous EVA task analyses by calculating deviations between planned and as-performed timelines as well as examining metabolic rate and consumables usage throughout the execution of each EVA. The intent of this work is to convey the natural variability of EVA operations and to provide operational context for coping with the variability inherent to EVA execution as a means to support future concepts of operations.
NASA Technical Reports Server (NTRS)
Hill, Randall W., Jr.; Cooper, Lynne P.
1993-01-01
For complex operational systems, help needs to come from the inside out. It is often not realistic to call a help desk for problems that need immediate attention, especially for tasks that put a heavy cognitive load on the system operator. This session addresses the issues associated with providing electronic performance support for operational systems, including situations where the system is already fielded and can only change through evolution rather than revolution. We present a case study based on our experiences in developing the Link Monitor and Control Operator Assistant for NASA's Deep Space Network (DSN). The goals of the Operator Assistant are to improve the operability of the system and increase the efficiency of mission operations.
Factors related to teamwork performance and stress of operating room nurses.
Sonoda, Yukio; Onozuka, Daisuke; Hagihara, Akihito
2018-01-01
To evaluate operating room nurses' perception of teamwork performance and their level of mental stress and to identify related factors. Little is known about the factors affecting teamwork and the mental stress of surgical nurses, although the performance of the surgical team is essential for patient safety. The questionnaire survey for operation room nurses consisted of simple questions about teamwork performance and mental stress. Multivariate analyses were used to identify factors causing a sense of teamwork performance or mental stress. A large number of surgical nurses had a sense of teamwork performance, but 30-40% of operation room nurses were mentally stressed during surgery. Neither the patient nor the operation factors were related to the sense of teamwork performance in both types of nurses. Among scrub nurses, endoscopic and abdominal surgery, body mass index, blood loss and the American Society of Anesthesiologists physical status class were related to their mental stress. Conversely, circulating nurses were stressed about teamwork performance. The factors related to teamwork performance and mental stress during surgery differed between scrub and circulating nurses. Increased support for operation room nurses is necessary. The increased support leads to safer surgical procedures and better patient outcomes. © 2017 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Surampudi, S.; Puglia, F.; Gitzendanner, R.
2007-01-01
In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20(super 0)C to +40(super 0)C), withstand long storage periods (e.g., including pre-launch and cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the inability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit RBAU), consisting of two 8-cell 8 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The primary focus of this paper is to communicate the latest results regarding Mars surface operation mission simulation testing, as well as, the corresponding performance capacity loss and impedance characteristics as a function of temperature and life. As will be discussed, the lithium-ion batteries (fabricated by Yardney Technical Products, Inc.) have been demonstrated to far exceed the requirements defined by the mission, being able to support the operation of the rovers for over three years, and are projected to support an even further extended mission.
[A case of emergency surgery in a patient with bronchial asthma under continuous spinal anesthesia].
Noda, Keiichi; Ryo, Kenshu; Nakamoto, Ai
2003-10-01
A 78-year-old male, observed for bronchial asthma, underwent two emergency operations within eight days. The first operation was performed under general anesthesia with tracheal intubation. Anesthesia was maintained by sevoflurane-oxygen and continuous infusion of propofol in combination with epidural injection of lidocaine. During the operation, respiratory sound was almost clear. But wheezing occurred as he awoke after discontinuation of the anesthetics. He needed ventilatory support for three days for status asthmatics. The second operation was performed under continuous spinal anesthesia using hypobaric tetracaine and hyperbaric bupivacaine. No ventilatory support was necessary after the operation and he was discharged uneventfully.
7 CFR 654.41 - Performance of operation and maintenance.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false Performance of operation and maintenance. 654.41 Section 654.41 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES OPERATION AND MAINTENANCE Emergency...
7 CFR 654.41 - Performance of operation and maintenance.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false Performance of operation and maintenance. 654.41 Section 654.41 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES OPERATION AND MAINTENANCE Emergency...
7 CFR 654.41 - Performance of operation and maintenance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Performance of operation and maintenance. 654.41 Section 654.41 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES OPERATION AND MAINTENANCE Emergency...
7 CFR 654.41 - Performance of operation and maintenance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Performance of operation and maintenance. 654.41 Section 654.41 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES OPERATION AND MAINTENANCE Emergency...
7 CFR 654.41 - Performance of operation and maintenance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false Performance of operation and maintenance. 654.41 Section 654.41 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES OPERATION AND MAINTENANCE Emergency...
Conceptual design of a piloted Mars sprint life support system
NASA Technical Reports Server (NTRS)
Cullingford, H. S.; Novara, M.
1988-01-01
This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse.
Operator learning effects in teleoperated rendezvous & docking
NASA Astrophysics Data System (ADS)
Wilde, M.; Harder, J.; Purschke, R.
Teleoperation of spacecraft proximity operations and docking requires delicate timing and coordination of spacecraft maneuvers. Experience has shown that human operators show large performance fluctuations in these areas, which are a major factor to be addressed in operator training. In order to allow the quantification of the impact of these human fluctuations on control system performance and the human perception of this performance, a learning curve study was conducted with teleoperated final approach and docking scenarios. Over a period of ten experiment days, three test participants were tasked with repeatedly completing a set of three training scenarios. The scenarios were designed to contain different combinations of the major elements of any final approach and docking situation, and to feature an increasing difficulty level. The individual difficulty levels for the three operators furthermore differed in the level of operator support functions available in their human-machine interfaces. Operator performance in the test scenarios were evaluated in the fields approach success and precision, docking safety, and approach efficiency by a combination of recorded maneuver data and questionnaires. The results show that operator experience and the associated learning curves increase operator performance substantially, regardless of the support system used. The paper also shows that the fluctuations in operator performance and self-perception are substantial between as well as within experiment days, and must be reckoned with in teleoperation system design and mission planning.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... civilian employees deployed in support of a contingency operation, to elect Basic insurance, Option A... after the operations of the Senate Restaurants are contracted to be performed by a private business... for Basic insurance coverage and is deployed in support of a contingency operation as defined by...
CSER 01-008 Canning of Thermally Stabilized Plutonium Oxide Powder in PFP Glovebox HC-21A
DOE Office of Scientific and Technical Information (OSTI.GOV)
ERICKSON, D.G.
This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-18M and HA-20MB, and is documented in HNF-2707 Rev I a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. The plutonium stabilization program at the Plutonium Finishing Plant (PFP) uses heat to convert plutonium-bearing materials into dry powder that is chemically stable for long term storage. The stabilized plutonium is transferred into one of several gloveboxes for the canning process, Gloveboxes HC-18M in Room 228'2, HA-20MB in Roommore » 235B, and HC-21A in Room 230B are to be used for this process. This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-I8M and HA-20MB, and is documented in HNF-2707 Rev l a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. Evaluation of this operation included normal, base cases, and contingencies. The base cases took the normal operations for each type of feed material and added the likely off-normal events. Each contingency is evaluated assuming the unlikely event happens to the conservative base case. Each contingency was shown to meet the double contingency requirement. That is, at least two unlikely, independent, and concurrent changes in process conditions are required before a criticality is possible.« less
NASA Technical Reports Server (NTRS)
Fern, Lisa Carolynn
2017-01-01
The primary activity for the UAS-NAS Human Systems Integration (HSI) sub-project in Phase 1 was support of RTCA Special Committee 228 Minimum Operational Performance Standards (MOPS). We provide data on the effect of various Detect and Avoid (DAA) display features with respect to pilot performance of the remain well clear function in order to determine the minimum requirements for DAA displays.
Extravehicular activities guidelines and design criteria
NASA Technical Reports Server (NTRS)
Brown, N. E.; Dashner, T. R.; Hayes, B. C.
1973-01-01
A listing of astronaut EVA support systems and equipment, and the physical, operational, and performance characteristics of each major system are presented. An overview of the major ground based support operations necessary in the development and verification of orbital EVA systems is included. The performance and biomedical characteristics of man in the orbital EV environment are discussed. Major factors affecting astronaut EV work performance are identified and delineated as they relate to EV support systems design. Data concerning the medical and physiological aspects of spaceflight on man are included. The document concludes with an extensive bibliography, and a series of appendices which expand on some of the information presented in the main body.
International Space Station Increment Operations Services
NASA Astrophysics Data System (ADS)
Michaelis, Horst; Sielaff, Christian
2002-01-01
The Industrial Operator (IO) has defined End-to-End services to perform efficiently all required operations tasks for the Manned Space Program (MSP) as agreed during the Ministerial Council in Edinburgh in November 2001. Those services are the result of a detailed task analysis based on the operations processes as derived from the Space Station Program Implementation Plans (SPIP) and defined in the Operations Processes Documents (OPD). These services are related to ISS Increment Operations and ATV Mission Operations. Each of these End-to-End services is typically characterised by the following properties: It has a clearly defined starting point, where all requirements on the end-product are fixed and associated performance metrics of the customer are well defined. It has a clearly defined ending point, when the product or service is delivered to the customer and accepted by him, according to the performance metrics defined at the start point. The implementation of the process might be restricted by external boundary conditions and constraints mutually agreed with the customer. As far as those are respected the IO has the free choice to select methods and means of implementation. The ISS Increment Operations Service (IOS) activities required for the MSP Exploitation program cover the complete increment specific cycle starting with the support to strategic planning and ending with the post increment evaluation. These activities are divided into sub-services including the following tasks: - ISS Planning Support covering the support to strategic and tactical planning up to the generation - Development &Payload Integration Support - ISS Increment Preparation - ISS Increment Execution These processes are tight together by the Increment Integration Management, which provides the planning and scheduling of all activities as well as the technical management of the overall process . The paper describes the entire End-to-End ISS Increment Operations service and the implementation to support the Columbus Flight 1E related increment and subsequent ISS increments. Special attention is paid to the implications caused by long term operations on hardware, software and operations personnel.
Operations-oriented performance measures for freeway management systems : final report.
DOT National Transportation Integrated Search
2008-12-01
This report describes the second and final year activities of the project titled Using Operations-Oriented Performance Measures to Support Freeway Management Systems. Work activities included developing a prototype system architecture for testi...
Operational support and service concepts for observatories
NASA Astrophysics Data System (ADS)
Emde, Peter; Chapus, Pierre
2014-08-01
The operational support and service for observatories aim at the provision, the preservation and the increase of the availability and performance of the entire structural, mechanical, drive and control systems of telescopes and the related infrastructure. The operational support and service levels range from the basic service with inspections, preventive maintenance, remote diagnostics and spare parts supply over the availability service with telephone hotline, online and on-site support, condition monitoring and spare parts logistics to the extended service with operations and site and facility management. For the level of improvements and lifecycle management support they consist of expert assessments and studies, refurbishments and upgrades including the related engineering and project management activities.
Evolving Army Needs for Space-Based Support
2015-04-01
11 ARSSTs and one Center for Innovative Technology (CIT), which may also perform defense support to civil authorities (DSCA) missions. With the...exception of support for Hurricane Katrina recov- ery, most of the DSCA operations have been limited to Colorado, such as imagery and mapping support...through the commander, U.S. Fleet Cyber Command, and focuses on network operations, associated space-control activities, satel - lite communication
NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Carter, David; Wetzel, Scott
2000-01-01
The NASA SLR Operational Center is responsible for: 1) NASA SLR network control, sustaining engineering, and logistics; 2) ILRS mission operations; and 3) ILRS and NASA SLR data operations. NASA SLR network control and sustaining engineering tasks include technical support, daily system performance monitoring, system scheduling, operator training, station status reporting, system relocation, logistics and support of the ILRS Networks and Engineering Working Group. These activities ensure the NASA SLR systems are meeting ILRS and NASA mission support requirements. ILRS mission operations tasks include mission planning, mission analysis, mission coordination, development of mission support plans, and support of the ILRS Missions Working Group. These activities ensure than new mission and campaign requirements are coordinated with the ILRS. Global Normal Points (NP) data, NASA SLR FullRate (FR) data, and satellite predictions are managed as part of data operations. Part of this operation includes supporting the ILRS Data Formats and Procedures Working Group. Global NP data operations consist of receipt, format and data integrity verification, archiving and merging. This activity culminates in the daily electronic transmission of NP files to the CDDIS. Currently of all these functions are automated. However, to ensure the timely and accurate flow of data, regular monitoring and maintenance of the operational software systems, computer systems and computer networking are performed. Tracking statistics between the stations and the data centers are compared periodically to eliminate lost data. Future activities in this area include sub-daily (i.e., hourly) NP data management, more stringent data integrity tests, and automatic station notification of format and data integrity issues.
Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Oriti, Salvatore; Wilson, Scott
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, OH, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hour period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hour period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.
Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Oriti, Salvatore; Wilson, Scott
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, Ohio, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hr period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hr period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.
Effects of extended lay-off periods on performance and operator trust under adaptable automation.
Chavaillaz, Alain; Wastell, David; Sauer, Jürgen
2016-03-01
Little is known about the long-term effects of system reliability when operators do not use a system during an extended lay-off period. To examine threats to skill maintenance, 28 participants operated twice a simulation of a complex process control system for 2.5 h, with an 8-month retention interval between sessions. Operators were provided with an adaptable support system, which operated at one of the following reliability levels: 60%, 80% or 100%. Results showed that performance, workload, and trust remained stable at the second testing session, but operators lost self-confidence in their system management abilities. Finally, the effects of system reliability observed at the first testing session were largely found again at the second session. The findings overall suggest that adaptable automation may be a promising means to support operators in maintaining their performance at the second testing session. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
LANDSAT-D Mission Operations Review (MOR)
NASA Technical Reports Server (NTRS)
1982-01-01
Portions of the LANDSAT-D systems operation plan are presented. An overview of the data processing operations, logistics and other operations support, prelaunch and post-launch activities, thematic mapper operations during the scrounge period, and LANDSAT-D performance evaluation is given.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
..., but should note that the NRC's E-Filing system does not support unlisted software, and the NRC Meta... support the physical fuel change. These methodologies do not use the total planar radial peaking factor (F... systems performance, operating mode and equipment out of service. The proposed change is supported by GEH...
Mariner Mars 1971 science operational support equipment
NASA Technical Reports Server (NTRS)
1971-01-01
The Mariner Mars 1971 science operational support equipment (SOSE) was developed to support the checkout of the proof test model and flight spacecraft. The test objectives of the SOSE and how these objectives were implemented are discussed. Attention is focused on the computer portion of the SOSE, since incorporation of a computer in ground checkout equipment represents a major departure from the support equipment concepts previously used. A functional description of the major hardware elements contained in the SOSE is also included, along with the operational performance of the SOSE during spacecraft testing.
Human factors research plan for instrument procedures : FY12 version 1.1
DOT National Transportation Integrated Search
2012-06-19
This research will support the development of instrument procedures for performance-based navigation (PBN) operations. These procedures include, but are not limited to, area navigation (RNAV) and required navigation performance (RNP) operations. The ...
Practice Guidelines for Operative Performance Assessments.
Williams, Reed G; Kim, Michael J; Dunnington, Gary L
2016-12-01
To provide recommended practice guidelines for assessing single operative performances and for combining results of operative performance assessments into estimates of overall operative performance ability. Operative performance is one defining characteristic of surgeons. Assessment of operative performance is needed to provide feedback with learning benefits to surgical residents in training and to assist in making progress decisions for residents. Operative performance assessment has been a focus of investigation over the past 20 years. This review is designed to integrate findings of this research into a set of recommended operative performance practices. Literature from surgery and from other pertinent research areas (psychology, education, business) was reviewed looking for evidence to inform practice guideline development. Guidelines were created along with a conceptual and scientific foundation for each guideline. Ten guidelines are provided for assessing individual operative performances and 10 are provided for combing data from individual operative performances into overall judgments of operative performance ability. The practice guidelines organize available information to be immediately useful to program directors, to support surgical training, and to provide a conceptual framework upon which to build as the base of pertinent knowledge expands through future research and development efforts.
Scaled centrifugal compressor, collector and running gear program
NASA Technical Reports Server (NTRS)
Kenehan, J. G.
1983-01-01
The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.
Rovira, Ericka; Cross, Austin; Leitch, Evan; Bonaceto, Craig
2014-09-01
The impact of a decision support tool designed to embed contextual mission factors was investigated. Contextual information may enable operators to infer the appropriateness of data underlying the automation's algorithm. Research has shown the costs of imperfect automation are more detrimental than perfectly reliable automation when operators are provided with decision support tools. Operators may trust and rely on the automation more appropriately if they understand the automation's algorithm. The need to develop decision support tools that are understandable to the operator provides the rationale for the current experiment. A total of 17 participants performed a simulated rapid retasking of intelligence, surveillance, and reconnaissance (ISR) assets task with manual, decision automation, or contextual decision automation differing in two levels of task demand: low or high. Automation reliability was set at 80%, resulting in participants experiencing a mixture of reliable and automation failure trials. Dependent variables included ISR coverage and response time of replanning routes. Reliable automation significantly improved ISR coverage when compared with manual performance. Although performance suffered under imperfect automation, contextual decision automation helped to reduce some of the decrements in performance. Contextual information helps overcome the costs of imperfect decision automation. Designers may mitigate some of the performance decrements experienced with imperfect automation by providing operators with interfaces that display contextual information, that is, the state of factors that affect the reliability of the automation's recommendation.
Modelling Situation Awareness Information for Naval Decision Support Design
2003-10-01
Modelling Situation Awareness Information for Naval Decision Support Design Dr.-Ing. Bernhard Doering, Dipl.-Ing. Gert Doerfel, Dipl.-Ing... knowledge -based user interfaces. For developing such interfaces information of the three different SA levels which operators need in performing their...large scale on situation awareness of operators which is defined as the state of operator knowledge about the external environment resulting from
NASA Technical Reports Server (NTRS)
Bradford, Robert N.
2006-01-01
Earth based networking in support of various space agency projects has been based on leased service/circuits which has a high associated cost. This cost is almost always taken from the science side resulting in less science. This is a proposal to use Research and Education Networks (RENs) worldwide to support space flight operations in general and space-based science operations in particular. The RENs were developed to support scientific and educational endeavors. They do not provide support for general Internet traffic. The connectivity and performance of the research and education networks is superb. The connectivity at Layer 3 (IP) virtually encompasses the globe. Most third world countries and all developed countries have their own research and education networks, which are connected globally. Performance of the RENs especially in the developed countries is exceptional. Bandwidth capacity currently exists and future expansion promises that this capacity will continue. REN performance statistics has always exceeded minimum requirements for spaceflight support. Research and Education networks are more loosely managed than a corporate network but are highly managed when compared to the commodity Internet. Management of RENs on an international level is accomplished by the International Network Operations Center at Indiana University at Indianapolis. With few exceptions, each regional and national REN has its own network ops center. The acceptable use policies (AUP), although differing by country, allows any scientific program or project the use of their networks. Once in compliance with the first RENs AUP, all others will accept that specific traffic including regional and transoceanic networks. RENs can support spaceflight related scientific programs and projects. Getting the science to the researcher is obviously key to any scientific project. RENs provide a pathway to virtually any college or university in the world, as well as many governmental institutes and science centers. RENs are not to be used for mission critical types of network traffic, even though RENs performance characteristics would support it.
NASA Technical Reports Server (NTRS)
Chung, William; Chachad, Girish; Hochstetler, Ronald
2016-01-01
The Integrated Gate Turnaround Management (IGTM) concept was developed to improve the gate turnaround performance at the airport by leveraging relevant historical data to support optimization of airport gate operations, which include: taxi to the gate, gate services, push back, taxi to the runway, and takeoff, based on available resources, constraints, and uncertainties. By analyzing events of gate operations, primary performance dependent attributes of these events were identified for the historical data analysis such that performance models can be developed based on uncertainties to support descriptive, predictive, and prescriptive functions. A system architecture was developed to examine system requirements in support of such a concept. An IGTM prototype was developed to demonstrate the concept using a distributed network and collaborative decision tools for stakeholders to meet on time pushback performance under uncertainties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Steven; Valera-Leon, Carlos; Dechev, Damian
The vector is a fundamental data structure, which provides constant-time access to a dynamically-resizable range of elements. Currently, there exist no wait-free vectors. The only non-blocking version supports only a subset of the sequential vector API and exhibits significant synchronization overhead caused by supporting opposing operations. Since many applications operate in phases of execution, wherein each phase only a subset of operations are used, this overhead is unnecessary for the majority of the application. To address the limitations of the non-blocking version, we present a new design that is wait-free, supports more of the operations provided by the sequential vector,more » and provides alternative implementations of key operations. These alternatives allow the developer to balance the performance and functionality of the vector as requirements change throughout execution. Compared to the known non-blocking version and the concurrent vector found in Intel’s TBB library, our design outperforms or provides comparable performance in the majority of tested scenarios. Over all tested scenarios, the presented design performs an average of 4.97 times more operations per second than the non-blocking vector and 1.54 more than the TBB vector. In a scenario designed to simulate the filling of a vector, performance improvement increases to 13.38 and 1.16 times. This work presents the first ABA-free non-blocking vector. Finally, unlike the other non-blocking approach, all operations are wait-free and bounds-checked and elements are stored contiguously in memory.« less
Feldman, Steven; Valera-Leon, Carlos; Dechev, Damian
2016-03-01
The vector is a fundamental data structure, which provides constant-time access to a dynamically-resizable range of elements. Currently, there exist no wait-free vectors. The only non-blocking version supports only a subset of the sequential vector API and exhibits significant synchronization overhead caused by supporting opposing operations. Since many applications operate in phases of execution, wherein each phase only a subset of operations are used, this overhead is unnecessary for the majority of the application. To address the limitations of the non-blocking version, we present a new design that is wait-free, supports more of the operations provided by the sequential vector,more » and provides alternative implementations of key operations. These alternatives allow the developer to balance the performance and functionality of the vector as requirements change throughout execution. Compared to the known non-blocking version and the concurrent vector found in Intel’s TBB library, our design outperforms or provides comparable performance in the majority of tested scenarios. Over all tested scenarios, the presented design performs an average of 4.97 times more operations per second than the non-blocking vector and 1.54 more than the TBB vector. In a scenario designed to simulate the filling of a vector, performance improvement increases to 13.38 and 1.16 times. This work presents the first ABA-free non-blocking vector. Finally, unlike the other non-blocking approach, all operations are wait-free and bounds-checked and elements are stored contiguously in memory.« less
Performance Management or Managing Performance? Supporting a Vision to Become Outstanding
ERIC Educational Resources Information Center
Morton, Sam
2011-01-01
This paper provides an account of how performance management is operating in a rural primary school in the county of Rutland, UK, which aspires to provide an outstanding standard of education for its pupils. The paper begins by outlining the existing regulations for the operation of performance management in schools, before going on to explain how…
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Hara, J.M.; W. Gunther, G. Martinez-Guridi
New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines,more » empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.« less
System reliability, performance and trust in adaptable automation.
Chavaillaz, Alain; Wastell, David; Sauer, Jürgen
2016-01-01
The present study examined the effects of reduced system reliability on operator performance and automation management in an adaptable automation environment. 39 operators were randomly assigned to one of three experimental groups: low (60%), medium (80%), and high (100%) reliability of automation support. The support system provided five incremental levels of automation which operators could freely select according to their needs. After 3 h of training on a simulated process control task (AutoCAMS) in which the automation worked infallibly, operator performance and automation management were measured during a 2.5-h testing session. Trust and workload were also assessed through questionnaires. Results showed that although reduced system reliability resulted in lower levels of trust towards automation, there were no corresponding differences in the operators' reliance on automation. While operators showed overall a noteworthy ability to cope with automation failure, there were, however, decrements in diagnostic speed and prospective memory with lower reliability. Copyright © 2015. Published by Elsevier Ltd.
Performance measurements of the first RAID prototype
NASA Technical Reports Server (NTRS)
Chervenak, Ann L.
1990-01-01
The performance is examined of Redundant Arrays of Inexpensive Disks (RAID) the First, a prototype disk array. A hierarchy of bottlenecks was discovered in the system that limit overall performance. The most serious is the memory system contention on the Sun 4/280 host CPU, which limits array bandwidth to 2.3 MBytes/sec. The array performs more successfully on small random operations, achieving nearly 300 I/Os per second before the Sun 4/280 becomes CPU limited. Other bottlenecks in the system are the VME backplane, bandwidth on the disk controller, and overheads associated with the SCSI protocol. All are examined in detail. The main conclusion is that to achieve the potential bandwidth of arrays, more powerful CPU's alone will not suffice. Just as important are adequate host memory bandwidth and support for high bandwidth on disk controllers. Current disk controllers are more often designed to achieve large numbers of small random operations, rather than high bandwidth. Operating systems also need to change to support high bandwidth from disk arrays. In particular, they should transfer data in larger blocks, and should support asynchronous I/O to improve sequential write performance.
Advancements in Risk-Informed Performance-Based Asset Management for Commercial Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liming, James K.; Ravindra, Mayasandra K.
2006-07-01
Over the past several years, ABSG Consulting Inc. (ABS Consulting) and the South Texas Project Nuclear Operating Company (STPNOC) have developed a decision support process and associated software for risk-informed, performance-based asset management (RIPBAM) of nuclear power plant facilities. RIPBAM applies probabilistic risk assessment (PRA) tools and techniques in the realm of plant physical and financial asset management. The RIPBAM process applies a tiered set of models and supporting performance measures (or metrics) that can ultimately be applied to support decisions affecting the allocation and management of plant resources (e.g., funding, staffing, scheduling, etc.). In general, the ultimate goal ofmore » the RIPBAM process is to continually support decision-making to maximize a facility's net present value (NPV) and long-term profitability for its owners. While the initial applications of RIPBAM have been for nuclear power stations, the methodology can easily be adapted to other types of power station or complex facility decision-making support. RIPBAM can also be designed to focus on performance metrics other than NPV and profitability (e.g., mission reliability, operational availability, probability of mission success per dollar invested, etc.). Recent advancements in the RIPBAM process focus on expanding the scope of previous RIPBAM applications to include not only operations, maintenance, and safety issues, but also broader risk perception components affecting plant owner (stockholder), operator, and regulator biases. Conceptually, RIPBAM is a comprehensive risk-informed cash flow model for decision support. It originated as a tool to help manage plant refueling outage scheduling, and was later expanded to include the full spectrum of operations and maintenance decision support. However, it differs from conventional business modeling tools in that it employs a systems engineering approach with broadly based probabilistic analysis of organizational 'value streams'. The scope of value stream inclusion in the process can be established by the user, but in its broadest applications, RIPBAM can be used to address how risk perceptions of plant owners and regulators are impacted by plant performance. Plant staffs can expand and refine RIPBAM models scope via a phased program of activities over time. This paper shows how the multi-metric uncertainty analysis feature of RIPBAM can apply a wide spectrum of decision-influencing factors to support decisions designed to maximize the probability of achieving, maintaining, and improving upon plant goals and objectives. In this paper, the authors show how this approach can be extremely valuable to plant owners and operators in supporting plant value-impacting decision-making processes. (authors)« less
NASA Technical Reports Server (NTRS)
Halperin, A.; Stelzmuller, P.
1986-01-01
The key heating, ventilation, and air-conditioning (HVAC) modifications implemented at the Mars Deep Space Station's Operation Support Building at Jet Propulsion Laboratories (JPL) in order to reduce energy consumption and decrease operating costs are described. An energy analysis comparison between the computer simulated model for the building and the actual meter data was presented. The measurement performance data showed that the cumulative energy savings was about 21% for the period 1979 to 1981. The deviation from simulated data to measurement performance data was only about 3%.
Performance Support Systems: Integrating AI, Hypermedia, and CBT to Enhance User Performance.
ERIC Educational Resources Information Center
McGraw, Karen L.
1994-01-01
Examines the use of a performance support system (PSS) to enhance user performance on an operational system. Highlights include background information that describes the stimulus for PSS development; discussion of the major PSS components and the technology they require; and discussion of the design of a PSS for a complex database system.…
RTEMS CENTRE- Support and Maintenance CENTRE to RTEMS Operating System
NASA Astrophysics Data System (ADS)
Silva, H.; Constantino, A.; Coutunho, M.; Freitas, D.; Faustino, S.; Mota, M.; Colaço, P.; Zulianello, M.
2008-08-01
RTEMS stands for Real-Time Operating System for Multiprocessor Systems. It is a full featured Real Time Operating System that supports a variety of open APIs and interface standards. It provides a high performance environment for embedded applications, including a fixed-priority preemptive/non-preemptive scheduler, a comprehensive set of multitasking operations and a large range of supported architectures. Support and maintenance CENTRE to RTEMS operating system (RTEMS CENTRE) is a joint initiative of ESA-Portugal Task force, aiming to build a strong technical competence in the space flight (on- board) software, to offer support, maintenance and improvements to RTEMS. This paper provides a high level description of the current and future activities of the RTEMS CENTRE. It presents a brief description of the RTEMS operating system, a description of the tools developed and distributed to the community [1] and the improvements to be made to the operating system, including facilitation for the qualification of RTEMS (4.8.0) [2] for the space missions.
Durability of symmetric-structured metal-supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Tucker, Michael C.
2017-11-01
Symmetric-structure metal-supported solid oxide fuel cells (MS-SOFC) with YSZ electrolyte are fabricated with porous YSZ backbone electrodes, stainless steel supports, and infiltrated catalysts on both anode and cathode side. Durability towards aggressive thermal and redox cycling, and long-term operation is assessed. Many sealing material candidates are screened for compatibility with the cell materials and operating conditions, and a commercial sealing glass, GM31107, is selected. LSM/SDCN cells are then subjected to 200 very fast thermal cycles and 20 complete redox cycles, with minimal impact to cell performance. LSM/SDCN and SDCN/SDCN cells are operated for more than 1200 h at 700 °C. The seal and cell hermeticity is maintained, and cell ohmic impedance does not change significantly during operation. Electrode polarization increases during operation, leading to significant degradation of the cell performance. In-operando EIS and post-mortem SEM/EDS analysis suggest that catalyst coarsening and cathode Cr deposition are the dominant degradation modes.
Information Assurance Tasks Supporting the Processing of Electronic Records Archives
2007-03-01
3 Table 2. OpenVPN evaluation results...........................................................................................10 iv 1...operation of necessary security features and compare the network performance under OpenVPN (openvpn.net) operation with the network performance under no...VPN operation (non-VPN) in a gigabit network environment. The reason for selecting OpenVPN product was based on the previous findings of Khanvilkar
Space shuttle environmental and thermal control life support system computer program
NASA Technical Reports Server (NTRS)
1972-01-01
A computer program for the design and operation of the space shuttle environmental and thermal control life support system is presented. The subjects discussed are: (1) basic optimization program, (2) off design performance, (3) radiator/evaporator expendable usage, (4) component weights, and (5) computer program operating procedures.
NASA Technical Reports Server (NTRS)
1974-01-01
System design and performance of the Skylab Airlock Module and Payload Shroud are presented for the communication and caution and warning systems. Crew station and storage, crew trainers, experiments, ground support equipment, and system support activities are also reviewed. Other areas documented include the reliability and safety programs, test philosophy, engineering project management, and mission operations support.
7 CFR 600.3 - Regional offices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... implementation, consistency, and accountability; (3) Region-wide strategic planning, performance measurement, and operations management; (4) Administrative operations and support; (5) Fund integrity and accountability; (6...
Assess program: Interactive data management systems for airborne research
NASA Technical Reports Server (NTRS)
Munoz, R. M.; Reller, J. O., Jr.
1974-01-01
Two data systems were developed for use in airborne research. Both have distributed intelligence and are programmed for interactive support among computers and with human operators. The C-141 system (ADAMS) performs flight planning and telescope control functions in addition to its primary role of data acquisition; the CV-990 system (ADDAS) performs data management functions in support of many research experiments operating concurrently. Each system is arranged for maximum reliability in the first priority function, precision data acquisition.
Sixteen Years of Terra MODIS On-Orbit Operation, Calibration, and Performance
NASA Technical Reports Server (NTRS)
Xiong, X.; Angal, A.; Wu, A.; Link, D.; Geng, X.; Barnes, W.; Solomonson, V.
2016-01-01
Terra MODIS has successfully operated for more than 16 years since its launch in December 1999. From its observations, many science data products have been generated in support of a broad range of research activities and remote sensing applications. Terra MODIS has operated in a number of configurations and experienced a few anomalies, including spacecraft and instrument related events. MODIS collects data in 36 spectral bands that are calibrated regularly by a set of on-board calibrators for their radiometric, spectral, and spatial performance. Periodic lunar observations and long-term radiometric trending over well-characterized ground targets are also used to support sensor on-orbit calibration. Dedicated efforts made by the MODIS Characterization Support Team (MCST) and continuing support from the MODIS Science Team have contributed to the mission success, enabling well-calibrated data products to be continuously generated and routinely delivered to users worldwide. This paper presents an overview of Terra MODIS mission operations, calibration activities, and instrument performance of the past 16 years. It illustrates and describes the results of key sensor performance parameters derived from on-orbit calibration and characterization, such as signal-to-noise ratio (SNR), noise equivalent temperature difference (NEdT), solar diffuser (SD) degradation, changes in sensor responses, center wavelengths, and band-to-band registration (BBR). Also discussed in this paper are the calibration approaches and strategies developed and implemented in support of MODIS Level 1B data production and re-processing, major challenging issues, and lessons learned. (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
NASA Technical Reports Server (NTRS)
1972-01-01
Prior to beginning a 90-day test of a regenerative life support system, a need was identified for a training and certification program to qualify an operating staff for conducting the test. The staff was responsible for operating and maintaining the test facility, monitoring and ensuring crew safety, and implementing procedures to ensure effective mission performance with good data collection and analysis. The training program was designed to ensure that each operating staff member was capable of performing his assigned function and was sufficiently cross-trained to serve at certain other positions on a contingency basis. Complicating the training program were budget and schedule limitations, and the high level of sophistication of test systems.
Apollo experience report: Engineering and analysis mission support
NASA Technical Reports Server (NTRS)
Fricke, R. W., Jr.
1975-01-01
The tasks performed by the team of specialists that evaluated hardware performance during prelaunch checkout and in-flight operation are discussed. The organizational structure, operational procedures, and interfaces as well as the facilities and software required to perform these tasks are discussed. The scope of the service performed by the team and the evaluation philosophy are described. Summaries of problems and their resolution are included as appendixes.
Skylab astronaut life support assembly
NASA Technical Reports Server (NTRS)
Brown, J. T.
1972-01-01
A comparative study was performed to define an optimum portable life support system for suited operations inside and outside the Skylab Program. Emphasis was placed on utilization of qualified equipment, modified versions of qualified equipment, and new systems made up to state-of-the-art components. Outlined are the mission constraints, operational modes, and evaluation ground rules by which the Skylab portable life support system was selected and the resulting design.
Proximity operations concept design study, task 6
NASA Technical Reports Server (NTRS)
Williams, A. N.
1990-01-01
The feasibility of using optical technology to perform the mission of the proximity operations communications subsystem on Space Station Freedom was determined. Proximity operations mission requirements are determined and the relationship to the overall operational environment of the space station is defined. From this information, the design requirements of the communication subsystem are derived. Based on these requirements, a preliminary design is developed and the feasibility of implementation determined. To support the Orbital Maneuvering Vehicle and National Space Transportation System, the optical system development is straightforward. The requirements on extra-vehicular activity are such as to allow large fields of uncertainty, thus exacerbating the acquisition problem; however, an approach is given that could mitigate this problem. In general, it is found that such a system could indeed perform the proximity operations mission requirement, with some development required to support extra-vehicular activity.
NASA Astrophysics Data System (ADS)
Che Abdullah, Salmie Suhana Binti; Teranishi, Takashi; Hayashi, Hidetaka; Kishimoto, Akira
2018-01-01
High operation temperature of solid oxide fuel cell (SOFC) results in high cell and operation cost, time consuming and fast cell degradation. Developing high performance SOFC that operates at lower temperature is required. Here we demonstrate 24 GHz microwave as a rapid heating source to replace conventional heating method for SOFC operation using 20 mol% Sm doped CeO2 electrolyte-supported single cell. The tested cell shows improvement of 62% in maximum power density at 630 °C under microwave heating. This improvement governs by bulk conductivity of the electrolyte. Investigation of ionic transference number reveals that the value is unchanged under microwave irradiation, confirming the charge carrier is dominated by oxygen ion species. This work shows a potential new concept of high performance as well as cost and energy effective SOFC.
Timing of intra-aortic balloon pump support and 1-year survival.
Ramnarine, Ian R; Grayson, Antony D; Dihmis, Walid C; Mediratta, Neeraj K; Fabri, Brian M; Chalmers, John A C
2005-05-01
The relationship between the timing of intra-aortic balloon pump (IABP) support and surgical outcome remains a subject of debate. Peri-operative mechanical circulatory support is commenced either prophylactically or after increasing inotropic support has proved inadequate. This study evaluates the effect timing of IABP support on the 1-year survival of patients undergoing cardiac surgery. From April 1997 to September 2002, 7698 consecutive cardiac surgical procedures were performed. This included 5678 isolated coronary artery bypasses (CABGs), 1245 isolated valve procedures and 775 simultaneous CABG and valve procedures. IABP support was required in 237 patients (3.1%). Twenty-seven patients (0.35%) were classed as high-risk and received preoperative IABP support, 25 patients (0.32%) were haemodynamically compromised and required preoperative IABP support, 120 patients (1.56%) required intra-operative IABP support, and 65 patients (0.84%) required post-operative IABP support. Multiple variables were offered to a Cox proportional hazards model and significant predictors of 1-year survival were identified. These were used to risk adjust Kaplan-Meier survival curves. 1-year follow-up was complete and 450 deaths (5.8%) were recorded. The significant independent predictors of increased mortality at 1-year (P<0.05, HR=hazard ratio) were post-operative renal failure (HR=3.5), increasing EuroSCORE (HR=1.2), post-operative myocardial infarction (HR=3.7), post-operative IABP (HR=4.1) intra-operative IABP (HR=2.8), post-operative stroke (HR=2.5), increasing number of valves (HR=1.6), ejection fraction <30% (HR=1.3) and triple-vessel disease (HR=1.3). After risk-adjustment, 1-year survival for patients who required intra-operative IABP support was significantly greater than for those patients who required IABP support in the post-operative period. Patients who warrant IABP support in the post-operative setting have a significantly increased mortality at 1-year when compared to any other group. Therefore, earlier IABP support as part of surgical strategy may help to improve the outcome.
Development of lung cancer CT screening operating support system
NASA Astrophysics Data System (ADS)
Ishigaki, Rikuta; Hanai, Kozou; Suzuki, Masahiro; Kawata, Yoshiki; Niki, Noboru; Eguchi, Kenji; Kakinuma, Ryutaro; Moriyama, Noriyuki
2009-02-01
In Japan, lung cancer death ranks first among men and third among women. Lung cancer death is increasing yearly, thus early detection and treatment are needed. For this reason, CT screening for lung cancer has been introduced. The CT screening services are roughly divided into three sections: office, radiology and diagnosis sections. These operations have been performed through paper-based or a combination of paper-based and an existing electronic health recording system. This paper describes an operating support system for lung cancer CT screening in order to make the screening services efficient. This operating support system is developed on the basis of 1) analysis of operating processes, 2) digitalization of operating information, and 3) visualization of operating information. The utilization of the system is evaluated through an actual application and users' survey questionnaire obtained from CT screening centers.
Comprehensive Civil Information Management: How to Provide It
2012-04-04
5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER...Management, Non-Government Organizations , International Organizations , Interagency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...Information Support Operations, Psychological Operations, Flat Technology, Knowledge Management, Non-Government Organizations , International
Career Profile: Flight Operations Engineer (Airborne Science) Matthew Berry
2014-11-05
Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Matthew Berry during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/
Career Profile: Flight Operations Engineer (Aeronautics) Brian Griffin
2014-10-17
Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Brian Griffin during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/
Simplified Aircraft-Based Paired Approach: Concept Definition and Initial Analysis
NASA Technical Reports Server (NTRS)
Johnson, Sally C.; Lohr, Gary W.; McKissick, Burnell T.; Abbott, Terence S.; Geurreiro, Nelson M.; Volk, Paul
2013-01-01
Simplified Aircraft-based Parallel Approach (SAPA) is an advanced concept proposed by the Federal Aviation Administration (FAA) to support dependent parallel approach operations to runways with lateral spacing closer than 2500 ft. At the request of the FAA, NASA performed an initial assessment of the potential performance and feasibility of the SAPA concept, including developing and assessing an operational implementation of the concept and conducting a Monte Carlo wake simulation study to examine the longitudinal spacing requirements. The SAPA concept was shown to have significant operational advantages in supporting the pairing of aircraft with dissimilar final approach speeds. The wake simulation study showed that support for dissimilar final approach speeds could be significantly enhanced through the use of a two-phased altitudebased longitudinal positioning requirement, with larger longitudinal positioning allowed for higher altitudes out of ground effect and tighter longitudinal positioning defined for altitudes near and in ground effect. While this assessment is preliminary and there are a number of operational issues still to be examined, it has shown the basic SAPA concept to be technically and operationally feasible.
Hardware support for software controlled fast multiplexing of performance counters
Salapura, Valentina; Wisniewski, Robert W
2013-10-01
Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.
Hardware support for software controlled fast multiplexing of performance counters
Salapura, Valentina; Wisniewski, Robert W.
2013-01-01
Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.
Using triggered operations to offload collective communication operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Brian W.; Hemmert, K. Scott; Underwood, Keith Douglas
2010-04-01
Efficient collective operations are a major component of application scalability. Offload of collective operations onto the network interface reduces many of the latencies that are inherent in network communications and, consequently, reduces the time to perform the collective operation. To support offload, it is desirable to expose semantic building blocks that are simple to offload and yet powerful enough to implement a variety of collective algorithms. This paper presents the implementation of barrier and broadcast leveraging triggered operations - a semantic building block for collective offload. Triggered operations are shown to be both semantically powerful and capable of improving performance.
Site operator program final report for fiscal years 1992 through 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francfort, J.E.; Bassett, R.R.; Birasco, S.
