Science.gov

Sample records for opportunistic pathogen pseudomonas

  1. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    EPA Science Inventory

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  2. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    EPA Science Inventory

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  3. The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase

    PubMed Central

    Vance, Russell E.; Hong, Song; Gronert, Karsten; Serhan, Charles N.; Mekalanos, John J.

    2004-01-01

    In mammals, lipoxygenases play key roles in inflammation by initiating the transformation of arachidonic acid into potent bioactive lipid mediators such as leukotrienes and lipoxins. In general, most bacteria are believed to lack lipoxygenases and their polyunsaturated fatty acid substrates. It is therefore of interest that an ORF (PA1169) with high homology to eukaryotic lipoxygenases was discovered by analysis of the whole-genome sequence of the opportunistic bacterial pathogen Pseudomonas aeruginosa. Using TLC and liquid chromatography-UV-tandem mass spectrometry (LC-UV-MS-MS), we demonstrate that PA1169 encodes a bacterial lipoxygenase (LoxA) that converts arachidonic acid into 15-hydroxyeicosatetraenoic acid (15-HETE). Although mammalian lipoxygenases are cytoplasmic enzymes, P. aeruginosa LoxA activity is secreted. Taken together, these results suggest a mechanism by which a pathogen-secreted lipoxygenase may modulate host defense and inflammation via alteration of the biosynthesis of local chemical mediators. PMID:14766977

  4. Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2017-01-01

    It is generally thought that mucosal fluids protect underlying epithelial surfaces against opportunistic infection via their antimicrobial activity. However, our published data show that human tear fluid can protect against the major opportunistic pathogen Pseudomonas aeruginosa independently of bacteriostatic activity. Here, we explored the mechanisms for tear protection, focusing on impacts of tear fluid on bacterial virulence factor expression. Results showed that tear fluid suppressed twitching motility, a type of surface-associated movement conferred by pili. Previously, we showed that twitching is critical for P. aeruginosa traversal of corneal epithelia, exit from epithelial cells after internalization, and corneal virulence. Inhibition of twitching by tear fluid was dose-dependent with dilutions to 6.25% retaining activity. Purified lactoferrin, lysozyme, and contrived tears containing these, and many other, tear components lacked the activity. Systematic protein fractionation, mass spectrometry, and immunoprecipitation identified the glycoprotein DMBT1 (Deleted in Malignant Brain Tumors 1) in tear fluid as required. DMBT1 purified from human saliva also inhibited twitching, as well as P. aeruginosa traversal of human corneal epithelial cells in vitro, and reduced disease pathology in a murine model of corneal infection. DMBT1 did not affect PilA expression, nor bacterial intracellular cyclicAMP levels, and suppressed twitching motility of P. aeruginosa chemotaxis mutants (chpB, pilK), and an adenylate cyclase mutant (cyaB). However, dot-immunoblot assays showed purified DMBT1 binding of pili extracted from PAO1 suggesting that twitching inhibition may involve a direct interaction with pili. The latter could affect extension or retraction of pili, their interactions with biotic or abiotic surfaces, or cause their aggregation. Together, the data suggest that DMBT1 inhibition of twitching motility contributes to the mechanisms by which mucosal fluids protect

  5. Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa.

    PubMed

    Li, Jianfang; Metruccio, Matteo M E; Evans, David J; Fleiszig, Suzanne M J

    2017-05-01

    It is generally thought that mucosal fluids protect underlying epithelial surfaces against opportunistic infection via their antimicrobial activity. However, our published data show that human tear fluid can protect against the major opportunistic pathogen Pseudomonas aeruginosa independently of bacteriostatic activity. Here, we explored the mechanisms for tear protection, focusing on impacts of tear fluid on bacterial virulence factor expression. Results showed that tear fluid suppressed twitching motility, a type of surface-associated movement conferred by pili. Previously, we showed that twitching is critical for P. aeruginosa traversal of corneal epithelia, exit from epithelial cells after internalization, and corneal virulence. Inhibition of twitching by tear fluid was dose-dependent with dilutions to 6.25% retaining activity. Purified lactoferrin, lysozyme, and contrived tears containing these, and many other, tear components lacked the activity. Systematic protein fractionation, mass spectrometry, and immunoprecipitation identified the glycoprotein DMBT1 (Deleted in Malignant Brain Tumors 1) in tear fluid as required. DMBT1 purified from human saliva also inhibited twitching, as well as P. aeruginosa traversal of human corneal epithelial cells in vitro, and reduced disease pathology in a murine model of corneal infection. DMBT1 did not affect PilA expression, nor bacterial intracellular cyclicAMP levels, and suppressed twitching motility of P. aeruginosa chemotaxis mutants (chpB, pilK), and an adenylate cyclase mutant (cyaB). However, dot-immunoblot assays showed purified DMBT1 binding of pili extracted from PAO1 suggesting that twitching inhibition may involve a direct interaction with pili. The latter could affect extension or retraction of pili, their interactions with biotic or abiotic surfaces, or cause their aggregation. Together, the data suggest that DMBT1 inhibition of twitching motility contributes to the mechanisms by which mucosal fluids protect

  6. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa.

    PubMed

    Wong, Alex; Rodrigue, Nicolas; Kassen, Rees

    2012-09-01

    Adaptation is likely to be an important determinant of the success of many pathogens, for example when colonizing a new host species, when challenged by antibiotic treatment, or in governing the establishment and progress of long-term chronic infection. Yet, the genomic basis of adaptation is poorly understood in general, and for pathogens in particular. We investigated the genetics of adaptation to cystic fibrosis-like culture conditions in the presence and absence of fluoroquinolone antibiotics using the opportunistic pathogen Pseudomonas aeruginosa. Whole-genome sequencing of experimentally evolved isolates revealed parallel evolution at a handful of known antibiotic resistance genes. While the level of antibiotic resistance was largely determined by these known resistance genes, the costs of resistance were instead attributable to a number of mutations that were specific to individual experimental isolates. Notably, stereotypical quinolone resistance mutations in DNA gyrase often co-occurred with other mutations that, together, conferred high levels of resistance but no consistent cost of resistance. This result may explain why these mutations are so prevalent in clinical quinolone-resistant isolates. In addition, genes involved in cyclic-di-GMP signalling were repeatedly mutated in populations evolved in viscous culture media, suggesting a shared mechanism of adaptation to this CF-like growth environment. Experimental evolutionary approaches to understanding pathogen adaptation should provide an important complement to studies of the evolution of clinical isolates.

  7. Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Baig, Nameera; Polisetti, Sneha; Morales-Soto, Nydia; Dunham, Sage J. B.; Sweedler, Jonathan V.; Shrout, Joshua D.; Bohn, Paul W.

    2016-09-01

    Biofilms, such as those formed by the opportunistic human pathogen Pseudomonas aeruginosa are complex, matrix enclosed, and surface-associated communities of cells. Bacteria that are part of a biofilm community are much more resistant to antibiotics and the host immune response than their free-floating counterparts. P. aeruginosa biofilms are associated with persistent and chronic infections in diseases such as cystic fibrosis and HIV-AIDS. P. aeruginosa synthesizes and secretes signaling molecules such as the Pseudomonas quinolone signal (PQS) which are implicated in quorum sensing (QS), where bacteria regulate gene expression based on population density. Processes such as biofilms formation and virulence are regulated by QS. This manuscript describes the powerful molecular imaging capabilities of confocal Raman microscopy (CRM) and surface enhanced Raman spectroscopy (SERS) in conjunction with multivariate statistical tools such as principal component analysis (PCA) for studying the spatiotemporal distribution of signaling molecules, secondary metabolites and virulence factors in biofilm communities of P. aeruginosa. Our observations reveal that the laboratory strain PAO1C synthesizes and secretes 2-alkyl-4-hydroxyquinoline N-oxides and 2-alkyl-4-hydroxyquinolones in high abundance, while the isogenic acyl homoserine lactone QS-deficient mutant (ΔlasIΔrhlI) strain produces predominantly 2-alkyl-quinolones during biofilm formation. This study underscores the use of CRM, along with traditional biological tools such as genetics, for studying the behavior of microbial communities at the molecular level.

  8. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    PubMed Central

    Hilborn, Elizabeth D.; Arduino, Matthew J.; Pruden, Amy; Edwards, Marc A.

