The role of simulation in space operations training
NASA Astrophysics Data System (ADS)
Ocasio, Frank; Atkins, Dana
The expanding use of computer simulation to train aerospace personnel is reviewed emphasizing the increasing complexity of responsibilities in the operations segment. The inefficiency of on-the-job training is discussed, and the simulation technologies employed by the USAF Combat Crew Training Squadron are described. The Mission Control Complex-Kernel is employed to simulate an operational Satellite Control Squadron (SCS) and a downscaled SCS. A system for telemetry simulation is incorporated into the launch and early-orbit segments of the training, and the training emphasizes time-critical actions, schedule adherence, and the interaction with external organizations. Hands-on training is required to supplement the simulator training which cannot be used to simulate anomalies in satellites and ground systems. The use of a centralized simulator as an instructional tool facilitates and expedites the transition of the student to operational levels.
76 FR 20052 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... Guide 1.149, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... simulation facility for use in operator and senior operator training, license examination operating tests...
Models and Methods for Adaptive Management of Individual and Team-Based Training Using a Simulator
NASA Astrophysics Data System (ADS)
Lisitsyna, L. S.; Smetyuh, N. P.; Golikov, S. P.
2017-05-01
Research of adaptive individual and team-based training has been analyzed and helped find out that both in Russia and abroad, individual and team-based training and retraining of AASTM operators usually includes: production training, training of general computer and office equipment skills, simulator training including virtual simulators which use computers to simulate real-world manufacturing situation, and, as a rule, the evaluation of AASTM operators’ knowledge determined by completeness and adequacy of their actions under the simulated conditions. Such approach to training and re-training of AASTM operators stipulates only technical training of operators and testing their knowledge based on assessing their actions in a simulated environment.
Janssens, Sarah; Beckmann, Michael; Bonney, Donna
2015-08-01
Simulation training in laparoscopic surgery has been shown to improve surgical performance. To describe the implementation of a laparoscopic simulation training and credentialing program for gynaecology registrars. A pilot program consisting of protected, supervised laparoscopic simulation time, a tailored curriculum and a credentialing process, was developed and implemented. Quantitative measures assessing simulated surgical performance were measured over the simulation training period. Laparoscopic procedures requiring credentialing were assessed for both the frequency of a registrar being the primary operator and the duration of surgery and compared to a presimulation cohort. Qualitative measures regarding quality of surgical training were assessed pre- and postsimulation. Improvements were seen in simulated surgical performance in efficiency domains. Operative time for procedures requiring credentialing was reduced by 12%. Primary operator status in the operating theatre for registrars was unchanged. Registrar assessment of training quality improved. The introduction of a laparoscopic simulation training and credentialing program resulted in improvements in simulated performance, reduced operative time and improved registrar assessment of the quality of training. © 2015 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
Snowplow Simulator Training Study
DOT National Transportation Integrated Search
2011-01-01
This report evaluates simulation training of IDOT snowplow operators to improve IDOT snow and ice removal : operations. Specifically, it assesses a drivers evaluation of snowplow simulation training immediately after : training in fall 2009 and ag...
Dawe, Susan R; Windsor, John A; Broeders, Joris A J L; Cregan, Patrick C; Hewett, Peter J; Maddern, Guy J
2014-02-01
A systematic review to determine whether skills acquired through simulation-based training transfer to the operating room for the procedures of laparoscopic cholecystectomy and endoscopy. Simulation-based training assumes that skills are directly transferable to the operation room, but only a few studies have investigated the effect of simulation-based training on surgical performance. A systematic search strategy that was used in 2006 was updated to retrieve relevant studies. Inclusion of articles was determined using a predetermined protocol, independent assessment by 2 reviewers, and a final consensus decision. Seventeen randomized controlled trials and 3 nonrandomized comparative studies were included in this review. In most cases, simulation-based training was in addition to patient-based training programs. Only 2 studies directly compared simulation-based training in isolation with patient-based training. For laparoscopic cholecystectomy (n = 10 studies) and endoscopy (n = 10 studies), participants who reached simulation-based skills proficiency before undergoing patient-based assessment performed with higher global assessment scores and fewer errors in the operating room than their counterparts who did not receive simulation training. Not all parameters measured were improved. Two of the endoscopic studies compared simulation-based training in isolation with patient-based training with different results: for sigmoidoscopy, patient-based training was more effective, whereas for colonoscopy, simulation-based training was equally effective. Skills acquired by simulation-based training seem to be transferable to the operative setting for laparoscopic cholecystectomy and endoscopy. Future research will strengthen these conclusions by evaluating predetermined competency levels on the same simulators and using objective validated global rating scales to measure operative performance.
Validation of the train energy and dynamics simulator (TEDS).
DOT National Transportation Integrated Search
2015-01-01
FRA has developed Train Energy and Dynamics Simulator (TEDS) based upon a longitudinal train dynamics and operations : simulation model which allows users to conduct safety and risk evaluations, incident investigations, studies of train operations, :...
SimSup's Loop: A Control Theory Approach to Spacecraft Operator Training
NASA Technical Reports Server (NTRS)
Owens, Brandon Dewain; Crocker, Alan R.
2015-01-01
Immersive simulation is a staple of training for many complex system operators, including astronauts and ground operators of spacecraft. However, while much has been written about simulators, simulation facilities, and operator certification programs, the topic of how one develops simulation scenarios to train a spacecraft operator is relatively understated in the literature. In this paper, an approach is presented for using control theory as the basis for developing the immersive simulation scenarios for a spacecraft operator training program. The operator is effectively modeled as a high level controller of lower level hardware and software control loops that affect a select set of system state variables. Simulation scenarios are derived from a STAMP-based hazard analysis of the operator's high and low level control loops. The immersive simulation aspect of the overall training program is characterized by selecting a set of scenarios that expose the operator to the various inadequate control actions that stem from control flaws and inadequate control executions in the different sections of the typical control loop. Results from the application of this approach to the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are provided through an analysis of the simulation scenarios used for operator training and the actual anomalies that occurred during the mission. The simulation scenarios and inflight anomalies are mapped to specific control flaws and inadequate control executions in the different sections of the typical control loop to illustrate the characteristics of anomalies arising from the different sections of the typical control loop (and why it is important for operators to have exposure to these characteristics). Additionally, similarities between the simulation scenarios and inflight anomalies are highlighted to make the case that the simulation scenarios prepared the operators for the mission.
[Development of fixed-base full task space flight training simulator].
Xue, Liang; Chen, Shan-quang; Chang, Tian-chun; Yang, Hong; Chao, Jian-gang; Li, Zhi-peng
2003-01-01
Fixed-base full task flight training simulator is a very critical and important integrated training facility. It is mostly used in training of integrated skills and tasks, such as running the flight program of manned space flight, dealing with faults, operating and controlling spacecraft flight, communicating information between spacecraft and ground. This simulator was made up of several subentries including spacecraft simulation, simulating cabin, sight image, acoustics, main controlling computer, instructor and assistant support. It has implemented many simulation functions, such as spacecraft environment, spacecraft movement, communicating information between spacecraft and ground, typical faults, manual control and operating training, training control, training monitor, training database management, training data recording, system detecting and so on.
75 FR 29785 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... Guide, DG-1248, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... or acceptance of a nuclear power plant simulation facility for use in operator and senior operator...
U.S. DOT/TSC Train Performance Simulator
DOT National Transportation Integrated Search
1978-09-01
A Train Performance Simulator (TPS) is a computer program which simulates the operation of a train over a railway route. It may be used for a variety of purposes to determine the effects of some operational strategy or equipment change upon schedules...
Fu, Shangxi; Liu, Xiao; Zhou, Li; Zhou, Meisheng; Wang, Liming
2017-08-01
The purpose of this study was to estimate the effects of surgical laparoscopic operation course on laparoscopic operation skills after the simulated training for medical students with relatively objective results via data gained before and after the practice course of laparoscopic simulator of the resident standardized trainees. Experiment 1: 20 resident standardized trainees with no experience in laparoscopic surgery were included in the inexperienced group and finished simulated cholecystectomy according to simulator videos. Simulator data was collected (total operation time, path length, average speed of instrument movement, movement efficiency, number of perforations, the time cautery is applied without appropriate contact with adhesions, number of serious complications). Ten attending doctors were included in the experienced group and conducted the operation of simulated cholecystectomy directly. Data was collected with simulator. Data of two groups was compared. Experiment 2: Participants in inexperienced group were assigned to basic group (receiving 8 items of basic operation training) and special group (receiving 8 items of basic operation training and 4 items of specialized training), and 10 persons for each group. They received training course designed by us respectively. After training level had reached the expected target, simulated cholecystectomy was performed, and data was collected. Experimental data between basic group and special group was compared and then data between special group and experienced group was compared. Results of experiment 1 showed that there is significant difference between data in inexperienced group in which participants operated simulated cholecystectomy only according to instructors' teaching and operation video and data in experienced group. Result of experiment 2 suggested that, total operation time, number of perforations, number of serious complications, number of non-cauterized bleeding and the time cautery is applied without appropriate contact with adhesions in special group were all superior to those in basic group. There was no statistical difference on other data between special group and basic group. Comparing special group with experienced group, data of total operation time and the time cautery is applied without appropriate contact with adhesions in experienced group was superior to that in special group. There was no statistical difference on other data between special group and experienced group. Laparoscopic simulators are effective for surgical skills training. Basic courses could mainly improve operator's hand-eye coordination and perception of sense of the insertion depth for instruments. Specialized training courses could not only improve operator's familiarity with surgeries, but also reduce operation time and risk, and improve safety.
Multidisciplinary team simulation for the operating theatre: a review of the literature.
Tan, Shaw Boon; Pena, Guilherme; Altree, Meryl; Maddern, Guy J
2014-01-01
Analyses of adverse events inside the operating theatre has demonstrated that many errors are caused by failure in non-technical skills and teamwork. While simulation has been used successfully for teaching and improving technical skills, more recently, multidisciplinary simulation has been used for training team skills. We hypothesized that this type of training is feasible and improves team skills in the operating theatre. A systematic search of the literature for studies describing true multidisciplinary operating theatre team simulation was conducted in November and December 2012. We looked at the characteristics and outcomes of the team simulation programmes. 1636 articles were initially retrieved. Utilizing a stepwise evaluation process, 26 articles were included in the review. The studies reveal that multidisciplinary operating theatre simulation has been used to provide training in technical and non-technical skills, to help implement new techniques and technologies, and to identify latent weaknesses within a health system. Most of the studies included are descriptions of training programmes with a low level of evidence. No randomized control trial was identified. Participants' reactions to the training programme were positive in all studies; however, none of them could objectively demonstrate that skills acquired from simulation are transferred to the operating theatre or show a demonstrable benefit in patient outcomes. Multidisciplinary operating room team simulation is feasible and widely accepted by participants. More studies are required to assess the impact of this type of training on operative performance and patient safety. © 2013 Royal Australasian College of Surgeons.
Phasor Simulator for Operator Training Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, Jim
2016-09-14
Synchrophasor systems are being deployed in power systems throughout the North American Power Grid and there are plans to integrate this technology and its associated tools into Independent System Operator (ISO)/utility control room operations. A pre-requisite to using synchrophasor technologies in control rooms is for operators to obtain training and understand how to use this technology in real-time situations. The Phasor Simulator for Operator Training (PSOT) project objective was to develop, deploy and demonstrate a pre-commercial training simulator for operators on the use of this technology and to promote acceptance of the technology in utility and ISO/Regional Transmission Owner (RTO)more » control centers.« less
Numerical Simulation of Nonperiodic Rail Operation Diagram Characteristics
Qian, Yongsheng; Wang, Bingbing; Zeng, Junwei; Wang, Xin
2014-01-01
This paper succeeded in utilizing cellular automata (CA) model to simulate the process of the train operation under the four-aspect color light system and getting the nonperiodic diagram of the mixed passenger and freight tracks. Generally speaking, the concerned models could simulate well the situation of wagon in preventing trains from colliding when parking and restarting and of the real-time changes the situation of train speeds and displacement and get hold of the current train states in their departures and arrivals. Finally the model gets the train diagram that simulates the train operation in different ratios of the van and analyzes some parameter characters in the process of train running, such as time, speed, through capacity, interval departing time, and departing numbers. PMID:25435863
Guidelines for Line-Oriented Flight Training, Volume 1
NASA Technical Reports Server (NTRS)
Lauber, J. K.; Foushee, H. C.
1981-01-01
Line-Oriented Flight Training (LOFT) is a developing training technology which synthesizes high-fidelity aircraft simulation and high-fidelity line-operations simulation to provide realistic, dynamic pilot training in a simulated line environment. LOFT is an augmentation of existing pilot training which concentrates upon command, leadership, and resource management skills. This report, based on an NASA/Industry workshop held in January, 1981, is designed to serve as a handbook for LOFT users. In addition to providing background information, guidelines are presented for designing LOFT scenarios, conducting real-time LOFT operations, pilot debriefing, and instructor qualification and training. The final chapter addressed other uses of LOFT and line-operations (or full-mission) simulation.
Logistics of Trainsets Creation with the Use of Simulation Models
NASA Astrophysics Data System (ADS)
Sedláček, Michal; Pavelka, Hynek
2016-12-01
This paper focuses on rail transport in following the train formation operational processes problem using computer simulations. The problem has been solved using SIMUL8 and applied to specific train formation station in the Czech Republic. The paper describes a proposal simulation model of the train formation work. Experimental modeling with an assessment of achievements and design solution for optimizing of the train formation operational process is also presented.
Deuchler, Svenja; Wagner, Clemens; Singh, Pankaj; Müller, Michael; Al-Dwairi, Rami; Benjilali, Rachid; Schill, Markus; Ackermann, Hanns; Bon, Dimitra; Kohnen, Thomas; Schoene, Benjamin; Koss, Michael; Koch, Frank
2016-01-01
Purpose To evaluate the efficacy of the virtual reality training simulator Eyesi to prepare surgeons for performing pars plana vitrectomies and its potential to predict the surgeons’ performance. Methods In a preparation phase, four participating vitreoretinal surgeons performed repeated simulator training with predefined tasks. If a surgeon was assigned to perform a vitrectomy for the management of complex retinal detachment after a surgical break of at least 60 hours it was randomly decided whether a warmup training on the simulator was required (n = 9) or not (n = 12). Performance at the simulator was measured using the built-in scoring metrics. The surgical performance was determined by two blinded observers who analyzed the video-recorded interventions. One of them repeated the analysis to check for intra-observer consistency. The surgical performance of the interventions with and without simulator training was compared. In addition, for the surgeries with simulator training, the simulator performance was compared to the performance in the operating room. Results Comparing each surgeon’s performance with and without warmup trainingshowed a significant effect of warmup training onto the final outcome in the operating room. For the surgeries that were preceeded by the warmup procedure, the performance at the simulator was compared with the operating room performance. We found that there is a significant relation. The governing factor of low scores in the simulator were iatrogenic retinal holes, bleedings and lens damage. Surgeons who caused minor damage in the simulation also performed well in the operating room. Conclusions Despite the large variation of conditions, the effect of a warmup training as well as a relation between the performance at the simulator and in the operating room was found with statistical significance. Simulator training is able to serve as a warmup to increase the average performance. PMID:26964040
Virtual operating room for team training in surgery.
Abelson, Jonathan S; Silverman, Elliott; Banfelder, Jason; Naides, Alexandra; Costa, Ricardo; Dakin, Gregory
2015-09-01
We proposed to develop a novel virtual reality (VR) team training system. The objective of this study was to determine the feasibility of creating a VR operating room to simulate a surgical crisis scenario and evaluate the simulator for construct and face validity. We modified ICE STORM (Integrated Clinical Environment; Systems, Training, Operations, Research, Methods), a VR-based system capable of modeling a variety of health care personnel and environments. ICE STORM was used to simulate a standardized surgical crisis scenario, whereby participants needed to correct 4 elements responsible for loss of laparoscopic visualization. The construct and face validity of the environment were measured. Thirty-three participants completed the VR simulation. Attendings completed the simulation in less time than trainees (271 vs 201 seconds, P = .032). Participants felt the training environment was realistic and had a favorable impression of the simulation. All participants felt the workload of the simulation was low. Creation of a VR-based operating room for team training in surgery is feasible and can afford a realistic team training environment. Copyright © 2015 Elsevier Inc. All rights reserved.
Leveraging Simulation Against the F-16 Flying Training Gap
2005-11-01
must leverage emerging simulation technology into combined flight training to counter mission employment complexity created by technology itself...two or more of these stand-alone simulators creates a mission training center (MTC), which when further networked create distributed mission...operations (DMO). Ultimately, the grand operational vision of DMO is to interconnect non-collocated users creating a “virtual” joint training environment
NASA Astrophysics Data System (ADS)
Gao, Jie; Zheng, Jianrong; Zhao, Yinghui
2017-08-01
With the rapid development of LNG vehicle in China, the operator's training and assessment of the operating skills cannot operate on material objects, because of Vehicle Gas Cylinder's high pressure, flammable and explosive characteristics. LNG Vehicle Gas Cylinder's filling simulation system with semi-physical simulation technology presents the overall design and procedures of the simulation system, and elaborates the realization of the practical analog machine, data acquisition and control system and the computer software, and introduces the design process of equipment simulation model in detail. According to the designed assessment system of the Vehicle Gas Cylinder, it can obtain the operation on the actual cylinder filling and visual effects for the operator, and automatically record operation, the results of real operation with its software, and achieve the operators' training and assessment of operating skills on mobile special equipment.
ERIC Educational Resources Information Center
Lin, Che-Hung; Yen, Yu-Ren; Wu, Pai-Lu
2015-01-01
The aim of this study was to develop a store service operations practice course based on simulation-based training of video clip instruction. The action research of problem-solving strategies employed for teaching are by simulated store operations. The counter operations course unit used as an example, this study developed 4 weeks of subunits for…
49 CFR 239.103 - Passenger train emergency simulations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Passenger train emergency simulations. 239.103....103 Passenger train emergency simulations. (a) General. Each railroad operating passenger train service shall conduct full-scale emergency simulations, in order to determine its capability to execute...
49 CFR 239.103 - Passenger train emergency simulations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Passenger train emergency simulations. 239.103....103 Passenger train emergency simulations. (a) General. Each railroad operating passenger train service shall conduct full-scale emergency simulations, in order to determine its capability to execute...
49 CFR 239.103 - Passenger train emergency simulations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Passenger train emergency simulations. 239.103....103 Passenger train emergency simulations. (a) General. Each railroad operating passenger train service shall conduct full-scale emergency simulations, in order to determine its capability to execute...
49 CFR 239.103 - Passenger train emergency simulations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Passenger train emergency simulations. 239.103....103 Passenger train emergency simulations. (a) General. Each railroad operating passenger train service shall conduct full-scale emergency simulations, in order to determine its capability to execute...
14 CFR 121.915 - Continuing qualification curriculum.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...
14 CFR 121.915 - Continuing qualification curriculum.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...
14 CFR 121.915 - Continuing qualification curriculum.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...
Current status of robotic simulators in acquisition of robotic surgical skills.
Kumar, Anup; Smith, Roger; Patel, Vipul R
2015-03-01
This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight simulator, or in a flight training device. This paragraph applies after March 19, 1997. (b) The... simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training... simulator or in a flight training device. (2) Training in the operation of flight simulators or flight...
Code of Federal Regulations, 2013 CFR
2013-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2014 CFR
2014-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2011 CFR
2011-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2012 CFR
2012-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2010 CFR
2010-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2014 CFR
2014-01-01
... accordance with subpart C of this part. Line-Operational Simulation means simulation conducted using... operations. Line operational simulation simulations are conducted for training and evaluation purposes and include random, abnormal, and emergency occurrences. Line operational simulation specifically includes...
Virtual reality simulators and training in laparoscopic surgery.
Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos
2015-01-01
Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Hybrid simulation: bringing motivation to the art of teamwork training in the operating room.
Kjellin, A; Hedman, L; Escher, C; Felländer-Tsai, L
2014-12-01
Crew resource management-based operating room team training will be an evident part of future surgical training. Hybrid simulation in the operating room enables the opportunity for trainees to perform higher fidelity training of technical and non-technical skills in a realistic context. We focus on situational motivation and self-efficacy, two important factors for optimal learning in light of a prototype course for teams of residents in surgery and anesthesiology and nurses. Authentic operating room teams consisting of residents in anesthesia (n = 2), anesthesia nurses (n = 3), residents in surgery (n = 2), and scrub nurses (n = 6) were, during a one-day course, exposed to four different scenarios. Their situational motivation was self-assessed (ranging from 1 = does not correspond at all to 7 = corresponds exactly) immediately after training, and their self-efficacy (graded from 1 to 7) before and after training. Training was performed in a mock-up operating theater equipped with a hybrid patient simulator (SimMan 3G; Laerdal) and a laparoscopic simulator (Lap Mentor Express; Simbionix). The functionality of the systematic hybrid procedure simulation scenario was evaluated by an exit questionnaire (graded from 1 = disagree entirely to 5 = agree completely). The trainees were mostly intrinsically motivated, engaged for their own sake, and had a rather great degree of self-determination toward the training situation. Self-efficacy among the team members improved significantly from 4 to 6 (median). Overall evaluation showed very good result with a median grading of 5. We conclude that hybrid simulation is feasible and has the possibility to train an authentic operating team in order to improve individual motivation and confidence. © The Finnish Surgical Society 2014.
Code of Federal Regulations, 2013 CFR
2013-01-01
... instruction in accordance with subpart C of this part. Line-Operational Simulation means simulation conducted..., and ground operations. Line operational simulation simulations are conducted for training and evaluation purposes and include random, abnormal, and emergency occurrences. Line operational simulation...
Code of Federal Regulations, 2012 CFR
2012-01-01
... instruction in accordance with subpart C of this part. Line-Operational Simulation means simulation conducted..., and ground operations. Line operational simulation simulations are conducted for training and evaluation purposes and include random, abnormal, and emergency occurrences. Line operational simulation...
Code of Federal Regulations, 2011 CFR
2011-01-01
... instruction in accordance with subpart C of this part. Line-Operational Simulation means simulation conducted..., and ground operations. Line operational simulation simulations are conducted for training and evaluation purposes and include random, abnormal, and emergency occurrences. Line operational simulation...
Larsen, Christian Rifbjerg; Oestergaard, Jeanett; Ottesen, Bent S; Soerensen, Jette Led
2012-09-01
Virtual reality (VR) simulators for surgical training might possess the properties needed for basic training in laparoscopy. Evidence for training efficacy of VR has been investigated by research of varying quality over the past decade. To review randomized controlled trials regarding VR training efficacy compared with traditional or no training, with outcome measured as surgical performance in humans or animals. In June 2011 Medline, Embase, the Cochrane Central Register of Controlled Trials, Web of Science and Google Scholar were searched using the following medical subject headings (MeSh) terms: Laparoscopy/standards, Computing methodologies, Programmed instruction, Surgical procedures, Operative, and the following free text terms: Virtual real* OR simulat* AND Laparoscop* OR train* Controlled trials. All randomized controlled trials investigating the effect of VR training in laparoscopy, with outcome measured as surgical performance. A total of 98 studies were screened, 26 selected and 12 included, with a total of 241 participants. Operation time was reduced by 17-50% by VR training, depending on simulator type and training principles. Proficiency-based training appeared superior to training based on fixed time or fixed numbers of repetition. Simulators offering training for complete operative procedures came out as more efficient than simulators offering only basic skills training. Skills in laparoscopic surgery can be increased by proficiency-based procedural VR simulator training. There is substantial evidence (grade IA - IIB) to support the use of VR simulators in laparoscopic training. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.
Virtual Reality Simulator Systems in Robotic Surgical Training.
Mangano, Alberto; Gheza, Federico; Giulianotti, Pier Cristoforo
2018-06-01
The number of robotic surgical procedures has been increasing worldwide. It is important to maximize the cost-effectiveness of robotic surgical training and safely reduce the time needed for trainees to reach proficiency. The use of preliminary lab training in robotic skills is a good strategy for the rapid acquisition of further, standardized robotic skills. Such training can be done either by using a simulator or by exercises in a dry or wet lab. While the use of an actual robotic surgical system for training may be problematic (high cost, lack of availability), virtual reality (VR) simulators can overcome many of these obstacles. However, there is still a lack of standardization. Although VR training systems have improved, they cannot yet replace experience in a wet lab. In particular, simulated scenarios are not yet close enough to a real operative experience. Indeed, there is a difference between technical skills (i.e., mechanical ability to perform a simulated task) and surgical competence (i.e., ability to perform a real surgical operation). Thus, while a VR simulator can replace a dry lab, it cannot yet replace training in a wet lab or operative training in actual patients. However, in the near future, it is expected that VR surgical simulators will be able to provide total reality simulation and replace training in a wet lab. More research is needed to produce more wide-ranging, trans-specialty robotic curricula.
Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
Generalized Operations Simulation Environment for Aircraft Maintenance Training
2004-04-01
Operations Simulation Environment ( GOSE ) project is a collaborative effort between AETC and AFRL to develop common, cost-effective, generalized VR training...maintenance training domain since it provided an opportunity to build on the VEST architecture. Development of GOSE involves re-engineering VEST as a scalable...modular, immersive VR training system comprised of PC-based hardware and software. GOSE initiatives include: (a) formalize training needs across
Transfer of Training from Simulators to Operational Equipment--Are Simulators Effective?
ERIC Educational Resources Information Center
Thomson, Douglas R.
1989-01-01
Examines the degree of fidelity required of a computer simulation to ensure maximum transfer of training. Simulators used in the military services for training pilots are described; relationships between fidelity, transfer, and cost are explored; and feedback to the student and measures of training effectiveness are discussed. (nine references)…
Snowplow simulator training evaluation : research notes
DOT National Transportation Integrated Search
2006-11-01
Two years of experience with simulator training for snowplow operators in Arizona leaves an optimistic feeling about the potential of simulators as an integral part of comprehensive winter maintenance and driver-skill training programs. Further resea...
Shetty, Shohan; Zevin, Boris; Grantcharov, Teodor P; Roberts, Kurt E; Duffy, Andrew J
2014-01-01
Simulation training for surgical residents can shorten learning curves, improve technical skills, and expedite competency. Several studies have shown that skills learned in the simulated environment are transferable to the operating room. Residency programs are trying to incorporate simulation into the resident training curriculum to supplement the hands-on experience gained in the operating room. Despite the availability and proven utility of surgical simulators and simulation laboratories, they are still widely underutilized by surgical trainees. Studies have shown that voluntary use leads to minimal participation in a training curriculum. Although there are several simulation tools, there is no clear evidence of the superiority of one tool over the other in skill acquisition. The purpose of this study was to explore resident perceptions, training experiences, and preferences regarding laparoscopic simulation training. Our goal was to profile resident participation in surgical skills simulation, recognize potential barriers to voluntary simulator use, and identify simulation tools and tasks preferred by residents. Furthermore, this study may help to inform whether mandatory/protected training time, as part of the residents' curriculum is essential to enhance participation in the simulation laboratory. A cross-sectional study on general surgery residents (postgraduate years 1-5) at Yale University School of Medicine and the University of Toronto via an online questionnaire was conducted. Overall, 67 residents completed the survey. The institutional review board approved the methods of the study. Overall, 95.5% of the participants believed that simulation training improved their laparoscopic skills. Most respondents (92.5%) perceived that skills learned during simulation training were transferrable to the operating room. Overall, 56.7% of participants agreed that proficiency in a simulation curriculum should be mandatory before operating room experience. The simulation laboratory was most commonly used during work hours; lack of free time during work hours was most commonly cited as a reason for underutilization. Factors influencing use of the simulation laboratory in order of importance were the need for skill development, an interest in minimally invasive surgery, mandatory/protected time in a simulation environment as part of the residency program curriculum, a recommendation by an attending surgeon, and proximity of the simulation center. The most preferred simulation tool was the live animal model followed by cadaveric tissue. Virtual reality simulators were among the least-preferred (25%) simulation tools. Most residents (91.0%) felt that mandatory/protected time in a simulation environment should be introduced into resident training protocols. Mandatory and protected time in a simulation environment as part of the resident training curriculum may improve participation in simulation training. A comprehensive curriculum, which includes the use of live animals, cadaveric tissue, and virtual reality simulators, may enhance the laparoscopic training experience and interest level of surgical trainees. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Helicopter simulation: Making it work
NASA Technical Reports Server (NTRS)
Payne, Barry
1992-01-01
The opportunities for improved training and checking by using helicopter simulators are greater than they are for airplane pilot training. Simulators permit the safe creation of training environments that are conducive to the development of pilot decision-making, situational awareness, and cockpit management. This paper defines specific attributes required in a simulator to meet a typical helicopter operator's training and checking objectives.
1984-12-01
best trained by instruction alone or with simple demonstration materials. Training Devices are judged best for training the routine use of specific...pieces of equipment (e.g., Howitzer, BCS, DMD/FIST DMD, GLLD, LRF, map/compass/ plotting tools). Simulations are judged best for training more complex...at all phases of engagement operations. Simulations are also judged best for conducting training of any task under extreme environments and
Wang, Yu; Guo, Shuxiang; Tamiya, Takashi; Hirata, Hideyuki; Ishihara, Hidenori; Yin, Xuanchun
2017-09-01
Endovascular surgery benefits patients because of its superior short convalescence and lack of damage to healthy tissue. However, such advantages require the operator to be equipped with dexterous skills for catheter manipulation without resulting in collateral damage. To achieve this goal, a training system is in high demand. A training system integrating a VR simulator and a haptic device has been developed within this context. The VR simulator is capable of providing visual cues which assist the novice for safe catheterization. In addition, the haptic device cooperates with VR simulator to apply sensations at the same time. The training system was tested by non-medical subjects over a five days training session. The performance was evaluated in terms of safety criteria and task completion time. The results demonstrate that operation safety is improved by 15.94% and task completion time is cut by 18.80 s maximum. Moreover, according to subjects' reflections, they are more confident in operation. The proposed training system constructs a comprehensive training environment that combines visualization and force sensation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Longitudinal train dynamics: an overview
NASA Astrophysics Data System (ADS)
Wu, Qing; Spiryagin, Maksym; Cole, Colin
2016-12-01
This paper discusses the evolution of longitudinal train dynamics (LTD) simulations, which covers numerical solvers, vehicle connection systems, air brake systems, wagon dumper systems and locomotives, resistance forces and gravitational components, vehicle in-train instabilities, and computing schemes. A number of potential research topics are suggested, such as modelling of friction, polymer, and transition characteristics for vehicle connection simulations, studies of wagon dumping operations, proper modelling of vehicle in-train instabilities, and computing schemes for LTD simulations. Evidence shows that LTD simulations have evolved with computing capabilities. Currently, advanced component models that directly describe the working principles of the operation of air brake systems, vehicle connection systems, and traction systems are available. Parallel computing is a good solution to combine and simulate all these advanced models. Parallel computing can also be used to conduct three-dimensional long train dynamics simulations.
Simulator training to minimize ionizing radiation exposure in the catheterization laboratory.
Katz, Aric; Shtub, Avraham; Solomonica, Amir; Poliakov, Adva; Roguin, Ariel
2017-03-01
To learn about radiation and how to lower it. Patients and operators are routinely exposed to high doses of ionizing radiation during catheterization procedures. This increased exposure to ionizing radiation is partially due to a lack of awareness to the effects of ionizing radiation, and lack of knowledge on the distribution and behavior of scattered radiation. A simulator, which incorporates data on scattered ionizing radiation, was built based on multiple phantom measurements and used for teaching radiation safety. The validity of the simulator was confirmed in three catheterization laboratories and tested by 20 interventional cardiologists. All evaluators were tested by an objective knowledge examination before, immediately following, and 12 weeks after simulator-based learning and training. A subjective Likert questionnaire on satisfaction with simulation-based learning and training was also completed. The 20 evaluators learned and retained the knowledge that they gained from using the simulator: the average scores of the knowledge examination pre-simulator training was 54 ± 15% (mean ± standard deviation), and this score significantly increased after training to 94 ± 10% (p < 0.001). The evaluators also reported high levels of satisfaction following simulation-based learning and training according to the results of the subjective Likert questionnaire. Simulators can be used to train cardiology staff and fellows and to further educate experienced personnel on radiation safety. As a result of simulator training, the operator gains knowledge, which can then be applied in the catheterization laboratory in order to reduce radiation doses to the patient and to the operator, thereby improving the safety of the intervention.
Issues related to line-oriented flight training
NASA Technical Reports Server (NTRS)
Lauber, J. K.
1981-01-01
The use of a training simulator along with carefully structured, detailed, line trip scenarios was envisioned by NASA as a means of providing a controllable, repeatable way to observe line crews in a highly realistic simulation of their working environment and obtain better understanding operationally significant human factors problems and issues. Relevant research done by the agency and the results of full-mission simulation scenarios revealed potential implications for flight training. Aspects to be considered in creating training programs closely related to the actual line environment with a total crew application in real world incident experiences include: (1) operational, environmental, equipment, and crew problems in scenario design; (2) real time line oriented flight training operation; (3) performance assessment and debriefing; (4) instructor qualification and training; and (5) other issues such as ub un initial, transition, and upgrade training; procedures developent and evaluation, and equipment evaluation.
Hinde, Theresa; Gale, Thomas; Anderson, Ian; Roberts, Martin; Sice, Paul
2016-01-01
Interprofessional point of care or in situ simulation is used as a training tool in our operating theatre directorate with the aim of improving crisis behaviours. This study aimed to assess the impact of interprofessional point of care simulation on the safety culture of operating theatres. A validated Safety Attitude Questionnaire was administered to staff members before each simulation scenario and then re-administered to the same staff members after 6-12 months. Pre- and post-training Safety Attitude Questionnaire-Operating Room (SAQ-OR) scores were compared using paired sample t-tests. Analysis revealed a statistically significant perceived improvement in both safety (p < 0.001) and teamwork (p = 0.013) climate scores (components of safety culture) 6-12 months after interprofessional simulation training. A growing body of literature suggests that a positive safety culture is associated with improved patient outcomes. Our study supports the implementation of point of care simulation as a useful intervention to improve safety culture in theatres.
Stefanidis, Dimitrios; Scerbo, Mark W; Montero, Paul N; Acker, Christina E; Smith, Warren D
2012-01-01
We hypothesized that novices will perform better in the operating room after simulator training to automaticity compared with traditional proficiency based training (current standard training paradigm). Simulator-acquired skill translates to the operating room, but the skill transfer is incomplete. Secondary task metrics reflect the ability of trainees to multitask (automaticity) and may improve performance assessment on simulators and skill transfer by indicating when learning is complete. Novices (N = 30) were enrolled in an IRB-approved, blinded, randomized, controlled trial. Participants were randomized into an intervention (n = 20) and a control (n = 10) group. The intervention group practiced on the FLS suturing task until they achieved expert levels of time and errors (proficiency), were tested on a live porcine fundoplication model, continued simulator training until they achieved expert levels on a visual spatial secondary task (automaticity) and were retested on the operating room (OR) model. The control group participated only during testing sessions. Performance scores were compared within and between groups during testing sessions. : Intervention group participants achieved proficiency after 54 ± 14 and automaticity after additional 109 ± 57 repetitions. Participants achieved better scores in the OR after automaticity training [345 (range, 0-537)] compared with after proficiency-based training [220 (range, 0-452; P < 0.001]. Simulator training to automaticity takes more time but is superior to proficiency-based training, as it leads to improved skill acquisition and transfer. Secondary task metrics that reflect trainee automaticity should be implemented during simulator training to improve learning and skill transfer.
SCE&G Cope Station simulator training program development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stottlemire, J.L.; Fabry, R.
1996-11-01
South Carolina Electric and Gas Company made a significant investment into meeting the needs of their customers in designing and building the new fossil Generating Station near Cope, South Carolina. Cope Station is a state-of-the-art, 385 MW plant, with equipment and design features that will provide the plant with the capabilities of achieving optimum availability and capability. SCE&G has also implemented a team concept approach to plant organization at Cope Station. The modern plant design, operating philosophy, and introduction of a large percentage of new operations personnel presented a tremendous challenge in preparing for plant commissioning and commercial operation. SCE&G`smore » answer to this challenge was to hire an experienced operations trainer, and implement a comprehensive training program. An important part of the training investment was the procurement of a plant specific control room simulator. SCE&G, through tailored collaboration with the Electric Power Research Institute (EPRI), developed a specification for a simulator with the features necessary for training the initial plant staff as well as advanced operator training. The high-fidelity CRT based training simulator is a stimulated system that completely and accurately simulates the various plant systems, process startups, shutdowns, normal operating scenarios, and malfunctions. The process model stimulates a Foxboro Distributed Control System consisting of twelve control processors, five WP51 work stations, and one AW51 file server. The workstations, file server and support hardware and software necessary to interface with ESSCOR`s FSIM4 software was provided by Foxoboro.« less
NASA Technical Reports Server (NTRS)
1976-01-01
Specific products and functions, and associated facility availability, applicable to preflight planning of flight operations were studied. Training and simulation activities involving joint participation of STS and payload operations organizations, are defined. The prelaunch activities required to prepare for the payload flight operations are emphasized.
Brewin, James; Tang, Jessica; Dasgupta, Prokar; Khan, Muhammad S; Ahmed, Kamran; Bello, Fernando; Kneebone, Roger; Jaye, Peter
2015-07-01
To evaluate the face, content and construct validity of the distributed simulation (DS) environment for technical and non-technical skills training in endourology. To evaluate the educational impact of DS for urology training. DS offers a portable, low-cost simulated operating room environment that can be set up in any open space. A prospective mixed methods design using established validation methodology was conducted in this simulated environment with 10 experienced and 10 trainee urologists. All participants performed a simulated prostate resection in the DS environment. Outcome measures included surveys to evaluate the DS, as well as comparative analyses of experienced and trainee urologist's performance using real-time and 'blinded' video analysis and validated performance metrics. Non-parametric statistical methods were used to compare differences between groups. The DS environment demonstrated face, content and construct validity for both non-technical and technical skills. Kirkpatrick level 1 evidence for the educational impact of the DS environment was shown. Further studies are needed to evaluate the effect of simulated operating room training on real operating room performance. This study has shown the validity of the DS environment for non-technical, as well as technical skills training. DS-based simulation appears to be a valuable addition to traditional classroom-based simulation training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.
MSFC Skylab neutral buoyancy simulator
NASA Technical Reports Server (NTRS)
1974-01-01
The use of a neutral buoyancy simulator for developing extravehicular activity systems and for training astronauts in weightless activities is discussed. The construction of the facility and the operations are described. The types of tests and the training activities conducted in the simulator are reported. Photographs of the components of the simulator and actual training exercises are included.
Stefan, P; Pfandler, M; Wucherer, P; Habert, S; Fürmetz, J; Weidert, S; Euler, E; Eck, U; Lazarovici, M; Weigl, M; Navab, N
2018-04-01
Surgical simulators are being increasingly used as an attractive alternative to clinical training in addition to conventional animal models and human specimens. Typically, surgical simulation technology is designed for the purpose of teaching technical surgical skills (so-called task trainers). Simulator training in surgery is therefore in general limited to the individual training of the surgeon and disregards the participation of the rest of the surgical team. The objective of the project Assessment and Training of Medical Experts based on Objective Standards (ATMEOS) is to develop an immersive simulated operating room environment that enables the training and assessment of multidisciplinary surgical teams under various conditions. Using a mixed reality approach, a synthetic patient model, real surgical instruments and radiation-free virtual X‑ray imaging are combined into a simulation of spinal surgery. In previous research studies, the concept was evaluated in terms of realism, plausibility and immersiveness. In the current research, assessment measurements for technical and non-technical skills are developed and evaluated. The aim is to observe multidisciplinary surgical teams in the simulated operating room during minimally invasive spinal surgery and objectively assess the performance of the individual team members and the entire team. Moreover, the effectiveness of training methods and surgical techniques or success critical factors, e. g. management of crisis situations, can be captured and objectively assessed in the controlled environment.
Implementation and evaluation of a dilation and evacuation simulation training curriculum.
York, Sloane L; McGaghie, William C; Kiley, Jessica; Hammond, Cassing
2016-06-01
To evaluate obstetrics and gynecology resident physicians' performance following a simulation curriculum on dilation and evacuation (D&E) procedures. This study included two phases: simulation curriculum development and resident physician performance evaluation following training on a D&E simulator. Trainees participated in two evaluations. Simulation training evaluated participants performing six cases on a D&E simulator, measuring procedural time and a 26-step checklist of D&E steps. The operative training portion evaluated residents' performance after training on the simulator using mastery learning techniques. Intra-operative evaluation was based on a 21-step checklist score, Objective Structured Assessment of Technical Skills (OSATS), and percentage of cases completed. Twenty-two residents participated in simulation training, demonstrating improved performance from cases one and two to cases five and six, as measured by checklist score and procedural time (p<.001 and p=.001, respectively). Of 10 participants in the operative training, all performed at least three D&Es, while seven performed at least six cases. While checklist scores did not change significantly from the first to sixth case (mean for first case: 18.3; for sixth case: 19.6; p=.593), OSATS ratings improved from case one (19.7) to case three (23.5; p=.001) and to case six (26.8; p=.005). Trainees completed approximately 71.6% of their first case (range: 21.4-100%). By case six, the six participants performed 81.2% of the case (range: 14.3-100%). D&E simulation using a newly-developed uterine model and simulation curriculum improves resident technical skills. Simulation training with mastery learning techniques transferred to high level of performance in OR using checklist. The OSATS measured skills and showed improvement in performance with subsequent cases. Implementation of a D&E simulation curriculum offers potential for improved surgical training and abortion provision. Copyright © 2016 Elsevier Inc. All rights reserved.
Payload IVA training and simulation
NASA Technical Reports Server (NTRS)
Monsees, J. H.
1982-01-01
The development of a training program for the intravehicular operation of space shuttle payloads is discussed. The priorities for the program are compliance with established training standards, and accommodating changes. Simulation devices are also reviewed.
Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji
2015-11-01
Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P < 0.001), left and right instrument path length (P = 0.001), and left and right instrument economy of movement (P < 0.001) were significantly shorter after than before the LapSim training. With respect to improvement in laparoscopic cholecystectomy using a gallbladder model, the execution time to identify, clip, and cut the cystic duct and cystic artery as well as the execution time to dissect the gallbladder away from the liver bed were both significantly shorter after than before the LapSim training (P = 0.01). Our training curriculum using a virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
14 CFR 61.1 - Applicability and definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of this part: (1) Aeronautical experience means pilot time obtained in an aircraft, flight simulator... simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device. (16) Practical test means a test on the areas of operations...
14 CFR 61.1 - Applicability and definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of this part: (1) Aeronautical experience means pilot time obtained in an aircraft, flight simulator... simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device. (16) Practical test means a test on the areas of operations...
None
2018-02-13
NETL's Advanced Virtual Energy Simulation Training and Research, or AVESTAR, Center is designed to promote operational excellence for the nation's energy systems, from smart power plants to smart grid. The AVESTAR Center brings together advanced dynamic simulation and control technologies, state-of-the-art simulation-based training facilities, and leading industry experts to focus on the optimal operation of clean energy plants in the smart grid era.
ERIC Educational Resources Information Center
Naval Training Equipment Center, Orlando, FL. Training Analysis and Evaluation Group.
This report summarizes, evaluates, and synthesizes the data on the training value of training devices. The report discusses the issues of substitution of some operational training time by training devices and the relationship between training effectiveness and cost (fidelity of simulation). These general conclusions were made: 1) Experiments…
The role of simulation in surgical training.
Torkington, J.; Smith, S. G.; Rees, B. I.; Darzi, A.
2000-01-01
Surgical training has undergone many changes in the last decade. One outcome of these changes is the interest that has been generated in the possibility of training surgical skills outside the operating theatre. Simulation of surgical procedures and human tissue, if perfect, would allow complete transfer of techniques learnt in a skills laboratory directly to the operating theatre. Several techniques of simulation are available including artificial tissues, animal models and virtual reality computer simulation. Each is discussed in this article and their advantages and disadvantages considered. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10743423
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
Transfer of training for aerospace operations: How to measure, validate, and improve it
NASA Technical Reports Server (NTRS)
Cohen, Malcolm M.
1993-01-01
It has been a commonly accepted practice to train pilots and astronauts in expensive, extremely sophisticated, high fidelity simulators, with as much of the real-world feel and response as possible. High fidelity and high validity have often been assumed to be inextricably interwoven, although this assumption may not be warranted. The Project Mercury rate-damping task on the Naval Air Warfare Center's Human Centrifuge Dynamic Flight Simulator, the shuttle landing task on the NASA-ARC Vertical Motion Simulator, and the almost complete acceptance by the airline industry of full-up Boeing 767 flight simulators, are just a few examples of this approach. For obvious reasons, the classical models of transfer of training have never been adequately evaluated in aerospace operations, and there have been few, if any, scientifically valid replacements for the classical models. This paper reviews some of the earlier work involving transfer of training in aerospace operations, and discusses some of the methods by which appropriate criteria for assessing the validity of training may be established.
Payload Crew Training Complex (PCTC) utilization and training plan
NASA Technical Reports Server (NTRS)
Self, M. R.
1980-01-01
The physical facilities that comprise the payload crew training complex (PCTC) are described including the host simulator; experiment simulators; Spacelab aft flight deck, experiment pallet, and experiment rack mockups; the simulation director's console; payload operations control center; classrooms; and supporting soft- and hardware. The parameters of a training philosophy for payload crew training at the PCTC are established. Finally the development of the training plan is addressed including discussions of preassessment, and evaluation options.
Review of 3-Dimensional Printing on Cranial Neurosurgery Simulation Training.
Vakharia, Vejay N; Vakharia, Nilesh N; Hill, Ciaran S
2016-04-01
Shorter working times, reduced operative exposure to complex procedures, and increased subspecialization have resulted in training constraints within most surgical fields. Simulation has been suggested as a possible means of acquiring new surgical skills without exposing patients to the surgeon's operative "learning curve." Here we review the potential impact of 3-dimensional printing on simulation and training within cranial neurosurgery and its implications for the future. In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a comprehensive search of PubMed, OVID MEDLINE, Embase, and the Cochrane Database of Systematic Reviews was performed. In total, 31 studies relating to the use of 3-dimensional (3D) printing within neurosurgery, of which 16 were specifically related to simulation and training, were identified. The main impact of 3D printing on neurosurgical simulation training was within vascular surgery, where patient-specific replication of vascular anatomy and pathologies can aid surgeons in operative planning and clip placement for reconstruction of vascular anatomy. Models containing replicas of brain tumors have also been reconstructed and used for training purposes, with some providing realistic representations of skin, subcutaneous tissue, bone, dura, normal brain, and tumor tissue. 3D printing provides a unique means of directly replicating patient-specific pathologies. It can identify anatomic variation and provide a medium in which training models can be generated rapidly, allowing the trainee and experienced neurosurgeon to practice parts of operations preoperatively. Future studies are required to validate this technology in comparison with current simulators and show improved patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Wen, Guodao; Cong, ZiXiang; Liu, KaiDong; Tang, Chao; Zhong, Chunyu; Li, Liwen; Dai, XuJie; Ma, Chiyuan
2016-06-01
We aimed to present a practical three-dimensional (3D) printed simulator to comprehensively and effectively accelerate the learning curve of endoscopic endonasal transsphenoidal surgery (EETS). The 3D printed simulator consists of three parts: (1) skull frame, (2) the nasal passage and the nasal alar of the face, and (3) a modified sella turcica. We aimed to improve three basic operational skills of surgeons: drilling, curetting, and aspirating. Eighteen neurosurgeons and five post-graduates were recruited and consented for the training. For trainees, (1) as the training progressed, the scores increased gradually, (2) a significant increase in the average scores was observed in the tenth training compared to the first training, and (3) there is a significant decrease in trainee variability in the shortening of the gap. The 18 neurosurgeons were divided into three groups: experts, assistants, and observers. For all three basic operations, (1) the average score of experts was obviously higher than that of the assistants, observers, and trainees' tenth training and (2) the average scores of assistants and observers were obviously higher than that of trainees' first training. A significant high in the average score between the assistants and the observers was seen for aspirating, but not for drilling or curetting. For curetting and aspirating, the tenth training average score of trainees was obviously higher than that of assistants and observers. This 3D printed simulator allows different endoscopic basic operations to be simulated and improves the EETS techniques of surgeons. We believed it to be a practical, simple, and low-cost simulator.
Test and training simulator for ground-based teleoperated in-orbit servicing
NASA Technical Reports Server (NTRS)
Schaefer, Bernd E.
1989-01-01
For the Post-IOC(In-Orbit Construction)-Phase of COLUMBUS it is intended to use robotic devices for the routine operations of ground-based teleoperated In-Orbit Servicing. A hardware simulator for verification of the relevant in-orbit operations technologies, the Servicing Test Facility, is necessary which mainly will support the Flight Control Center for the Manned Space-Laboratories for operational specific tasks like system simulation, training of teleoperators, parallel operation simultaneously to actual in-orbit activities and for the verification of the ground operations segment for telerobotics. The present status of definition for the facility functional and operational concept is described.
Laparoscopic Skills Are Improved With LapMentor™ Training
Andreatta, Pamela B.; Woodrum, Derek T.; Birkmeyer, John D.; Yellamanchilli, Rajani K.; Doherty, Gerard M.; Gauger, Paul G.; Minter, Rebecca M.
2006-01-01
Objective: To determine if prior training on the LapMentor™ laparoscopic simulator leads to improved performance of basic laparoscopic skills in the animate operating room environment. Summary Background Data: Numerous influences have led to the development of computer-aided laparoscopic simulators: a need for greater efficiency in training, the unique and complex nature of laparoscopic surgery, and the increasing demand that surgeons demonstrate competence before proceeding to the operating room. The LapMentor™ simulator is expensive, however, and its use must be validated and justified prior to implementation into surgical training programs. Methods: Nineteen surgical interns were randomized to training on the LapMentor™ laparoscopic simulator (n = 10) or to a control group (no simulator training, n = 9). Subjects randomized to the LapMentor™ trained to expert criterion levels 2 consecutive times on 6 designated basic skills modules. All subjects then completed a series of laparoscopic exercises in a live porcine model, and performance was assessed independently by 2 blinded reviewers. Time, accuracy rates, and global assessments of performance were recorded with an interrater reliability between reviewers of 0.99. Results: LapMentor™ trained interns completed the 30° camera navigation exercise in significantly less time than control interns (166 ± 52 vs. 220 ± 39 seconds, P < 0.05); they also achieved higher accuracy rates in identifying the required objects with the laparoscope (96% ± 8% vs. 82% ± 15%, P < 0.05). Similarly, on the two-handed object transfer exercise, task completion time for LapMentor™ trained versus control interns was 130 ± 23 versus 184 ± 43 seconds (P < 0.01) with an accuracy rate of 98% ± 5% versus 80% ± 13% (P < 0.001). Additionally, LapMentor™ trained interns outperformed control subjects with regard to camera navigation skills, efficiency of motion, optimal instrument handling, perceptual ability, and performance of safe electrocautery. Conclusions: This study demonstrates that prior training on the LapMentor™ laparoscopic simulator leads to improved resident performance of basic skills in the animate operating room environment. This work marks the first prospective, randomized evaluation of the LapMentor™ simulator, and provides evidence that LapMentor™ training may lead to improved operating room performance. PMID:16772789
The flights before the flight - An overview of shuttle astronaut training
NASA Technical Reports Server (NTRS)
Sims, John T.; Sterling, Michael R.
1989-01-01
Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.
Effect of virtual reality training on laparoscopic surgery: randomised controlled trial
Soerensen, Jette L; Grantcharov, Teodor P; Dalsgaard, Torur; Schouenborg, Lars; Ottosen, Christian; Schroeder, Torben V; Ottesen, Bent S
2009-01-01
Objective To assess the effect of virtual reality training on an actual laparoscopic operation. Design Prospective randomised controlled and blinded trial. Setting Seven gynaecological departments in the Zeeland region of Denmark. Participants 24 first and second year registrars specialising in gynaecology and obstetrics. Interventions Proficiency based virtual reality simulator training in laparoscopic salpingectomy and standard clinical education (controls). Main outcome measure The main outcome measure was technical performance assessed by two independent observers blinded to trainee and training status using a previously validated general and task specific rating scale. The secondary outcome measure was operation time in minutes. Results The simulator trained group (n=11) reached a median total score of 33 points (interquartile range 32-36 points), equivalent to the experience gained after 20-50 laparoscopic procedures, whereas the control group (n=10) reached a median total score of 23 (22-27) points, equivalent to the experience gained from fewer than five procedures (P<0.001). The median total operation time in the simulator trained group was 12 minutes (interquartile range 10-14 minutes) and in the control group was 24 (20-29) minutes (P<0.001). The observers’ inter-rater agreement was 0.79. Conclusion Skills in laparoscopic surgery can be increased in a clinically relevant manner using proficiency based virtual reality simulator training. The performance level of novices was increased to that of intermediately experienced laparoscopists and operation time was halved. Simulator training should be considered before trainees carry out laparoscopic procedures. Trial registration ClinicalTrials.gov NCT00311792. PMID:19443914
Zhong, Xiao; Wang, Pingxian; Feng, Jiayu; Hu, Wengang; Huang, Chibing
2015-01-01
This randomized controlled study compared a novel transparent urinary tract simulator with the traditional opaque urinary tract simulator as an aid for efficiently teaching urological surgical procedures. Senior medical students were tested on their understanding of urological theory before and after lectures concerning urinary system disease. The students received operative training using the transparent urinary tract simulator (experimental group, n = 80) or the J3311 opaque plastic urinary tract simulator (control, n = 80), specifically in catheterization and retrograde double-J stent implantation. The operative training was followed by a skills test and student satisfaction survey. The test scores for theory were similar between the two groups, before and after training. Students in the experimental group performed significantly better than those in the control group on the procedural skills test, and also had significantly better self-directed learning skills, analytical skills, and greater motivation to learn. During the initial step of training, the novel transparent urinary tract simulator significantly improved the efficiency of teaching urological procedural skills compared with the traditional opaque device. © 2015 S. Karger AG, Basel.
Graphics simulation and training aids for advanced teleoperation
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.
1993-01-01
Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.