The Site Operator Program was an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed at the Idaho National Engineering and Environmental Laboratory. The Program`s goals included the field evaluation of electric vehicles in real-world applications and environments; the support of electric vehicle technology advancement; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles. This report covers Program activities from 1992 to 1996. The Site Operator Program ended in September 1996, when it was superseded by the Field Operations Program. Electric vehicle testingmore » included baseline performance testing, which was performed in conjunction with EV America. The baseline performance parameters included acceleration, braking, range, energy efficiency, and charging time. The Program collected fleet operations data on electric vehicles operated by the Program`s thirteen partners, comprising electric utilities, universities, and federal agencies. The Program`s partners had over 250 electric vehicles, from vehicle converters and original equipment manufacturers, in their operating fleets. Test results are available via the World Wide Web site at http://ev.inel.gov/sop.« less
High Temperature Electrolysis using Electrode-Supported Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; C. M. Stoots
2010-07-01
An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. The cells currently under study were developed primarily for the fuel cell mode of operation. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes (~90 µm thick). The purpose of the present study was to document and compare the performance and degradation ratesmore » of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of DC potential sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-duration testing, first in the fuel cell mode, then in the electrolysis mode over more than 500 hours of operation. Results indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of the single-cell test apparatus developed specifically for these experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. C. O'Brien; J. E. O'Brien; C. M. Stoots
A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. Themore » test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.« less
Towards optimizing two-qubit operations in three-electron double quantum dots
NASA Astrophysics Data System (ADS)
Frees, Adam; Gamble, John King; Mehl, Sebastian; Friesen, Mark; Coppersmith, S. N.
The successful implementation of single-qubit gates in the quantum dot hybrid qubit motivates our interest in developing a high fidelity two-qubit gate protocol. Recently, extensive work has been done to characterize the theoretical limitations and advantages in performing two-qubit operations at an operation point located in the charge transition region. Additionally, there is evidence to support that single-qubit gate fidelities improve while operating in the so-called ``far-detuned'' region, away from the charge transition. Here we explore the possibility of performing two-qubit gates in this region, considering the challenges and the benefits that may present themselves while implementing such an operational paradigm. This work was supported in part by ARO (W911NF-12-0607) (W911NF-12-R-0012), NSF (PHY-1104660), ONR (N00014-15-1-0029). The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Prototype solar heating and combined heating and cooling systems
NASA Technical Reports Server (NTRS)
1977-01-01
System analysis activities were directed toward refining the heating system parameters. Trade studies were performed to support hardware selections for all systems and for the heating only operational test sites in particular. The heating system qualification tests were supported by predicting qualification test component performance prior to conducting the test.
Behavioral Health and Performance, Risk to Mitigation Strategy
NASA Technical Reports Server (NTRS)
Leveton, Lauren; Whitemire, Alexandra
2009-01-01
This poster reviews the working of the Behavioral Health and Performance (BHP) group, which supports the research element which manages an integrated program for future space flight. The BHP operations group supports astronauts and their families in all phases of the International Space Station Mission, and post mission effects.
NASA Astrophysics Data System (ADS)
Herd, A.; Wolff, M.
2012-01-01
Extended mission operations, such as human spaceflight to Mars provide an opportunity for take current human exploration beyond Low Earth Orbit, such as the operations undertaken on the International Space Station (ISS). This opportunity also presents a challenge in terms of extending what we currently understand as "remote operations" performed on ISS, offering learning beyond that gained from the successful moon- lander expeditions. As such there is a need to assess how the existing operations concept of ground support teams directing (and supporting) on-orbit ISS operations can be applied in the extended mission concept. The current mission support concept involves three interacting operations products - a short term plan, crew procedures and flight rules. Flight rules (for ISS operations) currently provide overall planning, engineering and operations constraints (including those derived from a safety perspective) in the form of a rule book. This paper will focus specifically on flight rules, and describe the current use of them, and assess the future role of flight rules to support exploration, including the deployment of decision support tools (DSTs) to ensure flight rule compliancy for missions with minimal ground support. Taking consideration of the historical development of pre-planned decisions, and their manifestation within the operations environment, combined with the extended remoteness of human exploration missions, we will propose a future development of this product and a platform on which it could be presented.
Lee, Robert J.; Smithson, Hannah E.
2016-01-01
We tested whether surface specularity alone supports operational color constancy – the ability to discriminate changes in illumination or reflectance. Observers viewed short animations of illuminant or reflectance changes in rendered scenes containing a single spherical surface, and were asked to classify the change. Performance improved with increasing specularity, as predicted from regularities in chromatic statistics. Peak performance was impaired by spatial rearrangements of image pixels that disrupted the perception of illuminated surfaces, but was maintained with increased surface complexity. The characteristic chromatic transformations that are available with non-zero specularity are useful for operational color constancy, particularly if accompanied by appropriate perceptual organisation. PMID:26974938
Challenges in building intelligent systems for space mission operations
NASA Technical Reports Server (NTRS)
Hartman, Wayne
1991-01-01
The purpose here is to provide a top-level look at the stewardship functions performed in space operations, and to identify the major issues and challenges that must be addressed to build intelligent systems that can realistically support operations functions. The focus is on decision support activities involving monitoring, state assessment, goal generation, plan generation, and plan execution. The bottom line is that problem solving in the space operations domain is a very complex process. A variety of knowledge constructs, representations, and reasoning processes are necessary to support effective human problem solving. Emulating these kinds of capabilities in intelligent systems offers major technical challenges that the artificial intelligence community is only beginning to address.
Tracking and data system support for the Viking 1975 mission to Mars. Volume 3: Planetary operations
NASA Technical Reports Server (NTRS)
Mudgway, D. J.
1977-01-01
The support provided by the Deep Space Network to the 1975 Viking Mission from the first landing on Mars July 1976 to the end of the Prime Mission on November 15, 1976 is described and evaluated. Tracking and data acquisition support required the continuous operation of a worldwide network of tracking stations with 64-meter and 26-meter diameter antennas, together with a global communications system for the transfer of commands, telemetry, and radio metric data between the stations and the Network Operations Control Center in Pasadena, California. Performance of the deep-space communications links between Earth and Mars, and innovative new management techniques for operations and data handling are included.
Career Profile: Flight Operations Engineer (Airborne Science) Robert Rivera
2015-05-14
Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Robert Rivera during the preparation and execution of the Global Hawk airborne missions under NASA's Science Mission Directorate.
CFD Analysis of A Starved Four-Pad Tilting-Pad Journal Bearing with An Elastic Support of Pads
NASA Astrophysics Data System (ADS)
Parovay, E. F.; Falaleev, S. V.
2018-01-01
Tilting-pad journal bearings are widely used in technics. Oil starvation operation regime is not common for hydrodynamic bearings. However, correctly designed low-flow journal bearing have to operate efficiently and consistently on high rotor speeds. An elastic support of bearing pads is a set of elastic pins made of steel. Elastic support allows pads to self-align and achieve an optimal operational mode. The article presents the thermohydrodynamic performance of an axial journal bearing. The study deals with 60 mm diameter four-pad tilting-pad journal bearing, submitted to a static load varying from 1000 to 30000 N with a rotating speed varying from 1000 to 10000 rpm. The investigation focuses on numerical studying the characteristics of low-flow tilting-pad journal bearings under oil starvation conditions. Dependencies of the bearing performance on the load, rotational speed of the shaft, and the size of the radial clearance are presented.
Resourcing interventions enhance psychology support capabilities in special operations forces.
Myatt, Craig A; Auzenne, J W
2012-01-01
This study provides an examination of approaches to United States Government (USG) resourcing interventions on a national scale that enhance psychology support capabilities in the Special Operations Forces (SOF) community. A review of Congressional legislation and resourcing trends in the form of authorizations and appropriations since 2006 demonstrates how Congress supported enhanced psychology support capabilities throughout the Armed Forces and in SOF supporting innovative command interests that address adverse affects of operations tempo behavioral effects (OTBE). The formulation of meaningful metrics to address SOF specific command interests led to a personnel tempo (PERSTEMPO) analysis in response to findings compiled by the Preservation of the Force and Families (POTFF) Task Force. The review of PERSTEMPO data at subordinate command and unit levels enhances the capability of SOF leaders to develop policy and guidance on training and operational planning that mitigates OTBE and maximizes resourcing authorizations. A major challenge faced by the DoD is in providing behavioral healthcare that meets public and legislative demands while proving suitable and sustainable at all levels of military operations: strategic, operational, and tactical. Current legislative authorizations offer a mechanism of command advocacy for resourced multi-functional program development that enhances psychology support capabilities while reinforcing SOF readiness and performance. 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Zhang; J. E. O'Brien; R. C. O'Brien
2011-11-01
An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysismore » mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.« less
NASA Astrophysics Data System (ADS)
Burnett, W.
2016-12-01
The Department of Defense's (DoD) High Performance Computing Modernization Program (HPCMP) provides high performance computing to address the most significant challenges in computational resources, software application support and nationwide research and engineering networks. Today, the HPCMP has a critical role in ensuring the National Earth System Prediction Capability (N-ESPC) achieves initial operational status in 2019. A 2015 study commissioned by the HPCMP found that N-ESPC computational requirements will exceed interconnect bandwidth capacity due to the additional load from data assimilation and passing connecting data between ensemble codes. Memory bandwidth and I/O bandwidth will continue to be significant bottlenecks for the Navy's Hybrid Coordinate Ocean Model (HYCOM) scalability - by far the major driver of computing resource requirements in the N-ESPC. The study also found that few of the N-ESPC model developers have detailed plans to ensure their respective codes scale through 2024. Three HPCMP initiatives are designed to directly address and support these issues: Productivity Enhancement, Technology, Transfer and Training (PETTT), the HPCMP Applications Software Initiative (HASI), and Frontier Projects. PETTT supports code conversion by providing assistance, expertise and training in scalable and high-end computing architectures. HASI addresses the continuing need for modern application software that executes effectively and efficiently on next-generation high-performance computers. Frontier Projects enable research and development that could not be achieved using typical HPCMP resources by providing multi-disciplinary teams access to exceptional amounts of high performance computing resources. Finally, the Navy's DoD Supercomputing Resource Center (DSRC) currently operates a 6 Petabyte system, of which Naval Oceanography receives 15% of operational computational system use, or approximately 1 Petabyte of the processing capability. The DSRC will provide the DoD with future computing assets to initially operate the N-ESPC in 2019. This talk will further describe how DoD's HPCMP will ensure N-ESPC becomes operational, efficiently and effectively, using next-generation high performance computing.
SPOT satellite family: Past, present, and future of the operations in the mission and control center
NASA Technical Reports Server (NTRS)
Philippe, Pacholczyk
1993-01-01
SPOT sun-synchronous remote sensing satellites are operated by CNES since February 1986. Today, the SPOT mission and control center (CCM) operates SPOT1, SPOT2, and is ready to operate SPOT3. During these seven years, the way to operate changed and the CCM, initially designed for the control of one satellite, has been modified and upgraded to support these new operating modes. All these events have shown the performances and the limits of the system. A new generation of satellite (SPOT4) will continue the remote sensing mission during the second half of the 90's. Its design takes into account the experience of the first generation and supports several improvements. A new generation of control center (CMP) has been developed and improves the efficiency, quality, and reliability of the operations. The CMP is designed for operating two satellites at the same time during launching, in-orbit testing, and operating phases. It supports several automatic procedures and improves data retrieval and reporting.
Joining of Silicon Carbide-Based Ceramics for MEMS-LDI Fuel Injector Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2012-01-01
Deliver the benefits of ceramics in turbine engine applications- increased efficiency, performance, horsepower, range, operating temperature, and payload and reduced cooling and operation and support costs for future engines.
NASA Astrophysics Data System (ADS)
Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Ferrand, F.; Pezzetti, M.; Pirotte, O.
2017-12-01
CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing but well maintained installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. A study was conducted and a methodology proposed to outsource to industry the operation and maintenance of the whole cryogenic infrastructure. The cryogenic installations coupled to non LHC-detectors, test facilities and general services infrastructure have been fully outsourced for operation and maintenance on the basis of performance obligations. The contractor is responsible for the operational performance of the installations based on a yearly operation schedule provided by CERN. The maintenance of the cryogenic system serving the LHC machine and its detectors has been outsourced on the basis of tasks oriented obligations, monitored by key performance indicators. CERN operation team, with the support of the contractor operation team, remains responsible for the operational strategy and performances. We report the analysis, strategy, definition of the requirements and technical specifications as well as the achieved technical and economic performances after one year of operation.
NASA Technical Reports Server (NTRS)
Rieger, A.; Zorzi, E.
1980-01-01
An elastomer shear damper was designed, tested, and compared with the performance of the T 55 power turbine supported on the production engine roller bearing support. The Viton 70 shear damper was designed so that the elastomer damper could be interchanged with the production T 55 power turbine roller bearing support. The results show that the elastomer sheer dampener permitted stable operation of the power turbine to the maximum operating speed of 16,000 rpm.
LDSD POST2 Simulation and SFDT-1 Pre-Flight Launch Operations Analyses
NASA Technical Reports Server (NTRS)
Bowes, Angela L.; Davis, Jody L.; Dutta, Soumyo; Striepe, Scott A.; Ivanov, Mark C.; Powell, Richard W.; White, Joseph
2015-01-01
The Low-Density Supersonic Decelerator (LDSD) Project's first Supersonic Flight Dynamics Test (SFDT-1) occurred June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all SFDT-1 flight phases from drop to splashdown. These POST2 simulations were used to validate the targeting parameters developed for SFDT- 1, predict performance and understand the sensitivity of the vehicle and nominal mission designs, and to support flight test operations with trajectory performance and splashdown location predictions for vehicle recovery. This paper provides an overview of the POST2 simulations developed for LDSD and presents the POST2 simulation flight dynamics support during the SFDT-1 launch, operations, and recovery.
A distributed planning concept for Space Station payload operations
NASA Technical Reports Server (NTRS)
Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey
1994-01-01
The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.
ERIC Educational Resources Information Center
Heric, Matthew; Carter, Jenn
2011-01-01
Cognitive readiness (CR) and performance for operational time-critical environments are continuing points of focus for military and academic communities. In response to this need, we designed an open source interactive CR assessment application as a highly adaptive and efficient open source testing administration and analysis tool. It is capable…
Performance and Health Test Procedure for Grid Energy Storage Systems: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baggu, Murali M; Smith, Kandler A; Friedl, Andrew
A test procedure to evaluate the performance and health of field installations of grid-connected battery energy storage systems (BESS) is described. Performance and health metrics captured in the procedures are: Round-trip efficiency, Standby losses, Response time/accuracy, and Useable Energy/ State of Charge at different discharge/charge rates over the system's lifetime. The procedures are divided into Reference Performance Tests, which require the system to be put in a test mode and are to be conducted in intervals, and Real-time Monitoring tests, which collect data during normal operation without interruption. The procedures can be applied on a wide array of BESS withmore » little modifications and can thus support BESS operators in the management of BESS field installations with minimal interruption and expenditures.can be applied on a wide array of BESS with little modifications and can thus support BESS operators in the management of BESS field installations with minimal interruption and expenditures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.
2014-05-31
This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.
NASA Johnson Space Center Biomedical Research Resources
NASA Technical Reports Server (NTRS)
Paloski, W. H.
1999-01-01
Johnson Space Center (JSC) medical sciences laboratories constitute a national resource for support of medical operations and life sciences research enabling a human presence in space. They play a critical role in evaluating, defining, and mitigation the untoward effect of human adaption to space flight. Over the years they have developed the unique facilities and expertise required to perform: biomedical sample analysis and physiological performance tests supporting medical evaluations of space flight crew members and scientific investigations of the operationally relevant medical, physiological, cellular, and biochemical issues associated with human space flight. A general overview of these laboratories is presented in viewgraph form.
The IXV Ground Segment design, implementation and operations
NASA Astrophysics Data System (ADS)
Martucci di Scarfizzi, Giovanni; Bellomo, Alessandro; Musso, Ivano; Bussi, Diego; Rabaioli, Massimo; Santoro, Gianfranco; Billig, Gerhard; Gallego Sanz, José María
2016-07-01
The Intermediate eXperimental Vehicle (IXV) is an ESA re-entry demonstrator that performed, on the 11th February of 2015, a successful re-entry demonstration mission. The project objectives were the design, development, manufacturing and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system. For the IXV mission a dedicated Ground Segment was provided. The main subsystems of the IXV Ground Segment were: IXV Mission Control Center (MCC), from where monitoring of the vehicle was performed, as well as support during pre-launch and recovery phases; IXV Ground Stations, used to cover IXV mission by receiving spacecraft telemetry and forwarding it toward the MCC; the IXV Communication Network, deployed to support the operations of the IXV mission by interconnecting all remote sites with MCC, supporting data, voice and video exchange. This paper describes the concept, architecture, development, implementation and operations of the ESA Intermediate Experimental Vehicle (IXV) Ground Segment and outlines the main operations and lessons learned during the preparation and successful execution of the IXV Mission.
NASA Technical Reports Server (NTRS)
1971-01-01
A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.
Developing operator capacity estimates for supervisory control of autonomous vehicles.
Cummings, M L; Guerlain, Stephanie
2007-02-01
This study examined operators' capacity to successfully reallocate highly autonomous in-flight missiles to time-sensitive targets while performing secondary tasks of varying complexity. Regardless of the level of autonomy for unmanned systems, humans will be necessarily involved in the mission planning, higher level operation, and contingency interventions, otherwise known as human supervisory control. As a result, more research is needed that addresses the impact of dynamic decision support systems that support rapid planning and replanning in time-pressured scenarios, particularly on operator workload. A dual screen simulation that allows a single operator the ability to monitor and control 8, 12, or 16 missiles through high level replanning was tested on 42 U.S. Navy personnel. The most significant finding was that when attempting to control 16 missiles, participants' performance on three separate objective performance metrics and their situation awareness were significantly degraded. These results mirror studies of air traffic control that demonstrate a similar decline in performance for controllers managing 17 aircraft as compared with those managing only 10 to 11 aircraft. Moreover, the results suggest that a 70% utilization (percentage busy time) score is a valid threshold for predicting significant performance decay and could be a generalizable metric that can aid in manning predictions. This research is relevant to human supervisory control of networked military and commercial unmanned vehicles in the air, on the ground, and on and under the water.
NASA Technical Reports Server (NTRS)
Leveton, L. B.; VanderArk, S. T.
2014-01-01
The Behavioral Health and Performance discipline at NASA Johnson Space Center is organized into two distinct Divisions (Biomedical Research and Environmental Science Division and Space and Clinical Operations Division) but is integrated and interrelated in its day-to-day work. Ongoing operations supporting NASA's spaceflight goals benefit from the research portfolios that address risks to mission success. Similarly, these research portfolios are informed by operations to ensure investigations stay relevant given the dynamic environment of spaceflight. There are many success stories that can be presented where initial work begun as a BHP Research project, and funded through the Human Research Program, was fully implemented in operations or addressed an operational need. Examples include improving effectiveness of the debriefings used within Mission Control by the Mission Operations Directorate and countermeasures for fatigue management. There is also ongoing collaboration with research and operations for developing selection methods for future generation astronauts, and to enhance and inform the current family support function. The objective of this panel is to provide examples of recent success stories, describe areas where close collaboration is benefitting ongoing research and operations, and summarize how this will come together as NASA plans for the one year ISS mission - a unique opportunity for both BHP operations and research to learn more about preparing and supporting crewmembers for extended missions in space. The proposed panel will be comprised of six presentations, each describing a unique aspect of research or operations and the benefits to current and future spaceflight.
NASA Technical Reports Server (NTRS)
Heck, R. M.; Chang, M.; Hess, H.; Carrubba, R.
1977-01-01
The durability of catalysts and catalyst supports in a combustion environment was experimentally demonstrated. A test of 1000 hours duration was completed with two catalysts, using diesel fuel and operating at catalytically supported thermal combustion conditions. The performance of the catalysts was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. The test catalysts proved to be capable of low emissions operation after 1000 hours diesel aging, with no apparent physical degradation of the catalyst support.
Metal-supported solid oxide fuel cells operated in direct-flame configuration
Tucker, Michael C.; Ying, Andrew S.
2017-08-19
Metal-supported solid oxide fuel cells (MS-SOFC) with infiltrated catalysts on both anode and cathode side are operated in direct-flame configuration, with a propane flame impinging on the anode. Placing thermal insulation on the cathode dramatically increases cell temperature and performance. The optimum burner-to-cell gap height is a strong function of flame conditions. Cell performance at the optimum gap is determined within the region of stable non-coking conditions, with equivalence ratio from 1 to 1.9 and flow velocity from 100 to 300 cm s -1. In this region, performance is most strongly correlated to flow velocity and open circuit voltage. Themore » highest peak power density achieved is 633 mW cm -2 at 833°C, for equivalence ratio of 1.8 and flow velocity of 300 cm s -1. The cell starts to produce power within 10 s of being placed in the flame, and displays stable performance over 10 extremely rapid thermal cycles. The cell provides stable performance for >20 h of semi-continuous operation.« less
Numerical Ergonomics Analysis in Operation Environment of CNC Machine
NASA Astrophysics Data System (ADS)
Wong, S. F.; Yang, Z. X.
2010-05-01
The performance of operator will be affected by different operation environments [1]. Moreover, poor operation environment may cause health problems of the operator [2]. Physical and psychological considerations are two main factors that will affect the performance of operator under different conditions of operation environment. In this paper, applying scientific and systematic methods find out the pivot elements in the field of physical and psychological factors. There are five main factors including light, temperature, noise, air flow and space that are analyzed. A numerical ergonomics model has been built up regarding the analysis results which can support to advance the design of operation environment. Moreover, the output of numerical ergonomic model can provide the safe, comfortable, more productive conditions for the operator.
Localization of Cognitive Operations in the Human Brain.
ERIC Educational Resources Information Center
Posner, Michael I.; And Others
1988-01-01
Hypothesizes that the human brain localizes mental operations which are integrated in the performance of cognitive tasks such as reading. Provides support of this hypothesis from studies in neural imaging, mental imagery, timing, and memory. (RT)
Marshall Space Flight Center Ground Systems Development and Integration
NASA Technical Reports Server (NTRS)
Wade, Gina
2016-01-01
Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.
System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.
2016-01-01
The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.
Spacelab Operations Support Room Space Engineering Support Team in the SL POCC During the IML-1
NASA Technical Reports Server (NTRS)
1992-01-01
The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Spacelab Operations Support Room Space Engineering Support team in the SL POCC during STS-42, IML-1 mission.
NASA Technical Reports Server (NTRS)
Martelli, Andrea
1994-01-01
This paper presents the capabilities implemented in the SAX system for an efficient operations management during its in-flight mission. SAX is an Italian scientific satellite for x-ray astronomy whose major mission objectives impose quite tight constraints on the implementation of both the space and ground segment. The most relevant mission characteristics require an operative lifetime of two years, performing scientific observations both in contact and in noncontact periods, with a low equatorial orbit supported by one ground station, so that only a few minutes of communications are available each orbit. This operational scenario determines the need to have a satellite capable of performing the scheduled mission automatically and reacting autonomously to contingency situations. The implementation approach of the on-board operations management, through which the necessary automation and autonomy are achieved, follows a hierarchical structure. This has been achieved adopting a distributed avionic architecture. Nine different on-board computers, in fact, constitute the on-board data management system. Each of them performs the local control and monitors its own functions while the system level control is performed at a higher level by the data handling applications software. The SAX on-board architecture provides the ground operators with different options of intervention by three classes of telecommands. The management of the scientific operations will be scheduled by the operation control center via dedicated operating plans. The SAX satellite flight mode is presently being integrated at Alenia Spazio premises in Turin for a launch scheduled for the end of 1995. Once in orbit, the SAX satellite will be subject to intensive check-out activities in order to verify the required mission performances. An overview of the envisaged procedure and of the necessary on-ground activities is therefore depicted as well.
Air Force Handbook. 109th Congress
2009-01-01
FY06 Combat Survivor Evader Locator (CSEL) Acquisition Status Capabilities/Profile Functions /Performance Parameters 38 • Air Force’s primary source for...Broadcast Service (GBS) Capabilities/Profile Acquisition Status Functions /Performance Parameters • Purchase Requirements (Phase 2): • 3 primary ...Operations (AF CONOPS) that support the CSAF and joint vision of combat operations. • AF CONOPS describe key Air Force mission and/or functional areas
36 CFR 1194.31 - Functional performance criteria.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Functional performance... Performance Criteria § 1194.31 Functional performance criteria. (a) At least one mode of operation and... audio and enlarged print output working together or independently, or support for assistive technology...
Measuring, managing and maximizing refinery performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bascur, O.A.; Kennedy, J.P.
1996-01-01
Implementing continuous quality improvement is a confluence of total quality management, people empowerment, performance indicators and information engineering. Supporting information technologies allow a refiner to narrow the gap between management objectives and the process control level. Dynamic performance monitoring benefits come from production cost savings, improved communications and enhanced decision making. A refinery workgroup information flow model helps automate continuous improvement of processes, performance and the organization. The paper discusses the rethinking of refinery operations, dynamic performance monitoring, continuous process improvement, the knowledge coordinator and repository manager, an integrated plant operations workflow, and successful implementation.
Lin, Qingquan; Qiao, Botao; Huang, Yanqiang; Li, Lin; Lin, Jian; Liu, Xiao Yan; Wang, Aiqin; Li, Wen-Cui; Zhang, Tao
2014-03-14
La-doped γ-Al2O3 supported Au catalysts show high activity and selectivity for the PROX reaction under PEMFC operation conditions. The superior performance is attributed to the formation of LaAlO3, which suppresses H2 oxidation and strengthens CO adsorption on Au sites, thereby improving competitive oxidation of CO at elevated temperature.
Extended Operation of Stirling Convertors at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Oriti, Salvatore
2011-01-01
Glenn Research Center (GRC) is supporting life and reliability database for free-piston Stirilng conversion via extended convertor operation Ongoing convertor operation: 18 convertors (4 TDCs from Infinia, 14 ASCs from Sunpower). 350,000 total convertor hours of operation. 218,000 on Infinia units and 132,000 on Sunpower units. Demonstrating steady convertor performance requires precise maintenance of operating conditions. Sources of disruption : Investigative tests: Varying operating frequency, hot-end temp, cold-end temp. Hot end control method: Constant heat input mode requires more user-adjustment than constant temperature mode. Long-term transients in hot end insulation were observed. Support facility: Open-bath circulator fluid concentration drifting. Nuisance shutdowns (instrumentation failure, EMI, power outages). Ambient temperature fluctuations due to room HVAC.
Operational seasonal forecasting of crop performance.
Stone, Roger C; Meinke, Holger
2005-11-29
Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production.
Operational seasonal forecasting of crop performance
Stone, Roger C; Meinke, Holger
2005-01-01
Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production. PMID:16433097
Tools to manage the enterprise-wide picture archiving and communications system environment.
Lannum, L M; Gumpf, S; Piraino, D
2001-06-01
The presentation will focus on the implementation and utilization of a central picture archiving and communications system (PACS) network-monitoring tool that allows for enterprise-wide operations management and support of the image distribution network. The MagicWatch (Siemens, Iselin, NJ) PACS/radiology information system (RIS) monitoring station from Siemens has allowed our organization to create a service support structure that has given us proactive control of our environment and has allowed us to meet the service level performance expectations of the users. The Radiology Help Desk has used the MagicWatch PACS monitoring station as an applications support tool that has allowed the group to monitor network activity and individual systems performance at each node. Fast and timely recognition of the effects of single events within the PACS/RIS environment has allowed the group to proactively recognize possible performance issues and resolve problems. The PACS/operations group performs network management control, image storage management, and software distribution management from a single, central point in the enterprise. The MagicWatch station allows for the complete automation of software distribution, installation, and configuration process across all the nodes in the system. The tool has allowed for the standardization of the workstations and provides a central configuration control for the establishment and maintenance of the system standards. This report will describe the PACS management and operation prior to the implementation of the MagicWatch PACS monitoring station and will highlight the operational benefits of a centralized network and system-monitoring tool.
Streamlining: Reducing costs and increasing STS operations effectiveness
NASA Technical Reports Server (NTRS)
Petersburg, R. K.
1985-01-01
The development of streamlining as a concept, its inclusion in the space transportation system engineering and operations support (STSEOS) contract, and how it serves as an incentive to management and technical support personnel is discussed. The mechanics of encouraging and processing streamlining suggestions, reviews, feedback to submitters, recognition, and how individual employee performance evaluations are used to motivation are discussed. Several items that were implemented are mentioned. Information reported and the methodology of determining estimated dollar savings are outlined. The overall effect of this activity on the ability of the McDonnell Douglas flight preparation and mission operations team to support a rapidly increasing flight rate without a proportional increase in cost is illustrated.
Hatanaka, Junko; Takasaki, Masako; Hatanaka, Michiyo
2018-05-31
Occupational health staff and managers play important roles in supporting workers with mental health concerns and mutual co-operation among them is a necessary element. However, when co-operating with other professionals, several problems arise that often make such co-operation a challenge. Effective mutual actions are needed to promote such co-operation, and relationships must be formed for this purpose. Therefore, in this study, we aimed to clarify how occupational health nurses form relationships for facilitating co-operation with managers to provide support to workers with mental health concerns. Data were collected using semi-structured interviews with 11 occupational health nurses who provide individualized mental health support and who have at least 5 years of experience as occupational health nurses. Analysis of the recorded interviews was performed using a qualitative statistical method (KJ method). Six elements that constitute the formation of relationships were identified. When occupational health nurses form relationships for facilitating co-operation with a manager to provide support to workers, they "form relationships through strategic communication" with them and when co-operation is required, they form a relationship by "acting in a manner that suits the manager," such as his/her character and the situation. To support this relationship, occupational health nurses "provide mental support to the manager" by listening to his/her anxiety or real intention about supporting the subordinate with mental health concerns and provide relief while understanding their burdens during the co-operation. Occupational health nurses even "provide support to the manager in their activities," which assessed the situation at the workplace as the specialist and advised the manager to understand how to concern to the subordinate specifically. In addition, they "indirectly support the manager" which included coordinating with the concerned persons so as to not excessively burden the manager. Such support promoted the "creation of systems for clear roles" of managers in supporting the subordinate with mental health concerns. Relationships that occupational health nurses form with their managers were the structure which formed emotional human relationships from the front or back necessity of co-operation causes and developing confidence in relationships with the foundation of emotional human relationships.
DOT National Transportation Integrated Search
2017-03-01
The past few years have witnessed a rapidly growing market in assistive driving technologies, designed to improve safety and operations by supporting driver performance. Often referred to as cooperative vehiclehighway automation (CVHA) systems, th...
DOT National Transportation Integrated Search
1982-01-01
The Detailed Station Model (DSM) provides operational and performance measures of alternative station configurations and management policies with respect to vehicle and passenger capabilities. It provides an analytic tool to support tradeoff studies ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... information such as social security numbers, names, dates of birth, home addresses and mailing addresses... enable the Office to monitor State operations and assess program performance through the audit conducted...
Radio astronomy Explorer-B postlaunch attitude operations analysis
NASA Technical Reports Server (NTRS)
Werking, R. D.; Berg, R.; Brokke, K.; Hattox, T.; Lerner, G.; Stewart, D.; Williams, R.
1974-01-01
The attitude support activities of the Radio Astronomy Explorer-B are reported. The performance of the spacecraft hardware and software are discussed along with details of the mission events, from launch through main boom deployment. Reproductions of displays are presented which were used during support activities. The interactive graphics proved the support function by providing the quality control necessary to ensure mission success in an environment where flight simulated ground testing of spacecraft hardware cannot be performed.
Analogs and the BHP Risk Reduction Strategy for Future Spaceflight Missions
NASA Technical Reports Server (NTRS)
Whitmire, Sandra; Leveton, Lauren
2011-01-01
In preparation for future exploration missions to distant destinations (e.g., Moon, Near Earth Objects (NEO), and Mars), the NASA Human Research Program s (HRP) Behavioral Health and Performance Element (BHP) conducts and supports research to address four human health risks: Risk of Behavioral Conditions; Risk of Psychiatric Conditions; Risk of Performance Decrements Due to Inadequate Cooperation, Coordination, Communication, and Psychosocial Adaptation within a Team; and Risk of Performance Errors due to Sleep Loss, Fatigue, Circadian Desynchronization, and Work Overload (HRP Science Management Plan, 2008). BHP Research, in collaboration with internal and external research investigators, as well as subject matter experts within NASA operations including flight surgeons, astronauts, and mission planners and others within the Mission Operations Directorate (MOD), identifies knowledge and technology gaps within each Risk. BHP Research subsequently manages and conducts research tasks to address and close the gaps, either through risk assessment and quantification, or the development of countermeasures and monitoring technologies. The resulting deliverables, in many instances, also support current Medical Operations and/or Mission Operations for the International Space Station (ISS).
Enhanced Vision for All-Weather Operations Under NextGen
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Kramer, Lynda J.; Williams, Steven P.
2010-01-01
Recent research in Synthetic/Enhanced Vision technology is analyzed with respect to existing Category II/III performance and certification guidance. The goal is to start the development of performance-based vision systems technology requirements to support future all-weather operations and the NextGen goal of Equivalent Visual Operations. This work shows that existing criteria to operate in Category III weather and visibility are not directly applicable since, unlike today, the primary reference for maneuvering the airplane is based on what the pilot sees visually through the "vision system." New criteria are consequently needed. Several possible criteria are discussed, but more importantly, the factors associated with landing system performance using automatic and manual landings are delineated.
Program operational summary: Operational 90 day manned test of a regenerative life support system
NASA Technical Reports Server (NTRS)
Jackson, J. K.; Wamsley, J. R.; Bonura, M. S.; Seeman, J. S.
1972-01-01
An operational 90-day manned test of a regenerative life support system was successfully completed. This test was performed with a crew of four carefully selected and trained men in a space station simulator (SSS) which had a two gas atmosphere maintained at a total pressure of 68.9, 10 psia, and composed of oxygen at a partial pressure of 3.05 psia with nitrogen as the diluent. The test was planned to provide data on regenerative life support subsystems and on integrated system operations in a closed ecology, similar to that of a space station. All crew equipment and expendables were stored onboard at the start of the mission to eliminate the need for pass-in operations. The significant accomplishments of the test, some of the pertinent test results, some of the problem areas, and conclusions are presented.
Radio-science performance analysis software
NASA Astrophysics Data System (ADS)
Morabito, D. D.; Asmar, S. W.
1995-02-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.
Radio-Science Performance Analysis Software
NASA Astrophysics Data System (ADS)
Morabito, D. D.; Asmar, S. W.
1994-10-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussion on operating the program set on Galileo and Ulysses data will be presented.
Radio-science performance analysis software
NASA Technical Reports Server (NTRS)
Morabito, D. D.; Asmar, S. W.
1995-01-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.
COBE On-Orbit Engineering Performance, volume 1
NASA Technical Reports Server (NTRS)
1990-01-01
The Cosmic Background Explorer (COBE) was successfully launched on Nov. 18, 1989. The Delta Launch Vehicle performed flawlessly, and observatory deployments occurred as planned. The dewar cover successfully deployed on day 4, as planned, and the cryogen temperature is currently at 1.41 K. All three instruments are operating and acquiring science data, and the Payload Operational Control Center (POCC)/Network support has been excellent. Various performance aspects of the COBE are presented in view graph form.
SPHERES: From Ground Development to Operations on ISS
NASA Technical Reports Server (NTRS)
Katterhagen, A.
2015-01-01
SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of experts who can guide the Payload Developer (PD) and Principle Investigator (PI) in reaching critical milestones to make their science a reality using the SPHERES platform. From performing integrated safety and verification assessments, to assisting in developing crew procedures and operations products, to organizing, planning, and executing all test sessions, to helping manage data products, the SPHERES team at ARC is available to support microgravity research with the SPEHRES Guest Scientist Program.
Computer support for cooperative tasks in Mission Operations Centers
NASA Technical Reports Server (NTRS)
Fox, Jeffrey; Moore, Mike
1994-01-01
Traditionally, spacecraft management has been performed by fixed teams of operators in Mission Operations Centers. The team cooperatively: (1) ensures that payload(s) on spacecraft perform their work; and (2) maintains the health and safety of the spacecraft through commanding and monitoring the spacecraft's subsystems. In the future, the task demands will increase and overload the operators. This paper describes the traditional spacecraft management environment and describes a new concept in which groupware will be used to create a Virtual Mission Operations Center. Groupware tools will be used to better utilize available resources through increased automation and dynamic sharing of personnel among missions.
Techniques utilized in the simulated altitude testing of a 2D-CD vectoring and reversing nozzle
NASA Technical Reports Server (NTRS)
Block, H. Bruce; Bryant, Lively; Dicus, John H.; Moore, Allan S.; Burns, Maureen E.; Solomon, Robert F.; Sheer, Irving
1988-01-01
Simulated altitude testing of a two-dimensional, convergent-divergent, thrust vectoring and reversing exhaust nozzle was accomplished. An important objective of this test was to develop test hardware and techniques to properly operate a vectoring and reversing nozzle within the confines of an altitude test facility. This report presents detailed information on the major test support systems utilized, the operational performance of the systems and the problems encountered, and test equipment improvements recommended for future tests. The most challenging support systems included the multi-axis thrust measurement system, vectored and reverse exhaust gas collection systems, and infrared temperature measurement systems used to evaluate and monitor the nozzle. The feasibility of testing a vectoring and reversing nozzle of this type in an altitude chamber was successfully demonstrated. Supporting systems performed as required. During reverser operation, engine exhaust gases were successfully captured and turned downstream. However, a small amount of exhaust gas spilled out the collector ducts' inlet openings when the reverser was opened more than 60 percent. The spillage did not affect engine or nozzle performance. The three infrared systems which viewed the nozzle through the exhaust collection system worked remarkably well considering the harsh environment.
How to Do Science From an Engineering Organization
NASA Technical Reports Server (NTRS)
Suggs, Robert M.
2003-01-01
MSFC's Space Environments Team performs engineering support for a number of NASA spaceflight projects by defining the space environment, developing design requirements, supporting the design process, and supporting operations. Examples of this type of support are given including meteoroid environment work for the Jovian Icy Moon Orbiter mission, ionizing radiation support for the Chandra X-Ray Observatory, and astronomicaVgeophysica1 observation planning for International Space Station.
CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.F. Loros
2000-06-28
The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installingmore » the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations. The Carrier Preparation Building Materials Handling System interfaces with the Cask/Carrier Transport System to move the carriers to and from the system. The Carrier Preparation Building System houses the equipment and provides the facility, utility, safety, communications, and auxiliary systems supporting operations and protecting personnel.« less
Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Mike; Chen, Weibo; Paul, Heather L.; Jennings, Mallory A.
2011-01-01
Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in a future space suit Portable Life Support Systems (PLSS). The blower assembly includes a custom-designed motor that has significantly improved in efficiency during this development effort. The blower was tested at both nominal and buddy mode operating points and head/flow performance and power consumption were measured. The blower was operated for over 1000 hours to demonstrate safe operation in an oxygen test loop at prototypical pressures. In addition, the blower demonstrated operation with the introduction of simulated lunar dust.
DOT National Transportation Integrated Search
2007-01-01
The focus of the surface transportation community has been steadily shifting over the past decade, from one of capital construction and maintenance toward system operations. To support this new focus, new monitoring tools are necessary. The Virginia ...
Tool for Sizing Analysis of the Advanced Life Support System
NASA Technical Reports Server (NTRS)
Yeh, Hue-Hsie Jannivine; Brown, Cheryl B.; Jeng, Frank J.
2005-01-01
Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades.
Spare Parts Inventory Management for the Next Generation Finnish Defense Force Fighter Fleet
2017-12-01
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget...O&S Operating and Support PBL Performance Based Logistics PM Project Manager PSI Product Support Integrator RfI Request for Information RfQ...intent. Success in spare parts management depends highly on the reliability of the demand information and of what the management personnel does with
NASA Extends Chandra Science and Operations Support Contract
NASA Astrophysics Data System (ADS)
2010-01-01
NASA has extended a contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, a powerful tool used to better understand the structure and evolution of the universe. The contract extension with the Smithsonian Astrophysical Observatory provides continued science and operations support to Chandra. This approximately 172 million modification brings the total value of the contract to approximately 545 million for the base effort. The base effort period of performance will continue through Sept. 30, 2013, except for the work associated with the administration of scientific research grants, which will extend through Feb. 28, 2016. The contract type is cost reimbursement with no fee. In addition to the base effort, the contract includes two options for three years each to extend the period of performance for an additional six years. Option 1 is priced at approximately 177 million and Option 2 at approximately 191 million, for a total possible contract value of about $913 million. The contract covers mission operations and data analysis, which includes observatory operations, science data processing and astronomer support. The operations tasks include monitoring the health and status of the observatory and developing and uplinking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning and coordination of science observations and processing and delivery of the resulting scientific data. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations. For more information about the Chandra X-ray Observatory visit: http://chandra.nasa.gov
Study of solid rocket motor for space shuttle booster, volume 2, book 3, appendix A
NASA Technical Reports Server (NTRS)
1972-01-01
A systems requirements analysis for the solid propellant rocket engine to be used with the space shuttle was conducted. The systems analysis was developed to define the physical and functional requirements for the systems and subsystems. The operations analysis was performed to identify the requirements of the various launch operations, mission operations, ground operations, and logistic and flight support concepts.
Király, László; Tamás, Csaba
2015-06-21
Outcome of arterial switch operation for transposition of the great arteries with/without ventricular septal defect is a service key-performance-indicator. The aim of the authors was to assess patient characteristics and parameters in the perioperative course. In the setting of a newly-established, comprehensive tertiary-care center, primary complete repair was performed including associated anomalies, e.g. transverse arch repairs. Patients with d-transposition were grouped according to coexistence of ventricular septal defect. 118 arterial switch operations were performed between 2007 and 2014 with 96.62% survival (114/118). Ventricular septal defect and repair of associated anomalies did not yield worse outcome. Left ventricular re-training with late presentation necessitated mechanical circulatory support for 4.5±1.5 days. D-transposition is suitable for standardization of clinical algorithm and surgical technique. Quality standards contribute to excellent outcomes, minimize complications, and serve as blueprint for other neonatal open-heart procedures. Availability of mechanical circulatory support is key for single-stage left ventricular re-training beyond the neonatal period.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... support unlisted software, and the NRC Meta System Help Desk will not be able to offer assistance in using... supported Technical Specification (TS) systems inoperable when the associated snubber(s) cannot perform its... allowed before declaring a TS supported system inoperable and taking its Conditions and Required Actions...
78 FR 57585 - Minimum Training Requirements for Entry-Level Commercial Motor Vehicle Operators
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... specific minimum number of training hours. Instead, these commenters support a performance-based approach... support a minimum hours-based approach to training. They stated that FMCSA must specify the minimum number...\\ Additionally, some supporters of an hours-based training approach believed that the Agency's proposal did not...