    2015-01-01

    Background Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexisting risk factors and frequently require hospitalization. Objectives The objectives of this report are to alert professionals of the impact of OPPPs, the fact that 30% of the population may be exposed to OPPPs, and the need to develop means to reduce OPPP exposure. We herein present a review of the epidemiology and ecology of these three bacterial OPPPs, specifically to identify common and unique features. Methods A Water Research Foundation–sponsored workshop gathered experts from across the United States to review the characteristics of OPPPs, identify problems, and develop a list of research priorities to address critical knowledge gaps with respect to increasing OPPP-associated disease. Discussion OPPPs share the common characteristics of disinfectant resistance and growth in biofilms in water distribution systems or premise plumbing. Thus, they share a number of habitats with humans (e.g., showers) that can lead to exposure and infection. The frequency of OPPP-infected individuals is rising and will likely continue to rise as the number of at-risk individuals is increasing. Improved reporting of OPPP disease and increased understanding of the genetic, physiologic, and structural characteristics governing the persistence and growth of OPPPs in drinking water distribution systems and premise plumbing is needed. Conclusions Because broadly effective community-level engineering interventions for the control of OPPPs have yet to be identified, and because the number of at-risk individuals will continue to rise, it is likely that OPPP-related infections will continue to increase. However, it is possible that individuals can take measures (e.g., raise hot water heater temperatures and filter

  9. Genome-wide patterns of recombination in the opportunistic human pathogen Pseudomonas aeruginosa.

    PubMed

    Dettman, Jeremy R; Rodrigue, Nicolas; Kassen, Rees

    2014-12-04

    The bacterium Pseudomonas aeruginosa is a significant cause of acute nosocomial infections as well as chronic respiratory infections in patients with cystic fibrosis (CF). Recent reports of the intercontinental spread of a CF-specific epidemic strain, combined with high intrinsic levels of antibiotic resistance, have made this opportunistic pathogen an important public health concern. Strain-specific differences correlate with variation in clinical outcomes of infected CF patients, increasing the urgency to understand the evolutionary origin of genetic factors conferring important phenotypes that enable infection, virulence, or resistance. Here, we describe the genome-wide patterns of homologous and nonhomologous recombination in P. aeruginosa, and the extent to which the genomes are affected by these diversity-generating processes. Based on whole-genome sequence data from 32 clinical isolates of P. aeruginosa, we examined the rate and distribution of recombination along the genome, and its effect on the reconstruction of phylogenetic relationships. Multiple lines of evidence suggested that recombination was common and usually involves short stretches of DNA (200-300 bp). Although mutation was the main source of nucleotide diversity, the import of polymorphisms by homologous recombination contributed nearly as much. We also identified the genomic regions with frequent recombination, and the specific sequences of recombinant origin within epidemic strains. The functional characteristics of the genes contained therein were examined for potential associations with a pathogenic lifestyle or adaptation to the CF lung environment. A common link between many of the high-recombination genes was their functional affiliation with the cell wall, suggesting that the products of recombination may be maintained by selection for variation in cell-surface molecules that allows for evasion of the host immune system.

  10. What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated.

    PubMed

    Valot, Benoît; Guyeux, Christophe; Rolland, Julien Yves; Mazouzi, Kamel; Bertrand, Xavier; Hocquet, Didier

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen able to thrive in highly diverse ecological niches and to infect compromised patients. Its genome exhibits a mosaic structure composed of a core genome into which accessory genes are inserted en bloc at specific sites. The size and the content of the core genome are open for debate as their estimation depends on the set of genomes considered and the pipeline of gene detection and clustering. Here, we redefined the size and the content of the core genome of P. aeruginosa from fully re-analyzed genomes of 17 reference strains. After the optimization of gene detection and clustering parameters, the core genome was defined at 5,233 orthologs, which represented ~ 88% of the average genome. Extrapolation indicated that our panel was suitable to estimate the core genome that will remain constant even if new genomes are added. The core genome contained resistance determinants to the major antibiotic families as well as most metabolic, respiratory, and virulence genes. Although some virulence genes were accessory, they often related to conserved biological functions. Long-standing prophage elements were subjected to a genetic drift to eventually display a G+C content as higher as that of the core genome. This contrasts with the low G+C content of highly conserved ribosomal genes. The conservation of metabolic and respiratory genes could guarantee the ability of the species to thrive on a variety of carbon sources for energy in aerobiosis and anaerobiosis. Virtually all the strains, of environmental or clinical origin, have the complete toolkit to become resistant to the major antipseudomonal compounds and possess basic pathogenic mechanisms to infect humans. The knowledge of the genes shared by the majority of the P. aeruginosa isolates is a prerequisite for designing effective therapeutics to combat the wide variety of human infections.

  11. Identification and Characterization of the HicAB Toxin-Antitoxin System in the Opportunistic Pathogen Pseudomonas aeruginosa

    PubMed Central

    Li, Gang; Shen, Mengyu; Lu, Shuguang; Le, Shuai; Tan, Yinling; Wang, Jing; Zhao, Xia; Shen, Wei; Guo, Keke; Yang, Yuhui; Zhu, Hongbin; Rao, Xiancai; Hu, Fuquan; Li, Ming

    2016-01-01

    Toxin-antitoxin (TA) systems are small genetic modules that are widely distributed in the genomes of bacteria and archaea and have been proposed to fulfill numerous functions. Here, we describe the identification and characterization of a type II TA system, comprising the hicAB locus in the human opportunistic pathogen Pseudomonas aeruginosa. The hicAB locus consists of genes hicA and hicB encoding a toxin and its cognate antitoxin, respectively. BLAST analysis revealed that hicAB is prevalent in approximately 36% of P. aeruginosa strains and locates in the same genomic region. RT-PCR demonstrated that hicAB forms a bicistronic operon that is cotranscribed under normal growth conditions. Overproduction of HicA inhibited the growth of Escherichia coli, and this effect could be counteracted by co-expression of HicB. The Escherichia coli kill/rescue assay showed that the effect of HicA is bacteriostatic, rather than bactericidal. Deletion of hicAB had no effect on the biofilm formation and virulence of P. aeruginosa in a mice infection model. Collectively, this study presents the first characterization of the HicAB system in the opportunistic pathogen P. aeruginosa. PMID:27104566

  12. Identification and Characterization of the HicAB Toxin-Antitoxin System in the Opportunistic Pathogen Pseudomonas aeruginosa.

    PubMed

    Li, Gang; Shen, Mengyu; Lu, Shuguang; Le, Shuai; Tan, Yinling; Wang, Jing; Zhao, Xia; Shen, Wei; Guo, Keke; Yang, Yuhui; Zhu, Hongbin; Rao, Xiancai; Hu, Fuquan; Li, Ming

    2016-04-19

    Toxin-antitoxin (TA) systems are small genetic modules that are widely distributed in the genomes of bacteria and archaea and have been proposed to fulfill numerous functions. Here, we describe the identification and characterization of a type II TA system, comprising the hicAB locus in the human opportunistic pathogen Pseudomonas aeruginosa. The hicAB locus consists of genes hicA and hicB encoding a toxin and its cognate antitoxin, respectively. BLAST analysis revealed that hicAB is prevalent in approximately 36% of P. aeruginosa strains and locates in the same genomic region. RT-PCR demonstrated that hicAB forms a bicistronic operon that is cotranscribed under normal growth conditions. Overproduction of HicA inhibited the growth of Escherichia coli, and this effect could be counteracted by co-expression of HicB. The Escherichia coli kill/rescue assay showed that the effect of HicA is bacteriostatic, rather than bactericidal. Deletion of hicAB had no effect on the biofilm formation and virulence of P. aeruginosa in a mice infection model. Collectively, this study presents the first characterization of the HicAB system in the opportunistic pathogen P. aeruginosa.

  13. Human Lysozyme Peptidase Resistance Is Perturbed by the Anionic Glycolipid Biosurfactant Rhamnolipid Produced by the Opportunistic Pathogen Pseudomonas aeruginosa.

    PubMed

    Andersen, Kell K; Vad, Brian S; Scavenius, Carsten; Enghild, Jan J; Otzen, Daniel E

    2017-01-10

    Infection by the opportunistic pathogen Pseudomonas aeruginosa (PA) is accompanied by the secretion of virulence factors such as the secondary metabolite rhamnolipid (RL) as well as an array of bacterial enzymes, including the peptidase elastase. The human immune system tries to counter this via defensive proteins such as lysozyme (HLZ). HLZ targets the bacterial cell wall but may also have other antimicrobial activities. The enzyme contains four disulfide bonds and shows high thermodynamic stability and resistance to proteolytic attack. Here we show that RL promotes HLZ degradation by several unrelated peptidases, including the PA elastase and human peptidases. This occurs although RL does not by itself denature HLZ. Nevertheless, RL binds in a sufficiently high stoichiometry (8:1 RL:HLZ) to neutralize the highly cationic surface of HLZ. The initial cleavage sites agree well with the domain boundaries of HLZ. Thus, binding of RL to native HLZ may be sufficient to allow proteolytic attack at slightly exposed sites on the protein, leading to subsequent degradation. Furthermore, biofilms of RL-producing strains of PA are protected better against high concentrations of HLZ than RL-free PA strains are. We conclude that pathogen-produced RL may weaken host defenses by facilitating degradation of key host proteins.

  14. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells.

    PubMed

    Elsen, Sylvie; Collin-Faure, Véronique; Gidrol, Xavier; Lemercier, Claudie

    2013-11-01

    Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.