The Application of Voltage Transformer Simulator in Electrical Test Training
NASA Astrophysics Data System (ADS)
Li, Nan; Zhang, Jun; Chai, Ziqi; Wang, Jingpeng; Yang, Baowei
2018-02-01
The voltage transformer test is an important means to monitor its operating state. The accuracy and reliability of the test data is directly related to the test skill level of the operator. However, the risk of test instruments damage, equipment being tested damage and electric shock in operator is caused by improper operation when training the transformer test. In this paper, a simulation device of voltage transformer is set up, and a simulation model is built for the most common 500kV capacitor voltage transformer (CVT), the simulation model can realize several test items of CVT by combing with teaching guidance platform, simulation instrument, complete set of system software and auxiliary equipment in Changchun. Many successful applications show that the simulation device has good practical value and wide application prospect.
14 CFR Appendix H to Part 121 - Advanced Simulation
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...
14 CFR Appendix H to Part 121 - Advanced Simulation
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...
14 CFR Appendix H to Part 121 - Advanced Simulation
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...
Workshop on Instructional Features and Instructor/Operator Station Design for Training Systems.
ERIC Educational Resources Information Center
Ricard, G. L., Ed.; And Others
These 19 papers review current research and development work related to the operation of the instructor's station of training systems, with emphasis on developing functional station specifications applicable to a variety of simulation-based training situations. Topics include (1) instructional features; (2) instructor/operator station research and…
Simulation of longitudinal dynamics of a freight train operating through a car dumper
NASA Astrophysics Data System (ADS)
Kovalev, R.; Sakalo, A.; Yazykov, V.; Shamdani, A.; Bowey, R.; Wakeling, C.
2016-06-01
A heavy haul train and car dumper model was created to analyse train longitudinal dynamics during dumping. Influence of such factors as performance curve of draft gears, total free slack in couplers, operating mode of train positioner and braking of last two cars of train on the in-train forces was considered.
Comprehensive Training Curricula for Minimally Invasive Surgery
Palter, Vanessa N
2011-01-01
Background The unique skill set required for minimally invasive surgery has in part contributed to a certain portion of surgical residency training transitioning from the operating room to the surgical skills laboratory. Simulation lends itself well as a method to shorten the learning curve for minimally invasive surgery by allowing trainees to practice the unique motor skills required for this type of surgery in a safe, structured environment. Although a significant amount of important work has been done to validate simulators as viable systems for teaching technical skills outside the operating room, the next step is to integrate simulation training into a comprehensive curriculum. Objectives This narrative review aims to synthesize the evidence and educational theories underlining curricula development for technical skills both in a broad context and specifically as it pertains to minimally invasive surgery. Findings The review highlights the critical aspects of simulation training, such as the effective provision of feedback, deliberate practice, training to proficiency, the opportunity to practice at varying levels of difficulty, and the inclusion of both cognitive teaching and hands-on training. In addition, frameworks for integrating simulation training into a comprehensive curriculum are described. Finally, existing curricula on both laparoscopic box trainers and virtual reality simulators are critically evaluated. PMID:22942951
Spacelab simulation using a Lear Jet aircraft: Mission no. 4 (ASSESS program)
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.
1975-01-01
The fourth ASSESS Spacelab simulation mission utilizing a Lear Jet aircraft featured trained experiment operators (EOs) in place of the participating scientists, to simulate the role and functions of payload specialists in Spacelab who may conduct experiments developed by other scientists. The experiment was a broadband infrared photometer coupled to a 30-cm, open port, IR telescope. No compromises in equipment design or target selection were made to simplify operator tasks; the science goals of the mission were selected to advance the mainline research program of the principle investigator (PI). Training of the EOs was the responsibility of the PI team and consisted of laboratory sessions, on-site training during experiment integration, and integrated mission training using the aircraft as a high-fidelity simulator. The EO permission experience in these several disciplines proved adequate for normal experiment operations, but marginal for the identification and remedy of equipment malfunctions. During the mission, the PI utilized a TV communication system to assist the EOs to overcome equipment difficulties; both science and operations were successfully implemented.
Boza, Camilo; León, Felipe; Buckel, Erwin; Riquelme, Arnoldo; Crovari, Fernando; Martínez, Jorge; Aggarwal, Rajesh; Grantcharov, Teodor; Jarufe, Nicolás; Varas, Julián
2017-01-01
Multiple simulation training programs have demonstrated that effective transfer of skills can be attained and applied into a more complex scenario, but evidence regarding transfer to the operating room is limited. To assess junior residents trained with simulation performing an advanced laparoscopic procedure in the OR and compare results to those of general surgeons without simulation training and expert laparoscopic surgeons. Experimental study: After a validated 16-session advanced laparoscopy simulation training program, junior trainees were compared to general surgeons (GS) with no simulation training and expert bariatric surgeons (BS) in performing a stapled jejuno-jejunostomy (JJO) in the OR. Global rating scale (GRS) and specific rating scale scores, operative time and the distance traveled by both hands measured with a tracking device, were assessed. In addition, all perioperative and immediate postoperative morbidities were registered. Ten junior trainees, 12 GS and 5 BS experts were assessed performing a JJO in the OR. All trainees completed the entire JJO in the OR without any takeovers by the BS. Six (50 %) BS takeovers took place in the GS group. Trainees had significantly better results in all measured outcomes when compared to GS with considerable higher GRS median [19.5 (18.8-23.5) vs. 12 (9-13.8) p < 0.001] and lower operative time. One morbidity was registered; a patient in the trainees group was readmitted at postoperative day 10 for mechanical ileus that resolved with medical treatment. This study demonstrated transfer of advanced laparoscopic skills acquired through a simulated training program in novice surgical residents to the OR.
Surgical simulation in orthopaedic skills training.
Atesok, Kivanc; Mabrey, Jay D; Jazrawi, Laith M; Egol, Kenneth A
2012-07-01
Mastering rapidly evolving orthopaedic surgical techniques requires a lengthy period of training. Current work-hour restrictions and cost pressures force trainees to face the challenge of acquiring more complex surgical skills in a shorter amount of time. As a result, alternative methods to improve the surgical skills of orthopaedic trainees outside the operating room have been developed. These methods include hands-on training in a laboratory setting using synthetic bones or cadaver models as well as software tools and computerized simulators that enable trainees to plan and simulate orthopaedic operations in a three-dimensional virtual environment. Laboratory-based training offers potential benefits in the development of basic surgical skills, such as using surgical tools and implants appropriately, achieving competency in procedures that have a steep learning curve, and assessing already acquired skills while minimizing concerns for patient safety, operating room time, and financial constraints. Current evidence supporting the educational advantages of surgical simulation in orthopaedic skills training is limited. Despite this, positive effects on the overall education of orthopaedic residents, and on maintaining the proficiency of practicing orthopaedic surgeons, are anticipated.
Simulator training and non-technical factors improve laparoscopic performance among OBGYN trainees.
Ahlborg, Liv; Hedman, Leif; Nisell, Henry; Felländer-Tsai, Li; Enochsson, Lars
2013-10-01
To investigate how simulator training and non-technical factors affect laparoscopic performance among residents in obstetrics and gynecology. In this prospective study, trainees were randomized into three groups. The first group was allocated to proficiency-based training in the LapSimGyn(®) virtual reality simulator. The second group received additional structured mentorship during subsequent laparoscopies. The third group served as control group. At baseline an operation was performed and visuospatial ability, flow and self-efficacy were assessed. All groups subsequently performed three tubal occlusions. Self-efficacy and flow were assessed before and/or after each operation. Simulator training was conducted at the Center for Advanced Medical Simulation and Training, Karolinska University Hospital. Sterilizations were performed at each trainee's home clinic. Twenty-eight trainees/residents from 21 hospitals in Sweden were included. Visuospatial ability was tested by the Mental Rotation Test-A. Flow and self-efficacy were assessed by validated scales and questionnaires. Laparoscopic performance was measured as the duration of surgery. Visuospatial ability, self-efficacy and flow were correlated to the laparoscopic performance using Spearman's correlations. Differences between groups were analyzed by the Mann-Whitney U-test. No differences across groups were detected at baseline. Self-efficacy scores before and flow scores after the third operation were significantly higher in the trained groups. Duration of surgery was significantly shorter in the trained groups. Flow and self-efficacy correlate positively with laparoscopic performance. Simulator training and non-technical factors appear to improve the laparoscopic performance among trainees/residents in obstetrics and gynecology. © 2013 Nordic Federation of Societies of Obstetrics and Gynecology.
Flight Hour Reductions in Fleet Replacement Pilot Training through Simulation.
ERIC Educational Resources Information Center
Smode, Alfred F.
A project was undertaken to integrate the 2F87F operational flight trainer into the program for training replacement patrol plane pilots. The objectives were to determine the potential of the simulator as a substitute environment for learning aircraft tasks and to effectively utilize the simulator in pilot training. The students involved in the…
14 CFR 121.917 - Other requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...
14 CFR 121.917 - Other requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...
14 CFR 121.917 - Other requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...
14 CFR 121.917 - Other requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...
NASA Technical Reports Server (NTRS)
Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.
1989-01-01
The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.
Basic Operational Robotics Instructional System
NASA Technical Reports Server (NTRS)
Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John
2013-01-01
The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.
A Control Simulation Method of High-Speed Trains on Railway Network with Irregular Influence
NASA Astrophysics Data System (ADS)
Yang, Li-Xing; Li, Xiang; Li, Ke-Ping
2011-09-01
Based on the discrete time method, an effective movement control model is designed for a group of highspeed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics of high-speed trains under the interruption of stochastic irregular events. In the model, the high-speed rail traffic system is supposed to be equipped with the moving-block signalling system to guarantee maximum traversing capacity of the railway. To keep the safety of trains' movements, some operational strategies are proposed to control the movements of trains in the model, including traction operation, braking operation, and entering-station operation. The numerical simulations show that the designed model can well describe the movements of high-speed trains on the rail network. The research results can provide the useful information not only for investigating the propagation features of relevant delays under the irregular disturbance but also for rerouting and rescheduling trains on the rail network.
Constructing Agent Model for Virtual Training Systems
NASA Astrophysics Data System (ADS)
Murakami, Yohei; Sugimoto, Yuki; Ishida, Toru
Constructing highly realistic agents is essential if agents are to be employed in virtual training systems. In training for collaboration based on face-to-face interaction, the generation of emotional expressions is one key. In training for guidance based on one-to-many interaction such as direction giving for evacuations, emotional expressions must be supplemented by diverse agent behaviors to make the training realistic. To reproduce diverse behavior, we characterize agents by using a various combinations of operation rules instantiated by the user operating the agent. To accomplish this goal, we introduce a user modeling method based on participatory simulations. These simulations enable us to acquire information observed by each user in the simulation and the operating history. Using these data and the domain knowledge including known operation rules, we can generate an explanation for each behavior. Moreover, the application of hypothetical reasoning, which offers consistent selection of hypotheses, to the generation of explanations allows us to use otherwise incompatible operation rules as domain knowledge. In order to validate the proposed modeling method, we apply it to the acquisition of an evacuee's model in a fire-drill experiment. We successfully acquire a subject's model corresponding to the results of an interview with the subject.
A teleoperation training simulator with visual and kinesthetic force virtual reality
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul
1992-01-01
A force-reflecting teleoperation training simulator with a high-fidelity real-time graphics display has been developed for operator training. A novel feature of this simulator is that it enables the operator to feel contact forces and torques through a force-reflecting controller during the execution of the simulated peg-in-hole task, providing the operator with the feel of visual and kinesthetic force virtual reality. A peg-in-hole task is used in our simulated teleoperation trainer as a generic teleoperation task. A quasi-static analysis of a two-dimensional peg-in-hole task model has been extended to a three-dimensional model analysis to compute contact forces and torques for a virtual realization of kinesthetic force feedback. The simulator allows the user to specify force reflection gains and stiffness (compliance) values of the manipulator hand for both the three translational and the three rotational axes in Cartesian space. Three viewing modes are provided for graphics display: single view, two split views, and stereoscopic view.
Aydin, Abdullatif; Muir, Gordon H; Graziano, Manuela E; Khan, Muhammad Shamim; Dasgupta, Prokar; Ahmed, Kamran
2015-06-01
To assess face, content and construct validity, and feasibility and acceptability of the GreenLight™ Simulator as a training tool for photoselective vaporisation of the prostate (PVP), and to establish learning curves and develop an evidence-based training curriculum. This prospective, observational and comparative study, recruited novice (25 participants), intermediate (14) and expert-level urologists (seven) from the UK and Europe at the 28th European Association of Urological Surgeons Annual Meeting 2013. A group of novices (12 participants) performed 10 sessions of subtask training modules followed by a long operative case, whereas a second group (13) performed five sessions of a given case module. Intermediate and expert groups performed all training modules once, followed by one operative case. The outcome measures for learning curves and construct validity were time to task, coagulation time, vaporisation time, average sweep speed, average laser distance, blood loss, operative errors, and instrument cost. Face and content validity, feasibility and acceptability were addressed through a quantitative survey. Construct validity was demonstrated in two of five training modules (P = 0.038; P = 0.018) and in a considerable number of case metrics (P = 0.034). Learning curves were seen in all five training modules (P < 0.001) and significant reduction in case operative time (P < 0.001) and error (P = 0.017) were seen. An evidence-based training curriculum, to help trainees acquire transferable skills, was produced using the results. This study has shown the GreenLight Simulator to be a valid and useful training tool for PVP. It is hoped that by using the training curriculum for the GreenLight Simulator, novice trainees can acquire skills and knowledge to a predetermined level of proficiency. © 2014 The Authors. BJU International © 2014 BJU International.
Surgeon Training in Telerobotic Surgery via a Hardware-in-the-Loop Simulator
Alemzadeh, Homa; Chen, Daniel; Kalbarczyk, Zbigniew; Iyer, Ravishankar K.; Kesavadas, Thenkurussi
2017-01-01
This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors in ensuring patient safety and efficiency in operation. In this work, we propose a hardware-in-the-loop simulator directly introducing these two features. The proposed simulator is built upon the Raven-II™ open source surgical robot, integrated with a physics engine and a safety hazard injection engine. Also, a Fast Marching Tree-based motion planning algorithm is used to help trainee learn the optimal instrument motion patterns. The main contributions of this work are (1) reproducing safety hazards events, related to da Vinci™ system, reported to the FDA MAUDE database, with a novel haptic feedback strategy to provide feedback to the operator when the underlying dynamics differ from the real robot's states so that the operator will be aware and can mitigate the negative impact of the safety-critical events, and (2) using motion planner to generate semioptimal path in an interactive robotic surgery training environment. PMID:29065635
Code of Federal Regulations, 2012 CFR
2012-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...
Immersive virtual reality used as a platform for perioperative training for surgical residents.
Witzke, D B; Hoskins, J D; Mastrangelo, M J; Witzke, W O; Chu, U B; Pande, S; Park, A E
2001-01-01
Perioperative preparations such as operating room setup, patient and equipment positioning, and operating port placement are essential to operative success in minimally invasive surgery. We developed an immersive virtual reality-based training system (REMIS) to provide residents (and other health professionals) with training and evaluation in these perioperative skills. Our program uses the qualities of immersive VR that are available today for inclusion in an ongoing training curriculum for surgical residents. The current application consists of a primary platform for patient positioning for a laparoscopic cholecystectomy. Having completed this module we can create many different simulated problems for other procedures. As a part of the simulation, we have devised a computer-driven real-time data collection system to help us in evaluating trainees and providing feedback during the simulation. The REMIS program trains and evaluates surgical residents and obviates the need to use expensive operating room and surgeon time. It also allows residents to train based on their schedule and does not put patients at increased risk. The method is standardized, allows for repetition if needed, evaluates individual performance, provides the possible complications of incorrect choices, provides training in 3-D environment, and has the capability of being used for various scenarios and professions.
Securely Partitioning Spacecraft Computing Resources: Validation of a Separation Kernel
NASA Astrophysics Data System (ADS)
Bremer, Leon; Schreutelkamp, Erwin
2011-08-01
The F-35 Lightning II, also known as the Joint Strike Fighter, will be the first operational fighter aircraft equipped with an operational MultiShip Embedded Training capability. This onboard training system allows teams of fighter pilots to jointly operate their F-35 in flight against virtual threats, avoiding the need for real adversary air threats and surface threat systems in their training. The European Real-time Operations Simulator (EuroSim) framework is well known in the space domain, particularly in support of engineering and test phases of space system development. In the MultiShip Embedded Training project, EuroSim is not only the essential tool for development and verification throughout the project but is also the engine of the final embedded simulator on board of the F-35 aircraft. The novel ways in which EuroSim is applied in the project in relation to distributed simulation problems, team collaboration, tool chains and embedded systems can benefit many projects and applications. The paper describes the application of EuroSim as the simulation engine of the F-35 Embedded Training solution, the extensions to the EuroSim product that enable this application, and its usage in development and verification of the whole project as carried out at the sites of Dutch Space and the National Aerospace Laboratory (NLR).
Murphy, Margaret; Curtis, Kate; Lam, Mary K; Palmer, Cameron S; Hsu, Jeremy; McCloughen, Andrea
2018-05-01
Simulation has been promoted as a platform for training trauma teams. However, it is not clear if this training has an impact on health service delivery and patient outcomes. This study evaluates the association between implementation of a simulation based multidisciplinary trauma team training program at a metropolitan trauma centre and subsequent patient outcomes. This was a retrospective review of trauma registry data collected at an 850-bed Level 1 Adult Trauma Centre in Sydney, Australia. Two concurrent four-year periods, before and after implementation of a simulation based multidisciplinary trauma team training program were compared for differences in time to critical operations, Emergency Department (ED) length of stay (LOS) and patient mortality. There were 2389 major trauma patients admitted to the hospital during the study, 1116 in the four years preceding trauma team training (the PREgroup) and 1273 in the subsequent 4 years (the POST group). There were no differences between the groups with respect to gender, body region injured, incidence of polytrauma, and pattern of arrival to ED. The POST group was older (median age 54 versus 43 years, p < 0.001) and had a higher incidence of falls and assaults (p < 0.001). There was a reduction in time to critical operation, from 2.63 h (IQR 1.23-5.12) in the PRE-group to 0.55 h (IQR 0.22-1.27) in the POST-group, p < 0.001. The overall ED LOS increased, and there was no reduction in mortality. Post-hoc analysis found LOS in ED was reduced in the cohort requiring critical operations, p < 0.001. The implementation of trauma team training was associated with a reduction in time to critical operation while overall ED length of stay increased. Simulation is promoted as a platform for training teams; but the complexity of trauma care challenges efforts to demonstrate direct links between multidisciplinary team training and improved outcomes. There remain considerable gaps in knowledge as to how team training impacts health service delivery and patient outcomes. Retrospective comparative therapeutic/care management study, Level III evidence. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
The role of simulation in urological training - A quantitative study of practice and opinions.
Aydin, Abdullatif; Ahmed, Kamran; Shafi, Ahmed M A; Khan, Muhammad Shamim; Dasgupta, Prokar
2016-12-01
Over the past few decades, simulation-based training has rapidly been adopted by many centres for effective technical and non-technical skills training, as a supplementary method to traditional operating room experience. The aim of this study is to assess the current practice in training and seek opinion regarding the future role of simulation in urological training. A cross sectional survey was designed and distributed amongst expert and trainee urological surgeons. The survey consisted of twenty-two questions that were split into three sections; Introduction (6), Technical Skills training in urology (10) and Non-technical skills training in urology (6). A total of 91 residents and 172 specialists completed the survey. In both groups, there was an agreed consensus that laparoscopic training and exposure was insufficient as only 21% of trainees and 23% of specialists believed that they had sufficient training in this area. Furthermore, both groups lacked simulation-based training in common urological procedures including nephrectomy (62%), cystoscopy (69-74%), ureteroscopy (47-59%), transurethral resection of the prostate (56-65%) and percutaneous renal surgery (76-73%). 90% of trainees and 70% of specialists believed (agreed and strongly agreed) that there is a role for non-technical skills simulation in urological training. Simulation training has been under-used thus far and trainees face an uphill challenge to enhance their skills and technical abilities in the operating room. Simulation is recommended by both trainees and specialists and may represent one of the solutions to the challenges of safe and effective urology procedural training. Copyright © 2015 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
14 CFR 91.1087 - Approval of aircraft simulators and other training devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Approval of aircraft simulators and other... OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1087 Approval of aircraft simulators and...
14 CFR 91.1087 - Approval of aircraft simulators and other training devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Approval of aircraft simulators and other... OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1087 Approval of aircraft simulators and...
14 CFR 91.1087 - Approval of aircraft simulators and other training devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Approval of aircraft simulators and other... OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1087 Approval of aircraft simulators and...
14 CFR 91.1087 - Approval of aircraft simulators and other training devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Approval of aircraft simulators and other... OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1087 Approval of aircraft simulators and...
14 CFR Appendix H to Part 121 - Advanced Simulation
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Advanced Simulation H Appendix H to Part... Simulation Link to an amendment published at 78 FR 67846, Nov. 12, 2013. This appendix provides guidelines... Simulation Training Program For an operator to conduct Level C or D training under this appendix all required...
Paige, John T; Kozmenko, Valeriy; Yang, Tong; Paragi Gururaja, Ramnarayan; Hilton, Charles W; Cohn, Isidore; Chauvin, Sheila W
2009-02-01
The operating room (OR) is a dynamic, high risk setting requiring effective teamwork for the safe delivery of care. Teamwork in the modern OR, however, is less than ideal. High fidelity simulation is an attractive approach to training key teamwork competencies. We have developed a portable simulation platform, the mobile mock OR (MMOR) that permits bringing team training over long distances to the point of care. We examined the effectiveness of this innovative, simulation-based interdisciplinary operating room (OR) team training model on its participants. All general surgical OR team members at an academic affiliated medical center underwent scenario-based training using a mobile mock OR. Pre- and post-session mean scores were calculated and analyzed for 15 Likert-type items measuring self-efficacy in teamwork competencies using t test. The mean gain in pre-post item scores for 38 participants averaged 0.4 units on a 6-point Likert scale. The significance was demonstrated in 4 of the items: role clarity (Delta = 0.6 units, P = .02), anticipatory response (Delta = 0.6 units, P = .01), cross monitoring (Delta = 0.6 units, P < .01), and team cohesion and interaction (Delta = 0.7 units, P < .01). High-fidelity, simulation-based OR team training at the point of care positively impacts self-efficacy for effective teamwork performance in everyday practice.
Apros-based Kola 1 nuclear power plant compact training simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porkholm, K.; Kontio, H.; Nurmilaukas, P.
1996-11-01
Imatran Voima Oy`s subsidiary IVO International Ltd (IVO IN) and the Technical Research Centre of Finland (VTT) in co-operation with Kola staff supplies the Kola Nuclear Power Plant in the Murmansk region of Russia with a Compact Training Simulator. The simulator will be used for the training of the plant personnel in managing the plant disturbance and accident situations. By means of the simulator is is also possible to test how the planned plant modifications will affect the plant operation. The simulator delivery is financed by the Finnish Ministry of Trade and Industry and the Ministry of Foreign Affairs. Themore » delivery is part of the aid program directed to Russia for the improvement of the nuclear power plant safety.« less
Naturalistic Decision Making for Power System Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Podmore, Robin; Robinson, Marck
2010-02-01
Motivation – Investigations of large-scale outages in the North American interconnected electric system often attribute the causes to three T’s: Trees, Training and Tools. To document and understand the mental processes used by expert operators when making critical decisions, a naturalistic decision making (NDM) model was developed. Transcripts of conversations were analyzed to reveal and assess NDM-based performance criteria. Findings/Design – An item analysis indicated that the operators’ Situation Awareness Levels, mental models, and mental simulations can be mapped at different points in the training scenario. This may identify improved training methods or analytical/ visualization tools. Originality/Value – This studymore » applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message – The NDM approach provides a viable framework for systematic training management to accelerate learning in simulator-based training scenarios for power system operators and teams.« less
Krüger, Marie T; Coenen, Volker A; Egger, Karl; Shah, Mukesch; Reinacher, Peter C
2018-06-13
In recent years, simulations based on phantom models have become increasingly popular in the medical field. In the field of functional and stereotactic neurosurgery, a cranial phantom would be useful to train operative techniques, such as stereo-electroencephalography (SEEG), to establish new methods as well as to develop and modify radiological techniques. In this study, we describe the construction of a cranial phantom and show examples for it in stereotactic and functional neurosurgery and its applicability with different radiological modalities. We prepared a plaster skull filled with agar. A complete operation for deep brain stimulation (DBS) was simulated using directional leads. Moreover, a complete SEEG operation including planning, implantation of the electrodes, and intraoperative and postoperative imaging was simulated. An optimally customized cranial phantom is filled with 10% agar. At 7°C, it can be stored for approximately 4 months. A DBS and an SEEG procedure could be realistically simulated. Lead artifacts can be studied in CT, X-ray, rotational fluoroscopy, and MRI. This cranial phantom is a simple and effective model to simulate functional and stereotactic neurosurgical operations. This might be useful for teaching and training of neurosurgeons, establishing operations in a new center and for optimization of radiological examinations. © 2018 S. Karger AG, Basel.
Airborne simulation of Shuttle/Spacelab management and operation
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Neel, C. B.
1976-01-01
The ASSESS (Airborne Science/Spacelab Experiments System Simulation) program is discussed. A simulated Spacelab operation was carried out aboard the CV-990 airborne laboratory at Ames Research Center. A scientific payload was selected to conduct studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England and the U.S. Two experiment operators (EOs) from the U.S. and two from Europe were trained to function as proxies for the principal investigators in operating, maintaining, and repairing the scientific instruments. The simulated mission, in which the EOs and a Mission Manager were confined to the aircraft and living quarters for a 1-week period while making scientific observations during nightly flights, provided experience in the overall management of a complex international payload, experiment preparation, testing, and integration, the training and selection of proxy operators, and data handling.
Hamman, William R; Beaudin-Seiler, Beth M; Beaubien, Jeffrey M; Gullickson, Amy M; Orizondo-Korotko, Krystyna; Gross, Amy C; Fuqua, Wayne; Lammers, Richard
2010-01-01
Since the publication of "To Err Is Human" in 1999, health care professionals have looked to high-reliability industries such as aviation for guidance on improving system safety. One of the most widely adopted aviation-derived approaches is simulation-based team training, also known as crew resource management training. In the health care domain, crew resource management training often takes place in custom-built simulation laboratories that are designed to replicate operating rooms or labor and delivery rooms. Unlike these traditional crew resource management training programs, "in situ simulation" occurs on actual patient care units, involves actual health care team members, and uses actual organization processes to train and assess team performance. During the past 24 months, our research team has conducted nearly 40 in situ simulations. In this article, we present the results from 1 such simulation: a patient who experienced a difficult labor that resulted in an emergency caesarian section and hysterectomy. During the simulation, a number of latent environmental threats to safety were identified. This article presents the latent threats and the steps that the hospital has taken to remedy them.
Intelligent Conduct of Fire Trainer: Intelligent Technology Applied to Simulator-Based Training.
ERIC Educational Resources Information Center
Newman, Denis; And Others
1989-01-01
Describes an intelligent tutoring system (ITS) that demonstrates how intelligent feedback can enhance conventional simulation-based training. An explanation is given of the Intelligent Conduct of Fire Trainer (INCOFT), which was designed to provide training exercises for soldiers operating the PATRIOT missile system, and its implications for…
DECISION MAKING , * GROUP DYNAMICS, NAVAL TRAINING, TRANSFER OF TRAINING, SCIENTIFIC RESEARCH, CLASSIFICATION, PROBLEM SOLVING, MATHEMATICAL MODELS, SUBMARINES, SIMULATORS, PERFORMANCE(HUMAN), UNDERSEA WARFARE.
OR fire virtual training simulator: design and face validity.
Dorozhkin, Denis; Olasky, Jaisa; Jones, Daniel B; Schwaitzberg, Steven D; Jones, Stephanie B; Cao, Caroline G L; Molina, Marcos; Henriques, Steven; Wang, Jinling; Flinn, Jeff; De, Suvranu
2017-09-01
The Virtual Electrosurgical Skill Trainer is a tool for training surgeons the safe operation of electrosurgery tools in both open and minimally invasive surgery. This training includes a dedicated team-training module that focuses on operating room (OR) fire prevention and response. The module was developed to allow trainees, practicing surgeons, anesthesiologist, and nurses to interact with a virtual OR environment, which includes anesthesia apparatus, electrosurgical equipment, a virtual patient, and a fire extinguisher. Wearing a head-mounted display, participants must correctly identify the "fire triangle" elements and then successfully contain an OR fire. Within these virtual reality scenarios, trainees learn to react appropriately to the simulated emergency. A study targeted at establishing the face validity of the virtual OR fire simulator was undertaken at the 2015 Society of American Gastrointestinal and Endoscopic Surgeons conference. Forty-nine subjects with varying experience participated in this Institutional Review Board-approved study. The subjects were asked to complete the OR fire training/prevention sequence in the VEST simulator. Subjects were then asked to answer a subjective preference questionnaire consisting of sixteen questions, focused on the usefulness and fidelity of the simulator. On a 5-point scale, 12 of 13 questions were rated at a mean of 3 or greater (92%). Five questions were rated above 4 (38%), particularly those focusing on the simulator effectiveness and its usefulness in OR fire safety training. A total of 33 of the 49 participants (67%) chose the virtual OR fire trainer over the traditional training methods such as a textbook or an animal model. Training for OR fire emergencies in fully immersive VR environments, such as the VEST trainer, may be the ideal training modality. The face validity of the OR fire training module of the VEST simulator was successfully established on many aspects of the simulation.
14 CFR 142.47 - Training center instructor eligibility requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., privileges, responsibilities, and limitations. (v) Proper operation of simulation controls and systems. (vi) Proper operation of environmental control and warning or caution panels. (vii) Limitations of simulation...
14 CFR 142.47 - Training center instructor eligibility requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., privileges, responsibilities, and limitations. (v) Proper operation of simulation controls and systems. (vi) Proper operation of environmental control and warning or caution panels. (vii) Limitations of simulation...
14 CFR 142.47 - Training center instructor eligibility requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., privileges, responsibilities, and limitations. (v) Proper operation of simulation controls and systems. (vi) Proper operation of environmental control and warning or caution panels. (vii) Limitations of simulation...
Sparks, Jessica L; Crouch, Dustin L; Sobba, Kathryn; Evans, Douglas; Zhang, Jing; Johnson, James E; Saunders, Ian; Thomas, John; Bodin, Sarah; Tonidandel, Ashley; Carter, Jeff; Westcott, Carl; Martin, R Shayn; Hildreth, Amy
2017-09-01
The human patient simulators that are currently used in multidisciplinary operating room team training scenarios cannot simulate surgical tasks because they lack a realistic surgical anatomy. Thus, they eliminate the surgeon's primary task in the operating room. The surgical trainee is presented with a significant barrier when he or she attempts to suspend disbelief and engage in the scenario. To develop and test a simulation-based operating room team training strategy that challenges the communication abilities and teamwork competencies of surgeons while they are engaged in realistic operative maneuvers. This pre-post educational intervention pilot study compared the gains in teamwork skills for midlevel surgical residents at Wake Forest Baptist Medical Center after they participated in a standardized multidisciplinary team training scenario with 3 possible levels of surgical realism: (1) SimMan (Laerdal) (control group, no surgical anatomy); (2) "synthetic anatomy for surgical tasks" mannequin (medium-fidelity anatomy), and (3) a patient simulated by a deceased donor (high-fidelity anatomy). Participation in the simulation scenario and the subsequent debriefing. Teamwork competency was assessed using several instruments with extensive validity evidence, including the Nontechnical Skills assessment, the Trauma Management Skills scoring system, the Crisis Resource Management checklist, and a self-efficacy survey instrument. Participant satisfaction was assessed with a Likert-scale questionnaire. Scenario participants included midlevel surgical residents, anesthesia providers, scrub nurses, and circulating nurses. Statistical models showed that surgical residents exposed to medium-fidelity simulation (synthetic anatomy for surgical tasks) team training scenarios demonstrated greater gains in teamwork skills compared with control groups (SimMan) (Nontechnical Skills video score: 95% CI, 1.06-16.41; Trauma Management Skills video score: 95% CI, 0.61-2.90) and equivalent gains in teamwork skills compared with high-fidelity simulations (deceased donor) (Nontechnical Skills video score: 95% CI, -8.51 to 6.71; Trauma Management Skills video score: 95% CI, -1.70 to 0.49). Including a surgical task in operating room team training significantly enhanced the acquisition of teamwork skills among midlevel surgical residents. Incorporating relatively inexpensive, medium-fidelity synthetic anatomy in human patient simulators was as effective as using high-fidelity anatomies from deceased donors for promoting teamwork skills in this learning group.
Interactive Simulator Training in Civil Construction: Evaluation from the Trainer's Perspective
ERIC Educational Resources Information Center
Tichon, Jennifer; Diver, Phil
2012-01-01
The popularity of simulators to augment training programs for operators of heavy machinery has been growing across several industries including mining, rail and more recently construction. High-fidelity, interactive simulation is typically achieved through complete immersion in brief, stressful and complex VR scenarios. The use of simulation…
Simulating Retail Banking for Banking Students
ERIC Educational Resources Information Center
Supramaniam, Mahadevan; Shanmugam, Bala
2009-01-01
The purpose of this study was to examine the implementation flow and development of retail bank management simulation based training system which could provide a comprehensive knowledge about the operations and management of banks for the banking students. The prototype of a Retail banking simulation based training system was developed based on…
Training for percutaneous renal access on a virtual reality simulator.
Zhang, Yi; Yu, Cheng-fan; Liu, Jin-shun; Wang, Gang; Zhu, He; Na, Yan-qun
2013-01-01
The need to develop new methods of surgical training combined with advances in computing has led to the development of virtual reality surgical simulators. The PERC Mentor(TM) is designed to train the user in percutaneous renal collecting system access puncture. This study aimed to validate the use of this kind of simulator, in percutaneous renal access training. Twenty-one urologists were enrolled as trainees to learn a fluoroscopy-guided percutaneous renal accessing technique. An assigned percutaneous renal access procedure was immediately performed on the PERC Mentor(TM) after watching instruction video and an analog operation. Objective parameters were recorded by the simulator and subjective global rating scale (GRS) score were determined. Simulation training followed and consisted of 2 hours daily training sessions for 2 consecutive days. Twenty-four hours after the training session, trainees were evaluated performing the same procedure. The post-training evaluation was compared to the evaluation of the initial attempt. During the initial attempt, none of the trainees could complete the appointed procedure due to the lack of experience in fluoroscopy-guided percutaneous renal access. After the short-term training, all trainees were able to independently complete the procedure. Of the 21 trainees, 10 had primitive experience in ultrasound-guided percutaneous nephrolithotomy. Trainees were thus categorized into the group of primitive experience and inexperience. The total operating time and amount of contrast material used were significantly lower in the group of primitive experience versus the inexperience group (P = 0.03 and 0.02, respectively). The training on the virtual reality simulator, PERC Mentor(TM), can help trainees with no previous experience of fluoroscopy-guided percutaneous renal access to complete the virtual manipulation of the procedure independently. This virtual reality simulator may become an important training and evaluation tool in teaching fluoroscopy-guided percutaneous renal access.
Training Community Modeling and Simulation Business Plan: 2009 Edition
2010-04-01
strategic information assurance 33 33 Provide crisis action procedures training 34 34 Provide the IC SOF-specific training at the operational level... information and products • Collaborative analysis processes • Dissemination of information throughout a command and to subordinates by redundant means...centric M&S capabilities will improve training for information warfare, assist with training for homeland defense operations, crisis -management plan- ning
New Age Teaching: Beyond Didactics
Vlaovic, Peter D.; McDougall, Elspeth M.
2006-01-01
Widespread acceptance of laparoscopic urology techniques has posed many challenges to training urology residents and allowing postgraduate urologists to acquire often difficult new surgical skills. Several factors in surgical training programs are limiting the ability to train residents in the operating room, including limited-hours work weeks, increasing demand for operating room productivity, and general public awareness of medical errors. As such, surgical simulation may provide an opportunity to enhance residency experience and training, and optimize post-graduate acquisition of new skills and maintenance of competency. This review article explains and defines the various levels of validity as it pertains to surgical simulators. The most recently and comprehensively validity tested simulators are outlined and summarized. The potential role of surgical simulation in the formative and summative assessment of surgical trainees, as well as, the certification and recertification process of postgraduate surgeons will be delineated. Surgical simulation will be an important adjunct to the traditional methods of surgical skills training and will allow surgeons to maintain their proficiency in the technically challenging aspects of minimally invasive urologic surgery. PMID:17619704
McCreery, Greig L; El-Beheiry, Mostafa; Schlachta, Christopher M
2017-11-01
Dedicated practice using laparoscopic simulators improves operative performance. Yet, voluntary utilization is minimal. We hypothesized that skill competition between peers, at the local and national level, positively influences residents' use of laparoscopic simulators. A web-based survey evaluated the relationship between Canadian General Surgery residents' use of laparoscopic simulation and participation in competition. Secondary outcomes assessed attitudes regarding simulation training, factors limiting use, and associations between competition level and usage. One hundred ninety (23%) of 826 potential participants responded. Eighty-three percent rated their laparoscopic abilities as novice or intermediate. More than 70% agreed that use of simulation practice improves intra-operative performance, and should be a mandatory component of training. However, 58% employed simulator practice less than once per month, and 18% never used a simulator. Sixty-five percent engaged in simulator training for 5 h or less over the preceding 6 months. Seventy-three percent had participated in laparoscopic skill competition. Of those, 51% agreed that competition was a motivation for simulation practice. No association was found between those with competition experience and simulator use. However, 83% of those who had competed nationally reported >5 h of simulator use in the previous 6 months compared to those with no competition experience (26%), local competition (40%), and local national-qualifying competition (23%) (p < 0.001). This study does not support the hypothesis that competition alone universally increases voluntary use of simulation-based training, with only the minority of individuals competing at the national level demonstrated significantly higher simulation use. However, simulation training was perceived as a valuable exercise. Lack of time and access to simulators, as opposed to lack of interest, were the most commonly reported to limited use.
Update on simulation-based surgical training and assessment in ophthalmology: a systematic review.
Thomsen, Ann Sofia S; Subhi, Yousif; Kiilgaard, Jens Folke; la Cour, Morten; Konge, Lars
2015-06-01
This study reviews the evidence behind simulation-based surgical training of ophthalmologists to determine (1) the validity of the reported models and (2) the ability to transfer skills to the operating room. Simulation-based training is established widely within ophthalmology, although it often lacks a scientific basis for implementation. We conducted a systematic review of trials involving simulation-based training or assessment of ophthalmic surgical skills among health professionals. The search included 5 databases (PubMed, EMBASE, PsycINFO, Cochrane Library, and Web of Science) and was completed on March 1, 2014. Overall, the included trials were divided into animal, cadaver, inanimate, and virtual-reality models. Risk of bias was assessed using the Cochrane Collaboration's tool. Validity evidence was evaluated using a modern validity framework (Messick's). We screened 1368 reports for eligibility and included 118 trials. The most common surgery simulated was cataract surgery. Most validity trials investigated only 1 or 2 of 5 sources of validity (87%). Only 2 trials (48 participants) investigated transfer of skills to the operating room; 4 trials (65 participants) evaluated the effect of simulation-based training on patient-related outcomes. Because of heterogeneity of the studies, it was not possible to conduct a quantitative analysis. The methodologic rigor of trials investigating simulation-based surgical training in ophthalmology is inadequate. To ensure effective implementation of training models, evidence-based knowledge of validity and efficacy is needed. We provide a useful tool for implementation and evaluation of research in simulation-based training. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Modeling and simulation for space medicine operations: preliminary requirements considered
NASA Technical Reports Server (NTRS)
Dawson, D. L.; Billica, R. D.; McDonald, P. V.
2001-01-01
The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.
Requirements for Modeling and Simulation for Space Medicine Operations: Preliminary Considerations
NASA Technical Reports Server (NTRS)
Dawson, David L.; Billica, Roger D.; Logan, James; McDonald, P. Vernon
2001-01-01
The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical Simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.
AVESTAR Center for Operational Excellence of Electricity Generation Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, Stephen
2012-08-29
To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offeringmore » combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for use in establishing a Virtual Carbon Capture Center (VCCC), similar in concept to the DOE’s National Carbon Capture Center for slipstream testing. The VCCC will enable developers of CO2 capture technologies to integrate, test, and optimize the operation of their dynamic capture models within the context of baseline power plant dynamic models. The objective is to provide hands-on, simulator-based “learn-by-operating” test platforms to accelerate the scale-up and deployment of CO2 capture technologies. Future AVESTAR plans also include pursuing R&D on the dynamics, operation, and control of integrated electricity generation and storage systems for the modern grid era. Special emphasis will be given to combining load-following energy plants with renewable and distributed generating supplies and fast-ramping energy storage systems to provide near constant baseload power.« less
Space Station Simulation Computer System (SCS) study for NASA/MSFC. Concept document
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station Payload of experiments that will be onboard the Space Station Freedom. The simulation will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
Progress in virtual reality simulators for surgical training and certification.
de Visser, Hans; Watson, Marcus O; Salvado, Olivier; Passenger, Joshua D
2011-02-21
There is increasing evidence that educating trainee surgeons by simulation is preferable to traditional operating-room training methods with actual patients. Apart from reducing costs and risks to patients, training by simulation can provide some unique benefits, such as greater control over the training procedure and more easily defined metrics for assessing proficiency. Virtual reality (VR) simulators are now playing an increasing role in surgical training. However, currently available VR simulators lack the fidelity to teach trainees past the novice-to-intermediate skills level. Recent technological developments in other industries using simulation, such as the games and entertainment and aviation industries, suggest that the next generation of VR simulators should be suitable for training, maintenance and certification of advanced surgical skills. To be effective as an advanced surgical training and assessment tool, VR simulation needs to provide adequate and relevant levels of physical realism, case complexity and performance assessment. Proper validation of VR simulators and an increased appreciation of their value by the medical profession are crucial for them to be accepted into surgical training curricula.
A Common Cockpit Training System
2005-01-01
a learning environment where students can practice ASW via free - play simulated tactical situations while receiving feedback and instruction customized...Mission Display and includes free play simulation capability to maximize training. This intelligent tutoring system (ITS) will observe the operator’s
Nishihara, Yuichi; Isobe, Yoh; Kitagawa, Yuko
2017-12-01
A realistic simulator for transabdominal preperitoneal (TAPP) inguinal hernia repair would enhance surgeons' training experience before they enter the operating theater. The purpose of this study was to create a novel physical simulator for TAPP inguinal hernia repair and obtain surgeons' opinions regarding its efficacy. Our novel TAPP inguinal hernia repair simulator consists of a physical laparoscopy simulator and a handmade organ replica model. The physical laparoscopy simulator was created by three-dimensional (3D) printing technology, and it represents the trunk of the human body and the bendability of the abdominal wall under pneumoperitoneal pressure. The organ replica model was manually created by assembling materials. The TAPP inguinal hernia repair simulator allows for the performance of all procedures required in TAPP inguinal hernia repair. Fifteen general surgeons performed TAPP inguinal hernia repair using our simulator. Their opinions were scored on a 5-point Likert scale. All participants strongly agreed that the 3D-printed physical simulator and organ replica model were highly useful for TAPP inguinal hernia repair training (median, 5 points) and TAPP inguinal hernia repair education (median, 5 points). They felt that the simulator would be effective for TAPP inguinal hernia repair training before entering the operating theater. All surgeons considered that this simulator should be introduced in the residency curriculum. We successfully created a physical simulator for TAPP inguinal hernia repair training using 3D printing technology and a handmade organ replica model created with inexpensive, readily accessible materials. Preoperative TAPP inguinal hernia repair training using this simulator and organ replica model may be of benefit in the training of all surgeons. All general surgeons involved in the present study felt that this simulator and organ replica model should be used in their residency curriculum.
Training high performance skills using above real-time training
NASA Technical Reports Server (NTRS)
Guckenberger, Dutch; Uliano, Kevin C.; Lane, Norman E.
1993-01-01
The Above Real-Time Training (ARTT) concept is a unique approach to training high performance skills. ARTT refers to a training paradigm that places the operator in a simulated environment that functions at faster than normal time. Such a training paradigm represents a departure from the intuitive, but not often supported, feeling that the best practice is determined by the training environment with the highest fidelity. This approach is hypothesized to provide greater 'transfer value' per simulation trial, by incorporating training techniques and instructional features into the simulator. These techniques allow individuals to acquire these critical skills faster and with greater retention. ARTT also allows an individual trained in 'fast time' to operate at what appears to be a more confident state, when the same task is performed in a real-time environment. Two related experiments are discussed. The findings appear to be consistent with previous findings that show positive effects of task variation during training. Moreover, ARTT has merit in improving or maintaining transfer with sharp reductions in training time. There are indications that the effectiveness of ARTT varies as a function of task content and possibly task difficulty. Other implications for ARTT are discussed along with future research directions.
NASA Technical Reports Server (NTRS)
Daugherty, Colin C.
2010-01-01
International Space Station (ISS) crew and flight controller training documentation is used to aid in training operations. The Generic Simulations References SharePoint (Gen Sim) site is a database used as an aid during flight simulations. The Gen Sim site is used to make individual mission segment timelines, data, and flight information easily accessible to instructors. The Waste and Hygiene Compartment (WHC) training schematic includes simple and complex fluid schematics, as well as overall hardware locations. It is used as a teaching aid during WHC lessons for both ISS crew and flight controllers. ISS flight control documentation is used to support all aspects of ISS mission operations. The Quick Look Database and Consolidated Tool Page are imagery-based references used in real-time to help the Operations Support Officer (OSO) find data faster and improve discussions with the Flight Director and Capsule Communicator (CAPCOM). A Quick Look page was created for the Permanent Multipurpose Module (PMM) by locating photos of the module interior, labeling specific hardware, and organizing them in schematic form to match the layout of the PMM interior. A Tool Page was created for the Maintenance Work Area (MWA) by gathering images, detailed drawings, safety information, procedures, certifications, demonstration videos, and general facts of each MWA component and displaying them in an easily accessible and consistent format. Participation in ISS mechanisms and maintenance lessons, mission simulation On-the-Job Training (OJT), and real-time flight OJT was used as an opportunity to train for day-to-day operations as an OSO, as well as learn how to effectively respond to failures and emergencies during mission simulations and real-time flight operations.
Bassil, Alfred; Rubod, Chrystèle; Borghesi, Yves; Kerbage, Yohan; Schreiber, Elie Servan; Azaïs, Henri; Garabedian, Charles
2017-04-01
Hysteroscopy is one of the most common gynaecological procedure. Training for diagnostic and operative hysteroscopy can be achieved through numerous previously described models like animal models or virtual reality simulation. We present our novel combined model associating virtual reality and bovine uteruses and bladders. End year residents in obstetrics and gynaecology attended a full day workshop. The workshop was divided in theoretical courses from senior surgeons and hands-on training in operative hysteroscopy and virtual reality Essure ® procedures using the EssureSim™ and Pelvicsim™ simulators with multiple scenarios. Theoretical and operative knowledge was evaluated before and after the workshop and General Points Averages (GPAs) were calculated and compared using a Student's T test. GPAs were significantly higher after the workshop was completed. The biggest difference was observed in operative knowledge (0,28 GPA before workshop versus 0,55 after workshop, p<0,05). All of the 25 residents having completed the workshop applauded the realism an efficiency of this type of training. The force feedback allowed by the cattle uteruses gives the residents the possibility to manage thickness of resection as in real time surgery. Furthermore, the two-horned bovine uteruses allowed to reproduce septa resection in conditions close to human surgery CONCLUSION: Teaching operative and diagnostic hysteroscopy is essential. Managing this training through a full day workshop using a combined animal model and virtual reality simulation is an efficient model not described before. Copyright © 2017 Elsevier B.V. All rights reserved.
Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi; Højgaard-Olsen, Klavs; Subhi, Yousif; Saleh, George M; Park, Yoon Soo; la Cour, Morten; Konge, Lars
2017-04-01
To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. Multicenter masked clinical trial. Eighteen cataract surgeons with different levels of experience. Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. Novices (non-independently operating surgeons) and surgeons having performed fewer than 75 independent cataract surgeries showed significant improvements in the OR-32% and 38%, respectively-after virtual reality training (P = 0.008 and P = 0.018). More experienced cataract surgeons did not benefit from simulator training. The reliability of the assessments was high with a generalizability coefficient of 0.92 and 0.86 before and after the virtual reality training, respectively. Clinically relevant cataract surgical skills can be improved by proficiency-based training on a virtual reality simulator. Novices as well as surgeons with an intermediate level of experience showed improvement in OR performance score. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
An Intelligent Simulator for Telerobotics Training
ERIC Educational Resources Information Center
Belghith, K.; Nkambou, R.; Kabanza, F.; Hartman, L.
2012-01-01
Roman Tutor is a tutoring system that uses sophisticated domain knowledge to monitor the progress of students and advise them while they are learning how to operate a space telerobotic system. It is intended to help train operators of the Space Station Remote Manipulator System (SSRMS) including astronauts, operators involved in ground-based…
Tay, Charison; Khajuria, Ankur; Gupte, Chinmay
2014-01-01
Traditional orthopaedic training has followed an apprenticeship model whereby trainees enhance their skills by operating under guidance. However the introduction of limitations on training hours and shorter training programmes mean that alternative training strategies are required. To perform a literature review on simulation training in arthroscopy and devise a framework that structures different simulation techniques that could be used in arthroscopic training. A systematic search of Medline, Embase, Google Scholar and the Cochrane Databases were performed. Search terms included "virtual reality OR simulator OR simulation" and "arthroscopy OR arthroscopic". 14 studies evaluating simulators in knee, shoulder and hip arthroplasty were included. The majority of the studies demonstrated construct and transference validity but only one showed concurrent validity. More studies are required to assess its potential as a training and assessment tool, skills transference between simulators and to determine the extent of skills decay from prolonged delays in training. We also devised a "ladder of arthroscopic simulation" that provides a competency-based framework to implement different simulation strategies. The incorporation of simulation into an orthopaedic curriculum will depend on a coordinated approach between many bodies. But the successful integration of simulators in other areas of surgery supports a possible role for simulation in advancing orthopaedic education. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Pena, Guilherme; Altree, Meryl; Field, John; Sainsbury, David; Babidge, Wendy; Hewett, Peter; Maddern, Guy
2015-07-01
The best surgeons demonstrate skills beyond those required for the performance of technically competent surgery. These skills are described under the term nontechnical skills. Failure in these domains has been associated with adverse events inside the operating room. These nontechnical skills are not learned commonly in a structured manner during surgery training. The main purpose of this study was to explore the effects of participation in simulation-based training, either as a sole strategy or as part of a combined approach on surgeons and surgical trainees nontechnical skills performance in simulation environment. The study consisted of a single-blinded, prospective comparative trial. Forty participants were enrolled, all participating in 2 simulation sessions challenging nontechnical skills comprising 3 surgical scenarios. Seventeen participants attended a 1-day, nontechnical skills workshop between simulation sessions. Scenarios were video-recorded for assessment and debriefing purposes. Assessment was made by 2 observers using the Non-Technical Skills for Surgeons (NOTSS) scoring system. There was a significant improvement in nontechnical skills performance of both groups from the first to the second simulation session, for 2 of the 3 scenarios. No difference in performance between the simulation and the simulation plus workshop groups was noted. This study provides evidence that formal training in nontechnical skills is feasible and can impact positively participants' nontechnical performance in a simulated environment. The addition of a 1-day didactic workshop does not seem to provide additional benefit over simulation-based training as a sole strategy for nontechnical skills training. Copyright © 2015 Elsevier Inc. All rights reserved.
Brembs, Björn; Heisenberg, Martin
2000-01-01
Ever since learning and memory have been studied experimentally, the relationship between operant and classical conditioning has been controversial. Operant conditioning is any form of conditioning that essentially depends on the animal's behavior. It relies on operant behavior. A motor output is called operant if it controls a sensory variable. The Drosophila flight simulator, in which the relevant behavior is a single motor variable (yaw torque), fully separates the operant and classical components of a complex conditioning task. In this paradigm a tethered fly learns, operantly or classically, to prefer and avoid certain flight orientations in relation to the surrounding panorama. Yaw torque is recorded and, in the operant mode, controls the panorama. Using a yoked control, we show that classical pattern learning necessitates more extensive training than operant pattern learning. We compare in detail the microstructure of yaw torque after classical and operant training but find no evidence for acquired behavioral traits after operant conditioning that might explain this difference. We therefore conclude that the operant behavior has a facilitating effect on the classical training. In addition, we show that an operantly learned stimulus is successfully transferred from the behavior of the training to a different behavior. This result unequivocally demonstrates that during operant conditioning classical associations can be formed. PMID:10753977
Brembs, B; Heisenberg, M
2000-01-01
Ever since learning and memory have been studied experimentally, the relationship between operant and classical conditioning has been controversial. Operant conditioning is any form of conditioning that essentially depends on the animal's behavior. It relies on operant behavior. A motor output is called operant if it controls a sensory variable. The Drosophila flight simulator, in which the relevant behavior is a single motor variable (yaw torque), fully separates the operant and classical components of a complex conditioning task. In this paradigm a tethered fly learns, operantly or classically, to prefer and avoid certain flight orientations in relation to the surrounding panorama. Yaw torque is recorded and, in the operant mode, controls the panorama. Using a yoked control, we show that classical pattern learning necessitates more extensive training than operant pattern learning. We compare in detail the microstructure of yaw torque after classical and operant training but find no evidence for acquired behavioral traits after operant conditioning that might explain this difference. We therefore conclude that the operant behavior has a facilitating effect on the classical training. In addition, we show that an operantly learned stimulus is successfully transferred from the behavior of the training to a different behavior. This result unequivocally demonstrates that during operant conditioning classical associations can be formed.
Virtual Reality Simulation Training for Ebola Deployment.
Ragazzoni, Luca; Ingrassia, Pier Luigi; Echeverri, Lina; Maccapani, Fabio; Berryman, Lizzy; Burkle, Frederick M; Della Corte, Francesco
2015-10-01
Both virtual and hybrid simulation training offer a realistic and effective educational framework and opportunity to provide virtual exposure to operational public health skills that are essential for infection control and Ebola treatment management. This training is designed to increase staff safety and create a safe and realistic environment where trainees can gain essential basic and advanced skills.
Individual Characteristics and Unit Performance: A Review of Research and Methods
1985-02-01
behavioral segments, improves performance. Simu- lation exercises , especially those employing new high-technology devices, provide surrogate...high-technology training simulation exercise MOB Military Occupational Specialty ORTT Operational Readiness Training Test-a field test REALTRAIN A...REAListic TRAINing simulation exercise SAM Surface-to-Air Missile SAT Scholastic Aptitude Test SQT Skill Qualification Test-an Army performance meas
A development of surgical simulator for training of operative skills using patient-specific data.