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Schreiber, Jeffre G.; Wilson, Scott D.; oriti, Salvatore M.; Cornell, Peggy; Schifer, Nicholas
2008-01-01
100 We class Stirling convertors began extended operation testing at NASA Glenn Research Center (GRC) in 2003 with a pair of Technology Demonstration Convertors (TDCs) operating in air. Currently, the number of convertors on extended operation test has grown to 12, including both TDCs and Advanced Stirling Convertors (ASCs) operating both in air and in thermal vacuum. Additional convertors and an electrically heated radioisotope generator will be put on test in the near future. This testing has provided data to support life and reliability estimates and the quality improvements and design changes that have been made to the convertor. The convertors operated 24/7 at the nominal amplitude and power levels. Performance data were recorded on an hourly basis. Techniques to monitor the convertors for change in internal operation included gas analysis, vibration measurements and acoustic emission measurements. This data provided a baseline for future comparison. This paper summarizes the results of over 145,000 hours of TDC testing and 40,000 hours of ASC testing and discusses trends in the data. Data shows the importance of improved materials, hermetic sealing, and quality processes in maintaining convertor performance over long life.
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Schreiber, Jeffrey G.; Wilson, Scott D.; Oriti, Salvatore M.; Cornell, Peggy; Schifer, Nicholas
2009-01-01
100 We class Stirling convertors began extended operation testing at NASA Glenn Research Center (GRC) in 2003 with a pair of Technology Demonstration Convertors (TDCs) operating in air. Currently, the number of convertors on extended operation test has grown to 12, including both TDCs and Advanced Stirling Convertors (ASCs) operating both in air and in thermal vacuum. Additional convertors and an electrically heated radioisotope generator will be put on test in the near future. This testing has provided data to support life and reliability estimates and the quality improvements and design changes that have been made to the convertor. The convertors operated 24/7 at the nominal amplitude and power levels. Performance data were recorded on an hourly basis. Techniques to monitor the convertors for change in internal operation included gas analysis, vibration measurements, and acoustic emission measurements. This data provided a baseline for future comparison. This paper summarizes the results of over 145,000 hr of TDC testing and 40,000 hr of ASC testing and discusses trends in the data. Data shows the importance of improved materials, hermetic sealing, and quality processes in maintaining convertor performance over long life.
Evaluation of selected strapdown inertial instruments and pulse torque loops, volume 1
NASA Technical Reports Server (NTRS)
Sinkiewicz, J. S.; Feldman, J.; Lory, C. B.
1974-01-01
Design, operational and performance variations between ternary, binary and forced-binary pulse torque loops are presented. A fill-in binary loop which combines the constant power advantage of binary with the low sampling error of ternary is also discussed. The effects of different output-axis supports on the performance of a single-degree-of-freedom, floated gyroscope under a strapdown environment are illustrated. Three types of output-axis supports are discussed: pivot-dithered jewel, ball bearing and electromagnetic. A test evaluation on a Kearfott 2544 single-degree-of-freedom, strapdown gyroscope operating with a pulse torque loop, under constant rates and angular oscillatory inputs is described and the results presented. Contributions of the gyroscope's torque generator and the torque-to-balance electronics on scale factor variation with rate are illustrated for a SDF 18 IRIG Mod-B strapdown gyroscope operating with various pulse rebalance loops. Also discussed are methods of reducing this scale factor variation with rate by adjusting the tuning network which shunts the torque coil. A simplified analysis illustrating the principles of operation of the Teledyne two-degree-of-freedom, elastically-supported, tuned gyroscope and the results of a static and constant rate test evaluation of that instrument are presented.
The SACADA database for human reliability and human performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. James Chang; Dennis Bley; Lawrence Criscione
2014-05-01
Lack of appropriate and sufficient human performance data has been identified as a key factor affecting human reliability analysis (HRA) quality especially in the estimation of human error probability (HEP). The Scenario Authoring, Characterization, and Debriefing Application (SACADA) database was developed by the U.S. Nuclear Regulatory Commission (NRC) to address this data need. An agreement between NRC and the South Texas Project Nuclear Operating Company (STPNOC) was established to support the SACADA development with aims to make the SACADA tool suitable for implementation in the nuclear power plants' operator training program to collect operator performance information. The collected data wouldmore » support the STPNOC's operator training program and be shared with the NRC for improving HRA quality. This paper discusses the SACADA data taxonomy, the theoretical foundation, the prospective data to be generated from the SACADA raw data to inform human reliability and human performance, and the considerations on the use of simulator data for HRA. Each SACADA data point consists of two information segments: context and performance results. Context is a characterization of the performance challenges to task success. The performance results are the results of performing the task. The data taxonomy uses a macrocognitive functions model for the framework. At a high level, information is classified according to the macrocognitive functions of detecting the plant abnormality, understanding the abnormality, deciding the response plan, executing the response plan, and team related aspects (i.e., communication, teamwork, and supervision). The data are expected to be useful for analyzing the relations between context, error modes and error causes in human performance.« less
Filter parameter tuning analysis for operational orbit determination support
NASA Technical Reports Server (NTRS)
Dunham, J.; Cox, C.; Niklewski, D.; Mistretta, G.; Hart, R.
1994-01-01
The use of an extended Kalman filter (EKF) for operational orbit determination support is being considered by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). To support that investigation, analysis was performed to determine how an EKF can be tuned for operational support of a set of earth-orbiting spacecraft. The objectives of this analysis were to design and test a general purpose scheme for filter tuning, evaluate the solution accuracies, and develop practical methods to test the consistency of the EKF solutions in an operational environment. The filter was found to be easily tuned to produce estimates that were consistent, agreed with results from batch estimation, and compared well among the common parameters estimated for several spacecraft. The analysis indicates that there is not a sharply defined 'best' tunable parameter set, especially when considering only the position estimates over the data arc. The comparison of the EKF estimates for the user spacecraft showed that the filter is capable of high-accuracy results and can easily meet the current accuracy requirements for the spacecraft included in the investigation. The conclusion is that the EKF is a viable option for FDD operational support.
Continuation of advanced crew procedures development techniques
NASA Technical Reports Server (NTRS)
Arbet, J. D.; Benbow, R. L.; Evans, M. E.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.
1976-01-01
An operational computer program, the Procedures and Performance Program (PPP) which operates in conjunction with the Phase I Shuttle Procedures Simulator to provide a procedures recording and crew/vehicle performance monitoring capability was developed. A technical synopsis of each task resulting in the development of the Procedures and Performance Program is provided. Conclusions and recommendations for action leading to the improvements in production of crew procedures development and crew training support are included. The PPP provides real-time CRT displays and post-run hardcopy output of procedures, difference procedures, performance data, parametric analysis data, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data and via transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP. Interface is provided with the all digital trajectory program, the Space Vehicle Dynamics Simulator (SVDS) to support initial procedures timeline development.
Decision Support Systems for Launch and Range Operations Using Jess
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar
2007-01-01
The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.
NASA Technical Reports Server (NTRS)
Elliott, Kenny B.; Ugoletti, Roberto; Sulla, Jeff
1992-01-01
The evolution and optimization of a real-time digital control system is presented. The control system is part of a testbed used to perform focused technology research on the interactions of spacecraft platform and instrument controllers with the flexible-body dynamics of the platform and platform appendages. The control system consists of Computer Automated Measurement and Control (CAMAC) standard data acquisition equipment interfaced to a workstation computer. The goal of this work is to optimize the control system's performance to support controls research using controllers with up to 50 states and frame rates above 200 Hz. The original system could support a 16-state controller operating at a rate of 150 Hz. By using simple yet effective software improvements, Input/Output (I/O) latencies and contention problems are reduced or eliminated in the control system. The final configuration can support a 16-state controller operating at 475 Hz. Effectively the control system's performance was increased by a factor of 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.
The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Richard L; Poole, Stephen W; Shamis, Pavel
2010-01-01
This paper introduces the newly developed Infini-Band (IB) Management Queue capability, used by the Host Channel Adapter (HCA) to manage network task data flow dependancies, and progress the communications associated with such flows. These tasks include sends, receives, and the newly supported wait task, and are scheduled by the HCA based on a data dependency description provided by the user. This functionality is supported by the ConnectX-2 HCA, and provides the means for delegating collective communication management and progress to the HCA, also known as collective communication offload. This provides a means for overlapping collective communications managed by the HCAmore » and computation on the Central Processing Unit (CPU), thus making it possible to reduce the impact of system noise on parallel applications using collective operations. This paper further describes how this new capability can be used to implement scalable Message Passing Interface (MPI) collective operations, describing the high level details of how this new capability is used to implement the MPI Barrier collective operation, focusing on the latency sensitive performance aspects of this new capability. This paper concludes with small scale benchmark experiments comparing implementations of the barrier collective operation, using the new network offload capabilities, with established point-to-point based implementations of these same algorithms, which manage the data flow using the central processing unit. These early results demonstrate the promise this new capability provides to improve the scalability of high performance applications using collective communications. The latency of the HCA based implementation of the barrier is similar to that of the best performing point-to-point based implementation managed by the central processing unit, starting to outperform these as the number of processes involved in the collective operation increases.« less
Flight Dynamics Mission Support and Quality Assurance Process
NASA Technical Reports Server (NTRS)
Oh, InHwan
1996-01-01
This paper summarizes the method of the Computer Sciences Corporation Flight Dynamics Operation (FDO) quality assurance approach to support the National Aeronautics and Space Administration Goddard Space Flight Center Flight Dynamics Support Branch. Historically, a strong need has existed for developing systematic quality assurance using methods that account for the unique nature and environment of satellite Flight Dynamics mission support. Over the past few years FDO has developed and implemented proactive quality assurance processes applied to each of the six phases of the Flight Dynamics mission support life cycle: systems and operations concept, system requirements and specifications, software development support, operations planing and training, launch support, and on-orbit mission operations. Rather than performing quality assurance as a final step after work is completed, quality assurance has been built in as work progresses in the form of process assurance. Process assurance activities occur throughout the Flight Dynamics mission support life cycle. The FDO Product Assurance Office developed process checklists for prephase process reviews, mission team orientations, in-progress reviews, and end-of-phase audits. This paper will outline the evolving history of FDO quality assurance approaches, discuss the tailoring of Computer Science Corporations's process assurance cycle procedures, describe some of the quality assurance approaches that have been or are being developed, and present some of the successful results.
Lockheed Martin Skunk Works Single Stage to Orbit/Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
1999-01-01
Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. This portion of the report is comprised of a status report of Lockheed Martin's contribution to the program. The following is a summary of the Lockheed Martin Centers involved and work reviewed under their portion of the agreement: (1) Lockheed Martin Skunk Works - Vehicle Development, Operations Development, X-33 and RLV Systems Engineering, Manufacturing, Ground Operations, Reliability, Maintainability/Testability, Supportability, & Special Analysis Team, and X-33 Flight Assurance; (2) Lockheed Martin Technical Operations - Launch Support Systems, Ground Support Equipment, Flight Test Operations, and RLV Operations Development Support; (3) Lockheed Martin Space Operations - TAEM and A/L Guidance and Flight Control Design, Evaluation of Vehicle Configuration, TAEM and A/L Dispersion Analysis, Modeling and Simulations, Frequency Domain Analysis, Verification and Validation Activities, and Ancillary Support; (4) Lockheed Martin Astronautics-Denver - Systems Engineering, X-33 Development; (5) Sanders - A Lockheed Martin Company - Vehicle Health Management Subsystem Progress, GSS Progress; and (6) Lockheed Martin Michoud Space Systems - X-33 Liquid Oxygen (LOX) Tank, Key Challenges, Lessons Learned, X-33/RLV Composite Technology, Reusable Cyrogenic Insulation (RCI) and Vehicle Health Monitoring, Main Propulsion Systems (MPS), Structural Testing, X-33 System Integration and Analysis, and Cyrogenic Systems Operations.
Total Quality Management Implementation Plan.
1989-06-01
Quality Management Implementation Plan 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Defense General...E 14. SUBJECT TERMS 15. NUMBER OF PAGES TOM (Total Quality Management ), Continuous Process Improvement,_________ Depot Operations, Supply Support 16
GeoLab 2011: New Instruments and Operations Tested at Desert RATS
NASA Technical Reports Server (NTRS)
Evans, Cindy A.; Calaway, M. J.; Bell, M. S.
2012-01-01
GeoLab is a geological laboratory and testbed designed for supporting geoscience activities during NASA's analog demonstrations. Scientists at NASA's Johnson Space Center built GeoLab as part of a technology project to aid the development of science operational concepts for future planetary surface missions [1, 2, 3]. It is integrated into NASA's Habitat Demonstration Unit, a first generation exploration habitat test article. As a prototype workstation, GeoLab provides a high fidelity working space for analog mission crewmembers to perform in-situ characterization of geologic samples and communicate their findings with supporting scientists. GeoLab analog operations can provide valuable data for assessing the operational and scientific considerations of surface-based geologic analyses such as preliminary examination of samples collected by astronaut crews [4, 5]. Our analog tests also feed into sample handling and advanced curation operational concepts and procedures that will, ultimately, help ensure that the most critical samples are collected during future exploration on a planetary surface, and aid decisions about sample prioritization, sample handling and return. Data from GeoLab operations also supports science planning during a mission by providing additional detailed geologic information to supporting scientists, helping them make informed decisions about strategies for subsequent sample collection opportunities.
A distributed parallel storage architecture and its potential application within EOSDIS
NASA Technical Reports Server (NTRS)
Johnston, William E.; Tierney, Brian; Feuquay, Jay; Butzer, Tony
1994-01-01
We describe the architecture, implementation, use of a scalable, high performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.
Jack Weiner; Balijepally, Venugopal; Tanniru, Mohan
2015-01-01
Hospitals have invested and continue to invest heavily in building information systems to support operations at various levels of administration. These systems generate a lot of data but fail to effectively convert these data into actionable information for decision makers. Such ineffectiveness often is attributed to a lack of alignment between strategic planning and information technology (IT) initiatives supporting operational goals. We present a case study that illustrates how the use of digital dashboards at St. Joseph Mercy Oakland (SJMO) Hospital in Pontiac, Michigan, was instrumental in supporting such an alignment. Driven by a focus on key performance indicators (KPIs), dashboard applications also led to other tangible and intangible benefits. An ability to track KPIs over time and against established targets, with drill-down capabilities, allowed leadership to hold staff members accountable for achieving their performance targets. By displaying the dashboards in prominent locations (such as operational unit floors, the physicians' cafeteria, and nursing stations), SJMO ushered in transparency in the planning and monitoring processes. The need to develop KPI metrics and drive data collection efforts became ingrained in the work ethos of people at every level of the organization. Although IT-enabled dashboards have been instrumental in supporting this cultural transformation, the focus of investment was the ability of technology to make collective vision and action the responsibility of all stakeholders.
Progress of long pulse operation with high performance plasma in KSTAR
NASA Astrophysics Data System (ADS)
Bae, Young; Kstar Team
2015-11-01
Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.
Habriielian, A V; Smorzhevs'kyĭ, V I; Onishchenko, V F; Beleĭovych, V V; Topchu, Ie I; Domans'kyĭ, T M; Myroniuk, O I
2011-07-01
Comparative analysis of the results of plastic operations performance on a tricuspid valve (TV) in patients, suffering cardiac insufficiency in terminal stage, was conducted. In late postoperative period the indices of intracardial hemodynamics (cardiac output fraction, regurgitation on TV) and clinical features (severity of symptoms, quality of life) after plastic operations, using a support ring, have differed significantly from those after performance of a sutured plasty. The valve function during five years was secured in 91.1% of patients.
DOT National Transportation Integrated Search
2015-04-01
Research was performed to support the development and recommendation of a standard operating : procedure (SOP) for analyzing the ammonia content in fly ash intended for use in concrete. A review : of existing ash producers found that several differen...
NASA Technical Reports Server (NTRS)
1988-01-01
A brief, informal narrative is provided that summarizes the results of all work accomplished during the period of the contract; June 1, 1987 through September 30, 1988; in support of Mission Operations and Data Systems Directorate's Operational Development Network (MODNET). It includes descriptions of work performed in each functional area and recommendations and conclusions based on the experience and results obtained.
Flight Testing of an Airport Surface Guidance, Navigation, and Control System
NASA Technical Reports Server (NTRS)
Young, Steven D.; Jones, Denise R.
1998-01-01
This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 (B-757) research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Hartsfield-Atlanta International Airport (ATL) in Atlanta, GA. The B-757 was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range (RVR) of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. The integrated ground and airborne components resulted in a system that has the potential to significantly improve the safety and efficiency of airport surface movements particularly as weather conditions deteriorate. Several advanced technologies were employed to show the validity of the operational concept at a major airport facility, to validate flight simulation findings, and to assess each of the individual technologies performance in an airport environment. Results show that while the maturity of some of the technologies does not permit immediate implementation, the operational concept is valid and the performance is more than adequate in many areas.
Extended Operation of Stirling Convertors at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Oriti, Salvatore, M.
2012-01-01
NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.
1999-10-07
After the ribbon-cutting opening the Consolidated Support Operations Center at ROCC, Cape Canaveral Air Station, guests look at information on the computer screen during a demonstration. Among those standing are (left to right) Barbara White, supervisor, Mission Support; Ed Gormel, executive director, Joint Performance Management Office; KSC Center Director Roy Bridges; and Sam Gutierrez (white shirt), Human Resources, Space Gateway Support
Advanced user support programme—TEMPUS IML-2
NASA Astrophysics Data System (ADS)
Diefenbach, A.; Kratz, M.; Uffelmann, D.; Willnecker, R.
1995-05-01
The DLR Microgravity User Support Centre (MUSC) in Cologne has supported microgravity experiments in the field of materials and life sciences since 1979. In the beginning of user support activities, MUSC tasks comprised the basic ground and mission support, whereas present programmes are expanded on, for example, powerful telescience and advanced real time data acquisition capabilities for efficient experiment operation and monitoring. In view of the Space Station era, user support functions will increase further. Additional tasks and growing responsibilities must be covered, e.g. extended science support as well as experiment and facility operations. The user support for TEMPUS IML-2, under contract of the German Space Agency DARA, represents a further step towards the required new-generation of future ground programme. TEMPUS is a new highly sophisticated Spacelab multi-user facility for containerless processing of metallic samples. Electromagnetic levitation technique is applied and various experiment diagnosis tools are offered. Experiments from eight U.S. and German investigator groups have been selected for flight on the second International Microgravity Laboratory Mission IML-2 in 1994. Based on the experience gained in the research programme of the DLR Institute for Space Simulation since 1984, MUSC is performing a comprehensive experiment preparation programme in close collaboration with the investigator teams. Complex laboratory equipment has been built up for technology and experiment preparation development. New experiment techniques have been developed for experiment verification tests. The MUSC programme includes thorough analysis and testing of scientific requirements of every proposed experiment with respect to the facility hard- and software capabilities. In addition, studies on the experiment-specific operation requirements have been performed and suitable telescience scenarios were analysed. The present paper will give a survey of the TEMPUS user support tasks emphasizing the advanced science support activities, which are considered significant for future ground programmes.
Department of Defense Technology Transfer (T2) Program
2014-04-08
January February (1st Monday) Disposal System Performance Spec Production Representative Articles CARD – Cost Analysis Requirements Description CCE...Supportability Objectives Exit Criteria Met APB MTA FMECA FTA LORA RCM MS B Threshold/objective tradeoffs – Revised Performance Attributes MS C MS A...Evaluation FTA – Failure Tree Analysis IOT&E – Initial Operational Test & Evaluation ISR – In-Service Review ISP – Information Support Plan ITR – Initial
48 CFR 225.7401 - Contracts requiring performance or delivery in a foreign country.
Code of Federal Regulations, 2014 CFR
2014-10-01
... operational area, follow the procedures at PGI 225.7401(a). (b) For work performed in Germany, eligibility for logistics support or base privileges of contractor employees is governed by U.S.-German bilateral agreements...
48 CFR 225.7401 - Contracts requiring performance or delivery in a foreign country.
Code of Federal Regulations, 2012 CFR
2012-10-01
... operational area, follow the procedures at PGI 225.7401(a). (b) For work performed in Germany, eligibility for logistics support or base privileges of contractor employees is governed by U.S.-German bilateral agreements...
48 CFR 225.7401 - Contracts requiring performance or delivery in a foreign country.
Code of Federal Regulations, 2013 CFR
2013-10-01
... operational area, follow the procedures at PGI 225.7401(a). (b) For work performed in Germany, eligibility for logistics support or base privileges of contractor employees is governed by U.S.-German bilateral agreements...
48 CFR 225.7401 - Contracts requiring performance or delivery in a foreign country.
Code of Federal Regulations, 2010 CFR
2010-10-01
... operational area, follow the procedures at PGI 225.7401(a). (b) For work performed in Germany, eligibility for logistics support or base privileges of contractor employees is governed by U.S.-German bilateral agreements...
48 CFR 225.7401 - Contracts requiring performance or delivery in a foreign country.
Code of Federal Regulations, 2011 CFR
2011-10-01
... operational area, follow the procedures at PGI 225.7401(a). (b) For work performed in Germany, eligibility for logistics support or base privileges of contractor employees is governed by U.S.-German bilateral agreements...
Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Lee, M. G.
1995-01-01
The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.
NASA Astrophysics Data System (ADS)
Yoo, Y.-S.; Park, J.-W.; Park, J.-K.; Lim, H.-C.; Oh, J.-M.; Bae, J.-M.
Recent results on intermediate temperature-operating solid oxide fuel cells (IT-SOFC) are mainly focused on getting the higher performance of single cell at lower operating temperature, especially using planar type. We have started a project to develop 1 kW-class SOFC system for Residential Power Generation(RPG) application. For a 1 kW-class SOFC stack that can be operated at intermediate temperatures, we have developed anode-supported, planar type SOFC to have advantages for commercialization of SOFCs considering mass production and using cost-effective interconnects such as ferritic stainless steels. At higher temperature, performance of SOFC can be increased due to higher electrochemical activity of electrodes and lower ohmic losses, but the surface of metallic interconnects at cathode side is rapidly oxidized into resistive oxide scale. For efficient operation of SOFC at reduced temperature at, firstly we have developed alternative cathode materials of LSCF instead of LSM to get higher performance of electrodes, and secondly introduced functional-layered structure at anode side. The I-V and AC impedance characteristics of improved single cells and small stacks were evaluated at intermediate temperatures (650°C and 750°C) using hydrogen gas as a fuel.
A human performance modelling approach to intelligent decision support systems
NASA Technical Reports Server (NTRS)
Mccoy, Michael S.; Boys, Randy M.
1987-01-01
Manned space operations require that the many automated subsystems of a space platform be controllable by a limited number of personnel. To minimize the interaction required of these operators, artificial intelligence techniques may be applied to embed a human performance model within the automated, or semi-automated, systems, thereby allowing the derivation of operator intent. A similar application has previously been proposed in the domain of fighter piloting, where the demand for pilot intent derivation is primarily a function of limited time and high workload rather than limited operators. The derivation and propagation of pilot intent is presented as it might be applied to some programs.
An experimental investigation of the effects of alarm processing and display on operator performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Hara, J.; Brown, W.; Hallbert, B.
1998-03-01
This paper describes a research program sponsored by the US Nuclear Regulatory Commission to address the human factors engineering (HFE) aspects of nuclear power plant alarm systems. The overall objective of the program is to develop HFE review guidance for advanced alarm systems. As part of this program, guidance has been developed based on a broad base of technical and research literature. In the course of guidance development, aspects of alarm system design for which the technical basis was insufficient to support complete guidance development were identified. The primary purpose of the research reported in this paper was to evaluatemore » the effects of three of these alarm system design characteristics on operator performance in order to contribute to the understanding of potential safety issues and to provide data to support the development of design review guidance in these areas. Three alarm system design characteristics studied were (1) alarm processing (degree of alarm reduction), (2) alarm availability (dynamic prioritization and suppression), and (3) alarm display (a dedicated tile format, a mixed tile and message list format, and a format in which alarm information is integrated into the process displays). A secondary purpose was to provide confirmatory evidence of selected alarm system guidance developed in an earlier phase of the project. The alarm characteristics were combined into eight separate experimental conditions. Six, two-person crews of professional nuclear power plant operators participated in the study. Following training, each crew completed 16 test trials which consisted of two trials in each of the eight experimental conditions (one with a low-complexity scenario and one with a high-complexity scenario). Measures of process performance, operator task performance, situation awareness, and workload were obtained. In addition, operator opinions and evaluations of the alarm processing and display conditions were collected. No deficient performance was observed in any of the experimental conditions, providing confirmatory support for many design review guidelines. The operators identified numerous strengths and weaknesses associated with individual alarm design characteristics.« less
NASA Technical Reports Server (NTRS)
Miller, Richard B.
1992-01-01
The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.
Target Identification Support and Location Support Among Teams of Unmanned Systems Operators
2008-12-01
effectiveness and performance, many studies have highlighted the importance of attending to team process (Campion, Medsker, & Higgs, 1993, Campion, Papper ...work groups. Personnel Psychology, 46, 823-850. Campion, M., Papper , E., & Medsker, G., 1996: Relations between work team characteristics and
76 FR 48152 - Commercial Building Asset Rating Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
...: Occupancy schedule. HVAC system operation. Hot water use. Both the user-entered and the internally defined.... Technical Support Full documentation of the rating methodology would be available online for public review... welcome. Potential for Additional Supported Options While a national performance metric and rating system...
Using computer graphics to enhance astronaut and systems safety
NASA Technical Reports Server (NTRS)
Brown, J. W.
1985-01-01
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.
NASA Technical Reports Server (NTRS)
Cotton, Will; Liechty, John
2015-01-01
This paper describes a testing methodology undertaken on the Facilities Development and Operations Contract (FDOC) by Lockheed Martin. The methodology was defined with the intent of reducing project schedule time to enable NASA's Johnson Space Center (JSC) to be able to deliver the Mission Control Center (MCC) 21 project as quickly as possible. 21 represents the 21st century where NASA JSC is updating its control center with new technology and operational concepts in order to support NASA customers wanting to use control center assets to support space vehicle operations. In collaboration with the NASA customer, a new test concept was conceived early during MCC21 project planning with the goal of reducing project delivery time. One enabler that could help reduce delivery time was testing. Within the project, testing was performed by two entities, software development responsible for subsystem testing and system test responsible for system integration testing. The MCC21 project took a deliberate review of testing to determine how it could be performed differently to realize an overall reduction in test time to support the goal of a more rapid project delivery.
Dynamic Model of the BIO-Plex Air Revitalization System
NASA Technical Reports Server (NTRS)
Finn, Cory; Meyers, Karen; Duffield, Bruce; Luna, Bernadette (Technical Monitor)
2000-01-01
The BIO-Plex facility will need to support a variety of life support system designs and operation strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop the infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth. A general description of the dynamic mass flow model is provided, along with some simulation results. The paper also discusses sizing and operations issues and describes plans for future simulation studies.
Barros, Aruana Rocha; Adorno, Maria Angela Tallarico; Sakamoto, Isabel Kimiko; Maintinguer, Sandra Imaculada; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz
2011-02-01
This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30°C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8h. The reactor R1 operating with a HRT of 2h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2)mol(-1) glucose with 1.3mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. Copyright © 2010 Elsevier Ltd. All rights reserved.
Multi-Agent Diagnosis and Control of an Air Revitalization System for Life Support in Space
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Kowing, Jeffrey; Nieten, Joseph; Graham, Jeffrey s.; Schreckenghost, Debra; Bonasso, Pete; Fleming, Land D.; MacMahon, Matt; Thronesbery, Carroll
2000-01-01
An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.
Mentoring SFRM: A New Approach to International Space Station Flight Control Training
NASA Technical Reports Server (NTRS)
Huning, Therese; Barshi, Immanuel; Schmidt, Lacey
2009-01-01
The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.
Ergonomics Climate Assessment: A measure of operational performance and employee well-being.
Hoffmeister, Krista; Gibbons, Alyssa; Schwatka, Natalie; Rosecrance, John
2015-09-01
Ergonomics interventions have the potential to improve operational performance and employee well-being. We introduce a framework for ergonomics climate, the extent to which an organization emphasizes and supports the design and modification of work to maximize both performance and well-being outcomes. We assessed ergonomics climate at a large manufacturing facility twice during a two-year period. When the organization used ergonomics to promote performance and well-being equally, and at a high level, employees reported less work-related pain. A larger discrepancy between measures of operational performance and employee well-being was associated with increased reports of work-related pain. The direction of this discrepancy was not significantly related to work-related pain, such that it didn't matter which facet was valued more. The Ergonomics Climate Assessment can provide companies with a baseline assessment of the overall value placed on ergonomics and help prioritize areas for improving operational performance and employee well-being. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Human Research Program Behavioral Health and Performance Element (BHP)
NASA Technical Reports Server (NTRS)
Whitmire, Sandra; Faulk, Jeremy; Leveton, Lauren
2010-01-01
The goal of NASA BHP is to identify, characterize, and prevent or reduce behavioral health and performance risks associated with space travel, exploration, and return to terrestrial life. The NASA Behavioral Health and Performance Operations Group (BHP Ops) supports astronauts and their families before, during, and after a long-duration mission (LDM) on the ISS. BHP Ops provides ISS crews with services such as preflight training (e.g., psychological factors of LDM, psychological support, cross-cultural); preflight, in-flight, and postflight support services, including counseling for astronauts and their families; and psychological support such as regular care packages and a voice-over IP phone system between crew members and their families to facilitate real-time one-on-one communication.
Working with and Visualizing Big Data Efficiently with Python for the DARPA XDATA Program
2017-08-01
same function to be used with scalar inputs, input arrays of the same shape, or even input arrays of dimensionality in some cases. Most of the math ... math operations on values ● Split-apply-combine: similar to group-by operations in databases ● Join: combine two datasets using common columns 4.3.3...Numba - Continue to increase SIMD performance with support for fast math flags and improved support for AVX, Intel’s large vector
LANL continuity of operations plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senutovitch, Diane M
2010-12-22
The Los Alamos National Laboratory (LANL) is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is to ensure the safety, security, and reliability of the nation's nuclear stockpile. LANL emphasizes worker safety, effective operational safeguards and security, and environmental stewardship, outstanding science remains the foundation of work at the Laboratory. In addition to supporting the Laboratory's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines. To accomplish LANL's mission, we must ensure that the Laboratorymore » EFs continue to be performed during a continuity event, including localized acts of nature, accidents, technological or attack-related emergencies, and pandemic or epidemic events. The LANL Continuity of Operations (COOP) Plan documents the overall LANL COOP Program and provides the operational framework to implement continuity policies, requirements, and responsibilities at LANL, as required by DOE 0 150.1, Continuity Programs, May 2008. LANL must maintain its ability to perform the nation's PMEFs, which are: (1) maintain the safety and security of nuclear materials in the DOE Complex at fixed sites and in transit; (2) respond to a nuclear incident, both domestically and internationally, caused by terrorist activity, natural disaster, or accident, including mobilizing the resources to support these efforts; and (3) support the nation's energy infrastructure. This plan supports Continuity of Operations for Los Alamos National Laboratory (LANL). This plan issues LANL policy as directed by the DOE 0 150.1, Continuity Programs, and provides direction for the orderly continuation of LANL EFs for 30 days of closure or 60 days for a pandemic/epidemic event. Initiation of COOP operations may be required to support an allhazards event, including a national security emergency, major fire, catastrophic natural disaster, man-made disaster, terrorism event, or technological disaster by rendering LANL buildings, infrastructure, or Technical Areas unsafe, temporarily unusable, or inaccessible.« less
Stages and levels of automation in support of space teleoperations.
Li, Huiyang; Wickens, Christopher D; Sarter, Nadine; Sebok, Angelia
2014-09-01
This study examined the impact of stage of automation on the performance and perceived workload during simulated robotic arm control tasks in routine and off-nominal scenarios. Automation varies with respect to the stage of information processing it supports and its assigned level of automation. Making appropriate choices in terms of stages and levels of automation is critical to ensure robust joint system performance. To date, this issue has been empirically studied in domains such as aviation and medicine but not extensively in the context of space operations. A total of 36 participants played the role of a payload specialist and controlled a simulated robotic arm. Participants performed fly-to tasks with two types of automation (camera recommendation and trajectory control automation) of varying stage. Tasks were performed during routine scenarios and in scenarios in which either the trajectory control automation or a hazard avoidance automation failed. Increasing the stage of automation progressively improved performance and lowered workload when the automation was reliable, but incurred severe performance costs when the system failed. The results from this study support concerns about automation-induced complacency and automation bias when later stages of automation are introduced. The benefits of such automation are offset by the risk of catastrophic outcomes when system failures go unnoticed or become difficult to recover from. A medium stage of automation seems preferable as it provides sufficient support during routine operations and helps avoid potentially catastrophic outcomes in circumstances when the automation fails.
Designing an Alternate Mission Operations Control Room
NASA Technical Reports Server (NTRS)
Montgomery, Patty; Reeves, A. Scott
2014-01-01
The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a service-oriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building.
NASA Technical Reports Server (NTRS)
Newman, Lauri K.; Hejduk, Matthew D.
2015-01-01
NASA is committed to safety of flight for all of its operational assets Performed by CARA at NASA GSFC for robotic satellites Focus of this briefing Performed by TOPO at NASA JSC for human spaceflight he Conjunction Assessment Risk Analysis (CARA) was stood up to offer this service to all NASA robotic satellites Currently provides service to 70 operational satellites NASA unmanned operational assets Other USG assets (USGS, USAF, NOAA) International partner assets Conjunction Assessment (CA) is the process of identifying close approaches between two orbiting objects; sometimes called conjunction screening The Joint Space Operations Center (JSpOC) a USAF unit at Vandenberg AFB, maintains the high accuracy catalog of space objects, screens CARA-supported assets against the catalog, performs OD tasking, and generates close approach data.
Grattieri, Matteo; Shivel, Nelson D; Sifat, Iram; Bestetti, Massimiliano; Minteer, Shelley D
2017-05-09
Microbial fuel cells are an emerging technology for wastewater treatment, but to be commercially viable and sustainable, the electrode materials must be inexpensive, recyclable, and reliable. In this study, recyclable polymeric supports were explored for the development of anode electrodes to be applied in single-chamber microbial fuel cells operated in field under hypersaline conditions. The support was covered with a carbon nanotube (CNT) based conductive paint, and biofilms were able to colonize the electrodes. The single-chamber microbial fuel cells with Pt-free cathodes delivered a reproducible power output after 15 days of operation to achieve 12±1 mW m -2 at a current density of 69±7 mA m -2 . The decrease of the performance in long-term experiments was mostly related to inorganic precipitates on the cathode electrode and did not affect the performance of the anode, as shown by experiments in which the cathode was replaced and the fuel cell performance was regenerated. The results of these studies show the feasibility of polymeric supports coated with CNT-based paint for microbial fuel cell applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Partitioned key-value store with atomic memory operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin; Grider, Gary
A partitioned key-value store is provided that supports atomic memory operations. A server performs a memory operation in a partitioned key-value store by receiving a request from an application for at least one atomic memory operation, the atomic memory operation comprising a memory address identifier; and, in response to the atomic memory operation, performing one or more of (i) reading a client-side memory location identified by the memory address identifier and storing one or more key-value pairs from the client-side memory location in a local key-value store of the server; and (ii) obtaining one or more key-value pairs from themore » local key-value store of the server and writing the obtained one or more key-value pairs into the client-side memory location identified by the memory address identifier. The server can perform functions obtained from a client-side memory location and return a result to the client using one or more of the atomic memory operations.« less
Multidimensional Profiling of Task Stress States for Human Factors: A Brief Review.
Matthews, Gerald
2016-09-01
This article advocates multidimensional assessment of task stress in human factors and reviews the use of the Dundee Stress State Questionnaire (DSSQ) for evaluation of systems and operators. Contemporary stress research has progressed from an exclusive focus on environmental stressors to transactional perspectives on the stress process. Performance impacts of stress reflect the operator's dynamic attempts to understand and cope with task demands. Multidimensional stress assessments are necessary to gauge the different forms of system-operator interaction. This review discusses the theoretical and practical use of the DSSQ in evaluating multidimensional patterns of stress response. It presents psychometric evidence for the multidimensional perspective and illustrative profiles of subjective state response to task stressors and environments. Evidence is also presented on stress state correlations with related variables, including personality, stress process measures, psychophysiological response, and objective task performance. Evidence supports the validity of the DSSQ as a task stress measure. Studies of various simulated environments show that different tasks elicit different profiles of stress state response. Operator characteristics such as resilience predict individual differences in state response to stressors. Structural equation modeling may be used to understand performance impacts of stress states. Multidimensional assessment affords insight into the stress process in a variety of human factors contexts. Integrating subjective and psychophysiological assessment is a priority for future research. Stress state measurement contributes to evaluating system design, countermeasures to stress and fatigue, and performance vulnerabilities. It may also support personnel selection and diagnostic monitoring of operators. © 2016, Human Factors and Ergonomics Society.
NASA Technical Reports Server (NTRS)
Olson, B. A.; Lee, H. C.; Osgerby, I. T.; Heck, R. M.; Hess, H.
1980-01-01
The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 1000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm):0, 146, carbon monoxide (vppm):30, 2420; nitrogen oxides (vppm):5.7, 5.6.
NASA Technical Reports Server (NTRS)
Darroy, Jean Michel
1993-01-01
Current trends in the spacecraft mission operations area (spacecraft & mission complexity, project duration, required flexibility are requiring a breakthrough for what concerns philosophy, organization, and support tools. A major evolution is related to space operations 'informationalization', i.e adding to existing operations support & data processing systems a new generation of tools based on advanced information technologies (object-oriented programming, artificial intelligence, data bases, hypertext) that automate, at least partially, operations tasks that used be performed manually (mission & project planning/scheduling, operations procedures elaboration & execution, data analysis & failure diagnosis). All the major facets of this 'informationalization' are addressed at MATRA MARCONI SPACE, operational applications were fielded and generic products are becoming available. These various applications have generated a significant feedback from the users (at ESA, CNES, ARIANESPACE, MATRA MARCONI SPACE), which is now allowing us to precisely measure how the deployment of this new generation of tools, that we called OPSWARE, can 'reengineer' current spacecraft mission operations philosophy, how it can make space operations faster, better, and cheaper. This paper can be considered as an update of the keynote address 'Knowledge-Based Systems for Spacecraft Control' presented during the first 'Ground Data Systems for Spacecraft Control' conference in Darmstadt, June 1990, with a special emphasis on these last two years users feedback.
Sleep Supports Inhibitory Operant Conditioning Memory in "Aplysia"
ERIC Educational Resources Information Center
Vorster, Albrecht P. A.; Born, Jan
2017-01-01
Sleep supports memory consolidation as shown in mammals and invertebrates such as bees and "Drosophila." Here, we show that sleep's memory function is preserved in "Aplysia californica" with an even simpler nervous system. Animals performed on an inhibitory conditioning task ("learning that a food is inedible") three…
Using quantum process tomography to characterize decoherence in an analog electronic device
NASA Astrophysics Data System (ADS)
Ostrove, Corey; La Cour, Brian; Lanham, Andrew; Ott, Granville
The mathematical structure of a universal gate-based quantum computer can be emulated faithfully on a classical electronic device using analog signals to represent a multi-qubit state. We describe a prototype device capable of performing a programmable sequence of single-qubit and controlled two-qubit gate operations on a pair of voltage signals representing the real and imaginary parts of a two-qubit quantum state. Analog filters and true-RMS voltage measurements are used to perform unitary and measurement gate operations. We characterize the degradation of the represented quantum state with successive gate operations by formally performing quantum process tomography to estimate the equivalent decoherence channel. Experimental measurements indicate that the performance of the device may be accurately modeled as an equivalent quantum operation closely resembling a depolarizing channel with a fidelity of over 99%. This work was supported by the Office of Naval Research under Grant No. N00014-14-1-0323.
Numerical investigation of design and operational parameters on CHI spheromak performance
NASA Astrophysics Data System (ADS)
O'Bryan, J. B.; Romero-Talamas, C. A.; Woodruff, S.
2016-10-01
Nonlinear, extended-MHD computation with the NIMROD code is used to explore magnetic self-organization and performance with respect to externally controllable parameters in spheromaks formed with coaxial helicity injection. The goal of this study is to inform the design and operational parameters of proposed proof-of-principle spheromak experiment. The calculations explore multiple distinct phases of evolution (including adiabatic magnetic compression), which must be explored and optimized separately. Results indicate that modest changes to the design and operation of past experiments, e.g. SSPX [E.B. Hooper et al. PPCF 2012], could have significantly improved the plasma-current injector coupling efficiency and performance, particularly with respect to peak temperature and lifetime. Though we frequently characterize performance relative to SSPX, we are also exploring fundamentally different designs and modes of operation, e.g. flux compression. This work is supported by DAPRA under Grant No. N66001-14-1-4044.
NASA Astrophysics Data System (ADS)
Ferriere, D.; Rucinski, A.; Jankowski, T.
2007-04-01
Establishing a Virtual Sea Border by performing a real-time, satellite-accessible Internet-based bio-metric supported threat assessment of arriving foreign-flagged cargo ships, their management and ownership, their arrival terminal operator and owner, and rewarding proven legitimate operators with an economic incentive for their transparency will simultaneously improve port security and maritime transportation efficiencies.
Improving Program Performance through Management Information. A Workbook.
ERIC Educational Resources Information Center
Bienia, Nancy
Designed specifically for state and local managers and supervisors who plan, direct, and operate child support enforcement programs, this workbook provides a four-part, step-by-step process for identifying needed information and methods of using the information to operate an effective program. The process consists of: (1) determining what…
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, Edward C. (Editor)
1992-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Data Acquisition (TDA) Office. In the Search for Extraterrestrial Intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA) with the Office of Space Operations for funding DSN operational support.
ERIC Educational Resources Information Center
Herman, Rebecca; Graczewski, Cheryl; James-Burdumy, Susanne; Murray, Matthew; Perez-Johnson, Irma; Tanenbaum, Courtney
2013-01-01
The federal School Improvement Grants (SIG) program, to which $3 billion were allocated under the American Recovery and Reinvestment Act of 2009 (ARRA), supports schools attempting to turn around a history of low performance. School turnaround also is a focus of Race to the Top (RTT), another ARRA-supported initiative, which involved a roughly $4…
Fatigue Management in Spaceflight Operations
NASA Technical Reports Server (NTRS)
Whitmire, Alexandra
2011-01-01
Sleep loss and fatigue remain an issue for crewmembers working on the International Space Station, and the ground crews who support them. Schedule shifts on the ISS are required for conducting mission operations. These shifts lead to tasks being performed during the biological night, and sleep scheduled during the biological day, for flight crews and the ground teams who support them. Other stressors have been recognized as hindering sleep in space; these include workload, thinking about upcoming tasks, environmental factors, and inadequate day/night cues. It is unknown if and how other factors such as microgravity, carbon dioxide levels, or increased radiation, may also play a part. Efforts are underway to standardize and provide care for crewmembers, ground controllers and other support personnel. Through collaborations between research and operations, evidenced-based clinical practice guidelines are being developed to equip flight surgeons with the tools and processes needed for treating circadian desynchrony (and subsequent sleep loss) caused by jet lag and shift work. The proper implementation of countermeasures such as schedules, lighting protocols, and cognitive behavioral education can hasten phase shifting, enhance sleep and optimize performance. This panel will focus on Fatigue Management in Spaceflight Operations. Speakers will present on research-based recommendations and technologies aimed at mitigating sleep loss, circadian desynchronization and fatigue on-orbit. Gaps in current mitigations and future recommendations will also be discussed.