  15. Fitness trade-offs explain low levels of persister cells in the opportunistic pathogen Pseudomonas aeruginosa.

    PubMed

    Stepanyan, Kristine; Wenseleers, Tom; Duéñez-Guzmán, Edgar A; Muratori, Frédéric; Van den Bergh, Bram; Verstraeten, Natalie; De Meester, Luc; Verstrepen, Kevin J; Fauvart, Maarten; Michiels, Jan

    2015-04-01

    Microbial populations often contain a fraction of slow-growing persister cells that withstand antibiotics and other stress factors. Current theoretical models predict that persistence levels should reflect a stable state in which the survival advantage of persisters under adverse conditions is balanced with the direct growth cost impaired under favourable growth conditions, caused by the nonreplication of persister cells. Based on this direct growth cost alone, however, it remains challenging to explain the observed low levels of persistence (<1%) seen in the populations of many species. Here, we present data from the opportunistic human pathogen Pseudomonas aeruginosa that can explain this discrepancy by revealing various previously unknown costs of persistence. In particular, we show that in the absence of antibiotic stress, increased persistence is traded off against a lengthened lag phase as well as a reduced survival ability during stationary phase. We argue that these pleiotropic costs contribute to the very low proportions of persister cells observed among natural P. aeruginosa isolates (3 × 10(-8) -3 × 10(-4)) and that they can explain why strains with higher proportions of persister cells lose out very quickly in competition assays under favourable growth conditions, despite a negligible difference in maximal growth rate. We discuss how incorporating these trade-offs could lead to models that can better explain the evolution of persistence in nature and facilitate the rational design of alternative therapeutic strategies for treating infectious diseases.

  16. Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa.

    PubMed

    Yang, Jie; Zhao, Hui-Lin; Ran, Li-Yuan; Li, Chun-Yang; Zhang, Xi-Ying; Su, Hai-Nan; Shi, Mei; Zhou, Bai-Cheng; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2015-04-23

    Pseudolysin is the most abundant protease secreted by Pseudomonas aeruginosa and is the major extracellular virulence factor of this opportunistic human pathogen. Pseudolysin destroys human tissues by solubilizing elastin. However, the mechanisms by which pseudolysin binds to and degrades elastin remain elusive. In this study, we investigated the mechanism of action of pseudolysin on elastin binding and degradation by biochemical assay, microscopy and site-directed mutagenesis. Pseudolysin bound to bovine elastin fibers and preferred to attack peptide bonds with hydrophobic residues at the P1 and P1' positions in the hydrophobic domains of elastin. The time-course degradation processes of both bovine elastin fibers and cross-linked human tropoelastin by pseudolysin were further investigated by microscopy. Altogether, the results indicate that elastin degradation by pseudolysin began with the hydrophobic domains on the fiber surface, followed by the progressive disassembly of macroscopic elastin fibers into primary structural elements. Moreover, our site-directed mutational results indicate that five hydrophobic residues in the S1-S1' sub-sites played key roles in the binding of pseudolysin to elastin. This study sheds lights on the pathogenesis of P. aeruginosa infection.

  17. Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients

    PubMed Central

    Kaur, Jashanpreet; Pethani, Bhavin P.; Kumar, Sheemal; Kim, Minkyoung; Sunna, Anwar; Kautto, Liisa; Penesyan, Anahit; Paulsen, Ian T.; Nevalainen, Helena

    2015-01-01

    The filamentous fungus Scedosporium aurantiacum and the bacterium Pseudomonas aeruginosa are opportunistic pathogens isolated from lungs of the cystic fibrosis (CF) patients. P. aeruginosa has been known to suppress the growth of a number of CF related fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. However, the interactions between P. aeruginosa and S. aurantiacum have not been investigated in depth. Hence we assessed the effect of P. aeruginosa reference strain PAO1 and two clinical isolates PASS1 and PASS2 on the growth of two clinical S. aurantiacum isolates WM 06.482 and WM 08.202 using solid plate assays and liquid cultures, in a synthetic medium mimicking the nutrient condition in the CF sputum. Solid plate assays showed a clear inhibition of growth of both S. aurantiacum strains when cultured with P. aeruginosa strains PASS1 and PAO1. The inhibitory effect was confirmed by confocal microscopy. In addition to using chemical fluorescent stains, strains tagged with yfp (P. aeruginosa PASS1) and mCherry (S. aurantiacum WM 06.482) were created to facilitate detailed microscopic observations on strain interaction. To our knowledge, this is the first study describing successful genetic transformation of S. aurantiacum. Inhibition of growth was observed only in co-cultures of P. aeruginosa and S. aurantiacum; the cell fractions obtained from independent bacterial monocultures failed to initiate a response against the fungus. In the liquid co-cultures, biofilm forming P. aeruginosa strains PASS1 and PAO1 displayed higher inhibition of fungal growth when compared to PASS2. No change was observed in the inhibition pattern when direct cell contact between the bacterial and fungal strains was prevented using a separation membrane suggesting the involvement of extracellular metabolites in the fungal inhibition. However, one of the most commonly described bacterial virulence factors, pyocyanin, had no effect against either of the S

  18. Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients.

    PubMed

    Kaur, Jashanpreet; Pethani, Bhavin P; Kumar, Sheemal; Kim, Minkyoung; Sunna, Anwar; Kautto, Liisa; Penesyan, Anahit; Paulsen, Ian T; Nevalainen, Helena

    2015-01-01

    The filamentous fungus Scedosporium aurantiacum and the bacterium Pseudomonas aeruginosa are opportunistic pathogens isolated from lungs of the cystic fibrosis (CF) patients. P. aeruginosa has been known to suppress the growth of a number of CF related fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. However, the interactions between P. aeruginosa and S. aurantiacum have not been investigated in depth. Hence we assessed the effect of P. aeruginosa reference strain PAO1 and two clinical isolates PASS1 and PASS2 on the growth of two clinical S. aurantiacum isolates WM 06.482 and WM 08.202 using solid plate assays and liquid cultures, in a synthetic medium mimicking the nutrient condition in the CF sputum. Solid plate assays showed a clear inhibition of growth of both S. aurantiacum strains when cultured with P. aeruginosa strains PASS1 and PAO1. The inhibitory effect was confirmed by confocal microscopy. In addition to using chemical fluorescent stains, strains tagged with yfp (P. aeruginosa PASS1) and mCherry (S. aurantiacum WM 06.482) were created to facilitate detailed microscopic observations on strain interaction. To our knowledge, this is the first study describing successful genetic transformation of S. aurantiacum. Inhibition of growth was observed only in co-cultures of P. aeruginosa and S. aurantiacum; the cell fractions obtained from independent bacterial monocultures failed to initiate a response against the fungus. In the liquid co-cultures, biofilm forming P. aeruginosa strains PASS1 and PAO1 displayed higher inhibition of fungal growth when compared to PASS2. No change was observed in the inhibition pattern when direct cell contact between the bacterial and fungal strains was prevented using a separation membrane suggesting the involvement of extracellular metabolites in the fungal inhibition. However, one of the most commonly described bacterial virulence factors, pyocyanin, had no effect against either of the S

  19. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen.

    PubMed

    Brooke, Joanna S

    2012-01-01

    Stenotrophomonas maltophilia is an emerging multidrug-resistant global opportunistic pathogen. The increasing incidence of nosocomial and community-acquired S. maltophilia infections is of particular concern for immunocompromised individuals, as this bacterial pathogen is associated with a significant fatality/case ratio. S. maltophilia is an environmental bacterium found in aqueous habitats, including plant rhizospheres, animals, foods, and water sources. Infections of S. maltophilia can occur in a range of organs and tissues; the organism is commonly found in respiratory tract infections. This review summarizes the current literature and presents S. maltophilia as an organism with various molecular mechanisms used for colonization and infection. S. maltophilia can be recovered from polymicrobial infections, most notably from the respiratory tract of cystic fibrosis patients, as a cocolonizer with Pseudomonas aeruginosa. Recent evidence of cell-cell communication between these pathogens has implications for the development of novel pharmacological therapies. Animal models of S. maltophilia infection have provided useful information about the type of host immune response induced by this opportunistic pathogen. Current and emerging treatments for patients infected with S. maltophilia are discussed.

  20. Stenotrophomonas maltophilia: an Emerging Global Opportunistic Pathogen

    PubMed Central

    2012-01-01

    Summary: Stenotrophomonas maltophilia is an emerging multidrug-resistant global opportunistic pathogen. The increasing incidence of nosocomial and community-acquired S. maltophilia infections is of particular concern for immunocompromised individuals, as this bacterial pathogen is associated with a significant fatality/case ratio. S. maltophilia is an environmental bacterium found in aqueous habitats, including plant rhizospheres, animals, foods, and water sources. Infections of S. maltophilia can occur in a range of organs and tissues; the organism is commonly found in respiratory tract infections. This review summarizes the current literature and presents S. maltophilia as an organism with various molecular mechanisms used for colonization and infection. S. maltophilia can be recovered from polymicrobial infections, most notably from the respiratory tract of cystic fibrosis patients, as a cocolonizer with Pseudomonas aeruginosa. Recent evidence of cell-cell communication between these pathogens has implications for the development of novel pharmacological therapies. Animal models of S. maltophilia infection have provided useful information about the type of host immune response induced by this opportunistic pathogen. Current and emerging treatments for patients infected with S. maltophilia are discussed. PMID:22232370

  1. Common features of opportunistic premise plumbing pathogens.

    PubMed

    Falkinham, Joseph O

    2015-04-24

    Recently it has been estimated that the annual cost of diseases caused by the waterborne pathogens Legionella pneumonia, Mycobacterium avium, and Pseudomonas aeruginosa is $500 million. For the period 2001-2012, the estimated cost of hospital admissions for nontuberculous mycobacterial pulmonary disease, the majority caused by M. avium, was almost $1 billion. These three waterborne opportunistic pathogens are normal inhabitants of drinking water--not contaminants--that share a number of key characteristics that predispose them to survival, persistence, and growth in drinking water distribution systems and premise plumbing. Herein, I list and describe these shared characteristics that include: disinfectant-resistance, biofilm-formation, growth in amoebae, growth at low organic carbon concentrations (oligotrophic), and growth under conditions of stagnation. This review is intended to increase awareness of OPPPs, identify emerging OPPPs, and challenge the drinking water industry to develop novel approaches toward their control.