Ogata, Masato; Nagasaka, Manabu; Inuiya, Toru; Makiyama, Kazuhide; Kubota, Yoshinobu
2011-01-01
At the Advanced Medical Research Center at Yokohama City University School of Medicine, we have been developing a practical surgical simulator for renal surgery. Unlike already commercialized laparoscopic surgical simulators, our surgical simulator is capable of using patient-specific models for preoperative training and improvement of laparoscopic surgical skills. We have been evaluating the simulator clinically with the aim of using it in renal surgery training at Yokohama City University Hospital. The simulator can be applied to other types of laparoscopic surgery, such as gynecological, thoracic, and gastrointestinal. Here, we report on the technical aspects of the simulator.
Lack of transfer of skills after virtual reality simulator training with haptic feedback.
Våpenstad, Cecilie; Hofstad, Erlend Fagertun; Bø, Lars Eirik; Kuhry, Esther; Johnsen, Gjermund; Mårvik, Ronald; Langø, Thomas; Hernes, Toril Nagelhus
2017-12-01
Virtual reality (VR) simulators enrich surgical training and offer training possibilities outside of the operating room (OR). In this study, we created a criterion-based training program on a VR simulator with haptic feedback and tested it by comparing the performances of a simulator group against a control group. Medical students with no experience in laparoscopy were randomly assigned to a simulator group or a control group. In the simulator group, the candidates trained until they reached predefined criteria on the LapSim ® VR simulator (Surgical Science AB, Göteborg, Sweden) with haptic feedback (Xitact TM IHP, Mentice AB, Göteborg, Sweden). All candidates performed a cholecystectomy on a porcine organ model in a box trainer (the clinical setting). The performances were video rated by two surgeons blinded to subject training status. In total, 30 students performed the cholecystectomy and had their videos rated (N = 16 simulator group, N = 14 control group). The control group achieved better video rating scores than the simulator group (p < .05). The criterion-based training program did not transfer skills to the clinical setting. Poor mechanical performance of the simulated haptic feedback is believed to have resulted in a negative training effect.
NASA Technical Reports Server (NTRS)
2001-01-01
The crewmembers of STS-104, Commander Steven Lindsey, Pilot Charles Hobaugh, and Mission Specialists Michael Gernhardt, James Reilly, and Janet Kavandi, are seen during various stages of their training. Footage shows the following: (1) Water Survival Training at the Neutral Buoyancy Laboratory (NBL); (2) Rendezvous and Docking Training in the Shuttle Mission Simulator; (3) Training in the Space Station Airlock; (4) Training in the Virtual Reality Lab; (5) Post-insertion Operations in the Fixed Base Simulator; (6) Extravehicular Activity Training at the NBL; (7) Crew Stowage Training in the Space Station Mock-up Training Facility; and (8) Water Transfer Training in the Crew Compartment Trainer.
Design of 3D simulation engine for oilfield safety training
NASA Astrophysics Data System (ADS)
Li, Hua-Ming; Kang, Bao-Sheng
2015-03-01
Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.
Piromchai, Patorn; Avery, Alex; Laopaiboon, Malinee; Kennedy, Gregor; O'Leary, Stephen
2015-09-09
Virtual reality simulation uses computer-generated imagery to present a simulated training environment for learners. This review seeks to examine whether there is evidence to support the introduction of virtual reality surgical simulation into ear, nose and throat surgical training programmes. 1. To assess whether surgeons undertaking virtual reality simulation-based training achieve surgical ('patient') outcomes that are at least as good as, or better than, those achieved through conventional training methods.2. To assess whether there is evidence from either the operating theatre, or from controlled (simulation centre-based) environments, that virtual reality-based surgical training leads to surgical skills that are comparable to, or better than, those achieved through conventional training. The Cochrane Ear, Nose and Throat Disorders Group (CENTDG) Trials Search Co-ordinator searched the CENTDG Trials Register; Central Register of Controlled Trials (CENTRAL 2015, Issue 6); PubMed; EMBASE; ERIC; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 July 2015. We included all randomised controlled trials and controlled trials comparing virtual reality training and any other method of training in ear, nose or throat surgery. We used the standard methodological procedures expected by The Cochrane Collaboration. We evaluated both technical and non-technical aspects of skill competency. We included nine studies involving 210 participants. Out of these, four studies (involving 61 residents) assessed technical skills in the operating theatre (primary outcomes). Five studies (comprising 149 residents and medical students) assessed technical skills in controlled environments (secondary outcomes). The majority of the trials were at high risk of bias. We assessed the GRADE quality of evidence for most outcomes across studies as 'low'. Operating theatre environment (primary outcomes) In the operating theatre, there were no studies that examined two of three primary outcomes: real world patient outcomes and acquisition of non-technical skills. The third primary outcome (technical skills in the operating theatre) was evaluated in two studies comparing virtual reality endoscopic sinus surgery training with conventional training. In one study, psychomotor skill (which relates to operative technique or the physical co-ordination associated with instrument handling) was assessed on a 10-point scale. A second study evaluated the procedural outcome of time-on-task. The virtual reality group performance was significantly better, with a better psychomotor score (mean difference (MD) 1.66, 95% CI 0.52 to 2.81; 10-point scale) and a shorter time taken to complete the operation (MD -5.50 minutes, 95% CI -9.97 to -1.03). Controlled training environments (secondary outcomes) In a controlled environment five studies evaluated the technical skills of surgical trainees (one study) and medical students (three studies). One study was excluded from the analysis. Surgical trainees: One study (80 participants) evaluated the technical performance of surgical trainees during temporal bone surgery, where the outcome was the quality of the final dissection. There was no difference in the end-product scores between virtual reality and cadaveric temporal bone training. Medical students: Two other studies (40 participants) evaluated technical skills achieved by medical students in the temporal bone laboratory. Learners' knowledge of the flow of the operative procedure (procedural score) was better after virtual reality than conventional training (SMD 1.11, 95% CI 0.44 to 1.79). There was also a significant difference in end-product score between the virtual reality and conventional training groups (SMD 2.60, 95% CI 1.71 to 3.49). One study (17 participants) revealed that medical students acquired anatomical knowledge (on a scale of 0 to 10) better during virtual reality than during conventional training (MD 4.3, 95% CI 2.05 to 6.55). No studies in a controlled training environment assessed non-technical skills. There is limited evidence to support the inclusion of virtual reality surgical simulation into surgical training programmes, on the basis that it can allow trainees to develop technical skills that are at least as good as those achieved through conventional training. Further investigations are required to determine whether virtual reality training is associated with better real world outcomes for patients and the development of non-technical skills. Virtual reality simulation may be considered as an additional learning tool for medical students.
A Methodology for Training International Space Station Crews to Respond to On-Orbit Emergencies
NASA Technical Reports Server (NTRS)
Balmain, Clinton; Fleming, Mark
2009-01-01
Most spaceflight crewmembers agree that emergency training is among the most important training they receive. If an emergency event occurs on-orbit crewmembers want to be able to rely on a thorough and proficient knowledge of emergency operations and procedures. The inherent complexity of ISS and the international nature of the onboard operations have resulted in emergency procedures that are complex by any measure; as a result, a very robust apparatus has been developed to give crewmembers initial training on emergency procedures and ensure proficiency up to (and even after) launch. One of the most important aspects of complex onboard operations in general, and emergency operations specifically, is learning how to coordinate roles and responsibilities with fellow crewmembers. A primary goal of NASA s emergency training program is to allow the crewmembers who will actually be together on-orbit to practice executing the emergency responses together before they fly. As with any operation that includes the use of software and hardware, the fidelity of the simulation environment is a critical element to successful training. The NASA training division has spent considerable time and effort to develop a simulator that addresses the most important aspects of emergency response, working within very difficult space and budgetary constraints.
Naturalistic Decision Making For Power System Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Podmore, Robin; Robinson, Marck
2009-06-23
Abstract: Motivation -- As indicated by the Blackout of 2003, the North American interconnected electric system is vulnerable to cascading outages and widespread blackouts. Investigations of large scale outages often attribute the causes to the three T’s: Trees, Training and Tools. A systematic approach has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The approach has been developed and refined as part of a capability demonstration of a high-fidelity real-time power system simulator under normal and emergency conditions. To examine naturalistic decision making (NDM) processes, transcripts of operator-to-operatormore » conversations are analyzed to reveal and assess NDM-based performance criteria. Findings/Design -- The results of the study indicate that we can map the Situation Awareness Level of the operators at each point in the scenario. We can also identify clearly what mental models and mental simulations are being performed at different points in the scenario. As a result of this research we expect that we can identify improved training methods and improved analytical and visualization tools for power system operators. Originality/Value -- The research applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message -- The NDM approach provides an ideal framework for systematic training management and mitigation to accelerate learning in team-based training scenarios with high-fidelity power grid simulators.« less
QuickStrike ASOC Battlefield Simulation: Preparing the War Fighter to Win
NASA Technical Reports Server (NTRS)
Jones, Richard L.
2010-01-01
The QuickStrike ASOC (Air Support Operations Center) Battlefield Simulation fills a crucial gap in USAF and United Kingdom Close Air Support (CAS) and airspace manager training. The system now provides six squadrons with the capability to conduct total-mission training events whenever the personnel and time are available. When the 111th ASOC returned from their first deployment to Afghanistan they realized the training available prior to deployment was inadequate. They sought an organic training capability focused on the ASOC mission that was low cost, simple to use, adaptable, and available now. Using a commercial off-the-shelf simulation, they developed a complete training system by adapting the simulation to their training needs. Through more than two years of spiral development, incorporating lessons learned, the system has matured, and can now realistically replicate the Tactical Operations Center (TOC) in Kabul, Afghanistan, the TOC supporting the mission in Iraq, or can expand to support a major conflict scenario. The training system provides a collaborative workspace for the training audience and exercise control group via integrated software and workstations that can easily adapt to new mission reqUirements and TOC configurations. The system continues to mature. Based on inputs from the war fighter, new capabilities have been incorporated to add realism and simplify the scenario development process. The QuickStrike simulation can now import TBMCS Air Tasking Order air mission data and can provide air and ground tracks to a common operating picture; presented through either C2PC or JADOCS. This oranic capability to practice team processes and tasks and to conduct mission rehearsals proved its value in the 111 h ASOS's next deployment. The ease of scenario development and the simple to learn and intuitive gamelike interface enables the squadrons to develop and share scenarios incorporating lessons learned from every deployment. These war fighters have now filled the training gap and have the capability they need to train to win.
Developing Collective Training for Small Unmanned Aerial Systems Employment
NASA Technical Reports Server (NTRS)
Durlach, Paula J.; Priest, Heather; Martin, Glenn A.; Saffold, Jay
2010-01-01
The projected use of small unmanned aerial systems (SUAS) in military operations will produce training requirements which go beyond current capabilities. The paper describes the development of prototype training procedures and accompanying research simulations to address this need. We initially constructed a testbed to develop simulation-based training for an SUAS operator equipped with a simulated vertical-lift and land SUAS. However, the required training will go beyond merely training an operator how to pilot an SUAS. In addition to tactics, techniques, and procedures for employment of SUASs, collective training methods must be trained. Moreover, the leader of a unit equipped with SUAS will need to learn how to plan missions which incorporate the SUAS, and take into account air space and frequency management considerations. The demands of the task require the leader to allocate personnel to the SUAS mission, communicate and coordinate with those personnel during the mission, and make use of the information provided. To help address these training issues, we expanded our research testbed to include a command and control node (C2 node), to enable communications between a leader and the SUAS operator. In addition, we added a virtual environment in which dismounted infantry missions can be conducted. This virtual environment provides the opportunity for interactions among human-controlled avatars and non-player characters (NPCs), plus authoring tools to construct scenarios. Using these NPCs, a collective exercise involving friendly, enemy, and civilian personnel can be conducted without the need for a human role-player for every entity. We will describe the results of our first experiment, which examined the ability of players to negotiate use of the C2 node and the virtual environment at the same time, in order to see if this is a feasible combination of tools for training development.
NASA Technical Reports Server (NTRS)
Clancey, William J.
2004-01-01
This viewgraph presentation provides an overview of past and possible future applications for artifical intelligence (AI) in astronaut instruction and training. AI systems have been used in training simulation for the Hubble Space Telescope repair, the International Space Station, and operations simulation for the Mars Exploration Rovers. In the future, robots such as may work as partners with astronauts on missions such as planetary exploration and extravehicular activities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...
Code of Federal Regulations, 2011 CFR
2011-01-01
... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...
Code of Federal Regulations, 2013 CFR
2013-01-01
... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...
Code of Federal Regulations, 2012 CFR
2012-01-01
... adequate periods of time and at a location approved by the Administrator, adequate flight training equipment and courseware, including at least one flight simulator or advanced flight training device. [Doc... significant distractions caused by flight operations and maintenance operations at the airport. (b) An...
Simple simulation training system for short-wave radio station
NASA Astrophysics Data System (ADS)
Tan, Xianglin; Shao, Zhichao; Tu, Jianhua; Qu, Fuqi
2018-04-01
The short-wave radio station is a most important transmission equipment of our signal corps, but in the actual teaching process, which exist the phenomenon of fewer equipment and more students, making the students' short-wave radio operation and practice time is very limited. In order to solve the above problems, to carry out shortwave radio simple simulation training system development is very necessary. This project is developed by combining hardware and software to simulate the voice communication operation and signal principle of shortwave radio station, and can test the signal flow of shortwave radio station. The test results indicate that this system is simple operation, human-machine interface friendly and can improve teaching more efficiency.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2010-01-01
This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Overview and summary
NASA Technical Reports Server (NTRS)
1989-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned Marshall Space Flight Center (MSFC) Payload Training Complex (PTC) required to meet this need will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs. This study was performed August 1988 to October 1989. Thus, the results are based on the SSFP August 1989 baseline, i.e., pre-Langley configuration/budget review (C/BR) baseline. Some terms, e.g., combined trainer, are being redefined. An overview of the study activities and a summary of study results are given here.
El-Chami, Mikhael; Kowal, Robert C; Soejima, Kyoko; Ritter, Philippe; Duray, Gabor Z; Neuzil, Petr; Mont, Lluis; Kypta, Alexander; Sagi, Venkata; Hudnall, John Harrison; Stromberg, Kurt; Reynolds, Dwight
2017-07-01
Leadless pacemaker systems have been designed to avoid the need for a pocket and transvenous lead. However, delivery of this therapy requires a new catheter-based procedure. This study evaluates the role of operator experience and different training strategies on procedural outcomes. A total of 726 patients underwent implant attempt with the Micra transcatheter pacing system (TPS; Medtronic, Minneapolis, MN, USA) by 94 operators trained in a teaching laboratory using a simulator, cadaver, and large animal models (lab training) or locally at the hospital with simulator/demo model and proctorship (hospital training). Procedure success, procedure duration, fluoroscopy time, and safety outcomes were compared between training methods and experience (implant case number). The Micra TPS procedure was successful in 99.2% of attempts and did not differ between the 55 operators trained in the lab setting and the 39 operators trained locally at the hospital (P = 0.189). Implant case number was also not a determinant of procedural success (P = 0.456). Each operator performed between one and 55 procedures. Procedure time and fluoroscopy duration decreased by 2.0% (P = 0.002) and 3.2% (P < 0.001) compared to the previous case. Major complication rate and pericardial effusion rate were not associated with case number (P = 0.755 and P = 0.620, respectively). There were no differences in the safety outcomes by training method. Among a large group of operators, implantation success was high regardless of experience. While procedure duration and fluoroscopy times decreased with implant number, complications were low and not associated with case number. Procedure and safety outcomes were similar between distinct training methodologies. © 2017 Wiley Periodicals, Inc.
Desktop-based computer-assisted orthopedic training system for spinal surgery.
Rambani, Rohit; Ward, James; Viant, Warren
2014-01-01
Simulation and surgical training has moved on since its inception during the end of the last century. The trainees are getting more exposed to computers and laboratory training in different subspecialties. More needs to be done in orthopedic simulation in spinal surgery. To develop a training system for pedicle screw fixation and validate its effectiveness in a cohort of junior orthopedic trainees. Fully simulated computer-navigated training system is used to train junior orthopedic trainees perform pedicle screw insertion in the lumbar spine. Real patient computed tomography scans are used to produce the real-time fluoroscopic images of the lumbar spine. The training system was developed to simulate pedicle screw insertion in the lumbar spine. A total of 12 orthopedic senior house officers performed pedicle screw insertion in the lumbar spine before and after the training on training system. The results were assessed based on the scoring system, which included the amount of time taken, accuracy of pedicle screw insertion, and the number of exposures requested to complete the procedure. The result shows a significant improvement in amount of time taken, accuracy of fixation, and the number of exposures after the training on simulator system. This was statistically significant using paired Student t test (p < 0.05). Fully simulated computer-navigated training system is an efficient training tool for young orthopedic trainees. This system can be used to augment training in the operating room, and trainees acquire their skills in the comfort of their study room or in the training room in the hospital. The system has the potential to be used in various other orthopedic procedures for learning of technical skills in a manner aimed at ensuring a smooth escalation in task complexity leading to the better performance of procedures in the operating theater. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Dust Plume Modeling at Fort Bliss: Move-Out Operations, Combat Training and Wind Erosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Elaine G.; Rishel, Jeremy P.; Rutz, Frederick C.
2006-09-29
The potential for air-quality impacts from heavy mechanized vehicles operating in the training ranges and on the unpaved main supply routes at Fort Bliss was investigated. This report details efforts by the staff of Pacific Northwest National Laboratory for the Fort Bliss Directorate of Environment in this investigation. Dust emission and dispersion from typical activities, including move outs and combat training, occurring on the installation were simulated using the atmospheric modeling system DUSTRAN. Major assumptions associated with designing specific modeling scenarios are summarized, and results from the simulations are presented.
IITET and shadow TT: an innovative approach to training at the point of need
NASA Astrophysics Data System (ADS)
Gross, Andrew; Lopez, Favio; Dirkse, James; Anderson, Darran; Berglie, Stephen; May, Christopher; Harkrider, Susan
2014-06-01
The Image Intensification and Thermal Equipment Training (IITET) project is a joint effort between Night Vision and Electronics Sensors Directorate (NVESD) Modeling and Simulation Division (MSD) and the Army Research Institute (ARI) Fort Benning Research Unit. The IITET effort develops a reusable and extensible training architecture that supports the Army Learning Model and trains Manned-Unmanned Teaming (MUM-T) concepts to Shadow Unmanned Aerial Systems (UAS) payload operators. The training challenge of MUM-T during aviation operations is that UAS payload operators traditionally learn few of the scout-reconnaissance skills and coordination appropriate to MUM-T at the schoolhouse. The IITET effort leveraged the simulation experience and capabilities at NVESD and ARI's research to develop a novel payload operator training approach consistent with the Army Learning Model. Based on the training and system requirements, the team researched and identified candidate capabilities in several distinct technology areas. The training capability will support a variety of training missions as well as a full campaign. Data from these missions will be captured in a fully integrated AAR capability, which will provide objective feedback to the user in near-real-time. IITET will be delivered via a combination of browser and video streaming technologies, eliminating the requirement for a client download and reducing user computer system requirements. The result is a novel UAS Payload Operator training capability, nested within an architecture capable of supporting a wide variety of training needs for air and ground tactical platforms and sensors, and potentially several other areas requiring vignette-based serious games training.
A qualitative analysis of bus simulator training on transit incidents : a case study in Florida.
DOT National Transportation Integrated Search
2013-06-01
The purpose of this research was to track and observe three Florida public transit agencies as they incorporated and integrated computer-based transit bus simulators into their existing bus operator training programs. In addition to the three Florida...
Advanced simulation study on bunch gap transient effect
NASA Astrophysics Data System (ADS)
Kobayashi, Tetsuya; Akai, Kazunori
2016-06-01
Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.
Training in surgical oncology - the role of VR simulation.
Lewis, T M; Aggarwal, R; Rajaretnam, N; Grantcharov, T P; Darzi, A
2011-09-01
There have been dramatic changes in surgical training over the past two decades which have resulted in a number of concerns for the development of future surgeons. Changes in the structure of cancer services, working hour restrictions and a commitment to patient safety has led to a reduction in training opportunities that are available to the surgeon in training. Simulation and in particular virtual reality (VR) simulation has been heralded as an effective adjunct to surgical training. Advances in VR simulation has allowed trainees to practice realistic full length procedures in a safe and controlled environment, where mistakes are permitted and can be used as learning points. There is considerable evidence to demonstrate that the VR simulation can be used to enhance technical skills and improve operating room performance. Future work should focus on the cost effectiveness and predictive validity of VR simulation, which in turn would increase the uptake of simulation and enhance surgical training. Copyright © 2011 Elsevier Ltd. All rights reserved.
A review of virtual reality based training simulators for orthopaedic surgery.
Vaughan, Neil; Dubey, Venketesh N; Wainwright, Thomas W; Middleton, Robert G
2016-02-01
This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Neutron Source Facility Training Simulator Based on EPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.
A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less
Stereoscopic, Force-Feedback Trainer For Telerobot Operators
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.
1994-01-01
Computer-controlled simulator for training technicians to operate remote robots provides both visual and kinesthetic virtual reality. Used during initial stage of training; saves time and expense, increases operational safety, and prevents damage to robots by inexperienced operators. Computes virtual contact forces and torques of compliant robot in real time, providing operator with feel of forces experienced by manipulator as well as view in any of three modes: single view, two split views, or stereoscopic view. From keyboard, user specifies force-reflection gain and stiffness of manipulator hand for three translational and three rotational axes. System offers two simulated telerobotic tasks: insertion of peg in hole in three dimensions, and removal and insertion of drawer.
Virtual reality simulators: current status in acquisition and assessment of surgical skills.
Cosman, Peter H; Cregan, Patrick C; Martin, Christopher J; Cartmill, John A
2002-01-01
Medical technology is currently evolving so rapidly that its impact cannot be analysed. Robotics and telesurgery loom on the horizon, and the technology used to drive these advances has serendipitous side-effects for the education and training arena. The graphical and haptic interfaces used to provide remote feedback to the operator--by passing control to a computer--may be used to generate simulations of the operative environment that are useful for training candidates in surgical procedures. One additional advantage is that the metrics calculated inherently in the controlling software in order to run the simulation may be used to provide performance feedback to individual trainees and mentors. New interfaces will be required to undergo evaluation of the simulation fidelity before being deemed acceptable. The potential benefits fall into one of two general categories: those benefits related to skill acquisition, and those related to skill assessment. The educational value of the simulation will require assessment, and comparison to currently available methods of training in any given procedure. It is also necessary to determine--by repeated trials--whether a given simulation actually measures the performance parameters it purports to measure. This trains the spotlight on what constitutes good surgical skill, and how it is to be objectively measured. Early results suggest that virtual reality simulators have an important role to play in this aspect of surgical training.
Flight Simulator Platform Motion and Air Transport Pilot Training
NASA Technical Reports Server (NTRS)
Lee, Alfred T.; Bussolari, Steven R.
1989-01-01
The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.
Sevdalis, Nick; Undre, Shabnam; Henry, Janet; Sydney, Elaine; Koutantji, Mary; Darzi, Ara; Vincent, Charles A
2009-09-01
The recent emergence of the Systems Approach to the safety and quality of surgical care has triggered individual and team skills training modules for surgeons and anaesthetists and relevant observational assessment tools have been developed. To develop an observational tool that captures operating room (OR) nurses' technical skill and can be used for assessment and training. The Imperial College Assessment of Technical Skills for Nurses (ICATS-N) assesses (i) gowning and gloving, (ii) setting up instrumentation, (iii) draping, and (iv) maintaining sterility. Three to five observable behaviours have been identified for each skill and are rated on 1-6 scales. Feasibility and aspects of reliability and validity were assessed in 20 simulation-based crisis management training modules for trainee nurses and doctors, carried out in a Simulated Operating Room. The tool was feasible to use in the context of simulation-based training. Satisfactory reliability (Cronbach alpha) was obtained across trainers' and trainees' scores (analysed jointly and separately). Moreover, trainer nurse's ratings of the four skills correlated positively, thus indicating adequate content validity. Trainer's and trainees' ratings did not correlate. Assessment of OR nurses' technical skill is becoming a training priority. The present evidence suggests that the ICATS-N could be considered for use as an assessment/training tool for junior OR nurses.
An improved cellular automata model for train operation simulation with dynamic acceleration
NASA Astrophysics Data System (ADS)
Li, Wen-Jun; Nie, Lei
2018-03-01
Urban rail transit plays an important role in the urban public traffic because of its advantages of fast speed, large transport capacity, high safety, reliability and low pollution. This study proposes an improved cellular automaton (CA) model by considering the dynamic characteristic of the train acceleration to analyze the energy consumption and train running time. Constructing an effective model for calculating energy consumption to aid train operation improvement is the basis for studying and analyzing energy-saving measures for urban rail transit system operation.
Simulation of longitudinal dynamics of long freight trains in positioning operations
NASA Astrophysics Data System (ADS)
Qi, Zhaohui; Huang, Zhihao; Kong, Xianchao
2012-09-01
Positioning operations are performed in a railway goods yard, in which the freight train is pulled precisely at a specific point by a positioner. The positioner moves strictly according to the predesigned speed and provides all the traction and braking forces which are highly dependent on the longitudinal dynamic response. In order to improve the efficiency and protect the wagons from damage during positioning operations, the design speed of the positioner has to be optimised based on the simulation of longitudinal train dynamics. However, traditional models of longitudinal train dynamics are not accurate enough in some aspects. In this study, we make some changes in the traditional theory to make it suitable for the study of long freight trains in positioning operations. In the proposed method, instead of the traction force on the train, the motion of the positioner is assumed to be known; more importantly, the traditional draft gear model with nonlinear spring and linear damping is replaced by a more detailed model based on the achievement of contact and impact mechanics; the switching effects of the resistance and the coupler slack are also taken into consideration. Numerical examples that deal with positioning operations on the straight lines, slope lines and curving lines are given.
Littlepage, Glenn E; Hein, Michael B; Moffett, Richard G; Craig, Paul A; Georgiou, Andrea M
2016-12-01
This study evaluates the effectiveness of a training program designed to improve cross-functional coordination in airline operations. Teamwork across professional specializations is essential for safe and efficient airline operations, but aviation education primarily emphasizes positional knowledge and skill. Although crew resource management training is commonly used to provide some degree of teamwork training, it is generally focused on specific specializations, and little training is provided in coordination across specializations. The current study describes and evaluates a multifaceted training program designed to enhance teamwork and team performance of cross-functional teams within a simulated airline flight operations center. The training included a variety of components: orientation training, position-specific declarative knowledge training, position-specific procedural knowledge training, a series of high-fidelity team simulations, and a series of after-action reviews. Following training, participants demonstrated more effective teamwork, development of transactive memory, and more effective team performance. Multifaceted team training that incorporates positional training and team interaction in complex realistic situations and followed by after-action reviews can facilitate teamwork and team performance. Team training programs, such as the one described here, have potential to improve the training of aviation professionals. These techniques can be applied to other contexts where multidisciplinary teams and multiteam systems work to perform highly interdependent activities. © 2016, Human Factors and Ergonomics Society.
Astronaut Neil Armstrong during thermovacuum training
1969-05-07
Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.
Wen, Tingxi; Medveczky, David; Wu, Jackie; Wu, Jianhuang
2018-01-25
Colonoscopy plays an important role in the clinical screening and management of colorectal cancer. The traditional 'see one, do one, teach one' training style for such invasive procedure is resource intensive and ineffective. Given that colonoscopy is difficult, and time-consuming to master, the use of virtual reality simulators to train gastroenterologists in colonoscopy operations offers a promising alternative. In this paper, a realistic and real-time interactive simulator for training colonoscopy procedure is presented, which can even include polypectomy simulation. Our approach models the colonoscopy as thick flexible elastic rods with different resolutions which are dynamically adaptive to the curvature of the colon. More material characteristics of this deformable material are integrated into our discrete model to realistically simulate the behavior of the colonoscope. We present a simulator for training colonoscopy procedure. In addition, we propose a set of key aspects of our simulator that give fast, high fidelity feedback to trainees. We also conducted an initial validation of this colonoscopic simulator to determine its clinical utility and efficacy.
Middleton, Robert M; Alvand, Abtin; Garfjeld Roberts, Patrick; Hargrove, Caroline; Kirby, Georgina; Rees, Jonathan L
2017-05-01
To determine whether a virtual reality (VR) arthroscopy simulator or benchtop (BT) arthroscopy simulator showed superiority as a training tool. Arthroscopic novices were randomized to a training program on a BT or a VR knee arthroscopy simulator. The VR simulator provided user performance feedback. Individuals performed a diagnostic arthroscopy on both simulators before and after the training program. Performance was assessed using wireless objective motion analysis and a global rating scale. The groups (8 in the VR group, 9 in the BT group) were well matched at baseline across all parameters (P > .05). Training on each simulator resulted in significant performance improvements across all parameters (P < .05). BT training conferred a significant improvement in all parameters when trainees were reassessed on the VR simulator (P < .05). In contrast, VR training did not confer improvement in performance when trainees were reassessed on the BT simulator (P > .05). BT-trained subjects outperformed VR-trained subjects in all parameters during final assessments on the BT simulator (P < .05). There was no difference in objective performance between VR-trained and BT-trained subjects on final VR simulator wireless objective motion analysis assessment (P > .05). Both simulators delivered improvements in arthroscopic skills. BT training led to skills that readily transferred to the VR simulator. Skills acquired after VR training did not transfer as readily to the BT simulator. Despite trainees receiving automated metric feedback from the VR simulator, the results suggest a greater gain in psychomotor skills for BT training. Further work is required to determine if this finding persists in the operating room. This study suggests that there are differences in skills acquired on different simulators and skills learnt on some simulators may be more transferable. Further work in identifying user feedback metrics that enhance learning is also required. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.
Randomized clinical trial of virtual reality simulation for laparoscopic skills training.
Grantcharov, T P; Kristiansen, V B; Bendix, J; Bardram, L; Rosenberg, J; Funch-Jensen, P
2004-02-01
This study examined the impact of virtual reality (VR) surgical simulation on improvement of psychomotor skills relevant to the performance of laparoscopic cholecystectomy. Sixteen surgical trainees performed a laparoscopic cholecystectomy on patients in the operating room (OR). The participants were then randomized to receive VR training (ten repetitions of all six tasks on the Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR)) or no training. Subsequently, all subjects performed a further laparoscopic cholecystectomy in the OR. Both operative procedures were recorded on videotape, and assessed by two independent and blinded observers using predefined objective criteria. Time to complete the procedure, error score and economy of movement score were assessed during the laparoscopic procedure in the OR. No differences in baseline variables were found between the two groups. Surgeons who received VR training performed laparoscopic cholecystectomy significantly faster than the control group (P=0.021). Furthermore, those who had VR training showed significantly greater improvement in error (P=0.003) and economy of movement (P=0.003) scores. Surgeons who received VR simulator training showed significantly greater improvement in performance in the OR than those in the control group. VR surgical simulation is therefore a valid tool for training of laparoscopic psychomotor skills and could be incorporated into surgical training programmes. Copyright 2003 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.
[Design of warm-acupuncture technique training evaluation device].
Gao, Ming; Xu, Gang; Yang, Huayuan; Liu, Tangyi; Tang, Wenchao
2017-01-12
To design a warm-acupuncture teaching instrument to train and evaluate its manipulation. We refer to the principle and technical operation characteristics of traditional warm-acupuncture, as well as the mechanical design and single-chip microcomputer technology. The device is consisted of device noumenon, universal acupoints simulator, vibration reset system and circuit control system, including frame, platform framework, the swing framework, universal acupoints simulator, vibration reset outfit, operation time circuit, acupuncture sensation display, and vibration control circuit, etc. It can be used to train needle inserting with different angles and moxa rubbing and loading. It displays whether a needle point meets the location required. We determine whether the moxa group on a needle handle is easy to fall off through vibration test, and operation time is showed. The device can objectively help warm-acupuncture training and evaluation so as to promote its clinical standardization manipulation.
A STUDY OF SIMULATOR CAPABILITIES IN AN OPERATIONAL TRAINING PROGRAM.
ERIC Educational Resources Information Center
MEYER, DONALD E.; AND OTHERS
THE EXPERIMENT WAS CONDUCTED TO DETERMINE THE EFFECTS OF SIMULATOR TRAINING TO CRITERION PROFICIENCY UPON TIME REQUIRED IN THE AIRCRAFT. DATA WERE ALSO COLLECTED ON PROFICIENCY LEVELS ATTAINED, SELF-CONFIDENCE LEVELS, INDIVIDUAL ESTIMATES OF CAPABILITY, AND SOURCES FROM WHICH THAT CAPABILITY WAS DERIVED. SUBJECTS FOR THE EXPERIMENT--48 AIRLINE…
Astronaut Russell Schweickart inside simulator for EVA training
1968-12-11
S68-55391 (11 Dec. 1968) --- Astronaut Russell L. Schweickart, lunar module pilot of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space mission, is seen inside Chamber "A," Space Environment Simulation Laboratory, Building 32, participating in dry run activity in preparation for extravehicular activity which is scheduled in Chamber "A." The purpose of the scheduled training is to familiarize the crewmen with the operation of EVA equipment in a simulated space environment. In addition, metabolic and workload profiles will be simulated on each crewman. Astronauts Schweickart and Alan L. Bean, backup lunar module pilot, are scheduled to receive thermal-vacuum training simulating Earth-orbital EVA.
Clinical simulation training improves the clinical performance of Chinese medical students
Zhang, Ming-ya; Cheng, Xin; Xu, An-ding; Luo, Liang-ping; Yang, Xuesong
2015-01-01
Background Modern medical education promotes medical students’ clinical operating capacity rather than the mastery of theoretical knowledge. To accomplish this objective, clinical skill training using various simulations was introduced into medical education to cultivate creativity and develop the practical ability of students. However, quantitative analysis of the efficiency of clinical skill training with simulations is lacking. Methods In the present study, we compared the mean scores of medical students (Jinan University) who graduated in 2013 and 2014 on 16 stations between traditional training (control) and simulative training groups. In addition, in a clinical skill competition, the objective structured clinical examination (OSCE) scores of participating medical students trained using traditional and simulative training were compared. The data were statistically analyzed and qualitatively described. Results The results revealed that simulative training could significantly enhance the graduate score of medical students compared with the control. The OSCE scores of participating medical students in the clinical skill competition, trained using simulations, were dramatically higher than those of students trained through traditional methods, and we also observed that the OSCE marks were significantly increased for the same participant after simulative training for the clinical skill competition. Conclusions Taken together, these data indicate that clinical skill training with a variety of simulations could substantially promote the clinical performance of medical students and optimize the resources used for medical education, although a precise analysis of each specialization is needed in the future. PMID:26478142
Overseas Operations News - The National Guard
ARNG Command Sergeant Major of the ARNG State Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications
A novel 3D-printed hybrid simulation model for robotic-assisted kidney transplantation (RAKT).
Uwechue, Raphael; Gogalniceanu, Petrut; Kessaris, Nicos; Byrne, Nick; Chandak, Pankaj; Olsburgh, Jonathon; Ahmed, Kamran; Mamode, Nizam; Loukopoulos, Ioannis
2018-01-27
Robotic-assisted kidney transplantation (RAKT) offers key benefits for patients that have been demonstrated in several studies. A barrier to the wider uptake of RAKT is surgical skill acquisition. This is exacerbated by the challenges of modern surgery with reduced surgical training time, patient safety concerns and financial pressures. Simulation is a well-established method of developing surgical skill in a safe and controlled environment away from the patient. We have developed a 3D printed simulation model for the key step of the kidney transplant operation which is the vascular anastomosis. The model is anatomically accurate, based on the CT scans of patients and it incorporates deceased donor vascular tissue. Crucially, it was developed to be used in the robotic operating theatre with the operating robot to enhance its fidelity. It is portable and relatively inexpensive when compared with other forms of simulation such as virtual reality or animal lab training. It thus has the potential of being more accessible as a training tool for the safe acquisition of RAKT specific skills. We demonstrate this model here.
NASA Technical Reports Server (NTRS)
Chung, Christopher A.; Marwaha, Shweta
2005-01-01
This paper describes an interactive multimedia simulator for air transportation bomb threat training. The objective of this project is to improve the air transportation sector s capability to respond to bomb threats received by commercial airports and aircraft. The simulator provides realistic training on receiving and responding to a variety of bomb threats that might not otherwise be possible due to time, cost, or operational constraints. Validation analysis indicates that the use of the simulator resulted in statistically significant increases in individual ability to respond to these types of bomb threats.
Stress training improves performance during a stressful flight.
McClernon, Christopher K; McCauley, Michael E; O'Connor, Paul E; Warm, Joel S
2011-06-01
This study investigated whether stress training introduced during the acquisition of simulator-based flight skills enhances pilot performance during subsequent stressful flight operations in an actual aircraft. Despite knowledge that preconditions to aircraft accidents can be strongly influenced by pilot stress, little is known about the effectiveness of stress training and how it transfers to operational flight settings. For this study, 30 participants with no flying experience were assigned at random to a stress-trained treatment group or a control group. Stress training consisted of systematic pairing of skill acquisition in a flight simulator with stress coping mechanisms in the presence of a cold pressor. Control participants received identical flight skill acquisition training but without stress training. Participants then performed a stressful flying task in a Piper Archer aircraft. Stress-trained research participants flew the aircraft more smoothly, as recorded by aircraft telemetry data, and generally better, as recorded by flight instructor evaluations, than did control participants. Introducing stress coping mechanisms during flight training improved performance in a stressful flying task. The results of this study indicate that stress training during the acquisition of flight skills may serve to enhance pilot performance in stressful operational flight and, therefore, might mitigate the contribution of pilot stress to aircraft mishaps.
Surgical skills simulation in trauma and orthopaedic training.
Stirling, Euan R B; Lewis, Thomas L; Ferran, Nicholas A
2014-12-19
Changing patterns of health care delivery and the rapid evolution of orthopaedic surgical techniques have made it increasingly difficult for trainees to develop expertise in their craft. Working hour restrictions and a drive towards senior led care demands that proficiency be gained in a shorter period of time whilst requiring a greater skill set than that in the past. The resulting conflict between service provision and training has necessitated the development of alternative methods in order to compensate for the reduction in 'hands-on' experience. Simulation training provides the opportunity to develop surgical skills in a controlled environment whilst minimising risks to patient safety, operating theatre usage and financial expenditure. Many options for simulation exist within orthopaedics from cadaveric or prosthetic models, to arthroscopic simulators, to advanced virtual reality and three-dimensional software tools. There are limitations to this form of training, but it has significant potential for trainees to achieve competence in procedures prior to real-life practice. The evidence for its direct transferability to operating theatre performance is limited but there are clear benefits such as increasing trainee confidence and familiarity with equipment. With progressively improving methods of simulation available, it is likely to become more important in the ongoing and future training and assessment of orthopaedic surgeons.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard
2003-01-01
The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.
NASA Technical Reports Server (NTRS)
Beach, B. E.
1980-01-01
Some of the concepts related to a line-oriented flight training program are discussed. The need to shift from training in manipulative skills to something closer to management skills is emphasized. The program is evaluated in terms of its realistic approaches which include the simulator's optimized motion and visual capabilities. The value of standard operating procedures as they affect the line pilot in everyday operations are also illustrated.
Virtual reality training for endoscopic surgery: voluntary or obligatory?
van Dongen, K W; van der Wal, W A; Rinkes, I H M Borel; Schijven, M P; Broeders, I A M J
2008-03-01
Virtual reality (VR) simulators have been developed to train basic endoscopic surgical skills outside of the operating room. An important issue is how to create optimal conditions for integration of these types of simulators into the surgical training curriculum. The willingness of surgical residents to train these skills on a voluntary basis was surveyed. Twenty-one surgical residents were given unrestricted access to a VR simulator for a period of four months. After this period, a competitive element was introduced to enhance individual training time spent on the simulator. The overall end-scores for individual residents were announced periodically to the full surgical department, and the winner was awarded a prize. In the first four months of study, only two of the 21 residents (10%) trained on the simulator, for a total time span of 163 minutes. After introducing the competitive element the number of trainees increased to seven residents (33%). The amount of training time spent on the simulator increased to 738 minutes. Free unlimited access to a VR simulator for training basic endoscopic skills, without any form of obligation or assessment, did not motivate surgical residents to use the simulator. Introducing a competitive element for enhancing training time had only a marginal effect. The acquisition of expensive devices to train basic psychomotor skills for endoscopic surgery is probably only effective when it is an integrated and mandatory part of the surgical curriculum.
Framework for incorporating simulation into urology training.
Arora, Sonal; Lamb, Benjamin; Undre, Shabnam; Kneebone, Roger; Darzi, Ara; Sevdalis, Nick
2011-03-01
• Changes to working hours, new technologies and increased accountability have rendered the need for alternative training environments for urologists. • Simulation offers a promising arena for learning to take place in a safe, realistic setting. • Despite its benefits, the incorporation of simulation into urological training programmes remains minimal. • The current status and future directions of simulation for training in technical and non-technical skills are reviewed as they pertain to urology. • A framework is presented for how simulation-based training could be incorporated into the entire urological curriculum. • The literature on simulation in technical and non-technical skills training is reviewed, with a specific focus upon urology. • To fully integrate simulation into a training curriculum, its possibilities for addressing all the competencies required by a urologist must be realized. • At an early stage of training, simulation has been used to develop basic technical skills and cognitive skills, such as decision-making and communication. • At an intermediate stage, the studies focus upon more advanced technical skills learnt with virtual reality simulators. • Non-technical skills training would include leadership and could be delivered with in situ models. • At the final stage, experienced trainees can practise technical and non-technical skills in full crisis simulations situated within a fully-simulated operating rooms. • Simulation can provide training in the technical and non-technical skills required to be a competent urologist. • The framework presented may guide how best to incorporate simulation into training curricula. • Future work should determine whether acquired skills transfer to clinical practice and improve patient care. © 2010 THE AUTHORS. BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.
Systematic review of skills transfer after surgical simulation-based training.
Dawe, S R; Pena, G N; Windsor, J A; Broeders, J A J L; Cregan, P C; Hewett, P J; Maddern, G J
2014-08-01
Simulation-based training assumes that skills are directly transferable to the patient-based setting, but few studies have correlated simulated performance with surgical performance. A systematic search strategy was undertaken to find studies published since the last systematic review, published in 2007. Inclusion of articles was determined using a predetermined protocol, independent assessment by two reviewers and a final consensus decision. Studies that reported on the use of surgical simulation-based training and assessed the transferability of the acquired skills to a patient-based setting were included. Twenty-seven randomized clinical trials and seven non-randomized comparative studies were included. Fourteen studies investigated laparoscopic procedures, 13 endoscopic procedures and seven other procedures. These studies provided strong evidence that participants who reached proficiency in simulation-based training performed better in the patient-based setting than their counterparts who did not have simulation-based training. Simulation-based training was equally as effective as patient-based training for colonoscopy, laparoscopic camera navigation and endoscopic sinus surgery in the patient-based setting. These studies strengthen the evidence that simulation-based training, as part of a structured programme and incorporating predetermined proficiency levels, results in skills transfer to the operative setting. © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.
Innovations in surgery simulation: a review of past, current and future techniques
Burtt, Karen; Solorzano, Carlos A.; Carey, Joseph N.
2016-01-01
As a result of recent work-hours limitations and concerns for patient safety, innovations in extraclinical surgical simulation have become a desired part of residency education. Current simulation models, including cadaveric, animal, bench-top, virtual reality (VR) and robotic simulators are increasingly used in surgical training programs. Advances in telesurgery, three-dimensional (3D) printing, and the incorporation of patient-specific anatomy are paving the way for simulators to become integral components of medical training in the future. Evidence from the literature highlights the benefits of including simulations in surgical training; skills acquired through simulations translate into improvements in operating room performance. Moreover, simulations are rapidly incorporating new medical technologies and offer increasingly high-fidelity recreations of procedures. As a result, both novice and expert surgeons are able to benefit from their use. As dedicated, structured curricula are developed that incorporate simulations into daily resident training, simulated surgeries will strengthen the surgeon’s skill set, decrease hospital costs, and improve patient outcomes. PMID:28090509
Innovations in surgery simulation: a review of past, current and future techniques.
Badash, Ido; Burtt, Karen; Solorzano, Carlos A; Carey, Joseph N
2016-12-01
As a result of recent work-hours limitations and concerns for patient safety, innovations in extraclinical surgical simulation have become a desired part of residency education. Current simulation models, including cadaveric, animal, bench-top, virtual reality (VR) and robotic simulators are increasingly used in surgical training programs. Advances in telesurgery, three-dimensional (3D) printing, and the incorporation of patient-specific anatomy are paving the way for simulators to become integral components of medical training in the future. Evidence from the literature highlights the benefits of including simulations in surgical training; skills acquired through simulations translate into improvements in operating room performance. Moreover, simulations are rapidly incorporating new medical technologies and offer increasingly high-fidelity recreations of procedures. As a result, both novice and expert surgeons are able to benefit from their use. As dedicated, structured curricula are developed that incorporate simulations into daily resident training, simulated surgeries will strengthen the surgeon's skill set, decrease hospital costs, and improve patient outcomes.
Computer modeling and simulators as part of university training for NPP operating personnel
NASA Astrophysics Data System (ADS)
Volman, M.
2017-01-01
This paper considers aspects of a program for training future nuclear power plant personnel developed by the NPP Department of Ivanovo State Power Engineering University. Computer modeling is used for numerical experiments on the kinetics of nuclear reactors in Mathcad. Simulation modeling is carried out on the computer and full-scale simulator of water-cooled power reactor for the simulation of neutron-physical reactor measurements and the start-up - shutdown process.
Potential Entrepreneurs Begin in High School.
ERIC Educational Resources Information Center
Clodfelter, Richard
1985-01-01
Describes a specialized course for entrepreneurship training for students interested in operating their own business. This one-hour, year-long course for seniors focuses on teaching students business planning and management competencies. The course involves computer simulations, development of a business plan, and simulated business operation. (CT)
Development and training of a learning expert system in an autonomous mobile robot via simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; Lyness, E.; DeSaussure, G.
1989-11-01
The Center for Engineering Systems Advanced Research (CESAR) conducts basic research in the area of intelligent machines. Recently at CESAR a learning expert system was created to operate on board an autonomous robot working at a process control panel. The authors discuss two-computer simulation system used to create, evaluate and train this learning system. The simulation system has a graphics display of the current status of the process being simulated, and the same program which does the simulating also drives the actual control panel. Simulation results were validated on the actual robot. The speed and safety values of using amore » computerized simulator to train a learning computer, and future uses of the simulation system, are discussed.« less
[Non-biological 3D printed simulator for training in percutaneous nephro- lithotripsy].
Alyaev, Yu G; Sirota, E S; Bezrukov, E A; Ali, S Kh; Bukatov, M D; Letunovskiy, A V; Byadretdinov, I Sh
2018-03-01
To develop a non-biological 3D printed simulator for training and preoperative planning in percutaneous nephrolithotripsy (PCNL), which allows doctors to master and perform all stages of the operation under ultrasound and fluoroscopy guidance. The 3D model was constructed using multislice spiral computed tomography (MSCT) images of a patient with staghorn urolithiasis. The MSCT data were processed and used to print the model. The simulator consisted of two parts: a non-biological 3D printed soft model of a kidney with reproduced intra-renal vascular and collecting systems and a printed 3D model of a human body. Using this 3D printed simulator, PCNL was performed in the interventional radiology operating room under ultrasound and fluoroscopy guidance. The designed 3D printed model of the kidney completely reproduces the individual features of the intra-renal structures of the particular patient. During the training, all the main stages of PCNL were performed successfully: the puncture, dilation of the nephrostomy tract, endoscopic examination, intra-renal lithotripsy. Our proprietary 3D-printed simulator is a promising development in the field of endourologic training and preoperative planning in the treatment of complicated forms of urolithiasis.
A simulator-based nuclear reactor emergency response training exercise.
Waller, Edward; Bereznai, George; Shaw, John; Chaput, Joseph; Lafortune, Jean-Francois
Training offsite emergency response personnel basic awareness of onsite control room operations during nuclear power plant emergency conditions was the primary objective of a week-long workshop conducted on a CANDU® virtual nuclear reactor simulator available at the University of Ontario Institute of Technology, Oshawa, Canada. The workshop was designed to examine both normal and abnormal reactor operating conditions, and to observe the conditions in the control room that may have impact on the subsequent offsite emergency response. The workshop was attended by participants from a number of countries encompassing diverse job functions related to nuclear emergency response. Objectives of the workshop were to provide opportunities for participants to act in the roles of control room personnel under different reactor operating scenarios, providing a unique experience for participants to interact with the simulator in real-time, and providing increased awareness of control room operations during accident conditions. The ability to "pause" the simulator during exercises allowed the instructors to evaluate and critique the performance of participants, and to provide context with respect to potential offsite emergency actions. Feedback from the participants highlighted (i) advantages of observing and participating "hands-on" with operational exercises, (ii) their general unfamiliarity with control room operational procedures and arrangements prior to the workshop, (iii) awareness of the vast quantity of detailed control room procedures for both normal and transient conditions, and (iv) appreciation of the increased workload for the operators in the control room during a transient from normal operations. Based upon participant feedback, it was determined that the objectives of the training had been met, and that future workshops should be conducted.
Challenges in the 1990's for astronaut training simulators
NASA Technical Reports Server (NTRS)
Brown, Patrick M.; Hajare, Ankur R.; Stark, George E.
1990-01-01
New challenges for the simulation community at the Johnson Space Center both in near and long terms are considered. In the near term, the challenges of supporting an increasing flight rate, maintaining operations while replacing obsolete subsystems, and incorporating forthcoming changes to the Space Shuttle are discussed, and focus is placed on a change of forward flight-deck instruments from electro-mechanical devices to electronic displays. Training astronauts for complex concurrent missions involving multiple spacecraft and geographically dispersed ground facilities is considered to be foremost of the long-term challenges, in addition to the tasks of improving the simulator reliability and the operational efficiency of the facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sklenka, L.; Rataj, J.; Frybort, J.
Research reactors play an important role in providing key personnel of nuclear power plants a hands-on experience from operation and experiments at nuclear facilities. Training of NPP (Nuclear Power Plant) staff is usually deeply theoretical with an extensive utilisation of simulators and computer visualisation. But a direct sensing of the reactor response to various actions can only improve the personnel awareness of important aspects of reactor operation. Training Reactor VR-1 and its utilization for training of NPP operators and other professionals from Czech Republic and Slovakia is described. Typical experimental exercises and good practices in organization of a training programmore » are demonstrated. (authors)« less
Lehmann, K S; Gröne, J; Lauscher, J C; Ritz, J-P; Holmer, C; Pohlen, U; Buhr, H-J
2012-04-01
Training and simulation are gaining importance in surgical education. Today, virtual reality surgery simulators provide sophisticated laparoscopic training scenarios and offer detailed assessment methods. This also makes simulators interesting for the application in surgical skills courses. The aim of the current study was to assess the suitability of a virtual surgery simulator for training and assessment in an established surgical training course. The study was conducted during the annual "Practical Course for Visceral Surgery" (Warnemuende, Germany). 36 of 108 course participants were assigned at random for the study. Training was conducted in 15 sessions over 5 days with 4 identical virtual surgery simulators (LapSim) and 2 standardised training tasks. The simulator measured 16 individual parameters and calculated 2 scores. Questionnaires were used to assess the test persons' laparoscopic experience, their training situation and the acceptance of the simulator training. Data were analysed with non-parametric tests. A subgroup analysis for laparoscopic experience was conducted in order to assess the simulator's construct validity and assessment capabilities. Median age was 32 (27 - 41) years; median professional experience was 3 (1 - 11) years. Typical laparoscopic learning curves with initial significant improvements and a subsequent plateau phase were measured over 5 days. The individual training sessions exhibited a rhythmic variability in the training results. A shorter night's sleep led to a marked drop in performance. The participants' different experience levels could clearly be discriminated ( ≤ 20 vs. > 20 laparoscopic operations; p ≤ 0.001). The questionnaire showed that the majority of the participants had limited training opportunities in their hospitals. The simulator training was very well accepted. However, the participants severely misjudged the real costs of the simulators that were used. The learning curve on the simulator was successfully mastered during the course. Construct validity could be demonstrated within the course setting. The simulator's assessment system can be of value for the assessment of laparoscopic training performance within surgical skills courses. Acceptance of the simulator training is high. However, simulators are currently too expensive to be used within a large training course. © Georg Thieme Verlag KG Stuttgart · New York.
Flight simulator platform motion and air transport pilot training
NASA Technical Reports Server (NTRS)
Lee, Alfred T.; Bussolari, Steven R.
1987-01-01
The effect of a flight simulator platform motion on the performance and training of a pilot was evaluated using subjective ratings and objective performance data obtained on experienced B-727 pilots and pilots with no prior heavy aircraft flying experience flying B-727-200 aircraft simulator used by the FAA in the upgrade and transition training for air carrier operations. The results on experienced pilots did not reveal any reliable effects of wide variations in platform motion design. On the other hand, motion variations significantly affected the behavior of pilots without heavy-aircraft experience. The effect was limited to pitch attitude control inputs during the early phase of landing training.
Clinical Core Competency Training for NASA Flight Surgeons
NASA Technical Reports Server (NTRS)
Polk, J. D.; Schmid, Josef; Hurst, Victor, IV; Doerr, Harold K.; Doerr, Harold K.
2007-01-01
Introduction: The cohort of NASA flight surgeons (FS) is a very accomplished group with varied clinical backgrounds; however, the NASA Flight Surgeon Office has identified that the extremely demanding schedule of this cohort prevents many of these physicians from practicing clinical medicine on a regular basis. In an effort to improve clinical competency, the NASA FS Office has dedicated one day a week for the FS to receive clinical training. Each week, an FS is assigned to one of five clinical settings, one being medical patient simulation. The Medical Operations Support Team (MOST) was tasked to develop curricula using medical patient simulation that would meet the clinical and operational needs of the NASA FS Office. Methods: The MOST met with the Lead FS and Training Lead FS to identify those core competencies most important to the FS cohort. The MOST presented core competency standards from the American Colleges of Emergency Medicine and Internal Medicine as a basis for developing the training. Results: The MOST identified those clinical areas that could be best demonstrated and taught using medical patient simulation, in particular, using high fidelity human patient simulators. Curricula are currently being developed and additional classes will be implemented to instruct the FS cohort. The curricula will incorporate several environments for instruction, including lab-based and simulated microgravity-based environments. Discussion: The response from the NASA FS cohort to the initial introductory class has been positive. As a result of this effort, the MOST has identified three types of training to meet the clinical needs of the FS Office; clinical core competency training, individual clinical refresher training, and just-in-time training (specific for post-ISS Expedition landings). The MOST is continuing to work with the FS Office to augment the clinical training for the FS cohort, including the integration of Web-based learning.