NASA Technical Reports Server (NTRS)
Mckee, J. W.
1974-01-01
Experiments are performed during manned space flights in an attempt to acquire knowledge that can advance science and technology or that can be applied to operational techniques for future space flights. A description is given of the procedures that the personnel who are directly assigned to the function of crew support at the NASA Lyndon B. Johnson Space Center use to prepare for and to conduct experiments during space flight.
Hollow Cathode Assembly Development for the HERMeS Hall Thruster
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.
2016-01-01
To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and assessment of system implementation concerns. This paper will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model barium-oxide-based (BaO) hollow cathode is being performed as part of the development plan. The cathode was operated with an anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 740 hours at the time of this report. Cathode operation (i.e. discharge voltage and orifice temperature) was repeatable during period variation of discharge current and flow rate. The details of the cathode assembly operation during the wear-test will be presented.
Wickens, Christopher D; Sebok, Angelia; Li, Huiyang; Sarter, Nadine; Gacy, Andrew M
2015-09-01
The aim of this study was to develop and validate a computational model of the automation complacency effect, as operators work on a robotic arm task, supported by three different degrees of automation. Some computational models of complacency in human-automation interaction exist, but those are formed and validated within the context of fairly simplified monitoring failures. This research extends model validation to a much more complex task, so that system designers can establish, without need for human-in-the-loop (HITL) experimentation, merits and shortcomings of different automation degrees. We developed a realistic simulation of a space-based robotic arm task that could be carried out with three different levels of trajectory visualization and execution automation support. Using this simulation, we performed HITL testing. Complacency was induced via several trials of correctly performing automation and then was assessed on trials when automation failed. Following a cognitive task analysis of the robotic arm operation, we developed a multicomponent model of the robotic operator and his or her reliance on automation, based in part on visual scanning. The comparison of model predictions with empirical results revealed that the model accurately predicted routine performance and predicted the responses to these failures after complacency developed. However, the scanning models do not account for the entire attention allocation effects of complacency. Complacency modeling can provide a useful tool for predicting the effects of different types of imperfect automation. The results from this research suggest that focus should be given to supporting situation awareness in automation development. © 2015, Human Factors and Ergonomics Society.
Deep Space Network equipment performance, reliability, and operations management information system
NASA Technical Reports Server (NTRS)
Cooper, T.; Lin, J.; Chatillon, M.
2002-01-01
The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.
NASA Technical Reports Server (NTRS)
Bates, William V., Jr.
1989-01-01
The automation and robotics requirements for the Space Station Initial Operational Concept (IOC) are discussed. The amount of tasks to be performed by an eight-person crew, the need for an automated or directed fault analysis capability, and ground support requirements are considered. Issues important in determining the role of automation for the IOC are listed.
The Role of International Volunteers in the Growth of Surgical Capacity in Post-earthquake Haiti.
Derenoncourt, Max Herby; Carré, Roselaine; Condé-Green, Alexandra; Rodnez, Alain; Sifri, Ziad C; Baltazar, Gerard A
2016-04-01
The 2010 Haiti earthquake severely strained local healthcare infrastructure. In the wake of this healthcare crisis, international organizations provided volunteer support. Studies demonstrate that this support improved short-term recovery; however, it is unclear how long-term surgical capacity has changed and what role volunteer surgical relief efforts have played. Our goal was to investigate the role of international surgical volunteers in the increase of surgical capacity following the 2010 Haiti earthquake. We retrospectively analyzed the operative reports of 3208 patients at a general, trauma and critical care hospital in Port-au-Prince from June 2010 through December 2013. We collected data on patient demographics and operation subspecialty. Surgeons and anesthesiologists were categorized by subspecialty training and as local healthcare providers or international volunteers. We performed analysis of variance to detect changes in surgical capacity over time and to estimate the role volunteers play in these changes. Overall number of monthly operations increased over the 2.5 years post-earthquake. The percentage of orthopedic operations declined while the percentage of other subspecialty operations increased (p = 0.0003). The percentage of operations performed by international volunteer surgeons did not change (p = 0.51); however, the percentage of operations staffed by volunteer anesthesiologists declined (p = 0.058). The percentage of operations performed by matching specialty- and subspecialty-trained international volunteers has not changed (p = 0.54). Haitian post-earthquake local and overall surgical capacity has steadily increased, particularly for provision of subspecialty operations. Surgical volunteers have played a consistent role in the recovery of surgical capacity. An increased focus on access to surgical services and resource-allocation for long-term surgical efforts particularly in the realm of subspecialty surgery may lead to full recovery of surgical capacity after a large and devastating natural disaster.
Unmanned air vehicle (UAV) ultra-persitence research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dron, S. B.
2012-03-01
Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively pushmore » UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were considered. Fundamental cost driver analysis was also performed. System development plans were drafted in order to determine where the technological and programmatic critical paths lay. As a result of this effort, UAVs were to be able to provide far more surveillance time and intelligence information per mission while reducing the high cost of support activities. This technology was intended to create unmatched global capabilities to observe and preempt terrorist and weapon of mass destruction (WMD) activities. Various DOE laboratory and contractor personnel and facilities could have been used to perform detailed engineering, fabrication, assembly and test operations including follow-on operational support. Unfortunately, none of the results will be used in the near-term or mid-term future. NGIS UMS and SNL felt that the technical goals for the project were accomplished. NGIS UMS was quite pleased with the results of analysis and design although it was disappointing to all that the political realities would not allow use of the results. Technology and system designs evaluated under this CRADA had previously never been applied to unmanned air vehicles (UAVs). Based upon logistic support cost predictions, because the UAVs would not have had to refuel as often, forward basing support costs could have been reduced due to a decrease in the number and extent of support systems and personnel being required to operate UAVs in remote areas. Basic application of the advanced propulsion and power approach is well understood and industry now understands the technical, safety, and political issues surrounding implementation of these strategies. However, the overall economic impact was not investigated. The results will not be applied/implemented. No near-term benefit to industry or the taxpayer will be encountered as a result of these studies.« less
NASA Technical Reports Server (NTRS)
Uhlemann, H.; Geiser, G.
1975-01-01
Multivariable manual compensatory tracking experiments were carried out in order to determine typical strategies of the human operator and conditions for improvement of his performance if one of the visual displays of the tracking errors is supplemented by an auditory feedback. Because the tracking error of the system which is only visually displayed is found to decrease, but not in general that of the auditorally supported system, it was concluded that the auditory feedback unloads the visual system of the operator who can then concentrate on the remaining exclusively visual displays.
NASA Technical Reports Server (NTRS)
Doggett, William R.; King, Bruce D.; Jones, Thomas Carno; Dorsey, John T.; Mikulas, Martin M.
2008-01-01
Devices for lifting, translating and precisely placing payloads are critical for efficient Earthbased construction operations. Both recent and past studies have demonstrated that devices with similar functionality will be needed to support lunar outpost operations. Lunar payloads include: a) prepackaged hardware and supplies which must be unloaded from landers and then accurately located at their operational site, b) sensor packages used for periodic inspection of landers, habitat surfaces, etc., and c) local materials such as regolith which require grading, excavation and placement. Although several designs have been developed for Earth based applications, these devices lack unique design characteristics necessary for transport to and use on the harsh lunar surface. These design characteristics include: a) composite components, b) compact packaging for launch, c) simple in-field reconfiguration and repair, and d) support for tele-operated or automated operations. Also, in contrast to Earth-based construction, where special purpose devices dominate a construction site, a lunar outpost will require versatile devices which provide operational benefit from initial construction through sustained operations. This paper will detail the design of a unique, high performance, versatile lifting device designed for operations on the lunar surface. The device is called the Lunar Surface Manipulation System to highlight the versatile nature of the device which supports conventional cable suspended crane operations as well as operations usually associated with a manipulator such as precise positioning where the payload is rigidly grappled by a tool attached to the tip of the device. A first generation test-bed to verify design methods and operational procedures is under development at the NASA Langley Research Center and recently completed field tests at Moses Lake Washington. The design relied on non-linear finite element analysis which is shown to correlate favorably with laboratory experiments. A key design objective, reviewed in this paper, is the device s simplicity, resulting from a focus on the minimum set of functions necessary to perform payload offload. Further development of the device has the potential for significant mass savings, with a high performance device incorporating composite elements estimated to have a mass less than 3% of the mass of the maximum lunar payload lifted at the tip. The paper will conclude with future plans for expanding the operational versatility of the device.
49 CFR 240.215 - Retaining information supporting determinations.
Code of Federal Regulations, 2010 CFR
2010-10-01
...; (3) Any relevant data furnished by a governmental agency concerning the person's motor vehicle... administered. (e) The information concerning demonstrated performance skills that the railroad shall retain... the performance skills test(s) that documents the relevant operating facts on which the evaluation is...
ConnectX2 In niBand Management Queues: New support for Network Of oaded
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Richard L; Poole, Stephen W; Shamis, Pavel
2010-01-01
This paper introduces the newly developed InfiniBand (IB) Management Queue capability, used by the Host Channel Adapter (HCA) to manage network task data flow dependancies, and progress the communications associated with such flows. These tasks include sends, receives, and the newly supported wait task, and are scheduled by the HCA based on a data dependency description provided by the user. This functionality is supported by the ConnectX-2 HCA, and provides the means for delegating collective communication management and progress to the HCA, also known as collective communication offload. This provides a means for overlapping collective communications managed by the HCAmore » and computation on the Central Processing Unit (CPU), thus making it possible to reduce the impact of system noise on parallel applications using collective operations. This paper further describes how this new capability can be used to implement scalable Message Passing Interface (MPI) collective operations, describing the high level details of how this new capability is used to implement the MPI Barrier collective operation, focusing on the latency sensitive performance aspects of this new capability. This paper concludes with small scale benchmark experiments comparing implementations of the barrier collective operation, using the new network offload capabilities, with established point-to-point based implementations of these same algorithms, which manage the data flow using the central processing unit. These early results demonstrate the promise this new capability provides to improve the scalability of high-performance applications using collective communications. The latency of the HCA based implementation of the barrier is similar to that of the best performing point-to-point based implementation managed by the central processing unit, starting to outperform these as the number of processes involved in the collective operation increases.« less
Mission Operations with an Autonomous Agent
NASA Technical Reports Server (NTRS)
Pell, Barney; Sawyer, Scott R.; Muscettola, Nicola; Smith, Benjamin; Bernard, Douglas E.
1998-01-01
The Remote Agent (RA) is an Artificial Intelligence (AI) system which automates some of the tasks normally reserved for human mission operators and performs these tasks autonomously on-board the spacecraft. These tasks include activity generation, sequencing, spacecraft analysis, and failure recovery. The RA will be demonstrated as a flight experiment on Deep Space One (DSI), the first deep space mission of the NASA's New Millennium Program (NMP). As we moved from prototyping into actual flight code development and teamed with ground operators, we made several major extensions to the RA architecture to address the broader operational context in which PA would be used. These extensions support ground operators and the RA sharing a long-range mission profile with facilities for asynchronous ground updates; support ground operators monitoring and commanding the spacecraft at multiple levels of detail simultaneously; and enable ground operators to provide additional knowledge to the RA, such as parameter updates, model updates, and diagnostic information, without interfering with the activities of the RA or leaving the system in an inconsistent state. The resulting architecture supports incremental autonomy, in which a basic agent can be delivered early and then used in an increasingly autonomous manner over the lifetime of the mission. It also supports variable autonomy, as it enables ground operators to benefit from autonomy when L'@ey want it, but does not inhibit them from obtaining a detailed understanding and exercising tighter control when necessary. These issues are critical to the successful development and operation of autonomous spacecraft.
System Analysis for the Huntsville Operation Support Center, Distributed Computer System
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Massey, D.
1985-01-01
HOSC as a distributed computing system, is responsible for data acquisition and analysis during Space Shuttle operations. HOSC also provides computing services for Marshall Space Flight Center's nonmission activities. As mission and nonmission activities change, so do the support functions of HOSC change, demonstrating the need for some method of simulating activity at HOSC in various configurations. The simulation developed in this work primarily models the HYPERchannel network. The model simulates the activity of a steady state network, reporting statistics such as, transmitted bits, collision statistics, frame sequences transmitted, and average message delay. These statistics are used to evaluate such performance indicators as throughout, utilization, and delay. Thus the overall performance of the network is evaluated, as well as predicting possible overload conditions.
DSP/FPGA Design for a High-Speed Programmable S-Band Space Transceiver
NASA Technical Reports Server (NTRS)
Janicik, Jeffrey; Friedman, Assi
2013-01-01
Traditional command uplink receivers are very limited in performance capability, take a long time to acquire, cannot operate on both uplink bands (NASA & AFSCN), and only support low-rate communications. As a result, transceivers end up on many programs critical paths, even though they should be a standard purchased spacecraft subsystem. Also, many missions are impacted by the low effective uplink throughput. In order to tackle these challenges, a transceiver was developed that will provide on-site frequency agility, support of high uplink rates, and operation on both NASA and AFSCN frequency bands. The device is a low-power, high-reliability, and high-performance digital signal processing (DSP) demodulator for an on-orbit programmable command receiver.
Portable Life Support Subsystem Thermal Hydraulic Performance Analysis
NASA Technical Reports Server (NTRS)
Barnes, Bruce; Pinckney, John; Conger, Bruce
2010-01-01
This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.
Abstract:Managing urban water infrastructures faces the challenge of jointly dealing with assets of diverse types, useful life, cost, ages and condition. Service quality and sustainability require sound long-term planning, well aligned with tactical and operational planning and m...
Study on the Preliminary Design of ARGO-M Operation System
NASA Astrophysics Data System (ADS)
Seo, Yoon-Kyung; Lim, Hyung-Chul; Rew, Dong-Young; Jo, Jung Hyun; Park, Jong-Uk; Park, Eun-Seo; Park, Jang-Hyun
2010-12-01
Korea Astronomy and Space Science Institute has been developing one mobile satellite laser ranging system named as accurate ranging system for geodetic observation-mobile (ARGO-M). Preliminary design of ARGO-M operation system (AOS) which is one of the ARGO-M subsystems was completed in 2009. Preliminary design results are applied to the following development phase by performing detailed design with analysis of pre-defined requirements and analysis of the derived specifications. This paper addresses the preliminary design of the whole AOS. The design results in operation and control part which is a key part in the operation system are described in detail. Analysis results of the interface between operation-supporting hardware and the control computer are summarized, which is necessary in defining the requirements for the operation-supporting hardware. Results of this study are expected to be used in the critical design phase to finalize the design process.
Performance Measurement of Advanced Stirling Convertors (ASC-E3)
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.
2013-01-01
NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing data of the Advanced Stirling Convertor (ASC). The latest version of the ASC (ASC-E3, to represent the third cycle of engineering model test hardware) is of a design identical to the forthcoming flight convertors. For this generation of hardware, a joint Sunpower and GRC effort was initiated to improve and standardize the test support hardware. After this effort was completed, the first pair of ASC-E3 units was produced by Sunpower and then delivered to GRC in December 2012. GRC has begun operation of these units. This process included performance verification, which examined the data from various tests to validate the convertor performance to the product specification. Other tests included detailed performance mapping that encompassed the wide range of operating conditions that will exist during a mission. These convertors were then transferred to Lockheed Martin for controller checkout testing. The results of this latest convertor performance verification activity are summarized here.
Energy harvesting influences electrochemical performance of microbial fuel cells
NASA Astrophysics Data System (ADS)
Lobo, Fernanda Leite; Wang, Xin; Ren, Zhiyong Jason
2017-07-01
Microbial fuel cells (MFCs) can be effective power sources for remote sensing, wastewater treatment and environmental remediation, but their performance needs significant improvement. This study systematically analyzes how active harvesting using electrical circuits increased MFC system outputs as compared to passive resistors not only in the traditional maximal power point (MPP) but also in other desired operating points such as the maximum current point (MCP) and the maximum voltage point (MVP). Results show that active harvesting in MPP increased power output by 81-375% and active harvesting in MCP increased Coulombic efficiency by 207-805% compared with resisters operated at the same points. The cyclic voltammograms revealed redox potential shifts and supported the performance data. The findings demonstrate that active harvesting is a very effective approach to improve MFC performance across different operating points.
Performance evaluation approach for the supercritical helium cold circulators of ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaghela, H.; Sarkar, B.; Bhattacharya, R.
2014-01-29
The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe coldmore » circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.« less
Ropes: Support for collective opertions among distributed threads
NASA Technical Reports Server (NTRS)
Haines, Matthew; Mehrotra, Piyush; Cronk, David
1995-01-01
Lightweight threads are becoming increasingly useful in supporting parallelism and asynchronous control structures in applications and language implementations. Recently, systems have been designed and implemented to support interprocessor communication between lightweight threads so that threads can be exploited in a distributed memory system. Their use, in this setting, has been largely restricted to supporting latency hiding techniques and functional parallelism within a single application. However, to execute data parallel codes independent of other threads in the system, collective operations and relative indexing among threads are required. This paper describes the design of ropes: a scoping mechanism for collective operations and relative indexing among threads. We present the design of ropes in the context of the Chant system, and provide performance results evaluating our initial design decisions.
Kirtland Operations progress report, April--June 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Kirtland Operations (KO) is an integral part of EG G Energy Measurements, Inc., whose primary mission is to support the US Department of Energy's (DOE's) programs in weapons development and testing and in nuclear safeguards and security. KO performs much of its work in close coordination with and often at the technical direction of Sandia National Laboratories. In addition to aiding Sandia's weapons programs, KO provides a wide spectrum of technical support to other Sandia activities, particularly their safeguards, security, and treaty verification programs. Support is also provided to other elements of the Department of Energy community and to othermore » federal agencies, primarily in weapons testing and safeguards. This report documents our support to these programs from April to June 1991.« less
Kirtland Operations progress report, January--March 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Kirtland Operations (KO) is an integral part of EG G Energy Measurements, Inc., whose primary mission is to support the US Department of Energy's (DOE's) programs in weapons development and testing and in nuclear safeguards and security. KO performs much of its work in close coordination with and often at the technical direction of Sandia National Laboratories. In addition to aiding Sandia's weapons programs, KO provides a wide spectrum of technical support to other Sandia activities, particularly their safeguards, security, and treaty verification programs. Support is also provided to other elements of the Department of Energy community and to othermore » federal agencies, primarily in weapons testing and safeguards. This report documents our support to these porgrams from January to March 1991.« less
Kirtland Operations progress report, October--December 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Kirtland Operations (KO) is an integral part of EG G Energy Measurements, Inc., whose primary mission is to support the US Department of Energy's (DOE's) programs in weapons development and testing and in nuclear safeguards and security. KO performs much of its work in close coordination with and often at the technical direction of Sandia National Laboratories. In addition to aiding Sandia's weapons programs, KO provides a wide spectrum of technical support to other Sandia activities, particularly their safeguards, security, and treaty verification programs. Support is also provided to other elements of the Department of Energy community and to othermore » federal agencies, primarily in weapons testing and safeguards. This report documents our support to these programs from October to December 1991.« less
Human Factors Report: TMA Operational Evaluations 1996 and 1998
NASA Technical Reports Server (NTRS)
Lee, Katharine K.; Quinn, Cheryl M.; Hoang, Ty; Sanford, Beverly D.
2000-01-01
The Traffic Management Advisor (TMA) is a component of the Center-TRACON Automation System (CTAS), a suite of decision-support tools for the air traffic control (ATC) environment which is being developed at NASA Ames Research Center. TMA has been operational at the ATC facilities in Dallas/Fort Worth, Texas, since an operational field evaluation in 1996. The Operational Evaluation demonstrated significant benefits, including an approximately 5 percent increase in airport capacity. This report describes the human factors results from the 1996 Operational Evaluation and an investigation of TMA usage performed two years later, during the 1998 TMA Daily Use Field Survey. The results described are instructive for CTAS focused development, and provide valuable lessons for future research in ATC decision-support tools where it is critical to merge a well-defined, complex work environment with advanced automation.
Intelligent Command and Control Systems for Satellite Ground Operations
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1999-01-01
This grant, Intelligent Command and Control Systems for Satellite Ground Operations, funded by NASA Goddard Space Flight Center, has spanned almost a decade. During this time, it has supported a broad range of research addressing the changing needs of NASA operations. It is important to note that many of NASA's evolving needs, for example, use of automation to drastically reduce (e.g., 70%) operations costs, are similar requirements in both government and private sectors. Initially the research addressed the appropriate use of emerging and inexpensive computational technologies, such as X Windows, graphics, and color, together with COTS (commercial-off-the-shelf) hardware and software such as standard Unix workstations to re-engineer satellite operations centers. The first phase of research supported by this grant explored the development of principled design methodologies to make effective use of emerging and inexpensive technologies. The ultimate performance measures for new designs were whether or not they increased system effectiveness while decreasing costs. GT-MOCA (The Georgia Tech Mission Operations Cooperative Associate) and GT-VITA (Georgia Tech Visual and Inspectable Tutor and Assistant), whose latter stages were supported by this research, explored model-based design of collaborative operations teams and the design of intelligent tutoring systems, respectively. Implemented in proof-of-concept form for satellite operations, empirical evaluations of both, using satellite operators for the former and personnel involved in satellite control operations for the latter, demonstrated unequivocally the feasibility and effectiveness of the proposed modeling and design strategy underlying both research efforts. The proof-of-concept implementation of GT-MOCA showed that the methodology could specify software requirements that enabled a human-computer operations team to perform without any significant performance differences from the standard two-person satellite operations team. GT-VITA, using the same underlying methodology, the operator function model (OFM), and its computational implementation, OFMspert, successfully taught satellite control knowledge required by flight operations team members. The tutor structured knowledge in three ways: declarative knowledge (e.g., What is this? What does it do?), procedural knowledge, and operational skill. Operational skill is essential in real-time operations. It combines the two former knowledge types, assisting a student to use them effectively in a dynamic, multi-tasking, real-time operations environment. A high-fidelity simulator of the operator interface to the ground control system, including an almost full replication of both the human-computer interface and human interaction with the dynamic system, was used in the GT-MOCA and GT-VITA evaluations. The GT-VITA empirical evaluation, conducted with a range of'novices' that included GSFC operations management, GSFC operations software developers, and new flight operations team members, demonstrated that GT-VITA effectively taught a wide range of knowledge in a succinct and engaging manner.
Operator assistant to support deep space network link monitor and control
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.; Desai, Rajiv; Martinez, Elmain
1992-01-01
Preparing the Deep Space Network (DSN) stations to support spacecraft missions (referred to as pre-cal, for pre-calibration) is currently an operator and time intensive activity. Operators are responsible for sending and monitoring several hundred operator directivities, messages, and warnings. Operator directives are used to configure and calibrate the various subsystems (antenna, receiver, etc.) necessary to establish a spacecraft link. Messages and warnings are issued by the subsystems upon completion of an operation, changes of status, or an anomalous condition. Some points of pre-cal are logically parallel. Significant time savings could be realized if the existing Link Monitor and Control system (LMC) could support the operator in exploiting the parallelism inherent in pre-cal activities. Currently, operators may work on the individual subsystems in parallel, however, the burden of monitoring these parallel operations resides solely with the operator. Messages, warnings, and directives are all presented as they are received; without being correlated to the event that triggered them. Pre-cal is essentially an overhead activity. During pre-cal, no mission is supported, and no other activity can be performed using the equipment in the link. Therefore, it is highly desirable to reduce pre-cal time as much as possible. One approach to do this, as well as to increase efficiency and reduce errors, is the LMC Operator Assistant (OA). The LMC OA prototype demonstrates an architecture which can be used in concert with the existing LMC to exploit parallelism in pre-cal operations while providing the operators with a true monitoring capability, situational awareness and positive control. This paper presents an overview of the LMC OA architecture and the results from initial prototyping and test activities.
Medical Support for ISS Crewmember Training in Star City, Russia
NASA Technical Reports Server (NTRS)
Chough, Natacha; Pattarini, James; Cole, Richard; Patlach, Robert; Menon, Anil
2017-01-01
Medical support of spaceflight training operations across international lines is a unique circumstance with potential applications to other aerospace medicine support scenarios. KBRwyle's Star City Medical Support Group (SCMSG) has fulfilled this role since the Mir-Shuttle era, with extensive experience and updates to share with the greater AsMA community. OVERVIEW: The current Soyuz training flow for assigned ISS crewmembers takes place in Star City, Russia. Soyuz training flow involves numerous activities that pose potential physical and occupational risks to crewmembers, including centrifuge runs and pressurized suit simulations at ambient and hypobaric pressures. In addition, Star City is a relatively remote location in a host nation with variable access to reliable, Western-standard medical care. For these reasons, NASA's Human Health & Performance contract allocates full-time physician support to assigned ISS crewmembers training in Star City. The Star City physician also treats minor injuries and illnesses as needed for both long- and short-term NASA support personnel traveling in the area, while working to develop and maintain relationships with local health care resources in the event of more serious medical issues that cannot be treated on-site. The specifics of this unique scope of practice will be discussed. SIGNIFICANCE: ISS crewmembers training in Star City are at potential physical and occupational risk of trauma or dysbarism during nominal Soyuz training flow, requiring medical support from an on-duty aerospace medicine specialist. This support maintains human health and performance by preserving crewmember safety and well-being for mission success; sharing information regarding this operational model may contribute to advances in other areas of international, military, and civilian operational aerospace medicine.
Kepler Science Operations Center Architecture
NASA Technical Reports Server (NTRS)
Middour, Christopher; Klaus, Todd; Jenkins, Jon; Pletcher, David; Cote, Miles; Chandrasekaran, Hema; Wohler, Bill; Girouard, Forrest; Gunter, Jay P.; Uddin, Kamal;
2010-01-01
We give an overview of the operational concepts and architecture of the Kepler Science Data Pipeline. Designed, developed, operated, and maintained by the Science Operations Center (SOC) at NASA Ames Research Center, the Kepler Science Data Pipeline is central element of the Kepler Ground Data System. The SOC charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Data Pipeline, including the hardware infrastructure, scientific algorithms, and operational procedures. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center that hosts the computers required to perform data analysis. We discuss the high-performance, parallel computing software modules of the Kepler Science Data Pipeline that perform transit photometry, pixel-level calibration, systematic error-correction, attitude determination, stellar target management, and instrument characterization. We explain how data processing environments are divided to support operational processing and test needs. We explain the operational timelines for data processing and the data constructs that flow into the Kepler Science Data Pipeline.
NASA Technical Reports Server (NTRS)
Hagopian, Jeff
2002-01-01
With the successful implementation of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) enters a new era of opportunity for scientific research. The ISS provides a working laboratory in space, with tremendous capabilities for scientific research. Utilization of these capabilities requires a launch system capable of routinely transporting crew and logistics to/from the ISS, as well as supporting ISS assembly and maintenance tasks. The Space Shuttle serves as NASA's launch system for performing these functions. The Space Shuttle also serves as NASA's launch system for supporting other science and servicing missions that require a human presence in space. The Space Shuttle provides proof that reusable launch vehicles are technically and physically implementable. However, a couple of problems faced by NASA are the prohibitive cost of operating and maintaining the Space Shuttle and its relative inability to support high launch rates. The 2nd Generation Reusable Launch Vehicle (2nd Gen RLV) is NASA's solution to this problem. The 2nd Gen RLV will provide a robust launch system with increased safety, improved reliability and performance, and less cost. The improved performance and reduced costs of the 2nd Gen RLV will free up resources currently spent on launch services. These resource savings can then be applied to scientific research, which in turn can be supported by the higher launch rate capability of the 2nd Gen RLV. The result is a win - win situation for science and NASA. While meeting NASA's needs, the 2nd Gen RLV also provides the United States aerospace industry with a commercially viable launch capability. One of the keys to achieving the goals of the 2nd Gen RLV is to develop and implement new technologies and processes in the area of flight operations. NASA's experience in operating the Space Shuttle and the ISS has brought to light several areas where automation can be used to augment or eliminate functions performed by crew and ground controllers. This experience has also identified the need for new approaches to staffing and training for both crew and ground controllers. This paper provides a brief overview of the mission capabilities provided by the 2nd Gen RLV, a description of NASA's approach to developing the 2nd Gen RLV, a discussion of operations concepts, and a list of challenges to implementing those concepts.
Improvement of force health protection through preventive medicine oversight of contractor support.
Mower, Scott A
2009-01-01
Unprecedented numbers of contractors are used throughout the Iraq theater of operations to alleviate military manpower shortages. At virtually every major forward operating base, US-based contractors perform the preponderance of essential life support services. At more remote sites, local national contractors are increasingly relied upon to maintain chemical latrines, remove trash, deliver bulk water, and execute other janitorial functions. Vigorous oversight of contractor performance is essential to ensure services are delivered according to specified standards. Poor oversight can increase the risk of criminal activities, permit substandard performance, elevate disease and nonbattle injury rates, degrade morale, and diminish Soldier readiness. As the principal force health protection proponents in the Department of Defense, preventive medicine units must be tightly integrated into the oversight processes. This article defines the force health protection implications associated with service contracts and provide recommendations for strengthening preventive medicine's oversight role.
Secure Large-Scale Airport Simulations Using Distributed Computational Resources
NASA Technical Reports Server (NTRS)
McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Dan (Technical Monitor)
2001-01-01
To fully conduct research that will support the far-term concepts, technologies and methods required to improve the safety of Air Transportation a simulation environment of the requisite degree of fidelity must first be in place. The Virtual National Airspace Simulation (VNAS) will provide the underlying infrastructure necessary for such a simulation system. Aerospace-specific knowledge management services such as intelligent data-integration middleware will support the management of information associated with this complex and critically important operational environment. This simulation environment, in conjunction with a distributed network of supercomputers, and high-speed network connections to aircraft, and to Federal Aviation Administration (FAA), airline and other data-sources will provide the capability to continuously monitor and measure operational performance against expected performance. The VNAS will also provide the tools to use this performance baseline to obtain a perspective of what is happening today and of the potential impact of proposed changes before they are introduced into the system.
Piping inspection carriage having axially displaceable sensor
Zollinger, W.T.; Treanor, R.C.
1994-12-06
A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.
Piping inspection carriage having axially displaceable sensor
Zollinger, William T.; Treanor, Richard C.
1994-01-01
A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.
Software design for automated assembly of truss structures
NASA Technical Reports Server (NTRS)
Herstrom, Catherine L.; Grantham, Carolyn; Allen, Cheryl L.; Doggett, William R.; Will, Ralph W.
1992-01-01
Concern over the limited intravehicular activity time has increased the interest in performing in-space assembly and construction operations with automated robotic systems. A technique being considered at LaRC is a supervised-autonomy approach, which can be monitored by an Earth-based supervisor that intervenes only when the automated system encounters a problem. A test-bed to support evaluation of the hardware and software requirements for supervised-autonomy assembly methods was developed. This report describes the design of the software system necessary to support the assembly process. The software is hierarchical and supports both automated assembly operations and supervisor error-recovery procedures, including the capability to pause and reverse any operation. The software design serves as a model for the development of software for more sophisticated automated systems and as a test-bed for evaluation of new concepts and hardware components.
Evaluating open-source cloud computing solutions for geosciences
NASA Astrophysics Data System (ADS)
Huang, Qunying; Yang, Chaowei; Liu, Kai; Xia, Jizhe; Xu, Chen; Li, Jing; Gui, Zhipeng; Sun, Min; Li, Zhenglong
2013-09-01
Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.
Expeditionary Logistics: How the Marine Corps Supports Its Expeditionary Operations
2015-06-01
little additional information of value with regard to the U.S. Marine Corps and expeditionary logistics methodology. Since the expeditionary methodology...size and scope, necessitating differing levels of material support. Additionally , the same variables define the level of Combat Service Support that is...lie outside of doctrine and few manuals have been written discussing how the Marine Corps performs expeditionary logistics. Additionally , few sources
The Application of Large-Scale Hypermedia Information Systems to Training.
ERIC Educational Resources Information Center
Crowder, Richard; And Others
1995-01-01
Discusses the use of hypermedia in electronic information systems that support maintenance operations in large-scale industrial plants. Findings show that after establishing an information system, the same resource base can be used to train personnel how to use the computer system and how to perform operational and maintenance tasks. (Author/JMV)
Initial closed operation of the CELSS Test Facility Engineering Development Unit
NASA Technical Reports Server (NTRS)
Kliss, M.; Blackwell, C.; Zografos, A.; Drews, M.; MacElroy, R.; McKenna, R.; Heyenga, A. G.
2003-01-01
As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. Published by Elsevier Science Ltd on behalf of COSPAR.
Positioning of the patient during shoulder surgery: an inexpensive, safe and easy technique.
Van Tongel, Alexander; Hardeman, François; Karelse, Anne; de Wilde, Lieven
2013-01-01
The knowledge of shoulder pathology has improved tremendously in the last decades, and shoulder surgery is increasingly performed because of new treatment options and better operative results. Nowadays most surgical shoulder procedures are performed in the sitting or semi-sitting (beach chair) position. Stability of the patient and the ability to flex, extend and rotate the shoulder during surgery are crucial to improve exposure of the surgical field and lower the risk of perioperative complications. We developed an easy, safe and inexpensive surgical set-up providing a very good posterior, superior and anterior access to the shoulder in the sitting or semi-sitting position. In this technique, the patient is placed supine with the head at the foot end of the table and the body positioned slightly eccentrically with the back being supported by the leg plate contralateral to the operative side, avoiding any contact with the scapula of the operative side. A neck support is attached on an extra bar at the contralateral side and accommodated to the patient's lordosis. Next, the leg plate on the operative side is removed, and the head and the body are secured to the table with adhesive dressing. This way a stable positioning of the patient is obtained during the whole procedure, and the shoulder girdle is completely free. The set-up can accommodate patients of different stature and weight without the need to adapt the technique. This position also gives the possibility to provide an excellent radiographic view of the shoulder during operative fracture treatment. Our technique further allows a significant reduction in costs. A surgical table, extra bar, additional arm support and neck support are usually available and can be used in different settings, without the need for a specific shoulder table.
Flight controller alertness and performance during MOD shiftwork operations
NASA Technical Reports Server (NTRS)
Kelly, Sean M.; Rosekind, Mark R.; Dinges, David F.; Miller, Donna L.; Gillen, Kelly A.; Gregory, Kevin B.; Aguilar, Ronald D.; Smith, Roy M.
1994-01-01
Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations. During STS operations, MOD personnel provide 24 hr. coverage of critical tasks. A joint JSC and ARC project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during STS-53 in Dec. 1992. The study measures included a background questionnaire, a subjective daily logbook completed on a 24 hr. basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen Flight controllers representing the 3 Orbit shifts participated. The initial results clearly support further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further extended duration orbiters, timelines and planning for 24 circadian disruption will remain highly relevant in the MOD environment.
Outsourcing Operational Logistics: Buyer Beware
2003-05-16
This logistics system takes far too many people to conduct support missions and does not provide the desired customer performance in terms of...FINAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER OUTSOURCING OPERATIONAL LOGISTICS: BUYER BEWARE (U) 5b. GRANT NUMBER 5c...Form 298 (Rev. 8-98) 1 (Unclassified Paper) NAVAL WAR COLLEGE Newport, R.I. OUTSOURCING OPERATIONAL LOGISTICS: BUYER BEWARE By LAMONT WOODY Lieutenant
Searching for Partners: Regional Organizations and Peace Operations
1998-06-01
directed force, the U.N. Protection Force (UNPROFOR), performed abysmally in Bosnia and had to be replaced by a combination of NATO and other forces...African regional organization. Other examplars were the operational support provided by NATO during the U.N. Protection Force (UNPROFOR) phase of...body capable of organizing or directing field operations. 34 Lewis a n d Marks Even in the realm of protecting human rights, OSCE has lost
The 274th Forward Surgical Team experience during Operation Enduring Freedom.
Peoples, George E; Gerlinger, Tad; Craig, Robert; Burlingame, Brian
2005-06-01
The 274th Forward Surgical Team (FST) was deployed in support of Operation Enduring Freedom from October 14, 2001 to May 8, 2002. During this period, the FST was asked to perform many nondoctrinal missions. The FST was tasked with functioning as a mini-combat support hospital during the earlier phases of Operation Enduring Freedom, performing in-flight surgical procedures and resuscitation of combat wounded, conducting split operations with surgical coverage of both Karshi and Khanabad, Uzbekistan, and Bagram, Afghanistan, and leading the multinational medical coalition assembled for Operation Anaconda and other combat operations staged from Bagram. Overall, the 274th FST took care of approximately 90% of U.S. combat casualties during this period and treated a total of 221 combat casualties. The FST treated 103 total surgical cases, including 73 with combat wounds. At the time, this experience with combat casualties and the surgical care of combat wounds was the largest since the Persian Gulf War. More importantly, this account describes the flow, frequency, and type of combat casualties seen in a low-intensity conflict like that being waged currently in Afghanistan. It is hoped that this depiction will aid in the preparation, equipping, and overall utilization of surgical assets in similar future conflicts.
Meteorological Observations and System Performance From the NASA D3R's First 5 Years
NASA Technical Reports Server (NTRS)
Chandrasekar, V.; Beauchamp, Robert M.; Vega, Manuel; Chen, Haonan; Kumar, Mohit; Joshil, Shashank; Schwaller, Mathew; Petersen, Walter; Wolff, David
2017-01-01
The NASA dual-frequency, dual-polarization, Doppler radar (D3R) was conceived and developed to support ground validation (GV) operations of the Global Precipitation Measurement (GPM) mission. The D3R operates in the same frequencies bands, Ku- and Ka-band, as GPMs dual-frequency precipitation radar enabling direct comparisons of microphysical observations of precipitation. To support the GPM GVmission, D3R substantively participated in four field campaigns in North America with diverse geographic features covering both winter and summer conditions.
NASA Technical Reports Server (NTRS)
Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)
1995-01-01
A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.
How HRP Research Results Contribute to Human Space Exploration Risk Mitigation
NASA Technical Reports Server (NTRS)
Lumpkins, S. B.; Mindock, J. A.
2014-01-01
In addition to the scientific value of publications derived from research, results from Human Research Program (HRP) research also support HRP’s goals of mitigating crew health and performance risks in space flight. Research results are used to build the evidence base characterizing crew health and performance risks, to support risk research plan development, to inform crew health and performance standards, and to provide technologies to programs for meeting those standards and optimizing crew health and performance in space. This talk will describe examples of how research results support these efforts. For example, HRP research results are used to revise or even create new standards for human space flight, which have been established to protect crew health and performance during flight, and prevent negative long-term health consequences due to space flight. These standards are based on the best available clinical and scientific evidence, as well as operational experience from previous space flight missions, and are reviewed as new evidence emerges. Research results are also used to update the HRP evidence base, which is comprised of a set of reports that provide a current record of the state of knowledge from research and operations for each of the defined human health and performance risks for future NASA exploration missions. A discussion of the role of evidence within the HRP architecture will also be presented. The scope of HRP research results extends well beyond publications, as they are used in several capacities to support HRP deliverables and, ultimately, the advancement of human space exploration beyond low-Earth orbit.
How HRP Research Results Contribute to Human Space Exploration Risk Mitigation
NASA Technical Reports Server (NTRS)
Lumpkins, Sarah; Mindock, Jennifer
2014-01-01
In addition to the scientific value of publications derived from research, results from Human Research Program (HRP) research also support HRP's goals of mitigating crew health and performance risks in space flight. Research results are used to build the evidence base characterizing crew health and performance risks, to support risk research plan development, to inform crew health and performance standards, and to provide technologies to programs for meeting those standards and optimizing crew health and performance in space. This talk will describe examples of how research results support these efforts. For example, HRP research results are used to revise or even create new standards for human space flight, which have been established to protect crew health and performance during flight, and prevent negative long-term health consequences due to space flight. These standards are based on the best available clinical and scientific evidence, as well as operational experience from previous space flight missions, and are reviewed as new evidence emerges. Research results are also used to update the HRP evidence base, which is comprised of a set of reports that provide a current record of the state of knowledge from research and operations for each of the defined human health and performance risks for future NASA exploration missions. A discussion of the role of evidence within the HRP architecture will also be presented. The scope of HRP research results extends well beyond publications, as they are used in several capacities to support HRP deliverables and, ultimately, the advancement of human space exploration beyond low-Earth orbit.
2010-05-01
support multi-server operations, demonstrating the feasibility of the approach. Fourth, it evaluates the prototype to show that performance is reasonable ...architects make many such trade- offs in the course of designing a system. If the architect’s goal is the best possible performance at any cost, then...needs to be transferred, and the unit is reasonably sized (a directory or a small number of directories), the transfer latency can also be small
Flight Demonstration of Integrated Airport Surface Movement Technologies
NASA Technical Reports Server (NTRS)
Young, Steven D.; Jones, Denise R.
1998-01-01
This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Atlanta Hartsfield International Airport in Atlanta, GA. The test aircraft was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. Qualitative and quantitative results are discussed.
48 CFR 52.248-1 - Value Engineering.
Code of Federal Regulations, 2011 CFR
2011-10-01
... contract requirement and the proposed requirement, the comparative advantages and disadvantages of each, a... not rewardable under performance, design-to-cost (production unit cost, operating and support costs...
48 CFR 52.248-1 - Value Engineering.
Code of Federal Regulations, 2013 CFR
2013-10-01
... contract requirement and the proposed requirement, the comparative advantages and disadvantages of each, a... not rewardable under performance, design-to-cost (production unit cost, operating and support costs...
48 CFR 52.248-1 - Value Engineering.
Code of Federal Regulations, 2012 CFR
2012-10-01
... contract requirement and the proposed requirement, the comparative advantages and disadvantages of each, a... not rewardable under performance, design-to-cost (production unit cost, operating and support costs...
48 CFR 52.248-1 - Value Engineering.
Code of Federal Regulations, 2010 CFR
2010-10-01
... contract requirement and the proposed requirement, the comparative advantages and disadvantages of each, a... not rewardable under performance, design-to-cost (production unit cost, operating and support costs...
48 CFR 52.248-1 - Value Engineering.
Code of Federal Regulations, 2014 CFR
2014-10-01
... contract requirement and the proposed requirement, the comparative advantages and disadvantages of each, a... not rewardable under performance, design-to-cost (production unit cost, operating and support costs...
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, Edward C. (Editor)
1992-01-01
Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA) are published in the TDA Progress Report. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA), with the Office of Space Operations funding DSN operational support.