  2. Common Features of Opportunistic Premise Plumbing Pathogens

    PubMed Central

    Falkinham, Joseph O.

    2015-01-01

    Recently it has been estimated that the annual cost of diseases caused by the waterborne pathogens Legionella pneumonia, Mycobacterium avium, and Pseudomonas aeruginosa is $500 million. For the period 2001–2012, the estimated cost of hospital admissions for nontuberculous mycobacterial pulmonary disease, the majority caused by M. avium, was almost $1 billion. These three waterborne opportunistic pathogens are normal inhabitants of drinking water—not contaminants—that share a number of key characteristics that predispose them to survival, persistence, and growth in drinking water distribution systems and premise plumbing. Herein, I list and describe these shared characteristics that include: disinfectant-resistance, biofilm-formation, growth in amoebae, growth at low organic carbon concentrations (oligotrophic), and growth under conditions of stagnation. This review is intended to increase awareness of OPPPs, identify emerging OPPPs, and challenge the drinking water industry to develop novel approaches toward their control. PMID:25918909

  3. Structural characterizations of metal ion binding transcriptional regulator CueR from opportunistic pathogen pseudomonas aeruginosa to identify its possible involvements in virulence.

    PubMed

    Bagchi, Angshuman

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen present in the environment. It is responsible behind a variety of diseases specifically the multidrug-resistant nosocomial infections and chronic lung infections in cystic fibrosis patients. One of the vital genes of the organism responsible for its multidrug-resistant behavior is the gene PA3523 which codes for the multidrug efflux transporter. The expression of PA3523 is regulated by the dimeric transcription factor CueR having helix-turn-helix DNA binding motif. So far, there have been no previous reports that depict the characterization of CueR protein from P. aeruginosa from a structural point of view. In the present work, an attempt has been made to characterize CueR protein by structural bioinformatics approach. The dimeric structure of CueR was built by comparative modeling technique. The dimeric model of CueR was then docked onto the corresponding promoter region of the PA3523 gene encoding the multidrug efflux transporter. The docked complex of promoter DNA with CueR protein was subjected to molecular dynamics simulations to identify the mode of DNA-protein interactions. So far, this is the first report that depicts the mechanistic details of gene regulation by CueR protein. This work may therefore be useful to illuminate the still obscure molecular mechanism behind disease propagation by P. aeruginosa.

  4. Structural and Biochemical Analysis of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from the Opportunistic Pathogen Pseudomonas aeruginosa PAO1.

    PubMed

    Xu, Kun; Li, Shanshan; Yang, Wen; Li, Kan; Bai, Yuwei; Xu, Yueyang; Jin, Jin; Wang, Yingying; Bartlam, Mark

    2015-01-01

    Biofilms are important for cell communication and growth in most bacteria, and are responsible for a number of human clinical infections and diseases. TpbA (PA3885) is a dual specific tyrosine phosphatase (DUSP) that negatively regulates biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa PAO1 by converting extracellular quorum sensing signals into internal gene cascade reactions that result in reduced biofilm formation. We have determined the three-dimensional crystal structure of wild-type TpbA from P. aeruginosa PAO1 in the phosphate-bound state and a TpbA (C132S) mutant with phosphotyrosine. Comparison between the phosphate-bound structure and the previously reported ligand-free TpbA structure reveals the extent of conformational changes that occur upon substrate binding. The largest changes occur in the functional loops that define the substrate binding site, including the PTP, general acid and α4-α5 loops. We further show that TpbA efficiently catalyzes the hydrolysis of two phosphotyrosine peptides derived from the periplasmic domain of TpbB (YfiN, PA1120), with a strong preference for dephosphorylating Tyr48 over Tyr62. This work adds to the small repertoire of DUSP structures in both the ligand-free and ligand-bound states, and provides a starting point for further study of the role of TpbA in biofilm formation.

  5. Occurrence of Opportunistic Pathogens Legionella Pneumophilaand Non-tuberculous Mycobacteria in Hospital Plumbing Systems

    EPA Science Inventory

    Opportunistic premise plumbing pathogens (OPPPs) such as Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are frequently detected in the plumbing systems of large buildings. The ability of these organisms to form biofilms and to grow in phagocytic amoeba ar...

  6. Occurrence of Opportunistic Pathogens Legionella Pneumophilaand Non-tuberculous Mycobacteria in Hospital Plumbing Systems

    EPA Science Inventory

    Opportunistic premise plumbing pathogens (OPPPs) such as Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are frequently detected in the plumbing systems of large buildings. The ability of these organisms to form biofilms and to grow in phagocytic amoeba ar...

  7. Acinetobacter baumannii: an emerging opportunistic pathogen.

    PubMed

    Howard, Aoife; O'Donoghue, Michael; Feeney, Audrey; Sleator, Roy D

    2012-05-01

    Acinetobacter baumannii is an opportunistic bacterial pathogen primarily associated with hospital-acquired infections. The recent increase in incidence, largely associated with infected combat troops returning from conflict zones, coupled with a dramatic increase in the incidence of multidrug-resistant (MDR) strains, has significantly raised the profile of this emerging opportunistic pathogen. Herein, we provide an overview of the pathogen, discuss some of the major factors that have led to its clinical prominence and outline some of the novel therapeutic strategies currently in development.

  8. Environmental Variation Generates Environmental Opportunist Pathogen Outbreaks.

    PubMed

    Anttila, Jani; Kaitala, Veijo; Laakso, Jouni; Ruokolainen, Lasse

    2015-01-01

    Many socio-economically important pathogens persist and grow in the outside host environment and opportunistically invade host individuals. The environmental growth and opportunistic nature of these pathogens has received only little attention in epidemiology. Environmental reservoirs are, however, an important source of novel diseases. Thus, attempts to control these diseases require different approaches than in traditional epidemiology focusing on obligatory parasites. Conditions in the outside-host environment are prone to fluctuate over time. This variation is a potentially important driver of epidemiological dynamics and affect the evolution of novel diseases. Using a modelling approach combining the traditional SIRS models to environmental opportunist pathogens and environmental variability, we show that epidemiological dynamics of opportunist diseases are profoundly driven by the quality of environmental variability, such as the long-term predictability and magnitude of fluctuations. When comparing periodic and stochastic environmental factors, for a given variance, stochastic variation is more likely to cause outbreaks than periodic variation. This is due to the extreme values being further away from the mean. Moreover, the effects of variability depend on the underlying biology of the epidemiological system, and which part of the system is being affected. Variation in host susceptibility leads to more severe pathogen outbreaks than variation in pathogen growth rate in the environment. Positive correlation in variation on both targets can cancel the effect of variation altogether. Moreover, the severity of outbreaks is significantly reduced by increase in the duration of immunity. Uncovering these issues helps in understanding and controlling diseases caused by environmental pathogens.

  9. Opportunistic pathogens enriched in showerhead biofilms

    PubMed Central

    Feazel, Leah M.; Baumgartner, Laura K.; Peterson, Kristen L.; Frank, Daniel N.; Harris, J. Kirk; Pace, Norman R.

    2009-01-01

    The environments we humans encounter daily are sources of exposure to diverse microbial communities, some of potential concern to human health. In this study, we used culture-independent technology to investigate the microbial composition of biofilms inside showerheads as ecological assemblages in the human indoor environment. Showers are an important interface for human interaction with microbes through inhalation of aerosols, and showerhead waters have been implicated in disease. Although opportunistic pathogens commonly are cultured from shower facilities, there is little knowledge of either their prevalence or the nature of other microorganisms that may be delivered during shower usage. To determine the composition of showerhead biofilms and waters, we analyzed rRNA gene sequences from 45 showerhead sites around the United States. We find that variable and complex, but specific, microbial assemblages occur inside showerheads. Particularly striking was the finding that sequences representative of non-tuberculous mycobacteria (NTM) and other opportunistic human pathogens are enriched to high levels in many showerhead biofilms, >100-fold above background water contents. We conclude that showerheads may present a significant potential exposure to aerosolized microbes, including documented opportunistic pathogens. The health risk associated with showerhead microbiota needs investigation in persons with compromised immune or pulmonary systems. PMID:19805310

  10. Biofilms and the survival of opportunistic pathogens in recycled water

    NASA Technical Reports Server (NTRS)

    Boyle, M.; Ford, T.; Maki, J. S.; Mitchell, R.