Chang, Kuei-Hu; Chang, Yung-Chia; Chain, Kai; Chung, Hsiang-Yu
2016-01-01
The advancement of high technologies and the arrival of the information age have caused changes to the modern warfare. The military forces of many countries have replaced partially real training drills with training simulation systems to achieve combat readiness. However, considerable types of training simulation systems are used in military settings. In addition, differences in system set up time, functions, the environment, and the competency of system operators, as well as incomplete information have made it difficult to evaluate the performance of training simulation systems. To address the aforementioned problems, this study integrated analytic hierarchy process, soft set theory, and the fuzzy linguistic representation model to evaluate the performance of various training simulation systems. Furthermore, importance–performance analysis was adopted to examine the influence of saving costs and training safety of training simulation systems. The findings of this study are expected to facilitate applying military training simulation systems, avoiding wasting of resources (e.g., low utility and idle time), and providing data for subsequent applications and analysis. To verify the method proposed in this study, the numerical examples of the performance evaluation of training simulation systems were adopted and compared with the numerical results of an AHP and a novel AHP-based ranking technique. The results verified that not only could expert-provided questionnaire information be fully considered to lower the repetition rate of performance ranking, but a two-dimensional graph could also be used to help administrators allocate limited resources, thereby enhancing the investment benefits and training effectiveness of a training simulation system. PMID:27598390
Chang, Kuei-Hu; Chang, Yung-Chia; Chain, Kai; Chung, Hsiang-Yu
2016-01-01
The advancement of high technologies and the arrival of the information age have caused changes to the modern warfare. The military forces of many countries have replaced partially real training drills with training simulation systems to achieve combat readiness. However, considerable types of training simulation systems are used in military settings. In addition, differences in system set up time, functions, the environment, and the competency of system operators, as well as incomplete information have made it difficult to evaluate the performance of training simulation systems. To address the aforementioned problems, this study integrated analytic hierarchy process, soft set theory, and the fuzzy linguistic representation model to evaluate the performance of various training simulation systems. Furthermore, importance-performance analysis was adopted to examine the influence of saving costs and training safety of training simulation systems. The findings of this study are expected to facilitate applying military training simulation systems, avoiding wasting of resources (e.g., low utility and idle time), and providing data for subsequent applications and analysis. To verify the method proposed in this study, the numerical examples of the performance evaluation of training simulation systems were adopted and compared with the numerical results of an AHP and a novel AHP-based ranking technique. The results verified that not only could expert-provided questionnaire information be fully considered to lower the repetition rate of performance ranking, but a two-dimensional graph could also be used to help administrators allocate limited resources, thereby enhancing the investment benefits and training effectiveness of a training simulation system.
Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.
2009-10-09
The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected tomore » come from increasingly diverse educational and experiential backgrounds.« less
Exploring the role of 3-dimensional simulation in surgical training: feedback from a pilot study.
Podolsky, Dale J; Martin, Allan R; Whyne, Cari M; Massicotte, Eric M; Hardisty, Michael R; Ginsberg, Howard J
2010-12-01
Randomized control study assessing the efficacy of a pedicle screw insertion simulator. To evaluate the efficacy of an in-house developed 3-dimensional software simulation tool for teaching pedicle screw insertion, to gather feedback about the utility of the simulator, and to help identify the context and role such simulation has in surgical education. Traditional instruction for pedicle screw insertion technique consists of didactic teaching and limited hands-on training on artificial or cadaveric models before guided supervision within the operating room. Three-dimensional computer simulation can provide a valuable tool for practicing challenging surgical procedures; however, its potential lies in its effective integration into student learning. Surgical residents were recruited from 2 sequential years of a spine surgery course. Patient and control groups both received standard training on pedicle screw insertion. The patient group received an additional 1-hour session of training on the simulator using a CT-based 3-dimensional model of their assigned cadaver's spine. Qualitative feedback about the simulator was gathered from the trainees, fellows, and staff surgeons, and all pedicles screws physically inserted into the cadavers during the courses were evaluated through CT. A total of 185 thoracic and lumbar pedicle screws were inserted by 37 trainees. Eighty-two percent of the 28 trainees who responded to the questionnaire and all fellows and staff surgeons felt the simulator to be a beneficial educational tool. However, the 1-hour training session did not yield improved performance in screw placement. A 3-dimensional computer-based simulation for pedicle screw insertion was integrated into a cadaveric spine surgery instructional course. Overall, the tool was positively regarded by the trainees, fellows, and staff surgeons. However, the limited training with the simulator did not translate into widespread comfort with its operation or into improvement in physical screw placement.
Integration of laparoscopic virtual-reality simulation into gynaecology training.
Burden, C; Oestergaard, J; Larsen, C R
2011-11-01
Surgery carries the risk of serious harm, as well as benefit, to patients. For healthcare organisations, theatre time is an expensive commodity and litigation costs for surgical specialities are very high. Advanced laparoscopic surgery, now widely used in gynaecology for improved outcomes and reduced length of stay, involves longer operation times and a higher rate of complications for surgeons in training. Virtual-reality (VR) simulation is a relatively new training method that has the potential to promote surgical skill development before advancing to surgery on patients themselves. VR simulators have now been on the market for more than 10 years and, yet, few countries in the world have fully integrated VR simulation training into their gynaecology surgical training programmes. In this review, we aim to summarise the VR simulators currently available together with evidence of their effectiveness in gynaecology, to understand their limitations and to discuss their incorporation into national training curricula. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.
Clinical Space Medicine Products as Developed by the Medical Operations Support Team (MOST)
NASA Technical Reports Server (NTRS)
Polk, James D.; Doerr, Harold K.; Hurst, Victor W., IV; Schmid, Josef
2007-01-01
Medical Operations Support Team (MOST) is introducing/integrating teaching practices associated with high fidelity human patient simulation into the NASA culture, in particular, into medical training sessions and medical procedure evaluations. Current/Future Products iclude: a) Development of Sub-optimal Airway Protocols for the International Space Station (ISS) using the ILMA; b) Clinical Core Competency Training for NASA Flight Surgeons (FS); c) Post-Soyuz Landing Clinical Training for NASA FS; d) Experimental Integrated Training for Astronaut Crew Medical Officers and NASA FS; and e) Private Clinical Refresher Training.
Cannon, W Dilworth; Garrett, William E; Hunter, Robert E; Sweeney, Howard J; Eckhoff, Donald G; Nicandri, Gregg T; Hutchinson, Mark R; Johnson, Donald D; Bisson, Leslie J; Bedi, Asheesh; Hill, James A; Koh, Jason L; Reinig, Karl D
2014-11-05
There is a paucity of articles in the surgical literature demonstrating transfer validity (transfer of training). The purpose of this study was to assess whether skills learned on the ArthroSim virtual-reality arthroscopic knee simulator transferred to greater skill levels in the operating room. Postgraduate year-3 orthopaedic residents were randomized into simulator-trained and control groups at seven academic institutions. The experimental group trained on the simulator, performing a knee diagnostic arthroscopy procedure to a predetermined proficiency level based on the average proficiency of five community-based orthopaedic surgeons performing the same procedure on the simulator. The residents in the control group continued their institution-specific orthopaedic education and training. Both groups then performed a diagnostic knee arthroscopy procedure on a live patient. Video recordings of the arthroscopic surgery were analyzed by five pairs of expert arthroscopic surgeons blinded to the identity of the residents. A proprietary global rating scale and a procedural checklist, which included visualization and probing scales, were used for rating. Forty-eight (89%) of the fifty-four postgraduate year-3 residents from seven academic institutions completed the study. The simulator-trained group averaged eleven hours of training on the simulator to reach proficiency. The simulator-trained group performed significantly better when rated according to our procedural checklist (p = 0.031), including probing skills (p = 0.016) but not visualization skills (p = 0.34), compared with the control group. The procedural checklist weighted probing skills double the weight of visualization skills. The global rating scale failed to reach significance (p = 0.061) because of one extreme outlier. The duration of the procedure was not significant. This lack of a significant difference seemed to be related to the fact that residents in the control group were less thorough, which shortened their time to completion of the arthroscopic procedure. We have demonstrated transfer validity (transfer of training) that residents trained to proficiency on a high-fidelity realistic virtual-reality arthroscopic knee simulator showed a greater skill level in the operating room compared with the control group. We believe that the results of our study will stimulate residency program directors to incorporate surgical simulation into the core curriculum of their residency programs. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Winder, Joshua S; Juza, Ryan M; Sasaki, Jennifer; Rogers, Ann M; Pauli, Eric M; Haluck, Randy S; Estes, Stephanie J; Lyn-Sue, Jerome R
2016-09-01
The robotic surgical platform is being utilized by a growing number of hospitals across the country, including academic medical centers. Training programs are tasked with teaching their residents how to utilize this technology. To this end, we have developed and implemented a robotic surgical curriculum, and share our initial experience here. Our curriculum was implemented for all General Surgical residents for the academic year 2014-2015. The curriculum consisted of online training, readings, bedside training, console simulation, participating in ten cases as bedside first assistant, and operating at the console. 20 surgical residents were included. Residents were provided the curriculum and notified the department upon completion. Bedside assistance and operative console training were completed in the operating room through a mix of biliary, foregut, and colorectal cases. During the fiscal years of 2014 and 2015, there were 164 and 263 robot-assisted surgeries performed within the General Surgery Department, respectively. All 20 residents completed the online and bedside instruction portions of the curriculum. Of the 20 residents trained, 13/20 (65 %) sat at the Surgeon console during at least one case. Utilizing this curriculum, we have trained and incorporated residents into robot-assisted cases in an efficient manner. A successful curriculum must be based on didactic learning, reading, bedside training, simulation, and training in the operating room. Each program must examine their caseload and resident class to ensure proper exposure to this platform.
Training Analysis of P-3 Replacement Pilot Training.
ERIC Educational Resources Information Center
Browning, Robert F.; And Others
The report covers an evaluation of current P-3 pilot training programs at the replacement squadron level. It contains detailed discussions concerning training hardware and software that have been supplied. A detailed examination is made of the curriculum and the simulation capabilities and utilization of P-3 operational flight trainers. Concurrent…
Mason, Katrina A; Theodorakopoulou, Evgenia; Pafitanis, Georgios; Ghanem, Ali M; Myers, Simon R
2016-09-01
Microsurgery is used in a variety of surgical specialties, including Plastic Surgery, Maxillofacial Surgery, Ophthalmic Surgery, Otolaryngology and Neurosurgery. It is considered one of the most technically challenging fields of surgery. Microsurgical skills demand fine, precise and controlled movements, and microsurgical skill acquisition has a steep initial learning curve. Microsurgical simulation provides a safe environment for skill acquisition before operating clinically. The traditional starting point for anyone wanting to pursue microsurgery is a basic simulation training course. We present twelve tips for postgraduate and undergraduate medics on how to set up and run a basic ex-vivo microsurgery simulation training course suitable for their peers.
[Virtual reality simulation training in gynecology: review and perspectives].
Ricard-Gauthier, Dominique; Popescu, Silvia; Benmohamed, Naida; Petignat, Patrick; Dubuisson, Jean
2016-10-26
Laparoscopic simulation has rapidly become an important tool for learning and acquiring technical skills in surgery. It is based on two different complementary pedagogic tools : the box model trainer and the virtual reality simulator. The virtual reality simulator has shown its efficiency by improving surgical skills, decreasing operating time, improving economy of movements and improving self-confidence. The main objective of this tool is the opportunity to easily organize a regular, structured and uniformed training program enabling an automated individualized feedback.
Creating virtual humans for simulation-based training and planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stansfield, S.; Sobel, A.
1998-05-12
Sandia National Laboratories has developed a distributed, high fidelity simulation system for training and planning small team Operations. The system provides an immersive environment populated by virtual objects and humans capable of displaying complex behaviors. The work has focused on developing the behaviors required to carry out complex tasks and decision making under stress. Central to this work are techniques for creating behaviors for virtual humans and for dynamically assigning behaviors to CGF to allow scenarios without fixed outcomes. Two prototype systems have been developed that illustrate these capabilities: MediSim, a trainer for battlefield medics and VRaptor, a system formore » planning, rehearsing and training assault operations.« less
14 CFR 121.921 - Training devices and simulators.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Advanced Qualification Program § 121.921 Training... provide for its serviceability and fitness to perform its intended function as approved by the FAA. ...
Simulation training in video-assisted urologic surgery.
Hoznek, András; Salomon, Laurent; de la Taille, Alexandre; Yiou, René; Vordos, Dimitrios; Larre, Stéphane; Abbou, Clément-Claude
2006-03-01
The current system of surgical education is facing many challenges in terms of time efficiency, costs, and patient safety. Training using simulation is an emerging area, mostly based on the experience of other high-risk professions like aviation. The goal of simulation-based training in surgery is to develop not only technical but team skills. This learning environment is stress-free and safe, allows standardization and tailoring of training, and also objectively evaluate performances. The development of simulation training is straightforward in endourology, since these procedures are video-assisted and the low degree of freedom of the instruments is easily replicated. On the other hand, these interventions necessitate a long learning curve, training in the operative room is especially costly and risky. Many models are already in use or under development in all fields of video-assisted urologic surgery: ureteroscopy, percutaneous surgery, transurethral resection of the prostate, and laparoscopy. Although bench models are essential, simulation increasingly benefits from the achievements and development of computer technology. Still in its infancy, virtual reality simulation will certainly belong to tomorrow's teaching tools.
Video games and surgical ability: a literature review.
Lynch, Jeremy; Aughwane, Paul; Hammond, Toby M
2010-01-01
Surgical training is rapidly evolving because of reduced training hours and the reduction of training opportunities due to patient safety concerns. There is a popular conception that video game usage might be linked to improved operating ability especially those techniques involving endoscopic modalities. If true this might suggest future directions for training. A search was made of the MEDLINE databases for the MeSH term, "Video Games," combined with the terms "Surgical Procedures, Operative," "Endoscopy," "Robotics," "Education," "Learning," "Simulators," "Computer Simulation," "Psychomotor Performance," and "Surgery, Computer-Assisted,"encompassing all journal articles before November 2009. References of articles were searched for further studies. Twelve relevant journal articles were discovered. Video game usage has been studied in relationship to laparoscopic, gastrointestinal endoscopic, endovascular, and robotic surgery. Video game users acquire endoscopic but not robotic techniques quicker, and training on video games appears to improve performance. Copyright (c) 2010 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Development and validation of an artificial wetlab training system for the lumbar discectomy.
Adermann, Jens; Geissler, Norman; Bernal, Luis E; Kotzsch, Susanne; Korb, Werner
2014-09-01
An initial research indicated that realistic haptic simulators with an adapted training concept are needed to enhance the training for spinal surgery. A cognitive task analysis (CTA) was performed to define a realistic and helpful scenario-based simulation. Based on the results a simulator for lumbar discectomy was developed. Additionally, a realistic training operating room was built for a pilot. The results were validated. The CTA showed a need for realistic scenario-based training in spine surgery. The developed simulator consists of synthetic bone structures, synthetic soft tissue and an advanced bleeding system. Due to the close interdisciplinary cooperation of surgeons between engineers and psychologists, the iterative multicentre validation showed that the simulator is visually and haptically realistic. The simulator offers integrated sensors for the evaluation of the traction being used and the compression during surgery. The participating surgeons in the pilot workshop rated the simulator and the training concept as very useful for the improvement of their surgical skills. In the context of the present work a precise definition for the simulator and training concept was developed. The additional implementation of sensors allows the objective evaluation of the surgical training by the trainer. Compared to other training simulators and concepts, the high degree of objectivity strengthens the acceptance of the feedback. The measured data of the nerve root tension and the compression of the dura can be used for intraoperative control and a detailed postoperative evaluation.
A Simulation-Based Approach to Training Operational Cultural Competence
NASA Technical Reports Server (NTRS)
Johnson, W. Lewis
2010-01-01
Cultural knowledge and skills are critically important for military operations, emergency response, or any job that involves interaction with a culturally diverse population. However, it is not obvious what cultural knowledge and skills need to be trained, and how to integrate that training with the other training that trainees must undergo. Cultural training needs to be broad enough to encompass both regional (culture-specific) and cross-cultural (culture-general) competencies, yet be focused enough to result in targeted improvements in on-the-job performance. This paper describes a comprehensive instructional development methodology and training technology framework that focuses cultural training on operational needs. It supports knowledge acquisition, skill acquisition, and skill transfer. It supports both training and assessment, and integrates with other aspects of operational skills training. Two training systems will be used to illustrate this approach: the Virtual Cultural Awareness Trainer (VCAT) and the Tactical Dari language and culture training system. The paper also discusses new and emerging capabilities that are integrating cultural competence training more strongly with other aspects of training and mission rehearsal.
Miyasaka, Kiyoyuki W; Buchholz, Joseph; LaMarra, Denise; Karakousis, Giorgos C; Aggarwal, Rajesh
2015-01-01
Introduction Contemporary demands on resident education call for integration of simulation. We designed and implemented a simulation-based curriculum for PGY1 surgery residents to teach technical and non-technical skills within a clinical pathway approach for a foregut surgical patient, from outpatient visit through surgery and post-op follow-up. Methods The three-day curriculum for groups of six residents comprises a combination of standardized patient (SP) encounters, didactic sessions, and hands-on training. The curriculum is underpinned by a summative simulation “pathway” repeated on days 1 and 3. The “pathway” is a series of simulated pre-op, intra-op, and post-op encounters following a single patient through a disease process. The resident sees an SP in clinic presenting with distal gastric cancer, then enters an operating room to perform a gastro-jejunostomy on a porcine tissue model. Finally, the resident engages in a simulated post-operative visit. All encounters are rated by faculty members and the residents themselves, using standardized assessment forms endorsed by the American Board of Surgery. Results 18 first-year residents underwent this curriculum. Faculty ratings of overall operative performance significantly improved following the three-day module. Ratings of preoperative and postoperative performance were not significantly changed in three days. Resident self-ratings significantly improved for all encounters assessed, as did reported confidence in meeting defined learning objectives. Conclusions Conventional surgical simulation training focuses on technical skills in isolation. Our novel “pathway” curriculum targets an important gap in training methodologies by placing both technical and non-technical skills in their clinical context as part of managing a surgical patient. Results indicate consistent improvements in assessments of performance as well as confidence and support its continued usage to educate surgery residents in foregut surgery. PMID:25869238
ERIC Educational Resources Information Center
Armstead, Stanley K.
2017-01-01
In today's dynamic military environment, information technology plays a crucial role in the support of mission preparedness and operational readiness. This research examined the effectiveness of information technology security simulation and awareness training on U.S. military personnel in Iraq and Afghanistan. Also, the study analyzed whether…
Effect of a Predictor Instrument on Learning to Land a Simulated Jet Trainer. Final Report.
ERIC Educational Resources Information Center
Smith, Russell L.; And Others
The study investigates the potential utility of a predictor instrument in the training of manual control operators in aircraft simulators. Various predictor display design configurations were presented to subjects during training trials on an aircraft approach to landing task. Subsequently, subjects were tested on trials devoid of the predictor…
Burden, Christy; Fox, Robert; Hinshaw, Kim; Draycott, Timothy J; James, Mark
2016-01-01
The objectives of this study were to explore current provision of laparoscopic simulation training, and to determine attitudes of trainers and trainees to the role of simulators in surgical training across the UK. An anonymous cross-sectional survey with cluster sampling was developed and circulated. All Royal College of Obstetricians and Gynaecologists (RCOG) Training Programme Directors (TPD), College Tutors (RCT) and Trainee representatives (TR) across the UK were invited to participate. One hundred and ninety-six obstetricians and gynaecologists participated. Sixty-three percent of hospitals had at least one box trainer, and 14.6% had least one virtual-reality simulator. Only 9.3% and 3.6% stated that trainees used a structured curriculum on box and virtual-reality simulators, respectively. Respondents working in a Large/Teaching hospital (p = 0.008) were more likely to agree that simulators enhance surgical training. Eighty-nine percent agreed that simulators improve the quality of training, and should be mandatory or desirable for junior trainees. Consultants (p = 0.003) and respondents over 40 years (p = 0.011) were more likely to hold that a simulation test should be undertaken before live operation. Our data demonstrated, therefore, that availability of laparoscopic simulators is inconsistent, with limited use of mandatory structured curricula. In contrast, both trainers and trainees recognise a need for greater use of laparoscopic simulation for surgical training.
Ioannou, Ioanna; Kazmierczak, Edmund; Stern, Linda
2015-01-01
The use of virtual reality (VR) simulation for surgical training has gathered much interest in recent years. Despite increasing popularity and usage, limited work has been carried out in the use of automated objective measures to quantify the extent to which performance in a simulator resembles performance in the operating theatre, and the effects of simulator training on real world performance. To this end, we present a study exploring the effects of VR training on the performance of dentistry students learning a novel oral surgery task. We compare the performance of trainees in a VR simulator and in a physical setting involving ovine jaws, using a range of automated metrics derived by motion analysis. Our results suggest that simulator training improved the motion economy of trainees without adverse effects on task outcome. Comparison of surgical technique on the simulator with the ovine setting indicates that simulator technique is similar, but not identical to real world technique.
The effect of experience, simulator-training and biometric feedback on manual ventilation technique.
Lewis, Rebecca; Sherfield, Cerrie A; Fellows, Christopher R; Burrow, Rachel; Young, Iain; Dugdale, Alex
2017-05-01
To determine the frequency of provision and main providers (veterinary surgeons, nurses or trainees) of manual ventilation in UK veterinary practices. Furthermore, to determine the variation in peak inspiratory (inflation) pressure (PIP), applied to a lung model during manual ventilation, by three different groups of operators (inexperienced, experienced and specialist), before and after training. Questionnaire survey, lung model simulator development and prospective testing. Postal questionnaires were sent to 100 randomly selected veterinary practices. The lung model simulator was manually ventilated in a staged process over 3 weeks, with and without real-time biometric feedback (PIP display), by three groups of volunteer operators: inexperienced, experienced and specialist. The questionnaires determined that veterinary nurses were responsible for providing the majority of manual ventilation in veterinary practices, mainly drawing on theoretical knowledge rather than any specific training. Thoracic surgery and apnoea were the main reasons for provision of manual ventilation. Specialists performed well when manually ventilating the lung model, regardless of feedback training. Both inexperienced and experienced operators showed significant improvement in technique when using the feedback training tool: variation in PIP decreased significantly until operators provided manual ventilation at PIPs within the defined optimum range. Preferences for different forms of feedback (graphical, numerical or scale display), revealed that the operators' choice was not always the method which gave least variation in PIP. This study highlighted a need for training in manual ventilation at an early stage in veterinary and veterinary nursing careers and demonstrated how feedback is important in the process of experiential learning. A manometer device which can provide immediate feedback during training, or indeed in a real clinical setting, should improve patient safety. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.
JELC-LITE: Unconventional Instructional Design for Special Operations Training
NASA Technical Reports Server (NTRS)
Friedman, Mark
2012-01-01
Current special operations staff training is based on the Joint Event Life Cycle (JELC). It addresses operational level tasks in multi-week, live military exercises which are planned over a 12 to 18 month timeframe. As the military experiences changing global mission sets, shorter training events using distributed technologies will increasingly be needed to augment traditional training. JELC-Lite is a new approach for providing relevant training between large scale exercises. This new streamlined, responsive training model uses distributed and virtualized training technologies to establish simulated scenarios. It keeps proficiency levels closer to optimal levels -- thereby reducing the performance degradation inherent in periodic training. It can be delivered to military as well as under-reached interagency groups to facilitate agile, repetitive training events. JELC-Lite is described by four phases paralleling the JELC, differing mostly in scope and scale. It has been successfully used with a Theater Special Operations Command and fits well within the current environment of reduced personnel and financial resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liese, Eric; Zitney, Stephen E.
A generic training simulator of a natural gas combined cycle was modified to match operations at a real plant. The objective was to use the simulator to analyze cycling operations of the plant. Initial operation of the simulator revealed the potential for saturation conditions in the final high pressure superheater as the attemperator tried to control temperature at the superheater outlet during gas turbine loading and unloading. Subsequent plant operational data confirmed simulation results. Multiple simulations were performed during loading and unloading of the gas turbine to determine operational strategies that prevented saturation and increased the approach to saturation temperature.more » The solutions included changes to the attemperator temperature control setpoints and strategic control of the steam turbine inlet pressure control valve.« less
Retention of laparoscopic procedural skills acquired on a virtual-reality surgical trainer.
Maagaard, Mathilde; Sorensen, Jette Led; Oestergaard, Jeanett; Dalsgaard, Torur; Grantcharov, Teodor P; Ottesen, Bent S; Larsen, Christian Rifbjerg
2011-03-01
Virtual-reality (VR) simulator training has been shown to improve surgical performance in laparoscopic procedures in the operating room. We have, in a randomised controlled trial, demonstrated transferability to real operations. The validity of the LapSim virtual-reality simulator as an assessment tool has been demonstrated in several reports. However, an unanswered question regarding simulator training is the durability, or retention, of skills acquired during simulator training. The aim of the present study is to assess the retention of skills acquired using the LapSim VR simulator, 6 and 18 months after an initial training course. The investigation was designed as a 6- and 18-month follow-up on a cohort of participants who earlier participated in a skills training programme on the LapSim VR. The follow-up cohort consisted of trainees and senior consultants allocated to two groups: (1) novices (experience < 5 procedures, n = 9) and (2) experts (experience > 200 procedures during the past 3 years, n = 10). Each participant performed ten sessions. Assessment of skills was based on time, economy of movement and the error parameter "bleeding". The novice group were re-tested after 6 and 18 months, whereas the expert group were only retested once, after 6 months. None of the novices performed laparoscopic surgery in the follow-up period. The experts continued their daily work with laparoscopic surgery. Novices showed retention of skills after 6 months. After 18 months, novices' laparoscopic skills had returned to the pre-training level. This indicates that laparoscopic skills seemed to deteriorate in the period between 6 and 18 months without training. Experts showed consistent performance over time. This information can be included when planning training curricula in minimal invasive surgery.
Simulation in Surgical Education
de Montbrun, Sandra L.; MacRae, Helen
2012-01-01
The pedagogical approach to surgical training has changed significantly over the past few decades. No longer are surgical skills solely acquired through a traditional apprenticeship model of training. The acquisition of many technical and nontechnical skills is moving from the operating room to the surgical skills laboratory through the use of simulation. Many platforms exist for the learning and assessment of surgical skills. In this article, the authors provide a broad overview of some of the currently available surgical simulation modalities including bench-top models, laparoscopic simulators, simulation for new surgical technologies, and simulation for nontechnical surgical skills. PMID:23997671
[Simulation training in the management of obstetric emergencies. A review of the literature].
Bogne, V; Kirkpatrick, C; Englert, Y
2014-01-01
To assess the value of simulation based training in the management of obstetric emergencies. A search by keywords: obstetrics, gynecology, simulation, drills, emergency training restricted to randomized trials led to a selection of eight articles. Shoulder dystocia simulation unmasked deficiencies in performing Mc Robert maneuver in nearly 20% of doctors in training as well as ineffective and potentially harmful maneuver such as pressure on the uterine fundus. Delivery of the impacted shoulder improved from 42.9% to 83.3% after simulation training leading to a shorter head to body delivery interval. In postpartum haemorrhage simulation, lack of knowledge on prostaglandins and alkaloids of ergot, delay to transfer the patient to the operating room (82% of cases) and a poor communication between different professionals were identified. Post simulation improvement was seen in knowledge, technical skills, team spirit and structured communication. In severe preeclampsia simulation, mistakes such as injection of undiluted magnesium sulphate, caesarean section on an unstable patient were identified and reduced by 75%. Management of magnesium sulphate toxicity was also improved after simulation training. This review confirms the potential of simulation in training health professionals on management of obstetrics emergencies. Although the integration of this training modality into the curriculum of health care professionals in obstetrics and gynaecology seems beneficial, questions on the cost, the minimum standard of facilities, type of mannequins, human resources and frequency of drills required to achieve the learning objectives remain unanswered.
Surgical simulation: Current practices and future perspectives for technical skills training.
Bjerrum, Flemming; Thomsen, Ann Sofia Skou; Nayahangan, Leizl Joy; Konge, Lars
2018-06-17
Simulation-based training (SBT) has become a standard component of modern surgical education, yet successful implementation of evidence-based training programs remains challenging. In this narrative review, we use Kern's framework for curriculum development to describe where we are now and what lies ahead for SBT within surgery with a focus on technical skills in operative procedures. Despite principles for optimal SBT (proficiency-based, distributed, and deliberate practice) having been identified, massed training with fixed time intervals or a fixed number of repetitions is still being extensively used, and simulators are generally underutilized. SBT should be part of surgical training curricula, including theoretical, technical, and non-technical skills, and be based on relevant needs assessments. Furthermore, training should follow evidence-based theoretical principles for optimal training, and the effect of training needs to be evaluated using relevant outcomes. There is a larger, still unrealized potential of surgical SBT, which may be realized in the near future as simulator technologies evolve, more evidence-based training programs are implemented, and cost-effectiveness and impact on patient safety is clearly demonstrated.
Bott, Oliver Johannes; Dresing, Klaus; Wagner, Markus; Raab, Björn-Werner; Teistler, Michael
2011-01-01
Mobile image intensifier systems (C-arms) are used frequently in orthopedic and reconstructive surgery, especially in trauma and emergency settings, but image quality and radiation exposure levels may vary widely, depending on the extent of the C-arm operator's knowledge and experience. Current training programs consist mainly of theoretical instruction in C-arm operation, the physical foundations of radiography, and radiation avoidance, and are largely lacking in hands-on application. A computer-based simulation program such as that tested by the authors may be one way to improve the effectiveness of C-arm training. In computer simulations of various scenarios commonly encountered in the operating room, trainees using the virtX program interact with three-dimensional models to test their knowledge base and improve their skill levels. Radiographs showing the simulated patient anatomy and surgical implants are "reconstructed" from data computed on the basis of the trainee's positioning of models of a C-arm, patient, and table, and are displayed in real time on the desktop monitor. Trainee performance is signaled in real time by color graphics in several control panels and, on completion of the exercise, is compared in detail with the performance of an expert operator. Testing of this computer-based training program in continuing medical education courses for operating room personnel showed an improvement in the overall understanding of underlying principles of intraoperative radiography performed with a C-arm, with resultant higher image quality, lower overall radiation exposure, and greater time efficiency. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.313105125/-/DC1. Copyright © RSNA, 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Podmore, Robin
2008-11-17
The focus of the present study is on improved training approaches to accelerate learning and improved methods for analyzing effectiveness of tools within a high-fidelity power grid simulated environment. A theory-based model has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The theoretical foundation for the method is based on the concepts of situation awareness, the methods of cognitive task analysis, and the naturalistic decision making (NDM) approach of Recognition Primed Decision Making. The method has been systematically explored and refined as part of a capability demonstration ofmore » a high-fidelity real-time power system simulator under normal and emergency conditions. To examine NDM processes, we analyzed transcripts of operator-to-operator conversations during the simulated scenario to reveal and assess NDM-based performance criteria. The results of the analysis indicate that the proposed framework can be used constructively to map or assess the Situation Awareness Level of the operators at each point in the scenario. We can also identify the mental models and mental simulations that the operators employ at different points in the scenario. This report documents the method, describes elements of the model, and provides appendices that document the simulation scenario and the associated mental models used by operators in the scenario.« less
Simulation-based camera navigation training in laparoscopy-a randomized trial.
Nilsson, Cecilia; Sorensen, Jette Led; Konge, Lars; Westen, Mikkel; Stadeager, Morten; Ottesen, Bent; Bjerrum, Flemming
2017-05-01
Inexperienced operating assistants are often tasked with the important role of handling camera navigation during laparoscopic surgery. Incorrect handling can lead to poor visualization, increased operating time, and frustration for the operating surgeon-all of which can compromise patient safety. The objectives of this trial were to examine how to train laparoscopic camera navigation and to explore the transfer of skills to the operating room. A randomized, single-center superiority trial with three groups: The first group practiced simulation-based camera navigation tasks (camera group), the second group practiced performing a simulation-based cholecystectomy (procedure group), and the third group received no training (control group). Participants were surgical novices without prior laparoscopic experience. The primary outcome was assessment of camera navigation skills during a laparoscopic cholecystectomy. The secondary outcome was technical skills after training, using a previously developed model for testing camera navigational skills. The exploratory outcome measured participants' motivation toward the task as an operating assistant. Thirty-six participants were randomized. No significant difference was found in the primary outcome between the three groups (p = 0.279). The secondary outcome showed no significant difference between the interventions groups, total time 167 s (95% CI, 118-217) and 194 s (95% CI, 152-236) for the camera group and the procedure group, respectively (p = 0.369). Both interventions groups were significantly faster than the control group, 307 s (95% CI, 202-412), p = 0.018 and p = 0.045, respectively. On the exploratory outcome, the control group for two dimensions, interest/enjoyment (p = 0.030) and perceived choice (p = 0.033), had a higher score. Simulation-based training improves the technical skills required for camera navigation, regardless of practicing camera navigation or the procedure itself. Transfer to the clinical setting could, however, not be demonstrated. The control group demonstrated higher interest/enjoyment and perceived choice than the camera group.
Play to become a surgeon: impact of Nintendo Wii training on laparoscopic skills.
Giannotti, Domenico; Patrizi, Gregorio; Di Rocco, Giorgio; Vestri, Anna Rita; Semproni, Camilla Proietti; Fiengo, Leslie; Pontone, Stefano; Palazzini, Giorgio; Redler, Adriano
2013-01-01
Video-games have become an integral part of the new multimedia culture. Several studies assessed video-gaming enhancement of spatial attention and eye-hand coordination. Considering the technical difficulty of laparoscopic procedures, legal issues and time limitations, the validation of appropriate training even outside of the operating rooms is ongoing. We investigated the influence of a four-week structured Nintendo® Wii™ training on laparoscopic skills by analyzing performance metrics with a validated simulator (Lap Mentor™, Simbionix™). We performed a prospective randomized study on 42 post-graduate I-II year residents in General, Vascular and Endoscopic Surgery. All participants were tested on a validated laparoscopic simulator and then randomized to group 1 (Controls, no training with the Nintendo® Wii™), and group 2 (training with the Nintendo® Wii™) with 21 subjects in each group, according to a computer-generated list. After four weeks, all residents underwent a testing session on the laparoscopic simulator of the same tasks as in the first session. All 42 subjects in both groups improved significantly from session 1 to session 2. Compared to controls, the Wii group showed a significant improvement in performance (p<0.05) for 13 of the 16 considered performance metrics. The Nintendo® Wii™ might be helpful, inexpensive and entertaining part of the training of young laparoscopists, in addition to a standard surgical education based on simulators and the operating room.
Moorthy, Krishna; Munz, Yaron; Adams, Sally; Pandey, Vikas; Darzi, Ara
2005-01-01
Background: High-risk organizations such as aviation rely on simulations for the training and assessment of technical and team performance. The aim of this study was to develop a simulated environment for surgical trainees using similar principles. Methods: A total of 27 surgical trainees carried out a simulated procedure in a Simulated Operating Theatre with a standardized OR team. Observation of OR events was carried out by an unobtrusive data collection system: clinical data recorder. Assessment of performance consisted of blinded rating of technical skills, a checklist of technical events, an assessment of communication, and a global rating of team skills by a human factors expert and trained surgical research fellows. The participants underwent a debriefing session, and the face validity of the simulated environment was evaluated. Results: While technical skills rating discriminated between surgeons according to experience (P = 0.002), there were no differences in terms of the checklist and team skills (P = 0.70). While all trainees were observed to gown/glove and handle sharps correctly, low scores were observed for some key features of communication with other team members. Low scores were obtained by the entire cohort for vigilance. Interobserver reliability was 0.90 and 0.89 for technical and team skills ratings. Conclusions: The simulated operating theatre could serve as an environment for the development of surgical competence among surgical trainees. Objective, structured, and multimodal assessment of performance during simulated procedures could serve as a basis for focused feedback during training of technical and team skills. PMID:16244534
Influence of marine engine simulator training to marine engineer's competence
NASA Astrophysics Data System (ADS)
Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai
2011-12-01
Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.
Influence of marine engine simulator training to marine engineer's competence
NASA Astrophysics Data System (ADS)
Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai
2012-01-01
Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.
Judge Advocate (NGB-JA) - Personal Staff - Joint Staff - The National Guard
training. Assists in identifying NG JAs to meet service operational requirements. And Coordinates and ARNG Command Sergeant Major of the ARNG State Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training
Outcome of patients in laparoscopic training courses compared to standard patients.
Kanakala, V; Bawa, S; Gallagher, P; Woodcock, S; Attwood, S E; Horgan, L F; Seymour, K
2010-06-01
Current Laparoscopic simulators have limited usefulness and patients have been used for training since the dawn of surgery. NUGITS (Northumbrian Upper Gastro Intestinal Team of Surgeons) Laparoscopic Skills courses utilise hands-on experience with simulators moving to live operating on volunteer patients. It is vital to know that the volunteer patient is not disadvantaged by greater surgical risk. This was a case-controlled prospective comparison of patients undergoing both Laparoscopic Cholecystectomy (LC) [n=51] and Laparoscopic Inguinal Hernia (LIH) [n=62] during NUGITS training courses. They are compared with a matched (age, sex and ASA grade) control group LC (n=51) and LIH (n=62) operated on by consultants. The outcome measures were surgical peri-and post-operative complications, post-operative hospital stay, readmission and early recurrence of inguinal hernia (<6 months). In the LC cohort, there was no significant difference in the length of hospital stay (p=0.07) or readmission (p=0.16) in both the groups. The mean operating time was higher in the trainee compared to the control group (p=0.001). There was no difference in the post-operative morbidity or mortality in either group. In LIH cohort, the mean operating time was higher in the trainee compared with the control group. There was no significant difference in post-operative complications (p>0.05) and early post-operative recurrence of hernia (p>0.05). The post-operative outcomes of patients undergoing laparoscopic surgery during laparoscopic training courses are similar to consultant-operated patients. Thus, it is acceptable and safe to encourage patients to volunteer for laparoscopic training courses. Copyright (c) 2009 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
International benchmarking of longitudinal train dynamics simulators: results
NASA Astrophysics Data System (ADS)
Wu, Qing; Spiryagin, Maksym; Cole, Colin; Chang, Chongyi; Guo, Gang; Sakalo, Alexey; Wei, Wei; Zhao, Xubao; Burgelman, Nico; Wiersma, Pier; Chollet, Hugues; Sebes, Michel; Shamdani, Amir; Melzi, Stefano; Cheli, Federico; di Gialleonardo, Egidio; Bosso, Nicola; Zampieri, Nicolò; Luo, Shihui; Wu, Honghua; Kaza, Guy-Léon
2018-03-01
This paper presents the results of the International Benchmarking of Longitudinal Train Dynamics Simulators which involved participation of nine simulators (TABLDSS, UM, CRE-LTS, TDEAS, PoliTo, TsDyn, CARS, BODYSIM and VOCO) from six countries. Longitudinal train dynamics results and computing time of four simulation cases are presented and compared. The results show that all simulators had basic agreement in simulations of locomotive forces, resistance forces and track gradients. The major differences among different simulators lie in the draft gear models. TABLDSS, UM, CRE-LTS, TDEAS, TsDyn and CARS had general agreement in terms of the in-train forces; minor differences exist as reflections of draft gear model variations. In-train force oscillations were observed in VOCO due to the introduction of wheel-rail contact. In-train force instabilities were sometimes observed in PoliTo and BODYSIM due to the velocity controlled transitional characteristics which could have generated unreasonable transitional stiffness. Regarding computing time per train operational second, the following list is in order of increasing computing speed: VOCO, TsDyn, PoliTO, CARS, BODYSIM, UM, TDEAS, CRE-LTS and TABLDSS (fastest); all simulators except VOCO, TsDyn and PoliTo achieved faster speeds than real-time simulations. Similarly, regarding computing time per integration step, the computing speeds in order are: CRE-LTS, VOCO, CARS, TsDyn, UM, TABLDSS and TDEAS (fastest).
Using an operator training simulator in the undergraduate chemical engineering curriculim
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, D.; Turton, R.; Zitney, S.
2012-01-01
An operator training simulator (OTS) is to the chemical engineer what a flight simulator is to the aerospace engineer. The basis of an OTS is a high-fidelity dynamic model of a chemical process that allows an engineer to simulate start-up, shut-down, and normal operation. It can also be used to test the skill and ability of an engineer or operator to respond and control some unforeseen situation(s) through the use of programmed malfunctions. West Virginia University (WVU) is a member of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA). Working through the NETL-RUA, the authors have spent the lastmore » four years collaborating on the development of a high-fidelity OTS for an Integrated Gasification Combined Cycle (IGCC) power plant with CO{sub 2} capture that is the cornerstone of the AVESTARTM (Advanced Virtual Energy Simulation Training And Research) Center with sister facilities at NETL and WVU in Morgantown, WV. This OTS is capable of real-time dynamic simulation of IGCC plant operation, including start-up, shut-down, and power demand load following. The dynamic simulator and its human machine interfaces (HMIs) are based on the DYNSIM and InTouch software, respectively, from Invensys Operations Management. The purpose of this presentation is to discuss the authors’ experiences in using this sophisticated dynamic simulation-based OTS as a hands-on teaching tool in the undergraduate chemical engineering curriculum. At present, the OTS has been used in two separate courses: a new process simulation course and a traditional process control course. In the process simulation course, concepts of steady-state and dynamic simulations were covered prior to exposing the students to the OTS. Moreover, digital logic and the concept of equipment requiring one or more permissive states to be enabled prior to successful operation were also covered. Students were briefed about start-up procedures and the importance of following a predetermined sequence of actions in order to start-up the plant successfully. Student experience with the dynamic simulator consisted of a six-hour training session in which the Claus sulfur capture unit of the IGCC plant was started up. The students were able to operate the simulator through the InTouch-based HMI displays and study and understand the underlying dynamic modeling approach used in the DYNSIM-based simulator. The concepts learned during the training sessions were further reinforced when students developed their own DYNSIM models for a chemical process and wrote a detailed start-up procedure. In the process control course, students learned how the plant responds dynamically to changes in the manipulated inputs, as well as how the control system impacts plant performance, stability, robustness and disturbance rejection characteristics. The OTS provided the opportunity to study the dynamics of complicated, “real-life” process plants consisting of hundreds of pieces of equipment. Students implemented ideal forcing functions, tracked the time-delay through the entire plant, studied the response of open-loop unstable systems, and learned “good practices” in control system design by taking into account the real-world events where significant deviations from the “ideal” or “expected” response can occur. The theory of closed-loop stability was reinforced by implementing limiting proportional gain for stability limits of real plants. Finally, students were divided into several groups where each group was tasked to control a section of the plant within a set of operating limits in the face of disturbances and simulated process faults. At the end of this test, they suggested ways to improve the control system performance based on the theory they learned in class and the hands-on experience they earned while working on the OTS.« less
Simulation in laparoscopic surgery.
León Ferrufino, Felipe; Varas Cohen, Julián; Buckel Schaffner, Erwin; Crovari Eulufi, Fernando; Pimentel Müller, Fernando; Martínez Castillo, Jorge; Jarufe Cassis, Nicolás; Boza Wilson, Camilo
2015-01-01
Nowadays surgical trainees are faced with a more reduced surgical practice, due to legal limitations and work hourly constraints. Also, currently surgeons are expected to dominate more complex techniques such as laparoscopy. Simulation emerges as a complementary learning tool in laparoscopic surgery, by training in a safe, controlled and standardized environment, without jeopardizing patient' safety. Simulation' objective is that the skills acquired should be transferred to the operating room, allowing reduction of learning curves. The use of simulation has increased worldwide, becoming an important tool in different surgical residency programs and laparoscopic training courses. For several countries, the approval of these training courses are a prerequisite for the acquisition of surgeon title certifications. This article reviews the most important aspects of simulation in laparoscopic surgery, including the most used simulators and training programs, as well as the learning methodologies and the different key ways to assess learning in simulation. Copyright © 2013 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Manpower, Personnel, and Training Assessment (MPTA) Handbook
2015-11-01
Occupational Specialty (MOS), any Additional Skill Identifier (ASI) required, core knowledge, skills, and abilities ( KSAs ) required for the job...of training, usability assessments, interviews with Soldiers, and manpower modeling . Some guidelines on the type of questions to ask in this portion... modeling , and simulation activities into an efficient continuum. COICs are the operational effectiveness and operational suitability issues (not
ERIC Educational Resources Information Center
Semple, Clarence A.; And Others
Functional requirements for a highly automated, flexible, instructional support system for aircrew training simulators are presented. Automated support modes and associated features and capabilities are described, along with hardware and software functional requirements for implementing a baseline system in an operational flight training context.…
Review of Flight Training Technology
1976-07-01
the cockpit. They might be used to train pilots in procedures to cope with NOE-altitude emergencies; howeve-r, a combination of cinematic simulation...airplanes. Although cockpit motion adds realism , thereby i-nproving pilot performanc, in the simulater Fedderqon, Vil; Guercio and Wall, i7?. Ince...operations. Light aircraft, part-task trainers, motion pictures and video tares, cinematic simulators, and digital teaching machines are among the
Human Factors in Training - Space Flight Resource Management Training
NASA Technical Reports Server (NTRS)
Bryne, Vicky; Connell, Erin; Barshi, Immanuel; Arsintescu, L.
2009-01-01
Accidents and incidents show that high workload-induced stress and poor teamwork skills lead to performance decrements and errors. Research on teamwork shows that effective teams are able to adapt to stressful situations, and to reduce workload by using successful strategies for communication and decision making, and through dynamic redistribution of tasks among team members. Furthermore, superior teams are able to recognize signs and symptoms of workload-induced stress early, and to adapt their coordination and communication strategies to the high workload, or stress conditions. Mission Control Center (MCC) teams often face demanding situations in which they must operate as an effective team to solve problems with crew and vehicle during onorbit operations. To be successful as a team, flight controllers (FCers) must learn effective teamwork strategies. Such strategies are the focus of Space Flight Resource Management (SFRM) training. SFRM training in MOD has been structured to include some classroom presentations of basic concepts and case studies, with the assumption that skill development happens in mission simulation. Integrated mission simulations do provide excellent opportunities for FCers to practice teamwork, but also require extensive technical knowledge of vehicle systems, mission operations, and crew actions. Such technical knowledge requires lengthy training. When SFRM training is relegated to integrated simulations, FCers can only practice SFRM after they have already mastered the technical knowledge necessary for these simulations. Given the centrality of teamwork to the success of MCC, holding SFRM training till late in the flow is inefficient. But to be able to train SFRM earlier in the flow, the training cannot rely on extensive mission-specific technical knowledge. Hence, the need for a generic SFRM training framework that would allow FCers to develop basic teamwork skills which are mission relevant, but without the required mission knowledge. Work on SFRM training has been conducted in collaboration with the Expedition Vehicle Division at the Mission Operations Directorate (MOD) and with United Space Alliance (USA) which provides training to Flight Controllers. The space flight resource management training work is part of the Human Factors in Training Directed Research Project (DRP) of the Space Human Factors Engineering (SHFE) Project under the Space Human Factors and Habitability (SHFH) Element of the Human Research Program (HRP). Human factors researchers at the Ames Research Center have been investigating team work and distributed decision making processes to develop a generic SFRM training framework for flight controllers. The work proposed for FY10 continues to build on this strong collaboration with MOD and the USA Training Group as well as previous research in relevant domains such as aviation. In FY10, the work focuses on documenting and analyzing problem solving strategies and decision making processes used in MCC by experienced FCers.
The benefits of virtual reality simulator training for laparoscopic surgery.
Hart, Roger; Karthigasu, Krishnan
2007-08-01
Virtual reality is a computer-generated system that provides a representation of an environment. This review will analyse the literature with regard to any benefit to be derived from training with virtual reality equipment and to describe the current equipment available. Virtual reality systems are not currently realistic of the live operating environment because they lack tactile sensation, and do not represent a complete operation. The literature suggests that virtual reality training is a valuable learning tool for gynaecologists in training, particularly those in the early stages of their careers. Furthermore, it may be of benefit for the ongoing audit of surgical skills and for the early identification of a surgeon's deficiencies before operative incidents occur. It is only a matter of time before realistic virtual reality models of most complete gynaecological operations are available, with improved haptics as a result of improved computer technology. It is inevitable that in the modern climate of litigation virtual reality training will become an essential part of clinical training, as evidence for its effectiveness as a training tool exists, and in many countries training by operating on live animals is not possible.
Simulated Administration of a Regular Guidance Operation (SARGO).
ERIC Educational Resources Information Center
Fredrickson, Ronald H.; Popken, Charles F.
Simulated Administration of a Regular Guidance Operation (SARGO) is a program for the training of directors of guidance and pupil personnel services. The objective of SARGO is to prepare directors of guidance services to: (1) prepare a written description of a pupil personnel program; (2) interact with a school administrator to clarify role…
Simulation in shoulder surgery.
Colaço, Henry B; Tennent, Duncan
2016-10-01
Simulation is a rapidly developing field in medical education. There is a growing need for trainee surgeons to acquire surgical skills in a cost-effective learning environment to improve patient safety and compensate for a reduction in training time and operative experience. Although simulation is not a replacement for traditional models of surgical training, and robust assessment metrics need to be validated before widespread use for accreditation, it is a useful adjunct that may ultimately lead to improving surgical outcomes for our patients.
Synthesized voice approach callouts for air transport operations
NASA Technical Reports Server (NTRS)
Simpson, C. A.
1980-01-01
A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.
Simulators IV; Proceedings of the SCS Conference, Orlando, FL, Apr. 6-9, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairchild, B.T.
1987-01-01
The conference presents papers on the applicability of AI techniques to simulation models, the simulation of a reentry vehicle on Simstar, simstar missile simulation, measurement issues associated with simulator sickness, and tracing the etiology of simulator sickness. Consideration is given to a simulator of a steam generator tube bundle response to a blowdown transient, the census of simulators for fossil fueled boiler and gas turbine plant operation training, and a new approach for flight simulator visual systems. Other topics include past and present simulated aircraft maintenance trainers, an AI-simulation based approach for aircraft maintenance training, simulator qualification using EPRI methodology,more » and the role of instinct in organizational dysfunction.« less
NASA/ESA CT-990 Spacelab simulation. Appendix A: The experiment operator
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.
1976-01-01
A joint NASA/ESA endeavor was established to conduct an extensive spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England, and several groups from the United States. Two experiment operators from Europe and two from the U.S. were selected to live aboard the aircraft along with a mission manager for a six-day period and operate the experiments in behalf of the principal scientists. This appendix discusses the experiment operators and their relationship to the joint mission under the following general headings: selection criteria, training programs, and performance. The performance of the proxy operators was assessed in terms of adequacy of training, amount of scientific data obtained, quality of data obtained, and reactions to problems that arose in experiment operation.
In Situ Operating Room-Based Simulation: A Review.
Owei, Lily; Neylan, Christopher J; Rao, Raghavendra; Caskey, Robert C; Morris, Jon B; Sensenig, Richard; Brooks, Ari D; Dempsey, Daniel T; Williams, Noel N; Atkins, Joshua H; Baranov, Dimitry Y; Dumon, Kristoffel R
To systematically review the literature surrounding operating room-based in situ training in surgery. A systematic review was conducted of MEDLINE. The review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, and employed the Population, Intervention, Comparator, Outcome (PICO) structure to define inclusion/exclusion criteria. The Kirkpatrick model was used to further classify the outcome of in situ training when possible. The search returned 308 database hits, and ultimately 19 articles were identified that met the stated PICO inclusion criteria. Operating room-based in situ simulation is used for a variety of purposes and in a variety of settings, and it has the potential to offer unique advantages over other types of simulation. Only one randomized controlled trial was conducted comparing in situ simulation to off-site simulation, which found few significant differences. One large-scale outcome study showed improved perinatal outcomes in obstetrics. Although in situ simulation theoretically offers certain advantages over other types of simulation, especially in addressing system-wide or environmental threats, its efficacy has yet to be clearly demonstrated. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Incorporating simulation into gynecologic surgical training.
Wohlrab, Kyle; Jelovsek, J Eric; Myers, Deborah
2017-11-01
Today's educational environment has made it more difficult to rely on the Halstedian model of "see one, do one, teach one" in gynecologic surgical training. There is decreased surgical volume, but an increased number of surgical modalities. Fortunately, surgical simulation has evolved to fill the educational void. Whether it is through skill generalization or skill transfer, surgical simulation has shifted learning from the operating room back to the classroom. This article explores the principles of surgical education and ways to introduce simulation as an adjunct to residency training. We review high- and low-fidelity surgical simulators, discuss the progression of surgical skills, and provide options for skills competency assessment. Time and money are major hurdles when designing a simulation curriculum, but low-fidelity models, intradepartmental cost sharing, and utilizing local experts for simulation proctoring can aid in developing a simulation program. Copyright © 2017 Elsevier Inc. All rights reserved.
Applied virtual reality in aerospace design
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1995-01-01
A virtual reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before VR can be used with confidence in a particular application, VR must be validated for that class of applications. For that reason, specific validation studies for selected classes of applications have been proposed and are currently underway. These include macro-ergonomic 'control room class' design analysis, Spacelab stowage reconfiguration training, a full-body microgravity functional reach simulator, a gross anatomy teaching simulator, and micro-ergonomic design analysis. This paper describes the MSFC VR Applications Program and the validation studies.
Haptic device for colonoscopy training simulator.
Kwon, Jun Yong; Woo, Hyun Soo; Lee, Doo Yong
2005-01-01
A new 2-DOF haptic device for colonoscopy training simulator employing flexible endoscopes, is developed. The user operates the device in translational and roll directions. The developed folding guides of the device keep the endoscope tube straight. This helps transmit large decoupled forces of the colonoscopy simulation to the user. The device also includes a mechanism to detect jiggling motion of the scopes to allow users to practice this important skill of the colonoscopy. The device includes PD controller to compensate the inertia and friction effects. This provides the users with better transparent sensation of the simulation.