Rocket Propulsion 21 Steering Committee Meeting (RP21) NASA In-Space Propulsion Update
NASA Technical Reports Server (NTRS)
Klem, Mark
2015-01-01
In-house Support of NEXT-C Contract Status Thruster NEXT Long Duration Test post-test destructive evaluation in progress Findings will be used to verify service life models identify potential design improvements Cathode heater fabrication initiated for cyclic life testing Thruster operating algorithm definition verification initiated to provide operating procedures for mission users High voltage propellant isolator life test voluntarily terminated after successfully operating 51,200 h Power processor unit (PPU) Replaced all problematic stacked multilayer ceramic dual inline pin capacitors within PPU Test bed Rebuilt installed discharge power supply primary power board Completed full functional performance characterization Final test report in progress Transferred PPU Testbed to contractor to support prototype design effort.
Development of Airport Surface Required Navigation Performance (RNP)
NASA Technical Reports Server (NTRS)
Cassell, Rick; Smith, Alex; Hicok, Dan
1999-01-01
The U.S. and international aviation communities have adopted the Required Navigation Performance (RNP) process for defining aircraft performance when operating the en-route, approach and landing phases of flight. RNP consists primarily of the following key parameters - accuracy, integrity, continuity, and availability. The processes and analytical techniques employed to define en-route, approach and landing RNP have been applied in the development of RNP for the airport surface. To validate the proposed RNP requirements several methods were used. Operational and flight demonstration data were analyzed for conformance with proposed requirements, as were several aircraft flight simulation studies. The pilot failure risk component was analyzed through several hypothetical scenarios. Additional simulator studies are recommended to better quantify crew reactions to failures as well as additional simulator and field testing to validate achieved accuracy performance, This research was performed in support of the NASA Low Visibility Landing and Surface Operations Programs.
Evaluation of an Airborne Spacing Concept to Support Continuous Descent Arrival Operations
NASA Technical Reports Server (NTRS)
Murdoch, Jennifer L.; Barmore, Bryan E.; Baxley, Brian T.; Capron, William R.; Abbott, Terence S.
2009-01-01
This paper describes a human-in-the-loop experiment of an airborne spacing concept designed to support Continuous Descent Arrival (CDA) operations. The use of CDAs with traditional air traffic control (ATC) techniques may actually reduce an airport's arrival throughput since ATC must provide more airspace around aircraft on CDAs due to the variances in the aircraft trajectories. The intent of airborne self-spacing, where ATC delegates the speed control to the aircraft, is to maintain or even enhance an airport s landing rate during CDA operations by precisely achieving the desired time interval between aircraft at the runway threshold. This paper describes the operational concept along with the supporting airborne spacing tool and the results of a piloted evaluation of this concept, with the focus of the evaluation on pilot acceptability of the concept during off-nominal events. The results of this evaluation show a pilot acceptance of this airborne spacing concept with little negative performance impact over conventional CDAs.
NASA Technical Reports Server (NTRS)
Scott, David W.
2010-01-01
The Mission Operations Laboratory (MOL) at Marshall Space Flight Center (MSFC) is responsible for Engineering Support capability for NASA s Ares rocket development and operations. In pursuit of this, MOL is building the Ares Engineering and Operations Network (AEON), a web-based portal to support and simplify two critical activities: Access and analyze Ares manufacturing, test, and flight performance data, with access to Shuttle data for comparison Establish and maintain collaborative communities within the Ares teams/subteams and with other projects, e.g., Space Shuttle, International Space Station (ISS). AEON seeks to provide a seamless interface to a) locally developed engineering applications and b) a Commercial-Off-The-Shelf (COTS) collaborative environment that includes Web 2.0 capabilities, e.g., blogging, wikis, and social networking. This paper discusses how Web 2.0 might be applied to the typically conservative engineering support arena, based on feedback from Integration, Verification, and Validation (IV&V) testing and on searching for their use in similar environments.
Natural Environmental Service Support to NASA Vehicle, Technology, and Sensor Development Programs
NASA Technical Reports Server (NTRS)
1993-01-01
The research performed under this contract involved definition of the natural environmental parameters affecting the design, development, and operation of space and launch vehicles. The Universities Space Research Association (USRA) provided the manpower and resources to accomplish the following tasks: defining environmental parameters critical for design, development, and operation of launch vehicles; defining environmental forecasts required to assure optimal utilization of launch vehicles; and defining orbital environments of operation and developing models on environmental parameters affecting launch vehicle operations.
Development of a prototype real-time automated filter for operational deep space navigation
NASA Technical Reports Server (NTRS)
Masters, W. C.; Pollmeier, V. M.
1994-01-01
Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.
Advanced Stirling Convertor Testing at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Poriti, Sal
2010-01-01
The NASA Glenn Research Center (GRC) has been testing high-efficiency free-piston Stirling convertors for potential use in radioisotope power systems (RPSs) since 1999. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower, Inc., and the NASA GRC. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. As reliability is paramount to a RPS capable of providing spacecraft power for potential multi-year missions, GRC provides direct technology support to the ASRG flight project in the areas of reliability, convertor and generator testing, high-temperature materials, structures, modeling and analysis, organics, structural dynamics, electromagnetic interference (EMI), and permanent magnets to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. Convertor and generator testing is carried out in short- and long-duration tests designed to characterize convertor performance when subjected to environments intended to simulate launch and space conditions. Long duration testing is intended to baseline performance and observe any performance degradation over the life of the test. Testing involves developing support hardware that enables 24/7 unattended operation and data collection. GRC currently has 14 Stirling convertors under unattended extended operation testing, including two operating in the ASRG Engineering Unit (ASRG-EU). Test data and high-temperature support hardware are discussed for ongoing and future ASC tests with emphasis on the ASC-E and ASC-E2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; R. C. O'Brien; X. Zhang
2011-11-01
Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cellmore » and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.« less
Models of Human Information Requirements: "When Reasonable Aiding Systems Disagree"
NASA Technical Reports Server (NTRS)
Corker, Kevin; Pisanich, Gregory; Shafto, Michael (Technical Monitor)
1994-01-01
Aircraft flight management and Air Traffic Control (ATC) automation are under development to maximize the economy of flight and to increase the capacity of the terminal area airspace while maintaining levels of flight safety equal to or better than current system performance. These goals are being realized by the introduction of flight management automation aiding and operations support systems on the flight deck and by new developments of ATC aiding systems that seek to optimize scheduling of aircraft while potentially reducing required separation and accounting for weather and wake vortex turbulence. Aiding systems on both the flight deck and the ground operate through algorithmic functions on models of the aircraft and of the airspace. These models may differ from each other as a result of variations in their models of the immediate environment. The resultant flight operations or ATC commands may differ in their response requirements (e.g. different preferred descent speeds or descent initiation points). The human operators in the system must then interact with the automation to reconcile differences and resolve conflicts. We have developed a model of human performance including cognitive functions (decision-making, rule-based reasoning, procedural interruption recovery and forgetting) that supports analysis of the information requirements for resolution of flight aiding and ATC conflicts. The model represents multiple individuals in the flight crew and in ATC. The model is supported in simulation on a Silicon Graphics' workstation using Allegro Lisp. Design guidelines for aviation automation aiding systems have been developed using the model's specification of information and team procedural requirements. Empirical data on flight deck operations from full-mission flight simulation are provided to support the model's predictions. The paper describes the model, its development and implementation, the simulation test of the model predictions, and the empirical validation process. The model and its supporting data provide a generalizable tool that is being expanded to include air/ground compatibility and ATC crew interactions in air traffic management.
Central Data Processing System (CDPS) user's manual: Solar heating and cooling program
NASA Technical Reports Server (NTRS)
1976-01-01
The software and data base management system required to assess the performance of solar heating and cooling systems installed at multiple sites is presented. The instrumentation data associated with these systems is collected, processed, and presented in a form which supported continuity of performance evaluation across all applications. The CDPS consisted of three major elements: communication interface computer, central data processing computer, and performance evaluation data base. Users of the performance data base were identified, and procedures for operation, and guidelines for software maintenance were outlined. The manual also defined the output capabilities of the CDPS in support of external users of the system.
Employee organizational commitment and hospital performance.
Baird, Kevin M; Tung, Amy; Yu, Yanjie
2017-09-15
There is widespread evidence of the purported benefits of employee organizational commitment (EOC) and its impact on both individual and organizational performance. This study contributes to this literature by providing a unique insight into this relationship, focusing on the interrelationship between EOC with hospital performance and the role of the provision of adequate facilities in eliciting EOC. The aim of this study was to introduce and empirically examine a new theoretical model in which it is argued that the performance of hospitals with regard to the provision of adequate facilities (medical facilities, support facilities, and staff resources) influences the level of EOC, which in turn influences hospital performance with regard to patient care and operational effectiveness. To examine the interrelationships between the provision of adequate facilities, EOC, and hospital performance, the study utilizes a survey of hospital managers. The findings support the theoretical model, with the provision of support facilities and staff resources positively indirectly associated with both patient care and operational effectiveness through their impact on EOC. The findings highlight the importance of providing adequate facilities and EOC within hospitals and suggest that CEOs and general managers should try to enhance the provision of such resources in an attempt to elicit EOC within their hospitals. The findings suggest that managers should try to enhance their provision of adequate facilities in order to elicit EOC and enhance hospital performance. With regard to medical facilities, they should consider and incorporate the latest technology and up-to-date equipment. They should also provide adequate staff resources, including appropriate numbers of beds, nurses, and doctors, to prevent "fatigue" (West, 2001, p. 41) and provide adequate support facilities.
performed maintenance, operation, and repair on laboratory support systems, including some minor /electrical technician Chief Engineer, Tim leads the maintenance crew at NWTC. Prior to joining NREL, Tim was
Research and technology goals and objectives for Integrated Vehicle Health Management (IVHM)
NASA Technical Reports Server (NTRS)
1992-01-01
Integrated Vehicle Health Management (IVHM) is defined herein as the capability to efficiently perform checkout, testing, and monitoring of space transportation vehicles, subsystems, and components before, during, and after operational This includes the ability to perform timely status determination, diagnostics, and prognostics. IVHM must support fault-tolerant response including system/subsystem reconfiguration to prevent catastrophic failures; and IVHM must support the planning and scheduling of post-operational maintenance. The purpose of this document is to establish the rationale for IVHM and IVHM research and technology planning, and to develop technical goals and objectives. This document is prepared to provide a broad overview of IVHM for technology and advanced development activities and, more specifically, to provide a planning reference from an avionics viewpoint under the OAST Transportation Technology Program Strategic Plan.
Bench-Scale Filtration Testing in Support of the Pretreatment Engineering Platform (PEP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billing, Justin M.; Daniel, Richard C.; Kurath, Dean E.
Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP testing program specifies that bench-scale testing is to bemore » performed in support of specific operations, including filtration, caustic leaching, and oxidative leaching.« less
Kirtland Operations progress report, October--December 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Kirtland Operations (KO) is an integral part of EG&G Energy Measurements, Inc., whose primary mission is to support the US Department of Energy`s (DOE`s) programs in weapons development and testing and in nuclear safeguards and security. KO performs much of its work in close coordination with and often at the technical direction of Sandia National Laboratories. In addition to aiding Sandia`s weapons programs, KO provides a wide spectrum of technical support to other Sandia activities, particularly their safeguards, security, and treaty verification programs. Support is also provided to other elements of the Department of Energy community and to other federalmore » agencies, primarily in weapons testing and safeguards. This report documents our support to these programs from October to December 1991.« less
Kirtland Operations progress report, April--June 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Kirtland Operations (KO) is an integral part of EG&G Energy Measurements, Inc., whose primary mission is to support the US Department of Energy`s (DOE`s) programs in weapons development and testing and in nuclear safeguards and security. KO performs much of its work in close coordination with and often at the technical direction of Sandia National Laboratories. In addition to aiding Sandia`s weapons programs, KO provides a wide spectrum of technical support to other Sandia activities, particularly their safeguards, security, and treaty verification programs. Support is also provided to other elements of the Department of Energy community and to other federalmore » agencies, primarily in weapons testing and safeguards. This report documents our support to these programs from April to June 1991.« less
An operator interface design for a telerobotic inspection system
NASA Technical Reports Server (NTRS)
Kim, Won S.; Tso, Kam S.; Hayati, Samad
1993-01-01
The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.
Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay
2014-01-01
We report a unique and highly stable electrocatalyst—platinum (Pt) supported on titanium–ruthenium oxide (TRO)—for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile—namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst—Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm−2 at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm−2 for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern. PMID:24367118
Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay
2014-01-07
We report a unique and highly stable electrocatalyst-platinum (Pt) supported on titanium-ruthenium oxide (TRO)-for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile-namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst-Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm(-2) at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm(-2) for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, Jaime
2012-12-14
To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.
Modifications to the NRAD Reactor, 1977 to present
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, A.A.; Pruett, D.P.; Heidel, C.C.
1986-01-01
Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems.« less
Completion of the Design of the Top End Optical Assembly for ATST
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.
2013-01-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult operational environment. The TEOA (including a 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, Lyot stop, safety interlock and control system, and support frame) operates in the “hot spot” at the prime focus of the ATST, presenting unusual challenges. L-3 IOS has passed Critical Design Review of the TEOA. In this paper, we describe L-3 IOS success meeting technical challenges, including our solutions for optic fabrication, opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management and control.
Performance characteristics of anaerobic downflow stationary fixed film reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Berg, L.; Kennedy, K.J.
1982-01-01
Stationary fixed film reactors operated to ensure a net downflow of substrate have several characteristics different from other retained biomass reactors. The active biomass attaches itself to stationary surface and hence is difficult to wash out. Performance is related to the surface-to-volume of the film support as well as to the composition of the support. Methane production rates of up to 8 cym day at loading rates of up to 30 kg COD/m cym day, are possible. Severe hydraulic and organic overloadings can be tolerated with operation back to normal 24 hours following cessation of mistreatment. Reactors can operate withmore » dilute and concentrated wastes (4000-130,000 mg COD/L) and can change readily over from one waste to another. Intermittent loading at high loading rates are possible. Methane production rates and loading rates decreased linearly with temperature (35) to 10); at 10 C they were about 20% of those at 35 C.« less
NASA Technical Reports Server (NTRS)
Chung, William W.; Salvano, Dan; Rinehart, David; Young, Ray; Cheng, Victor; Lindsey, James
2012-01-01
Based on a previous Civil Tiltrotor (CTR) National Airspace System (NAS) performance analysis study, CTR operations were evaluated over selected routes and terminal airspace configurations assuming noninterference operations (NIO) and runway-independent operations (RIO). This assessment aims to further identify issues associated with these concepts of operations (ConOps), and their dependency on the airspace configuration and interaction with conventional fixed-wing traffic. Safety analysis following a traditional Safety Management System (SMS) methodology was applied to CTR-unique departure and arrival failures in the selected airspace to identify any operational and certification issues. Additional CTR operational cases were then developed to get a broader understanding of issues and gaps that will need to be addressed in future CTR operational studies. Finally, needed enhancements to National Airspace System performance analysis tools were reviewed, and recommendations were made on improvements in these tools that are likely to be required to support future progress toward CTR fleet operations in the Next Generation Air Transportation System (NextGen).
The Launch Systems Operations Cost Model
NASA Technical Reports Server (NTRS)
Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)
2001-01-01
One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring cost for the ground infrastructure and the recurring cost of maintaining that infrastructure, performing vehicle logistics, and performing the O&S actions to return the vehicle to flight. In addition, the model must estimate the time required to cycle the vehicle through all of the ground processing activities. The current version of LSOCM is an amalgamation of existing tools, leveraging our understanding of shuttle operations cost with a means of predicting how the maintenance burden will change as the vehicle becomes more aircraft like. The use of the Conceptual Operations Manpower Estimating Tool/Operations Cost Model (COMET/OCM) provides a solid point of departure based on shuttle and expendable launch vehicle (ELV) experience. The incorporation of the Reliability and Maintainability Analysis Tool (RMAT) as expressed by a set of response surface model equations gives a method for estimating how changing launch system characteristics affects cost and cycle time as compared to today's shuttle system. Plans are being made to improve the model. The development team will be spending the next few months devising a structured methodology that will enable verified and validated algorithms to give accurate cost estimates. To assist in this endeavor the LSOCM team is part of an Agency wide effort to combine resources with other cost and operations professionals to support models, databases, and operations assessments.
NASA Technical Reports Server (NTRS)
Doggett, William R.; Roithmayr, Carlos M.; Dorsey, John T.; Jones, Thomas C.; Shen, Haijun; Seywald, Hans; King, Bruce D.; Mikulas, Martin M., Jr.
2009-01-01
Devices for lifting, translating and precisely placing payloads are critical for efficient Earth-based construction operations. Both recent and past studies have demonstrated that devices with similar functionality will be needed to support lunar outpost operations. Although several designs have been developed for Earth based applications, these devices lack unique design characteristics necessary for transport to and use on the harsh lunar surface. These design characteristics include: a) lightweight components, b) compact packaging for launch, c) automated deployment, d) simple in-field reconfiguration and repair, and e) support for tele-operated or automated operations. Also, because the cost to transport mass to the lunar surface is very high, the number of devices that can be dedicated to surface operations will be limited. Thus, in contrast to Earth-based construction, where many single-purpose devices dominate a construction site, a lunar outpost will require a limited number of versatile devices that provide operational benefit from initial construction through sustained operations. The first generation test-bed of a new high performance device, the Lunar Surface Manipulation System (LSMS) has been designed, built and field tested. The LSMS has many unique features resulting in a mass efficient solution to payload handling on the lunar surface. Typically, the LSMS device mass is estimated at approximately 3% of the mass of the heaviest payload lifted at the tip, or 1.8 % of the mass of the heaviest mass lifted at the elbow or mid-span of the boom for a high performance variant incorporating advanced structural components. Initial operational capabilities of the LSMS were successfully demonstrated during field tests at Moses Lake, Washington using a tele-operated approach. Joint angle sensors have been developed for the LSMS to improve operator situational awareness. These same sensors provide the necessary information to support fully automated operations, greatly expanding the operational versatility of the LSMS. This paper develops the equations describing the forward and inverse relation between LSMS joint angles and Cartesian coordinates of the LSMS tip. These equations allow a variety of schemes to be used to maneuver the LSMS to optimize the maneuver. One such scheme will be described in detail that eliminates undesirable swinging of the payload at the conclusion of a maneuver, even when the payload is suspended from a passive rigid link. The swinging is undesirable when performing precision maneuvers, such as aligning an object for mating or positioning a camera. Use of the equations described here enables automated control of the LSMS greatly improving its operational versatility.
NASA Technical Reports Server (NTRS)
Harrivel, Angela R.; Hylton, Alan G.; Hearn, Tristan A.
2012-01-01
Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuronal measurement technique with many advantages for application in operational and training contexts. Instrumentation and protocol improvements, however, are required to obtain useful signals and produce expeditiously self-applicable, comfortable and unobtrusive headgear. Approaches for improving the validity and reliability of fNIRS data for the purpose of sensing the mental state of commercial aircraft operators are identified, and an exemplary system design for attentional state monitoring is outlined. Intelligent flight decks of the future can be responsive to state changes to optimally support human performance. Thus, the identification of cognitive performance decrement, such as lapses in operator attention, may be used to predict and avoid error-prone states. We propose that attentional performance may be monitored with fNIRS through the quantification of hemodynamic activations in cortical regions which are part of functionally-connected attention and resting state networks. Activations in these regions have been shown to correlate with behavioral performance and task engagement. These regions lie beneath superficial tissue in head regions beyond the forehead. Headgear development is key to reliably and robustly accessing locations beyond the hair line to measure functionally-connected networks across the whole head. Human subject trials using both fNIRS and functional Magnetic Resonance Imaging (fMRI) will be used to test this system. Data processing employs Support Vector Machines for state classification based on the fNIRS signals. If accurate state classification is achieved based on sensed activation patterns, fNIRS will be shown to be useful for monitoring attentional performance.
Examining Operational Measures of Performance: Performance Measures Matrix
1992-06-01
Equipment Mechanic ( 454X1 ); Precision Measuring Equipment Laboratory Specialist (324X0); and Aircrew Life Support Specialist (I122X0). The result is a...454X0 Aerospace Propulsion Specialist (Engines), 455X2 Communication and Navigation System Specialist, 454X1 Aerospace Ground Equipment Mechanic (AGE
USASOC Injury Prevention/Performance Optimization Musculoskeletal Screening Initiative
2011-11-01
Tactical Human Optimization , Rapid Rehabilitation , and Reconditioning (THOR3) program to identify the...Special Operations Command (USASOC) to support development of USASOC’s Tactical Human Optimization , Rapid Rehabilitation , and Reconditioning (THOR3...biomechanical, musculoskeletal, physiological, tactical , and injury data and refine its current human performance program to address the
NASA Technical Reports Server (NTRS)
Silbert, Mendel N.
1967-01-01
The purpose of this paper is to present results of a system analysis and operational evaluation of a captive airfoil balloon system. The system was used operationally in support of an Aeropalynologic Survey Project at NASA Wallops Island, Virginia, during the summer of 1966.
On the energetics of the walking gait of a human operator using a passive exoskeleton apparatus
NASA Astrophysics Data System (ADS)
Lavrovskii, E. K.
2015-01-01
We study the energy expenditures and the peak values of control torques which a human operator must apply in the process of exoskeleton displacement for various types of regular, plane, and single-support gaits. The obtained results allow us to estimate the performance of the passive exoskeleton apparatus.
Benchmarking and Hardware-In-The-Loop Operation of a 2014 MAZDA SkyActiv (SAE 2016-01-1007)
Engine Performance evaluation in support of LD MTE. EPA used elements of its ALPHA model to apply hardware-in-the-loop (HIL) controls to the SKYACTIV engine test setup to better understand how the engine would operate in a chassis test after combined with future leading edge tech...
Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation
Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley
1995-01-01
The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.
1992-01-28
The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Spacelab Operations Support Room Space Engineering Support team in the SL POCC during STS-42, IML-1 mission.
Currency crisis indication by using ensembles of support vector machine classifiers
NASA Astrophysics Data System (ADS)
Ramli, Nor Azuana; Ismail, Mohd Tahir; Wooi, Hooy Chee
2014-07-01
There are many methods that had been experimented in the analysis of currency crisis. However, not all methods could provide accurate indications. This paper introduces an ensemble of classifiers by using Support Vector Machine that's never been applied in analyses involving currency crisis before with the aim of increasing the indication accuracy. The proposed ensemble classifiers' performances are measured using percentage of accuracy, root mean squared error (RMSE), area under the Receiver Operating Characteristics (ROC) curve and Type II error. The performances of an ensemble of Support Vector Machine classifiers are compared with the single Support Vector Machine classifier and both of classifiers are tested on the data set from 27 countries with 12 macroeconomic indicators for each country. From our analyses, the results show that the ensemble of Support Vector Machine classifiers outperforms single Support Vector Machine classifier on the problem involving indicating a currency crisis in terms of a range of standard measures for comparing the performance of classifiers.
Strategic analytics: towards fully embedding evidence in healthcare decision-making.
Garay, Jason; Cartagena, Rosario; Esensoy, Ali Vahit; Handa, Kiren; Kane, Eli; Kaw, Neal; Sadat, Somayeh
2015-01-01
Cancer Care Ontario (CCO) has implemented multiple information technology solutions and collected health-system data to support its programs. There is now an opportunity to leverage these data and perform advanced end-to-end analytics that inform decisions around improving health-system performance. In 2014, CCO engaged in an extensive assessment of its current data capacity and capability, with the intent to drive increased use of data for evidence-based decision-making. The breadth and volume of data at CCO uniquely places the organization to contribute to not only system-wide operational reporting, but more advanced modelling of current and future state system management and planning. In 2012, CCO established a strategic analytics practice to assist the agency's programs contextualize and inform key business decisions and to provide support through innovative predictive analytics solutions. This paper describes the organizational structure, services and supporting operations that have enabled progress to date, and discusses the next steps towards the vision of embedding evidence fully into healthcare decision-making. Copyright © 2014 Longwoods Publishing.
A simple, effective media access protocol system for integrated, high data rate networks
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Khanna, S.; Zhang, L.
1992-01-01
The operation and performance of a dual media access protocol for integrated, gigabit networks are described. Unlike other dual protocols, each protocol supports a different class of traffic. The Carrier Sensed Multiple Access-Ring Network (CSMA/RN) protocol and the Circulating Reservation Packet (CRP) protocol support asynchronous and synchronous traffic, respectively. The two protocols operate with minimal impact upon each other. Performance information demonstrates that they support a complete range of integrated traffic loads, do not require call setup/termination or a special node for synchronous traffic control, and provide effective pre-use and recovery. The CRP also provides guaranteed access and fairness control for the asynchronous system. The paper demonstrates that the CSMA-CRP system fulfills many of the requirements for gigabit LAN-MAN networks most effectively and simply. To accomplish this, CSMA-CRP features are compared against similar ring and bus systems, such as Cambridge Fast Ring, Metaring, Cyclic Reservation Multiple Access, and Distributed Dual Queue Data Bus (DQDB).
Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas
2014-06-01
Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative.
Towards computer-assisted surgery in shoulder joint replacement
NASA Astrophysics Data System (ADS)
Valstar, Edward R.; Botha, Charl P.; van der Glas, Marjolein; Rozing, Piet M.; van der Helm, Frans C. T.; Post, Frits H.; Vossepoel, Albert M.
A research programme that aims to improve the state of the art in shoulder joint replacement surgery has been initiated at the Delft University of Technology. Development of improved endoprostheses for the upper extremities (DIPEX), as this effort is called, is a clinically driven multidisciplinary programme consisting of many contributory aspects. A part of this research programme focuses on the pre-operative planning and per-operative guidance issues. The ultimate goal of this part of the DIPEX project is to create a surgical support infrastructure that can be used to predict the optimal surgical protocol and can assist with the selection of the most suitable endoprosthesis for a particular patient. In the pre-operative planning phase, advanced biomechanical models of the endoprosthesis fixation and the musculo-skeletal system of the shoulder will be incorporated, which are adjusted to the individual's morphology. Subsequently, the support infrastructure must assist the surgeon during the operation in executing his surgical plan. In the per-operative phase, the chosen optimal position of the endoprosthesis can be realised using camera-assisted tools or mechanical guidance tools. In this article, the pathway towards the desired surgical support infrastructure is described. Furthermore, we discuss the pre-operative planning phase and the per-operative guidance phase, the initial work performed, and finally, possible approaches for improving prosthesis placement.
Automating the SMAP Ground Data System to Support Lights-Out Operations
NASA Technical Reports Server (NTRS)
Sanders, Antonio
2014-01-01
The Soil Moisture Active Passive (SMAP) Mission is a first tier mission in NASA's Earth Science Decadal Survey. SMAP will provide a global mapping of soil moisture and its freeze/thaw states. This mapping will be used to enhance the understanding of processes that link the terrestrial water, energy, and carbon cycles, and to enhance weather and forecast capabilities. NASA's Jet Propulsion Laboratory has been selected as the lead center for the development and operation of SMAP. The Jet Propulsion Laboratory (JPL) has an extensive history of successful deep space exploration. JPL missions have typically been large scale Class A missions with significant budget and staffing. SMAP represents a new area of JPL focus towards low cost Earth science missions. Success in this new area requires changes to the way that JPL has traditionally provided the Mission Operations System (MOS)/Ground Data System (GDS) functions. The operation of SMAP requires more routine operations activities and support for higher data rates and data volumes than have been achieved in the past. These activities must be addressed by a reduced operations team and support staff. To meet this challenge, the SMAP ground data system provides automation that will perform unattended operations, including automated commanding of the SMAP spacecraft.
Kasagi, Yoshihiro; Okutani, Ryu; Oda, Yutaka
2015-02-01
We have opened an operating room in the perinatal care unit (PNCU), separate from our existing central operating rooms, to be used exclusively for cesarean sections. The purpose is to meet the increasing need for both emergency cesarean sections and non-obstetric surgeries. It is equipped with the same surgical instruments, anesthesia machine, monitoring system, rapid infusion system and airway devices as the central operating rooms. An anesthesiologist and a nurse from the central operating rooms trained the nurses working in the new operating room, and discussed solutions to numerous problems that arose before and after its opening. Currently most of the elective and emergency cesarean sections carried out during the daytime on weekdays are performed in the PNCU operating room. A total of 328 and 347 cesarean sections were performed in our hospital during 2011 and 2012, respectively, of which 192 (55.5 %) and 254 (73.2 %) were performed in the PNCU operating room. The mean occupancy rate of the central operating rooms also increased from 81 % in 2011 to 90 % in 2012. The PNCU operating room was built with the support of motivated personnel and multidisciplinary teamwork, and has been found to be beneficial for both surgeons and anesthesiologists, while it also contributes to hospital revenue.
Electrolyzers Enhancing Flexibility in Electric Grids
Mohanpurkar, Manish; Luo, Yusheng; Terlip, Danny; ...
2017-11-10
This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed, which enables an optimal operation of the load on themore » basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. In conclusion, the FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.« less
Effects of Injection Scheme on Rotating Detonation Engine Operation
NASA Astrophysics Data System (ADS)
Chacon, Fabian; Duvall, James; Gamba, Mirko
2017-11-01
In this work, we experimentally investigate the operation and performance characteristics of a rotating detonation engine (RDE) operated with different fuel injection schemes and operating conditions. In particular, we investigate the detonation and operation characteristics produced with an axial flow injector configuration and semi-impinging injector configurations. These are compared to the characteristics produced with a canonical radial injection system (AFRL injector). Each type produces a different flowfield and mixture distribution, leading to a different detonation initiation, injector dynamic response, and combustor pressure rise. By using a combination of diagnostics, we quantify the pressure loses and gains in the system, the ability to maintain detonation over a range of operating points, and the coupling between the detonation and the air/fuel feed lines. We particularly focus on how this coupling affects both the stability and the performance of the detonation wave. This work is supported by the DOE/UTSR program under project DE-FE0025315.
1983-06-01
S XX3OXX, or XX37XX is found. As a result, the following two host-financed tenant support accounts currently will be treated as unit operations costs ... Horngren , Cost Accounting : A Managerial Emphasis, Prentice-Hall Inc., Englewood Cliffs, NJ, 1972. 10. D. B. Levine and J. M. Jondrow, "The...WSSC COST ALLOCATION Technical Report ~ALGORITHMS II: INSTALLATION SUPPORT 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR( S ) 9. CONTRACT OR GRANT NUMBER
2007-06-01
or JTF air mobility operations (AFDC, 2000). As stated in the following definition, the NAMS integrates the primary functions of airlift, air...control, and communications (C3), logistics support, and aerial port functions . The goal of the en route is to minimize delays for AMC mission...process. The resulting data was used to perform a statistical analysis of AMC off-station aircraft logistic support records for AMC’s six primary
Middleware Evaluation and Benchmarking for Use in Mission Operations Centers
NASA Technical Reports Server (NTRS)
Antonucci, Rob; Waktola, Waka
2005-01-01
Middleware technologies have been promoted as timesaving, cost-cutting alternatives to the point-to-point communication used in traditional mission operations systems. However, missions have been slow to adopt the new technology. The lack of existing middleware-based missions has given rise to uncertainty about middleware's ability to perform in an operational setting. Most mission architects are also unfamiliar with the technology and do not know the benefits and detriments to architectural choices - or even what choices are available. We will present the findings of a study that evaluated several middleware options specifically for use in a mission operations system. We will address some common misconceptions regarding the applicability of middleware-based architectures, and we will identify the design decisions and tradeoffs that must be made when choosing a middleware solution. The Middleware Comparison and Benchmark Study was conducted at NASA Goddard Space Flight Center to comprehensively evaluate candidate middleware products, compare and contrast the performance of middleware solutions with the traditional point- to-point socket approach, and assess data delivery and reliability strategies. The study focused on requirements of the Global Precipitation Measurement (GPM) mission, validating the potential use of middleware in the GPM mission ground system. The study was jointly funded by GPM and the Goddard Mission Services Evolution Center (GMSEC), a virtual organization for providing mission enabling solutions and promoting the use of appropriate new technologies for mission support. The study was broken into two phases. To perform the generic middleware benchmarking and performance analysis, a network was created with data producers and consumers passing data between themselves. The benchmark monitored the delay, throughput, and reliability of the data as the characteristics were changed. Measurements were taken under a variety of topologies, data demands, and data characteristics, using several middleware products. All results were compared to systems using traditional point-to-point socket communication. By comparing performance results under Merent settings, inferences could be made about each middleware's ability to meet certain requirements of the GPM mission. The second phase simulated a middleware-based mission operations center. Actual mission support tools were either used or simulated to create real world demands on the middleware. Network and computer demands were watched closely to verify that no specific idiosyncrasies of mission operations activities would prove unsupportable by the middleware. In our presentation, we will address some commonly accepted misconceptions concerning middleware in mission support architectures. Specifically, we will focus on the perception that middleware solutions are too slow or impose too much overhead for real-time mission operations, and that middleware solutions are too expensive for small
Verification and Validation of NASA-Supported Enhancements to Decision Support Tools of PECAD
NASA Technical Reports Server (NTRS)
Ross, Kenton W.; McKellip, Rodney; Moore, Roxzana F.; Fendley, Debbie
2005-01-01
This section of the evaluation report summarizes the verification and validation (V&V) of recently implemented, NASA-supported enhancements to the decision support tools of the Production Estimates and Crop Assessment Division (PECAD). The implemented enhancements include operationally tailored Moderate Resolution Imaging Spectroradiometer (MODIS) products and products of the Global Reservoir and Lake Monitor (GRLM). The MODIS products are currently made available through two separate decision support tools: the MODIS Image Gallery and the U.S. Department of Agriculture (USDA) Foreign Agricultural Service (FAS) MODIS Normalized Difference Vegetation Index (NDVI) Database. Both the Global Reservoir and Lake Monitor and MODIS Image Gallery provide near-real-time products through PECAD's CropExplorer. This discussion addresses two areas: 1. Assessments of the standard NASA products on which these enhancements are based. 2. Characterizations of the performance of the new operational products.
Mohanta, Paritosh Kumar; Regnet, Fabian; Jörissen, Ludwig
2018-05-28
Stability of cathode catalyst support material is one of the big challenges of polymer electrolyte membrane fuel cells (PEMFC) for long term applications. Traditional carbon black (CB) supports are not stable enough to prevent oxidation to CO₂ under fuel cell operating conditions. The feasibility of a graphitized carbon (GC) as a cathode catalyst support for low temperature PEMFC is investigated herein. GC and CB supported Pt electrocatalysts were prepared via an already developed polyol process. The physical characterization of the prepared catalysts was performed using transmission electron microscope (TEM), X-ray Powder Diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES) analysis, and their electrochemical characterizations were conducted via cyclic voltammetry(CV), rotating disk electrode (RDE) and potential cycling, and eventually, the catalysts were processed using membrane electrode assemblies (MEA) for single cell performance tests. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SEM) have been used as MEA diagonostic tools. GC showed superior stability over CB in acid electrolyte under potential conditions. Single cell MEA performance of the GC-supported catalyst is comparable with the CB-supported catalyst. A correlation of MEA performance of the supported catalysts of different Brunauer⁻Emmett⁻Teller (BET) surface areas with the ionomer content was also established. GC was identified as a promising candidate for catalyst support in terms of both of the stability and the performance of fuel cell.
XWeB: The XML Warehouse Benchmark
NASA Astrophysics Data System (ADS)
Mahboubi, Hadj; Darmont, Jérôme
With the emergence of XML as a standard for representing business data, new decision support applications are being developed. These XML data warehouses aim at supporting On-Line Analytical Processing (OLAP) operations that manipulate irregular XML data. To ensure feasibility of these new tools, important performance issues must be addressed. Performance is customarily assessed with the help of benchmarks. However, decision support benchmarks do not currently support XML features. In this paper, we introduce the XML Warehouse Benchmark (XWeB), which aims at filling this gap. XWeB derives from the relational decision support benchmark TPC-H. It is mainly composed of a test data warehouse that is based on a unified reference model for XML warehouses and that features XML-specific structures, and its associate XQuery decision support workload. XWeB's usage is illustrated by experiments on several XML database management systems.
[Operation directions by comparing financial ratio of 22 provincial hospitals].
Wang, J Y; Ko, Y C; Wang, J W; Jan, L C; Chang, F M; Lin, K C
1996-12-01
Even more restrictive regulations and reimbursement limits seem to be a very heavy burden and stress for most provincial hospitals, especially after the National Health Insurance System has been introduced. The purpose of this project to find a better, universal direction for these hospitals through three steps: 1) Using different financial and accounting ratio indexes to evaluate the general business performance of each hospital. 2) Taking a comprehensive questionnaire with senior managers of each hospital to know their concepts and attitudes concerning external environment and internal operation. 3) Comparing data's correlation and differentiation to ascertain better trends for future operation for all hospitals. The database for this project comes from two resources: 1) Government finance and budget reports of 22 provincial hospitals for the 1994 accounting calendar year. 2) The results of questionnaires returned by 274 senior managers of hospitals, and analysis of these by chi-square test. Through statistical comparison, a number of conclusions can be made: 1) Most hospitals have better operation efficiency if any professional hospital administrator is working for them. 2) The hospital with more comprehensive personnel system shows better business performance. 3) The hospital with routine and formal financial analysis reports always has better business performance. 4) The hospital with poor operational efficiency tends to get rid of restriction or limitation from government's system. 5) The hospital with good operational efficiency has more confidence and desire to improve and change. 6) The hospital with poor operational efficiency is more dependent on outside support from government. 7) The hospital with better business performance has more concern about the impact of malpractice around the hospital. In short, a hospital with poor business efficiency always has more pessimistic attitude and tends to rely on outside resource support. On the other hand, a hospital with more confidence, flexibility and readiness for internal improvement always demonstrates greater business efficiency.
Performance model for grid-connected photovoltaic inverters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyson, William Earl; Galbraith, Gary M.; King, David L.
2007-09-01
This document provides an empirically based performance model for grid-connected photovoltaic inverters used for system performance (energy) modeling and for continuous monitoring of inverter performance during system operation. The versatility and accuracy of the model were validated for a variety of both residential and commercial size inverters. Default parameters for the model can be obtained from manufacturers specification sheets, and the accuracy of the model can be further refined using measurements from either well-instrumented field measurements in operational systems or using detailed measurements from a recognized testing laboratory. An initial database of inverter performance parameters was developed based on measurementsmore » conducted at Sandia National Laboratories and at laboratories supporting the solar programs of the California Energy Commission.« less
A computer analysis of the RF performance of a ground-mounted, air-supported radome
NASA Astrophysics Data System (ADS)
Punnett, M. B.; Joy, E. B.
Several reports and actual operating experience have highlighted the degradation of RF Performance which can occur when SSR or IFF antenna are mounted above primary search antenna within metal space frame or dielectric space frame radomes. These effects are usually attributed to both the high incidence angles and sensitivity of the low gain antennae to sidelobe changes due to scattered energy. Although it has been widely accepted that thin membrane radomes would provide superior performance for this application, there has been little supporting documentation. A plane-wave-spectrum (PWS) computer-based radome analysis was conducted to assess the performance of a specific air-supported radome for the SSR application. In conducting the analysis a mathematical model of a modern SSR antenna was combined with a model of an existing Birdair radome design.
Code of Federal Regulations, 2014 CFR
2014-10-01
... are only authorized to use deadly force in self-defense. (ii) Contractor personnel performing security... Department of Defense, or the contract relates to supporting the mission of the Department of Defense outside... Defense has primary responsibility for recovering DoD contract service employees and, when requested, will...
Code of Federal Regulations, 2012 CFR
2012-10-01
... are only authorized to use deadly force in self-defense. (ii) Contractor personnel performing security... Department of Defense, or the contract relates to supporting the mission of the Department of Defense outside... Defense has primary responsibility for recovering DoD contract service employees and, when requested, will...
Code of Federal Regulations, 2013 CFR
2013-10-01
... are only authorized to use deadly force in self-defense. (ii) Contractor personnel performing security... Department of Defense, or the contract relates to supporting the mission of the Department of Defense outside... Defense has primary responsibility for recovering DoD contract service employees and, when requested, will...
Apollo experience report: Crew station integration. Volume 4: Stowage and the support team concept
NASA Technical Reports Server (NTRS)
Hix, M. W.
1973-01-01
Crew equipment stowage and stowage arrangement in spacecraft are discussed. Configuration control in order to maximize crew equipment operational performance, stowage density, and available stowage volume are analyzed. The NASA crew equipment stowage control process requires a support team concept to coordinate the integration of crew equipment into the spacecraft.
Learning objects and training complex machines.
Martins, Edgard
2012-01-01
There are situations in the operation of complex machinery which is significant pressure. In need of capturing, interpreting and processing information from instruments, often in seconds. This occurs in the middle where it operates the pilot and the aircraft will be established a set of operations that will culminate with a maneuver, consisting of a substantial and binding set of procedures performed for this driver. This has little time to evaluate and act, supported by aircraft instruments and external environmental signals captured by the senses, which will stimulate conditioned actions that, if executed without due accuracy, is reflected in a deadly mistake. These situations cause a state of tension and unpredictability, especially when there is bad weather and / or no visibility and bad wind conditions occur and are not supportive or even shrinkage, or even partial or total ability to operate the airplane happen..
Australian Defence Force surgical support to peacekeeping operations in East Timor.
Chambers, Anthony J; Crozier, John A
2004-07-01
The Australian Defence Force (ADF) has provided surgical support to peacekeeping operations in East Timor since September 1999. The aim of the present paper is to document the wide range of surgical procedures performed by the ADF in East Timor from September 1999 to December 2002 on peacekeeping force personnel and the civilian population. Records of all surgical procedures performed by the ADF in East Timor from their arrival in September 1999 to December 2002 were retrospectively reviewed. Details of the type of procedures performed and anaesthetic administered, the age and sex of the patients and whether they were a member of peacekeeping forces or East Timorese civilian were recorded. There were 702 surgical procedures performed by the ADF in East Timor during this period, of which 401 (57%) were for peacekeeping force personnel and 301 (43%) were for East Timorese or other civilians. The most commonly performed procedures were for the management of non-battle wounds, accounting for 181 cases (26%). Battle-type wounds accounted for only 36 procedures (5%). Obstetric and gynaecology cases accounted for 30 procedures (4%). Fifty-six procedures (8%) were on children 12 years or younger. The wide range of surgical procedures performed by the ADF during peacekeeping operations in East Timor highlights the requirement for deployed surgeons to possess a broad range of clinical skills and has implications for their preparation and training. Battle-type wounds accounted for only a small proportion of procedures.