    1991-01-01

    Microorganisms are likely to develop an organic film on pipes, water reservoirs and filters used for waste water reclamation during extended missions in space. These biofilms can serve to protect and concentrate potentially pathogenic microorganisms. Our investigation has emphasized the survival strategy of opportunistic pathogenic bacteria in distilled water. Pseudomonas aeruginosa and Staphylococcus aureus were used as test organisms. Cultures were incubated at 10 degrees, 25 degrees, and 37 degrees C. No viable Staphylococcus cells were detected after the first week of incubation. P. aeruginosa, however, survived in distilled water up to 5 months at all three temperatures tested. The starved cells were able to form a biofilm layer on stainless steel. The cells exhibited a negative surface charge. The charge may be involved in the adhesion of this bacterium to metal substrata. We are currently investigating the importance of adhesion in the survival of this and other potential human pathogens found in water recycling systems.

  11. Biofilms and the survival of opportunistic pathogens in recycled water

    NASA Technical Reports Server (NTRS)

    Boyle, M.; Ford, T.; Maki, J. S.; Mitchell, R.

    1991-01-01

    Microorganisms are likely to develop an organic film on pipes, water reservoirs and filters used for waste water reclamation during extended missions in space. These biofilms can serve to protect and concentrate potentially pathogenic microorganisms. Our investigation has emphasized the survival strategy of opportunistic pathogenic bacteria in distilled water. Pseudomonas aeruginosa and Staphylococcus aureus were used as test organisms. Cultures were incubated at 10 degrees, 25 degrees, and 37 degrees C. No viable Staphylococcus cells were detected after the first week of incubation. P. aeruginosa, however, survived in distilled water up to 5 months at all three temperatures tested. The starved cells were able to form a biofilm layer on stainless steel. The cells exhibited a negative surface charge. The charge may be involved in the adhesion of this bacterium to metal substrata. We are currently investigating the importance of adhesion in the survival of this and other potential human pathogens found in water recycling systems.

  12. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water

    PubMed Central

    Falkinham, Joseph O.; Pruden, Amy; Edwards, Marc

    2015-01-01

    Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators. PMID:26066311

  13. Human platelet gel supernatant inactivates opportunistic wound pathogens on skin.

    PubMed

    Edelblute, Chelsea M; Donate, Amy L; Hargrave, Barbara Y; Heller, Loree C

    2015-01-01

    Activation of human platelets produces a gel-like substance referred to as platelet rich plasma or platelet gel. Platelet gel is used clinically to promote wound healing; it also exhibits antimicrobial properties that may aid in the healing of infected wounds. The purpose of this study was to quantify the efficacy of human platelet gel against the opportunistic bacterial wound pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus on skin. These opportunistic pathogens may exhibit extensive antibiotic resistance, necessitating the development of alternative treatment options. The antimicrobial efficacy of platelet gel supernatants was quantified using an in vitro broth dilution assay, an ex vivo inoculated skin assay, and in an in vivo skin decontamination assay. Human platelet gel supernatants were highly bactericidal against A. baumannii and moderately but significantly bactericidal against S. aureus in vitro and in the ex vivo skin model. P. aeruginosa was not inactivated in vitro; a low but significant inactivation level was observed ex vivo. These supernatants were quite effective at inactivating a model organism on skin in vivo. These results suggest application of platelet gel has potential clinical applicability, not only in the acceleration of wound healing, but also against relevant bacteria causing wound infections.

  14. Risk assessment of opportunistic bacterial pathogens in drinking water.

    PubMed

    Rusin, P A; Rose, J B; Haas, C N; Gerba, C P

    1997-01-01

    This study was undertaken to examine quantitatively the risks to human health posed by heterotrophic plate count (HPC) bacteria found naturally in ambient and potable waters. There is no clear-cut evidence that the HPC bacteria as a whole pose a public health risk. Only certain members are opportunistic pathogens. Using the four-tiered approach for risk assessment from the National Academy of Sciences, hazard identification, dose-response modeling, and exposure through ingestion of drinking water were evaluated to develop a risk characterization, which estimates the probability of infection for individuals consuming various levels of specific HPC bacteria. HPC bacteria in drinking water often include isolates from the following genera: Pseudomonas, Acinetobacter, Moraxella, Aeromonas, and Xanthomonas. Other bacteria that are commonly found are Legionella and Mycobacterium. All these genera contain species that are opportunistic pathogens which may cause serious diseases. For example, the three nonfermentative gram-negative rods most frequently isolated in the clinical laboratory are (1) Pseudomonas aeruginosa, (2) Acinetobacter, and (3) Xanthomonas maltophilia. P. aeruginosa is a major cause of hospital-acquired infections with a high mortality rate. Aeromonas is sometimes associated with wound infections and suspected to be a causative agent of diarrhea. Legionella pneumophila causes 4%-20% of cases of community-acquired pneumonia and has been ranked as the second or third most frequent cause of pneumonia requiring hospitalization. The number of cases of pulmonary disease associated with Mycobacterium avian is rapidly increasing and is approaching the incidence of M. tuberculosis in some areas. Moraxella can cause infections of the eye and upper respiratory tract. The oral infectious doses are as follows in animal and human test subjects: P. aeruginosa, 10(8)-10(9); A, hydrophila, > 10(10); M. avium, 10(4)-10(7); and X. maltophilia, 10(6)-10(9). The infectious

  15. Opportunistic pathogens relative to physicochemical factors in water storage tanks.

    PubMed

    Al-Bahry, S N; Elshafie, A E; Victor, R; Mahmoud, I Y; Al-Hinai, J A

    2011-06-01

    Household water in Oman, as well as in other countries in the region, is stored in tanks placed on house roofs that can be subjected to physicochemical factors which can promote microbial growth, including pathogens and opportunistic pathogens which pose health risks. Water samples were collected from 30 houses in a heavily populated suburb of Muscat. The tanks used were either glass reinforced plastic (GRP), polyethylene or galvanised iron (GI). Heterotrophic bacteria, coliforms, faecal coliforms and iron sulphur bacteria varied significantly in the three tanks. Yeast and mould count showed significant variations. Isolation of Aeromonas spp., fluorogenic and pathogenic Pseudomonas, Pasteurella, Salmonella, Serratia and Tatumella, and Yersinia and Legionella in biofilms varied in the three tanks. The fungi isolates in the three tanks were Penicillium, Cladosporium and Aspergillus. Nephelometric turbidity unit, threshold odour number and free chlorine varied significantly in the three tanks. True colour unit values did not show a significant difference; however, GRP tanks had algae, autotrophic and pigmented microorganisms. In addition, GI tanks had sediments and corrosion. The results of this investigation are important to evaluate the status of the present household water tanks in countries with high annual temperatures, which may affect public health.

  16. [Chryseobacterium spp., a new opportunistic pathogen associated with cystic fibrosis?].

    PubMed

    Guiu, Alba; Buendía, Buenaventura; Llorca, Laura; Gómez Punter, Rosa María; Girón, Rosa

    2014-10-01

    There is an increase in the isolation of non-fermenting gramnegative bacilli in patients with cystic fibrosis (CF). The present study evaluates the frequency of isolates of Chryseobacterium spp., analyzing its characteristics, resistance patterns and clinical outcome of patients. It has been collected all respiratory isolates of Chryseobacterium spp. of patients attended in the CF unit of Hospital de la Princesa for three years (march 2009-march 2012). For phenotypic and genotypic identification and sensitivity study conventional methodology was used. For the assessment of the patients lung function was considered the forced expiratory volume in one second (FEV1) and the results were analyzed with SPSS. There was an increase in the incidence of Chryseobacterium spp. with 17 isolates from 9 patients. Three patients had chronic colonization by this microorganism and one showed significant impairment of lung function. Seven patients showed also colonization with Staphylococcus aureus and 4 of them with Pseudomonas aeruginosa. Chryseobacterium spp. should be considered as a new emerging opportunistic pathogen in patients with CF. It is essential the clinical and microbiological monitoring of this group of patients for detection of Chryseobacterium spp. colonization and to prevent the chronic infection. In these circumstances it must assess its possible eradication, though its clinical impact is unknown. Cotrimoxazole being the best treatment option. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  17. Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in The Netherlands.

    PubMed

    van der Wielen, Paul W J J; van der Kooij, Dick

    2013-02-01

    The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter(-1) than in water with AOC levels below 5 μg C liter(-1). Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens.

  18. Nontuberculous Mycobacteria, Fungi, and Opportunistic Pathogens in Unchlorinated Drinking Water in the Netherlands

    PubMed Central

    van der Kooij, Dick

    2013-01-01

    The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter−1 than in water with AOC levels below 5 μg C liter−1. Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens. PMID:23160134

  19. Public health implications of Acanthamoeba and multiple potential opportunistic pathogens in roof-harvested rainwater tanks.