Integrated Modeling, Mapping, and Simulation (IMMS) framework for planning exercises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman-Hill, Ernest J.; Plantenga, Todd D.
2010-06-01
The Integrated Modeling, Mapping, and Simulation (IMMS) program is designing and prototyping a simulation and collaboration environment for linking together existing and future modeling and simulation tools to enable analysts, emergency planners, and incident managers to more effectively, economically, and rapidly prepare, analyze, train, and respond to real or potential incidents. When complete, the IMMS program will demonstrate an integrated modeling and simulation capability that supports emergency managers and responders with (1) conducting 'what-if' analyses and exercises to address preparedness, analysis, training, operations, and lessons learned, and (2) effectively, economically, and rapidly verifying response tactics, plans and procedures.
Advanced Technology Training System on Motor-Operated Valves
NASA Technical Reports Server (NTRS)
Wiederholt, Bradley J.; Widjaja, T. Kiki; Yasutake, Joseph Y.; Isoda, Hachiro
1993-01-01
This paper describes how features from the field of Intelligent Tutoring Systems are applied to the Motor-Operated Valve (MOV) Advanced Technology Training System (ATTS). The MOV ATTS is a training system developed at Galaxy Scientific Corporation for the Central Research Institute of Electric Power Industry in Japan and the Electric Power Research Institute in the United States. The MOV ATTS combines traditional computer-based training approaches with system simulation, integrated expert systems, and student and expert modeling. The primary goal of the MOV ATTS is to reduce human errors that occur during MOV overhaul and repair. The MOV ATTS addresses this goal by providing basic operational information of the MOV, simulating MOV operation, providing troubleshooting practice of MOV failures, and tailoring this training to the needs of each individual student. The MOV ATTS integrates multiple expert models (functional and procedural) to provide advice and feedback to students. The integration also provides expert model validation support to developers. Student modeling is supported by two separate student models: one model registers and updates the student's current knowledge of basic MOV information, while another model logs the student's actions and errors during troubleshooting exercises. These two models are used to provide tailored feedback to the student during the MOV course.
Snowplow simulator training evaluation
DOT National Transportation Integrated Search
2006-11-01
Snowplow drivers must operate $200,000 units of equipment in blinding snowstorms and demanding traffic conditions. : Yet traditional training for new drivers, with limited funding and staff, may be only two or three storm shifts with a : partner-trai...
Switch Panel wear loading - a parametric study regarding governing train operational factors
NASA Astrophysics Data System (ADS)
Hiensch, E. J. M.; Burgelman, N.
2017-09-01
The acting forces and resulting material degradation at the running surfaces of wheels and rail are determined by vehicle, track, interface and operational characteristics. To effectively manage the experienced wear, plastic deformation and crack development at wheels and rail, the interaction between vehicle and track demands a system approach both in maintenance and in design. This requires insight into the impact of train operational parameters on rail- and wheel degradation, in particular at switches and crossings due to the complex dynamic behaviour of a railway vehicle at a turnout. A parametric study was carried out by means of vehicle-track simulations within the VAMPIRE® multibody simulation software, performing a sensitivity analysis regarding operational factors and their impact on expected switch panel wear loading. Additionally, theoretical concepts were cross-checked with operational practices by means of a case study in response to a dramatic change in lateral rail wear development at specific switches in Dutch track. Data from train operation, track maintenance and track inspection were analysed, providing further insight into the operational dependencies. From the simulations performed in this study, it was found that switch rail lateral wear loading at the diverging route of a 1:9 type turnout is significantly influenced by the level of wheel-rail friction and to a lesser extent by the direction of travel (facing or trailing). The influence of other investigated parameters, being vehicle speed, traction, gauge widening and track layout is found to be small. Findings from the case study further confirm the simulation outcome. This research clearly demonstrates the contribution flange lubrication can have in preventing abnormal lateral wear at locations where the wheel-rail interface is heavily loaded.
Rothenberger, Jens; Seyed Jafari, Seyed Morteza; Schnabel, Kai P; Tschumi, Christian; Angermeier, Sarina; Shafighi, Maziar
2015-01-01
Learning surgical skills in the operating room may be a challenge for medical students. Therefore, more approaches using simulation to enable students to develop their practical skills are required. We hypothesized that (1) there would be a need for additional surgical training for medical students in the pre-final year, and (2) our basic surgery skills training program using fresh human skin would improve medical students' surgical skills. We conducted a preliminary survey of medical students to clarify the need for further training in basic surgery procedures. A new approach using simulation to teach surgical skills on human skin was set up. The procedural skills of 15 randomly selected students were assessed in the operating room before and after participation in the simulation, using Objective Structured Assessment of Technical Skills. Furthermore, subjective assessment was performed based on students' self-evaluation. The data were analyzed using SPSS, version 21 (SPSS, Inc., Chicago, IL). The study took place at the Inselspital, Bern University Hospital. A total of 186 pre-final-year medical students were enrolled into the preliminary survey; 15 randomly selected medical students participated in the basic surgical skills training course on the fresh human skin operating room. The preliminary survey revealed the need for a surgical skills curriculum. The simulation approach we developed showed significant (p < 0.001) improvement for all 12 surgical skills, with mean cumulative precourse and postcourse values of 31.25 ± 5.013 and 45.38 ± 3.557, respectively. The self-evaluation contained positive feedback as well. Simulation of surgery using human tissue samples could help medical students become more proficient in handling surgical instruments before stepping into a real surgical situation. We suggest further studies evaluating our proposed teaching method and the possibility of integrating this simulation approach into the medical school curriculum. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Determination of Selected Costs of Flight and Synthetic Flight Training.
ERIC Educational Resources Information Center
Jolley, Oran B.; Caro, Paul W., Jr.
As part of an analysis of the value of synthetic (simulated) training in the U.S. Army Aviation School, costs associated with the conduct of flight and synthetic training in the instrument phase of the Army's Officer/Warrant Officer Rotary Wing Aviator Course (helicopter operation) were identified and computed separately for each type of training.…
Multidisciplinary crisis simulations: the way forward for training surgical teams.
Undre, Shabnam; Koutantji, Maria; Sevdalis, Nick; Gautama, Sanjay; Selvapatt, Nowlan; Williams, Samantha; Sains, Parvinderpal; McCulloch, Peter; Darzi, Ara; Vincent, Charles
2007-09-01
High-reliability organizations have stressed the importance of non-technical skills for safety and of regularly providing such training to their teams. Recently safety skills training has been applied in the practice of medicine. In this study, we developed and piloted a module using multidisciplinary crisis scenarios in a simulated operating theatre to train entire surgical teams. Twenty teams participated (n = 80); each consisted of a trainee surgeon, anesthetist, operating department practitioner (ODP), and scrub nurse. Crisis scenarios such as difficult intubation, hemorrhage, or cardiac arrest were simulated. Technical and non-technical skills (leadership, communication, team skills, decision making, and vigilance), were assessed by clinical experts and by two psychologists using relevant technical and human factors rating scales. Participants received technical and non-technical feedback, and the whole team received feedback on teamwork. Trainees assessed the training favorably. For technical skills there were no differences between surgical trainees' assessment scores and the assessment scores of the trainers. However, nurses overrated their technical skill. Regarding non-technical skills, leadership and decision making were scored lower than the other three non-technical skills (communication, team skills, and vigilance). Surgeons scored lower than nurses on communication and teamwork skills. Surgeons and anesthetists scored lower than nurses on leadership. Multidisciplinary simulation-based team training is feasible and well received by surgical teams. Non-technical skills can be assessed alongside technical skills, and differences in performance indicate where there is a need for further training. Future work should focus on developing team performance measures for training and on the development and evaluation of systematic training for technical and non-technical skills to enhance team performance and safety in surgery.
An implementation of cellular automaton model for single-line train working diagram
NASA Astrophysics Data System (ADS)
Hua, Wei; Liu, Jun
2006-04-01
According to the railway transportation system's characteristics, a new cellular automaton model for the single-line railway system is presented in this paper. Based on this model, several simulations were done to imitate the train operation under three working diagrams. From a different angle the results show how the organization of train operation impacts on the railway carrying capacity. By using the non-parallel train working diagram the influence of fast-train on slow-train is found to be the strongest. Many slow-trains have to wait in-between neighbouring stations to let the fast-train(s) pass through first. So the slow-train will advance like a wave propagating from the departure station to the arrival station. This also resembles the situation of a highway jammed traffic flow. Furthermore, the nonuniformity of travel times between the sections also greatly limits the railway carrying capacity. After converting the nonuniform sections into the sections with uniform travel times while the total travel time is kept unchanged, all three carrying capacities are improved greatly as shown by simulation. It also shows that the cellular automaton model is an effective and feasible way to investigate the railway transportation system.
Cost analysis of objective resident cataract surgery assessments.
Nandigam, Kiran; Soh, Jonathan; Gensheimer, William G; Ghazi, Ahmed; Khalifa, Yousuf M
2015-05-01
To compare 8 ophthalmology resident surgical training tools to determine which is most cost effective. University of Rochester Medical Center, Rochester, New York, USA. Retrospective evaluation of technology. A cost-analysis model was created to compile all relevant costs in running each tool in a medium-sized ophthalmology program. Quantitative cost estimates were obtained based on cost of tools, cost of time in evaluations, and supply and maintenance costs. For wet laboratory simulation, Eyesi was the least expensive cataract surgery simulation method; however, it is only capable of evaluating simulated cataract surgery rehearsal and requires supplementation with other evaluative methods for operating room performance and for noncataract wet lab training and evaluation. The most expensive training tool was the Eye Surgical Skills Assessment Test (ESSAT). The 2 most affordable methods for resident evaluation in operating room performance were the Objective Assessment of Skills in Intraocular Surgery (OASIS) and Global Rating Assessment of Skills in Intraocular Surgery (GRASIS). Cost-based analysis of ophthalmology resident surgical training tools are needed so residency programs can implement tools that are valid, reliable, objective, and cost effective. There is no perfect training system at this time. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
Low-Cost Avionics Simulation for Aircrew Training.
ERIC Educational Resources Information Center
Edwards, Bernell J.
This report documents an experiment to determine the training effectiveness of a microcomputer-based avionics system trainer as a cost-effective alternative to training in the actual aircraft. Participants--26 operationally qualified C-141 pilots with no prior knowledge of the Fuel Saving Advisory System (FSAS), a computerized fuel management…
NASA Technical Reports Server (NTRS)
Lee, A. T. (Editor); Lauber, J. K. (Editor)
1984-01-01
Programs which have been developed for training commercial airline pilots and flight crews are discussed. The concept of cockpit resource management and the concomitant issues of management techniques, interpersonal communication, psychological factors, and flight stress are addressed. Training devices and simulation techniques are reported.
Virtual reality lead extraction as a method for training new physicians: a pilot study.
Maytin, Melanie; Daily, Thomas P; Carillo, Roger G
2015-03-01
It is estimated that the demand for transvenous lead extraction (TLE) has reached an annual extraction rate of nearly 24,000 patients worldwide. Despite technologic advances, TLE still has the potential for significant morbidity and mortality. Complication rates with TLE directly parallel operator experience. However, obtaining adequate training during and postfellowship can be difficult. Given the potential for catastrophic complications and the steep learning curve (up to 300 cases) associated with this procedure, we sought to validate a virtual reality (VR) lead extraction simulator as an innovative training and evaluation tool for physicians new to TLE. We randomized eight electrophysiology fellows to VR simulator versus conventional training. We compared procedural skill competency between the groups using simulator competency, tactile measurements, markers of proficiency and attitudes, and cognitive abilities battery. Practical skills and simulator complications differed significantly between the VR simulator and conventional training groups. The VR simulator group executed patient preparation and procedure performance better than the conventional group (P < 0.01). All four fellows randomized to conventional training experienced a simulator complication (two superior vena cava [SVC] tears, three right ventricle [RV] avulsions) versus one fellow in the VR simulator group (one SVC tear) (P = 0.02). Tactile measurements revealed a trend toward excess pushing versus pulling forces among the conventionally trained group. The time for lead removal was also significantly higher in the conventional training group (12.46 minutes vs 5.54 minutes, P = 0.02). There was no significant difference in baseline or posttraining cognitive ability. We contend that the implementation of alternative training tools such as a VR simulation model will improve physician training and allow for an innovative pathway to assess the achievement of competency. ©2014 Wiley Periodicals, Inc.
Obi, Andrea; Chung, Jennifer; Chen, Ryan; Lin, Wandi; Sun, Siyuan; Pozehl, William; Cohn, Amy M; Daskin, Mark S; Seagull, F Jacob; Reddy, Rishindra M
2015-11-01
Certain operative cases occur unpredictably and/or have long operative times, creating a conflict between Accreditation Council for Graduate Medical Education (ACGME) rules and adequate training experience. A ProModel-based simulation was developed based on historical data. Probabilistic distributions of operative time calculated and combined with an ACGME compliant call schedule. For the advanced surgical cases modeled (cardiothoracic transplants), 80-hour violations were 6.07% and the minimum number of days off was violated 22.50%. There was a 36% chance of failure to fulfill any (either heart or lung) minimum case requirement despite adequate volume. The variable nature of emergency cases inevitably leads to work hour violations under ACGME regulations. Unpredictable cases mandate higher operative volume to ensure achievement of adequate caseloads. Publically available simulation technology provides a valuable avenue to identify adequacy of case volumes for trainees in both the elective and emergency setting. Copyright © 2015 Elsevier Inc. All rights reserved.
[Operative vaginal deliveries training].
Dupuis, O
2008-12-01
The appropriate use of forceps, vacuums or spatulas facilitates the rapid delivery of foetuses faced with life-threatening situations. It also makes possible the relief of certain cases of prolonged second-stage labor. In France, operative vaginal delivery (OVD) accounts for approximately 10% of all births. OVD training aims to optimize maternal, as well as neonatal safety. It should enable trainees to indicate or contraindicate an OVD safely, as well as to choose the appropriate instrument, use it correctly, and master quality control principles. Traditional OVD training is confronted with both spatial and time-related limitations. Spatial constraints involve both the teacher and trainee who only have limited visual access to the pelvic canal, and the head of the foetus; the time constraint occurs whenever the OVD occurs in an emergency setting. These limitations have been further aggravated by new constraints: decreasing time dedicated to training (European safety rules prohibit work the day after night duty), increasing litigation, and constraints imposed by society. Training by means of simulation removes such limitations making it possible to both avoid exposing pregnant women to the hazards of traditional training, and adapt the training to the skills of each trainee. OVD training should include forceps, vacuums and the use of spatulas. The OVD skills of obstetricians should be audited regularly on both a personal and a confidential level. Such audits could be based on a method using a simulator. Prospective studies comparing traditional and simulation-based training should be encouraged.
Tofte, Josef N; Westerlind, Brian O; Martin, Kevin D; Guetschow, Brian L; Uribe-Echevarria, Bastián; Rungprai, Chamnanni; Phisitkul, Phinit
2017-03-01
To validate the knee, shoulder, and virtual Fundamentals of Arthroscopic Training (FAST) modules on a virtual arthroscopy simulator via correlations with arthroscopy case experience and postgraduate year. Orthopaedic residents and faculty from one institution performed a standardized sequence of knee, shoulder, and FAST modules to evaluate baseline arthroscopy skills. Total operation time, camera path length, and composite total score (metric derived from multiple simulator measurements) were compared with case experience and postgraduate level. Values reported are Pearson r; alpha = 0.05. 35 orthopaedic residents (6 per postgraduate year), 2 fellows, and 3 faculty members (2 sports, 1 foot and ankle), including 30 male and 5 female residents, were voluntarily enrolled March to June 2015. Knee: training year correlated significantly with year-averaged knee composite score, r = 0.92, P = .004, 95% confidence interval (CI) = 0.84, 0.96; operation time, r = -0.92, P = .004, 95% CI = -0.96, -0.84; and camera path length, r = -0.97, P = .0004, 95% CI = -0.98, -0.93. Knee arthroscopy case experience correlated significantly with composite score, r = 0.58, P = .0008, 95% CI = 0.27, 0.77; operation time, r = -0.54, P = .002, 95% CI = -0.75, -0.22; and camera path length, r = -0.62, P = .0003, 95% CI = -0.8, -0.33. Shoulder: training year correlated strongly with average shoulder composite score, r = 0.90, P = .006, 95% CI = 0.81, 0.95; operation time, r = -0.94, P = .001, 95% CI = -0.97, -0.89; and camera path length, r = -0.89, P = .007, 95% CI = -0.95, -0.80. Shoulder arthroscopy case experience correlated significantly with average composite score, r = 0.52, P = .003, 95% CI = 0.2, 0.74; strongly with operation time, r = -0.62, P = .0002, 95% CI = -0.8, -0.33; and camera path length, r = -0.37, P = .044, 95% CI = -0.64, -0.01, by training year. FAST: training year correlated significantly with 3 combined FAST activity average composite scores, r = 0.81, P = .0279, 95% CI = 0.65, 0.90; operation times, r = -0.86, P = .012, 95% CI = -0.93, -0.74; and camera path lengths, r = -0.85, P = .015, 95% CI = -0.92, -0.72. Total arthroscopy cases performed did not correlate significantly with overall FAST performance. We found significant correlations between both training year and knee and shoulder arthroscopy experience when compared with performance as measured by composite score, camera path length, and operation time during a simulated diagnostic knee and shoulder arthroscopy, respectively. Three FAST activities demonstrated significant correlations with training year but not arthroscopy case experience as measured by composite score, camera path length, and operation time. We attempt to validate an arthroscopy simulator that could be used to supplement arthroscopy skills training for orthopaedic residents. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
A Web-Based Lean Simulation Game for Office Operations: Training the Other Side of a Lean Enterprise
ERIC Educational Resources Information Center
Kuriger, Glenn W.; Wan, Huang-da; Mirehei, S. Moussa; Tamma, Saumya; Chen, F. Frank
2010-01-01
This research proposes a Web-based version of a lean office simulation game (WeBLOG). The game is designed to be used to train lean concepts to office and administrative personnel. This group belongs to the frequently forgotten side of a lean enterprise. Over four phases, the game presents the following seven lean tools: one-piece flow,…
Astronauts Young and Duke participate in training with Lunar Roving Vehicle
NASA Technical Reports Server (NTRS)
1972-01-01
Astronauts John W. Young (right) and Charles M. Duke Jr., participate in simulation training with the Lunar Roving Vehicle (LRV) during Apollo 16 pre-launch activity at the Kennedy Space Center. All systems on the LRV-2 were activated and checked for trouble-free operation during the simulations. Young is the Apollo 16 commander; and Duke is the lunar module pilot.
NASA Astrophysics Data System (ADS)
Kharchenko, K. S.; Vitkovskii, I. L.
2014-02-01
Performance of the secondary coolant circuit rupture algorithm in different operating modes of the Novovoronezh NPP Unit 5 is considered by carrying out studies on a full-scale training simulator. The revealed shortcomings of the algorithm causing excessive actuations of the protection are pointed out, and recommendations for removing them are outlined.
Simulation and training in Urology - in collaboration with ESU/ESUT.
Veneziano, Domenico; Cacciamani, Giovanni; Shekhar Biyani, Chandra
2018-01-01
Being a Surgeon today means taking on your shoulders countless responsibilities. It is definitely a high-stakes job but, even though the professionals do not go through the intense, focused and demanding training schedule as followed by the other equally risky fields, it doesn't yet require any practical training certification. Simulation was introduced in the aviation field in the early '30s with the "Link Trainer", designed to reproduce the most difficult flying case scenario: landing on an air-carrier. After almost a century, flight simulation is still becoming more sophisticated, while surgical training is slowly starting to fill the gap. The aim of a simulator is to produce an "imitation of the operation of a real-world process or system over time". This short but effective definition explains why simulators are utilised across different fields. There is no doubt that surgeons are continuously undergoing a condition of stress, even in nonthreatening situations, while performing a procedure. This condition adds a relevant variable to surgery, meaning that mastering technical skills is not always equal to "safe surgery". This is why "non-technical skills" (NTS) training should be a part of any simulation based training opportunity and will probably start to be always more part of the Handson Training programs.
An easy-to-build, low-budget point-of-care ultrasound simulator: from Linux to a web-based solution.
Damjanovic, Domagoj; Goebel, Ulrich; Fischer, Benedikt; Huth, Martin; Breger, Hartmut; Buerkle, Hartmut; Schmutz, Axel
2017-12-01
Hands-on training in point-of-care ultrasound (POC-US) should ideally comprise bedside teaching, as well as simulated clinical scenarios. High-fidelity phantoms and portable ultrasound simulation systems are commercially available, however, at considerable costs. This limits their suitability for medical schools. A Linux-based software for Emergency Department Ultrasound Simulation (edus2TM) was developed by Kulyk and Olszynski in 2011. Its feasibility for POC-US education has been well-documented, and shows good acceptance. An important limitation to an even more widespread use of edus2, however, may be due to the need for a virtual machine for WINDOWS ® systems. Our aim was to adapt the original software toward an HTML-based solution, thus making it affordable and applicable in any simulation setting. We created an HTML browser-based ultrasound simulation application, which reads the input of different sensors, triggering an ultrasound video to be displayed on a respective device. RFID tags, NFC tags, and QR Codes™ have been integrated into training phantoms or were attached to standardized patients. The RFID antenna was hidden in a mock ultrasound probe. The application is independent from the respective device. Our application was used successfully with different trigger/scanner combinations and mounted readily into simulated training scenarios. The application runs independently from operating systems or electronic devices. This low-cost, browser-based ultrasound simulator is easy-to-build, very adaptive, and independent from operating systems. It has the potential to facilitate POC-US training throughout the world, especially in resource-limited areas.
Dunn, John C; Belmont, Philip J; Lanzi, Joseph; Martin, Kevin; Bader, Julia; Owens, Brett; Waterman, Brian R
2015-01-01
Surgical education is evolving as work hour constraints limit the exposure of residents to the operating room. Potential consequences may include erosion of resident education and decreased quality of patient care. Surgical simulation training has become a focus of study in an effort to counter these challenges. Previous studies have validated the use of arthroscopic surgical simulation programs both in vitro and in vivo. However, no study has examined if the gains made by residents after a simulation program are retained after a period away from training. In all, 17 orthopedic surgery residents were randomized into simulation or standard practice groups. All subjects were oriented to the arthroscopic simulator, a 14-point anatomic checklist, and Arthroscopic Surgery Skill Evaluation Tool (ASSET). The experimental group received 1 hour of simulation training whereas the control group had no additional training. All subjects performed a recorded, diagnostic arthroscopy intraoperatively. These videos were scored by 2 blinded, fellowship-trained orthopedic surgeons and outcome measures were compared within and between the groups. After 1 year in which neither group had exposure to surgical simulation training, all residents were retested intraoperatively and scored in the exact same fashion. Individual surgical case logs were reviewed and surgical case volume was documented. There was no difference between the 2 groups after initial simulation testing and there was no correlation between case volume and initial scores. After training, the simulation group improved as compared with baseline in mean ASSET (p = 0.023) and mean time to completion (p = 0.01). After 1 year, there was no difference between the groups in any outcome measurements. Although individual technical skills can be cultivated with surgical simulation training, these advancements can be lost without continued education. It is imperative that residency programs implement a simulation curriculum and continue to train throughout the academic year. Published by Elsevier Inc.
Play to Become a Surgeon: Impact of Nintendo WII Training on Laparoscopic Skills
Giannotti, Domenico; Patrizi, Gregorio; Di Rocco, Giorgio; Vestri, Anna Rita; Semproni, Camilla Proietti; Fiengo, Leslie; Pontone, Stefano; Palazzini, Giorgio; Redler, Adriano
2013-01-01
Background Video-games have become an integral part of the new multimedia culture. Several studies assessed video-gaming enhancement of spatial attention and eye-hand coordination. Considering the technical difficulty of laparoscopic procedures, legal issues and time limitations, the validation of appropriate training even outside of the operating rooms is ongoing. We investigated the influence of a four-week structured Nintendo® Wii™ training on laparoscopic skills by analyzing performance metrics with a validated simulator (Lap Mentor™, Simbionix™). Methodology/Principal Findings We performed a prospective randomized study on 42 post-graduate I–II year residents in General, Vascular and Endoscopic Surgery. All participants were tested on a validated laparoscopic simulator and then randomized to group 1 (Controls, no training with the Nintendo® Wii™), and group 2 (training with the Nintendo® Wii™) with 21 subjects in each group, according to a computer-generated list. After four weeks, all residents underwent a testing session on the laparoscopic simulator of the same tasks as in the first session. All 42 subjects in both groups improved significantly from session 1 to session 2. Compared to controls, the Wii group showed a significant improvement in performance (p<0.05) for 13 of the 16 considered performance metrics. Conclusions/Significance The Nintendo® Wii™ might be helpful, inexpensive and entertaining part of the training of young laparoscopists, in addition to a standard surgical education based on simulators and the operating room. PMID:23460845
Benefits of full scope simulators during solar thermal power plants design and construction
NASA Astrophysics Data System (ADS)
Gallego, José F.; Gil, Elena; Rey, Pablo
2017-06-01
In order to efficiently develop high-precision dynamic simulators for solar thermal power plants, Tecnatom adapted its simulation technology to consider solar thermal models. This effort and the excellent response of the simulation market have allowed Tecnatom to develop simulators with both parabolic trough and solar power tower technologies, including molten salt energy storage. These simulators may pursue different objectives, giving rise to training or engineering simulators. Solar thermal power market combines the need for the training of the operators with the potential benefits associated to the improvement of the design of the plants. This fact along with the simulation capabilities enabled by the current technology and the broad experience of Tecnatom present the development of an engineering+training simulator as a very advantageous option. This paper describes the challenge of the development and integration of a full scope simulator during the design and construction stages of a solar thermal power plant, showing the added value to the different engineering areas.
Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training.
Cohen, Alan R; Lohani, Subash; Manjila, Sunil; Natsupakpong, Suriya; Brown, Nathan; Cavusoglu, M Cenk
2013-08-01
Virtual reality simulation is a promising alternative to training surgical residents outside the operating room. It is also a useful aide to anatomic study, residency training, surgical rehearsal, credentialing, and recertification. Surgical simulation is based on a virtual reality with varying degrees of immersion and realism. Simulators provide a no-risk environment for harmless and repeatable practice. Virtual reality has three main components of simulation: graphics/volume rendering, model behavior/tissue deformation, and haptic feedback. The challenge of accurately simulating the forces and tactile sensations experienced in neurosurgery limits the sophistication of a virtual simulator. The limited haptic feedback available in minimally invasive neurosurgery makes it a favorable subject for simulation. Virtual simulators with realistic graphics and force feedback have been developed for ventriculostomy, intraventricular surgery, and transsphenoidal pituitary surgery, thus allowing preoperative study of the individual anatomy and increasing the safety of the procedure. The authors also present experiences with their own virtual simulation of endoscopic third ventriculostomy.
1985-10-03
Electrospace Systems, Inc. (ESI). ESI con- ducted a market search for training systems that would enhance unit level training, minimize cost-prohibitive...can be reprogrammed to simulate the UGC -129 keyboard. This keyboard is the standard keyboard used for data transmission on board the EC-135 and E-4B...with the appropriate technical order, and the functions and operation of the AN/ UGC -129 (ASR) terminals used with the AN/ASC-21 AFSATCOM system. In
Testing and evaluation for astronaut extravehicular activity (EVA) operability.
Shields, N; King, L C
1998-09-01
Because it is the human component that defines space mission success, careful planning is required to ensure that hardware can be operated and maintained by crews on-orbit. Several methods exist to allow researchers and designers to better predict how hardware designs will behave under the harsh environment of low Earth orbit, and whether designs incorporate the necessary features for Extra Vehicular Activity (EVA) operability. Testing under conditions of simulated microgravity can occur during the design concept phase when verifying design operability, during mission training, or concurrently with on-orbit mission operations. The bulk of testing is focused on normal operations, but also includes evaluation of credible mission contingencies or "what would happen if" planning. The astronauts and cosmonauts who fly these space missions are well prepared and trained to survive and be productive in Earth's orbit. The engineers, designers, and training crews involved in space missions subject themselves to Earth based simulation techniques that also expose them to extreme environments. Aircraft falling ten thousand feet, alternating g-loads, underwater testing at 45 foot depth, enclosure in a vacuum chamber and subject to thermal extremes, each carries with it inherent risks to the humans preparing for space missions.
Schreckengaust, Richard; Littlejohn, Lanny; Zarow, Gregory J
2014-02-01
The lower extremity tourniquet failure rate remains significantly higher in combat than in preclinical testing, so we hypothesized that tourniquet placement accuracy, speed, and effectiveness would improve during training and decline during simulated combat. Navy Hospital Corpsman (N = 89), enrolled in a Tactical Combat Casualty Care training course in preparation for deployment, applied Combat Application Tourniquet (CAT) and the Special Operations Forces Tactical Tourniquet (SOFT-T) on day 1 and day 4 of classroom training, then under simulated combat, wherein participants ran an obstacle course to apply a tourniquet while wearing full body armor and avoiding simulated small arms fire (paint balls). Application time and pulse elimination effectiveness improved day 1 to day 4 (p < 0.005). Under simulated combat, application time slowed significantly (p < 0.001), whereas accuracy and effectiveness declined slightly. Pulse elimination was poor for CAT (25% failure) and SOFT-T (60% failure) even in classroom conditions following training. CAT was more quickly applied (p < 0.005) and more effective (p < 0.002) than SOFT-T. Training fostered fast and effective application of leg tourniquets while performance declined under simulated combat. The inherent efficacy of tourniquet products contributes to high failure rates under combat conditions, pointing to the need for superior tourniquets and for rigorous deployment preparation training in simulated combat scenarios. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Virtual reality in surgical education.
Ota, D; Loftin, B; Saito, T; Lea, R; Keller, J
1995-03-01
Virtual reality (VR) is an emerging technology that can teach surgeons new procedures and can determine their level of competence before they operate on patients. Also VR allows the trainee to return to the same procedure or task several times later as a refresher course. Laparoscopic surgery is a new operative technique which requires the surgeon to observe the operation on a video-monitor and requires the acquisition of new skills. VR simulation could duplicate the operative field and thereby enhance training and reduce the need for expensive animal training models. Our preliminary experience has shown that we have the technology to model tissues and laparoscopic instruments and to develop in real time a VR learning environment for surgeons. Another basic need is to measure competence. Surgical training is an apprenticeship requiring close supervision and 5-7 years of training. Technical competence is judged by the mentor and has always been subjective. If VR surgical simulators are to play an important role in the future, quantitative measurement of competence would have to be part of the system. Because surgical competence is "vague" and is characterized by such terms as "too long, too short" or "too close, too far," it is possible that the principles of fuzzy logic could be used to measure competence in a VR surgical simulator. Because a surgical procedure consists of a series of tasks and each task is a series of steps, we will plan to create two important tasks in a VR simulator and validate their use. These tasks consist of laparoscopic knot tying and laparoscopic suturing. Our hypothesis is that VR in combination with fuzzy logic can educate surgeons and determine when they are competent to perform these procedures on patients.
The changing paradigm for integrated simulation in support of Command and Control (C2)
NASA Astrophysics Data System (ADS)
Riecken, Mark; Hieb, Michael
2016-05-01
Modern software and network technologies are on the verge of enabling what has eluded the simulation and operational communities for more than two decades, truly integrating simulation functionality into operational Command and Control (C2) capabilities. This deep integration will benefit multiple stakeholder communities from experimentation and test to training by providing predictive and advanced analytics. There is a new opportunity to support operations with simulation once a deep integration is achieved. While it is true that doctrinal and acquisition issues remain to be addressed, nonetheless it is increasingly obvious that few technical barriers persist. How will this change the way in which common simulation and operational data is stored and accessed? As the Services move towards single networks, will there be technical and policy issues associated with sharing those operational networks with simulation data, even if the simulation data is operational in nature (e.g., associated with planning)? How will data models that have traditionally been simulation only be merged in with operational data models? How will the issues of trust be addressed?
Current status of validation for robotic surgery simulators - a systematic review.
Abboudi, Hamid; Khan, Mohammed S; Aboumarzouk, Omar; Guru, Khurshid A; Challacombe, Ben; Dasgupta, Prokar; Ahmed, Kamran
2013-02-01
To analyse studies validating the effectiveness of robotic surgery simulators. The MEDLINE(®), EMBASE(®) and PsycINFO(®) databases were systematically searched until September 2011. References from retrieved articles were reviewed to broaden the search. The simulator name, training tasks, participant level, training duration and evaluation scoring were extracted from each study. We also extracted data on feasibility, validity, cost-effectiveness, reliability and educational impact. We identified 19 studies investigating simulation options in robotic surgery. There are five different robotic surgery simulation platforms available on the market. In all, 11 studies sought opinion and compared performance between two different groups; 'expert' and 'novice'. Experts ranged in experience from 21-2200 robotic cases. The novice groups consisted of participants with no prior experience on a robotic platform and were often medical students or junior doctors. The Mimic dV-Trainer(®), ProMIS(®), SimSurgery Educational Platform(®) (SEP) and Intuitive systems have shown face, content and construct validity. The Robotic Surgical SimulatorTM system has only been face and content validated. All of the simulators except SEP have shown educational impact. Feasibility and cost-effectiveness of simulation systems was not evaluated in any trial. Virtual reality simulators were shown to be effective training tools for junior trainees. Simulation training holds the greatest potential to be used as an adjunct to traditional training methods to equip the next generation of robotic surgeons with the skills required to operate safely. However, current simulation models have only been validated in small studies. There is no evidence to suggest one type of simulator provides more effective training than any other. More research is needed to validate simulated environments further and investigate the effectiveness of animal and cadaveric training in robotic surgery. © 2012 BJU International.
An Interactive Logistics Centre Information Integration System Using Virtual Reality
NASA Astrophysics Data System (ADS)
Hong, S.; Mao, B.
2018-04-01
The logistics industry plays a very important role in the operation of modern cities. Meanwhile, the development of logistics industry has derived various problems that are urgent to be solved, such as the safety of logistics products. This paper combines the study of logistics industry traceability and logistics centre environment safety supervision with virtual reality technology, creates an interactive logistics centre information integration system. The proposed system utilizes the immerse characteristic of virtual reality, to simulate the real logistics centre scene distinctly, which can make operation staff conduct safety supervision training at any time without regional restrictions. On the one hand, a large number of sensor data can be used to simulate a variety of disaster emergency situations. On the other hand, collecting personnel operation data, to analyse the improper operation, which can improve the training efficiency greatly.
Developing a Webfires Training System
2017-06-01
simulations, and innovative feedback for customers (2017b). They coordinate with Commander, Carrier Strike Group Fifteen (CSG-15) for underway training . The...Distribution is unlimited. DEVELOPING A WEBFIRES TRAINING SYSTEM by Matthew Alvarez, Benjamin Arnett, Daniel DeCicco, Michael Hook, Austin...information, including suggestions for reducing this burden, to Washington headquarters Services , Directorate for Information Operations and Reports
Auffermann, William F; Henry, Travis S; Little, Brent P; Tigges, Stefan; Tridandapani, Srini
2015-11-01
Simulation has been used as an educational and assessment tool in several fields, generally involving training of physical skills. To date, simulation has found limited application in teaching and assessment of skills related to image perception and interpretation. The goal of this pilot study was to evaluate the feasibility of simulation as a tool for teaching and assessment of skills related to perception of nodules on chest radiography. This study received an exemption from the institutional review board. Subjects consisted of nonradiology health care trainees. Subjects underwent training and assessment of pulmonary nodule identification skills on chest radiographs at simulated radiology workstations. Subject performance was quantified by changes in area under the localization receiver operating characteristic curve. At the conclusion of the study, all subjects were given a questionnaire with five questions comparing learning at a simulated workstation with training using conventional materials. Statistical significance for questionnaire responses was tested using the Wilcoxon signed rank test. Subjects demonstrated statistically significant improvement in nodule identification after training at a simulated radiology workstation (change in area under the curve, 0.1079; P = .015). Subjects indicated that training on simulated radiology workstations was preferable to conventional training methods for all questions; P values for all questions were less than .01. Simulation may be a useful tool for teaching and assessment of skills related to medical image perception and interpretation. Further study is needed to determine which skills and trainee populations may be most amenable to training and assessment using simulation. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Use of VR Technology and Passive Haptics for MANPADS Training System
2017-09-01
this setup also does not offer a variety of challenging scenarios needed for good training as the aircraft are mostly flying in landing or take-off... customized high-fidelity immersive training facilities are limited. Moreover, low trainee throughput from such high-end facilities is an ongoing obstacle...opportunities allow few operators to fire during live exercises. Simulation training is effective, but customized high-fidelity immersive training
Houston, We Have a Problem Solving Model for Training
NASA Technical Reports Server (NTRS)
Schmidt, Lacey; Slack, Kelley; Keeton, Kathryn; Barshi, Immanuel; Martin, Lynne; Mauro, Robert; O'Keefe, William; Baldwin, Evelyn; Huning, Therese
2011-01-01
In late 2006, the Mission Operations Directorate (MOD) at NASA began looking at ways to make training more efficient for the flight controllers who support the International Space Station. The average certification times for flight controllers spanned from 18 months to three years and the MOD, responsible for technical training, was eager to develop creative solutions that would reduce the time to 12 months. Additionally, previously trained flight controllers sometimes participated in more than 50 very costly, eight-hour integrated simulations before becoming certified. New trainees needed to gain proficiency with far fewer lessons and training simulations than their predecessors. This poster presentation reviews the approach and the process that is currently in development to accomplish this goal.
Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.
Alaraj, Ali; Luciano, Cristian J; Bailey, Daniel P; Elsenousi, Abdussalam; Roitberg, Ben Z; Bernardo, Antonio; Banerjee, P Pat; Charbel, Fady T
2015-03-01
With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. To develop and evaluate the usefulness of a new haptic-based virtual reality simulator in the training of neurosurgical residents. A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the ImmersiveTouch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomographic angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-dimensional immersive virtual reality environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from 3 residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Residents thought that the simulation would be useful in preparing for real-life surgery. About two-thirds of the residents thought that the 3-dimensional immersive anatomic details provided a close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They thought the simulation was useful for preoperative surgical rehearsal and neurosurgical training. A third of the residents thought that the technology in its current form provided realistic haptic feedback for aneurysm surgery. Neurosurgical residents thought that the novel immersive VR simulator is helpful in their training, especially because they do not get a chance to perform aneurysm clippings until late in their residency programs.
Use of Simulation-Based Training to Aid in Implementing Complex Health Technology.
Devers, Veffa
2018-01-01
Clinicians are adult learners in a complex environment that historically does not invest in training in a way that is conducive to these types of learners. Adult learners are independent, self-directed, and goal oriented. In today's fast-paced clinical setting, a practical need exists for nurses and clinicians to master the technology they use on a daily basis, especially as medical devices have become more interconnected and complex. As hospitals look to embrace new technologies, medical device companies must provide clinical end-user training. This should be a required part of the selection process when considering the purchase of any complex medical technology. However, training busy clinicians in a traditional classroom setting can be difficult and costly. A simple, less expensive solution is online simulation training. This interactive training provides a virtual, "hands-on" end-user experience in advance of implementing new equipment. Online simulation training ensures knowledge retention and comprehension and, most importantly, that the training leads to end-user satisfaction and the ability to confidently operate new equipment. A review of the literature revealed that online simulation, coupled with the use of adult learning principles and experiential learning, may enhance the experience of clinical end users.
[Simulation in surgical training].
Nabavi, A; Schipper, J
2017-01-01
Patient safety during operations hinges on the surgeon's skills and abilities. However, surgical training has come under a variety of restrictions. To acquire dexterity with decreasingly "simple" cases, within the legislative time constraints and increasing expectations for surgical results is the future challenge. Are there alternatives to traditional master-apprentice learning? A literature review and analysis of the development, implementation, and evaluation of surgical simulation are presented. Simulation, using a variety of methods, most important physical and virtual (computer-generated) models, provides a safe environment to practice basic and advanced skills without endangering patients. These environments have specific strengths and weaknesses. Simulations can only serve to decrease the slope of learning curves, but cannot be a substitute for the real situation. Thus, they have to be an integral part of a comprehensive training curriculum. Our surgical societies have to take up that challenge to ensure the training of future generations.
NASA Astrophysics Data System (ADS)
Magid, S. I.; Arkhipova, E. N.; Kulichikhin, V. V.; Zagretdinov, I. Sh.
2016-12-01
Technogenic and anthropogenic accidence at hazardous industrial objects (HIO) in the Russian Federation has been considered. The accidence level at HIO, including power plants and network enterprises, is determined by anthropogenic reasons, so-called "human factor", in 70% of all cases. The analysis of incidents caused by personnel has shown that errors occur most often during accidental situations, launches, holdups, routine switches, and other effects on equipment controls. It has been demonstrated that skills needed to perform type and routine switches can be learned, to certain limits, on real operating equipment, while combating emergency and accidental situations can be learned only with the help of modern training simulators developed based on information technologies. Problems arising during the following processes have been considered: development of mathematical and software support of modern training equipment associated, in one way or another, with adequate power-generating object modeling in accordance with human operator specifics; modeling and/or simulation of the corresponding control and management systems; organization of the education system (functional supply of the instructor, education and methodological resources (EMR)); organization of the program-technical, scalable and adaptable, platform for modeling of the main and secondary functions of the training simulator. It has been concluded that the systemic approach principle on the necessity and sufficiency in the applied methodology allows to reproduce all technological characteristics of the equipment, its topological completeness, as well as to achieve the acceptable counting rate. The initial "rough" models of processes in the equipment are based on the normative techniques and equation coefficients taken from the normative materials as well. Then, the synthesis of "fine" models has been carried out following the global practice in modeling and training simulator building, i.e., verification of "rough" models based on experimental data available to the developer. Finally, the last stage of modeling is adaptation (validation) of "fine" models to the prototype object using experimental data on the power-generating object and tests of these models with operating and maintaining personnel. These stages determine adequacy of the used mathematical model for a particular training simulator and, thus, its compliance with such modern scientific criteria as objectivity and experimental verifiability.
Virtual reality simulator for vitreoretinal surgery using integrated OCT data.
Kozak, Igor; Banerjee, Pat; Luo, Jia; Luciano, Cristian
2014-01-01
Operative practice using surgical simulators has become a part of training in many surgical specialties, including ophthalmology. We introduce a virtual reality retina surgery simulator capable of integrating optical coherence tomography (OCT) scans from real patients for practicing vitreoretinal surgery using different pathologic scenarios.
The Simulation Operations Officer in a Sustainment Brigade
2016-05-17
want to assist FA57s who will be assigned to sustain- ment brigades in the future and to describe the training exercises and road to war (RTW) that... constructive simulations and knowledge manage- ment (KM). A primary difficulty units may face is how to effectively train a “hyper- modular” formation...integrated into the brigade RTW. Th e FA57 can plan a MCSIT to train the brigade. (See CO M M EN TA RY CO M M EN TA RY 3rd Sustainment Brigade Road to
Robotics On-Board Trainer (ROBoT)
NASA Technical Reports Server (NTRS)
Johnson, Genevieve; Alexander, Greg
2013-01-01
ROBoT is an on-orbit version of the ground-based Dynamics Skills Trainer (DST) that astronauts use for training on a frequent basis. This software consists of two primary software groups. The first series of components is responsible for displaying the graphical scenes. The remaining components are responsible for simulating the Mobile Servicing System (MSS), the Japanese Experiment Module Remote Manipulator System (JEMRMS), and the H-II Transfer Vehicle (HTV) Free Flyer Robotics Operations. The MSS simulation software includes: Robotic Workstation (RWS) simulation, a simulation of the Space Station Remote Manipulator System (SSRMS), a simulation of the ISS Command and Control System (CCS), and a portion of the Portable Computer System (PCS) software necessary for MSS operations. These components all run under the CentOS4.5 Linux operating system. The JEMRMS simulation software includes real-time, HIL, dynamics, manipulator multi-body dynamics, and a moving object contact model with Tricks discrete time scheduling. The JEMRMS DST will be used as a functional proficiency and skills trainer for flight crews. The HTV Free Flyer Robotics Operations simulation software adds a functional simulation of HTV vehicle controllers, sensors, and data to the MSS simulation software. These components are intended to support HTV ISS visiting vehicle analysis and training. The scene generation software will use DOUG (Dynamic On-orbit Ubiquitous Graphics) to render the graphical scenes. DOUG runs on a laptop running the CentOS4.5 Linux operating system. DOUG is an Open GL-based 3D computer graphics rendering package. It uses pre-built three-dimensional models of on-orbit ISS and space shuttle systems elements, and provides realtime views of various station and shuttle configurations.
Simulation and the future of military medicine.
Leitch, Robert A; Moses, Gerald R; Magee, Harvey
2002-04-01
The U.S. military currently faces serious difficulties in training medical personnel in peacetime for the tasks of war. The military beneficiary population comprises fit young service men and women, their dependents, and retirees. Their peacetime care, although vital, does little to prepare military medical personnel for war. Medical commanders have instituted an array of training programs to compensate for this shortfall, but there remains a large gap between operational medical needs and training opportunities in peacetime. The military has begun to examine whether simulation can fill this gap. An array of commercial, off-the-shelf technologies are already being used with varying degrees of success, and major initiatives are under way in both academia and industry, supported by the military, to develop virtual reality products for combat medical training. Even as the military exploits emerging technology and begins to articulate a simulation strategy, there is a growing interest in civilian medicine in the potential for simulation to affect patient safety--how medical simulation might mitigate the injuries and deaths caused by medical errors--and how it might also improve the quality of medical education and training.
NASA Astrophysics Data System (ADS)
Lyu, Bo-Han; Wang, Chen; Tsai, Chun-Wei
2017-08-01
Jasper Display Corp. (JDC) offer high reflectivity, high resolution Liquid Crystal on Silicon - Spatial Light Modulator (LCoS-SLM) which include an associated controller ASIC and LabVIEW based modulation software. Based on this LCoS-SLM, also called Education Kit (EDK), we provide a training platform which includes a series of optical theory and experiments to university students. This EDK not only provides a LabVIEW based operation software to produce Computer Generated Holograms (CGH) to generate some basic diffraction image or holographic image, but also provides simulation software to verity the experiment results simultaneously. However, we believe that a robust LCoSSLM, operation software, simulation software, training system, and training course can help students to study the fundamental optics, wave optics, and Fourier optics more easily. Based on these fundamental knowledges, they could develop their unique skills and create their new innovations on the optoelectronic application in the future.
What's crucial in night vision goggle simulation?
NASA Astrophysics Data System (ADS)
Kooi, Frank L.; Toet, Alexander
2005-05-01
Training is required to correctly interpret NVG imagery. Training night operations with simulated intensified imagery has great potential. Compared to direct viewing with the naked eye, intensified imagery is relatively easy to simulate and the cost of real NVG training is high (logistics, risk, civilian sleep deprivation, pollution). On the surface NVG imagery appears to have a structure similar to daylight imagery. However, in actuality its characteristics differ significantly from those of daylight imagery. As a result, NVG imagery frequently induces visual illusions. To achieve realistic training, simulated NVG imagery should at least reproduce the essential visual limitations of real NVG imagery caused by reduced resolution, reduced contrast, limited field-of-view, the absence of color, and the systems sensitivity to nearby infrared radiation. It is particularly important that simulated NVG imagery represents essential NVG visual characteristics, such as the high reflection of chlorophyll and halos. Current real-time simulation software falls short for training purposes because of an incorrect representation of shadow effects. We argue that the development of shading and shadowing merits priority to close the gap between real and simulated NVG flight conditions. Visual conspicuity can be deployed as an efficient metric to measure the 'perceptual distance' between the real NVG and the simulated NVG image.
Policard, Florence
2014-06-01
The use of simulation as an educational tool is becoming more widespread in healthcare. Such training gathers doctors and nurses together, which is a rare opportunity in such a sector. The present research focuses on the contribution of inter-professional training to the development of collaborative skills when managing an emergency situation in the context of anesthesia or intensive care. From direct observations of post-simulation debriefing sessions and interviews held with learners in post graduate or in-service training, either in single or multi-professional groups, this study shows that these sessions, based on experiential learning and reflective practice, help to build a shared vision of the problem and of common operative patterns, supporting better communication and the "ability to work in a team".
Analysis of Braking Behavior of Train Drivers to Detect Unusual Driving
NASA Astrophysics Data System (ADS)
Marumo, Yoshitaka; Tsunashima, Hitoshi; Kojima, Takashi; Hasegawa, Yasushi
The safety devices for train systems are activated in emergency situations when a risk becomes obvious, and the emergency brake is applied. If such systems are faulty, the drivers' operating errors may cause immediate accidents. So it is necessary to evaluate potential risks by detecting improper driving behavior before overt risks appear. This study analyzes the driving behavior of train drivers using a train-driving simulator. We focus on braking behavior when approaching a station. Two methods for detecting unusual braking operation are examined by giving drivers mental calculation problems as a mental workload. The first is a method monitoring the driver's brake handle operation, and the second is a method measuring vehicle deceleration. These methods make it possible to detect unusual driving.
Kirkman, Matthew A; Muirhead, William; Sevdalis, Nick; Nandi, Dipankar
2015-01-01
Simulation is gaining increasing interest as a method of delivering high-quality, time-effective, and safe training to neurosurgical residents. However, most current simulators are purpose-built for simulation, being relatively expensive and inaccessible to many residents. The purpose of this study was to provide the first comprehensive validity assessment of ventriculostomy performance metrics from the Medtronic StealthStation S7 Surgical Navigation System, a neuronavigational tool widely used in the clinical setting, as a training tool for simulated ventriculostomy while concomitantly reporting on stress measures. A prospective study where participants performed 6 simulated ventriculostomy attempts on a model head with StealthStation-coregistered imaging. The performance measures included distance of the ventricular catheter tip to the foramen of Monro and presence of the catheter tip in the ventricle. Data on objective and self-reported stress and workload measures were also collected. The operating rooms of the National Hospital for Neurology and Neurosurgery, Queen Square, London. A total of 31 individuals with varying levels of prior ventriculostomy experience, varying in seniority from medical student to senior resident. Performance at simulated ventriculostomy improved significantly over subsequent attempts, irrespective of previous ventriculostomy experience. Performance improved whether or not the StealthStation display monitor was used for real-time visual feedback, but performance was optimal when it was. Further, performance was inversely correlated with both objective and self-reported measures of stress (traditionally referred to as concurrent validity). Stress and workload measures were well-correlated with each other, and they also correlated with technical performance. These initial data support the use of the StealthStation as a training tool for simulated ventriculostomy, providing a safe environment for repeated practice with immediate feedback. Although the potential implications are profound for neurosurgical education and training, further research following this proof-of-concept study is required on a larger scale for full validation and proof that training translates into improved long-term simulated and patient outcomes. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NY TBO Research: Integrated Demand Management (IDM): IDM Concept, Tools, and Training Package
NASA Technical Reports Server (NTRS)
Smith, Nancy
2016-01-01
A series of human-in-the-loop simulation sessions were conducted in the Airspace Operations Laboratory (AOL) to evaluate a new traffic management concept called Integrated Demand Management (IDM). The simulation explored how to address chronic equity, throughput and delay issues associated with New Yorks high-volume airports by operationally integrating three current and NextGen capabilities the Collaborative Trajectory Options Program (CTOP), Time-Based Flow Management (TBFM) and Required Time of Arrival (RTA) in order to better manage traffic demand within the National Air Traffic System. A package of presentation slides was developed to describe the concept, tools, and training materials used in the simulation sessions. The package will be used to outbrief our stakeholders by both presenting orally and disseminating of the materials via email.
Chan, Harley H L; Siewerdsen, Jeffrey H; Vescan, Allan; Daly, Michael J; Prisman, Eitan; Irish, Jonathan C
2015-01-01
The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques across a variety of otolaryngological sub-specialties suggests an emerging role for rapid prototyping technology in surgical education, procedure simulation, and clinical practice.
Chan, Harley H. L.; Siewerdsen, Jeffrey H.; Vescan, Allan; Daly, Michael J.; Prisman, Eitan; Irish, Jonathan C.
2015-01-01
The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques across a variety of otolaryngological sub-specialties suggests an emerging role for rapid prototyping technology in surgical education, procedure simulation, and clinical practice. PMID:26331717
The Aircraft Simulation Role in Improving Flight Safety Through Control Room Training
NASA Technical Reports Server (NTRS)
Shy, Karla S.; Hageman, Jacob J.; Le, Jeanette H.; Sitz, Joel (Technical Monitor)
2002-01-01
NASA Dryden Flight Research Center uses its six-degrees-of-freedom (6-DOF) fixed-base simulations for mission control room training to improve flight safety and operations. This concept is applied to numerous flight projects such as the F-18 High Alpha Research Vehicle (HARV), the F-15 Intelligent Flight Control System (IFCS), the X-38 Actuator Control Test (XACT), and X-43A (Hyper-X). The Dryden 6-DOF simulations are typically used through various stages of a project, from design to ground tests. The roles of these simulations have expanded to support control room training, reinforcing flight safety by building control room staff proficiency. Real-time telemetry, radar, and video data are generated from flight vehicle simulation models. These data are used to drive the control room displays. Nominal static values are used to complete information where appropriate. Audio communication is also an integral part of training sessions. This simulation capability is used to train control room personnel and flight crew for nominal missions and emergency situations. Such training sessions are also opportunities to refine flight cards and control room display pages, exercise emergency procedures, and practice control room setup for the day of flight. This paper describes this technology as it is used in the X-43A and F-15 IFCS and XACT projects.