AGR-1 Compact 1-3-1 Post-Irradiation Examination Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul Andrew
The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport (INL 2015). A seriesmore » of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously (Grover, Petti, and Maki 2010, Maki 2009).« less
AGR-1 Compact 5-3-1 Post-Irradiation Examination Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul; Harp, Jason; Winston, Phil
The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance, and fission product transport (INL 2015). A series ofmore » fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously.« less
Schwarze, Margaret L.; Redmann, Andrew J.; Alexander, G. Caleb; Brasel, Karen J.
2013-01-01
Objective Evidence suggests that surgeons implicitly negotiate with their patients preoperatively about the use of life supporting treatments postoperatively as a condition for performing surgery. We sought to examine whether this surgical buy-in behavior is present among a large, nationally representative sample of surgeons who routinely perform high risk operations. Design Using findings from a qualitative study, we designed a survey to determine the prevalence of surgical buy-in and its consequences. Respondents were asked to consider their response to a patient at moderate risk for prolonged mechanical ventilation or dialysis who has a preoperative request to limit postoperative life supporting treatment. We used bivariate and multivariate analysis to identify surgeon characteristics associated with a) preoperatively creating an informal contract with the patient defining agreed upon limitations of postoperative life support and b) declining to operate on such patients. Setting and subjects US-mail based survey of 2100 cardiothoracic, vascular and neurosurgeons. Interventions None. Measurements and Main Results The adjusted response rate was 56%. Nearly two-thirds of respondents (62%) reported they would create an informal contract with the patient describing agreed upon limitations of aggressive therapy and a similar number (60%) endorsed sometimes or always refusing to operate on a patient with preferences to limit life support. After adjusting for potentially confounding covariates, the odds of preoperatively contracting about life supporting therapy were more than twofold greater among surgeons who felt it was acceptable to withdraw life support on postoperative day 14 as compared to those who felt it was not acceptable to withdraw life support on postoperative day 14 (odds ratio 2.1, 95% confidence intervals 1.3-3.2). Conclusions Many surgeons will report contracting informally with patients preoperatively about the use of postoperative life support. Recognition of this process and its limitations may help to inform postoperative decision making. PMID:23222269
Investigation of Capabilities and Technologies Supporting Rapid UAV Launch System Development
2015-06-01
NUMBERS 6. AUTHOR(S) Patrick Alan Livesay 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943 8. PERFORMING ...to operate. This enabled the launcher design team to more clearly determine and articulate system require- ments and performance parameters. Next, a...Process (AHP) was performed to xvii prioritize the capabilities and assist in the decision-making process [1]. The AHP decision-analysis technique is
DRACO Flowpath Performance and Environments
NASA Technical Reports Server (NTRS)
Komar, D. R.; McDonald, Jon
1999-01-01
The Advanced Space Transportation (AST) project office has challenged NASA to design, manufacture, ground-test and flight-test an axisymmetric, hydrocarbon-fueled, flight-weight, ejector-ramjet engine system testbed no later than 2005. To accomplish this, a multi-center NASA team has been assembled. The goal of this team, led by NASA-Marshall Space Flight Center (MSFC), is to develop propulsion technologies that demonstrate rocket and airbreathing combined-cycle operation (DRACO). Current technical activities include flowpath conceptual design, engine systems conceptual design, and feasibility studies investigating the integration and operation of the DRACO engine with a Lockheed D-21B drone. This paper focuses on the activities of the Flowpath Systems Product Development Team (PDT), led by NASA-Glenn Research Center (GRC) and supported by NASA-MSFC and TechLand Research, Inc. The objective of the Flowpath PDT at the start of the DRACO program was to establish a conceptual design of the flowpath aerodynamic lines, determine the preliminary performance, define the internal environments, and support the DRACO testbed concept feasibility studies. To accomplish these tasks, the PDT convened to establish a baseline flowpath concept. With the conceptual lines defined, cycle analysis tasks were planned and the flowpath performance and internal environments were defined. Additionally, sensitivity studies investigating the effects of inlet reference area, combustion performance, and combustor/nozzle materials selection were performed to support the Flowpath PDT design process. Results of these tasks are the emphasis of this paper and are intended to verify the feasibility of the DRACO flowpath and engine system as well as identify the primary technical challenges inherent in the flight-weight design of an advanced propulsion technology demonstration engine. Preliminary cycle performance decks were developed to support the testbed concept feasibility studies but are not discussed further in this paper.
The Advanced Technology Operations System: ATOS
NASA Technical Reports Server (NTRS)
Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.
1993-01-01
Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.
1987-06-01
in chlorine contact chambers were not sensit ive to experimentil procedure, and ’"When the dye test was repeated on the same hsin undcr ident i ; I I...neither YA t 1idth nor Ienzth ar’ 1n t -r,1ined i u , nd i t ion, costs are , iunti , t ion I .< and N . ( u yen % and Iltl ;I<,, r[i,. hte used tc com...DREDGING OPERATIONS TECHNICAL SUPPORT PROGRAM TEHIA REPORT D-87-2 DESIGN AND MANAGEMENT OF DREDGED MATERIAL CONTAINMENT AREAS TO% N IMPROVE
A design strategy for autonomous systems
NASA Technical Reports Server (NTRS)
Forster, Pete
1989-01-01
Some solutions to crucial issues regarding the competent performance of an autonomously operating robot are identified; namely, that of handling multiple and variable data sources containing overlapping information and maintaining coherent operation while responding adequately to changes in the environment. Support for the ideas developed for the construction of such behavior are extracted from speculations in the study of cognitive psychology, an understanding of the behavior of controlled mechanisms, and the development of behavior-based robots in a few robot research laboratories. The validity of these ideas is supported by some simple simulation experiments in the field of mobile robot navigation and guidance.
System analysis for the Huntsville Operational Support Center distributed computer system
NASA Technical Reports Server (NTRS)
Ingels, E. M.
1983-01-01
A simulation model was developed and programmed in three languages BASIC, PASCAL, and SLAM. Two of the programs are included in this report, the BASIC and the PASCAL language programs. SLAM is not supported by NASA/MSFC facilities and hence was not included. The statistical comparison of simulations of the same HOSC system configurations are in good agreement and are in agreement with the operational statistics of HOSC that were obtained. Three variations of the most recent HOSC configuration was run and some conclusions drawn as to the system performance under these variations.
Jung, Kiwook; Morris, K C; Lyons, Kevin W; Leong, Swee; Cho, Hyunbo
2015-12-01
Smart Manufacturing Systems (SMS) need to be agile to adapt to new situations by using detailed, precise, and appropriate data for intelligent decision-making. The intricacy of the relationship of strategic goals to operational performance across the many levels of a manufacturing system inhibits the realization of SMS. This paper proposes a method for identifying what aspects of a manufacturing system should be addressed to respond to changing strategic goals. The method uses standard modeling techniques in specifying a manufacturing system and the relationship between strategic goals and operational performance metrics. Two existing reference models related to manufacturing operations are represented formally and harmonized to support the proposed method. The method is illustrated for a single scenario using agility as a strategic goal. By replicating the proposed method for other strategic goals and with multiple scenarios, a comprehensive set of performance challenges can be identified.
Jung, Kiwook; Morris, KC; Lyons, Kevin W.; Leong, Swee; Cho, Hyunbo
2016-01-01
Smart Manufacturing Systems (SMS) need to be agile to adapt to new situations by using detailed, precise, and appropriate data for intelligent decision-making. The intricacy of the relationship of strategic goals to operational performance across the many levels of a manufacturing system inhibits the realization of SMS. This paper proposes a method for identifying what aspects of a manufacturing system should be addressed to respond to changing strategic goals. The method uses standard modeling techniques in specifying a manufacturing system and the relationship between strategic goals and operational performance metrics. Two existing reference models related to manufacturing operations are represented formally and harmonized to support the proposed method. The method is illustrated for a single scenario using agility as a strategic goal. By replicating the proposed method for other strategic goals and with multiple scenarios, a comprehensive set of performance challenges can be identified. PMID:27141209
Modified Universal Design Survey: Enhancing Operability of Launch Vehicle Ground Crew Worksites
NASA Technical Reports Server (NTRS)
Blume, Jennifer L.
2010-01-01
Operability is a driving requirement for next generation space launch vehicles. Launch site ground operations include numerous operator tasks to prepare the vehicle for launch or to perform preflight maintenance. Ensuring that components requiring operator interaction at the launch site are designed for optimal human use is a high priority for operability. To promote operability, a Design Quality Evaluation Survey based on Universal Design framework was developed to support Human Factors Engineering (HFE) evaluation for NASA s launch vehicles. Universal Design per se is not a priority for launch vehicle processing however; applying principles of Universal Design will increase the probability of an error free and efficient design which promotes operability. The Design Quality Evaluation Survey incorporates and tailors the seven Universal Design Principles and adds new measures for Safety and Efficiency. Adapting an approach proven to measure Universal Design Performance in Product, each principle is associated with multiple performance measures which are rated with the degree to which the statement is true. The Design Quality Evaluation Survey was employed for several launch vehicle ground processing worksite analyses. The tool was found to be most useful for comparative judgments as opposed to an assessment of a single design option. It provided a useful piece of additional data when assessing possible operator interfaces or worksites for operability.
Flight controller alertness and performance during spaceflight shiftwork operations.
Kelly, S M; Rosekind, M R; Dinges, D F; Miller, D L; Gillen, K A; Gregory, K B; Aguilar, R D; Smith, R M
1998-09-01
Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations personnel. During Space Transportation System (STS) operations, Mission Operations Directorate (MOD) personnel provide 24-hr. coverage of critical tasks. A joint NASA Johnson Space Center and NASA Ames Research Center project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during the STS-53 mission in December 1992. The study measures included a Background Questionnaire, a subjective daily logbook completed on a 24-hour basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen flight controllers representing the 3 Orbit shifts participated. The initial results clearly support the need for further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. Countermeasure strategies specific to the MOD environment are being developed to minimize the adverse effects of fatigue, sleep loss, and circadian disruption engendered by shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further EDO (extended duration orbiters), and timelines and planning for 24-hour Space Station operations continue, alertness and performance issues related to sleep and circadian disruption will remain highly relevant in the MOD environment.
A review of hospital characteristics associated with improved performance.
Brand, Caroline A; Barker, Anna L; Morello, Renata T; Vitale, Michael R; Evans, Sue M; Scott, Ian A; Stoelwinder, Johannes U; Cameron, Peter A
2012-10-01
The objective of this review was to critically appraise the literature relating to associations between high-level structural and operational hospital characteristics and improved performance. The Cochrane Library, MEDLINE (Ovid), CINAHL, proQuest and PsychINFO were searched for articles published between January 1996 and May 2010. Reference lists of included articles were reviewed and key journals were hand searched for relevant articles. and data extraction Studies were included if they were systematic reviews or meta-analyses, randomized controlled trials, controlled before and after studies or observational studies (cohort and cross-sectional) that were multicentre, comparative performance studies. Two reviewers independently extracted data, assigned grades of evidence according to the Australian National Health and Medical Research Council guidelines and critically appraised the included articles. Data synthesis Fifty-seven studies were reported within 12 systematic reviews and 47 observational articles. There was heterogeneity in use and definition of performance outcomes. Hospital characteristics investigated were environment (incentives, market characteristics), structure (network membership, ownership, teaching status, geographical setting, service size) and operational design (innovativeness, leadership, organizational culture, public reporting and patient safety practices, information technology systems and decision support, service activity and planning, workforce design, staff training and education). The strongest evidence for an association with overall performance was identified for computerized physician order entry systems. Some evidence supported the associations with workforce design, use of financial incentives, nursing leadership and hospital volume. There is limited, mainly low-quality evidence, supporting the associations between hospital characteristics and healthcare performance. Further characteristic-specific systematic reviews are indicated.
Joint High Speed Vessel (JHSV) Follow on Operational Test and Evaluation (FOT and E) Report
2015-09-21
Speed Vessel (JHSV) ship class. The events covered in this testing were not performed during the Initial Operational Test and Evaluation ( IOT &E...support boats since launch of these type boats was completed in IOT &E. 1 “Initial Operational Test...and Evaluation ( IOT &E) with Live Fire Test and Evaluation (LFT&E) on Joint High Speed Vessel (JHSV),” DOT&E, July 17, 2014. 2 MLP (CCS) is a heavy
Automatic rendezvous and docking systems functional and performance requirements
NASA Technical Reports Server (NTRS)
1985-01-01
A generalized mission design scheme which utilizes a standard mission profile for all OMV rendezvous operations, recognizes typical operational constraints, and minimizes propellant penalties due to nodal regression effects was developed. This scheme has been used to demonstrate a unified guidance and navigation maneuver processor (the UMP), which supports all mission phases through station-keeping. The initial demonstration version of the Orbital Rendezvous Mission Planner (ORMP) was provided for evaluation purposes, and program operation was discussed.
Dilbone, Deborah A; Feng, Xiaoying; Su, Yu; Xirau-Probert, Patricia; Behar-Horenstein, Linda S; Nascimento, Marcelle M
2018-06-01
Predoctoral dental psychomotor examinations are known to generate high levels of stress among dental students, which may compromise their academic performance. At one U.S. dental school, all 93 first-year dental students were invited to attend a series of three workshop sessions prior to enrollment in their initial operative dentistry course. The workshops were developed to facilitate academic transition from the dental anatomy course to the operative dentistry course; provide early exposure to materials, instruments, and laboratory techniques; support the early development of psychomotor and self-assessment skills; and lessen students' stress and anxiety levels regarding psychomotor examinations. The aim of this study was to assess the impact of the workshops on the students' academic performance and self-reported stress and preparedness. All students who attended the workshop sessions and all who did not were asked to complete a pre-exam survey (immediately preceding the exam) and a post-exam survey (immediately after the exam) on the day of their first operative dentistry psychomotor exam. Of the 93 students, 21 attended one, 34 attended two, and 25 attended three workshop sessions, while 13 students did not attend any. Response rates for the pre- and post-exam surveys were 100% and 98.9%, respectively. Students who attended all three workshop sessions reported being significantly less stressed about taking the exam than the other groups. The mean exam grade of students who attended the workshop sessions was significantly higher than that of students who did not attend the sessions. These findings support the development and implementation of preparatory workshops to improve academic performance and decrease the stress levels of dental students prior to the first operative dentistry psychomotor exam.
Legacy of Operational Space Medicine During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.
2011-01-01
The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.
Runtime Performance Monitoring Tool for RTEMS System Software
NASA Astrophysics Data System (ADS)
Cho, B.; Kim, S.; Park, H.; Kim, H.; Choi, J.; Chae, D.; Lee, J.
2007-08-01
RTEMS is a commercial-grade real-time operating system that supports multi-processor computers. However, there are not many development tools for RTEMS. In this paper, we report new RTEMS-based runtime performance monitoring tool. We have implemented a light weight runtime monitoring task with an extension to the RTEMS APIs. Using our tool, software developers can verify various performance- related parameters during runtime. Our tool can be used during software development phase and in-orbit operation as well. Our implemented target agent is light weight and has small overhead using SpaceWire interface. Efforts to reduce overhead and to add other monitoring parameters are currently under research.
Development of a Space Station Operations Management System
NASA Technical Reports Server (NTRS)
Brandli, A. E.; Mccandless, W. T.
1988-01-01
To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.
Development of a Space Station Operations Management System
NASA Astrophysics Data System (ADS)
Brandli, A. E.; McCandless, W. T.
To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.
Medical results of the Skylab program
NASA Technical Reports Server (NTRS)
Johnston, R. S.; Dietlein, L. F.
1974-01-01
The Skylab food system, waste management system, operational bioinstrumentation, personal hygiene provisions, in-flight medical support system, and the cardiovascular counterpressure garment worn during reentry are described. The medical experiments program provided scientific data and also served as the basis for real-time decisions on flight duration. Premission support, in-flight operational support, and postflight medical activities are surveyed. Measures devised to deal with possible food spoilage, medical instrument damage, and toxic atmosphere caused by the initial failures on the Orbital Workshop (OWS) are discussed. The major medical experiments performed in flight allowed the study of physiological changes as a function of exposure to weightless flight. The experiments included studies of the cardiovascular system, musculoskeletal and fluid/electrolyte balance, sleep, blood, vestibular system, and time and motion studies.
Operator Performance Support System (OPSS)
1992-02-01
both the military and the industry. The OPSS will propose practical application’ in how to more closely align the relationships between technical...industry. The OPSS will propose practical applications in how to more closely align the relationships between technical knowledge and equipment operator...commercial programs provide flexibility to suppori existing and futurc kourscware and "hardware enhancements. In the development process of the OPSS
Education Payload Operation - Demonstrations
NASA Technical Reports Server (NTRS)
Keil, Matthew
2009-01-01
Education Payload Operation - Demonstrations (EPO-Demos) are recorded video education demonstrations performed on the International Space Station (ISS) by crewmembers using hardware already onboard the ISS. EPO-Demos are videotaped, edited, and used to enhance existing NASA education resources and programs for educators and students in grades K-12. EPO-Demos are designed to support the NASA mission to inspire the next generation of explorers.
Heterogeneous concurrent computing with exportable services
NASA Technical Reports Server (NTRS)
Sunderam, Vaidy
1995-01-01
Heterogeneous concurrent computing, based on the traditional process-oriented model, is approaching its functionality and performance limits. An alternative paradigm, based on the concept of services, supporting data driven computation, and built on a lightweight process infrastructure, is proposed to enhance the functional capabilities and the operational efficiency of heterogeneous network-based concurrent computing. TPVM is an experimental prototype system supporting exportable services, thread-based computation, and remote memory operations that is built as an extension of and an enhancement to the PVM concurrent computing system. TPVM offers a significantly different computing paradigm for network-based computing, while maintaining a close resemblance to the conventional PVM model in the interest of compatibility and ease of transition Preliminary experiences have demonstrated that the TPVM framework presents a natural yet powerful concurrent programming interface, while being capable of delivering performance improvements of upto thirty percent.
NASA Astrophysics Data System (ADS)
Bae, Joongmyeon; Lim, Sungkwang; Jee, Hyunjin; Kim, Jung Hyun; Yoo, Young-Sung; Lee, Taehee
We are developing 1 kW class solid oxide fuel cell (SOFC) system for residential power generation (RPG) application supported by Korean Government. Anode-supported single cells with thin electrolyte layer of YSZ (yttria-stabilized zirconia) or ScSZ (scandia-stabilized zirconia) for intermediate temperature operation (650-750 °C), respectively, were fabricated and small stacks were built and evaluated. The LSCF/ScSZ/Ni-YSZ single cell showed performance of 543 mW cm -2 at 650 °C and 1680 mW cm -2 at 750 °C. The voltage of 15-cell stack based on 5 cm × 5 cm single cell (LSM/YSZ/Ni-YSZ) at 150 mW was 12.5 V in hydrogen as fuel of 120 sccm per cell at 750 °C and decreased to about 10.9 V at 500 h operation time. A 5-cell stack based on the LSCF/YSZ/FL/Ni-YSZ showed the maximum power density of 30 W, 25 W and 20 W at 750 °C, 700 °C and 650 °C, respectively. LSCF/ScSZ/Ni-YSZ-based stack showed better performance than LSCF/YSZ/Ni-YSZ stack from the experiment temperature range. I- V characteristics by using hydrogen gas and reformate gas of methane as fuel were investigated at 750 °C in LSCF/ScSZ/FL/Ni-YSZ-based 5-cell stack.
Designing for Maintainability and System Availability
NASA Technical Reports Server (NTRS)
Lalli, Vincent R.; Packard, Michael H.
1997-01-01
The final goal for a delivered system (whether a car, aircraft, avionics box or computer) should be its availability to operate and perform its intended function over its expected design life. Hence, in designing a system, we cannot think in terms of delivering the system and just walking away. The system supplier needs to provide support throughout the operating life of the product. Here, supportability requires an effective combination of reliability, maintainability, logistics and operations engineering (as well as safety engineering) to have a system that is available for its intended use throughout its designated mission lifetime. Maintainability is a key driving element in the effective support and upkeep of the system as well as providing the ability to modify and upgrade the system throughout its lifetime. This paper then, will concentrate on maintainability and its integration into the system engineering and design process. The topics to be covered include elements of maintainability, the total cost of ownership, how system availability, maintenance and logistics costs and spare parts cost effect the overall program costs. System analysis and maintainability will show how maintainability fits into the overall systems approach to project development. Maintainability processes and documents will focus on how maintainability is to be performed and what documents are typically generated for a large scale program. Maintainability analysis shows how trade-offs can be performed for various alternative components. The conclusions summarize the paper and are followed by specific problems for hands-on training.
NASA Technical Reports Server (NTRS)
VanderArk, Steve; Sipes, Walter; Holland, Albert; Cockrell, Gabrielle
2010-01-01
The Behavioral Health and Performance group at NASA Johnson Space Center provides psychological support services and behavioral health monitoring for ISS astronauts and their families. The ISS began as an austere outpost with minimal comforts of home and minimal communication capabilities with family, friends, and colleagues outside of the Mission Control Center. Since 1998, the work of international partners involved in the Space Flight Human Behavior and Performance Working Group has prepared high-level requirements for behavioral monitoring and support. The "buffet" of services from which crewmembers can choose has increased substantially. Through the process of development, implementation, reviewing effectiveness and modifying as needed, the NASA and Wyle team have proven successful in managing the psychological health and well being of the crews and families with which they work. Increasing the crew size from three to six brought additional challenges. For the first time, all partners had to collaborate at the planning and implementation level, and the U.S. served as mentor to extrapolate their experiences to the others. Parity in available resources, upmass, and stowage had to be worked out. Steady progress was made in improving off-hours living and making provisions for new technologies within a system that has difficulty moving quickly on certifications. In some respect, the BHP support team fell victim to its previous successes. With increasing numbers of crewmembers in training, requests to engage our services spiraled upward. With finite people and funds, a cap had to placed on many services to ensure that parity could be maintained. The evolution of NASA BHP services as the ISS progressed from three- to six-crew composition will be reviewed, and future challenges that may be encountered as the ISS matures in its assembly-complete state will be discussed.
Operations and support cost modeling of conceptual space vehicles
NASA Technical Reports Server (NTRS)
Ebeling, Charles
1994-01-01
The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.
ATS-6 engineering performance report. Volume 3: Telecommunications and power
NASA Technical Reports Server (NTRS)
Wales, R. O. (Editor)
1981-01-01
Functional design requirements and in-orbit operations, performance, and anomalies are discussed for (1) the communications subsystem, (2) the electrical power system, and (3) the telemetry and command subsystem. The latter includes a review of ground support. Tracking and data relay experiments and the Apollo-Soyuz test program are reviewed.
DOT National Transportation Integrated Search
2004-03-01
The report provides the first two major task reports for a study to develop performance specifications and perform supporting objective tests for a planned field operational test (FOT) of a vehicle-based countermeasure to intersection crashes associa...
Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.
Peyman, Sally A; Iles, Alexander; Pamme, Nicole
2009-11-07
An extremely versatile microfluidic device is demonstrated in which multi-step (bio)chemical procedures can be performed in continuous flow. The system operates by generating several co-laminar flow streams, which contain reagents for specific (bio)reactions across a rectangular reaction chamber. Functionalized magnetic microparticles are employed as mobile solid-supports and are pulled from one side of the reaction chamber to the other by use of an external magnetic field. As the particles traverse the co-laminar reagent streams, binding and washing steps are performed on their surface in one operation in continuous flow. The applicability of the platform was first demonstrated by performing a proof-of-principle binding assay between streptavidin coated magnetic particles and biotin in free solution with a limit of detection of 20 ng mL(-1) of free biotin. The system was then applied to a mouse IgG sandwich immunoassay as a first example of a process involving two binding steps and two washing steps, all performed within 60 s, a fraction of the time required for conventional testing.
Attitude ground support system for the solar maximum mission spacecraft
NASA Technical Reports Server (NTRS)
Nair, G.
1980-01-01
The SMM attitude ground support system (AGSS) supports the acquisition of spacecraft roll attitude reference, performs the in-flight calibration of the attitude sensor complement, supports onboard control autonomy via onboard computer data base updates, and monitors onboard computer (OBC) performance. Initial roll attitude acquisition is accomplished by obtaining a coarse 3 axis attitude estimate from magnetometer and Sun sensor data and subsequently refining it by processing data from the fixed head star trackers. In-flight calibration of the attitude sensor complement is achieved by processing data from a series of slew maneuvers designed to maximize the observability and accuracy of the appropriate alignments and biases. To ensure autonomy of spacecraft operation, the AGSS selects guide stars and computes sensor occultation information for uplink to the OBC. The onboard attitude control performance is monitored on the ground through periodic attitude determination and processing of OBC data in downlink telemetry. In general, the control performance has met mission requirements. However, software and hardware problems have resulted in sporadic attitude reference losses.
NASA Technical Reports Server (NTRS)
Zamora, M. A.
1976-01-01
The consumables characteristic data associated with the performance of the mission activities required by the mission planning processor are defined to calculate the consumables requirements. The activity data is defined in terms of discrete time periods having a distinct rate for each consumable required to support the performance of a given operation. The data is structured in a series of consumable data worksheets for each activity that includes a profile of its operations and the rate of each consumable required to support the given activity. The data worksheets provide for the uniform specification of consumables data, allows for the ready identification of the consumables affected by a given activity, and facilitates the updating process. An activity and the data that must be included in the data worksheets are defined and an example of its use and application the consumables data requirements for the performance of the EVA are presented.
Organizational Characteristics Associated With Fundraising Performance of Nonprofit Hospitals.
Erwin, Cathleen Owens; Landry, Amy Yarbrough
2015-01-01
Fundraising has become increasingly important to nonprofit hospitals as access to capital has grown more difficult and reimbursement for services more complex. This study analyzes the variation in organizational characteristics and fundraising performance among nonprofit acute care hospitals in the United States to identify and measure critical factors related to one key fundraising performance indicator: public support. Results indicate that the presence of an endowment, along with its value, investments in fundraising, and the geographic location of the organization, account for approximately 46% of variance in public support among nonprofit hospitals. The use of a separate foundation for the fundraising operation is not necessarily associated with measures of fundraising success; however, a majority of hospitals do use a foundation, signaling a strategic choice that may be made for numerous reasons. The study results and limitations are discussed and recommendations are made for maximizing the effectiveness of the fundraising enterprise within nonprofit hospitals. Increasing awareness of challenges associated with fundraising success will enhance the strategic management of fundraising operations by hospital executives and board members.
A Global Approach to Delta Differential One-Way Range
NASA Technical Reports Server (NTRS)
Border, James S.
2006-01-01
Radio interferometric techniques for measuring spacecraft angular position play a role of increasing importance in today's missions of interplanetary exploration. Several national and international space agencies have or are developing operational systems to support spacecraft navigation using interferometric measurements. NASA's Deep Space Network has provided Delta Differential One-way Range ((Delta)DOR) for this purpose since 1980. Steady improvements in system performance and operability have taken place with accuracy today approaching the 1-nrad level. In this paper the current performance of NASA's (Delta)DOR system is presented. Recent data from the Mars Reconnaissance Orbiter cruise from Earth to Mars are used to illustrate system performance at 8.4 and 32 GHz. Technical feasibility and requirements for combining tracking stations from different agencies to support (Delta)DOR observations are discussed. The advantages of having additional stations to form baselines for measurements are presented. Results of a covariance study for encounter targeting are given for a candidate mission that may need (Delta)DOR data from additional baselines.
Lower cost offshore field development utilizing autonomous vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frisbie, F.R.; Vie, K.J.; Welch, D.W.
1996-12-31
The offshore oil and gas industry has the requirement to inspect offshore oil and gas pipelines for scour, corrosion and damage as well as inspect and intervene on satellite production facilities. This task is currently performed with Remotely Operated Vehicles (ROV) operated from dynamically positioned (DP) offshore supply or diving support boats. Currently, these tasks are expensive due to the high day rates for DP ships and the slow, umbilical impeded, 1 knot inspection rates of the tethered ROVs, Emerging Autonomous Undersea Vehicle (AUV) technologies offer opportunities to perform these same inspection tasks for 50--75% lower cost, with comparable ormore » improved quality. The new generation LAPV (Linked Autonomous Power Vehicles) will operate from fixed facilities such as TLPs or FPFs and cover an operating field 10 kms in diameter.« less
Yakubova, Gulnoza; Taber-Doughty, Teresa
2013-06-01
The effects of a multicomponent intervention (a self-operated video modeling and self-monitoring delivered via an electronic interactive whiteboard (IWB) and a system of least prompts) on skill acquisition and interaction behavior of two students with autism and one student with moderate intellectual disability were examined using a multi-probe across students design. Students were taught to operate and view video modeling clips, perform a chain of novel tasks and self-monitor task performance using a SMART Board IWB. Results support the effectiveness of a multicomponent intervention in improving students' skill acquisition. Results also highlight the use of this technology as a self-operated and interactive device rather than a traditional teacher-operated device to enhance students' active participation in learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.L.; Jenkins, E.M.; Walthers, C.R.
Compound cryopumps have been added to the Tritium Systems Test Assembly (TSTA) integrated fusion fuel loop. Operations have been performed which closely simulate an actual fusion reactor pumping scenario. In addition, performance data have been taken that support the concept of using coconut charcoal as a sorbent at 4K for pumping helium. Later tests show that coconut charcoal may be used to co-pump D,T and He mixtures on a single 4K panel. Rotary spiral pumps have been used successfully in several applications at TSTA and have acquired more than 9000 hours of maintenance-free operation. Metal bellows pumps have been usedmore » to back the spiral pumps and have been relatively trouble free in loop operations. Bellows pumps also have more than 9000 hours of maintenance-free operation. 5 refs., 6 figs.« less
S-NPP VIIRS Calibration and Performance Update
NASA Technical Reports Server (NTRS)
Xiong, X.; Cao, C.; Lei, N.; Chiang, K.; Blonski, S.; Butler, J.; Wang, Z.
2016-01-01
The first VIIRS instrument has successfully operated for more than 4 years on-board the Suomi-National Polar-orbiting Partnership (S-NPP) spacecraft. The sensor data records (SDR) derived from VIIRS on-orbit observations have been used to produce many environment data records (EDR), enabling a wide range of applications by the users from operational and research community. This paper provides an overview of instrument operations and its calibration activities, and presents an update of its radiometric performance, in terms of on-orbit changes in sensor spectral band responses and noise characterization. It also describes the effort made to improve sensor calibration, and the strategies developed in support of producing consistent SDR and, consequently, the EDR with improved quality.
Laser Ranging for Effective and Accurate Tracking of Space Debris in Low Earth Orbits
NASA Astrophysics Data System (ADS)
Blanchet, Guillaume; Haag, Herve; Hennegrave, Laurent; Assemat, Francois; Vial, Sophie; Samain, Etienne
2013-08-01
The paper presents the results of preliminary design options for an operational laser ranging system adapted to the measurement of the distance of space debris. Thorough analysis of the operational parameters is provided with identification of performance drivers and assessment of enabling design options. Results from performance simulation demonstrate how the range measurement enables improvement of the orbit determination when combined with astrometry. Besides, experimental results on rocket-stage class debris in LEO were obtained by Astrium beginning of 2012, in collaboration with the Observatoire de la Côte d'Azur (OCA), by operating an experimental laser ranging system supported by the MéO (Métrologie Optique) telescope.
The value of compressed air energy storage in energy and reserve markets
Drury, Easan; Denholm, Paul; Sioshansi, Ramteen
2011-06-28
Storage devices can provide several grid services, however it is challenging to quantify the value of providing several services and to optimally allocate storage resources to maximize value. We develop a co-optimized Compressed Air Energy Storage (CAES) dispatch model to characterize the value of providing operating reserves in addition to energy arbitrage in several U.S. markets. We use the model to: (1) quantify the added value of providing operating reserves in addition to energy arbitrage; (2) evaluate the dynamic nature of optimally allocating storage resources into energy and reserve markets; and (3) quantify the sensitivity of CAES net revenues tomore » several design and performance parameters. We find that conventional CAES systems could earn an additional 23 ± 10/kW-yr by providing operating reserves, and adiabatic CAES systems could earn an additional 28 ± 13/kW-yr. We find that arbitrage-only revenues are unlikely to support a CAES investment in most market locations, but the addition of reserve revenues could support a conventional CAES investment in several markets. Adiabatic CAES revenues are not likely to support an investment in most regions studied. As a result, modifying CAES design and performance parameters primarily impacts arbitrage revenues, and optimizing CAES design will be nearly independent of dispatch strategy.« less
Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce
2012-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
Prototype continuous flow ventricular assist device supported on magnetic bearings.
Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B
1996-06-01
This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.
Designing an Alternate Mission Operations Control Room
NASA Technical Reports Server (NTRS)
Montgomery, Patty; Reeves, A. Scott
2014-01-01
The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a serviceoriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building. This paper presents the HPOC architecture and lessons learned during testing and the planned maiden operational commissioning. Additionally, this paper documents the necessity of an HPOC capability given the unplanned HOSC Facility power outage on April 27th, 2011, as a result of the tornado outbreak that damaged the electrical grid to such a degree that significantly inhibited the Tennessee Valley Authority's ability to transmit electricity throughout the North Alabama region.
NASA Technical Reports Server (NTRS)
Altino, Karen M.; Burns, K. Lee; Barbre, Robert E., Jr.; Leahy, Frank B.
2014-01-01
The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development (ESD) Programs, which includes the Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting/exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will discuss how climate analyses are performed by the MSFC Natural Environments Branch to support the ESD Launch Availability (LA) Technical Performance Measure (TPM), the SLS Launch Availability due to Natural Environments TPM, and several MPCV (Orion) launch and landing availability analyses - including the 2014 Orion Exploration Flight Test 1 (EFT-1) mission.
Game-based versus storyboard-based evaluations of crew support prototypes for long duration missions
NASA Astrophysics Data System (ADS)
Smets, N. J. J. M.; Abbing, M. S.; Neerincx, M. A.; Lindenberg, J.; van Oostendorp, H.
2010-03-01
The Mission Execution Crew Assistant (MECA) is developing a distributed system of electronic partners (ePartners) to support astronauts performing nominal and off- nominal actions in long duration missions. The ePartners' support should adequately deal with the dynamics of the context, operations, team and personal conditions, which will change over time substantially. Such support—with the concerning context effects—should be thoroughly tested in all stages of the development process. A major question is how to address the context effects of in-space operations for evaluations of crew support prototypes. Via game-technology, the prototype can be tested with astronauts or their representatives, immersed in the envisioned, simulated context. We investigated if a game-based evaluation better addresses the context effects by producing a more elaborate, in-depth and realistic user experience than a "classical" storyboard-based evaluation. In the game-based evaluation, the participants showed higher arousal levels where expected, a more intense feeling of spatial presence, better situation awareness, and faster performance where needed. Such an evaluation can be used as an alternative or complement of field or micro-world tests when context dynamics cannot be simulated in these last tests cost-efficiently.
Numerical investigation of design and operation parameters on CHI spheromak performance
NASA Astrophysics Data System (ADS)
O'Bryan, J. B.; Romero-Talamás, C. R.; Woodruff, S.
2017-10-01
Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization in spheromaks formed with coaxial helicity injection, particularly with regard to how externally controllable parameters affect the resulting spheromak performance. The overall goal of our study is to inform the design and operational parameters of a future proof-of-principle spheromak experiment. Our calculations start from vacuum magnetic fields and model multiple distinct phases of evolution. Results indicate that modest changes to the design and operation of past experiments, e.g. SSPX [E.B. Hooper et al. PPCF 2012], could have significantly improved the plasma-current injector coupling efficiency and performance, particularly with respect to peak temperature and lifetime. While we frequently characterize performance relative to SSPX, our conclusions extrapolate to fundamentally different experimental designs. We also explore adiabatic magnetic compression of spheromaks, which may allow for a small-scale, high-performance and high-yield pulsed neutron source. This work is supported by DAPRA under Grant No. N66001-14-1-4044.
Constellation Architecture Team-Lunar: Lunar Habitat Concepts
NASA Technical Reports Server (NTRS)
Toups, Larry; Kennedy, Kriss J.
2008-01-01
This paper will describe lunar habitat concepts that were defined as part of the Constellation Architecture Team-Lunar (CxAT-Lunar) in support of the Vision for Space Exploration. There are many challenges to designing lunar habitats such as mission objectives, launch packaging, lander capability, and risks. Surface habitats are required in support of sustaining human life to meet the mission objectives of lunar exploration, operations, and sustainability. Lunar surface operations consist of crew operations, mission operations, EVA operations, science operations, and logistics operations. Habitats are crewed pressurized vessels that include surface mission operations, science laboratories, living support capabilities, EVA support, logistics, and maintenance facilities. The challenge is to deliver, unload, and deploy self-contained habitats and laboratories to the lunar surface. The CxAT-Lunar surface campaign analysis focused on three primary trade sets of analysis. Trade set one (TS1) investigated sustaining a crew of four for six months with full outpost capability and the ability to perform long surface mission excursions using large mobility systems. Two basic habitat concepts of a hard metallic horizontal cylinder and a larger inflatable torus concept were investigated as options in response to the surface exploration architecture campaign analysis. Figure 1 and 2 depicts the notional outpost configurations for this trade set. Trade set two (TS2) investigated a mobile architecture approach with the campaign focused on early exploration using two small pressurized rovers and a mobile logistics support capability. This exploration concept will not be described in this paper. Trade set three (TS3) investigated delivery of a "core' habitation capability in support of an early outpost that would mature into the TS1 full outpost capability. Three core habitat concepts were defined for this campaign analysis. One with a four port core habitat, another with a 2 port core habitat, and the third investigated leveraging commonality of the lander ascent module and airlock pressure vessel hard shell. The paper will describe an overview of the various habitat concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suit-port airlock function such as redundant airlock(s), suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as closed loop life support systems hardware, consumable stowage, spares stowage, interconnection to the other Hab units, and a common interface mechanism for future growth and mating to a pressurized rover. The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, and medical operations.
Shared mission operations concept
NASA Technical Reports Server (NTRS)
Spradlin, Gary L.; Rudd, Richard P.; Linick, Susan H.
1994-01-01
Historically, new JPL flight projects have developed a Mission Operations System (MOS) as unique as their spacecraft, and have utilized a mission-dedicated staff to monitor and control the spacecraft through the MOS. NASA budgetary pressures to reduce mission operations costs have led to the development and reliance on multimission ground system capabilities. The use of these multimission capabilities has not eliminated an ongoing requirement for a nucleus of personnel familiar with a given spacecraft and its mission to perform mission-dedicated operations. The high cost of skilled personnel required to support projects with diverse mission objectives has the potential for significant reduction through shared mission operations among mission-compatible projects. Shared mission operations are feasible if: (1) the missions do not conflict with one another in terms of peak activity periods, (2) a unique MOS is not required, and (3) there is sufficient similarity in the mission profiles so that greatly different skills would not be required to support each mission. This paper will further develop this shared mission operations concept. We will illustrate how a Discovery-class mission would enter a 'partner' relationship with the Voyager Project, and can minimize MOS development and operations costs by early and careful consideration of mission operations requirements.
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Kelley, Gary W.
2012-01-01
The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.
Compatibility of information and mode of control: The case for natural control systems
NASA Technical Reports Server (NTRS)
Owen, Dean H.
1993-01-01
The operation of control systems has been determined largely by mechanical constraints. Compatibility with the characteristics of the operator is a secondary consideration, with the result that control may never be optimal, control workload may interfere with performance of secondary tasks, and learning may be more difficult and protracted than necessary. With the introduction of a computer in the control loop, the mode of operation can be adapted to the operator, rather than vice versa. The concept of natural control is introduced to describe a system that supports control of the information used by the operator in achieving an intended goal. As an example, control of speed during simulated approach to a pad by helicopter pilots is used to contrast path-speed control with direct control of global optical flow-pattern information. Differences are evidenced in the performance domains of control activity, speed, and global optical flow velocity.
Principles and Guidelines for Duty and Rest Scheduling in Commercial Aviation
NASA Technical Reports Server (NTRS)
Dinges, David F.; Graeber, R. Curtis; Rosekind, Mark R.; Samel, Alexander
1996-01-01
The aviation industry requires 24-hour activities to meet operational demands. Growth in global long-haul, regional, overnight cargo, and short-haul domestic operations will continue to increase these round-the-clock requirements. Flight crews must be available to support 24-hour-a-day operations to meet these industry demands. Both domestic and international aviation can also require crossing multiple time zones. Therefore, shift work, night work, irregular work schedules, unpredictable work schedules, and dm zone changes will continue to be commonplace components of the aviation industry. These factors pose known challenges to human physiology, and because they result in performance-impairing fatigue, they pose a risk to safety. It is critical to acknowledge and, whenever possible, incorporate scientific information on fatigue, human sleep, and circadian physiology into 24-hour aviation operations. Utilization of such scientific information can help promote crew performance and alertness during flight operations and thereby maintain and improve the safety margin.
Internet Based Remote Operations
NASA Technical Reports Server (NTRS)
Chamberlain, James
1999-01-01
This is the Final Report for the Internet Based Remote Operations Contract, has performed payload operations research support tasks March 1999 through September 1999. These tasks support the GSD goal of developing a secure, inexpensive data, voice, and video mission communications capability between remote payload investigators and the NASA payload operations team in the International Space Station (ISS) era. AZTek has provided feedback from the NASA payload community by utilizing its extensive payload development and operations experience to test and evaluate remote payload operations systems. AZTek has focused on use of the "public Internet" and inexpensive, Commercial-off-the-shelf (COTS) Internet-based tools that would most benefit "small" (e.g., $2 Million or less) payloads and small developers without permanent remote operations facilities. Such projects have limited budgets to support installation and development of high-speed dedicated communications links and high-end, custom ground support equipment and software. The primary conclusions of the study are as follows: (1) The trend of using Internet technology for "live" collaborative applications such as telescience will continue. The GSD-developed data and voice capabilities continued to work well over the "public" Internet during this period. 2. Transmitting multiple voice streams from a voice-conferencing server to a client PC to be mixed and played on the PC is feasible. 3. There are two classes of voice vendors in the market: - Large traditional phone equipment vendors pursuing integration of PSTN with Internet, and Small Internet startups.The key to selecting a vendor will be to find a company sufficiently large and established to provide a base voice-conferencing software product line for the next several years.
Luz, Maria; Manzey, Dietrich; Modemann, Susanne; Strauss, Gero
2015-01-01
Image-guided navigation (IGN) systems provide automation support of intra-operative information analysis and decision-making for surgeons. Previous research showed that navigated-control (NC) systems which represent high levels of decision-support and directly intervene in surgeons' workflow provide benefits with respect to patient safety and surgeons' physiological stress but also involve several cost effects (e.g. prolonged surgery duration, reduced secondary-task performance). It was hypothesised that less automated distance-control (DC) systems would provide a better solution in terms of human performance consequences. N = 18 surgeons performed a simulated mastoidectomy with NC, DC and without IGN assistance. Effects on surgical performance, physiological effort, workload and situation awareness (SA) were compared. As expected, DC technology had the same benefits as the NC system but also led to less unwanted side effects on surgery duration, subjective workload and SA. This suggests that IGN systems just providing information analysis support are overall more beneficial than higher automated decision-support. This study investigates human performance consequences of different concepts of IGN support for surgeons. Less automated DC systems turned out to provide advantages for patient safety and surgeons' stress similar to higher automated NC systems with, at the same time, reduced negative consequences on surgery time and subjective workload.