    PubMed

    Hamilton, K A; Ahmed, W; Palmer, A; Sidhu, J P S; Hodgers, L; Toze, S; Haas, C N

    2016-10-01

    A study of six potential opportunistic pathogens (Acanthamoeba spp., Legionella spp., Legionella longbeachae, Pseudomonas aeruginosa, Mycobacterium avium and Mycobacterium intracellulare) and an accidental human pathogen (Legionella pneumophila) in 134 roof-harvested rainwater (RHRW) tank samples was conducted using quantitative PCR (qPCR). All five opportunistic pathogens and accidental pathogen L. pneumophila were detected in rainwater tanks except Legionella longbeachae. Concentrations ranged up to 3.1×10(6) gene copies per L rainwater for Legionella spp., 9.6×10(5) gene copies per L for P. aeruginosa, 6.8×10(5) gene copies per L for M. intracellulare, 6.6×10(5) gene copies per L for Acanthamoeba spp., 1.1×10(5) gene copies per L for M. avium, and 9.8×10(3) gene copies per L for L. pneumophila. Among the organisms tested, Legionella spp. (99% tanks) were the most prevalent followed by M. intracellulare (78%). A survey of tank-owners provided data on rainwater end-uses. Fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp. were enumerated using culture-based methods, and assessed for correlations with opportunistic pathogens and L. pneumophila tested in this study. Opportunistic pathogens did not correlate well with FIB except E. coli vs. Legionella spp. (tau=0.151, P=0.009) and E. coli vs. M. intracellulare (tau=0.14, P=0.015). However, M. avium weakly correlated with both L. pneumophila (Kendall's tau=0.017, P=0.006) and M. intracellulare (tau=0.088, P=0.027), and Legionella spp. also weakly correlated with M. intracellulare (tau=0.128, P=0.028). The presence of these potential opportunistic pathogens in tank water may present health risks from both the potable and non-potable uses documented from the current survey data.

  20. Recent advances in understanding Pseudomonas aeruginosa as a pathogen

    PubMed Central

    Klockgether, Jens; Tümmler, Burkhard

    2017-01-01

    The versatile and ubiquitous Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections in predisposed human subjects. Here we review recent progress in understanding P. aeruginosa population biology and virulence, its cyclic di-GMP-mediated switches of lifestyle, and its interaction with the mammalian host as well as the role of the type III and type VI secretion systems in P. aeruginosa infection. PMID:28794863

  1. Draft Genome Sequence of Rhodotorula mucilaginosa, an Emergent Opportunistic Pathogen

    PubMed Central

    Deligios, Massimo; Fraumene, Cristina; Abbondio, Marcello; Mannazzu, Ilaria; Tanca, Alessandro; Addis, Maria Filippa

    2015-01-01

    Rhodotorula mucilaginosa, a yeast with valuable biotechnological features, has also been recorded as an emergent opportunistic pathogen that might cause disease in both immunocompetent and immunocompromised individuals. Here, we report the draft genome sequence of R. mucilaginosa strain C2.5t1, which was isolated from cacao seeds in Cameroon. PMID:25858834

  2. Draft Genome Sequence of Rhodotorula mucilaginosa, an Emergent Opportunistic Pathogen.

    PubMed

    Deligios, Massimo; Fraumene, Cristina; Abbondio, Marcello; Mannazzu, Ilaria; Tanca, Alessandro; Addis, Maria Filippa; Uzzau, Sergio

    2015-04-09

    Rhodotorula mucilaginosa, a yeast with valuable biotechnological features, has also been recorded as an emergent opportunistic pathogen that might cause disease in both immunocompetent and immunocompromised individuals. Here, we report the draft genome sequence of R. mucilaginosa strain C2.5t1, which was isolated from cacao seeds in Cameroon.

  3. RESEARCH NEEDS FOR OPPORTUNISTIC PATHOGENS IN PREMISE PLUMBING

    EPA Science Inventory

    EXECUTIVE SUMMARY OBJECTIVES. The objectives of this project were to: 1.) Host an expert workshop to identify research needs for opportunistic premise (i.e., building) plumbing pathogens (OPPPs); 2.) With the assistance of the workshop participants, prepare this research repor...

  4. Morganella morganii, a non-negligent opportunistic pathogen.

    PubMed

    Liu, Hui; Zhu, Junmin; Hu, Qiwen; Rao, Xiancai

    2016-09-01

    Morganella morganii belongs to the tribe Proteeae of the Enterobacteriaceae family. This species is considered as an unusual opportunistic pathogen that mainly causes post-operative wound and urinary tract infections. However, certain clinical M. morganii isolates present resistance to multiple antibiotics by carrying various resistant genes (such as blaNDM-1, and qnrD1), thereby posing a serious challenge for clinical infection control. Moreover, virulence evolution makes M. morganii an important pathogen. Accumulated data have demonstrated that M. morganii can cause various infections, such as sepsis, abscess, purple urine bag syndrome, chorioamnionitis, and cellulitis. This bacterium often results in a high mortality rate in patients with some infections. M. morganii is considered as a non-negligent opportunistic pathogen because of the increased levels of resistance and virulence. In this review, we summarized the epidemiology of M. morganii, particularly on its resistance profile and resistant genes, as well as the disease spectrum and risk factors for its infection.

  5. The ppuI-rsaL-ppuR quorum-sensing system regulates cellular motility, pectate lyase activity, and virulence in potato opportunistic pathogen Pseudomonas sp. StFLB209.

    PubMed

    Kato, Taro; Morohoshi, Tomohiro; Someya, Nobutaka; Ikeda, Tsukasa

    2015-01-01

    Pseudomonas sp. StFLB209 was isolated from potato leaf as an N-acylhomoserine lactone (AHL)-producing bacterium and showed a close phylogenetic relationship with P. cichorii, a known plant pathogen. Although there are no reports of potato disease caused by pseudomonads in Japan, StFLB209 was pathogenic to potato leaf. In this study, we reveal the complete genome sequence of StFLB209, and show that the strain possesses a ppuI-rsaL-ppuR quorum-sensing system, the sequence of which shares a high similarity with that of Pseudomonas putida. Disruption of ppuI results in a loss of AHL production as well as remarkable reduction in motility. StFLB209 possesses strong pectate lyase activity and causes maceration on potato tuber and leaf, which was slightly reduced in the ppuI mutant. These results suggest that the quorum-sensing system is well conserved between StFLB209 and P. putida and that the system is essential for motility, full pectate lyase activity, and virulence in StFLB209.

  6. Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense.

    PubMed

    Gonzalez-Perez, M N; Murcia, M I; Parra-Lopez, C; Blom, J; Tauch, A

    2016-11-01

    Mycobacterium avium complex (MAC) contains clinically important nontuberculous mycobacteria worldwide and is the second largest medical complex in the Mycobacterium genus after the Mycobacterium tuberculosis complex. MAC comprises several species that are closely phylogenetically related but diverse regarding their host preference, course of disease, virulence and immune response. In this study we provided immunologic and virulence-related insights into the M. colombiense genome as a model of an opportunistic pathogen in the MAC. By using bioinformatic tools we found that M. colombiense has deletions in the genes involved in p-HBA/PDIM/PGL, PLC, SL-1 and HspX production, and loss of the ESX-1 locus. This information not only sheds light on our understanding the virulence mechanisms used by opportunistic MAC pathogens but also has great potential for the designing of species-specific diagnostic tools.

  7. Regrowth of Potential Opportunistic Pathogens and Algae in Reclaimed-Water Distribution Systems ▿

    PubMed Central

    Jjemba, Patrick K.; Weinrich, Lauren A.; Cheng, Wei; Giraldo, Eugenio; LeChevallier, Mark W.

    2010-01-01

    A study of the quality of reclaimed water in treated effluent, after storage, and at three points in the distribution system of four plants in California, Florida, Massachusetts, and New York was conducted for 1 year. The plants had different treatment processes (conventional versus membrane bioreactor), production capacities, and methods for storage of the water, and the intended end uses of the water were different. The analysis focused on the occurrence of indicator bacteria (heterotrophic bacteria, coliforms, Escherichia coli, and enterococci) and opportunistic pathogens (Aeromonas spp., enteropathogenic E. coli O157:H7, Legionella spp., Mycobacterium spp., and Pseudomonas spp.), as well as algae. Using immunological methods, E. coli O157:H7 was detected in the effluent of only one system, but it was not detected at the sampling points, suggesting that its survival in the system was poor. Although all of the treatment systems effectively reduced the levels of bacteria in the effluent, bacteria regrew in the reservoir and distribution systems because of the loss of residual disinfectant and high assimilable organic carbon levels. In the systems with open reservoirs, algal growth reduced the water quality by increasing the turbidity and accumulating at the end of the distribution system. Opportunistic pathogens, notably Aeromonas, Legionella, Mycobacterium, and Pseudomonas, occurred more frequently than indicator bacteria (enterococci, coliforms, and E. coli). The Mycobacterium spp. were very diverse and occurred most frequently in membrane bioreactor systems, and Mycobacterium cookii was identified more often than the other species. The public health risk associated with these opportunistic pathogens in reclaimed water is unknown. Collectively, our results show the need to develop best management practices for reclaimed water to control bacterial regrowth and degradation of water before it is utilized at the point of use. PMID:20453149

  8. Regrowth of potential opportunistic pathogens and algae in reclaimed-water distribution systems.

    PubMed

    Jjemba, Patrick K; Weinrich, Lauren A; Cheng, Wei; Giraldo, Eugenio; Lechevallier, Mark W