Ott, T; Schmidtmann, I; Limbach, T; Gottschling, P F; Buggenhagen, H; Kurz, S; Pestel, G
2016-11-01
Simulation-based training (SBT) has developed into an established method of medical training. Studies focusing on the education of medical students have used simulation as an evaluation tool for defined skills. A small number of studies provide evidence that SBT improves medical students' skills in the clinical setting. Moreover, they were strictly limited to a few areas, such as the diagnosis of heart murmurs or the correct application of cricoid pressure. Other studies could not prove adequate transferability from the skills gained in SBT to the patient site. Whether SBT has an effect on medical students' skills in anesthesiology in the clinical setting is controversial. To explore this issue, we designed a prospective, randomized, single-blind trial that was integrated into the undergraduate anesthesiology curriculum of our department during the second year of the clinical phase of medical school. This study intended to explore the effect of SBT on medical students within the mandatory undergraduate anesthesiology curriculum of our department in the operating room with respect to basic skills in anesthesiology. After obtaining ethical approval, the participating students of the third clinical semester were randomized into two groups: the SIM-OR group was trained by a 225 min long SBT in basic skills in anesthesiology before attending the operating room (OR) apprenticeship. The OR-SIM group was trained after the operating room apprenticeship by SBT. During SBT the students were trained in five clinical skills detailed below. Further, two clinical scenarios were simulated using a full-scale simulator. The students had to prepare the patient and perform induction of anesthesia, including bag-mask ventilation after induction in scenario 1 and rapid sequence induction in scenario 2. Using the five-point Likert scale, five defined skills were evaluated at defined time points during the study period. 1) application of the safety checklist, 2) application of basic patient monitoring, 3) establishment of intravenous access, 4) bag-and-mask ventilation, and 5) adjustment of ventilatory parameters after the patients' airways were secured. A cumulative score of 5 points was defined as the best and a cumulative score of 25 as the worst rating for a defined time point. The primary endpoint was the cumulative score after day 1 in the operating room apprenticeship and the difference in cumulative scores from days 1 to 4. Our hypothesis was that the SIM-OR group would achieve a better score after day 1 in the operating room apprenticeship and would gain a larger increase in score from day 1 to day 4 than the OR-SIM group. 73 students were allocated to the OR-SIM group and 70 students to the SIM-OR group. There was no significant difference between the two groups after day 1 of the operating room apprenticeship and no difference in increase of the cumulative score from day 1 to day 4 (median of cumulative score on day 1: 'SIM-OR' 11.2 points vs. 'OR-SIM' 14.6 points; p = 0.067; median of difference from day 1 to day 4: 'SIM-OR' -3.7 vs. 'OR-SIM' -6.4; p = 0.110). With the methods applied, this study could not prove that 225 min of SBT before the operating room apprenticeship increased the medical students' clinical skills as evaluated in the operating room. Secondary endpoints indicate that medical students have better clinical skills at the end of the entire curriculum when they have been trained through SBT before the operating room apprenticeship. However, the authors believe that simulator training has a positive impact on students' acquisition of procedural and patient safety skills, even if the methods applied in this study may not mirror this aspect sufficiently.
Training Capability Data for Dismounted Soldier Training System
2015-06-01
Simulators (2004) An Assessment of V-IMTS (2004) Evaluation of the Virtual Squad Training System (2007) Perceived Usefulness of TTES : A Second Look (1995...Center-White Sands Missile Range, V-IMTS – Virtual Integrated MOUT ( Military Operation in Urban Terrain) Training System, VIRTSIM – Virtual... military grid reference system coordinate. There currently is no indication or capability to determine the distance traveled (e.g., pace count
Oestergaard, Jeanett; Bjerrum, Flemming; Maagaard, Mathilde; Winkel, Per; Larsen, Christian Rifbjerg; Ringsted, Charlotte; Gluud, Christian; Grantcharov, Teodor; Ottesen, Bent; Soerensen, Jette Led
2012-02-28
Several studies have found a positive effect on the learning curve as well as the improvement of basic psychomotor skills in the operating room after virtual reality training. Despite this, the majority of surgical and gynecological departments encounter hurdles when implementing this form of training. This is mainly due to lack of knowledge concerning the time and human resources needed to train novice surgeons to an adequate level. The purpose of this trial is to investigate the impact of instructor feedback regarding time, repetitions and self-perception when training complex operational tasks on a virtual reality simulator. The study population consists of medical students on their 4th to 6th year without prior laparoscopic experience. The study is conducted in a skills laboratory at a centralized university hospital. Based on a sample size estimation 98 participants will be randomized to an intervention group or a control group. Both groups have to achieve a predefined proficiency level when conducting a laparoscopic salpingectomy using a surgical virtual reality simulator. The intervention group receives standardized instructor feedback of 10 to 12 min a maximum of three times. The control group receives no instructor feedback. Both groups receive the automated feedback generated by the virtual reality simulator. The study follows the CONSORT Statement for randomized trials. Main outcome measures are time and repetitions to reach the predefined proficiency level on the simulator. We include focus on potential sex differences, computer gaming experience and self-perception. The findings will contribute to a better understanding of optimal training methods in surgical education. NCT01497782.
Using simulation to train orthopaedic trainees in non-technical skills: A pilot study.
Heaton, Samuel R; Little, Zoe; Akhtar, Kash; Ramachandran, Manoj; Lee, Joshua
2016-08-18
To enhance non-technical skills and to analyse participant's experience of a course tailored for orthopaedic surgeons. A Delphi technique was used to develop a course in human factors specific to orthopaedic residents. Twenty-six residents (six per course) participated in total with seven course facilitators all trained in Crisis Resource Management providing structured feedback. Six scenarios recreated challenging real-life situations using high-fidelity mannequins and simulated patients. Environments included a simulated operating suite, clinic room and ward setting. All were undertaken in a purpose built simulation suite utilising actors, mock operating rooms, mock clinical rooms and a high fidelity adult patient simulator organised through a simulation control room. Participants completed a 5-point Likert scale questionnaire (strongly disagree to strongly agree) before and after the course. This assessed their understanding of non-technical skills, scenario validity, relevance to orthopaedic training and predicted impact of the course on future practice. A course evaluation questionnaire was also completed to assess participants' feedback on the value and quality of the course itself. Twenty-six orthopaedic residents participated (24 male, 2 female; post-graduation 5-10 years), mean year of residency program 2.6 out of 6 years required in the United Kingdom. Pre-course questionnaires showed that while the majority of candidates recognised the importance of non-technical (NT) skills in orthopaedic training they demonstrated poor understanding of non-technical skills and their role. This improved significantly after the course (Likert score 3.0-4.2) and the perceived importance of these skills was reported as good or very good in 100%. The course was reported as enjoyable and provided an unthreatening learning environment with the candidates placing particular value on the learning opportunity provided by reflecting on their performance. All agreed that the course achieved its intended aims with realistic simulation scenarios. Participants believed patient care, patient safety and team working would all improve with further human factors training (4.4-4.6). and felt that NT skills learnt through simulation-based training should become an integral component of their training program. Participants demonstrated improved understanding of non-technical performance, recognised its relevance to patient safety and expressed a desire for its integration in training.
14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).
Code of Federal Regulations, 2012 CFR
2012-01-01
... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...
14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).
Code of Federal Regulations, 2013 CFR
2013-01-01
... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...
14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).
Code of Federal Regulations, 2011 CFR
2011-01-01
... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...
14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).
Code of Federal Regulations, 2010 CFR
2010-01-01
... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...
Systems Engineering Model and Training Application for Desktop Environment
NASA Technical Reports Server (NTRS)
May, Jeffrey T.
2010-01-01
Provide a graphical user interface based simulator for desktop training, operations and procedure development and system reference. This simulator allows for engineers to train and further understand the dynamics of their system from their local desktops. It allows the users to train and evaluate their system at a pace and skill level based on the user's competency and from a perspective based on the user's need. The simulator will not require any special resources to execute and should generally be available for use. The interface is based on a concept of presenting the model of the system in ways that best suits the user's application or training needs. The three levels of views are Component View, the System View (overall system), and the Console View (monitor). These views are portals into a single model, so changing the model from one view or from a model manager Graphical User Interface will be reflected on all other views.
Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1995-01-01
A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.
The future of simulation technologies for complex cardiovascular procedures.
Cates, Christopher U; Gallagher, Anthony G
2012-09-01
Changing work practices and the evolution of more complex interventions in cardiovascular medicine are forcing a paradigm shift in the way doctors are trained. Implantable cardioverter defibrillator (ICD), transcatheter aortic valve implantation (TAVI), carotid artery stenting (CAS), and acute stroke intervention procedures are forcing these changes at a faster pace than in other disciplines. As a consequence, cardiovascular medicine has had to develop a sophisticated understanding of precisely what is meant by 'training' and 'skill'. An evolving conclusion is that procedure training on a virtual reality (VR) simulator presents a viable current solution. These simulations should characterize the important performance characteristics of procedural skill that have metrics derived and defined from, and then benchmarked to experienced operators (i.e. level of proficiency). Simulation training is optimal with metric-based feedback, particularly formative trainee error assessments, proximate to their performance. In prospective, randomized studies, learners who trained to a benchmarked proficiency level on the simulator performed significantly better than learners who were traditionally trained. In addition, cardiovascular medicine now has available the most sophisticated virtual reality simulators in medicine and these have been used for the roll-out of interventions such as CAS in the USA and globally with cardiovascular society and industry partnered training programmes. The Food and Drug Administration has advocated the use of VR simulation as part of the approval of new devices and the American Board of Internal Medicine has adopted simulation as part of its maintenance of certification. Simulation is rapidly becoming a mainstay of cardiovascular education, training, certification, and the safe adoption of new technology. If cardiovascular medicine is to continue to lead in the adoption and integration of simulation, then, it must take a proactive position in the development of metric-based simulation curriculum, adoption of proficiency benchmarking definitions, and then resolve to commit resources so as to continue to lead this revolution in physician training.
Hamman, William R; Beaubien, Jeffrey M; Beaudin-Seiler, Beth M
2009-12-01
The aims of this research are to begin to understand health care teams in their operational environment, establish metrics of performance for these teams, and validate a series of scenarios in simulation that elicit team and technical skills. The focus is on defining the team model that will function in the operational environment in which health care professionals work. Simulations were performed across the United States in 70- to 1000-bed hospitals. Multidisciplinary health care teams analyzed more than 300 hours of videos of health care professionals performing simulations of team-based medical care in several different disciplines. Raters were trained to enhance inter-rater reliability. The study validated event sets that trigger team dynamics and established metrics for team-based care. Team skills were identified and modified using simulation scenarios that employed the event-set-design process. Specific skills (technical and team) were identified by criticality measurement and task analysis methodology. In situ simulation, which includes a purposeful and Socratic Method of debriefing, is a powerful intervention that can overcome inertia found in clinician behavior and latent environmental systems that present a challenge to quality and patient safety. In situ simulation can increase awareness of risks, personalize the risks, and encourage the reflection, effort, and attention needed to make changes to both behaviors and to systems.
Training simulator for retinal laser photocoagulation: a new approach for surgeons' apprenticeships
NASA Astrophysics Data System (ADS)
Dubois, Patrick; Meseure, Philippe; Peugnet, Frederic; Rouland, Jean-Francois
1998-06-01
Retinal laser photocoagulation is a current practice in many eye diseases therapy. Its mastering requires a specific training usually made on actual patients with some risks. The authors present a new device aimed to deliver a complete training separated from the therapeutic practice. This training simulator is built around the actual instrument to comply with the required realism. The instrumental functionalities of the device give the residents the same operating conditions as in the actual practice. The eye fundus visualization is simulated by virtual images, based on actual fundus pictures. They are computed at the rate of 10-12 frames/second according to the adjustments and manipulations of the 3-mirror lens made by the operator. All the pictures are combined in a fundus database planned to collect a wide variety of pathologies. The pedagogical functionalities are gathered in the user's interface. The two major guidelines of the developed software was to achieve an easy to use interface and to enforce no 'school dependent' rules of valuation. This new pedagogical instrument runs on PC micro-computers which allows a low- cost technology and could provide a practical training to retinal photocoagulation without the patient. A clinical validation of its pedagogical efficiency is submitted in another abstract.
Abrahamsen, Håkon B; Sollid, Stephen J M; Öhlund, Lennart S; Røislien, Jo; Bondevik, Gunnar Tschudi
2015-01-01
Background Human error and deficient non-technical skills (NTSs) among providers of ALS in helicopter emergency medical services (HEMS) is a threat to patient and operational safety. Skills can be improved through simulation-based training and assessment. Objective To document the current level of simulation-based training and assessment of seven generic NTSs in crew members in the Norwegian HEMS. Methods A cross-sectional survey, either electronic or paper-based, of all 207 physicians, HEMS crew members (HCMs) and pilots working in the civilian Norwegian HEMS (11 bases), between 8 May and 25 July 2012. Results The response rate was 82% (n=193). A large proportion of each of the professional groups lacked simulation-based training and assessment of their NTSs. Compared with pilots and HCMs, physicians undergo statistically significantly less frequent simulation-based training and assessment of their NTSs. Fifty out of 82 (61%) physicians were on call for more than 72 consecutive hours on a regular basis. Of these, 79% did not have any training in coping with fatigue. In contrast, 72 out of 73 (99%) pilots and HCMs were on call for more than 3 days in a row. Of these, 54% did not have any training in coping with fatigue. Conclusions Our study indicates a lack of simulation-based training and assessment. Pilots and HCMs train and are assessed more frequently than physicians. All professional groups are on call for extended hours, but receive limited training in how to cope with fatigue. PMID:25344577
Technical Performance Measures and Distributed-Simulation Training Systems
2000-01-01
and Salas (1995) indicate that “ free play ” training exercises Acquisition Review Quarterly—Winter 2000 24 “The use of both process measures to...performance change from training period to training period, whereas the alternative to “ free play ”—a structured exercise—was expensive to build and...semiautomated-force operators used their “ free play ” prerogative in the second run. Specifically, units typically train against a lesser able opposing force
Military simulation - Pushing the visual technology
NASA Astrophysics Data System (ADS)
Boyle, D.
1984-02-01
A full mission flight simulator has been developed for the U.S. Air Force's B-52 bomber crews which requires more computational capacity than is used aboard the Space Shuttle, employing a total of 14 computers capable of over 5 million operations/sec. The system encompasses a flight deck, in which the pilots train, an offensive station simulator, which is operated by the navigator and weaponry officer, and a defensive station simulator, operated by the electronic warfare (EW) officer and communications officer. Instructors control the computer-generated images simulating the external environment from three consoles corresponding to the three simulator units. In each simulated mission, the crews release bombs and air-launched cruise missiles, and fire short range attack missiles and the B-52 tail guns. The threats simulated include hostile aircraft, surface-to-air missiles, and antiaircraft artillery, together with EW activity.
Operator adaptation to changes in system reliability under adaptable automation.
Chavaillaz, Alain; Sauer, Juergen
2017-09-01
This experiment examined how operators coped with a change in system reliability between training and testing. Forty participants were trained for 3 h on a complex process control simulation modelling six levels of automation (LOA). In training, participants either experienced a high- (100%) or low-reliability system (50%). The impact of training experience on operator behaviour was examined during a 2.5 h testing session, in which participants either experienced a high- (100%) or low-reliability system (60%). The results showed that most operators did not often switch between LOA. Most chose an LOA that relieved them of most tasks but maintained their decision authority. Training experience did not have a strong impact on the outcome measures (e.g. performance, complacency). Low system reliability led to decreased performance and self-confidence. Furthermore, complacency was observed under high system reliability. Overall, the findings suggest benefits of adaptable automation because it accommodates different operator preferences for LOA. Practitioner Summary: The present research shows that operators can adapt to changes in system reliability between training and testing sessions. Furthermore, it provides evidence that each operator has his/her preferred automation level. Since this preference varies strongly between operators, adaptable automation seems to be suitable to accommodate these large differences.
Lutgendorf, Monica A; Spalding, Carmen; Drake, Elizabeth; Spence, Dennis; Heaton, Jason O; Morocco, Kristina V
2017-03-01
Postpartum hemorrhage is a common obstetric emergency affecting 3 to 5% of deliveries, with significant maternal morbidity and mortality. Effective management of postpartum hemorrhage requires strong teamwork and collaboration. We completed a multidisciplinary in situ postpartum hemorrhage simulation training exercise with structured team debriefing to evaluate hospital protocols, team performance, operational readiness, and real-time identification of system improvements. Our objective was to assess participant comfort with managing obstetric hemorrhage following our multidisciplinary in situ simulation training exercise. This was a quality improvement project that utilized a comprehensive multidisciplinary in situ postpartum hemorrhage simulation exercise. Participants from the Departments of Obstetrics and Gynecology, Anesthesia, Nursing, Pediatrics, and Transfusion Services completed the training exercise in 16 scenarios run over 2 days. The intervention was a high fidelity, multidisciplinary in situ simulation training to evaluate hospital protocols, team performance, operational readiness, and system improvements. Structured debriefing was conducted with the participants to discuss communication and team functioning. Our main outcome measure was participant self-reported comfort levels for managing postpartum hemorrhage before and after simulation training. A 5-point Likert scale (1 being very uncomfortable and 5 being very comfortable) was used to measure participant comfort. A paired t test was used to assess differences in participant responses before and after the simulation exercise. We also measured the time to prepare simulated blood products and followed the number of postpartum hemorrhage cases before and after the simulation exercise. We trained 113 health care professionals including obstetricians, midwives, residents, anesthesiologists, nurse anesthetists, nurses, and medical assistants. Participants reported a higher comfort level in managing obstetric emergencies and postpartum hemorrhage after simulation training compared to before training. For managing hypertensive emergencies, the post-training mean score was 4.14 compared to a pretraining mean score of 3.88 (p = 0.01, 95% confidence interval [CI] = 0.06-0.47). For shoulder dystocia, the post-training mean score was 4.29 compared to a pretraining mean score of 3.66 (p = 0.001, 95% CI = 0.41-0.88). For postpartum hemorrhage, the post-training mean score was 4.35 compared to pretraining mean score of 3.86 (p = 0.001, 95% CI = 0.36-0.63). We also observed a decrease in the time to prepare simulated blood products over the course of the simulation, and a decreasing trend of postpartum hemorrhage cases, which continued after initiating the postpartum hemorrhage simulation exercise. Postpartum hemorrhage remains a leading cause of maternal morbidity and mortality in the United States. Comprehensive hemorrhage protocols have been shown to improve outcomes related to postpartum hemorrhage, and a critical component in these processes include communication, teamwork, and team-based practice/simulation. As medicine becomes increasingly complex, the ability to practice in a safe setting is ever more critical, especially for low-volume, high-stakes events such as postpartum hemorrhage. These events require well-functioning teams and systems coupled with rapid assessment and appropriate clinical action to ensure best patient outcomes. We have shown that a multidisciplinary in situ simulation exercise improves self-reported comfort with managing obstetric emergencies, and is a safe and effective way to practice skills and improve systems processes in the health care setting. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Burden, Christy; Appleyard, Tracy-Louise; Angouri, Jo; Draycott, Timothy J; McDermott, Leanne; Fox, Robert
2013-10-01
Virtual-reality (VR) training has been demonstrated to improve laparoscopic surgical skills in the operating theatre. The incorporation of laparoscopic VR simulation into surgical training in gynaecology remains a significant educational challenge. We undertook a pilot study to assess the feasibility of the implementation of a laparoscopic VR simulation programme into a single unit. An observational study with qualitative analysis of semi-structured group interviews. Trainees in gynaecology (n=9) were scheduled to undertake a pre-validated structured training programme on a laparoscopic VR simulator (LapSim(®)) over six months. The main outcome measure was the trainees' progress through the training modules in six months. Trainees' perceptions of the feasibility and barriers to the implementation of laparoscopic VR training were assessed in focus groups after training. Sixty-six percent of participants completed six of ten modules. Overall, feedback from the focus groups was positive; trainees felt training improved their dexterity, hand-eye co-ordination and confidence in theatre. Negative aspects included lack of haptic feedback, and facility for laparoscopic port placement training. Time restriction emerged as the main barrier to training. Despite positive perceptions of training, no trainee completed more than two-thirds of the modules of a self-directed laparoscopic VR training programme. Suggested improvements to the integration of future laparoscopic VR training include an additional theoretical component with a fuller understanding of benefits of VR training, and scheduled supervision. Ultimately, the success of a laparoscopic VR simulation training programme might only be improved if it is a mandatory component of the curriculum, together with dedicated time for training. Future multi-centred implementation studies of validated laparoscopic VR curricula are required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
DeCarlo, Jeffrey
2010-01-01
Air travel is expected to grow by a factor of 2 to 3 times by 2025 and people working in the aviation system, including airport personnel, pilots, and air traffic controllers, must be able to safely and efficiently operate in this arena ("NextGen"). In response to the personnel training and education requirements concomitant with "NextGen,"…
POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - U.S. COAST GUARD AVIATION TRAINING CENTER - MOBILE, AL
An assessment of pollution prevention opportunities at the U.S. Coast Guard Aviation Training Center in Mobile, AL, identified waste reduction opportunities in five major processing areas: flight simulator operation, aircraft maintenance, aircraft fueling, aircraft washing, and...
NASA Technical Reports Server (NTRS)
Demin, L. S.
1980-01-01
The necessity for the cosmonaut to receive broad training in many fields in order to carry out his multifaceted work is discussed. The work includes: scientific research, engineering, operator's work, participation in technical commissions and councils, training on simulators, and the study of technology and sports.
Development and Utility of a Piloted Flight Simulator for Icing Effects Training
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; Ranaudo, Richard J.; Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.
2003-01-01
A piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD), which uses low cost desktop components and a generic cockpit replication is being developed. The purpose of this device is to demonstrate the effectiveness of its use for training pilots to recognize and recover from aircraft handling anomalies that result from airframe ice formations. High-fidelity flight simulation models for various baseline (non-iced) and iced configurations were developed from wind tunnel tests of a subscale DeHavilland DHC-6 Twin Otter aircraft model. These simulation models were validated with flight test data from the NASA Twin Otter Icing Research Aircraft, which included the effects of ice on wing and tail stall characteristics. These simulation models are being implemented into an ICEFTD that will provide representative aircraft characteristics due to airframe icing. Scenario-based exercises are being constructed to give an operational-flavor to the simulation. Training pilots will learn to recognize iced aircraft characteristics from the baseline, and will practice and apply appropriate recovery procedures to a handling event.
Frame-of-reference training for simulation-based intraoperative communication assessment.
Gardner, Aimee K; Russo, Michael A; Jabbour, Ibrahim I; Kosemund, Matthew; Scott, Daniel J
2016-09-01
The purpose of this study was to examine the impact of frame-of-reference (FOR) training on assessments of intraoperative communication skills and identify areas of need to inform curricular efforts. Simulation instructors (M.D., Ph.D., Research Fellow, Simulation Technician) underwent a 2-hour FOR training session with the operating room communication instrument. They then independently rated communication skills of 19 PGY1s who participated in a team-based simulation. Residents completed self-assessments via video review of the scenario. Intraclass correlation coefficients were used to examine inter-rater reliability. Relationships between trained raters and resident scores were assessed with Pearson correlation coefficients and paired sample t tests. Inter-reliability after FOR training was .91. The correlation between trained rater scores and resident evaluations was nonsignificant. Residents significantly underestimated their intraoperative communication skills (P < .05). Use of names, closed loop communication, and sharing information with team members demonstrated consistently low ratings among all residents. These findings reveal that a number of individuals can be trained to reliably rate resident intraoperative communication performance and that residents tend to under-rate their communication skills. Copyright © 2016 Elsevier Inc. All rights reserved.
Virtual Laparoscopic Training System Based on VCH Model.
Tang, Jiangzhou; Xu, Lang; He, Longjun; Guan, Songluan; Ming, Xing; Liu, Qian
2017-04-01
Laparoscopy has been widely used to perform abdominal surgeries, as it is advantageous in that the patients experience lower post-surgical trauma, shorter convalescence, and less pain as compared to traditional surgery. Laparoscopic surgeries require precision; therefore, it is imperative to train surgeons to reduce the risk of operation. Laparoscopic simulators offer a highly realistic surgical environment by using virtual reality technology, and it can improve the training efficiency of laparoscopic surgery. This paper presents a virtual Laparoscopic surgery system. The proposed system utilizes the Visible Chinese Human (VCH) to construct the virtual models and simulates real-time deformation with both improved special mass-spring model and morph target animation. Meanwhile, an external device that integrates two five-degrees-of-freedom (5-DOF) manipulators was designed and made to interact with the virtual system. In addition, the proposed system provides a modular tool based on Unity3D to define the functions and features of instruments and organs, which could help users to build surgical training scenarios quickly. The proposed virtual laparoscopic training system offers two kinds of training mode, skills training and surgery training. In the skills training mode, the surgeons are mainly trained for basic operations, such as laparoscopic camera, needle, grasp, electric coagulation, and suturing. In the surgery-training mode, the surgeons can practice cholecystectomy and removal of hepatic cysts by guided or non-guided teaching.
Stefanidis, Dimitrios; Korndorffer, James R; Black, F William; Dunne, J Bruce; Sierra, Rafael; Touchard, Cheri L; Rice, David A; Markert, Ronald J; Kastl, Peter R; Scott, Daniel J
2006-08-01
Laparoscopic simulator training translates into improved operative performance. Proficiency-based curricula maximize efficiency by tailoring training to meet the needs of each individual; however, because rates of skill acquisition vary widely, such curricula may be difficult to implement. We hypothesized that psychomotor testing would predict baseline performance and training duration in a proficiency-based laparoscopic simulator curriculum. Residents (R1, n = 20) were enrolled in an IRB-approved prospective study at the beginning of the academic year. All completed the following: a background information survey, a battery of 12 innate ability measures (5 motor, and 7 visual-spatial), and baseline testing on 3 validated simulators (5 videotrainer [VT] tasks, 12 virtual reality [minimally invasive surgical trainer-virtual reality, MIST-VR] tasks, and 2 laparoscopic camera navigation [LCN] tasks). Participants trained to proficiency, and training duration and number of repetitions were recorded. Baseline test scores were correlated to skill acquisition rate. Cutoff scores for each predictive test were calculated based on a receiver operator curve, and their sensitivity and specificity were determined in identifying slow learners. Only the Cards Rotation test correlated with baseline simulator ability on VT and LCN. Curriculum implementation required 347 man-hours (6-person team) and 795,000 dollars of capital equipment. With an attendance rate of 75%, 19 of 20 residents (95%) completed the curriculum by the end of the academic year. To complete training, a median of 12 hours (range, 5.5-21), and 325 repetitions (range, 171-782) were required. Simulator score improvement was 50%. Training duration and repetitions correlated with prior video game and billiard exposure, grooved pegboard, finger tap, map planning, Rey Figure Immediate Recall score, and baseline performance on VT and LCN. The map planning cutoff score proved most specific in identifying slow learners. Proficiency-based laparoscopic simulator training provides improvement in performance and can be effectively implemented as a routine part of resident education, but may require significant resources. Although psychomotor testing may be of limited value in the prediction of baseline laparoscopic performance, its importance may lie in the prediction of the rapidity of skill acquisition. These tests may be useful in optimizing curricular design by allowing the tailoring of training to individual needs.
Using the mind as a simulator: a randomized controlled trial of mental training.
Eldred-Evans, David; Grange, Philippe; Cheang, Adrian; Yamamoto, Hidekazu; Ayis, Salma; Mulla, Mubashir; Immenroth, Marc; Sharma, Davendra; Reedy, Gabriel
2013-01-01
Laparoscopic simulators have been introduced as safe and effective methods of developing basic skills. Mental training is a novel training method likened to using the mind as a simulator to mentally rehearse the movements of a task or operation. It is widely used by professional athletes and musicians and has been suggested as a technique that could be used by surgical trainees. The purpose of this study was to assess the use of mental training in developing basic laparoscopic skills in novices. Sixty-four medical students without laparoscopic experience were randomized into 4 groups. The first 3 groups were trained to cut a circle on a box trainer. Group 1 received no additional training (BT), Group 2 received additional virtual reality training (BT + VRS), and Group 3 received additional mental training (BT + MT). The fourth group was trained on a virtual reality simulator with additional mental training (box-free). The following 4 assessment criterias: time, accuracy, precision and overall performance were measured on both the box-trainer and virtual simulator. The mental training group (BT + MT) demonstrated improved laparoscopic skills over both assessments. The improvement in skills in the VRS group (BT + VRS) was limited to VRS assessment and not observed in the box assessment. The fourth group (box-free) had the worst performance on both methods of assessment. The addition of mental training led to improved laparoscopic skills development. It is a flexible technique and has the potential to challenge VRS as a more cost-effective training method associated with lower capital investment. Given the benefits of mental training with further research, it could be considered for inclusion in training curricula. Copyright © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Mitchell, K Blake; Gugerty, Leo; Muth, Eric
2008-04-01
This study examined the effect of three types of brief training on the use of automatic external defibrillators (AEDs) by 43 lay users. Because AEDs were recently approved for home use, brief training for nonprofessional users needs investigation. During training, the exposure training group read an article about AEDs that provided no information on how to operate them; the low-training group inspected the AED and read the operating instructions in the paper-based manual but was not allowed to use the device; and the high-training group watched a training video and performed a mock resuscitation using the AED but no manikin. All participants returned 2 weeks later and performed a surprise simulated AED resuscitation on a manikin. Most participants in each training group met criteria of minimally acceptable performance during the simulated manikin resuscitation, as measured by time to first shock, pad placement accuracy, and safety check performance. All participants who committed errors were able to successfully recover from them to complete the resuscitation. Compared with exposure training, the low and high training had a beneficial effect on time to first shock and errors. Untrained users were able to adequately use this AED, demonstrating walk-up-and-use usability, but additional brief training improved user performance. This study demonstrated the importance of providing high-quality but brief training for home AED users. In conjunction with other findings, the current study helps demonstrate the need for well-designed training for consumer medical devices.
Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F
2018-05-08
Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.
Modeling of Aerodynamic Force Acting in Tunnel for Analysis of Riding Comfort in a Train
NASA Astrophysics Data System (ADS)
Kikko, Satoshi; Tanifuji, Katsuya; Sakanoue, Kei; Nanba, Kouichiro
In this paper, we aimed to model the aerodynamic force that acts on a train running at high speed in a tunnel. An analytical model of the aerodynamic force is developed from pressure data measured on car-body sides of a test train running at the maximum revenue operation speed. The simulation of an 8-car train running while being subjected to the modeled aerodynamic force gives the following results. The simulated car-body vibration corresponds to the actual vibration both qualitatively and quantitatively for the cars at the rear of the train. The separation of the airflow at the tail-end of the train increases the yawing vibration of the tail-end car while it has little effect on the car-body vibration of the adjoining car. Also, the effect of the moving velocity of the aerodynamic force on the car-body vibration is clarified that the simulation under the assumption of a stationary aerodynamic force can markedly increase the car-body vibration.
Computer simulation of on-orbit manned maneuvering unit operations
NASA Technical Reports Server (NTRS)
Stuart, G. M.; Garcia, K. D.
1986-01-01
Simulation of spacecraft on-orbit operations is discussed in reference to Martin Marietta's Space Operations Simulation laboratory's use of computer software models to drive a six-degree-of-freedom moving base carriage and two target gimbal systems. In particular, key simulation issues and related computer software models associated with providing real-time, man-in-the-loop simulations of the Manned Maneuvering Unit (MMU) are addressed with special attention given to how effectively these models and motion systems simulate the MMU's actual on-orbit operations. The weightless effects of the space environment require the development of entirely new devices for locomotion. Since the access to space is very limited, it is necessary to design, build, and test these new devices within the physical constraints of earth using simulators. The simulation method that is discussed here is the technique of using computer software models to drive a Moving Base Carriage (MBC) that is capable of providing simultaneous six-degree-of-freedom motions. This method, utilized at Martin Marietta's Space Operations Simulation (SOS) laboratory, provides the ability to simulate the operation of manned spacecraft, provides the pilot with proper three-dimensional visual cues, and allows training of on-orbit operations. The purpose here is to discuss significant MMU simulation issues, the related models that were developed in response to these issues and how effectively these models simulate the MMU's actual on-orbiter operations.
NASA/ESA CV-990 spacelab simulation
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.
1976-01-01
Simplified techniques were applied to conduct an extensive spacelab simulation using the airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy. The mission was successful and provided extensive data relevant to spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for spacelab experiment operators; and schedule requirements to prepare for such a spacelab mission.
SOFIA tracking image simulation
NASA Astrophysics Data System (ADS)
Taylor, Charles R.; Gross, Michael A. K.
2016-09-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) tracking camera simulator is a component of the Telescope Assembly Simulator (TASim). TASim is a software simulation of the telescope optics, mounting, and control software. Currently in its fifth major version, TASim is relied upon for telescope operator training, mission planning and rehearsal, and mission control and science instrument software development and testing. TASim has recently been extended for hardware-in-the-loop operation in support of telescope and camera hardware development and control and tracking software improvements. All three SOFIA optical tracking cameras are simulated, including the Focal Plane Imager (FPI), which has recently been upgraded to the status of a science instrument that can be used on its own or in parallel with one of the seven infrared science instruments. The simulation includes tracking camera image simulation of starfields based on the UCAC4 catalog at real-time rates of 4-20 frames per second. For its role in training and planning, it is important for the tracker image simulation to provide images with a realistic appearance and response to changes in operating parameters. For its role in tracker software improvements, it is vital to have realistic signal and noise levels and precise star positions. The design of the software simulation for precise subpixel starfield rendering (including radial distortion), realistic point-spread function as a function of focus, tilt, and collimation, and streaking due to telescope motion will be described. The calibration of the simulation for light sensitivity, dark and bias signal, and noise will also be presented
A review of haptic simulator for oral and maxillofacial surgery based on virtual reality.
Chen, Xiaojun; Hu, Junlei
2018-06-01
Traditional medical training in oral and maxillofacial surgery (OMFS) may be limited by its low efficiency and high price due to the shortage of cadaver resources. With the combination of visual rendering and feedback force, surgery simulators become increasingly popular in hospitals and medical schools as an alternative to the traditional training. Areas covered: The major goal of this review is to provide a comprehensive reference source of current and future developments of haptic OMFS simulators based on virtual reality (VR) for relevant researchers. Expert commentary: Visual rendering, haptic rendering, tissue deformation, and evaluation are key components of haptic surgery simulator based on VR. Compared with traditional medical training, virtual and tactical fusion of virtual environment in surgery simulator enables considerably vivid sensation, and the operators have more opportunities to practice surgical skills and receive objective evaluation as reference.
Assessing anesthesiology residents' out-of-the-operating-room (OOOR) emergent airway management.
Rochlen, Lauryn R; Housey, Michelle; Gannon, Ian; Mitchell, Shannon; Rooney, Deborah M; Tait, Alan R; Engoren, Milo
2017-07-15
At many academic institutions, anesthesiology residents are responsible for managing emergent intubations outside of the operating room (OOOR), with complications estimated to be as high as 39%. In order to create an OOOR training curriculum, we evaluated residents' familiarity with the content and correct adherence to the American Society of Anesthesiologists' Difficult Airway Algorithm (ASA DAA). Residents completed a pre-simulation multiple-choice survey measuring their understanding and use of the DAA. Residents then managed an emergent, difficult OOOR intubation in the simulation center, where two trained reviewers assessed performance using checklists. Post-simulation, the residents completed a survey rating their behaviors during the simulation. The primary outcome was comprehension and adherence to the DAA as assessed by survey responses and behavior in the simulation. Sixty-three residents completed both surveys and the simulation. Post-survey responses indicated a shift toward decreased self-perceived familiarity with the DAA content compared to pre-survey responses. During the simulation, 22 (35%) residents were unsuccessful with intubation. Of these, 46% placed an LMA and 46% prepared for cricothyroidotomy. Nineteen residents did not attempt intubation. Of these, only 31% considered LMA placement, and 26% initiated cricothyroidotomy. Many anesthesiology residency training programs permit resident autonomy in managing emergent intubations OOOR. Residents self-reported familiarity with the content of and adherence to the DAA was higher than that observed during the simulation. Curriculum focused on comprehension of the DAA, as well as improving communication with higher-level physicians and specialists, may improve outcomes during OOORs.
Zhao, Yi Chen; Kennedy, Gregor; Yukawa, Kumiko; Pyman, Brian; O'Leary, Stephen
2011-03-01
A significant benefit of virtual reality (VR) simulation is the ability to provide self-direct learning for trainees. This study aims to determine whether there are any differences in performance of cadaver temporal bone dissections between novices who received traditional teaching methods and those who received unsupervised self-directed learning in a VR temporal bone simulator. Randomized blinded control trial. Royal Victorian Eye and Ear Hospital. Twenty novice trainees. After receiving an hour lecture, participants were randomized into 2 groups to receive an additional 2 hours of training via traditional teaching methods or self-directed learning using a VR simulator with automated guidance. The simulation environment presented participants with structured training tasks, which were accompanied by real-time computer-generated feedback as well as real operative videos and photos. After the training, trainees were asked to perform a cortical mastoidectomy on a cadaveric temporal bone. The dissection was videotaped and assessed by 3 otologists blinded to participants' teaching group. The overall performance scores of the simulator-based training group were significantly higher than those of the traditional training group (67% vs 29%; P < .001), with an intraclass correlation coefficient of 0.93, indicating excellent interrater reliability. Using other assessments of performance, such as injury size, the VR simulator-based training group also performed better than the traditional group. This study indicates that self-directed learning on VR simulators can be used to improve performance on cadaver dissection in novice trainees compared with traditional teaching methods alone.
2013-01-01
proposed acquisition of a variety of armoured vehicle simulators for training within the Canadian Forces. The Directorate of Land Requirements (DLR... armoured vehicle operations under the Land Vehicle Crew Training System (LVCTS) project. DLR has published a Letter of Interest (LOI) to solicit input...LVCTS project staff to discuss the intent of the project. Qualification Standards and Training Plans for several military armoured vehicle
Designing Assessments of Microworld Training for Combat Service Support Staff
2003-01-01
training for distribution management skills as a part of a larger project that entailed making changes to the current structure, content, and methods...of CSS training. Microworld models are small-scale simulations of organizations and operations. They are useful for training distribution management processes...pilot studies using a microworld model for U.S. Army Reserve (USAR) soldiers in Distribution Management Centers. The degree to which trainees learned
Real-time simulator for helicopter rotor wind-tunnel operations
NASA Technical Reports Server (NTRS)
Talbot, P. D.; Peterson, R. L.; Graham, D. R.
1986-01-01
This paper describes the elements and operation of a simulator that is being used to train operators of the Rotor Test Apparatus (RTA) in the large-scale 40- by 80-Foot Wind Tunnel at Ames Research Center. The simulator, named TUTOR (for Tunnel Utilization Trainer with Operating Rotor) duplicates the controls of the rotor and its dynamic behavior, as well as the wind-tunnel controls. The simulation software uses a preexisting blade-element model of a four-bladed rotor with flapping and lead-lag degrees of freedom. Equations were developed for all hardware and controls of the RTA and of the wind tunnel that are normally required to perform a wind-tunnel test of a helicopter rotor. The simulator hardware consists of consoles designed to have the same appearance and functions as those in the control room of the 40- by 80-Foot Wind Tunnel, allowing input from three operators who normally establish the required operating conditions during a test run. Normal operating procedures can be practiced, as well as simulated emergencies such as rotor power failure.
Weber, Erin L; Leland, Hyuma A; Azadgoli, Beina; Minneti, Michael; Carey, Joseph N
2017-08-01
Rehearsal is an essential part of mastering any technical skill. The efficacy of surgical rehearsal is currently limited by low fidelity simulation models. Fresh cadaver models, however, offer maximal surgical simulation. We hypothesize that preoperative surgical rehearsal using fresh tissue surgical simulation will improve resident confidence and serve as an important adjunct to current training methods. Preoperative rehearsal of surgical procedures was performed by plastic surgery residents using fresh cadavers in a simulated operative environment. Rehearsal was designed to mimic the clinical operation, complete with a surgical technician to assist. A retrospective, web-based survey was used to assess resident perception of pre- and post-procedure confidence, preparation, technique, speed, safety, and anatomical knowledge on a 5-point scale (1= not confident, 5= very confident). Twenty-six rehearsals were performed by 9 residents (PGY 1-7) an average of 4.7±2.1 days prior to performance of the scheduled operation. Surveys demonstrated a median pre-simulation confidence score of 2 and a post-rehearsal score of 4 (P<0.01). The perceived improvement in confidence and performance was greatest when simulation was performed within 3 days of the scheduled case. All residents felt that cadaveric simulation was better than standard preparation methods of self-directed reading or discussion with other surgeons. All residents believed that their technique, speed, safety, and anatomical knowledge improved as a result of simulation. Fresh tissue-based preoperative surgical rehearsal was effectively implemented in the residency program. Resident confidence and perception of technique improved. Survey results suggest that cadaveric simulation is beneficial for all levels of residents. We believe that implementation of preoperative surgical rehearsal is an effective adjunct to surgical training at all skill levels in the current environment of decreased work hours.
Gasco, Jaime; Patel, Achal; Luciano, Cristian; Holbrook, Thomas; Ortega-Barnett, Juan; Kuo, Yong-Fang; Rizzi, Silvio; Kania, Patrick; Banerjee, Pat; Roitberg, Ben Z
2013-12-01
To understand the perceived utility of a novel simulator to improve operative skill, eye-hand coordination, and depth perception. We used the ImmersiveTouch simulation platform (ImmersiveTouch, Inc., Chicago, Illinois, USA) in two U.S. Accreditation Council for Graduate Medical Education-accredited neurosurgical training programs: the University of Chicago and the University of Texas Medical Branch. A total of 54 trainees participated in the study, which consisted of 14 residents (group A), 20 senior medical students who were neurosurgery candidates (group B), and 20 junior medical students (group C). The participants performed a simulation task that established bipolar hemostasis in a virtual brain cavity and provided qualitative feedback regarding perceived benefits in eye-hand coordination, depth perception, and potential to assist in improving operating skills. The perceived ability of the simulator to positively influence skills judged by the three groups: group A, residents; group B, senior medical students; and group C, junior medical students was, respectively, 86%, 100%, and 100% for eye-hand coordination; 86%, 100%, and 95% for depth perception; and 79%, 100%, and 100% for surgical skills in the operating room. From all groups, 96.2% found the simulation somewhat or very useful to improve eye-hand coordination, and 94% considered it beneficial to improve depth perception and operating room skills. This simulation module may be suitable for resident training, as well as for the development of career interest and skill acquisition; however, validation for this type of simulation needs to be further developed. Copyright © 2013 Elsevier Inc. All rights reserved.
Greene, Samuel M; Batista, Victor S
2017-09-12
We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.
Virtual Reality Cerebral Aneurysm Clipping Simulation With Real-time Haptic Feedback
Alaraj, Ali; Luciano, Cristian J.; Bailey, Daniel P.; Elsenousi, Abdussalam; Roitberg, Ben Z.; Bernardo, Antonio; Banerjee, P. Pat; Charbel, Fady T.
2014-01-01
Background With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. Objective To develop and evaluate the usefulness of a new haptic-based virtual reality (VR) simulator in the training of neurosurgical residents. Methods A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the Immersive Touch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomography angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-D immersive VR environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from three residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Results Residents felt that the simulation would be useful in preparing for real-life surgery. About two thirds of the residents felt that the 3-D immersive anatomical details provided a very close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They believed the simulation is useful for preoperative surgical rehearsal and neurosurgical training. One third of the residents felt that the technology in its current form provided very realistic haptic feedback for aneurysm surgery. Conclusion Neurosurgical residents felt that the novel immersive VR simulator is helpful in their training especially since they do not get a chance to perform aneurysm clippings until very late in their residency programs. PMID:25599200
Implementation of team training in medical education in Denmark
Ostergaard, H; Ostergaard, D; Lippert, A
2004-01-01
In the field of medicine, team training aiming at improving team skills such as leadership, communication, co-operation, and followership at the individual and the team level seems to reduce risk of serious events and therefore increase patient safety. The preferred educational method for this type of training is simulation. Team training is not, however, used routinely in the hospital. In this paper, we describe a framework for the development of a team training course based on need assessment, learning objectives, educational methods including full-scale simulation and evaluations strategies. The use of this framework is illustrated by the present multiprofessional team training in advanced cardiac life support, trauma team training and neonatal resuscitation in Denmark. The challenges of addressing all aspects of team skills, the education of the facilitators, and establishment of evaluation strategies to document the effect of the different types of training on patient safety are discussed. PMID:15465962
Implementation of team training in medical education in Denmark.
Østergaard, H T; Østergaard, D; Lippert, A
2004-10-01
In the field of medicine, team training aiming at improving team skills such as leadership, communication, co-operation, and followership at the individual and the team level seems to reduce risk of serious events and therefore increase patient safety. The preferred educational method for this type of training is simulation. Team training is not, however, used routinely in the hospital. In this paper, we describe a framework for the development of a team training course based on need assessment, learning objectives, educational methods including full-scale simulation and evaluations strategies. The use of this framework is illustrated by the present multiprofessional team training in advanced cardiac life support, trauma team training and neonatal resuscitation in Denmark. The challenges of addressing all aspects of team skills, the education of the facilitators, and establishment of evaluation strategies to document the effect of the different types of training on patient safety are discussed.
Implementation of team training in medical education in Denmark.
Østergaard, H T; Østergaard, D; Lippert, A
2008-10-01
In the field of medicine, team training aiming at improving team skills such as leadership, communication, co-operation, and followership at the individual and the team level seems to reduce risk of serious events and therefore increase patient safety. The preferred educational method for this type of training is simulation. Team training is not, however, used routinely in the hospital. In this paper, we describe a framework for the development of a team training course based on need assessment, learning objectives, educational methods including full-scale simulation and evaluations strategies. The use of this framework is illustrated by the present multiprofessional team training in advanced cardiac life support, trauma team training and neonatal resuscitation in Denmark. The challenges of addressing all aspects of team skills, the education of the facilitators, and establishment of evaluation strategies to document the effect of the different types of training on patient safety are discussed.
Karamitsos, Theodoros D; Hudsmith, Lucy E; Selvanayagam, Joseph B; Neubauer, Stefan; Francis, Jane M
2007-01-01
Accurate and reproducible measurement of left ventricular (LV) mass and function is a significant strength of Cardiovascular Magnetic Resonance (CMR). Reproducibility and accuracy of these measurements is usually reported between experienced operators. However, an increasing number of inexperienced operators are now training in CMR and are involved in post-processing analysis. The aim of the study was to assess the interobserver variability of the manual planimetry of LV contours amongst two experienced and six inexperienced operators before and after a two months training period. Ten healthy normal volunteers (5 men, mean age 34+/-14 years) comprised the study population. LV volumes, mass, and ejection fraction were manually evaluated using Argus software (Siemens Medical Solutions, Erlangen, Germany) for each subject, once by the two experienced and twice by the six inexperienced operators. The mean values of experienced operators were considered the reference values. The agreement between operators was evaluated by means of Bland-Altman analysis. Training involved standardized data acquisition, simulated off-line analysis and mentoring. The trainee operators demonstrated improvement in the measurement of all the parameters compared to the experienced operators. The mean ejection fraction variability improved from 7.2% before training to 3.7% after training (p=0.03). The parameter in which the trainees showed the least improvement was LV mass (from 7.7% to 6.7% after training). The basal slice selection and contour definition were the main sources of errors. An intensive two month training period significantly improved the accuracy of LV functional measurements. Adequate training of new CMR operators is of paramount importance in our aim to maintain the accuracy and high reproducibility of CMR in LV function analysis.
2005-06-01
virtualisation of distributed computing and data resources such as processing, network bandwidth, and storage capacity, to create a single system...and Simulation (M&S) will be integrated into this heterogeneous SOA. M&S functionality will be available in the form of operational M&S services. One...documents defining net centric warfare, the use of M&S functionality is a common theme. Alberts and Hayes give a good overview on net centric operations
AN-CASE NET-CENTRIC modeling and simulation
NASA Astrophysics Data System (ADS)
Baskinger, Patricia J.; Chruscicki, Mary Carol; Turck, Kurt
2009-05-01
The objective of mission training exercises is to immerse the trainees into an environment that enables them to train like they would fight. The integration of modeling and simulation environments that can seamlessly leverage Live systems, and Virtual or Constructive models (LVC) as they are available offers a flexible and cost effective solution to extending the "war-gaming" environment to a realistic mission experience while evolving the development of the net-centric enterprise. From concept to full production, the impact of new capabilities on the infrastructure and concept of operations, can be assessed in the context of the enterprise, while also exposing them to the warfighter. Training is extended to tomorrow's tools, processes, and Tactics, Techniques and Procedures (TTPs). This paper addresses the challenges of a net-centric modeling and simulation environment that is capable of representing a net-centric enterprise. An overview of the Air Force Research Laboratory's (AFRL) Airborne Networking Component Architecture Simulation Environment (AN-CASE) is provide as well as a discussion on how it is being used to assess technologies for the purpose of experimenting with new infrastructure mechanisms that enhance the scalability and reliability of the distributed mission operations environment.
Faulkner, Austin R; Bourgeois, Austin C; Bradley, Yong C; Hudson, Kathleen B; Heidel, R Eric; Pasciak, Alexander S
2015-05-01
Fluoroscopically guided lumbar puncture (FGLP) is a commonly performed procedure with increased success rates relative to bedside technique. However, FGLP also exposes both patient and staff to ionizing radiation. The purpose of this study was to determine if the use of a simulation-based FGLP training program using an original, inexpensive lumbar spine phantom could improve operator confidence and efficiency, while also reducing patient dose. A didactic and simulation-based FGLP curriculum was designed, including a 1-hour lecture and hands-on training with a lumbar spine phantom prototype developed at our institution. Six incoming post-graduate year 2 (PGY-2) radiology residents completed a short survey before taking the course, and each resident practiced 20 simulated FGLPs using the phantom before their first clinical procedure. Data from the 114 lumbar punctures (LPs) performed by the six trained residents (prospective cohort) were compared to data from 514 LPs performed by 17 residents who did not receive simulation-based training (retrospective cohort). Fluoroscopy time (FT), FGLP success rate, and indication were compared. There was a statistically significant reduction in average FT for the 114 procedures performed by the prospective study cohort compared to the 514 procedures performed by the retrospective cohort. This held true for all procedures in aggregate, LPs for myelography, and all procedures performed for a diagnostic indication. Aggregate FT for the prospective group (0.87 ± 0.68 minutes) was significantly lower compared to the retrospective group (1.09 ± 0.65 minutes) and resulted in a 25% reduction in average FT (P = .002). There was no statistically significant difference in the number of failed FGLPs between the two groups. Our simulation-based FGLP curriculum resulted in improved operator confidence and reduced FT. These changes suggest that resident procedure efficiency was improved, whereas patient dose was reduced. The FGLP training program was implemented by radiology residents and required a minimal investment of time and resources. The LP spine phantom used during training was inexpensive, durable, and effective. In addition, the phantom is compatible with multiple modalities including fluoroscopy, computed tomography, and ultrasound and could be easily adapted to other applications such as facet injections or joint arthrograms. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
An Integrated Design and Development System for Graphics Simulation.
ERIC Educational Resources Information Center
Richardson, J. Jeffrey
In the training of maintenance and operations technicians, three enhancements to a basic, straightforward, fixed-sequence simulation system can be useful. The primary advantage of the resultant system is that the principal object of simulation is the task to be performed, which includes both the planning knowledge and the equipment actions…
Learning in a Simulation-OT in Heart Surgery and the Challenges of the Scientification of Work
ERIC Educational Resources Information Center
Langemeyer, Ines
2014-01-01
Enhancing competency and collaboration has become a salient topic of the professional debate on medical safety issues. The advantages of simulation-based training scenarios for team communication, routines and critical work procedures especially in operation theatres have been vigorously discussed. However, the literature on simulation-based…
Lo, Julia C; Pluyter, Kari R; Meijer, Sebastiaan A
2016-02-01
The aim of this study was to examine individual markers of resilience and obtain quantitative insights into the understanding and the implications of variation and expertise levels in train traffic operators' goals and strategic mental models and their impact on performance. The Dutch railways are one of the world's most heavy utilized railway networks and have been identified to be weak in system and organizational resilience. Twenty-two train traffic controllers enacted two scenarios in a human-in-the-loop simulator. Their experience, goals, strategic mental models, and performance were assessed through questionnaires and simulator logs. Goals were operationalized through performance indicators and strategic mental models through train completion strategies. A variation was found between operators for both self-reported primary performance indicators and completion strategies. Further, the primary goal of only 14% of the operators reflected the primary organizational goal (i.e., arrival punctuality). An incongruence was also found between train traffic controllers' self-reported performance indicators and objective performance in a more disrupted condition. The level of experience tends to affect performance differently. There is a gap between primary organizational goals and preferred individual goals. Further, the relative strong diversity in primary operator goals and strategic mental models indicates weak resilience at the individual level. With recent and upcoming large-scale changes throughout the sociotechnical space of the railway infrastructure organization, the findings are useful to facilitate future railway traffic control and the development of a resilient system. © 2015, Human Factors and Ergonomics Society.
Study of Braking Operations Using a Locomotive Simulator
DOT National Transportation Integrated Search
1994-03-01
The Volpe Center is currently supporting the Federal Railroad Administration in developing revisions to the safety standards for train air brakes. As part of the program, one of the tasks was to evaluate the effects certain operating parameters have ...
Ground-vehicle operator training using a low-cost simulator
DOT National Transportation Integrated Search
2006-05-01
Pilots, controllers, and ground-vehicle operators all have an important role in runway safety. Their actions, either individually or collectively can cause or avert a runway incursion. The roles and responsibilities of pilots and controllers in this ...
14 CFR 135.335 - Approval of aircraft simulators and other training devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD... following requirements: (1) It must be specifically approved for— (i) The certificate holder; and (ii) The..., functional, and other character- istics that are required for approval. (3) Additionally, for aircraft...
Sauer, Juergen; Chavaillaz, Alain; Wastell, David
2016-06-01
This work examined the effects of operators' exposure to various types of automation failures in training. Forty-five participants were trained for 3.5 h on a simulated process control environment. During training, participants either experienced a fully reliable, automatic fault repair facility (i.e. faults detected and correctly diagnosed), a misdiagnosis-prone one (i.e. faults detected but not correctly diagnosed) or a miss-prone one (i.e. faults not detected). One week after training, participants were tested for 3 h, experiencing two types of automation failures (misdiagnosis, miss). The results showed that automation bias was very high when operators trained on miss-prone automation encountered a failure of the diagnostic system. Operator errors resulting from automation bias were much higher when automation misdiagnosed a fault than when it missed one. Differences in trust levels that were instilled by the different training experiences disappeared during the testing session. Practitioner Summary: The experience of automation failures during training has some consequences. A greater potential for operator errors may be expected when an automatic system failed to diagnose a fault than when it failed to detect one.