An Advanced Framework for Improving Situational Awareness in Electric Power Grid Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Huang, Zhenyu; Zhou, Ning
With the deployment of new smart grid technologies and the penetration of renewable energy in power systems, significant uncertainty and variability is being introduced into power grid operation. Traditionally, the Energy Management System (EMS) operates the power grid in a deterministic mode, and thus will not be sufficient for the future control center in a stochastic environment with faster dynamics. One of the main challenges is to improve situational awareness. This paper reviews the current status of power grid operation and presents a vision of improving wide-area situational awareness for a future control center. An advanced framework, consisting of parallelmore » state estimation, state prediction, parallel contingency selection, parallel contingency analysis, and advanced visual analytics, is proposed to provide capabilities needed for better decision support by utilizing high performance computing (HPC) techniques and advanced visual analytic techniques. Research results are presented to support the proposed vision and framework.« less
Roehrens, Daniel; Packbier, Ute; Fang, Qingping; Blum, Ludger; Sebold, Doris; Bram, Martin; Menzler, Norbert
2016-01-01
In this study we report on the development and operational data of a metal-supported solid oxide fuel cell with a thin film electrolyte under varying conditions. The metal-ceramic structure was developed for a mobile auxiliary power unit and offers power densities of 1 W/cm2 at 800 °C, as well as robustness under mechanical, thermal and chemical stresses. A dense and thin yttria-doped zirconia layer was applied to a nanoporous nickel/zirconia anode using a scalable adapted gas-flow sputter process, which allowed the homogeneous coating of areas up to 100 cm2. The cell performance is presented for single cells and for stack operation, both in lightweight and stationary stack designs. The results from short-term operation indicate that this cell technology may be a very suitable alternative for mobile applications. PMID:28773883
Effective 2D-3D medical image registration using Support Vector Machine.
Qi, Wenyuan; Gu, Lixu; Zhao, Qiang
2008-01-01
Registration of pre-operative 3D volume dataset and intra-operative 2D images gradually becomes an important technique to assist radiologists in diagnosing complicated diseases easily and quickly. In this paper, we proposed a novel 2D/3D registration framework based on Support Vector Machine (SVM) to compensate the disadvantages of generating large number of DRR images in the stage of intra-operation. Estimated similarity metric distribution could be built up from the relationship between parameters of transform and prior sparse target metric values by means of SVR method. Based on which, global optimal parameters of transform are finally searched out by an optimizer in order to guide 3D volume dataset to match intra-operative 2D image. Experiments reveal that our proposed registration method improved performance compared to conventional registration method and also provided a precise registration result efficiently.
International Space Station Major Constituent Analyzer On-Orbit Performance
NASA Technical Reports Server (NTRS)
Gardner, Ben D.; Erwin, Phillip M.; Thoresen, Souzan; Granahan, John; Matty, Chris
2012-01-01
The Major Constituent Analyzer is a mass spectrometer based system that measures the major atmospheric constituents on the International Space Station. A number of limited-life components require periodic changeout, including the ORU 02 analyzer and the ORU 08 Verification Gas Assembly. Over the past two years, two ORU 02 analyzer assemblies have operated nominally while two others have experienced premature on-orbit failures. These failures as well as nominal performances demonstrate that ORU 02 performance remains a key determinant of MCA performance and logistical support. It can be shown that monitoring several key parameters can maximize the capacity to monitor ORU health and properly anticipate end of life. Improvements to ion pump operation and ion source tuning are expected to improve lifetime performance of the current ORU 02 design.
Evaluation Metrics for the Paragon XP/S-15
NASA Technical Reports Server (NTRS)
Traversat, Bernard; McNab, David; Nitzberg, Bill; Fineberg, Sam; Blaylock, Bruce T. (Technical Monitor)
1993-01-01
On February 17th 1993, the Numerical Aerodynamic Simulation (NAS) facility located at the NASA Ames Research Center installed a 224 node Intel Paragon XP/S-15 system. After its installation, the Paragon was found to be in a very immature state and was unable to support a NAS users' workload, composed of a wide range of development and production activities. As a first step towards addressing this problem, we implemented a set of metrics to objectively monitor the system as operating system and hardware upgrades were installed. The metrics were designed to measure four aspects of the system that we consider essential to support our workload: availability, utilization, functionality, and performance. This report presents the metrics collected from February 1993 to August 1993. Since its installation, the Paragon availability has improved from a low of 15% uptime to a high of 80%, while its utilization has remained low. Functionality and performance have improved from merely running one of the NAS Parallel Benchmarks to running all of them faster (between 1 and 2 times) than on the iPSC/860. In spite of the progress accomplished, fundamental limitations of the Paragon operating system are restricting the Paragon from supporting the NAS workload. The maximum operating system message passing (NORMA IPC) bandwidth was measured at 11 Mbytes/s, well below the peak hardware bandwidth (175 Mbytes/s), limiting overall virtual memory and Unix services (i.e. Disk and HiPPI I/O) performance. The high NX application message passing latency (184 microns), three times than on the iPSC/860, was found to significantly degrade performance of applications relying on small message sizes. The amount of memory available for an application was found to be approximately 10 Mbytes per node, indicating that the OS is taking more space than anticipated (6 Mbytes per node).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, G.; Yucel, V.; Desotell, L.
2006-07-01
The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less
Tuning collective communication for Partitioned Global Address Space programming models
Nishtala, Rajesh; Zheng, Yili; Hargrove, Paul H.; ...
2011-06-12
Partitioned Global Address Space (PGAS) languages offer programmers the convenience of a shared memory programming style combined with locality control necessary to run on large-scale distributed memory systems. Even within a PGAS language programmers often need to perform global communication operations such as broadcasts or reductions, which are best performed as collective operations in which a group of threads work together to perform the operation. In this study we consider the problem of implementing collective communication within PGAS languages and explore some of the design trade-offs in both the interface and implementation. In particular, PGAS collectives have semantic issues thatmore » are different than in send–receive style message passing programs, and different implementation approaches that take advantage of the one-sided communication style in these languages. We present an implementation framework for PGAS collectives as part of the GASNet communication layer, which supports shared memory, distributed memory and hybrids. The framework supports a broad set of algorithms for each collective, over which the implementation may be automatically tuned. In conclusion, we demonstrate the benefit of optimized GASNet collectives using application benchmarks written in UPC, and demonstrate that the GASNet collectives can deliver scalable performance on a variety of state-of-the-art parallel machines including a Cray XT4, an IBM BlueGene/P, and a Sun Constellation system with InfiniBand interconnect.« less
Sensor supported pilot assistance for helicopter flight in DVE
NASA Astrophysics Data System (ADS)
Waanders, Tim; Münsterer, T.; Kress, M.
2013-05-01
Helicopter operations at low altitude are to this day only performed under VFR conditions in which safe piloting of the aircraft relies on the pilot's visual perception of the outside environment. However, there are situations in which a deterioration of visibility conditions may cause the pilot to lose important visual cues thereby increasing workload and compromising flight safety and mission effectiveness. This paper reports on a pilot assistance system for all phases of flight which is intended to: • Provide navigational support and mission management • Support landings/take-offs in unknown environment and in DVE • Enhance situational awareness in DVE • Provide obstacle and terrain surface detection and warning • Provide upload, sensor based update and download of database information for debriefing and later missions. The system comprises a digital terrain and obstacle database, tactical information, flight plan management combined with an active 3D sensor enabling the above mentioned functionalities. To support pilots during operations in DVE, an intuitive 3D/2D cueing through both head-up and head-down means is proposed to retain situational awareness. This paper further describes the system concept and will elaborate on results of simulator trials in which the functionality was evaluated by operational pilots in realistic and demanding scenarios such as a SAR mission to be performed in mountainous area under different visual conditions. The objective of the simulator trials was to evaluate the functional integration and HMI definition for the NH90 Tactical Transport Helicopter.
EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory
NASA Technical Reports Server (NTRS)
Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.
2012-01-01
As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.
Processing and Preparation of Advanced Stirling Convertors for Extended Operation
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.; Cornell, Paggy A.
2008-01-01
The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.; Cornell, Peggy A.
2008-01-01
The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.
Flight Crew Survey Responses from the Interval Management (IM) Avionics Phase 2 Flight Test
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Swieringa, Kurt A.; Wilson, Sara R.; Roper, Roy D.; Hubbs, Clay E.; Goess, Paul A.; Shay, Richard F.
2017-01-01
The Interval Management (IM) Avionics Phase 2 flight test used three aircraft over a nineteen day period to operationally evaluate a prototype IM avionics. Quantitative data were collected on aircraft state data and IM spacing algorithm performance, and qualitative data were collected through end-of-scenario and end-of-day flight crew surveys. The majority of the IM operations met the performance goals established for spacing accuracy at the Achieve-by Point and the Planned Termination Point, however there were operations that did not meet goals for a variety of reasons. While the positive spacing accuracy results demonstrate the prototype IM avionics can contribute to the overall air traffic goal, critical issues were also identified that need to be addressed to enhance IM performance. The first category was those issues that impacted the conduct and results of the flight test, but are not part of the IM concept or procedures. These included the design of arrival and approach procedures was not ideal to support speed as the primary control mechanism, the ground-side of the Air Traffic Management Technology Demonstration (ATD-1) integrated concept of operations was not part of the flight test, and the high workload to manually enter the information required to conduct an IM operation. The second category was issues associated with the IM spacing algorithm or flight crew procedures. These issues include the high frequency of IM speed changes and reversals (accelerations), a mismatch between the deceleration rate used by the spacing algorithm and the actual aircraft performance, and some spacing error calculations were sensitive to normal operational variations in aircraft airspeed or altitude which triggered additional IM speed changes. Once the issues in these two categories are addressed, the future IM avionics should have considerable promise supporting the goals of improving system throughput and aircraft efficiency.
NASA Astrophysics Data System (ADS)
Jin, Chenxia; Li, Fachao; Tsang, Eric C. C.; Bulysheva, Larissa; Kataev, Mikhail Yu
2017-01-01
In many real industrial applications, the integration of raw data with a methodology can support economically sound decision-making. Furthermore, most of these tasks involve complex optimisation problems. Seeking better solutions is critical. As an intelligent search optimisation algorithm, genetic algorithm (GA) is an important technique for complex system optimisation, but it has internal drawbacks such as low computation efficiency and prematurity. Improving the performance of GA is a vital topic in academic and applications research. In this paper, a new real-coded crossover operator, called compound arithmetic crossover operator (CAC), is proposed. CAC is used in conjunction with a uniform mutation operator to define a new genetic algorithm CAC10-GA. This GA is compared with an existing genetic algorithm (AC10-GA) that comprises an arithmetic crossover operator and a uniform mutation operator. To judge the performance of CAC10-GA, two kinds of analysis are performed. First the analysis of the convergence of CAC10-GA is performed by the Markov chain theory; second, a pair-wise comparison is carried out between CAC10-GA and AC10-GA through two test problems available in the global optimisation literature. The overall comparative study shows that the CAC performs quite well and the CAC10-GA defined outperforms the AC10-GA.
NASA Technical Reports Server (NTRS)
Randall, Roger M.
1987-01-01
Orbit Transfer Vehicle (OTV) processing at the space station is divided into two major categories: OTV processing and assembly operations, and support operations. These categories are further subdivided into major functional areas to allow development of detailed OTV processing procedures and timelines. These procedures and timelines are used to derive the specific space station accommodations necessary to support OTV activities. The overall objective is to limit impact on OTV processing requirements on space station operations, involvement of crew, and associated crew training and skill requirements. The operational concept maximizes use of automated and robotic systems to perform all required OTV servicing and maintenance tasks. Only potentially critical activities would require direct crew involvement or supervision. EVA operations are considered to be strictly contingency back-up to failure of the automated and robotic systems, with the exception of the initial assembly of Space-Based OTV accommodations at the space station, which will require manned involvement.
Advancing satellite operations with intelligent graphical monitoring systems
NASA Technical Reports Server (NTRS)
Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.
1993-01-01
For nearly twenty-five years, spacecraft missions have been operated in essentially the same manner: human operators monitor displays filled with alphanumeric text watching for limit violations or other indicators that signal a problem. The task is performed predominately by humans. Only in recent years have graphical user interfaces and expert systems been accepted within the control center environment to help reduce operator workloads. Unfortunately, the development of these systems is often time consuming and costly. At the NASA Goddard Space Flight Center (GSFC), a new domain specific expert system development tool called the Generic Spacecraft Analyst Assistant (GenSAA) has been developed. Through the use of a highly graphical user interface and point-and-click operation, GenSAA facilitates the rapid, 'programming-free' construction of intelligent graphical monitoring systems to serve as real-time, fault-isolation assistants for spacecraft analysts. Although specifically developed to support real-time satellite monitoring, GenSAA can support the development of intelligent graphical monitoring systems in a variety of space and commercial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Kenneth; Oxstrand, Johanna
The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore,more » a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal of the digital architecture project is to provide a long-term strategy to integrate plant systems, plant processes, and plant workers. This include technologies to improve nuclear worker efficiency and human performance; to offset a range of plant surveillance and testing activities with new on-line monitoring technologies; improve command, control, and collaboration in settings such as outage control centers and work execution centers; and finally to improve operator performance with new operator aid technologies for the control room. The requirements identified through the activities in the Digital Architecture project will be used to estimate the amount of traffic on the network and hence estimating the minimal bandwidth needed.« less
Supporting Adaptive Ubiquitous Applications With the Solar System
2001-05-31
stackable operators to manage ubiqui- tous information sources. After developing a set of di - verse adaptive applications, we expect to identify fun...performance. Solar provides flexibility by allowing applications to define and interconnect op- erator objects. Solar provides scalability by dis ...children by publishing events. (Static directory nodes are sources and dynamic di - rectory nodes are operators.) Alias nodes are pub- lishers that announce
Detect and Avoid (DAA) Automation Maneuver Study
2017-02-01
88ABW-2017-2261. 14. ABSTRACT The study described herein was an operator–in–the–loop assessment supporting the development of a Sense and Avoid ( SAA ...display that enables effective teaming of an Unmanned Aerial Systems (UAS) operator with an advanced SAA maneuver algorithm to safely avoid proximal...air traffic. This study examined performance differences between candidate SAA display configurations and automation thresholds while UAS operators
Engineering Decisions Under Risk-Averseness
2014-12-19
ENGINEERING DECISIONS UNDER RISK-AVERSENESS∗ R. Tyrrell Rockafellar Johannes O. Royset Department of Mathematics Operations Research Department...based upon work supported in part by the U. S. Air Force Office of Scientific Research under grants FA9550-11-1-0206 and F1ATAO1194GOO1. 1 Report...S) AND ADDRESS(ES) Naval Postgraduate School,Operations Research Department,Monterey,CA,93943 8. PERFORMING ORGANIZATION REPORT NUMBER 9
Project CHECO Southeast Asia Report. The Fourth Offensive
1969-10-01
DPL .... .......... 4 (e) CSH ............ . .. 1 f. AFLC (f) DOTEC ............ 5 (g) DE .... ........... 1 (1) HEADQUARTERS(h) DM. .............. .1(a...who performed politi- cal , economic, and military functions. In support of military operations, the VCI operated a vigorous recruiting net to provide...against Allied outposts rather than areas that were heavily de - fended by friendly forces. The enemy tactics of the Fourth Offensive strongly suggested that
NASA Technical Reports Server (NTRS)
Williams, Jessica L.; Menon, Premkumar R.; Demcak, Stuart W.
2012-01-01
The Mars Reconnaissance Orbiter (MRO) is an orbiting asset that performs remote sensing observations in order to characterize the surface, subsurface and atmosphere of Mars. To support upcoming NASA Mars Exploration Program Office objectives, MRO will be used as a relay communication link for the Mars Science Laboratory (MSL) mission during the MSL Entry, Descent and Landing sequence. To do so, MRO Navigation must synchronize the MRO Primary Science Orbit (PSO) with a set of target conditions requested by the MSL Navigation Team; this may be accomplished via propulsive maneuvers. This paper describes the MRO Navigation strategy for and operational performance of MSL EDL relay telecommunication support.
Linking consistency with object/thread semantics - An approach to robust computation
NASA Technical Reports Server (NTRS)
Chen, Raymond C.; Dasgupta, Partha
1989-01-01
This paper presents an object/thread based paradigm that links data consistency with object/thread semantics. The paradigm can be used to achieve a wide range of consistency semantics from strict atomic transactions to standard process semantics. The paradigm supports three types of data consistency. Object programmers indicate the type of consistency desired on a per-operation basis and the system performs automatic concurrency control and recovery management to ensure that those consistency requirements are met. This allows programmers to customize consistency and recovery on a per-application basis without having to supply complicated, custom recovery management schemes. The paradigm allows robust and nonrobust computation to operate concurrently on the same data in a well defined manner. The operating system needs to support only one vehicle of computation - the thread.
An intelligent ground operator support system
NASA Technical Reports Server (NTRS)
Goerlach, Thomas; Ohlendorf, Gerhard; Plassmeier, Frank; Bruege, Uwe
1994-01-01
This paper presents first results of the project 'Technologien fuer die intelligente Kontrolle von Raumfahrzeugen' (TIKON). The TIKON objective was the demonstration of feasibility and profit of the application of artificial intelligence in the space business. For that purpose a prototype system has been developed and implemented for the operation support of the Roentgen Satellite (ROSAT), a scientific spacecraft designed to perform the first all-sky survey with a high-resolution X-ray telescope and to investigate the emission of specific celestial sources. The prototype integrates a scheduler and a diagnosis tool both based on artificial intelligence techniques. The user interface is menu driven and provides synoptic displays for the visualization of the system status. The prototype has been used and tested in parallel to an already existing operational system.
Computational logic with square rings of nanomagnets
NASA Astrophysics Data System (ADS)
Arava, Hanu; Derlet, Peter M.; Vijayakumar, Jaianth; Cui, Jizhai; Bingham, Nicholas S.; Kleibert, Armin; Heyderman, Laura J.
2018-06-01
Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.
Maintenance and supply options
NASA Technical Reports Server (NTRS)
1988-01-01
The object of the Maintenance and Supply Option was to develop a high level operational philosophy related to maintenance and supply operations and incorporate these concepts into the Lunar Base Study. Specific products to be generated during this task were three trade studies and a conceptual design of the Logistic Supply Module. The crew size study was performed to evaluate crew sizes from the baseline size of four to a crew size of eight and determine the preferred crew size. The second trade study was to determine the impact of extending surface stay times and recommend a preferred duration of stay time as a function of crew, consumables, and equipment support capabilities. The third trade study was an evaluation of packaging and storage methods to determine the preferred logistics approach to support the lunar base. A modified scenario was developed and served as the basis of the individual trade studies. Assumptions and guidelines were also developed from experience with Apollo programs, Space Shuttle operations, and Space Station studies. With this information, the trade studies were performed and a conceptual design for the Logistic Supply Module was developed.
Characterization of fast neutron spectrum in the TRIGA for hardness testing of electronic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, George W.
1986-07-01
Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering Laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young-Ho; Byun, Thak Sang
Accident-tolerant fuels are expected to have considerably longer coping time to respond to the loss of active cooling under severe accidents and, at the same time, have comparable or improved fuel performance during normal operation. The wear resistance of accident tolerant fuels, therefore, needs to be examined to determine the applicability of these cladding candidates to the current operating PWRs because the most common failure of nuclear fuel claddings is still caused by grid-to-rod fretting during normal operations. In this study, reciprocating sliding wear tests on three kinds of cladding candidates for accident-tolerant fuels have been performed to investigate themore » tribological compatibilities of selfmated cladding candidates and to determine the direct applicability of conventional Zirconium-based alloys as supporting structural materials. The friction coefficients of the cladding candidates are strongly influenced by the test environments and coupled materials. The wear test results under water lubrication conditions indicate that the supporting structural materials for the cladding candidates of accident-tolerant fuels need to be replaced with the same cladding materials instead of using conventional Zirconium-based alloys.« less
The Eliminator: A design of a close air support aircraft
NASA Technical Reports Server (NTRS)
Hendrix, Mandy; Hoang, TY; Kokolios, Alex; Selyem, Sharon; Wardell, Mark; Winterrowd, David
1991-01-01
The Eliminator is the answer to the need for an affordable, maintainable, survivable, high performance close air support aircraft primarily for the United States, but with possible export sales to foreign customers. The Eliminator is twin turbofan, fixed wing aircraft with high mounted canards and low mounted wings. It is designed for high subsonic cruise and an attack radius of 250 nautical miles. Primarily it would carry 20 500 pound bombs as its main ordnance , but is versatile enough to carry a variety of weapons configurations to perform several different types of missions. It carries state of the art navigation and targeting systems to deliver its payload with pinpoint precision and is designed for maximum survivability of the crew and aircraft for a safe return and quick turnaround. It can operate from fields as short as 1800 ft. with easy maintenance for dispersed operation during hostile situations. It is designed for exceptional maneuverability and could be used in a variety of roles from air-to-air operations to anti-submarine warfare and maritime patrol duties.
NASA Astrophysics Data System (ADS)
Balogun, Abdul-Lateef; Matori, Abdul-Nasir; Wong Toh Kiak, Kelvin
2018-04-01
Environmental resources face severe risks during offshore oil spill disasters and Geographic Information System (GIS) Environmental Sensitivity Index (ESI) maps are increasingly being used as response tools to minimize the huge impacts of these spills. However, ESI maps are generally unable to independently harmonize the diverse preferences of the multiple stakeholders' involved in the response process, causing rancour and delay in response time. This paper's Spatial Decision Support System (SDSS) utilizes the Analytic Hierarchy Process (AHP) model to perform tradeoffs in determining the most significant resources to be secured considering the limited resources and time available to perform the response operation. The AHP approach is used to aggregate the diverse preferences of the stakeholders and reach a consensus. These preferences, represented as priority weights, are incorporated in a GIS platform to generate Environmental sensitivity risk (ESR) maps. The ESR maps provide a common operational platform and consistent situational awareness for the multiple parties involved in the emergency response operation thereby minimizing discord among the response teams and saving the most valuable resources.
Reactor Simulator Testing Overview
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.
2013-01-01
OBJECTIVE: Integrated testing of the TDU components TESTING SUMMARY: a) Verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. b) Thermal test heat regeneration design aspect of a cold trap purification filter. c) Pump performance test at pump voltages up to 150 V (targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V). TESTING HIGHLIGHTS: a) Gas and vacuum ground support test equipment performed effectively for NaK fill, loop pressurization, and NaK drain operations. b) Instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.
Kodak Mirror Assembly Tested at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
2003-01-01
This photo (rear view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
2003-04-09
This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
Refurbishment of one-person regenerative air revitalization system
NASA Technical Reports Server (NTRS)
Powell, Ferolyn T.
1989-01-01
Regenerative processes for the revitalization of spacecraft atmospheres and reclamation of waste waters are essential for making long-term manned space missions a reality. Processes studied include: static feed water electrolysis for oxygen generation, Bosch carbon dioxide reduction, electrochemical carbon dioxide concentration, vapor compression distillation water recovery, and iodine monitoring. The objectives were to: provide engineering support to Marshall Space Flight Center personnel throughout all phases of the test program, e.g., planning through data analysis; fabricate, test, and deliver to Marshall Space Flight Center an electrochemical carbon dioxide module and test stand; fabricate and deliver an iodine monitor; evaluate the electrochemical carbon dioxide concentrator subsystem configuration and its ability to ensure safe utilization of hydrogen gas; evaluate techniques for recovering oxygen from a product oxygen and carbon dioxide stream; and evaluate the performance of an electrochemical carbon dioxide concentrator module to operate without hydrogen as a method of safe haven operation. Each of the tasks were related in that all focused on providing a better understanding of the function, operation, and performance of developmental pieces of environmental control and life support system hardware.
Intelligent vehicle control: Opportunities for terrestrial-space system integration
NASA Technical Reports Server (NTRS)
Shoemaker, Charles
1994-01-01
For 11 years the Department of Defense has cooperated with a diverse array of other Federal agencies including the National Institute of Standards and Technology, the Jet Propulsion Laboratory, and the Department of Energy, to develop robotics technology for unmanned ground systems. These activities have addressed control system architectures supporting sharing of tasks between the system operator and various automated subsystems, man-machine interfaces to intelligent vehicles systems, video compression supporting vehicle driving in low data rate digital communication environments, multiple simultaneous vehicle control by a single operator, path planning and retrace, and automated obstacle detection and avoidance subsystem. Performance metrics and test facilities for robotic vehicles were developed permitting objective performance assessment of a variety of operator-automated vehicle control regimes. Progress in these areas will be described in the context of robotic vehicle testbeds specifically developed for automated vehicle research. These initiatives, particularly as regards the data compression, task sharing, and automated mobility topics, also have relevance in the space environment. The intersection of technology development interests between these two communities will be discussed in this paper.
High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory
2015-01-01
Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.
Flexible communications for battlespace 2000
NASA Astrophysics Data System (ADS)
Seiler, Thomas M.
2000-08-01
The advent of software-defined radios (products of DSP) with embedded processors capable of performing, communications functions (i.e., modulation) makes it possible for networks of radios to operate efficiently by changing its transmission characteristics (waveform) to fit the input data bandwidth requirements commensurate with received Eb/N0. It is also now feasible to have embedded within the network of radios a networking system capable of allocating bandwidth in accordance with current needs and priorities. The subject of battlefield networking can now also be addressed. A system with the multiple degrees of freedom (e.g., ability to manually and automatically change communications parameters to improve communications performance, spectrum management and the ability to incorporate different mission processing support) will provide the warfighter, those who support the warfighter and the rapidly expanding mission of our armed forces (i.e., peacekeeping, anti-terrorism) to meet an ever-changing mission and operational environment. This paper will address how such a robust communications system will enhance the mission of the specialist and make the products of his efforts a real-time tool for the shooter who must operate within the digitized battlespace.
Supporting Multiple Cognitive Processing Styles Using Tailored Support Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuan Q. Tran; Karen M. Feigh; Amy R. Pritchett
According to theories of cognitive processing style or cognitive control mode, human performance is more effective when an individual’s cognitive state (e.g., intuition/scramble vs. deliberate/strategic) matches his/her ecological constraints or context (e.g., utilize intuition to strive for a "good-enough" response instead of deliberating for the "best" response under high time pressure). Ill-mapping between cognitive state and ecological constraints are believed to lead to degraded task performance. Consequently, incorporating support systems which are designed to specifically address multiple cognitive and functional states e.g., high workload, stress, boredom, and initiate appropriate mitigation strategies (e.g., reduce information load) is essential to reduce plantmore » risk. Utilizing the concept of Cognitive Control Models, this paper will discuss the importance of tailoring support systems to match an operator's cognitive state, and will further discuss the importance of these ecological constraints in selecting and implementing mitigation strategies for safe and effective system performance. An example from the nuclear power plant industry illustrating how a support system might be tailored to support different cognitive states is included.« less
Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program
NASA Astrophysics Data System (ADS)
Westfall, R. M.; McKnight, R. D.
2005-05-01
The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG). The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations.
Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A
2017-06-01
Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.
Associative programming language and virtual associative access manager
NASA Technical Reports Server (NTRS)
Price, C.
1978-01-01
APL provides convenient associative data manipulation functions in a high level language. Six statements were added to PL/1 via a preprocessor: CREATE, INSERT, FIND, FOR EACH, REMOVE, and DELETE. They allow complete control of all data base operations. During execution, data base management programs perform the functions required to support the APL language. VAAM is the data base management system designed to support the APL language. APL/VAAM is used by CADANCE, an interactive graphic computer system. VAAM is designed to support heavily referenced files. Virtual memory files, which utilize the paging mechanism of the operating system, are used. VAAM supports a full network data structure. The two basic blocks in a VAAM file are entities and sets. Entities are the basic information element and correspond to PL/1 based structures defined by the user. Sets contain the relationship information and are implemented as arrays.
Early Assessment of VIIRS On-Orbit Calibration and Support Activities
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Chiang, Kwofu; McIntire, Jeffrey; Oudrari, Hassan; Wu, Aisheng; Schwaller, Mathew; Butler, James
2012-01-01
The Suomi National Polar-orbiting Partnership (S-NPP) satellite, formally the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), provides a bridge between current and future low-Earth orbiting weather and environmental observation satellite systems. The NASA s NPP VIIRS Characterization Support Team (VCST) is designed to assess the long term geometric and radiometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the S-NPP spacecraft and to support NPP Science Team Principal Investigators (PI) for their independent evaluation of VIIRS Environmental Data Records (EDRs). This paper provides an overview of Suomi NPP VIIRS on-orbit calibration activities and examples of sensor initial on-orbit performance. It focuses on the radiometric calibration support activities and capabilities provided by the NASA VCST.
Dijkstra, H Paul; Pollock, N; Chakraverty, R; Alonso, J M
2014-04-01
Elite athletes endeavour to train and compete even when ill or injured. Their motivation may be intrinsic or due to coach and team pressures. The sports medicine physician plays an important role to risk-manage the health of the competing athlete in partnership with the coach and other members of the support team. The sports medicine physician needs to strike the right ethical and operational balance between health management and optimising performance. It is necessary to revisit the popular delivery model of sports medicine and science services to elite athletes based on the current reductionist multispecialist system lacking in practice an integrated approach and effective communication. Athlete and coach in isolation or with a member of the multidisciplinary support team, often not qualified or experienced to do so, decide on the utilisation of services and how to apply the recommendations. We propose a new Integrated Performance Health Management and Coaching model based on the UK Athletics experience in preparation for the London Olympic and Paralympic Games. The Medical and Coaching Teams are managed by qualified and experienced individuals operating in synergy towards a common performance goal, accountable to a Performance Director and ultimately to the Board of Directors. We describe the systems, processes and implementation strategies to assist the athlete, coach and support teams to continuously monitor and manage athlete health and performance. These systems facilitate a balanced approach to training and competing decisions, especially while the athlete is ill or injured. They take into account the best medical advice and athlete preference. This Integrated Performance Health Management and Coaching model underpinned the Track and Field Gold Medal performances at the London Olympic and Paralympic Games.
Dijkstra, H Paul; Pollock, N; Chakraverty, R; Alonso, J M
2014-01-01
Elite athletes endeavour to train and compete even when ill or injured. Their motivation may be intrinsic or due to coach and team pressures. The sports medicine physician plays an important role to risk-manage the health of the competing athlete in partnership with the coach and other members of the support team. The sports medicine physician needs to strike the right ethical and operational balance between health management and optimising performance. It is necessary to revisit the popular delivery model of sports medicine and science services to elite athletes based on the current reductionist multispecialist system lacking in practice an integrated approach and effective communication. Athlete and coach in isolation or with a member of the multidisciplinary support team, often not qualified or experienced to do so, decide on the utilisation of services and how to apply the recommendations. We propose a new Integrated Performance Health Management and Coaching model based on the UK Athletics experience in preparation for the London Olympic and Paralympic Games. The Medical and Coaching Teams are managed by qualified and experienced individuals operating in synergy towards a common performance goal, accountable to a Performance Director and ultimately to the Board of Directors. We describe the systems, processes and implementation strategies to assist the athlete, coach and support teams to continuously monitor and manage athlete health and performance. These systems facilitate a balanced approach to training and competing decisions, especially while the athlete is ill or injured. They take into account the best medical advice and athlete preference. This Integrated Performance Health Management and Coaching model underpinned the Track and Field Gold Medal performances at the London Olympic and Paralympic Games. PMID:24620040
STS-114: Discovery TCDT Flight Crew Test Media Event at Pad 39-B
NASA Technical Reports Server (NTRS)
2005-01-01
The STS-114 Space Shuttle Discovery Terminal Countdown Demonstration Test (TCDT) flight crew is shown at Pad 39-B. Eileen Collins, Commander introduces the astronauts. Andrew Thomas, mission specialist talks about his primary responsibility of performing boom inspections, Wendy Lawrence, Mission Specialist 4 (MS4) describes her role as the robotic arm operator supporting Extravehicular Activities (EVA), Stephen Robinson, Mission Specialist 3 (MS3) talks about his role as flight engineer, Charlie Camarda, Mission Specialist 5 (MS5) says that his duties are to perform boom operations, transfer operations from the space shuttle to the International Space Station and spacecraft rendezvous. Soichi Noguchi, Mission Specialist 1 (MS1) from JAXA, introduces himself as Extravehicular Activity 1 (EVA1), and Jim Kelley, Pilot will operate the robotic arm and perform pilot duties. Questions from the news media about the safety of the external tank, going to the International Space Station and returning, EVA training, and thoughts about the Space Shuttle Columbia crew are answered.
Hollow Cathode Assembly Development for the HERMeS Hall Thruster
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.
2016-01-01
To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.
The impact of joint ventures on U.S. hospitals.
Harrison, Jeffrey P
2006-01-01
This quantitative research study assesses the organizational characteristics, market factors, and profitability of US hospitals that operate joint ventures with other health care organizations. Data was obtained from the 2001 American Hospital Association annual survey, the Area Resource File, and the Center for Medicare and Medicaid Services Minimum Data Set. These data files provide essential information on individual acute care hospitals, the communities they serve, and the level of financial performance. Descriptive statistics were evaluated and a logistic regression model was utilized to examine hospitals operating joint ventures. The study found hospitals that operate joint ventures are located in communities with more elderly patients, lower unemployment, and lower HMO penetration. From an operating performance perspective, hospitals that operate joint ventures have a higher occupancy rate, a higher average length of stay, more clinical services, lower long-term debt, and a greater number of managed care contracts. The results also appear to indicate that joint ventures have a positive financial impact on US hospitals. The study has managerial implications supporting the use of joint ventures to improve hospital performance and policy implications on resource allocation.
Studies of potential intelligent transportation systems benefits using traffic simulation modeling
DOT National Transportation Integrated Search
1996-06-01
This report documents five studies performed by Mitretek Systems, Inc. to analyze potential : benefits of Intelligent Transportation Systems (ITS) deployment, in support of the ITS : Architecture Development Program. The studies explore the operation...
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1993-01-01
The TATSS Project's goal was to develop a design for computer software that would support the attainment of the following objectives for the air traffic simulation model: (1) Full freedom of movement for each aircraft object in the simulation model. Each aircraft object may follow any designated flight plan or flight path necessary as required by the experiment under consideration. (2) Object position precision up to +/- 3 meters vertically and +/- 15 meters horizontally. (3) Aircraft maneuvering in three space with the object position precision identified above. (4) Air traffic control operations and procedures. (5) Radar, communication, navaid, and landing aid performance. (6) Weather. (7) Ground obstructions and terrain. (8) Detection and recording of separation violations. (9) Measures of performance including deviations from flight plans, air space violations, air traffic control messages per aircraft, and traditional temporal based measures.
Hawaii Energy and Environmental Technologies (HEET) Initiative
2011-12-01
polymer electrolyte fuel cells ( PEMFCs ) performance. This work was performed to support the DOE manufacturing initiative for PEMFC production. The work...performed by exposing the MEA cathode to 10 ppm SO2 in N2 at certain potential and typical operating conditions of a PEMFC for certain time, then...adsorbate by analyzing the electrochemical reduction and oxidation potential and charge. As for the in-situ SO2 adsorption experiments, a PEMFC under
System Design Considerations for Microcomputer Based Instructional Laboratories.
1986-04-01
when wrong procedures are tried as well as correct procedures. This is sometimes called " free play " simulation. While this form of simulation...steps are performed correctly. Unlike " free play " system simulations, the student must perform the operation in an approved manner. 28 V. Technical...Supports free play exercises o Typically does not tutor a student o Used for skill development and performance measurement Task Simulation o Computer
LDSD POST2 Modeling Enhancements in Support of SFDT-2 Flight Operations
NASA Technical Reports Server (NTRS)
White, Joseph; Bowes, Angela L.; Dutta, Soumyo; Ivanov, Mark C.; Queen, Eric M.
2016-01-01
Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all flight phases from drop to splashdown for the Low-Density Supersonic Decelerator (LDSD) project's first and second Supersonic Flight Dynamics Tests (SFDT-1 and SFDT-2) which took place June 28, 2014 and June 8, 2015, respectively. This paper describes the modeling improvements incorporated into the LDSD POST2 simulations since SFDT-1 and presents how these modeling updates affected the predicted SFDT-2 performance and sensitivity to the mission design. The POST2 simulation flight dynamics support during the SFDT-2 launch, operations, and recovery is also provided.
The Transportable Applications Environment - An interactive design-to-production development system
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C.; Howell, David R.; Szczur, Martha R.
1988-01-01
An account is given of the design philosophy and architecture of the Transportable Applications Environment (TAE), an executive program binding a system of applications programs into a single, easily operable whole. TAE simplifies the job of a system developer by furnishing a stable framework for system-building; it also integrates system activities, and cooperates with the host operating system in order to perform such functions as task-scheduling and I/O. The initial TAE human/computer interface supported command and menu interfaces, data displays, parameter-prompting, error-reporting, and online help. Recent extensions support graphics workstations with a window-based, modeless user interface.
Access 5 - Step 1: Human Systems Integration Program Plan (HSIPP)
NASA Technical Reports Server (NTRS)
2005-01-01
This report describes the Human System Interface (HSI) analysis, design and test activities that will be performed to support the development of requirements and design guidelines to facilitate the incorporation of High Altitude Long Endurance (HALE) Remotely Operated Aircraft (ROA) at or above FL400 in the National Airspace System (NAS). These activities are required to support the design and development of safe, effective and reliable ROA operator and ATC interfaces. This plan focuses on the activities to be completed for Step 1 of the ACCESS 5 program. Updates to this document will be made for each of the four ACCESS 5 program steps.
Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Zakrajsek, James J.
2006-01-01
Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.
NASA Astrophysics Data System (ADS)
Morales, M.; Espiell, F.; Segarra, M.
2015-10-01
Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.
Modular space station Phase B extension preliminary performance specification. Volume 2: Project
NASA Technical Reports Server (NTRS)
1971-01-01
The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.
The Case for Unit-Based Teams: A Model for Front-line Engagement and Performance Improvement
Cohen, Paul M; Ptaskiewicz, Mark; Mipos, Debra
2010-01-01
Unit-based teams (UBTs)—defined as natural work groups of physicians, managers, and frontline staff who work collaboratively to solve problems, improve performance, and enhance quality—were established by the 2005 national agreement between Kaiser Permanente (KP) and the Coalition of KP Unions. They use established performance-improvement techniques and employee-engagement principles (including social-movement theory) to achieve clinical and operational goals. UBT members identify performance gaps and opportunities within their purview—issues they can address in the course of the day-to-day work, such as workflow or process improvement. By focusing on clear, agreed-on goals, UBTs encourage greater accountability and allow members to perform their full scope of work. UBTs are designed to deliver measurable benefits in clinical outcomes and operations, patient-experience enhancements, and physician-team performance or work life. For many physicians, UBTs will require new ways of engaging with their teams. However, evidence suggests that with organizational and physician support, these teams can achieve their goals. This article presents case examples of successful UBTs' outcomes; physicians' comments on their experience working with teams; an overview of UBTs' employee-engagement principles; and advice on how physicians can support and participate in the work of such teams. PMID:20740124
International Space Station Major Constituent Analyzer On-Orbit Performance
NASA Technical Reports Server (NTRS)
Gardner, Ben D.; Erwin, Phillip M.; Thoresen, Souzan; Wiedemann, Rachel; Matty, Chris
2015-01-01
The Major Constituent Analyzer is a mass spectrometer based system that measures the major atmospheric constituents on the International Space Station. A number of limited-life components require periodic change-out, including the ORU 02 analyzer and the ORU 08 Verification Gas Assembly. Improvements to ion pump operation and ion source tuning have improved lifetime performance of the current ORU 02 design. The most recent ORU 02 analyzer assemblies, as well as ORU 08, have operated nominally. For ORU 02, the ion source filaments and ion pump lifetime continue to be key determinants of MCA performance and logistical support. Monitoring several key parameters provides the capacity to monitor ORU health and properly anticipate end of life.
Fitness characteristics of a suburban special weapons and tactics team.
Pryor, Riana R; Colburn, Deanna; Crill, Matthew T; Hostler, David P; Suyama, J
2012-03-01
Special Weapons and Tactics (SWAT) operators are specialized law enforcement officers who traditionally perform their duties with higher anticipated workloads because of additional body armor, weapons, and equipment used for enhanced operations and protection. This elevated workload increases the need for SWAT operators to improve or maintain their physical fitness to consistently perform routine operations. Typical tasks require trunk rotation, overhead upper extremity use, upper and lower body strength use, and long waiting periods followed by explosive movements while wearing additional equipment. Eleven male SWAT operators from 1 SWAT team performed flexibility, strength, power, and aerobic capacity tests and a variety of job-related tasks. Data were compared with age- and gender-based normative data. Fitness testing revealed that officers ranked high on tests of muscular strength (leg strength, 90th percentile; bench press, 85th percentile); however, body composition (55th percentile), core body strength, and flexibility ranked lower. Furthermore, aerobic capacity and muscular power had a wide range of scores and were also not ideal to support maximal performance during routine operations. These data can assist exercise specialists choose fitness programs specifically for job-related tasks of SWAT operators when creating fitness programs. Fitness programming for law enforcement should focus on improving aerobic fitness, flexibility, core strength, and muscular power while maintaining muscular strength to meet the needs of these specialized officers.
Design concepts for the Centrifuge Facility Life Sciences Glovebox
NASA Technical Reports Server (NTRS)
Sun, Sidney C.; Horkachuck, Michael J.; Mckeown, Kellie A.
1989-01-01
The Life Sciences Glovebox will provide the bioisolated environment to support on-orbit operations involving non-human live specimens and samples for human life sceinces experiments. It will be part of the Centrifuge Facility, in which animal and plant specimens are housed in bioisolated Habitat modules and transported to the Glovebox as part of the experiment protocols supported by the crew. At the Glovebox, up to two crew members and two habitat modules must be accommodated to provide flexibility and support optimal operations. This paper will present several innovative design concepts that attempt to satisfy the basic Glovebox requirements. These concepts were evaluated for ergonomics and ease of operations using computer modeling and full-scale mockups. The more promising ideas were presented to scientists and astronauts for their evaluation. Their comments, and the results from other evaluations are presented. Based on the evaluations, the authors recommend designs and features that will help optimize crew performance and facilitate science accommodations, and specify problem areas that require further study.