    2010-07-01

    A study of the quality of reclaimed water in treated effluent, after storage, and at three points in the distribution system of four plants in California, Florida, Massachusetts, and New York was conducted for 1 year. The plants had different treatment processes (conventional versus membrane bioreactor), production capacities, and methods for storage of the water, and the intended end uses of the water were different. The analysis focused on the occurrence of indicator bacteria (heterotrophic bacteria, coliforms, Escherichia coli, and enterococci) and opportunistic pathogens (Aeromonas spp., enteropathogenic E. coli O157:H7, Legionella spp., Mycobacterium spp., and Pseudomonas spp.), as well as algae. Using immunological methods, E. coli O157:H7 was detected in the effluent of only one system, but it was not detected at the sampling points, suggesting that its survival in the system was poor. Although all of the treatment systems effectively reduced the levels of bacteria in the effluent, bacteria regrew in the reservoir and distribution systems because of the loss of residual disinfectant and high assimilable organic carbon levels. In the systems with open reservoirs, algal growth reduced the water quality by increasing the turbidity and accumulating at the end of the distribution system. Opportunistic pathogens, notably Aeromonas, Legionella, Mycobacterium, and Pseudomonas, occurred more frequently than indicator bacteria (enterococci, coliforms, and E. coli). The Mycobacterium spp. were very diverse and occurred most frequently in membrane bioreactor systems, and Mycobacterium cookii was identified more often than the other species. The public health risk associated with these opportunistic pathogens in reclaimed water is unknown. Collectively, our results show the need to develop best management practices for reclaimed water to control bacterial regrowth and degradation of water before it is utilized at the point of use.

  9. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis

    PubMed Central

    Razzak, Mohammad Sabri A.; Al-Charrakh, Alaa H.; AL-Greitty, Bara Hamid

    2011-01-01

    Background: Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. Aim: The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. Materials and Methods: In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results: Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. Conclusion: The types of antibiotics used to treat vaginitis must be very

  10. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis.

    PubMed

    Razzak, Mohammad Sabri A; Al-Charrakh, Alaa H; Al-Greitty, Bara Hamid

    2011-04-01

    Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. The types of antibiotics used to treat vaginitis must be very selective in order not to kill the beneficial bacteria

  11. Ficolin-3 activity towards the opportunistic pathogen, Hafnia alvei.

    PubMed

    Michalski, Mateusz; St Swierzko, Anna; Lukasiewicz, Jolanta; Man-Kupisinska, Aleksandra; Karwaciak, Iwona; Przygodzka, Patrycja; Cedzynski, Maciej

    2015-01-01

    Ficolin-3 (also called H-ficolin or Hakata antigen) is a complement-activating pattern recognition molecule, possessing a fibrinogen-like domain involved in carbohydrate binding. Amongst human ficolins, Ficolin-3 has the highest concentration in serum and is the most potent lectin pathway activator in vitro. Evidence for its physiological function is sparse, although its deficiency has been suggested to increase susceptibility to infections. The specificity of Ficolin-3 is poorly characterized and currently few ligands are known. Here we report agglutination of Hafnia alvei, a Gram-negative enteric commensal bacterium and opportunist pathogen, in the presence of recombinant Ficolin-3 and calcium. Ficolin-3 also augmented phagocytosis of H. alvei by macrophages and displayed bactericidal activity. Additionally, Ficolin-3 inhibited host cells' response to TLR4/MD-2/CD14-LPS dependent NF-κB activation. This is the first demonstration of protective activity of Ficolin-3 against a human bacterial pathogen. Although human Ficolin-3 does not recognise and bind to common pathogenic bacteria, it could be an important component of innate immunity providing protection, for example, from commensal flora that can cause extraintestinal, opportunistic infections.

  12. Pathogen-specific T cell depletion and reactivation of opportunistic pathogens in HIV infection.

    PubMed

    Geldmacher, Christof; Koup, Richard A

    2012-05-01

    During HIV infection, it is unclear why different opportunistic pathogens cause disease at different CD4 T cell count thresholds. Early work has shown that CD4 T cell depletion is influenced both by cellular activation status and expression of viral entry receptors. More recently, functional characteristics of the CD4 T cells, such as cytokine and chemokine production, have also been shown to influence cellular susceptibility to HIV. Here, we examine how functional differences in pathogen-specific CD4 T cells could lead to their differential loss during HIV infection. This may have implications for when different opportunistic infections occur, and a better understanding of the mechanisms for functional imprinting of antigen-specific T cells may lead to improvements in design of vaccines against HIV and opportunistic pathogens.

  13. Opportunistic pathogens and faecal indicators in drinking water associated biofilms in Cluj, Romania.

    PubMed

    Farkas, A; Drăgan-Bularda, M; Ciatarâş, D; Bocoş, B; Tigan, S

    2012-09-01

    Biofouling occurs without exception in all water systems, with undesirable effects such as biocorrosion and deterioration of water quality. Drinking water associated biofilms represent a potential risk to human health by harbouring pathogenic or toxin-releasing microorganisms. This is the first study investigating the attached microbiota, with potential threat to human health, in a public water system in Romania. The presence and the seasonal variation of viable faecal indicators and opportunistic pathogens were investigated within naturally developed biofilms in a drinking water treatment plant. Bacterial frequencies were correlated with microbial loads in biofilms as well as with physical and chemical characteristics of biofilms and raw water. The biofilms assessed in the current study proved to be extremely active microbial consortia. High bacterial numbers were recovered by cultivation, including Pseudomonas aeruginosa, Escherichia coli, Aeromonas hydrophila, intestinal enterococci and Clostridium perfringens. There were no Legionella spp. detected in any biofilm sample. Emergence of opportunistic pathogens in biofilms was not significantly affected by the surface material, but by the treatment process. Implementation of a water safety plan encompassing measures to prevent microbial contamination and to control biofouling would be appropriate.

  14. Genome Sequence of a Strain of the Human Pathogenic Bacterium Pseudomonas alcaligenes That Caused Bloodstream Infection.

    PubMed

    Suzuki, Masato; Suzuki, Satowa; Matsui, Mari; Hiraki, Yoichi; Kawano, Fumio; Shibayama, Keigo

    2013-10-31

    Pseudomonas alcaligenes, a Gram-negative aerobic bacterium, is a rare opportunistic human pathogen. Here, we report the whole-genome sequence of P. alcaligenes strain MRY13-0052, which was isolated from a bloodstream infection in a medical institution in Japan and is resistant to antimicrobial agents, including broad-spectrum cephalosporins and monobactams.

  15. A dietary polyunsaturated fatty acid improves consumer performance during challenge with an opportunistic bacterial pathogen.

    PubMed

    Schlotz, Nina; Pester, Michael; Freese, Heike M; Martin-Creuzburg, Dominik

    2014-11-01

    A dietary deficiency in polyunsaturated fatty acids (PUFAs) and/or sterols can severely constrain growth and reproduction of invertebrate consumers. Single nutrients are potentially assigned to different physiological processes, for example to support defence mechanisms; therefore, lipid requirements of healthy and pathogen-challenged consumers might differ. In an oral exposure experiment, we explored the effects of dietary PUFAs and cholesterol on growth, reproduction and survival of an aquatic key herbivore (Daphnia magna) exposed to an opportunistic pathogen (Pseudomonas sp.). We show that healthy and pathogen-challenged D. magna are strongly albeit differentially affected by the biochemical composition of their food sources. Supplementation of a C20 PUFA-deficient diet with arachidonic acid (ARA) resulted in increased survival and reproduction of pathogen-challenged D. magna. We propose that the observed benefit of consuming an ARA-rich diet during pathogen challenge is conveyed partially via ARA-derived eicosanoids. This study is one of the first to consider the importance of dietary PUFAs in modifying fitness parameters of pathogen-challenged invertebrate hosts. Our results suggest that dietary PUFA supply should receive increased attention in host-microorganisms interactions and invertebrate disease models to better understand and predict disease dynamics in natural populations.

  16. Host specificity in biological control: insights from opportunistic pathogens

    PubMed Central

    Brodeur, Jacques

    2012-01-01

    Host/prey specificity is a significant concern in biological control. It influences the effectiveness of a natural enemy and the risks it might have on non-target organisms. Furthermore, narrow host specificity can be a limiting factor for the commercialization of natural enemies. Given the great diversity in taxonomy and mode of action of natural enemies, host specificity is a highly variable biological trait. This variability can be illustrated by opportunist fungi from the genus Lecanicillium, which have the capacity to exploit a wide range of hosts – from arthropod pests to fungi causing plant diseases – through different modes of action. Processes determining evolutionary trajectories in host specificity are closely linked to the modes of action of the natural enemy. This hypothesis is supported by advances in fungal genomics concerning the identity of genes and biological traits that are required for the evolution of life history strategies and host range. Despite the significance of specificity, we still need to develop a conceptual framework for better understanding of the relationship between specialization and successful biological control. The emergence of opportunistic pathogens and the development of ‘omic’ technologies offer new opportunities to investigate evolutionary principles and applications of the specificity of biocontrol agents. PMID:22949922

  17. The impact of cyanobacteria on growth and death of opportunistic pathogenic bacteria.

    PubMed

    Bomo, Anne-Marie; Tryland, Ingun; Haande, Sigrid; Hagman, Camilla H C; Utkilen, Hans

    2011-01-01

    Climate change may cause increased microbial growth in water sources and more knowledge is required on how this may affect the hygienic water quality, i.e., whether increased occurrence of cyanobacteria and algae may stimulate the growth rate of opportunistic pathogenic bacteria. Laboratory experiments were performed to investigate if the presence of the cyanobacteria Anabanea lemmermannii and Microcystis aeruginosa affected the survival and growth rate of the opportunistic pathogenic bacteria Aeromonas hydrophila and Pseudomonas aeruginosa, and the faecal indicators Escherichia coli and coliforms. Cyanobacteria were cultured in bottles containing the nutrient-poor medium 02. Sewage, A. hydrophila or P. aeruginosa was added to cyanobacterial cultures and the bacterial growth and survival was followed. E. coli and coliforms from sewage died within few days and the decay rate was not affected by the presence of cyanobacteria. The presence of Anabaena stimulated the growth rate of P. aeruginosa, but had no effect on the growth rate of A. hydrophila. Microcystis had no effect on the growth rate of P. aeruginosa and an inhibiting effect on the growth rate of A. hydrophila.