Effect of train vibration on settlement of soil: A numerical analysis
NASA Astrophysics Data System (ADS)
Tiong, Kah-Yong; Ling, Felix Ngee-Leh; Talib, Zaihasra Abu
2017-10-01
The drastic development of transit system caused the influence of ground-borne vibrations induced by train on ground settlement became concern problem nowadays. The purpose of this study is to investigate soil settlement caused by train vibration. To facilitate this study, computer simulation of soil dynamic response using commercial finite element package - PLAXIS 2D was performed to simulate track-subgrade system together with dynamic train load under three different conditions. The results of simulation analysis established the facts that the soil deformation increased with raising in water level. This phenomenon happens because the increasing water level not only induced greater excess pore water pressure but also reduced stiffness of soil. Furthermore, the simulation analysis also deduced that the soil settlement was reduced by placing material with high stiffness between the subgrade and the ballast layer since material with high stiffness was able to dissipate energy efficiently due to its high bearing capacity, thus protecting the subgrade from deteriorating. The simulation analysis result also showed that the soil dynamic response increased with the increase in the speed of train and a noticeable amplification in soil deformation occurred as the train speed approaches the Rayleigh wave velocity of the track subgrade system. This is due to the fact that dynamic train load depend on both the self-weight of the train and the dynamic component due to inertial effects associated with the train speed. Thus, controlling the train speeds under critical velocity of track-subgrade system is able to ensure the safety of train operation as it prevents track-ground resonance and dramatic ground.
WEST-3 wind turbine simulator development. Volume 2: Verification
NASA Technical Reports Server (NTRS)
Sridhar, S.
1985-01-01
The details of a study to validate WEST-3, a new time wind turbine simulator developed by Paragib Pacific Inc., are presented in this report. For the validation, the MOD-0 wind turbine was simulated on WEST-3. The simulation results were compared with those obtained from previous MOD-0 simulations, and with test data measured during MOD-0 operations. The study was successful in achieving the major objective of proving that WEST-3 yields results which can be used to support a wind turbine development process. The blade bending moments, peak and cyclic, from the WEST-3 simulation correlated reasonably well with the available MOD-0 data. The simulation was also able to predict the resonance phenomena observed during MOD-0 operations. Also presented in the report is a description and solution of a serious numerical instability problem encountered during the study. The problem was caused by the coupling of the rotor and the power train models. The results of the study indicate that some parts of the existing WEST-3 simulation model may have to be refined for future work; specifically, the aerodynamics and procedure used to couple the rotor model with the tower and the power train models.
Training in urological robotic surgery. Future perspectives.
El Sherbiny, Ahmed; Eissa, Ahmed; Ghaith, Ahmed; Morini, Elena; Marzotta, Lucilla; Sighinolfi, Maria Chiara; Micali, Salvatore; Bianchi, Giampaolo; Rocco, Bernardo
2018-01-01
As robotics are becoming more integrated into the medical field, robotic training is becoming more crucial in order to overcome the lack of experienced robotic surgeons. However, there are several obstacles facing the development of robotic training programs like the high cost of training and the increased operative time during the initial period of the learning curve, which, in turn increase the operative cost. Robotic-assisted laparoscopic prostatectomy is the most commonly performed robotic surgery. Moreover, robotic surgery is becoming more popular among urologic oncologists and pediatric urologists. The need for a standardized and validated robotic training curriculum was growing along with the increased number of urologic centers and institutes adopting the robotic technology. Robotic training includes proctorship, mentorship or fellowship, telementoring, simulators and video training. In this chapter, we are going to discuss the different training methods, how to evaluate robotic skills, the available robotic training curriculum, and the future perspectives.
SIMULATIONS OF TRANSVERSE STACKING IN THE NSLS-II BOOSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fliller III, R.; Shaftan, T.
2011-03-28
The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme.more » We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.« less
1993-04-02
Issues and other environmental Impact concerns r ation: Manufacturing ateIgoJy: Technology Timaame: Near term Imoact of not MTeetln reaulrement...simulation (M&S needs of the defense M&S community. This community is partitioned into five major areas: Education , Training and Military Operations (ETMO...requirements throughout the community. The five DMSO Functional Work Groups ( Education , Training and Military Operations; Research and Development
User's guide for the IEBT application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartoletti, T
INFOSEC Experience-Based Training (IEBT) is a simulation and modeling approach to education in the arena of information security issues and its application to system-specific operations. The IEBT philosophy is that ''Experience is the Best Teacher''. This approach to computer-based training aims to bridge the gap between unappealing ''read the text, answer the questions'' types of training (largely a test of short-term memory), and the far more costly, time-consuming and inconvenient ''real hardware'' laboratory experience. Simulation and modeling supports this bridge by allowing the critical or salient features to be exercised while avoiding those aspects of a real world experience unrelatedmore » to the training goal.« less
Virtual reality colonoscopy simulation: a compulsory practice for the future colonoscopist?
Ahlberg, G; Hultcrantz, R; Jaramillo, E; Lindblom, A; Arvidsson, D
2005-12-01
As for any manual procedure, the learning curves for medical interventions can have undesirable phases, occurring mostly in the early experience of applying a technique. There have been impressive advances in endoscopic procedures during recent years, and there is an emerging trend that the number of procedures is increasing in parallel with these. In addition, the introduction of screening programs for colorectal cancer will also increase the numbers of procedures needed. Recent developments in medical simulation seem promising with regard to the possibility of "training out" undesirable parts of the learning curve outside the operating room. The aim of this study was to investigate whether the use of the AccuTouch flexible endoscopy simulator improves the early part of the learning curve in colonoscopy training. 12 endoscopy trainees, 10 surgeons and two medical gastroenterologists, all with experience in gastroscopy but with no specific colonoscopy experience, were randomly assigned to either simulator training or to a control group. They all received the same theoretical study package and the training group practiced with the AccuTouch colonoscopy simulator until a predefined expert level of performance was reached. All trainees performed their first ten individual colonoscopies described in detail in a separate protocol. Trainees in the simulator-trained group performed significantly better (P=0.0011) and managed to reach the cecum in 52% of their cases (vs. 19% in the control group), and were 4.53 times more likely to succeed compared with the controls. Additionally, there was a significantly shorter procedure time and less patient discomfort in the hands of the simulator-trained group. Skills acquired using the AccuTouch simulator transfer well into the clinical colonoscopy environment. The results of this trial clearly support the plan to integrate simulator training into endoscopic education curricula.
NASA Technical Reports Server (NTRS)
Wales, R. O.
1973-01-01
A computerized training aid for all levels of research and development managers is presented. The computer model used for NASA training simulates development of a spacecraft. Operation of the model is described together with instructions for changing the input-data cards to alter the nomenclature and response of the model for use in other training environments.
Weigl, Matthias; Stefan, Philipp; Abhari, Kamyar; Wucherer, Patrick; Fallavollita, Pascal; Lazarovici, Marc; Weidert, Simon; Euler, Ekkehard; Catchpole, Ken
2016-02-01
Surgical flow disruptions occur frequently and jeopardize perioperative care and surgical performance. So far, insights into subjective and cognitive implications of intra-operative disruptions for surgeons and inherent consequences for performance are inconsistent. This study aimed to investigate the effect of surgical flow disruption on surgeon's intra-operative workload and technical performance. In a full-scale OR simulation, 19 surgeons were randomly allocated to either of the two disruption scenarios (telephone call vs. patient discomfort). Using a mixed virtual reality simulator with a computerized, high-fidelity mannequin, all surgeons were trained in performing a vertebroplasty procedure and subsequently performed such a procedure under experimental conditions. Standardized measures on subjective workload and technical performance (trocar positioning deviation from expert-defined standard, number, and duration of X-ray acquisitions) were collected. Intra-operative workload during simulated disruption scenarios was significantly higher compared to training sessions (p < .01). Surgeons in the telephone call scenario experienced significantly more distraction compared to their colleagues in the patient discomfort scenario (p < .05). However, workload tended to be increased in surgeons who coped with distractions due to patient discomfort. Technical performance was not significantly different between both disruption scenarios. We found a significant association between surgeons' intra-operative workload and technical performance such that surgeons with increased mental workload tended to perform worse (β = .55, p = .04). Surgical flow disruptions affect surgeons' intra-operative workload. Increased mental workload was associated with inferior technical performance. Our simulation-based findings emphasize the need to establish smooth surgical flow which is characterized by a low level of process deviations and disruptions.
Simulation as a surgical teaching model.
Ruiz-Gómez, José Luis; Martín-Parra, José Ignacio; González-Noriega, Mónica; Redondo-Figuero, Carlos Godofredo; Manuel-Palazuelos, José Carlos
2018-01-01
Teaching of surgery has been affected by many factors over the last years, such as the reduction of working hours, the optimization of the use of the operating room or patient safety. Traditional teaching methodology fails to reduce the impact of these factors on surgeońs training. Simulation as a teaching model minimizes such impact, and is more effective than traditional teaching methods for integrating knowledge and clinical-surgical skills. Simulation complements clinical assistance with training, creating a safe learning environment where patient safety is not affected, and ethical or legal conflicts are avoided. Simulation uses learning methodologies that allow teaching individualization, adapting it to the learning needs of each student. It also allows training of all kinds of technical, cognitive or behavioural skills. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
2011-08-31
CAPE CANAVERAL, Fla. -- Smoke billows from a Huey II helicopter supporting the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- The Cape Canaveral Spaceport Mobile Command Center vehicle participates in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
Intelligent Tutoring Systems for Procedural Task Training of Remote Payload Operations at NASA
NASA Technical Reports Server (NTRS)
Ong, James; Noneman, Steven
2000-01-01
Intelligent Tutoring Systems (ITSs) encode and apply the subject matter and teaching expertise of experienced instructors to provide students with individualized instruction automatically. ITSs complement training simulators by providing automated instruction when it is not economical or feasible to dedicate an instructor to each student during training simulations. Despite their proven training effectiveness and favorable operating cost, however, relatively few ITSs are in use. This is largely because it is usually costly and difficult to encode the task knowledge used by the ITS to evaluate the student's actions and assess the student's performance. Procedural tasks are tasks for which there exist procedures, guidelines, and strategies that determine the correct set of steps to be taken within each situation. To lower the cost and difficulty of creating tutoring systems for procedural task training, Stottler Henke Associates, Inc. (SHAI) worked closely with the Operations Training Group at NASA's Marshall Space Flight Center to develop the Task Tutor Toolkit (T (exp 3)), a generic tutoring system shell and scenario authoring tool. The Task Tutor Toolkit employs a case-based reasoning approach where the instructor creates a procedure template that specifies the range of student actions that are "correct" within each scenario. Because each procedure template is specific to a single scenario, the system can employ relatively simple reasoning methods to represent a correct set of actions and assess student performance. This simplicity enables a non-programmer to specify task knowledge quickly and easily by via graphical user interface, using a "demonstrate, generalize, and annotate" paradigm, that recognizes the range of possible valid actions and infers principles understood (or misunderstood) by the student when those actions are carried out. The Task Tutor Toolkit was also designed to be modular and general, so that it can be interfaced with a wide range of training simulators and support a variety of training domains. SHAI and NASA applied the Task Tutor Toolkit to create the Remote Payload Operations Tutor (RPOT). RPOT is a specific tutoring system application which lets scientists who are new to space mission operations learn to monitor and control their experiments aboard the International Space Station according to NASA payload regulations, guidelines, and procedures. The RPOT simulator lets students practice these skills by monitoring the telemetry variable values of a simple, hypothetical experiment, sending commands to the experiment, coordinating with NASA personnel via voice communication loops, and submitting and retrieving information via documents and forms. At the end of each scenario, RPOT displays the principles correctly or incorrectly demonstrated by the student, along with explanations and background information. The effectiveness of RPOT and the Task Tutor Toolkit are currently under evaluation at NASA.
Flight Operations . [Zero Knowledge to Mission Complete
NASA Technical Reports Server (NTRS)
Forest, Greg; Apyan, Alex; Hillin, Andrew
2016-01-01
Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.
NASA Technical Reports Server (NTRS)
Gallo, C.; Kasuba, R.; Pintz, A.; Spring, J.
1986-01-01
The dynamic analysis of a horizontal axis fixed pitch wind turbine generator (WTG) rated at 56 kW is discussed. A mechanical Continuously Variable Transmission (CVT) was incorporated in the drive train to provide variable speed operation capability. One goal of the dynamic analysis was to determine if variable speed operation, by means of a mechanical CVT, is capable of capturing the transient power in the WTG/wind environment. Another goal was to determine the extent of power regulation possible with CVT operation.
Realistic Radio Communications in Pilot Simulator Training
NASA Technical Reports Server (NTRS)
Burki-Cohen, Judith; Kendra, Andrew J.; Kanki, Barbara G.; Lee, Alfred T.
2000-01-01
Simulators used for total training and evaluation of airline pilots must satisfy stringent criteria in order to assure their adequacy for training and checking maneuvers. Air traffic control and company radio communications simulation, however, may still be left to role-play by the already taxed instructor/evaluators in spite of their central importance in every aspect of the flight environment. The underlying premise of this research is that providing a realistic radio communications environment would increase safety by enhancing pilot training and evaluation. This report summarizes the first-year efforts of assessing the requirement and feasibility of simulating radio communications automatically. A review of the training and crew resource/task management literature showed both practical and theoretical support for the need for realistic radio communications simulation. A survey of 29 instructor/evaluators from 14 airlines revealed that radio communications are mainly role-played by the instructor/evaluators. This increases instructor/evaluators' own workload while unrealistically lowering pilot communications load compared to actual operations, with a concomitant loss in training/evaluation effectiveness. A technology review searching for an automated means of providing radio communications to and from aircraft with minimal human effort showed that while promising, the technology is still immature. Further research and the need for establishing a proof-of-concept are also discussed.
Virtual reality training in neurosurgery: Review of current status and future applications
Alaraj, Ali; Lemole, Michael G.; Finkle, Joshua H.; Yudkowsky, Rachel; Wallace, Adam; Luciano, Cristian; Banerjee, P. Pat; Rizzi, Silvio H.; Charbel, Fady T.
2011-01-01
Background: Over years, surgical training is changing and years of tradition are being challenged by legal and ethical concerns for patient safety, work hour restrictions, and the cost of operating room time. Surgical simulation and skill training offer an opportunity to teach and practice advanced techniques before attempting them on patients. Simulation training can be as straightforward as using real instruments and video equipment to manipulate simulated “tissue” in a box trainer. More advanced virtual reality (VR) simulators are now available and ready for widespread use. Early systems have demonstrated their effectiveness and discriminative ability. Newer systems enable the development of comprehensive curricula and full procedural simulations. Methods: A PubMed review of the literature was performed for the MESH words “Virtual reality, “Augmented Reality”, “Simulation”, “Training”, and “Neurosurgery”. Relevant articles were retrieved and reviewed. A review of the literature was performed for the history, current status of VR simulation in neurosurgery. Results: Surgical organizations are calling for methods to ensure the maintenance of skills, advance surgical training, and credential surgeons as technically competent. The number of published literature discussing the application of VR simulation in neurosurgery training has evolved over the last decade from data visualization, including stereoscopic evaluation to more complex augmented reality models. With the revolution of computational analysis abilities, fully immersive VR models are currently available in neurosurgery training. Ventriculostomy catheters insertion, endoscopic and endovascular simulations are used in neurosurgical residency training centers across the world. Recent studies have shown the coloration of proficiency with those simulators and levels of experience in the real world. Conclusion: Fully immersive technology is starting to be applied to the practice of neurosurgery. In the near future, detailed VR neurosurgical modules will evolve to be an essential part of the curriculum of the training of neurosurgeons. PMID:21697968
Abrahamsen, Håkon B; Sollid, Stephen J M; Öhlund, Lennart S; Røislien, Jo; Bondevik, Gunnar Tschudi
2015-08-01
Human error and deficient non-technical skills (NTSs) among providers of ALS in helicopter emergency medical services (HEMS) is a threat to patient and operational safety. Skills can be improved through simulation-based training and assessment. To document the current level of simulation-based training and assessment of seven generic NTSs in crew members in the Norwegian HEMS. A cross-sectional survey, either electronic or paper-based, of all 207 physicians, HEMS crew members (HCMs) and pilots working in the civilian Norwegian HEMS (11 bases), between 8 May and 25 July 2012. The response rate was 82% (n=193). A large proportion of each of the professional groups lacked simulation-based training and assessment of their NTSs. Compared with pilots and HCMs, physicians undergo statistically significantly less frequent simulation-based training and assessment of their NTSs. Fifty out of 82 (61%) physicians were on call for more than 72 consecutive hours on a regular basis. Of these, 79% did not have any training in coping with fatigue. In contrast, 72 out of 73 (99%) pilots and HCMs were on call for more than 3 days in a row. Of these, 54% did not have any training in coping with fatigue. Our study indicates a lack of simulation-based training and assessment. Pilots and HCMs train and are assessed more frequently than physicians. All professional groups are on call for extended hours, but receive limited training in how to cope with fatigue. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Retention of laparoscopic and robotic skills among medical students: a randomized controlled trial.
Orlando, Megan S; Thomaier, Lauren; Abernethy, Melinda G; Chen, Chi Chiung Grace
2017-08-01
Although simulation training beneficially contributes to traditional surgical training, there are less objective data on simulation skills retention. To investigate the retention of laparoscopic and robotic skills after simulation training. We present the second stage of a randomized single-blinded controlled trial in which 40 simulation-naïve medical students were randomly assigned to practice peg transfer tasks on either laparoscopic (N = 20, Fundamentals of Laparoscopic Surgery, Venture Technologies Inc., Waltham, MA) or robotic (N = 20, dV-Trainer, Mimic, Seattle, WA) platforms. In the first stage, two expert surgeons evaluated participants on both tasks before (Stage 1: Baseline) and immediately after training (Stage 1: Post-training) using a modified validated global rating scale of laparoscopic and robotic operative performance. In Stage 2, participants were evaluated on both tasks 11-20 weeks after training. Of the 40 students who participated in Stage 1, 23 (11 laparoscopic and 12 robotic) underwent repeat evaluation. During Stage 2, there were no significant differences between groups in objective or subjective measures for the laparoscopic task. Laparoscopic-trained participants' performances on the laparoscopic task were improved during Stage 2 compared to baseline measured by time to task completion, but not by the modified global rating scale. During the robotic task, the robotic-trained group demonstrated superior economy of motion (p = .017), Tissue Handling (p = .020), and fewer errors (p = .018) compared to the laparoscopic-trained group. Robotic skills acquisition from baseline with no significant deterioration as measured by modified global rating scale scores was observed among robotic-trained participants during Stage 2. Robotic skills acquired through simulation appear to be better maintained than laparoscopic simulation skills. This study is registered on ClinicalTrials.gov (NCT02370407).
2012-01-01
Abstract Background Several studies have found a positive effect on the learning curve as well as the improvement of basic psychomotor skills in the operating room after virtual reality training. Despite this, the majority of surgical and gynecological departments encounter hurdles when implementing this form of training. This is mainly due to lack of knowledge concerning the time and human resources needed to train novice surgeons to an adequate level. The purpose of this trial is to investigate the impact of instructor feedback regarding time, repetitions and self-perception when training complex operational tasks on a virtual reality simulator. Methods/Design The study population consists of medical students on their 4th to 6th year without prior laparoscopic experience. The study is conducted in a skills laboratory at a centralized university hospital. Based on a sample size estimation 98 participants will be randomized to an intervention group or a control group. Both groups have to achieve a predefined proficiency level when conducting a laparoscopic salpingectomy using a surgical virtual reality simulator. The intervention group receives standardized instructor feedback of 10 to 12 min a maximum of three times. The control group receives no instructor feedback. Both groups receive the automated feedback generated by the virtual reality simulator. The study follows the CONSORT Statement for randomized trials. Main outcome measures are time and repetitions to reach the predefined proficiency level on the simulator. We include focus on potential sex differences, computer gaming experience and self-perception. Discussion The findings will contribute to a better understanding of optimal training methods in surgical education. Trial Registration NCT01497782 PMID:22373062
Model for Team Training Using the Advanced Trauma Operative Management Course: Pilot Study Analysis.
Perkins, R Serene; Lehner, Kathryn A; Armstrong, Randy; Gardiner, Stuart K; Karmy-Jones, Riyad C; Izenberg, Seth D; Long, William B; Wackym, P Ashley
2015-01-01
Education and training of surgeons has traditionally focused on the development of individual knowledge, technical skills, and decision making. Team training with the surgeon's operating room staff has not been prioritized in existing educational paradigms, particularly in trauma surgery. We aimed to determine whether a pilot curriculum for surgical technicians and nurses, based on the American College of Surgeons' Advanced Trauma Operative Management (ATOM) course, would improve staff knowledge if conducted in a team-training environment. Between December 2012 and December 2014, 22 surgical technicians and nurses participated in a curriculum complementary to the ATOM course, consisting of 8 individual 8-hour training sessions designed by and conducted at our institution. Didactic and practical sessions included educational content, hands-on instruction, and alternating role play during 5 system-specific injury scenarios in a simulated operating room environment. A pre- and postcourse examination was administered to participants to assess for improvements in team members' didactic knowledge. Course participants displayed a significant improvement in didactic knowledge after working in a team setting with trauma surgeons during the ATOM course, with a 9-point improvement on the postcourse examination (83%-92%, p = 0.0008). Most participants (90.5%) completing postcourse surveys reported being "highly satisfied" with course content and quality after working in our simulated team-training setting. Team training is critical to improving the knowledge base of surgical technicians and nurses in the trauma operative setting. Improved communication, efficiency, appropriate equipment use, and staff awareness are the desired outcomes when shifting the paradigm from individual to surgical team training so that improved patient outcomes, decreased risk, and cost savings can be achieved. Determine whether a pilot curriculum for surgical technicians and nurses, based on the American College of Surgeons' ATOM course, improves staff knowledge if conducted in a team-training environment. Surgical technicians and nurses participated in a curriculum complementary to the ATOM course. In all, 8 individual 8-hour training sessions were conducted at our institution and contained both didactic and practical content, as well as alternating role play during 5 system-specific injury scenarios. A pre- and postcourse examination was administered to assess for improvements in didactic knowledge. The course was conducted in a simulated team-training setting at the Legacy Institute for Surgical Education and Innovation (Portland, OR), an American College of Surgeons Accredited Educational Institute. In all, 22 surgical technicians and operating room nurses participated in 8 separate ATOM(s) courses and had at least 1 year of surgical scrubbing experience in general surgery with little or no exposure to Level I trauma surgical care. Of these participants, 16 completed the postcourse examination. Participants displayed a significant improvement in didactic knowledge (83%-92%, p = 0.0008) after the ATOM(s) course. Of the 14 participants who completed postcourse surveys, 90.5% were "highly satisfied" with the course content and quality. Team training is critical to improving the knowledge base of surgical technicians and nurses in the trauma operative setting and may contribute to improved patient outcomes, decreased risk, and hospital cost savings. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
A Real-Time Telemetry Simulator of the IUS Spacecraft
NASA Technical Reports Server (NTRS)
Drews, Michael E.; Forman, Douglas A.; Baker, Damon M.; Khazoyan, Louis B.; Viazzo, Danilo
1998-01-01
A real-time telemetry simulator of the IUS spacecraft has recently entered operation to train Flight Control Teams for the launch of the AXAF telescope from the Shuttle. The simulator has proven to be a successful higher fidelity implementation of its predecessor, while affirming the rapid development methodology used in its design. Although composed of COTS hardware and software, the system simulates the full breadth of the mission: Launch, Pre-Deployment-Checkout, Burn Sequence, and AXAF/IUS separation. Realism is increased through patching the system into the operations facility to simulate IUS telemetry, Shuttle telemetry, and the Tracking Station link (commands and status message).
Virtual reality simulator: demonstrated use in neurosurgical oncology.
Clarke, David B; D'Arcy, Ryan C N; Delorme, Sebastien; Laroche, Denis; Godin, Guy; Hajra, Sujoy Ghosh; Brooks, Rupert; DiRaddo, Robert
2013-04-01
The overriding importance of patient safety, the complexity of surgical techniques, and the challenges associated with teaching surgical trainees in the operating room are all factors driving the need for innovative surgical simulation technologies. Despite these issues, widespread use of virtual reality simulation technology in surgery has not been fully implemented, largely because of the technical complexities in developing clinically relevant and useful models. This article describes the successful use of the NeuroTouch neurosurgical simulator in the resection of a left frontal meningioma. The widespread application of surgical simulation technology has the potential to decrease surgical risk, improve operating room efficiency, and fundamentally change surgical training.
Special Operations Forces Language and Culture Needs Assessment: Language Resources And Self-Study
2010-11-12
2007; Freitas & Levine, 2004; Tuzun, 2007). SOFLO should analyze and consider the cost-benefit of providing more instructors/tutors. “I would like...instructor is generally considered an effective training solution (Blunt, 2007; Freitas & Levine, 2004; Tuzun, 2007). Additionally, some SOF operators...Simulation and Education Conference: Orlando, Fl. Freitas , S., & Levene, M. (2004). An investigation of the use of simulations and video gaming for
Virtual reality in surgical skills training.
Palter, Vanessa N; Grantcharov, Teodor P
2010-06-01
With recent concerns regarding patient safety, and legislation regarding resident work hours, it is accepted that a certain amount of surgical skills training will transition to the surgical skills laboratory. Virtual reality offers enormous potential to enhance technical and non-technical skills training outside the operating room. Virtual-reality systems range from basic low-fidelity devices to highly complex virtual environments. These systems can act as training and assessment tools, with the learned skills effectively transferring to an analogous clinical situation. Recent developments include expanding the role of virtual reality to allow for holistic, multidisciplinary team training in simulated operating rooms, and focusing on the role of virtual reality in evidence-based surgical curriculum design. Copyright 2010 Elsevier Inc. All rights reserved.
von Dadelszen, Peter; Allaire, Catherine
2011-01-01
Background: Concern regarding the quality of surgical training in obstetrics and gynecology residency programs is focusing attention on competency based education. Because open surgical skills cannot necessarily be translated into laparoscopic skills and with minimally invasive surgery becoming standard in operative gynecology, the discrepancy in training between obstetrics and gynecology will widen. Training on surgical simulators with virtual reality may improve surgical skills. However, before incorporation into training programs for gynecology residents the validity of such instruments needs to first be established. We sought to prove the construct validity of a virtual reality laparoscopic simulator, the SurgicalSimTM, by showing its ability to distinguish between surgeons with different laparoscopic experience. Methods: Eleven gynecologic surgeons (experts) and 11 perinatologists (controls) completed 3 tasks on the simulator, and 10 performance parameters were compared. Results: The experts performed faster, more efficiently, and with fewer errors, proving the construct validity of the SurgicalSim. Conclusions: Laparoscopic virtual reality simulators can measure relevant surgical skills and so distinguish between subjects having different skill levels. Hence, these simulators could be integrated into gynecology resident endoscopic training and utilized for objective assessment. Second, the skills required for competency in obstetrics cannot necessarily be utilized for better performance in laparoscopic gynecology. PMID:21985726
Sauter, Thomas C; Hautz, Wolf E; Hostettler, Simone; Brodmann-Maeder, Monika; Martinolli, Luca; Lehmann, Beat; Exadaktylos, Aristomenis K; Haider, Dominik G
2016-08-02
Sedation is a procedure required for many interventions in the Emergency department (ED) such as reductions, surgical procedures or cardioversions. However, especially under emergency conditions with high risk patients and rapidly changing interdisciplinary and interprofessional teams, the procedure caries important risks. It is thus vital but difficult to implement a standard operating procedure for sedation procedures in any ED. Reports on both, implementation strategies as well as their success are currently lacking. This study describes the development, implementation and clinical evaluation of an interprofessional and interdisciplinary simulation-based sedation training concept. All physicians and nurses with specialised training in emergency medicine at the Berne University Department of Emergency Medicine participated in a mandatory interdisciplinary and interprofessional simulation-based sedation training. The curriculum consisted of an individual self-learning module, an airway skill training course, three simulation-based team training cases, and a final practical learning course in the operating theatre. Before and after each training session, self-efficacy, awareness of emergency procedures, knowledge of sedation medication and crisis resource management were assessed with a questionnaire. Changes in these measures were compared via paired tests, separately for groups formed based on experience and profession. To assess the clinical effect of training, we collected patient and team satisfaction as well as duration and complications for all sedations in the ED within the year after implementation. We further compared time to beginning of procedure, time for duration of procedure and time until discharge after implementation with the one year period before the implementation. Cohen's d was calculated as effect size for all statistically significant tests. Fifty staff members (26 nurses and 24 physicians) participated in the training. In all subgroups, there is a significant increase in self-efficacy and knowledge with high effect size (d z = 1.8). The learning is independent of profession and experience level. In the clinical evaluation after implementation, we found no major complications among the sedations performed. Time to procedure significantly improved after the introduction of the training (d = 0.88). Learning is independent of previous working experience and equally effective in raising the self-efficacy and knowledge in all professional groups. Clinical outcome evaluation confirms the concepts safety and feasibility. An interprofessional and interdisciplinary simulation-based sedation training is an efficient way to implement a conscious sedation concept in an ED.
NASA Astrophysics Data System (ADS)
Zakirova, A. A.; Ganiev, B. A.; Mullin, R. I.
2015-11-01
The lack of visible and approachable ways of training surgical skills is one of the main problems in medical education. Existing simulation training devices are not designed to teach students, and are not available due to the high cost of the equipment. Using modern technologies such as virtual reality and hands movements fixation technology we want to create innovative method of learning the technics of conducting operations in 3D game format, which can make education process interesting and effective. Creating of 3D format virtual simulator will allow to solve several conceptual problems at once: opportunity of practical skills improvement unlimited by the time without the risk for patient, high realism of environment in operational and anatomic body structures, using of game mechanics for information perception relief and memorization of methods acceleration, accessibility of this program.
Examining longitudinal train dynamics in ore car tipplers
NASA Astrophysics Data System (ADS)
Cole, Colin; Spiryagin, Maksym; Bosomworth, Chris
2017-04-01
Train simulation has been adapted in this paper to model the behaviour of indexing operations in ore car tippler operations. An important consideration in simulations at these low speeds (less than 4 km/h) is the increased rolling resistance transitioning from stationary conditions to motion. Most formulations of rolling resistance equations do not include this range although there are empirical values in some railway standards. The indexer control utilised here has a target trapezoidal velocity profile. The indexer to train connection was modelled as a stiff linear spring, a damper and a gap element. A sensitivity analysis was completed considering variations in wagon connections including wedge static friction, preload, coupling slack and tippler slack. Track topography including downhill grades of 0.1% and 0.2% and a valley profile were also investigated. Results showed high sensitivity to draft gear parameters of static friction and preload, but minimal benefit from downhill grades and changes in coupling slack.
STS-57 crewmembers train in JSC's FB Shuttle Mission Simulator (SMS)
NASA Technical Reports Server (NTRS)
1993-01-01
STS-57 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist 2 (MS2) Nancy J. Sherlock, holding computer diskettes and procedural checklist, discusses equipment operation with Commander Ronald J. Grabe on the middeck of JSC's fixed based (FB) shuttle mission simulator (SMS). Payload Commander (PLC) G. David Low points to a forward locker location as MS3 Peter J.K. Wisoff switches controls on overhead panels MO42F and MO58F, and MS4 Janice E. Voss looks on. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.
NASA Technical Reports Server (NTRS)
Dittermore, Gary; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.
A general-purpose development environment for intelligent computer-aided training systems
NASA Technical Reports Server (NTRS)
Savely, Robert T.
1990-01-01
Space station training will be a major task, requiring the creation of large numbers of simulation-based training systems for crew, flight controllers, and ground-based support personnel. Given the long duration of space station missions and the large number of activities supported by the space station, the extension of space shuttle training methods to space station training may prove to be impractical. The application of artificial intelligence technology to simulation training can provide the ability to deliver individualized training to large numbers of personnel in a distributed workstation environment. The principal objective of this project is the creation of a software development environment which can be used to build intelligent training systems for procedural tasks associated with the operation of the space station. Current NASA Johnson Space Center projects and joint projects with other NASA operational centers will result in specific training systems for existing space shuttle crew, ground support personnel, and flight controller tasks. Concurrently with the creation of these systems, a general-purpose development environment for intelligent computer-aided training systems will be built. Such an environment would permit the rapid production, delivery, and evolution of training systems for space station crew, flight controllers, and other support personnel. The widespread use of such systems will serve to preserve task and training expertise, support the training of many personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences. As a result, significant reductions in training costs can be realized while safety and the probability of mission success can be enhanced.
Strandbygaard, Jeanett; Bjerrum, Flemming; Maagaard, Mathilde; Winkel, Per; Larsen, Christian Rifbjerg; Ringsted, Charlotte; Gluud, Christian; Grantcharov, Teodor; Ottesen, Bent; Sorensen, Jette Led
2013-05-01
To investigate the impact of instructor feedback versus no instructor feedback when training a complex operational task on a laparoscopic virtual reality simulator. : Simulators are now widely accepted as a training tool, but there is insufficient knowledge about how much feedback is necessary, which is useful for sustainable implementation. A randomized trial complying with CONSORT Statement. All participants had to reach a predefined proficiency level for a complex operational task on a virtual reality simulator. The intervention group received standardized instructor feedback a maximum of 3 times. The control group did not receive instructor feedback. Participants were senior medical students without prior laparoscopic experience (n = 99). Outcome measures were time, repetitions, and performance score to reach a predefined proficiency level. Furthermore, influence of sex and perception of own surgical skills were examined. Time (in minutes) and repetitions were reduced in the intervention group (162 vs 342 minutes; P < 0.005) and (29 vs 65 repetitions; P < 0.005). The control group achieved a higher performance score than the intervention group (57% vs 49%; P = 0.004). Men used less time (in minutes) than women (P = 0.037), but no sex difference was observed for repetitions (P = 0.20). Participants in the intervention group had higher self-perception regarding surgical skills after the trial (P = 0.011). Instructor feedback increases the efficiency when training a complex operational task on a virtual reality simulator; time and repetitions used to achieve a predefined proficiency level were significantly reduced in the group that received instructor feedback compared with the control group. NCT01497782.
Continuation of advanced crew procedures development techniques
NASA Technical Reports Server (NTRS)
Arbet, J. D.; Benbow, R. L.; Evans, M. E.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.
1976-01-01
An operational computer program, the Procedures and Performance Program (PPP) which operates in conjunction with the Phase I Shuttle Procedures Simulator to provide a procedures recording and crew/vehicle performance monitoring capability was developed. A technical synopsis of each task resulting in the development of the Procedures and Performance Program is provided. Conclusions and recommendations for action leading to the improvements in production of crew procedures development and crew training support are included. The PPP provides real-time CRT displays and post-run hardcopy output of procedures, difference procedures, performance data, parametric analysis data, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data and via transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP. Interface is provided with the all digital trajectory program, the Space Vehicle Dynamics Simulator (SVDS) to support initial procedures timeline development.
Surgical simulation: a urological perspective.
Wignall, Geoffrey R; Denstedt, John D; Preminger, Glenn M; Cadeddu, Jeffrey A; Pearle, Margaret S; Sweet, Robert M; McDougall, Elspeth M
2008-05-01
Surgical education is changing rapidly as several factors including budget constraints and medicolegal concerns limit opportunities for urological trainees. New methods of skills training such as low fidelity bench trainers and virtual reality simulators offer new avenues for surgical education. In addition, surgical simulation has the potential to allow practicing surgeons to develop new skills and maintain those they already possess. We provide a review of the background, current status and future directions of surgical simulators as they pertain to urology. We performed a literature review and an overview of surgical simulation in urology. Surgical simulators are in various stages of development and validation. Several simulators have undergone extensive validation studies and are in use in surgical curricula. While virtual reality simulators offer the potential to more closely mimic reality and present entire operations, low fidelity simulators remain useful in skills training, particularly for novices and junior trainees. Surgical simulation remains in its infancy. However, the potential to shorten learning curves for difficult techniques and practice surgery without risk to patients continues to drive the development of increasingly more advanced and realistic models. Surgical simulation is an exciting area of surgical education. The future is bright as advancements in computing and graphical capabilities offer new innovations in simulator technology. Simulators must continue to undergo rigorous validation studies to ensure that time spent by trainees on bench trainers and virtual reality simulators will translate into improved surgical skills in the operating room.
Can virtual reality simulation be used for advanced bariatric surgical training?
Lewis, Trystan M; Aggarwal, Rajesh; Kwasnicki, Richard M; Rajaretnam, Niro; Moorthy, Krishna; Ahmed, Ahmed; Darzi, Ara
2012-06-01
Laparoscopic bariatric surgery is a safe and effective way of treating morbid obesity. However, the operations are technically challenging and training opportunities for junior surgeons are limited. This study aims to assess whether virtual reality (VR) simulation is an effective adjunct for training and assessment of laparoscopic bariatric technical skills. Twenty bariatric surgeons of varying experience (Five experienced, five intermediate, and ten novice) were recruited to perform a jejuno-jejunostomy on both cadaveric tissue and on the bariatric module of the Lapmentor VR simulator (Simbionix Corporation, Cleveland, OH). Surgical performance was assessed using validated global rating scales (GRS) and procedure specific video rating scales (PSRS). Subjects were also questioned about the appropriateness of VR as a training tool for surgeons. Construct validity of the VR bariatric module was demonstrated with a significant difference in performance between novice and experienced surgeons on the VR jejuno-jejunostomy module GRS (median 11-15.5; P = .017) and PSRS (median 11-13; P = .003). Content validity was demonstrated with surgeons describing the VR bariatric module as useful and appropriate for training (mean Likert score 4.45/7) and they would highly recommend VR simulation to others for bariatric training (mean Likert score 5/7). Face and concurrent validity were not established. This study shows that the bariatric module on a VR simulator demonstrates construct and content validity. VR simulation appears to be an effective method for training of advanced bariatric technical skills for surgeons at the start of their bariatric training. However, assessment of technical skills should still take place on cadaveric tissue. Copyright © 2012. Published by Mosby, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Srikanta; Jin, Larry; He, Jincong
2015-06-30
Reduced-order models provide a means for greatly accelerating the detailed simulations that will be required to manage CO 2 storage operations. In this work, we investigate the use of one such method, POD-TPWL, which has previously been shown to be effective in oil reservoir simulation problems. This method combines trajectory piecewise linearization (TPWL), in which the solution to a new (test) problem is represented through a linearization around the solution to a previously-simulated (training) problem, with proper orthogonal decomposition (POD), which enables solution states to be expressed in terms of a relatively small number of parameters. We describe the applicationmore » of POD-TPWL for CO 2-water systems simulated using a compositional procedure. Stanford’s Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) performs the full-order training simulations and provides the output (derivative matrices and system states) required by the POD-TPWL method. A new POD-TPWL capability introduced in this work is the use of horizontal injection wells that operate under rate (rather than bottom-hole pressure) control. Simulation results are presented for CO 2 injection into a synthetic aquifer and into a simplified model of the Mount Simon formation. Test cases involve the use of time-varying well controls that differ from those used in training runs. Results of reasonable accuracy are consistently achieved for relevant well quantities. Runtime speedups of around a factor of 370 relative to full- order AD-GPRS simulations are achieved, though the preprocessing needed for POD-TPWL model construction corresponds to the computational requirements for about 2.3 full-order simulation runs. A preliminary treatment for POD-TPWL modeling in which test cases differ from training runs in terms of geological parameters (rather than well controls) is also presented. Results in this case involve only small differences between training and test runs, though they do demonstrate that the approach is able to capture basic solution trends. The impact of some of the detailed numerical treatments within the POD-TPWL formulation is considered in an Appendix.« less
Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis.
Alaker, Medhat; Wynn, Greg R; Arulampalam, Tan
2016-05-01
Laparoscopic surgery requires a different and sometimes more complex skill set than does open surgery. Shortened working hours, less training times, and patient safety issues necessitates that these skills need to be acquired outside the operating room. Virtual reality simulation in laparoscopic surgery is a growing field, and many studies have been published to determine its effectiveness. This systematic review and meta-analysis aims to evaluate virtual reality simulation in laparoscopic abdominal surgery in comparison to other simulation models and to no training. A systematic literature search was carried out until January 2014 in full adherence to PRISMA guidelines. All randomised controlled studies comparing virtual reality training to other models of training or to no training were included. Only studies utilizing objective and validated assessment tools were included. Thirty one randomised controlled trials that compare virtual reality training to other models of training or to no training were included. The results of the meta-analysis showed that virtual reality simulation is significantly more effective than video trainers, and at least as good as box trainers. The use of Proficiency-based VR training, under supervision with prompt instructions and feedback, and the use of haptic feedback, has proven to be the most effective way of delivering the virtual reality training. The incorporation of virtual reality training into surgical training curricula is now necessary. A unified platform of training needs to be established. Further studies to assess the impact on patient outcomes and on hospital costs are necessary. (PROSPERO Registration number: CRD42014010030). Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Shamim Khan, Mohammad; Ahmed, Kamran; Gavazzi, Andrea; Gohil, Rishma; Thomas, Libby; Poulsen, Johan; Ahmed, Munir; Jaye, Peter; Dasgupta, Prokar
2013-03-01
WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: A competent urologist should not only have effective technical skills, but also other attributes that would make him/her a complete surgeon. These include team-working, communication and decision-making skills. Although evidence for effectiveness of simulation exists for individual simulators, there is a paucity of evidence for utility and effectiveness of these simulators in training programmes that aims to combine technical and non-technical skills training. This article explains the process of development and validation of a centrally coordinated simulation program (Participants - South-East Region Specialist Registrars) under the umbrella of the British Association for Urological Surgeons (BAUS) and the London Deanery. This program incorporated training of both technical (synthetic, animal and virtual reality models) and non-technical skills (simulated operating theatres). To establish the feasibility and acceptability of a centralized, simulation-based training-programme. Simulation is increasingly establishing its role in urological training, with two areas that are relevant to urologists: (i) technical skills and (ii) non-technical skills. For this London Deanery supported pilot Simulation and Technology enhanced Learning Initiative (STeLI) project, we developed a structured multimodal simulation training programme. The programme incorporated: (i) technical skills training using virtual-reality simulators (Uro-mentor and Perc-mentor [Symbionix, Cleveland, OH, USA], Procedicus MIST-Nephrectomy [Mentice, Gothenburg, Sweden] and SEP Robotic simulator [Sim Surgery, Oslo, Norway]); bench-top models (synthetic models for cystocopy, transurethral resection of the prostate, transurethral resection of bladder tumour, ureteroscopy); and a European (Aalborg, Denmark) wet-lab training facility; as well as (ii) non-technical skills/crisis resource management (CRM), using SimMan (Laerdal Medical Ltd, Orpington, UK) to teach team-working, decision-making and communication skills. The feasibility, acceptability and construct validity of these training modules were assessed using validated questionnaires, as well as global and procedure/task-specific rating scales. In total 33, three specialist registrars of different grades and five urological nurses participated in the present study. Construct-validity between junior and senior trainees was significant. Of the participants, 90% rated the training models as being realistic and easy to use. In total 95% of the participants recommended the use of simulation during surgical training, 95% approved the format of the teaching by the faculty and 90% rated the sessions as well organized. A significant number of trainees (60%) would like to have easy access to a simulation facility to allow more practice and enhancement of their skills. A centralized simulation programme that provides training in both technical and non-technical skills is feasible. It is expected to improve the performance of future surgeons in a simulated environment and thus improve patient safety. © 2012 BJU International.
Mobile surgical skills education unit: a new concept in surgical training.
Shaikh, Faisal M; Hseino, Hazem; Hill, Arnold D K; Kavanagh, Eamon; Traynor, Oscar
2011-08-01
Basic surgical skills are an integral part of surgical training. Simulation-based surgical training offers an opportunity both to trainees and trainers to learn and teach surgical skills outside the operating room in a nonpatient, nonstressed environment. However, widespread adoption of simulation technology especially in medical education is prohibited by its inherent higher cost, limited space, and interruptions to clinical duties. Mobile skills laboratory has been proposed as a means to address some of these limitations. A new program is designed by the Royal College of Surgeons in Ireland (RCSI), in an approach to teach its postgraduate basic surgical trainees the necessary surgical skills, by making the use of mobile innovative simulation technology in their own hospital settings. In this article, authors describe the program and students response to the mobile surgical skills being delivered in the region of their training hospitals and by their own regional consultant trainers.
Settlement mechanism of piled-raft foundation due to cyclic train loads and its countermeasure
NASA Astrophysics Data System (ADS)
Gu, Linlin; Ye, Guanlin; Wang, Zhen; Ling, Xianzhang; Zhang, Feng
2017-07-01
In this paper, numerical simulation with soil-water coupling finite element-finite difference (FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure (EPWP) of a piled-raft foundation due to cyclic high-speed (speed: 300km/h) train loading. To demonstrate the performance of this numerical simulation, the settlement and EPWP in the ground under the train loading within one month was calculated and confirmed by monitoring data, which shows that the change of the settlement and EPWP can be simulated well on the whole. In order to ensure the safety of train operation, countermeasure by the fracturing grouting is proposed. Two cases are analyzed, namely, grouting in No-4 softest layer and No-9 pile bearing layer respectively. It is found that fracturing grouting in the pile bearing layer (No-9 layer) has better effect on reducing the settlement.
From dV-Trainer to Real Robotic Console: The Limitations of Robotic Skill Training.
Yang, Kun; Zhen, Hang; Hubert, Nicolas; Perez, Manuela; Wang, Xing Huan; Hubert, Jacques
To investigate operators' performance quality, mental stress, and ergonomic habits through a training curriculum on robotic simulators. Forty volunteers without robotic surgery experience were recruited to practice 2 exercises on a dV-Trainer (dVT) for 14 hours. The simulator software (M-score a ) provided an automatic evaluation of the overall score for the surgeons' performance. Each participant provided a subjective difficulty score (validity to be proven) for each exercise. Their ergonomic habits were evaluated based on the workspace range and armrest load-validated criteria for evaluating the proficiency of using the armrest. They then repeated the same tasks on a da Vinci Surgical Skill Simulator for a final-level test. Their final scores were compared with their initial scores and the scores of 5 experts on the da Vinci Surgical Skill Simulator. A total of 14 hours of training on the dVT significantly improved the surgeons' performance scores to the expert level with a significantly reduced workload, but their ergonomic score was still far from the expert level. Sufficient training on the dVT improves novices' performance, reduces psychological stress, and inculcates better ergonomic habits. Among the evaluated criteria, novices had the most difficulty in achieving expert levels of ergonomic skills. The training benefits of robotic surgery simulators should be determined with quantified variables. The detection of the limitations during robotic training curricula could guide the targeted training and improve the training effect. Copyright © 2017. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Zillesen, P. G. van Schaick; And Others
Instructional feedback given to the learners during computer simulation sessions may be greatly improved by integrating educational computer simulation programs with hypermedia-based computer-assisted learning (CAL) materials. A prototype of a learning environment of this type called BRINE PURIFICATION was developed for use in corporate training…
DOT National Transportation Integrated Search
1978-09-01
This report documents comparisons between extensive rail freight service measurements (previously presented in Volume II) and simulations of the same operations using a sophisticated train performance calculator computer program. The comparisons cove...
Stress Counter-Response Training Via Physiological Self-Regulation During Flight Simulation
NASA Technical Reports Server (NTRS)
Palsson, Olafur S.
2000-01-01
This study provided the first evaluation of a new training concept and technology aimed at training pilots to maintain physiological equilibrium during circumstances in an airplane cockpit. Thirty healthy subjects (16 males and 14 females) between the ages of 18 and 35 were randomized into two study groups, A and B. Subjects participated individually in a sequence of four study sessions. In the first visit, subjects were taught to operate a desktop fighter jet flight simulation program. In the three sessions that followed, subjects in group A were trained to minimize their autonomic deviation from baseline values while operating the desktop flight simulation. This was done by making their skin conductance and hand temperature deviations from baseline impair the functionality of the aircraft controls. Subjects also received auditory and visual cues about their autonomic deviation, and were instructed to keep these within pre-set limits to retain full control of the aircraft. Subjects in group B were subjected to periods of impaired aircraft functionality independent of their physiologic activity, and thus served as a control group. No statistically significant group differences were found in the flight performance scores from the three training sessions, and post-training flight performance scores of the two groups were not different. We conclude that this study did not provide clear support for this training methodology in optimizing pilot performance. However, a number of shortcomings in the current status of this training methodology may account for the lack of demonstrable training benefit to the experimental group. Suggested future modifications for research on this training methodology include: Limiting the amount of instrument impairment resulting from physiological deviations; conducting a greater number of physiological training sessions per subject; using pre-post training performance tests which invoke a greater amount of stress in subjects; and developing a more detailed performance scoring system.
Ko, Jennifer K Y; Cheung, Vincent Y T; Pun, Ting Chung; Tung, Wai Kit
2018-03-01
To compare the proficiency of novices in acquiring laparoscopic suturing skills following training in a virtual reality simulator or box trainer compared to no training. This was a RCT in a university-affiliated teaching hospital recruiting participants who had no laparoscopic suturing experience to have suturing skill training in the virtual reality simulator, box trainer, or no training as control. Trainees were allowed to terminate training when they perceived competence in the procedure. Suturing skills were tested in the box trainer and scored using a modified Global Operative Assessment of Laparoscopic Skills questionnaire by their own self-evaluation and two experienced gynaecological laparoscopists. Of the 36 participants recruited, 27 (75%) had no laparoscopic experience. Participants with no laparoscopic experience took longer to complete training than those with experience (median 90 minutes [interquartile range (IQR) 80-115] vs. 55 min [IQR 40-65], respectively; P = 0.044). There were no differences in successful completion of the task (7/12 [58.3%], 10/12 [83.3%], 7/12 [58.3%]; P = 0.325), median suturing time in seconds (628 [IQR 460-835], 611 [IQR 434-691], 609 [IQR 540-837]; P = 0.702), mean subjective (mean ± SD 9.8 ± 1.8, 10.4 ± 2.8, 9.3 ± 2.4; P = 0.710), and objective (7.2 ± 1.8, 8.2 ± 2.1, 7.6 ± 1.7; P = 0.426) modified Global Operative Assessment of Laparoscopic Skills score in the simulator, pelvic trainer, and control groups, respectively. The intraclass correlation coefficient of the two reviewers was 0.422 (95% CI 0.159-0.717). Trainees were unable to accurately assess themselves as to skill level in laparoscopic suturing. A longer training time is required for novices to master laparoscopic suturing using a simulator or box trainer. Copyright © 2018 Society of Obstetricians and Gynaecologists of Canada. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1971-01-01
Spacecraft development, mission design planning, flight crew operations, and flight operations are considered. Spacecraft design principles and test activities are described. Determination of the best series of flights leading to a lunar landing at the earliest possible time, flight planning, techniques for establishing flight procedures and carrying out flight operations, and crew training and simulation activities are discussed.
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist a volunteer portraying an injured Huey II helicopter crew member participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- An ambulance and several NASA Fire Rescue Services vehicles arrive to assist a Huey II helicopter participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- A NASA Fire Rescue Services vehicle and a Huey II helicopter support the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- A NASA Fire Rescue Services vehicle, ambulance and Huey II helicopter take part in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- Volunteers portraying injured Huey II helicopter crew members are assisted by NASA Fire Rescue personnel in support of the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2010-10-01
the 2004 Fall Simulation Interoperability Workshop, Orlando, Florida, USA, September 2004, 04F- SIW -090. [Blacklock (2007)] - Blacklock, J. and Zalcman...Valley, CA, USA, March 2009, 09S- SIW -084. [DIS (1995)] - IEEE Standard – Protocols for Distributed Interactive Simulation Application (1995), IEEE...Workshop, Orlando, FL, USA, September 2007, 07F- SIW -111. [Gresche] - Gresche, D. et al, (2006), “International Mission Training Research
The Shuttle Mission Simulator computer generated imagery
NASA Technical Reports Server (NTRS)
Henderson, T. H.
1984-01-01
Equipment available in the primary training facility for the Space Transportation System (STS) flight crews includes the Fixed Base Simulator, the Motion Base Simulator, the Spacelab Simulator, and the Guidance and Navigation Simulator. The Shuttle Mission Simulator (SMS) consists of the Fixed Base Simulator and the Motion Base Simulator. The SMS utilizes four visual Computer Generated Image (CGI) systems. The Motion Base Simulator has a forward crew station with six-degrees of freedom motion simulation. Operation of the Spacelab Simulator is planned for the spring of 1983. The Guidance and Navigation Simulator went into operation in 1982. Aspects of orbital visual simulation are discussed, taking into account the earth scene, payload simulation, the generation and display of 1079 stars, the simulation of sun glare, and Reaction Control System jet firing plumes. Attention is also given to landing site visual simulation, and night launch and landing simulation.
NASA Astrophysics Data System (ADS)
Syarip; Po, L. C. C.
2018-05-01
In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.
Bernardo, Antonio
2017-10-01
Quality of neurosurgical care and patient outcomes are inextricably linked to surgical and technical proficiency and a thorough working knowledge of microsurgical anatomy. Neurosurgical laboratory-based cadaveric training is essential for the development and refinement of technical skills before their use on a living patient. Recent biotechnological advances including 3-dimensional (3D) microscopy and endoscopy, 3D printing, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging have proved to reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills in neurosurgical training. Until recently, few means have allowed surgeons to obtain integrated surgical and technological training in an operating room setting. We report on a new model, currently in use at our institution, for technologically integrated surgical training and innovation using a next-generation microneurosurgery skull base laboratory designed to recreate the setting of a working operating room. Each workstation is equipped with a 3D surgical microscope, 3D endoscope, surgical drills, operating table with a Mayfield head holder, and a complete set of microsurgical tools. The laboratory also houses a neuronavigation system, a surgical robotic, a surgical planning system, 3D visualization, virtual reality, and computerized simulation for training of surgical procedures and visuospatial skills. In addition, the laboratory is equipped with neurophysiological monitoring equipment in order to conduct research into human factors in surgery and the respective roles of workload and fatigue on surgeons' performance. Copyright © 2017 Elsevier Inc. All rights reserved.
Ujiie, Hideki; Kato, Tatsuya; Hu, Hsin-Pei; Bauer, Patrycja; Patel, Priya; Wada, Hironobu; Lee, Daiyoon; Fujino, Kosuke; Schieman, Colin; Pierre, Andrew; Waddell, Thomas K; Keshavjee, Shaf; Darling, Gail E; Yasufuku, Kazuhiro
2017-06-01
Surgical trainees are required to develop competency in a variety of laparoscopic operations. Developing laparoscopic technical skills can be difficult as there has been a decrease in the number of procedures performed. This study aims to develop an inexpensive and anatomically relevant model for training in laparoscopic foregut procedures. An ex vivo , anatomic model of the human upper abdomen was developed using intact porcine esophagus, stomach, diaphragm and spleen. The Toronto lap-Nissen simulator was contained in a laparoscopic box-trainer and included an arch system to simulate the normal radial shape and tension of the diaphragm. We integrated the use of this training model as a part of our laparoscopic skills laboratory-training curriculum. Afterwards, we surveyed trainees to evaluate the observed benefit of the learning session. Twenty-five trainees and five faculty members completed a survey regarding the use of this model. Among the trainees, only 4 (16%) had experience with laparoscopic Heller myotomy and Nissen fundoplication. They reported that practicing with the model was a valuable use of their limited time, repeating the exercise would be of additional benefit, and that the exercise improved their ability to perform or assist in an actual case in the operating room. Significant improvements were found in the following subjective measures comparing pre- vs. post-training: (I) knowledge level (5.6 vs. 8.0, P<0.001); (II) comfort level in assisting (6.3 vs. 7.6, P<0.001); and (III) comfort level in performing as the primary surgeon (4.9 vs. 7.1, P<0.001). The trainees and faculty members agreed that this model was of adequate fidelity and was a representative simulation of actual human anatomy. We developed an easily reproducible training model for laparoscopic procedures. This simulator reproduces human anatomy and increases the trainees' comfort level in performing and assisting with myotomy and fundoplication.