Sartori, E; Pavei, M; Marcuzzi, D; Zaccaria, P
2014-02-01
The beam formation and acceleration of the ITER neutral beam injector will be studied in the full-scale ion source, Source for Production of Ions of Deuterium Extracted from a RF plasma (SPIDER). It will be able to sustain 40 A deuterium ion beam during 1-h pulses. The operating conditions of its multi-aperture electrodes will diverge from ideality, as a consequence of inhomogeneous heating and thermally induced deformations in the support structure of the extraction and acceleration grids, which operate at different temperatures. Meeting the requirements on the aperture alignment and distance between the grids with such a large number of apertures (1280) and the huge support structures constitute a challenge. Examination of the structure thermal deformation in transient and steady conditions has been carried out, evaluating their effect on the beam performance: the paper describes the analyses and the solutions proposed to mitigate detrimental effects.
Suomi-NPP VIIRS Day-Night Band On-Orbit Calibration and Performance
NASA Technical Reports Server (NTRS)
Chen, Hongda; Xiong, Xiaoxiong; Sun, Chengbo; Chen, Xuexia; Chiang, Kwofu
2017-01-01
The Suomi national polar-orbiting partnership Visible Infrared Imaging Radiometer Suite (VIIRS) instrument has successfully operated since its launch in October 2011. The VIIRS day-night band (DNB) is a panchromatic channel covering wavelengths from 0.5 to 0.9 microns that is capable of observing Earth scenes during both daytime and nighttime at a spatial resolution of 750 m. To cover the large dynamic range, the DNB operates at low-, middle-, and high-gain stages, and it uses an on-board solar diffuser (SD) for its low-gain stage calibration. The SD observations also provide a means to compute the gain ratios of low-to-middle and middle-to-high gain stages. This paper describes the DNB on-orbit calibration methodology used by the VIIRS characterization support team in supporting the NASA Earth science community with consistent VIIRS sensor data records made available by the land science investigator-led processing systems. It provides an assessment and update of the DNB on-orbit performance, including the SD degradation in the DNB spectral range, detector gain and gain ratio trending, and stray-light contamination and its correction. Also presented in this paper are performance validations based on Earth scenes and lunar observations, and comparisons to the calibration methodology used by the operational interface data processing segment.
Non-symbolic halving in an Amazonian indigene group
McCrink, Koleen; Spelke, Elizabeth S.; Dehaene, Stanislas; Pica, Pierre
2014-01-01
Much research supports the existence of an Approximate Number System (ANS) that is recruited by infants, children, adults, and non-human animals to generate coarse, non-symbolic representations of number. This system supports simple arithmetic operations such as addition, subtraction, and ordering of amounts. The current study tests whether an intuition of a more complex calculation, division, exists in an indigene group in the Amazon, the Mundurucu, whose language includes no words for large numbers. Mundurucu children were presented with a video event depicting a division transformation of halving, in which pairs of objects turned into single objects, reducing the array's numerical magnitude. Then they were tested on their ability to calculate the outcome of this division transformation with other large-number arrays. The Mundurucu children effected this transformation even when non-numerical variables were controlled, performed above chance levels on the very first set of test trials, and exhibited performance similar to urban children who had access to precise number words and a surrounding symbolic culture. We conclude that a halving calculation is part of the suite of intuitive operations supported by the ANS. PMID:23587042
Noise and correlations in a microwave-mechanical-optical transducer
NASA Astrophysics Data System (ADS)
Higginbotham, Andrew P.; Burns, Peter S.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond W.; Regal, Cindy A.; Lehnert, Konrad W.
Viewed as resources for quantum information processing, microwave and optical fields offer complementary strengths. We simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. In previous work, this system was operated as a classical converter between microwave and optical signals at 4 K, operating with 10% efficiency and 1500 photons of added noise. To improve noise performance, we now operate the converter at 0.1 K. We have observed order-of-magnitude improvement in noise performance, and quantified effects from undesired interactions between the laser and superconducting circuit. Correlations between the microwave and optical fields have also been investigated, serving as a precursor to upcoming quantum operation. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.
Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing.
Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng
2014-10-01
Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA's CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream . Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels.
Formalizing procedures for operations automation, operator training and spacecraft autonomy
NASA Technical Reports Server (NTRS)
Lecouat, Francois; Desaintvincent, Arnaud
1994-01-01
The generation and validation of operations procedures is a key task of mission preparation that is quite complex and costly. This has motivated the development of software applications providing support for procedures preparation. Several applications have been developed at MATRA MARCONI SPACE (MMS) over the last five years. They are presented in the first section of this paper. The main idea is that if procedures are represented in a formal language, they can be managed more easily with a computer tool and some automatic verifications can be performed. One difficulty is to define a formal language that is easy to use for operators and operations engineers. From the experience of the various procedures management tools developed in the last five years (including the POM, EOA, and CSS projects), MMS has derived OPSMAKER, a generic tool for procedure elaboration and validation. It has been applied to quite different types of missions, ranging from crew procedures (PREVISE system), ground control centers management procedures (PROCSU system), and - most relevant to the present paper - satellite operation procedures (PROCSAT developed for CNES, to support the preparation and verification of SPOT 4 operation procedures, and OPSAT for MMS telecom satellites operation procedures).
Hypermedia and intelligent tutoring applications in a mission operations environment
NASA Technical Reports Server (NTRS)
Ames, Troy; Baker, Clifford
1990-01-01
Hypermedia, hypertext and Intelligent Tutoring System (ITS) applications to support all phases of mission operations are investigated. The application of hypermedia and ITS technology to improve system performance and safety in supervisory control is described - with an emphasis on modeling operator's intentions in the form of goals, plans, tasks, and actions. Review of hypermedia and ITS technology is presented as may be applied to the tutoring of command and control languages. Hypertext based ITS is developed to train flight operation teams and System Test and Operation Language (STOL). Specific hypermedia and ITS application areas are highlighted, including: computer aided instruction of flight operation teams (STOL ITS) and control center software development tools (CHIMES and STOL Certification Tool).
A Graphical Operator Interface for a Telerobotic Inspection System
NASA Technical Reports Server (NTRS)
Kim, W. S.; Tso, K. S.; Hayati, S.
1993-01-01
Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.
Employing the Army Health System Outside the Main Gate
2014-05-22
Publications and Forms , http://armypubs.army.mil/ doctrine/ADRP_1.html (accessed 5 September 2013), 2-10. 9...of the HSS and FHP missions for training, pre-deployment, deployment, and post-deployment operations. The AHS includes all mission support services...performed, provided, or arranged by the AMEDD to support HSS and FHP mission requirements for the Army and as directed, for joint, intergovernmental
Identifying Critical Manned-Unmanned Teaming Skills for Unmanned Aircraft System Operators
2012-09-01
require expensive training device support, could be trained at home station on PC- based media . However, training resources was regarded simply as an...Contact 3-2 Perform BDA 3-40 Prioritize the engagement of targets 3-27 Provide accurate description of the target to support...informal BDA to firing unit. • Determine target effects requirements. • Determine risk for collateral damage. • Determine
Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes
Wu, Gang; Zelenay, Piotr
2013-08-27
A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.
Evolution of the JPSS Ground Project Calibration and Validation System
NASA Technical Reports Server (NTRS)
Purcell, Patrick; Chander, Gyanesh; Jain, Peyush
2016-01-01
The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.
Evolution of the JPSS Ground Project Calibration and Validation System
NASA Technical Reports Server (NTRS)
Chander, Gyanesh; Jain, Peyush
2014-01-01
The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administrations (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAAs mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation’s economy and protection of lives and property. The National Aerospace and Atmospheric Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.
Ground Support Network for Operational Radio Occultation Missions
NASA Astrophysics Data System (ADS)
Zandbergen, R.; Enderle, W.; Marquardt, C.; Wollenweber, F.
2012-04-01
The EUMETSAT/ESA Metop/EPS GRAS radio occultation mission stands out for its operational nature. From the beginning, EUMETSAT has decided to rely on an operational system for provision of the auxiliary GPS products that are needed in the occultation processing. This system is the GRAS Ground Support Network (GSN), operated in the Navigation Facility of ESOC in Darmstadt, which was first presented at EGU in 2008. The GRAS GSN is driven primarily by timeliness, availability and accuracy requirements. The performance of the GSN, measured on a monthly basis, has not only consistently met these requirements since the start of its operations, but has also been improved through several system enhancements. Currently, an additional service is being delivered on an experimental basis, consisting of a near-real time Navigation Bit Stream product, which will allow the processing of open-loop data, further increasing the scientific return of the GRAS instrument, or any other radio occultation mission using this data. This paper will present the GRAS GSN in its current configuration, and demonstrate its excellent performance in terms of accuracy, availability and timeliness. The application of the bit stream data will be shown. Some future evolution perspectives of the GRAS GSN will also be addressed. It will be demonstrated that the GRAS GSN has the potential of serving also other present and future radio occultation missions.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Yuen, Joseph H. (Editor)
1994-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DS) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).
Benchmarking and Hardware-In-The-Loop Operation of a ...
Engine Performance evaluation in support of LD MTE. EPA used elements of its ALPHA model to apply hardware-in-the-loop (HIL) controls to the SKYACTIV engine test setup to better understand how the engine would operate in a chassis test after combined with future leading edge technologies, advanced high-efficiency transmission, reduced mass, and reduced roadload. Predict future vehicle performance with Atkinson engine. As part of its technology assessment for the upcoming midterm evaluation of the 2017-2025 LD vehicle GHG emissions regulation, EPA has been benchmarking engines and transmissions to generate inputs for use in its ALPHA model
Apollo experience report: Communications system flight evaluation and verification
NASA Technical Reports Server (NTRS)
Travis, D.; Royston, C. L., Jr.
1972-01-01
Flight tests of the synergetic operation of the spacecraft and earth based communications equipment were accomplished during Apollo missions AS-202 through Apollo 12. The primary goals of these tests were to verify that the communications system would adequately support lunar landing missions and to establish the inflight communications system performance characteristics. To attain these goals, a communications system flight verification and evaluation team was established. The concept of the team operations, the evolution of the evaluation processes, synopses of the team activities associated with each mission, and major conclusions and recommendations resulting from the performance evaluation are represented.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Yuen, Joseph H. (Editor)
1995-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).
A Framework for Control and Observation in Distributed Environments
NASA Technical Reports Server (NTRS)
Smith, Warren
2001-01-01
As organizations begin to deploy large computational grids, it has become apparent that systems for observation and control of the resources, services, and applications that make up such grids are needed. Administrators must observe the operation of resources and services to ensure that they are operating correctly and they must control the resources and services to ensure that their operation meets the needs of users. Further, users need to observe the performance of their applications so that this performance can be improved and control how their applications execute in a dynamic grid environment. In this paper we describe our software framework for control and observation of resources, services, and applications that supports such uses and we provide examples of how our framework can be used.
Enhanced visualization of inner ear structures
NASA Astrophysics Data System (ADS)
Niemczyk, Kazimierz; Kucharski, Tomasz; Kujawinska, Malgorzata; Bruzgielewicz, Antoni
2004-07-01
Recently surgery requires extensive support from imaging technologies in order to increase effectiveness and safety of operations. One of important tasks is to enhance visualisation of quasi-phase (transparent) 3d structures. Those structures are characterized by very low contrast. It makes differentiation of tissues in field of view very difficult. For that reason the surgeon may be extremly uncertain during operation. This problem is connected with supporting operations of inner ear during which physician has to perform cuts at specific places of quasi-transparent velums. Conventionally during such operations medical doctor views the operating field through stereoscopic microscope. In the paper we propose a 3D visualisation system based on Helmet Mounted Display. Two CCD cameras placed at the output of microscope perform acquisition of stereo pairs of images. The images are processed in real-time with the goal of enhancement of quasi-phased structures. The main task is to create algorithm that is not sensitive to changes in intensity distribution. The disadvantages of existing algorithms is their lack of adaptation to occuring reflexes and shadows in field of view. The processed images from both left and right channels are overlaid on the actual images exported and displayed at LCD's of Helmet Mounted Display. A physician observes by HMD (Helmet Mounted Display) a stereoscopic operating scene with indication of the places of special interest. The authors present the hardware ,procedures applied and initial results of inner ear structure visualisation. Several problems connected with processing of stereo-pair images are discussed.
Warning Alert HITL Experiment Results
NASA Technical Reports Server (NTRS)
Monk, Kevin J.; Ferm, Lisa; Roberts, Zach
2018-01-01
Minimum Operational Performance Standards (MOPS) are being developed to support the integration of Unmanned Aircraft Systems (UAS) in the National Airspace (NAS). Input from subject matter experts and multiple research studies have informed display requirements for Detect-and-Avoid (DAA) systems aimed at supporting timely and appropriate pilot responses to collision hazards. Phase 1 DAA MOPS alerting is designed to inform pilots if an avoidance maneuver is necessary; the two highest alert levels - caution and warning - indicate how soon pilot action is required and whether there is adequate time to coordinate with the air traffic controller (ATC). Additional empirical support is needed to clarify the extent to which warning-level alerting impacts DAA task performance. The present study explores the differential effects of the auditory and visual cues provided by the DAA Warning alert, and performance implications compared to caution-only alerting are discussed.
Water Recovery System Design to Accommodate Dormant Periods for Manned Missions
NASA Technical Reports Server (NTRS)
Tabb, David; Carter, Layne
2015-01-01
Future manned missions beyond lower Earth orbit may include intermittent periods of extended dormancy. Under the NASA Advanced Exploration System (AES) project, NASA personnel evaluated the viability of the ISS Water Recovery System (WRS) to support such a mission. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper details the results of this evaluation, which include identification of dormancy issues, results of testing performed to assess microbial stability of pretreated urine during dormancy periods, and concepts for updating to the WRS architecture and operational concepts that will enable the ISS WRS to support the dormancy requirement.
How to Boost Engineering Support Via Web 2.0 - Seeds for the Ares Project...and/or Yours?
NASA Technical Reports Server (NTRS)
Scott, David W.
2010-01-01
The Mission Operations Laboratory (MOL) at Marshall Space Flight Center (MSFC) is responsible for Engineering Support capability for NASA s Ares launch system development. In pursuit of this, MOL is building the Ares Engineering and Operations Network (AEON), a web-based portal intended to provide a seamless interface to support and simplify two critical activities: a) Access and analyze Ares manufacturing, test, and flight performance data, with access to Shuttle data for comparison. b) Provide archive storage for engineering instrumentation data to support engineering design, development, and test. A mix of NASA-written and COTS software provides engineering analysis tools. A by-product of using a data portal to access and display data is access to collaborative tools inherent in a Web 2.0 environment. This paper discusses how Web 2.0 techniques, particularly social media, might be applied to the traditionally conservative and formal engineering support arena. A related paper by the author [1] considers use
Reusable space tug concept and mission
NASA Astrophysics Data System (ADS)
Cresto Aleina, Sara; Viola, Nicole; Stesina, Fabrizio; Viscio, Maria Antonietta; Ferraris, Simona
2016-11-01
The paper deals with the conceptual design of a space tug to be used in support to Earth satellites transfer manoeuvres. Usually Earth satellites are released in a non-definitive low orbit, depending on the adopted launcher, and they need to be equipped with an adequate propulsion system able to perform the transfer to their final operational location. In order to reduce the mass at launch of the satellite system, an element pre-deployed on orbit, i.e. the space tug, can be exploited to perform the transfer manoeuvres; this allows simplifying the propulsion requirements for the satellite, with a consequent decrease of mass and volume, in favour of larger payloads. The space tug here presented is conceived to be used for the transfer of a few satellites from low to high orbits, and vice versa, if needed. To support these manoeuvres, dedicated refuelling operations are envisaged. The paper starts from on overview of the mission scenario, the concept of operations and the related architecture elements. Then it focuses on the detailed definition of the space tug, from the requirements' assessment up to the budgets' development, through an iterative and recursive design process. The overall mission scenario has been derived from a set of trade-off analyses that have been performed to choose the mission architecture and operations that better satisfy stakeholder expectations: the most important features of these analyses and their results are described within the paper. Eventually, in the last part of the work main conclusions are drawn on the selected mission scenario and space tug and further utilizations of this innovative system in the frame of future space exploration are discussed. Specifically, an enhanced version of the space tug that has been described in the paper could be used to support on orbit assembly of large spacecraft for distant and long exploration missions. The Space Tug development is an activity carried on in the frame of the SAPERE project (Space Advanced Project Excellence in Research and Enterprise), supported by Italian Ministry of Research and University (MIUR), and specifically in its STRONG sub-project (Systems Technology and Research National Global Operations) and related to the theme of space exploration and access to space. From this statement, a Primary Mission Objective (i.e. to perform satellites taxi between LEO and the operational orbit) and a Constraint can be derived (i.e.to use Italian space assets). Also in the mission concept has been underlined the necessity to rely on Italian space assets. This particular part of the mission statement is influenced by the stakeholders' analysis and will drive the systems configurations and design. In addition, considering stakeholders' analysis, VEGA launcher is considered as baseline and is one of the main constraints for the systems design.
EDOS operations concept and development approach
NASA Technical Reports Server (NTRS)
Knoble, G.; Garman, C.; Alcott, G.; Ramchandani, C.; Silvers, J.
1994-01-01
The Earth Observing System (EOS) Data and Operations System (EDOS) is being developed by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) for the capture, level zero processing, distribution, and backup archiving of high speed telemetry data received from EOS spacecraft. All data received will conform to the Consultative Committee for Space Data Standards (CCSDS) recommendations. The major EDOS goals are to: (1) minimize EOS program costs to implement and operate EDOS; (2) respond effectively to EOS growth requirements; and (3) maintain compatibility with existing and enhanced versions of NASA institutional systems required to support EOS spacecraft. In order to meet these goals, the following objectives have been defined for EDOS: (1) standardize EDOS interfaces to maximize utility for future requirements; (2) emphasize life-cycle cost (LCC) considerations (rather than procurement costs) in making design decisions and meeting reliability, maintainability, availability (RMA) and upgradability requirements; (3) implement data-driven operations to the maximum extent possible to minimize staffing requirements and to maximize system responsiveness; (4) provide a system capable of simultaneously supporting multiple spacecraft, each in different phases of their life-cycles; (5) provide for technology insertion features to accommodate growth and future LCC reductions during the operations phase; and (6) provide a system that is sufficiently robust to accommodate incremental performance upgrades while supporting operations. Operations concept working group meetings were facilitated to help develop the EDOS operations concept. This provided a cohesive concept that met with approval of responsible personnel from the start. This approach not only speeded up the development process by reducing review cycles, it also provided a medium for generating good ideas that were immediately molded into feasible concepts. The operations concept was then used as a basis for the EDOS specification. When it was felt that concept elements did not support detailed requirements, the facilitator process was used to resolve discrepancies or to add new concept elements to support the specification. This method provided an ongoing revisal of the operations concept and prevented large revisions at the end of the requirement analysis phase of system development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Charles R.
2015-10-01
An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclearmore » Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.« less
Santoro, Carlo; Gokhale, Rohan; Mecheri, Barbara; D'Epifanio, Alessandra; Licoccia, Silvia; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen
2017-08-24
Iron(II) phthalocyanine (FePc) deposited onto two different carbonaceous supports was synthesized through an unconventional pyrolysis-free method. The obtained materials were studied in the oxygen reduction reaction (ORR) in neutral media through incorporation in an air-breathing cathode structure and tested in an operating microbial fuel cell (MFC) configuration. Rotating ring disk electrode (RRDE) analysis revealed high performances of the Fe-based catalysts compared with that of activated carbon (AC). The FePc supported on Black-Pearl carbon black [Fe-BP(N)] exhibits the highest performance in terms of its more positive onset potential, positive shift of the half-wave potential, and higher limiting current as well as the highest power density in the operating MFC of (243±7) μW cm -2 , which was 33 % higher than that of FePc supported on nitrogen-doped carbon nanotubes (Fe-CNT(N); 182±5 μW cm -2 ). The power density generated by Fe-BP(N) was 92 % higher than that of the MFC utilizing AC; therefore, the utilization of platinum group metal-free catalysts can boost the performances of MFCs significantly. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Primary care practice organization influences colorectal cancer screening performance.
Yano, Elizabeth M; Soban, Lynn M; Parkerton, Patricia H; Etzioni, David A
2007-06-01
To identify primary care practice characteristics associated with colorectal cancer (CRC) screening performance, controlling for patient-level factors. Primary care director survey (1999-2000) of 155 VA primary care clinics linked with 38,818 eligible patients' sociodemographics, utilization, and CRC screening experience using centralized administrative and chart-review data (2001). Practices were characterized by degrees of centralization (e.g., authority over operations, staffing, outside-practice influence); resources (e.g., sufficiency of nonphysician staffing, space, clinical support arrangements); and complexity (e.g., facility size, academic status, managed care penetration), adjusting for patient-level covariates and contextual factors. Chart-based evidence of CRC screening through direct colonoscopy, sigmoidoscopy, or consecutive fecal occult blood tests, eliminating cases with documented histories of CRC, polyps, or inflammatory bowel disease. After adjusting for sociodemographic characteristics and health care utilization, patients were significantly more likely to be screened for CRC if their primary care practices had greater autonomy over the internal structure of care delivery (p<.04), more clinical support arrangements (p<.03), and smaller size (p<.001). Deficits in primary care clinical support arrangements and local autonomy over operational management and referral procedures are associated with significantly lower CRC screening performance. Competition with hospital resource demands may impinge on the degree of internal organization of their affiliated primary care practices.
NASA Astrophysics Data System (ADS)
Rembala, Richard; Ower, Cameron
2009-10-01
MDA has provided 25 years of real-time engineering support to Shuttle (Canadarm) and ISS (Canadarm2) robotic operations beginning with the second shuttle flight STS-2 in 1981. In this capacity, our engineering support teams have become familiar with the evolution of mission planning and flight support practices for robotic assembly and support operations at mission control. This paper presents observations on existing practices and ideas to achieve reduced operational overhead to present programs. It also identifies areas where robotic assembly and maintenance of future space stations and space-based facilities could be accomplished more effectively and efficiently. Specifically, our experience shows that past and current space Shuttle and ISS assembly and maintenance operations have used the approach of extensive preflight mission planning and training to prepare the flight crews for the entire mission. This has been driven by the overall communication latency between the earth and remote location of the space station/vehicle as well as the lack of consistent robotic and interface standards. While the early Shuttle and ISS architectures included robotics, their eventual benefits on the overall assembly and maintenance operations could have been greater through incorporating them as a major design driver from the beginning of the system design. Lessons learned from the ISS highlight the potential benefits of real-time health monitoring systems, consistent standards for robotic interfaces and procedures and automated script-driven ground control in future space station assembly and logistics architectures. In addition, advances in computer vision systems and remote operation, supervised autonomous command and control systems offer the potential to adjust the balance between assembly and maintenance tasks performed using extra vehicular activity (EVA), extra vehicular robotics (EVR) and EVR controlled from the ground, offloading the EVA astronaut and even the robotic operator on-orbit of some of the more routine tasks. Overall these proposed approaches when used effectively offer the potential to drive down operations overhead and allow more efficient and productive robotic operations.
IAC level "O" program development
NASA Technical Reports Server (NTRS)
Vos, R. G.
1982-01-01
The current status of the IAC development activity is summarized. The listed prototype software and documentation was delivered, and details were planned for development of the level 1 operational system. The planned end product IAC is required to support LSST design analysis and performance evaluation, with emphasis on the coupling of required technical disciplines. The long term IAC effectively provides two distinct features: a specific set of analysis modules (thermal, structural, controls, antenna radiation performance and instrument optical performance) that will function together with the IAC supporting software in an integrated and user friendly manner; and a general framework whereby new analysis modules can readily be incorporated into IAC or be allowed to communicate with it.
DOT National Transportation Integrated Search
2012-07-01
This project has developed and implemented a software environment to utilize data collected by Traffic Management Centers (TMC) in Florida, in combination with data from other sources to support various applications. The environment allows capturing ...
Mass transit : bus rapid transit shows promise
DOT National Transportation Integrated Search
2001-09-17
The U. S. General Accounting Office (GAO) was asked to (1) examine the federal role in supporting Bus Rapid Transit; (2) compare the capital costs, operating costs, and performance characteristics of Bus Rapid Transit and Light Rail systems; and (3) ...
DOT National Transportation Integrated Search
2011-01-01
To support improved analysis of the environmental impacts of proposed global aircraft operational changes, the United States Federal Aviation Administration recently worked : with European academic partners to update the airport terminal area fuel co...
Los Alamos NEP research in advanced plasma thrusters
NASA Technical Reports Server (NTRS)
Schoenberg, Kurt; Gerwin, Richard
1991-01-01
Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.
STS-79 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.
Operation of a single-channel, sequential Navstar GPS receiver in a helicopter mission environment
NASA Technical Reports Server (NTRS)
Edwards, F. G.; Hamlin, J. R.
1984-01-01
It is pointed out that the future utilization of the Navstar Global Positioning System (GPS) by civil helicopters will provide an enhanced performance not obtainable with current navigations systems. GPS will supply properly equipped users with extremely accurate three-dimensional position and velocity information anywhere in the world. Preliminary studies have been conducted to investigate differential GPS concept mechanizations and cost, and to theoretically predict navigation performance and the impact of degradation of the GPS C/A code for national security considerations. The obtained results are encouraging, but certain improvements are needed. As a second step in the program, a single-channel sequential GPS navigator was installed and operated in the NASA SH-3G helicopter. A series of flight tests were conducted. It is found that performance of the Navstar GPS Z-set is quite acceptable to support area navigation and nonprecision approach operations.
2010-12-01
conflicts that relied primarily on mass media , the face-to-face communication relied upon to conduct counter-oathing, and thus, pseudo gang operations...has been studied at varying levels by numerous investigators over the decades. While many civilian applications like marketing and mass media have...cultural-drama teams that presented pro-government performances in rural villages.89 This effort not only reinforced mass media appeals presented in
From Data to Assessments and Decisions: Epi-Spline Technology
2014-05-08
From Data to Assessments and Decisions: Epi-Spline Technology∗ Johannes O. Royset Roger J-B Wets Department of Operations Research Department of...2014 ∗This material is based upon work supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office under grant numbers...ADDRESS(ES) Naval Postgraduate School,Department of Operations Research ,Monterey,CA,93943 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING
A System for Fault Management for NASA's Deep Space Habitat
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.; Spirkovska, Liljana; Aaseng, Gordon B.; Mccann, Robert S.; Baskaran, Vijayakumar; Ossenfort, John P.; Smith, Irene Skupniewicz; Iverson, David L.; Schwabacher, Mark A.
2013-01-01
NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy.
A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat
NASA Technical Reports Server (NTRS)
Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark
2013-01-01
NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy
NASA Technical Reports Server (NTRS)
Mercer, Joey S.; Bienert, Nancy; Gomez, Ashley; Hunt, Sarah; Kraut, Joshua; Martin, Lynne; Morey, Susan; Green, Steven M.; Prevot, Thomas; Wu, Minghong G.
2013-01-01
A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors.
SCOSII OL: A dedicated language for mission operations
NASA Technical Reports Server (NTRS)
Baldi, Andrea; Elgaard, Dennis; Lynenskjold, Steen; Pecchioli, Mauro
1994-01-01
The Spacecraft Control and Operations System 2 (SCOSII) is the new generation of Mission Control Systems (MCS) to be used at ESOC. The system is generic because it offers a collection of standard functions configured through a database upon which a dedicated MCS is established for a given mission. An integral component of SCOSII is the support of a dedicated Operations Language (OL). The spacecraft operation engineers edit, test, validate, and install OL scripts as part of the configuration of the system with, e.g., expressions for computing derived parameters and procedures for performing flight operations, all without involvement of software support engineers. A layered approach has been adopted for the implementation centered around the explicit representation of a data model. The data model is object-oriented defining the structure of the objects in terms of attributes (data) and services (functions) which can be accessed by the OL. SCOSII supports the creation of a mission model. System elements as, e.g., a gyro are explicit, as are the attributes which described them and the services they provide. The data model driven approach makes it possible to take immediate advantage of this higher-level of abstraction, without requiring expansion of the language. This article describes the background and context leading to the OL, concepts, language facilities, implementation, status and conclusions found so far.
Automated fault-management in a simulated spaceflight micro-world
NASA Technical Reports Server (NTRS)
Lorenz, Bernd; Di Nocera, Francesco; Rottger, Stefan; Parasuraman, Raja
2002-01-01
BACKGROUND: As human spaceflight missions extend in duration and distance from Earth, a self-sufficient crew will bear far greater onboard responsibility and authority for mission success. This will increase the need for automated fault management (FM). Human factors issues in the use of such systems include maintenance of cognitive skill, situational awareness (SA), trust in automation, and workload. This study examine the human performance consequences of operator use of intelligent FM support in interaction with an autonomous, space-related, atmospheric control system. METHODS: An expert system representing a model-base reasoning agent supported operators at a low level of automation (LOA) by a computerized fault finding guide, at a medium LOA by an automated diagnosis and recovery advisory, and at a high LOA by automate diagnosis and recovery implementation, subject to operator approval or veto. Ten percent of the experimental trials involved complete failure of FM support. RESULTS: Benefits of automation were reflected in more accurate diagnoses, shorter fault identification time, and reduced subjective operator workload. Unexpectedly, fault identification times deteriorated more at the medium than at the high LOA during automation failure. Analyses of information sampling behavior showed that offloading operators from recovery implementation during reliable automation enabled operators at high LOA to engage in fault assessment activities CONCLUSIONS: The potential threat to SA imposed by high-level automation, in which decision advisories are automatically generated, need not inevitably be counteracted by choosing a lower LOA. Instead, freeing operator cognitive resources by automatic implementation of recover plans at a higher LOA can promote better fault comprehension, so long as the automation interface is designed to support efficient information sampling.
NASA Astrophysics Data System (ADS)
Nomaguch, Yutaka; Fujita, Kikuo
This paper proposes a design support framework, named DRIFT (Design Rationale Integration Framework of Three layers), which dynamically captures and manages hypothesis and verification in the design process. A core of DRIFT is a three-layered design process model of action, model operation and argumentation. This model integrates various design support tools and captures design operations performed on them. Action level captures the sequence of design operations. Model operation level captures the transition of design states, which records a design snapshot over design tools. Argumentation level captures the process of setting problems and alternatives. The linkage of three levels enables to automatically and efficiently capture and manage iterative hypothesis and verification processes through design operations over design tools. In DRIFT, such a linkage is extracted through the templates of design operations, which are extracted from the patterns embeded in design tools such as Design-For-X (DFX) approaches, and design tools are integrated through ontology-based representation of design concepts. An argumentation model, gIBIS (graphical Issue-Based Information System), is used for representing dependencies among problems and alternatives. A mechanism of TMS (Truth Maintenance System) is used for managing multiple hypothetical design stages. This paper also demonstrates a prototype implementation of DRIFT and its application to a simple design problem. Further, it is concluded with discussion of some future issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langer, S; Rotman, D; Schwegler, E
The Institutional Computing Executive Group (ICEG) review of FY05-06 Multiprogrammatic and Institutional Computing (M and IC) activities is presented in the attached report. In summary, we find that the M and IC staff does an outstanding job of acquiring and supporting a wide range of institutional computing resources to meet the programmatic and scientific goals of LLNL. The responsiveness and high quality of support given to users and the programs investing in M and IC reflects the dedication and skill of the M and IC staff. M and IC has successfully managed serial capacity, parallel capacity, and capability computing resources.more » Serial capacity computing supports a wide range of scientific projects which require access to a few high performance processors within a shared memory computer. Parallel capacity computing supports scientific projects that require a moderate number of processors (up to roughly 1000) on a parallel computer. Capability computing supports parallel jobs that push the limits of simulation science. M and IC has worked closely with Stockpile Stewardship, and together they have made LLNL a premier institution for computational and simulation science. Such a standing is vital to the continued success of laboratory science programs and to the recruitment and retention of top scientists. This report provides recommendations to build on M and IC's accomplishments and improve simulation capabilities at LLNL. We recommend that institution fully fund (1) operation of the atlas cluster purchased in FY06 to support a few large projects; (2) operation of the thunder and zeus clusters to enable 'mid-range' parallel capacity simulations during normal operation and a limited number of large simulations during dedicated application time; (3) operation of the new yana cluster to support a wide range of serial capacity simulations; (4) improvements to the reliability and performance of the Lustre parallel file system; (5) support for the new GDO petabyte-class storage facility on the green network for use in data intensive external collaborations; and (6) continued support for visualization and other methods for analyzing large simulations. We also recommend that M and IC begin planning in FY07 for the next upgrade of its parallel clusters. LLNL investments in M and IC have resulted in a world-class simulation capability leading to innovative science. We thank the LLNL management for its continued support and thank the M and IC staff for its vision and dedicated efforts to make it all happen.« less
Speech responses and dual-task performance - Better time-sharing or asymmetric transfer?
NASA Technical Reports Server (NTRS)
Vidulich, Michael A.
1988-01-01
The value of speech controls in a dual-task experiment that also evaluated asymmetric transfer effects is considered. There was no evidence of asymmetric transfer in spite of significant effects supporting the advantage of mixing manual and speech responses. The data suggest that speech controls can be used to enhance performance in operational multiple-task environments.
Plasmonic Enhanced Infrared Detection with a Dynamic Hyper-Spectral Tuning
2013-09-19
performance operation and use expensive optics for sensing color information in the infrared. The integration of metallic arrays with these detectors is...technology while significantly improving performance. surface plasmons, infrared detectors , quantum dots, multi-spectral sensing Unclassified...Research Laboratory (AFRL), Albuquerque NM, for theoretical and strategic support and University of New Mexico, NM for growth of the detector
HPC in a HEP lab: lessons learned from setting up cost-effective HPC clusters
NASA Astrophysics Data System (ADS)
Husejko, Michal; Agtzidis, Ioannis; Baehler, Pierre; Dul, Tadeusz; Evans, John; Himyr, Nils; Meinhard, Helge
2015-12-01
In this paper we present our findings gathered during the evaluation and testing of Windows Server High-Performance Computing (Windows HPC) in view of potentially using it as a production HPC system for engineering applications. The Windows HPC package, an extension of Microsofts Windows Server product, provides all essential interfaces, utilities and management functionality for creating, operating and monitoring a Windows-based HPC cluster infrastructure. The evaluation and test phase was focused on verifying the functionalities of Windows HPC, its performance, support of commercial tools and the integration with the users work environment. We describe constraints imposed by the way the CERN Data Centre is operated, licensing for engineering tools and scalability and behaviour of the HPC engineering applications used at CERN. We will present an initial set of requirements, which were created based on the above constraints and requests from the CERN engineering user community. We will explain how we have configured Windows HPC clusters to provide job scheduling functionalities required to support the CERN engineering user community, quality of service, user- and project-based priorities, and fair access to limited resources. Finally, we will present several performance tests we carried out to verify Windows HPC performance and scalability.
Innovative Operations Measures and Nutritional Support for Mass Endurance Events.
Chiampas, George T; Goyal, Anita V
2015-11-01
Endurance and sporting events have increased in popularity and participation in recent years worldwide, and with this comes the need for medical directors to apply innovative operational strategies and nutritional support to meet such demands. Mass endurance events include sports such as cycling and running half, full and ultra-marathons with over 1000 participants. Athletes, trainers and health care providers can all agree that both participant outcomes and safety are of the utmost importance for any race or sporting event. While demand has increased, there is relatively less published guidance in this area of sports medicine. This review addresses public safety, operational systems, nutritional support and provision of medical care at endurance events. Significant medical conditions in endurance sports include heat illness, hyponatraemia and cardiac incidents. These conditions can differ from those typically encountered by clinicians or in the setting of low-endurance sports, and best practices in their management are discussed. Hydration and nutrition are critical in preventing these and other race-related morbidities, as they can impact both performance and medical outcomes on race day. Finally, the command and communication structures of an organized endurance event are vital to its safety and success, and such strategies and concepts are reviewed for implementation. The nature of endurance events increasingly relies on medical leaders to balance safety and prevention of morbidity while trying to help optimize athlete performance.
The Biotechnology Facility for International Space Station
NASA Technical Reports Server (NTRS)
Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer
2004-01-01
The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.
Performance of High Voltage Modules Under Abuse Operations
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Darcy, Eric C.; Irlbeck, Bradley W.
2005-01-01
The Electric Auxiliary Power Unit (EAPU) or the Advanced Hydraulic Power System (AHPS) is a Shuttle Upgrade program. Of the two battery design approaches that were considered in support of this program, the current paper concentrates on the testing performed on the small-cell approach. Testing performed at both ComDev Space, Canada and at NASA-JSC is described in this paper. Testing included those under mission profile conditions and off-nominal abusive conditions.
Cognitive engineering models in space systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1992-01-01
NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.
Use of LOGIC to support lidar operations
NASA Astrophysics Data System (ADS)
Davis-Lunde, Kimberley; Jugan, Laurie A.; Shoemaker, J. Todd
1999-10-01
The Naval Oceanographic Office (NAVOCEANO) and Planning Systems INcorporated are developing the Littoral Optics Geospatial Integrated Capability (LOGIC). LOGIC supports NAVOCEANO's directive to assess the impact of the environment on Fleet systems in areas of operational interest. LOGIC is based in the Geographic Information System (GIS) ARC/INFO and offers a method to view and manipulate optics and ancillary data to support emerging Fleet lidar systems. LOGIC serves as a processing (as required) and quality-checking mechanism for data entering NAVOCEANO's Data Warehouse and handles both remotely sensed and in-water data. LOGIC provides a link between these data and the GIS-based Graphical User Interface, allowing the user to select data manipulation routines and/or system support products. The results of individual modules are displayed via the GIS to provide such products as lidar system performance, laser penetration depth, and asset vulnerability from a lidar threat. LOGIC is being developed for integration into other NAVOCEANO programs, most notably for Comprehensive Environmental Assessment System, an established tool supporting sonar-based systems. The prototype for LOGIC was developed for the Yellow Sea, focusing on a diver visibility support product.
Chavaillaz, Alain; Schwaninger, Adrian; Michel, Stefan; Sauer, Juergen
2018-05-25
The present study evaluated three automation modes for improving performance in an X-ray luggage screening task. 140 participants were asked to detect the presence of prohibited items in X-ray images of cabin luggage. Twenty participants conducted this task without automatic support (control group), whereas the others worked with either indirect cues (system indicated the target presence without specifying its location), or direct cues (system pointed out the exact target location) or adaptable automation (participants could freely choose between no cue, direct and indirect cues). Furthermore, automatic support reliability was manipulated (low vs. high). The results showed a clear advantage for direct cues regarding detection performance and response time. No benefits were observed for adaptable automation. Finally, high automation reliability led to better performance and higher operator trust. The findings overall confirmed that automatic support systems for luggage screening should be designed such that they provide direct, highly reliable cues.
NASA Astrophysics Data System (ADS)
Hughes, B. K.
2010-12-01
The mission of the National Oceanic and Atmospheric Administration (NOAA) National Environmental Data Information Service (NESDIS) is to provide timely access to global environmental data from satellites and other sources to promote, protect, and enhance America’s economy, security, environment, and quality of life. To fulfill its responsibilities, NESDIS acquires and manages America’s operational environmental satellites, operates the NOAA National Data Centers, provides data and information services including Earth system monitoring, performs official assessments of the environment, and conducts related research. The Nation’s fleet of operational environmental satellites has proven to be very critical in the detection, analysis, and forecast of natural or man-made phenomena. These assets have provided for the protection of people and property while safeguarding the Nation’s commerce and enabling safe and effective military operations. This presentation will take the audience through the evolution of operational satellite based remote sensing in support of weather forecasting, nowcasting, warning operations, hazard detection and mitigation. From the very first experiments involving radiation budget to today’s fleet of Geostationary and Polar Orbiting satellites to tomorrow’s constellation of high resolution imagers and hyperspectral sounders, environmental satellites sustain key observations for current and future generations.
NASA Technical Reports Server (NTRS)
Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Jackson, Chris; Price, Harold; Powers, Edward I. (Technical Monitor)
2000-01-01
The Operating Missions as Nodes on the Internet (OMNI) project at NASA's Goddard Space flight Center (GSFC), is demonstrating the use of standard Internet protocols for spacecraft communication systems. This year, demonstrations of Internet access to a flying spacecraft have been performed with the UoSAT-12 spacecraft owned and operated by Surrey Satellite Technology Ltd. (SSTL). Previously, demonstrations were performed using a ground satellite simulator and NASA's Tracking and Data Relay Satellite System (TDRSS). These activities are part of NASA's Space Operations Management Office (SOMO) Technology Program, The work is focused on defining the communication architecture for future NASA missions to support both NASA's "faster, better, cheaper" concept and to enable new types of collaborative science. The use of standard Internet communication technology for spacecraft simplifies design, supports initial integration and test across an IP based network, and enables direct communication between scientists and instruments as well as between different spacecraft, The most recent demonstrations consisted of uploading an Internet Protocol (IP) software stack to the UoSAT- 12 spacecraft, simple modifications to the SSTL ground station, and a series of tests to measure performance of various Internet applications. The spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 3 months. The tests included basic network connectivity (PING), automated clock synchronization (NTP), and reliable file transfers (FTP). Future tests are planned to include additional protocols such as Mobile IP, e-mail, and virtual private networks (VPN) to enable automated, operational spacecraft communication networks. The work performed and results of the initial phase of tests are summarized in this paper. This work is funded and directed by NASA/GSFC with technical leadership by CSC in arrangement with SSTL, and Vytek Wireless.
Technology for advanced liquefaction processes: Coal/waste coprocessing studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V.
1995-12-31
The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandiamore » National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.« less
The role of NASA for aerospace information
NASA Technical Reports Server (NTRS)
Chandler, G. P., Jr.
1980-01-01
The NASA Scientific and Technical Information Program operations are performed by two contractor operated facilities. The NASA STI Facility, located near Baltimore, Maryland, employs about 210 people who process report literature, operate the computer complex, and provide support for software maintenance and developments. A second contractor, the Technical Information Services of the American Institute of Aeronautics and Astronautics, employs approximately 80 people in New York City and processes the open literature such as journals, magazines, and books. Features of these programs include online access via RECON, announcement services, and international document exchange.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Universal Common Communication Substrate (UCCS) is a low-level communication substrate that exposes high-performance communication primitives, while providing network interoperability. It is intended to support multiple upper layer protocol (ULPs) or programming models including SHMEM,UPC,Titanium,Co-Array Fortran,Global Arrays,MPI,GASNet, and File I/O. it provides various communication operations including one-sided and two-sided point-to-point, collectives, and remote atomic operations. In addition to operations for ULPs, it provides an out-of-band communication channel required typically required to wire-up communication libraries.