Ujiie, Hideki; Kato, Tatsuya; Hu, Hsin-Pei; Bauer, Patrycja; Patel, Priya; Wada, Hironobu; Lee, Daiyoon; Fujino, Kosuke; Schieman, Colin; Pierre, Andrew; Waddell, Thomas K.; Keshavjee, Shaf; Darling, Gail E.
2017-01-01
Background Surgical trainees are required to develop competency in a variety of laparoscopic operations. Developing laparoscopic technical skills can be difficult as there has been a decrease in the number of procedures performed. This study aims to develop an inexpensive and anatomically relevant model for training in laparoscopic foregut procedures. Methods An ex vivo, anatomic model of the human upper abdomen was developed using intact porcine esophagus, stomach, diaphragm and spleen. The Toronto lap-Nissen simulator was contained in a laparoscopic box-trainer and included an arch system to simulate the normal radial shape and tension of the diaphragm. We integrated the use of this training model as a part of our laparoscopic skills laboratory-training curriculum. Afterwards, we surveyed trainees to evaluate the observed benefit of the learning session. Results Twenty-five trainees and five faculty members completed a survey regarding the use of this model. Among the trainees, only 4 (16%) had experience with laparoscopic Heller myotomy and Nissen fundoplication. They reported that practicing with the model was a valuable use of their limited time, repeating the exercise would be of additional benefit, and that the exercise improved their ability to perform or assist in an actual case in the operating room. Significant improvements were found in the following subjective measures comparing pre- vs. post-training: (I) knowledge level (5.6 vs. 8.0, P<0.001); (II) comfort level in assisting (6.3 vs. 7.6, P<0.001); and (III) comfort level in performing as the primary surgeon (4.9 vs. 7.1, P<0.001). The trainees and faculty members agreed that this model was of adequate fidelity and was a representative simulation of actual human anatomy. Conclusions We developed an easily reproducible training model for laparoscopic procedures. This simulator reproduces human anatomy and increases the trainees’ comfort level in performing and assisting with myotomy and fundoplication. PMID:28740664
The utility of simulation in medical education: what is the evidence?
Okuda, Yasuharu; Bryson, Ethan O; DeMaria, Samuel; Jacobson, Lisa; Quinones, Joshua; Shen, Bing; Levine, Adam I
2009-08-01
Medical schools and residencies are currently facing a shift in their teaching paradigm. The increasing amount of medical information and research makes it difficult for medical education to stay current in its curriculum. As patients become increasingly concerned that students and residents are "practicing" on them, clinical medicine is becoming focused more on patient safety and quality than on bedside teaching and education. Educators have faced these challenges by restructuring curricula, developing small-group sessions, and increasing self-directed learning and independent research. Nevertheless, a disconnect still exists between the classroom and the clinical environment. Many students feel that they are inadequately trained in history taking, physical examination, diagnosis, and management. Medical simulation has been proposed as a technique to bridge this educational gap. This article reviews the evidence for the utility of simulation in medical education. We conducted a MEDLINE search of original articles and review articles related to simulation in education with key words such as simulation, mannequin simulator, partial task simulator, graduate medical education, undergraduate medical education, and continuing medical education. Articles, related to undergraduate medical education, graduate medical education, and continuing medical education were used in the review. One hundred thirteen articles were included in this review. Simulation-based training was demonstrated to lead to clinical improvement in 2 areas of simulation research. Residents trained on laparoscopic surgery simulators showed improvement in procedural performance in the operating room. The other study showed that residents trained on simulators were more likely to adhere to the advanced cardiac life support protocol than those who received standard training for cardiac arrest patients. In other areas of medical training, simulation has been demonstrated to lead to improvements in medical knowledge, comfort in procedures, and improvements in performance during retesting in simulated scenarios. Simulation has also been shown to be a reliable tool for assessing learners and for teaching topics such as teamwork and communication. Only a few studies have shown direct improvements in clinical outcomes from the use of simulation for training. Multiple studies have demonstrated the effectiveness of simulation in the teaching of basic science and clinical knowledge, procedural skills, teamwork, and communication as well as assessment at the undergraduate and graduate medical education levels. As simulation becomes increasingly prevalent in medical school and resident education, more studies are needed to see if simulation training improves patient outcomes.
Köckerling, Ferdinand; Pass, Michael; Brunner, Petra; Hafermalz, Matthias; Grund, Stefan; Sauer, Joerg; Lange, Volker; Schröder, Wolfgang
2016-01-01
The learning curve in minimally invasive surgery is much longer than in open surgery. This is thought to be due to the higher demands made on the surgeon's skills. Therefore, the question raised at the outset of training in laparoscopic surgery is how such skills can be acquired by undergoing training outside the bounds of clinical activities to try to shorten the learning curve. Simulation-based training courses are one such model. In 2011, the surgery societies of Germany adopted the "laparoscopic surgery curriculum" as a recommendation for the learning content of systematic training courses for laparoscopic surgery. The curricular structure provides for four 2-day training courses. These courses offer an interrelated content, with each course focusing additionally on specific topics of laparoscopic surgery based on live operations, lectures, and exercises carried out on bio simulators. Between 1st January, 2012 and 31st March, 2016, a total of 36 training courses were conducted at the Vivantes Endoscopic Training Center in accordance with the "laparoscopic surgery curriculum." The training courses were attended by a total of 741 young surgeons and were evaluated as good to very good during continuous evaluation by the participants. Training courses based on the "laparoscopic surgery curriculum" for acquiring skills in laparoscopy are taken up and positively evaluated by young surgeons.
Virtual reality and medicine--from the cockpit to the operating room: are we there yet?
Saied, Nahel
2005-01-01
Teaching medicine to medical students, physicians in training and nurses is a challenging task that has remained unchanged for decades. The airline industry has achieved a great deal of safety and quality in a technically challenging environment. Many believe that their outstanding achievement is due to team training and crew resource management using simulators and dedicated training programs. Many experts in the medical profession believe that adopting the same strategies in teaching medical students and trainees could achieve significant reductions in medical errors and improve the quality of patient care. This article explores the role of teaching medicine using virtual reality in a multitude of medical specialties and outlines the use of simulation training at Saint Louis University.
Validation of Mission Plans Through Simulation
NASA Astrophysics Data System (ADS)
St-Pierre, J.; Melanson, P.; Brunet, C.; Crabtree, D.
2002-01-01
The purpose of a spacecraft mission planning system is to automatically generate safe and optimized mission plans for a single spacecraft, or more functioning in unison. The system verifies user input syntax, conformance to commanding constraints, absence of duty cycle violations, timing conflicts, state conflicts, etc. Present day constraint-based systems with state-based predictive models use verification rules derived from expert knowledge. A familiar solution found in Mission Operations Centers, is to complement the planning system with a high fidelity spacecraft simulator. Often a dedicated workstation, the simulator is frequently used for operator training and procedure validation, and may be interfaced to actual control stations with command and telemetry links. While there are distinct advantages to having a planning system offer realistic operator training using the actual flight control console, physical verification of data transfer across layers and procedure validation, experience has revealed some drawbacks and inefficiencies in ground segment operations: With these considerations, two simulation-based mission plan validation projects are under way at the Canadian Space Agency (CSA): RVMP and ViSION. The tools proposed in these projects will automatically run scenarios and provide execution reports to operations planning personnel, prior to actual command upload. This can provide an important safeguard for system or human errors that can only be detected with high fidelity, interdependent spacecraft models running concurrently. The core element common to these projects is a spacecraft simulator, built with off-the- shelf components such as CAE's Real-Time Object-Based Simulation Environment (ROSE) technology, MathWork's MATLAB/Simulink, and Analytical Graphics' Satellite Tool Kit (STK). To complement these tools, additional components were developed, such as an emulated Spacecraft Test and Operations Language (STOL) interpreter and CCSDS TM/TC encoders and decoders. This paper discusses the use of simulation in the context of space mission planning, describes the projects under way and proposes additional venues of investigation and development.
Modelling, simulation and applications of longitudinal train dynamics
NASA Astrophysics Data System (ADS)
Cole, Colin; Spiryagin, Maksym; Wu, Qing; Sun, Yan Quan
2017-10-01
Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces - the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.
Ródenas, J; Zarza, I; Burgos, M C; Felipe, A; Sánchez-Mayoral, M L
2004-01-01
Operators in Nuclear Power Plants can receive high doses during refuelling operations. A training programme for simulating refuelling operations will be useful in reducing the doses received by workers as well as minimising operation time. With this goal in mind, a virtual reality application is developed within the framework of the CIPRES project. The application requires doses, both instantaneous and accumulated, to be displayed at all times during operator training. Therefore, it is necessary to set up a database containing dose rates at every point in the refuelling plant. This database is based on radiological protection surveillance data measured in the plant during refuelling operations. Some interpolation routines have been used to estimate doses through the refuelling plant. Different assumptions have been adopted in order to perform the interpolation and obtain consistent data. In this paper, the procedures developed to set up the dose database for the virtual reality application are presented and analysed.
Pilots' visual scan patterns and situation awareness in flight operations.
Yu, Chung-San; Wang, Eric Min-Yang; Li, Wen-Chin; Braithwaite, Graham
2014-07-01
Situation awareness (SA) is considered an essential prerequisite for safe flying. If the impact of visual scanning patterns on a pilot's situation awareness could be identified in flight operations, then eye-tracking tools could be integrated with flight simulators to improve training efficiency. Participating in this research were 18 qualified, mission-ready fighter pilots. The equipment included high-fidelity and fixed-base type flight simulators and mobile head-mounted eye-tracking devices to record a subject's eye movements and SA while performing air-to-surface tasks. There were significant differences in pilots' percentage of fixation in three operating phases: preparation (M = 46.09, SD = 14.79), aiming (M = 24.24, SD = 11.03), and release and break-away (M = 33.98, SD = 14.46). Also, there were significant differences in pilots' pupil sizes, which were largest in the aiming phase (M = 27,621, SD = 6390.8), followed by release and break-away (M = 27,173, SD = 5830.46), then preparation (M = 25,710, SD = 6078.79), which was the smallest. Furthermore, pilots with better SA performance showed lower perceived workload (M = 30.60, SD = 17.86), and pilots with poor SA performance showed higher perceived workload (M = 60.77, SD = 12.72). Pilots' percentage of fixation and average fixation duration among five different areas of interest showed significant differences as well. Eye-tracking devices can aid in capturing pilots' visual scan patterns and SA performance, unlike traditional flight simulators. Therefore, integrating eye-tracking devices into the simulator may be a useful method for promoting SA training in flight operations, and can provide in-depth understanding of the mechanism of visual scan patterns and information processing to improve training effectiveness in aviation.
14 CFR 60.25 - Operation with missing, malfunctioning, or inoperative components.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Operation with missing, malfunctioning, or inoperative components. 60.25 Section 60.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING...
14 CFR 60.25 - Operation with missing, malfunctioning, or inoperative components.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Operation with missing, malfunctioning, or inoperative components. 60.25 Section 60.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING...
14 CFR 60.25 - Operation with missing, malfunctioning, or inoperative components.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Operation with missing, malfunctioning, or inoperative components. 60.25 Section 60.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING...
14 CFR 60.25 - Operation with missing, malfunctioning, or inoperative components.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Operation with missing, malfunctioning, or inoperative components. 60.25 Section 60.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING...
14 CFR 60.25 - Operation with missing, malfunctioning, or inoperative components.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Operation with missing, malfunctioning, or inoperative components. 60.25 Section 60.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING...
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Concept document
NASA Technical Reports Server (NTRS)
1989-01-01
The Simulation Computer System (SCS) concept document describes and establishes requirements for the functional performance of the SCS system, including interface, logistic, and qualification requirements. The SCS is the computational communications and display segment of the Marshall Space Flight Center (MSFC) Payload Training Complex (PTC). The PTC is the MSFC facility that will train onboard and ground operations personnel to operate the payloads and experiments on board the international Space Station Freedom. The requirements to be satisfied by the system implementation are identified here. The SCS concept document defines the requirements to be satisfied through the implementation of the system capability. The information provides the operational basis for defining the requirements to be allocated to the system components and enables the system organization to assess whether or not the completed system complies with the requirements of the system.
Simulation Training Versus Real Time Console Training for New Flight Controllers
NASA Technical Reports Server (NTRS)
Heaton, Amanda
2010-01-01
For new flight controllers, the two main learning tools are simulations and real time console performance training. These benefit the new flight controllers in different ways and could possibly be improved. Simulations: a) Allow for mistakes without serious consequences. b) Lets new flight controllers learn the working style of other new flight controllers. c) Lets new flight controllers eventually begin to feel like they have mastered the sim world, so therefore they must be competent in the real time world too. Real time: a) Shows new flight controllers some of the unique problems that develop and have to be accounted for when dealing with certain payloads or systems. b) Lets new flight controllers experience handovers - gathering information from the previous shift on what the room needs to be aware of and what still needs to be done. c) Gives new flight controllers confidence that they can succeed in the position they are training for when they can solve real anomalies. How Sims could be improved and more like real-time ops for the ISS Operations Controller position: a) Operations Change Requests to review. b) Fewer anomalies (but still more than real time for practice). c) Payload Planning Manager Handover sheet for the E-1 and E-3 reviews. d) Flight note in system with at least one comment to verify for the E-1 and E-3 reviews How the real time console performance training could be improved for the ISS Operations Controller position: a) Schedule the new flight controller to be on console for four days but with a different certified person each day. This will force them to be the source of knowledge about every OCR in progress, everything that has happened in those few days, and every activity on the timeline. Constellation program flight controllers will have to learn entirely from simulations, thereby losing some of the elements that they will need to have experience with for real time ops. It may help them to practice real time console performance training in the International Space Station or Space Shuttle to gather some general anomaly resolution and day-to-day task management skills.
Recent advancements in medical simulation: patient-specific virtual reality simulation.
Willaert, Willem I M; Aggarwal, Rajesh; Van Herzeele, Isabelle; Cheshire, Nicholas J; Vermassen, Frank E
2012-07-01
Patient-specific virtual reality simulation (PSVR) is a new technological advancement that allows practice of upcoming real operations and complements the established role of VR simulation as a generic training tool. This review describes current developments in PSVR and draws parallels with other high-stake industries, such as aviation, military, and sports. A review of the literature was performed using PubMed and Internet search engines to retrieve data relevant to PSVR in medicine. All reports pertaining to PSVR were included. Reports on simulators that did not incorporate a haptic interface device were excluded from the review. Fifteen reports described 12 simulators that enabled PSVR. Medical procedures in the field of laparoscopy, vascular surgery, orthopedics, neurosurgery, and plastic surgery were included. In all cases, source data was two-dimensional CT or MRI data. Face validity was most commonly reported. Only one (vascular) simulator had undergone face, content, and construct validity. Of the 12 simulators, 1 is commercialized and 11 are prototypes. Five simulators have been used in conjunction with real patient procedures. PSVR is a promising technological advance within medicine. The majority of simulators are still in the prototype phase. As further developments unfold, the validity of PSVR will have to be examined much like generic VR simulation for training purposes. Nonetheless, similar to the aviation, military, and sport industries, operative performance and patient safety may be enhanced by the application of this novel technology.
Murphy, Margaret; Curtis, Kate; McCloughen, Andrea
2016-02-01
In hospital emergencies require a structured team approach to facilitate simultaneous input into immediate resuscitation, stabilisation and prioritisation of care. Efforts to improve teamwork in the health care context include multidisciplinary simulation-based resuscitation team training, yet there is limited evidence demonstrating the value of these programmes.(1) We aimed to determine the current state of knowledge about the key components and impacts of multidisciplinary simulation-based resuscitation team training by conducting an integrative review of the literature. A systematic search using electronic (three databases) and hand searching methods for primary research published between 1980 and 2014 was undertaken; followed by a rigorous screening and quality appraisal process. The included articles were assessed for similarities and differences; the content was grouped and synthesised to form three main categories of findings. Eleven primary research articles representing a variety of simulation-based resuscitation team training were included. Five studies involved trauma teams; two described resuscitation teams in the context of intensive care and operating theatres and one focused on the anaesthetic team. Simulation is an effective method to train resuscitation teams in the management of crisis scenarios and has the potential to improve team performance in the areas of communication, teamwork and leadership. Team training improves the performance of the resuscitation team in simulated emergency scenarios. However, the transferability of educational outcomes to the clinical setting needs to be more clearly demonstrated. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui
2018-04-24
An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.
Computer simulation of functioning of elements of security systems
NASA Astrophysics Data System (ADS)
Godovykh, A. V.; Stepanov, B. P.; Sheveleva, A. A.
2017-01-01
The article is devoted to issues of development of the informational complex for simulation of functioning of the security system elements. The complex is described from the point of view of main objectives, a design concept and an interrelation of main elements. The proposed conception of the computer simulation provides an opportunity to simulate processes of security system work for training security staff during normal and emergency operation.
Assessment and Application of the ROSE Code for Reactor Outage Thermal-Hydraulic and Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Thomas K.S.; Ko, F.-K.; Dai, L.-C
The currently available tools, such as RELAP5, RETRAN, and others, cannot easily and correctly perform the task of analyzing the system behavior during plant outages. Therefore, a medium-sized program aiming at reactor outage simulation and evaluation, such as midloop operation (MLO) with loss of residual heat removal (RHR), has been developed. Important thermal-hydraulic processes involved during MLO with loss of RHR can be properly simulated by the newly developed reactor outage simulation and evaluation (ROSE) code. The two-region approach with a modified two-fluid model has been adopted to be the theoretical basis of the ROSE code.To verify the analytical modelmore » in the first step, posttest calculations against the integral midloop experiments with loss of RHR have been performed. The excellent simulation capacity of the ROSE code against the Institute of Nuclear Energy Research Integral System Test Facility test data is demonstrated. To further mature the ROSE code in simulating a full-sized pressurized water reactor, assessment against the WGOTHIC code and the Maanshan momentary-loss-of-RHR event has been undertaken. The successfully assessed ROSE code is then applied to evaluate the abnormal operation procedure (AOP) with loss of RHR during MLO (AOP 537.4) for the Maanshan plant. The ROSE code also has been successfully transplanted into the Maanshan training simulator to support operator training. How the simulator was upgraded by the ROSE code for MLO will be presented in the future.« less
A tutorial platform suitable for surgical simulator training (SimMentor).
Røtnes, Jan Sigurd; Kaasa, Johannes; Westgaard, Geir; Eriksen, Eivind Myrold; Hvidsten, Per Oyvind; Strøm, Kyrre; Sørhus, Vidar; Halbwachs, Yvon; Haug, Einar; Grimnes, Morten; Fontenelle, Hugues; Ekeberg, Tom; Thomassen, Jan B; Elle, Ole Jakob; Fosse, Erik
2002-01-01
The introduction of simulators in surgical training entails the need to develop pedagogic platforms adapted to the potentials and limitations provided by the information technology. As a solution to the technical challenges in treating all possible interaction events and to obtain a suitable pedagogic approach, we have developed a pedagogic platform for surgical training, SimMentor. In SimMentor the procedure to be practiced is divided into a number of natural phases. The trainee will practice on one phase at a time, however he can select the sequence of phases arbitrarily. A phase is taught by letting the trainee alternate freely between 2 modes: 1: A 3-dimensional animated guidance designed for learning the objectives and challenges in a procedure. 2: An interactive training session through the instrument manipulator device designed for training motoric responses based on visual and tactile responses produced by the simulator. The two modes are interfaced with the same virtual reality platform, thus SimMentor allows a seamless transition between the modes. We have developed a prototype simulator for robotic assisted endoscopic CABG (Coronary Artery Bypass Grafting) procedure by first focusing on the anastomosis part of the operation. Tissue, suture and instrument models have been developed and integrated with a simulated model of a beating heart comprises the elements in the simulator engine that is used in construction a training platform for learning different methods for performing a coronary anastomosis procedure. The platform is designed for integrating the following features: 1) practical approach to handle interactivity events with flexible-objects 3D simulators, 2) methods for quantitative evaluations of performance, 3) didactic presentations, 4) effective ways of producing diversity of clinical and pathological training scenarios.
A Chance for Independence. Weslaco Training and Development Center Program.
ERIC Educational Resources Information Center
Texas Education Agency, Austin.
The booklet describes the origins and operations of the Weslaco (Texas) Training and Development Center, a center for severely retarded and handicapped students (ages 10-22). The facility simulates normal living and working conditions and focuses on household management skills (grocery list and meal preparation, clothing care, household repairs),…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provost, G.; Stone, H.; McClintock, M.
2008-01-01
To meet the growing demand for education and experience with the analysis, operation, and control of commercial-scale Integrated Gasification Combined Cycle (IGCC) plants, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) is leading a collaborative R&D project with participants from government, academia, and industry. One of the goals of this project is to develop a generic, full-scope, real-time generic IGCC dynamic plant simulator for use in establishing a world-class research and training center, as well as to promote and demonstrate the technology to power industry personnel. The NETL IGCC dynamic plant simulator will combine for the first timemore » a process/gasification simulator and a power/combined-cycle simulator together in a single dynamic simulation framework for use in training applications as well as engineering studies. As envisioned, the simulator will have the following features and capabilities: A high-fidelity, real-time, dynamic model of process-side (gasification and gas cleaning with CO2 capture) and power-block-side (combined cycle) for a generic IGCC plant fueled by coal and/or petroleum coke Full-scope training simulator capabilities including startup, shutdown, load following and shedding, response to fuel and ambient condition variations, control strategy analysis (turbine vs. gasifier lead, etc.), representative malfunctions/trips, alarms, scenarios, trending, snapshots, data historian, and trainee performance monitoring The ability to enhance and modify the plant model to facilitate studies of changes in plant configuration and equipment and to support future R&D efforts To support this effort, process descriptions and control strategies were developed for key sections of the plant as part of the detailed functional specification, which will form the basis of the simulator development. These plant sections include: Slurry Preparation Air Separation Unit Gasifiers Syngas Scrubbers Shift Reactors Gas Cooling, Medium Pressure (MP) and Low Pressure (LP) Steam Generation, and Knockout Sour Water Stripper Mercury Removal Selexol™ Acid Gas Removal System CO2 Compression Syngas Reheat and Expansion Claus Plant Hydrogenation Reactor and Gas Cooler Combustion Turbine (CT)-Generator Assemblies Heat Recovery Steam Generators (HRSGs) and Steam Turbine (ST)-Generator In this paper, process descriptions, control strategies, and Process & Instrumentation Diagram (P&ID) drawings for key sections of the generic IGCC plant are presented, along with discussions of some of the operating procedures and representative faults that the simulator will cover. Some of the intended future applications for the simulator are discussed, including plant operation and control demonstrations as well as education and training services such as IGCC familiarization courses.« less
[Anesthesia simulators and training devices].
Hartmannsgruber, M; Good, M; Carovano, R; Lampotang, S; Gravenstein, J S
1993-07-01
Simulators and training devices are used extensively by educators in 'high-tech' occupations, especially those requiring an understanding of complex systems and co-ordinated psychomotor skills. Because of advances in computer technology, anaesthetised patients can now be realistically simulated. This paper describes several training devices and a simulator currently being employed in the training of anaesthesia personnel at the University of Florida. This Gainesville Anesthesia Simulator (GAS) comprises a patient mannequin, anaesthesia gas machine, and a full set of normally operating monitoring instruments. The patient can spontaneously breathe, has audible heart and breath sounds, and palpable pulses. The mannequin contains a sophisticated lung model that consumes and eliminates gas according to physiological principles. Interconnected computers controlling the physical signs of the mannequin enable the presentation of a multitude of clinical signs. In addition, the anaesthesia machine, which is functionally intact, has hidden fault activators to challenge the user to correct equipment malfunctions. Concealed sensors monitor the users' actions and responses. A robust data acquisition and control system and a user-friendly scripting language for programming simulation scenarios are key features of GAS and make this system applicable for the training of both the beginning resident and the experienced practitioner. GAS enhances clinical education in anaesthesia by providing a non-threatening environment that fosters learning by doing. Exercises with the simulator are supported by sessions on a number of training devices. These present theoretical and practical interactive courses on the anaesthesia machine and on monitors. An extensive system, for example, introduces the student to the physics and clinical application of transoesophageal echocardiography.(ABSTRACT TRUNCATED AT 250 WORDS)
Individualized feedback during simulated laparoscopic training: a mixed methods study
Weurlander, Maria; Hedman, Leif; Nisell, Henry; Lindqvist, Pelle G.; Felländer-Tsai, Li; Enochsson, Lars
2015-01-01
Objectives This study aimed to explore the value of indi-vidualized feedback on performance, flow and self-efficacy during simulated laparoscopy. Furthermore, we wished to explore attitudes towards feedback and simulator training among medical students. Methods Sixteen medical students were included in the study and randomized to laparoscopic simulator training with or without feedback. A teacher provided individualized feedback continuously throughout the procedures to the target group. Validated questionnaires and scales were used to evaluate self-efficacy and flow. The Mann-Whitney U test was used to evaluate differences between groups regarding laparoscopic performance (instrument path length), self-efficacy and flow. Qualitative data was collected by group interviews and interpreted using inductive thematic analyses. Results Sixteen students completed the simulator training and questionnaires. Instrument path length was shorter in the feedback group (median 3.9 m; IQR: 3.3-4.9) as com-pared to the control group (median 5.9 m; IQR: 5.0-8.1), p<0.05. Self-efficacy improved in both groups. Eleven students participated in the focus interviews. Participants in the control group expressed that they had fun, whereas participants in the feedback group were more concentrated on the task and also more anxious. Both groups had high ambitions to succeed and also expressed the importance of getting feedback. The authenticity of the training scenario was important for the learning process. Conclusions This study highlights the importance of individualized feedback during simulated laparoscopy training. The next step is to further optimize feedback and to transfer standardized and individualized feedback from the simulated setting to the operating room. PMID:26223033
Indirect Measures of Learning Transfer between Real and Virtual Environments
ERIC Educational Resources Information Center
Garrett, Michael; McMahon, Mark
2013-01-01
This paper reports on research undertaken to determine the effectiveness of a 3D simulation environment used to train mining personnel in emergency evacuation procedures, designated the Fires in Underground Mines Evacuation Simulator (FUMES). Owing to the operational constraints of the mining facility, methods for measuring learning transfer were…
14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).
Code of Federal Regulations, 2014 CFR
2014-01-01
... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors... section and § 121.414: (1) A flight instructor (airplane) is a person who is qualified to instruct in an...
Managing simulation-based training: A framework for optimizing learning, cost, and time
NASA Astrophysics Data System (ADS)
Richmond, Noah Joseph
This study provides a management framework for optimizing training programs for learning, cost, and time when using simulation based training (SBT) and reality based training (RBT) as resources. Simulation is shown to be an effective means for implementing activity substitution as a way to reduce risk. The risk profile of 22 US Air Force vehicles are calculated, and the potential risk reduction is calculated under the assumption of perfect substitutability of RBT and SBT. Methods are subsequently developed to relax the assumption of perfect substitutability. The transfer effectiveness ratio (TER) concept is defined and modeled as a function of the quality of the simulator used, and the requirements of the activity trained. The Navy F/A-18 is then analyzed in a case study illustrating how learning can be maximized subject to constraints in cost and time, and also subject to the decision maker's preferences for the proportional and absolute use of simulation. Solution methods for optimizing multiple activities across shared resources are next provided. Finally, a simulation strategy including an operations planning program (OPP), an implementation program (IP), an acquisition program (AP), and a pedagogical research program (PRP) is detailed. The study provides the theoretical tools to understand how to leverage SBT, a case study demonstrating these tools' efficacy, and a set of policy recommendations to enable the US military to better utilize SBT in the future.
Jaffer, U; Singh, P; Pandey, V A; Aslam, M; Standfield, N J
2014-01-01
Duplex ultrasound facilitates bedside diagnosis and hence timely patient care. Its uptake has been hampered by training and accreditation issues. We have developed an assessment tool for Duplex arterial stenosis measurement for both simulator and patient based training. A novel assessment tool: duplex ultrasound assessment of technical skills was developed. A modified duplex ultrasound assessment of technical skills was used for simulator training. Novice, intermediate experience and expert users of duplex ultrasound were invited to participate. Participants viewed an instructional video and were allowed ample time to familiarize with the equipment. Participants' attempts were recorded and independently assessed by four experts using the modified duplex ultrasound assessment of technical skills. 'Global' assessment was also done on a four point Likert scale. Content, construct and concurrent validity as well as reliability were evaluated. Content and construct validity as well as reliability were demonstrated. The simulator had good satisfaction rating from participants: median 4; range 3-5. Receiver operator characteristic analysis has established a cut point of 22/ 34 and 25/ 40 were most appropriate for simulator and patient based assessment respectively. We have validated a novel assessment tool for duplex arterial stenosis detection. Further work is underway to establish transference validity of simulator training to improved skill in scanning patients. We have developed and validated duplex ultrasound assessment of technical skills for simulator training.
Effects on Training Using Illumination in Virtual Environments
NASA Technical Reports Server (NTRS)
Maida, James C.; Novak, M. S. Jennifer; Mueller, Kristian
1999-01-01
Camera based tasks are commonly performed during orbital operations, and orbital lighting conditions, such as high contrast shadowing and glare, are a factor in performance. Computer based training using virtual environments is a common tool used to make and keep CTW members proficient. If computer based training included some of these harsh lighting conditions, would the crew increase their proficiency? The project goal was to determine whether computer based training increases proficiency if one trains for a camera based task using computer generated virtual environments with enhanced lighting conditions such as shadows and glare rather than color shaded computer images normally used in simulators. Previous experiments were conducted using a two degree of freedom docking system. Test subjects had to align a boresight camera using a hand controller with one axis of rotation and one axis of rotation. Two sets of subjects were trained on two computer simulations using computer generated virtual environments, one with lighting, and one without. Results revealed that when subjects were constrained by time and accuracy, those who trained with simulated lighting conditions performed significantly better than those who did not. To reinforce these results for speed and accuracy, the task complexity was increased.
NASA Technical Reports Server (NTRS)
Palsson, Olafur S. (Inventor); Harris, Randall L., Sr. (Inventor); Pope, Alan T. (Inventor)
2002-01-01
Apparatus and methods for modulating the control authority (i.e., control function) of a computer simulation or game input device (e.g., joystick, button control) using physiological information so as to affect the user's ability to impact or control the simulation or game with the input device. One aspect is to use the present invention, along with a computer simulation or game, to affect physiological state or physiological self-regulation according to some programmed criterion (e.g., increase, decrease, or maintain) in order to perform better at the game task. When the affected physiological state or physiological self-regulation is the target of self-regulation or biofeedback training, the simulation or game play reinforces therapeutic changes in the physiological signal(s).
Training situational awareness to reduce surgical errors in the operating room.
Graafland, M; Schraagen, J M C; Boermeester, M A; Bemelman, W A; Schijven, M P
2015-01-01
Surgical errors result from faulty decision-making, misperceptions and the application of suboptimal problem-solving strategies, just as often as they result from technical failure. To date, surgical training curricula have focused mainly on the acquisition of technical skills. The aim of this review was to assess the validity of methods for improving situational awareness in the surgical theatre. A search was conducted in PubMed, Embase, the Cochrane Library and PsycINFO using predefined inclusion criteria, up to June 2014. All study types were considered eligible. The primary endpoint was validity for improving situational awareness in the surgical theatre at individual or team level. Nine articles were considered eligible. These evaluated surgical team crisis training in simulated environments for minimally invasive surgery (4) and open surgery (3), and training courses focused at training non-technical skills (2). Two studies showed that simulation-based surgical team crisis training has construct validity for assessing situational awareness in surgical trainees in minimally invasive surgery. None of the studies showed effectiveness of surgical crisis training on situational awareness in open surgery, whereas one showed face validity of a 2-day non-technical skills training course. To improve safety in the operating theatre, more attention to situational awareness is needed in surgical training. Few structured curricula have been developed and validation research remains limited. Strategies to improve situational awareness can be adopted from other industries. © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Vitharana, V. H. P.; Chinda, T.
2018-04-01
Lower back pain (LBP), prevalence is high among the heavy equipment operators leading to high compensation cost in the construction industry. It is found that proper training program assists in reducing chances of having LBP. This study, therefore aims to examine different safety related budget available to support LBP related training program for different age group workers, utilizing system dynamics modeling approach. The simulation results show that at least 2.5% of the total budget must be allocated in the safety and health budget to reduce the chances of having LBP cases.
Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training
NASA Technical Reports Server (NTRS)
2003-01-01
NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.
Graphic and haptic simulation system for virtual laparoscopic rectum surgery.
Pan, Jun J; Chang, Jian; Yang, Xiaosong; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas
2011-09-01
Medical simulators with vision and haptic feedback techniques offer a cost-effective and efficient alternative to the traditional medical trainings. They have been used to train doctors in many specialties of medicine, allowing tasks to be practised in a safe and repetitive manner. This paper describes a virtual-reality (VR) system which will help to influence surgeons' learning curves in the technically challenging field of laparoscopic surgery of the rectum. Data from MRI of the rectum and real operation videos are used to construct the virtual models. A haptic force filter based on radial basis functions is designed to offer realistic and smooth force feedback. To handle collision detection efficiently, a hybrid model is presented to compute the deformation of intestines. Finally, a real-time cutting technique based on mesh is employed to represent the incision operation. Despite numerous research efforts, fast and realistic solutions of soft tissues with large deformation, such as intestines, prove extremely challenging. This paper introduces our latest contribution to this endeavour. With this system, the user can haptically operate with the virtual rectum and simultaneously watch the soft tissue deformation. Our system has been tested by colorectal surgeons who believe that the simulated tactile and visual feedbacks are realistic. It could replace the traditional training process and effectively transfer surgical skills to novices. Copyright © 2011 John Wiley & Sons, Ltd.
Toward an embedded training tool for Deep Space Network operations
NASA Technical Reports Server (NTRS)
Hill, Randall W., Jr.; Sturdevant, Kathryn F.; Johnson, W. L.
1993-01-01
There are three issues to consider when building an embedded training system for a task domain involving the operation of complex equipment: (1) how skill is acquired in the task domain; (2) how the training system should be designed to assist in the acquisition of the skill, and more specifically, how an intelligent tutor could aid in learning; and (3) whether it is feasible to incorporate the resulting training system into the operational environment. This paper describes how these issues have been addressed in a prototype training system that was developed for operations in NASA's Deep Space Network (DSN). The first two issues were addressed by building an executable cognitive model of problem solving and skill acquisition of the task domain and then using the model to design an intelligent tutor. The cognitive model was developed in Soar for the DSN's Link Monitor and Control (LMC) system; it led to several insights about learning in the task domain that were used to design an intelligent tutor called REACT that implements a method called 'impasse-driven tutoring'. REACT is one component of the LMC training system, which also includes a communications link simulator and a graphical user interface. A pilot study of the LMC training system indicates that REACT shows promise as an effective way for helping operators to quickly acquire expert skills.
Does virtual reality simulation have a role in training trauma and orthopaedic surgeons?
Bartlett, J D; Lawrence, J E; Stewart, M E; Nakano, N; Khanduja, V
2018-05-01
Aims The aim of this study was to assess the current evidence relating to the benefits of virtual reality (VR) simulation in orthopaedic surgical training, and to identify areas of future research. Materials and Methods A literature search using the MEDLINE, Embase, and Google Scholar databases was performed. The results' titles, abstracts, and references were examined for relevance. Results A total of 31 articles published between 2004 and 2016 and relating to the objective validity and efficacy of specific virtual reality orthopaedic surgical simulators were identified. We found 18 studies demonstrating the construct validity of 16 different orthopaedic virtual reality simulators by comparing expert and novice performance. Eight studies have demonstrated skill acquisition on a simulator by showing improvements in performance with repeated use. A further five studies have demonstrated measurable improvements in operating theatre performance following a period of virtual reality simulator training. Conclusion The demonstration of 'real-world' benefits from the use of VR simulation in knee and shoulder arthroscopy is promising. However, evidence supporting its utility in other forms of orthopaedic surgery is lacking. Further studies of validity and utility should be combined with robust analyses of the cost efficiency of validated simulators to justify the financial investment required for their use in orthopaedic training. Cite this article: Bone Joint J 2018;100-B:559-65.
Procedural wound geometry and blood flow generation for medical training simulators
NASA Astrophysics Data System (ADS)
Aras, Rifat; Shen, Yuzhong; Li, Jiang
2012-02-01
Efficient application of wound treatment procedures is vital in both emergency room and battle zone scenes. In order to train first responders for such situations, physical casualty simulation kits, which are composed of tens of individual items, are commonly used. Similar to any other training scenarios, computer simulations can be effective means for wound treatment training purposes. For immersive and high fidelity virtual reality applications, realistic 3D models are key components. However, creation of such models is a labor intensive process. In this paper, we propose a procedural wound geometry generation technique that parameterizes key simulation inputs to establish the variability of the training scenarios without the need of labor intensive remodeling of the 3D geometry. The procedural techniques described in this work are entirely handled by the graphics processing unit (GPU) to enable interactive real-time operation of the simulation and to relieve the CPU for other computational tasks. The visible human dataset is processed and used as a volumetric texture for the internal visualization of the wound geometry. To further enhance the fidelity of the simulation, we also employ a surface flow model for blood visualization. This model is realized as a dynamic texture that is composed of a height field and a normal map and animated at each simulation step on the GPU. The procedural wound geometry and the blood flow model are applied to a thigh model and the efficiency of the technique is demonstrated in a virtual surgery scene.
Training, Simulation, the Learning Curve, and How to Reduce Complications in Urology.
Brunckhorst, Oliver; Volpe, Alessandro; van der Poel, Henk; Mottrie, Alexander; Ahmed, Kamran
2016-04-01
Urology is at the forefront of minimally invasive surgery to a great extent. These procedures produce additional learning challenges and possess a steep initial learning curve. Training and assessment methods in surgical specialties such as urology are known to lack clear structure and often rely on differing operative flow experienced by individuals and institutions. This article aims to assess current urology training modalities, to identify the role of simulation within urology, to define and identify the learning curves for various urologic procedures, and to discuss ways to decrease complications in the context of training. A narrative review of the literature was conducted through December 2015 using the PubMed/Medline, Embase, and Cochrane Library databases. Evidence of the validity of training methods in urology includes observation of a procedure, mentorship and fellowship, e-learning, and simulation-based training. Learning curves for various urologic procedures have been recommended based on the available literature. The importance of structured training pathways is highlighted, with integration of modular training to ensure patient safety. Valid training pathways are available in urology. The aim in urology training should be to combine all of the available evidence to produce procedure-specific curricula that utilise the vast array of training methods available to ensure that we continue to improve patient outcomes and reduce complications. The current evidence for different training methods available in urology, including simulation-based training, was reviewed, and the learning curves for various urologic procedures were critically analysed. Based on the evidence, future pathways for urology curricula have been suggested to ensure that patient safety is improved. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Alaraj, Ali; Charbel, Fady T; Birk, Daniel; Tobin, Matthew; Tobin, Mathew; Luciano, Cristian; Banerjee, Pat P; Rizzi, Silvio; Sorenson, Jeff; Foley, Kevin; Slavin, Konstantin; Roitberg, Ben
2013-01-01
Recent studies have shown that mental script-based rehearsal and simulation-based training improve the transfer of surgical skills in various medical disciplines. Despite significant advances in technology and intraoperative techniques over the last several decades, surgical skills training on neurosurgical operations still carries significant risk of serious morbidity or mortality. Potentially avoidable technical errors are well recognized as contributing to poor surgical outcome. Surgical education is undergoing overwhelming change, as a result of the reduction of work hours and current trends focusing on patient safety and linking reimbursement with clinical outcomes. Thus, there is a need for adjunctive means for neurosurgical training, which is a recent advancement in simulation technology. ImmersiveTouch is an augmented reality system that integrates a haptic device and a high-resolution stereoscopic display. This simulation platform uses multiple sensory modalities, re-creating many of the environmental cues experienced during an actual procedure. Modules available include ventriculostomy, bone drilling, percutaneous trigeminal rhizotomy, and simulated spinal modules such as pedicle screw placement, vertebroplasty, and lumbar puncture. We present our experience with the development of such augmented reality neurosurgical modules and the feedback from neurosurgical residents.
Alaraj, Ali; Charbel, Fady T.; Birk, Daniel; Tobin, Mathew; Luciano, Cristian; Banerjee, Pat P.; Rizzi, Silvio; Sorenson, Jeff; Foley, Kevin; Slavin, Konstantin; Roitberg, Ben
2013-01-01
Recent studies have shown that mental script-based rehearsal and simulation-based training improves the transfer of surgical skills in various medical disciplines. Despite significant advances in technology and intraoperative techniques over the last several decades, surgical skills training on neurosurgical operations still carries significant risk of serious morbidity or mortality. Potentially avoidable technical errors are well recognized as contributing to poor surgical outcome. Surgical education is undergoing overwhelming change, with reduction of working hours and current trends to focus on patient’s safety and linking reimbursement with clinical outcomes, and there is a need for adjunctive means for neurosurgical training;this has been recent advancement in simulation technology. ImmersiveTouch (IT) is an augmented reality (AR) system that integrates a haptic device and a high-resolution stereoscopic display. This simulation platform utilizes multiple sensory modalities, recreating many of the environmental cues experienced during an actual procedure. Modules available include ventriculostomy, bone drilling, percutaneous trigeminal rhizotomy, in addition to simulated spinal modules such as pedicle screw placement, vertebroplasty, and lumbar puncture. We present our experience with development of such AR neurosurgical modules and the feedback from neurosurgical residents. PMID:23254799
Simulation in surgery: a review.
Tan, Shaun Shi Yan; Sarker, Sudip K
2011-05-01
The ability to acquire surgical skills requires consistent practice, and evidence suggests that many of these technical skills can be learnt away from the operating theatre. The aim of this review article is to discuss the importance of surgical simulation today and its various types, exploring the effectiveness of simulation in the clinical setting and its challenges for the future. Surgical simulation offers the opportunity for trainees to practise their surgical skills prior to entering the operating theatre, allowing detailed feedback and objective assessment of their performance. This enables better patient safety and standards of care. Surgical simulators can be divided into organic or inorganic simulators. Organic simulators, consisting of live animal and fresh human cadaver models, are considered to be of high-fidelity. Inorganic simulators comprise virtual reality simulators and synthetic bench models. Current evidence suggests that skills acquired through training with simulators, positively transfers to the clinical setting and improves operative outcome. The major challenge for the future revolves around understanding the value of this new technology and developing an educational curriculum that can incorporate surgical simulators.
Muralha, Nuno; Oliveira, Manuel; Ferreira, Maria Amélia; Costa-Maia, José
2017-05-31
Virtual reality simulation is a topic of discussion as a complementary tool to traditional laparoscopic surgical training in the operating room. However, it is unclear whether virtual reality training can have an impact on the surgical performance of advanced laparoscopic procedures. Our objective was to assess the ability of the virtual reality simulator LAP Mentor to identify and quantify changes in surgical performance indicators, after LAP Mentor training for digestive anastomosis. Twelve surgeons from Centro Hospitalar de São João in Porto (Portugal) performed two sessions of advanced task 5: anastomosis in LAP Mentor, before and after completing the tutorial, and were evaluated on 34 surgical performance indicators. The results show that six surgical performance indicators significantly changed after LAP Mentor training. The surgeons performed the task significantly faster as the median 'total time' significantly reduced (p < 0.05) from 759.5 to 523.5 seconds. Significant decreases (p < 0.05) were also found in median 'total needle loading time' (303.3 to 107.8 seconds), 'average needle loading time' (38.5 to 31.0 seconds), 'number of passages in which the needle passed precisely through the entrance dots' (2.5 to 1.0), 'time the needle was held outside the visible field' (20.9 to 2.4 seconds), and 'total time the needle-holders' ends are kept outside the predefined operative field' (88.2 to 49.6 seconds). This study raises the possibility of using virtual reality training simulation as a benchmark tool to assess the surgical performance of Portuguese surgeons. LAP Mentor is able to identify variations in surgical performance indicators of digestive anastomosis.
Chung, Christopher
2015-04-01
This paper describes the use and analysis of the Simulator for Engineering Ethics Education (SEEE) to perform cross culture engineering ethics training and analysis. Details describing the first generation and second generation development of the SEEE are published in Chung and Alfred, Science and Engineering Ethics, vol. 15, 2009 and Alfred and Chung, Science and Engineering Ethics, vol. 18, 2012. In this effort, a group of far eastern educated students operated the simulator in the instructional, training, scenario, and evaluation modes. The pre and post treatment performance of these students were compared to U.S. Educated students. Analysis of the performance indicated that the far eastern educated student increased their level of knowledge 23.7 percent while U.S. educated students increased their level of knowledge by 39.3 percent.
The surgical ensemble: choreography as a simulation and training tool.
Satava, Richard M; Hunter, Anne Marie
2011-09-01
Team training and interprofessional training have recently emerged as critical new simulations that enhance performance by coordinating communication, leadership, professional, and, to a certain extent, technical skills. In describing these new training tools, the term choreography has been loosely used, but no critical appraisal of the role of the science of choreography has been applied to a surgical procedure. By analogy, the surgical team, including anesthetists, surgeons, nurses, and technicians, constitutes a complete ensemble, whose physical actions and interactions constitute the "performance of surgery." There are very specific "elements" (tools) that are basic to choreography, such as space, timing, rhythm, energy, cues, transitions, and especially rehearsal. This review explores whether such a metaphor is appropriate and the possibility of applying the science of choreography to the surgical team in the operating theater.
Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills.
Choudhury, Nusrat; Gélinas-Phaneuf, Nicholas; Delorme, Sébastien; Del Maestro, Rolando
2013-11-01
Technical skills training in neurosurgery is mostly done in the operating room. New educational paradigms are encouraging the development of novel training methods for surgical skills. Simulation could answer some of these needs. This article presents the development of a conceptual training framework for use on a virtual reality neurosurgical simulator. Appropriate tasks were identified by reviewing neurosurgical oncology curricula requirements and performing cognitive task analyses of basic techniques and representative surgeries. The tasks were then elaborated into training modules by including learning objectives, instructions, levels of difficulty, and performance metrics. Surveys and interviews were iteratively conducted with subject matter experts to delimitate, review, discuss, and approve each of the development stages. Five tasks were selected as representative of basic and advanced neurosurgical skill. These tasks were: 1) ventriculostomy, 2) endoscopic nasal navigation, 3) tumor debulking, 4) hemostasis, and 5) microdissection. The complete training modules were structured into easy, intermediate, and advanced settings. Performance metrics were also integrated to provide feedback on outcome, efficiency, and errors. The subject matter experts deemed the proposed modules as pertinent and useful for neurosurgical skills training. The conceptual framework presented here, the Fundamentals of Neurosurgery, represents a first attempt to develop standardized training modules for technical skills acquisition in neurosurgical oncology. The National Research Council Canada is currently developing NeuroTouch, a virtual reality simulator for cranial microneurosurgery. The simulator presently includes the five Fundamentals of Neurosurgery modules at varying stages of completion. A first pilot study has shown that neurosurgical residents obtained higher performance scores on the simulator than medical students. Further work will validate its components and use in a training curriculum. Copyright © 2013 N. Choudhury. Published by Elsevier Inc. All rights reserved.
2011-08-31
CAPE CANAVERAL, Fla. -- Volunteers, portraying their individual roles, stand beside a NASA Fire Rescue Services vehicle and a Huey II helicopter in support of the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
Development of excavator training simulator using leap motion controller
NASA Astrophysics Data System (ADS)
Fahmi, F.; Nainggolan, F.; Andayani, U.; Siregar, B.
2018-03-01
Excavator is a heavy machinery that is used for many industries purposes. Controlling the excavator is not easy. Its operator has to be trained well in many skills to make sure it is safe, effective, and efficient while using the excavator. In this research, we proposed a virtual reality excavator simulator supported by a device called Leap Motion Controller that supports finger and hand motions as an input. This prototype will be developed than in the virtual reality environment to give a more real sensing to the user.
Bonaretti, Serena; Vilayphiou, Nicolas; Chan, Caroline Mai; Yu, Andrew; Nishiyama, Kyle; Liu, Danmei; Boutroy, Stephanie; Ghasem-Zadeh, Ali; Boyd, Steven K.; Chapurlat, Roland; McKay, Heather; Shane, Elizabeth; Bouxsein, Mary L.; Black, Dennis M.; Majumdar, Sharmila; Orwoll, Eric S.; Lang, Thomas F.; Khosla, Sundeep; Burghardt, Andrew J.
2017-01-01
Introduction HR-pQCT is increasingly used to assess bone quality, fracture risk and anti-fracture interventions. The contribution of the operator has not been adequately accounted in measurement precision. Operators acquire a 2D projection (“scout view image”) and define the region to be scanned by positioning a “reference line” on a standard anatomical landmark. In this study, we (i) evaluated the contribution of positioning variability to in vivo measurement precision, (ii) measured intra- and inter-operator positioning variability, and (iii) tested if custom training software led to superior reproducibility in new operators compared to experienced operators. Methods To evaluate the operator in vivo measurement precision we compared precision errors calculated in 64 co-registered and non-co-registered scan-rescan images. To quantify operator variability, we developed software that simulates the positioning process of the scanner’s software. Eight experienced operators positioned reference lines on scout view images designed to test intra- and inter-operator reproducibility. Finally, we developed modules for training and evaluation of reference line positioning. We enrolled 6 new operators to participate in a common training, followed by the same reproducibility experiments performed by the experienced group. Results In vivo precision errors were up to three-fold greater (Tt.BMD and Ct.Th) when variability in scan positioning was included. Inter-operator precision errors were significantly greater than short-term intra-operator precision (p<0.001). New trained operators achieved comparable intra-operator reproducibility to experienced operators, and lower inter-operator reproducibility (p<0.001). Precision errors were significantly greater for the radius than for the tibia. Conclusion Operator reference line positioning contributes significantly to in vivo measurement precision and is significantly greater for multi-operator datasets. Inter-operator variability can be significantly reduced using a systematic training platform, now available online (http://webapps.radiology.ucsf.edu/refline/). PMID:27475931
An Approach to Embedded Training for Future Leaders and Staff
2009-10-01
13. SUPPLEMENTARY NOTES See also ADA562526. RTO-MP-HFM-169 Human Dimensions in Embedded Virtual Simulation (Les dimensions humaines dans la...order to better capitalize on follow-on operations. 4.10 Theme 7: Sustain Unit Operations Theme 7 is defined as the ability of Soldiers and
An Event-Based Approach to Design a Teamwork Training Scenario and Assessment Tool in Surgery.
Nguyen, Ngan; Watson, William D; Dominguez, Edward
2016-01-01
Simulation is a technique recommended for teaching and measuring teamwork, but few published methodologies are available on how best to design simulation for teamwork training in surgery and health care in general. The purpose of this article is to describe a general methodology, called event-based approach to training (EBAT), to guide the design of simulation for teamwork training and discuss its application to surgery. The EBAT methodology draws on the science of training by systematically introducing training exercise events that are linked to training requirements (i.e., competencies being trained and learning objectives) and performance assessment. The EBAT process involves: Of the 4 teamwork competencies endorsed by the Agency for Healthcare Research Quality and Department of Defense, "communication" was chosen to be the focus of our training efforts. A total of 5 learning objectives were defined based on 5 validated teamwork and communication techniques. Diagnostic laparoscopy was chosen as the clinical context to frame the training scenario, and 29 KSAs were defined based on review of published literature on patient safety and input from subject matter experts. Critical events included those that correspond to a specific phase in the normal flow of a surgical procedure as well as clinical events that may occur when performing the operation. Similar to the targeted KSAs, targeted responses to the critical events were developed based on existing literature and gathering input from content experts. Finally, a 29-item EBAT-derived checklist was created to assess communication performance. Like any instructional tool, simulation is only effective if it is designed and implemented appropriately. It is recognized that the effectiveness of simulation depends on whether (1) it is built upon a theoretical framework, (2) it uses preplanned structured exercises or events to allow learners the opportunity to exhibit the targeted KSAs, (3) it assesses performance, and (4) it provides formative and constructive feedback to bridge the gap between the learners' KSAs and the targeted KSAs. The EBAT methodology guides the design of simulation that incorporates these 4 features and, thus, enhances training effectiveness with simulation. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Virtual Reality Simulation for the Operating Room
Gallagher, Anthony G.; Ritter, E Matt; Champion, Howard; Higgins, Gerald; Fried, Marvin P.; Moses, Gerald; Smith, C Daniel; Satava, Richard M.
2005-01-01
Summary Background Data: To inform surgeons about the practical issues to be considered for successful integration of virtual reality simulation into a surgical training program. The learning and practice of minimally invasive surgery (MIS) makes unique demands on surgical training programs. A decade ago Satava proposed virtual reality (VR) surgical simulation as a solution for this problem. Only recently have robust scientific studies supported that vision Methods: A review of the surgical education, human-factor, and psychology literature to identify important factors which will impinge on the successful integration of VR training into a surgical training program. Results: VR is more likely to be successful if it is systematically integrated into a well-thought-out education and training program which objectively assesses technical skills improvement proximate to the learning experience. Validated performance metrics should be relevant to the surgical task being trained but in general will require trainees to reach an objectively determined proficiency criterion, based on tightly defined metrics and perform at this level consistently. VR training is more likely to be successful if the training schedule takes place on an interval basis rather than massed into a short period of extensive practice. High-fidelity VR simulations will confer the greatest skills transfer to the in vivo surgical situation, but less expensive VR trainers will also lead to considerably improved skills generalizations. Conclusions: VR for improved performance of MIS is now a reality. However, VR is only a training tool that must be thoughtfully introduced into a surgical training curriculum for it to successfully improve surgical technical skills. PMID:15650649