  18. Comparative analysis of glutaredoxin domains from bacterial opportunistic pathogens.

    PubMed

    Leeper, Thomas; Zhang, Suxin; Van Voorhis, Wesley C; Myler, Peter J; Varani, Gabriele

    2011-09-01

    Glutaredoxin proteins (GLXRs) are essential components of the glutathione system that reductively detoxify substances such as arsenic and peroxides and are important in the synthesis of DNA via ribonucleotide reductases. NMR solution structures of glutaredoxin domains from two Gram-negative opportunistic pathogens, Brucella melitensis and Bartonella henselae, are presented. These domains lack the N-terminal helix that is frequently present in eukaryotic GLXRs. The conserved active-site cysteines adopt canonical proline/tyrosine-stabilized geometries. A difference in the angle of α-helix 2 relative to the β-sheet surface and the presence of an extended loop in the human sequence suggests potential regulatory regions and/or protein-protein interaction motifs. This observation is consistent with mutations in this region that suppress defects in GLXR-ribonucleotide reductase interactions. These differences between the human and bacterial forms are adjacent to the dithiol active site and may permit species-selective drug design.

  19. Secondary metabolite arsenal of an opportunistic pathogenic fungus.

    PubMed

    Bignell, Elaine; Cairns, Timothy C; Throckmorton, Kurt; Nierman, William C; Keller, Nancy P

    2016-12-05

    Aspergillus fumigatus is a versatile fungus able to successfully exploit diverse environments from mammalian lungs to agricultural waste products. Among its many fitness attributes are dozens of genetic loci containing biosynthetic gene clusters (BGCs) producing bioactive small molecules (often referred to as secondary metabolites or natural products) that provide growth advantages to the fungus dependent on environment. Here we summarize the current knowledge of these BGCs-18 of which can be named to product-their expression profiles in vivo, and which BGCs may enhance virulence of this opportunistic human pathogen. Furthermore, we find extensive evidence for the presence of many of these BGCs, or similar BGCs, in distantly related genera including the emerging pathogen Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, and suggest such BGCs may be predictive of pathogenic potential in other fungi.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  20. Conjugative type IVb pilus recognizes lipopolysaccharide of recipient cells to initiate PAPI-1 pathogenicity island transfer in Pseudomonas aeruginosa

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas aeruginosa pathogenicity island 1 (PAPI-1) is one of the largest genomic islands of this important opportunistic human pathogen. Previous studies have shown that PAPI-1 encodes several putative virulence factors, a major regulator of biofilm formation, and antibiotic-resistance traits, a...

  1. OPPORTUNISTIC ASPERGILLUS PATHOGENS MEASURED IN HOME AND HOSPITAL TAP WATER BY MOLD SPECIFIC QUANTITATIVE PCR (MSQPCR)

    EPA Science Inventory

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...

  2. OPPORTUNISTIC ASPERGILLUS PATHOGENS MEASURED IN HOME AND HOSPITAL TAP WATER BY MOLD SPECIFIC QUANTITATIVE PCR (MSQPCR)

    EPA Science Inventory

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...

  3. Distribution System Water Quality Affects Responses of Opportunistic Pathogen Gene Markers in Household Water Heaters.

    PubMed

    Wang, Hong; Masters, Sheldon; Falkinham, Joseph O; Edwards, Marc A; Pruden, Amy

    2015-07-21

    Illustrative distribution system operation and management practices shaped the occurrence and persistence of Legionella spp., nontuberculous mycobacteria (NTM), Pseudomonas aeruginosa, and two amoebae host (Acanthamoeba spp., Vermamoeba vermiformis) gene markers in the effluent of standardized simulated household water heaters (SWHs). The interplay between disinfectant type (chlorine or chloramine), water age (2.3-5.7 days) and materials (polyvinyl chloride (PVC), cement or iron) in upstream simulated distribution systems (SDSs) profoundly influenced levels of pathogen gene markers in corresponding SWH bulk waters. For example, Legionella spp. were 3-4 log higher in SWHs receiving water from chloraminated vs chlorinated SDSs, because of disinfectant decay from nitrification. By contrast, SWHs fed with chlorinated PVC SDS water not only harbored the lowest levels of all pathogen markers, but effluent from the chlorinated SWHs were even lower than influent levels in several instances (e.g., 2 log less Legionella spp. and NTM for PVC and 3-5 log less P. aeruginosa for cement). However, pathogen gene marker influent levels correlated positively to effluent levels in the SWHs (P < 0.05). Likewise, microbial community structures were similar between SWHs and the corresponding SDS feed waters. This study highlights the importance and challenges of distribution system management/operation to help control opportunistic pathogens.

  4. Complete Genome Sequence of Finegoldia magna, an Anaerobic Opportunistic Pathogen

    PubMed Central

    Goto, Takatsugu; Yamashita, Atsushi; Hirakawa, Hideki; Matsutani, Minenosuke; Todo, Kozo; Ohshima, Kenshiro; Toh, Hidehiro; Miyamoto, Kazuaki; Kuhara, Satoru; Hattori, Masahira; Shimizu, Tohru; Akimoto, Shigeru

    2008-01-01

    Finegoldia magna (formerly Peptostreptococcus magnus), a member of the Gram-positive anaerobic cocci (GPAC), is a commensal bacterium colonizing human skin and mucous membranes. Moreover, it is also recognized as an opportunistic pathogen responsible for various infectious diseases. Here, we report the complete genome sequence of F. magna ATCC 29328. The genome consists of a 1 797 577 bp circular chromosome and an 189 163 bp plasmid (pPEP1). The metabolic maps constructed based on the genome information confirmed that most F. magna strains cannot ferment most sugars, except fructose, and have various aminopeptidase activities. Three homologs of albumin-binding protein, a known virulence factor useful for antiphagocytosis, are encoded on the chromosome, and one albumin-binding protein homolog is encoded on the plasmid. A unique feature of the genome is that F. magna encodes many sortase genes, of which substrates may be involved in bacterial pathogenesis, such as antiphagocytosis and adherence to the host cell. The plasmid pPEP1 encodes seven sortase and seven substrate genes, whereas the chromosome encodes four sortase and 19 substrate genes. These plasmid-encoded sortases may play important roles in the pathogenesis of F. magna by enriching the variety of cell wall anchored surface proteins. PMID:18263572

  5. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia.

    PubMed

    Sánchez, María B

    2015-01-01

    Stenotrophomonas maltophilia is an environmental bacterium found in the soil, associated with plants and animals, and in aquatic environments. It is also an opportunistic pathogen now causing an increasing number of nosocomial infections. The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number of antibiotics, and because it is able to acquire new resistances via horizontal gene transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or cephalosporins-antibiotics commonly used to treat S. maltophilia infections-have emerged. The increasing number of available S. maltophilia genomes has allowed the identification and annotation of a large number of antimicrobial resistance genes. Most encode inactivating enzymes and efflux pumps, but information on their role in intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms that also form part of the intrinsic resistome have been identified via mutant library screening. These include non-typical antibiotic resistance genes, such as bacterial metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation and persistence. Their relationships with resistance are complex and require further study.

  6. Cultivation of Pathogenic and Opportunistic Free-Living Amebas

    PubMed Central

    Schuster, Frederick L.

    2002-01-01

    Free-living amebas are widely distributed in soil and water, particularly members of the genera Acanthamoeba and Naegleria. Since the early 1960s, they have been recognized as opportunistic human pathogens, capable of causing infections of the central nervous system (CNS) in both immunocompetent and immunocompromised hosts. Naegleria is the causal agent of a fulminant CNS condition, primary amebic meningoencephalitis; Acanthamoeba is responsible for a more chronic and insidious infection of the CNS termed granulomatous amebic encephalitis, as well as amebic keratitis. Balamuthia sp. has been recognized in the past decade as another ameba implicated in CNS infections. Cultivation of these organisms in vitro provides the basis for a better understanding of the biology of these amebas, as well as an important means of isolating and identifying them from clinical samples. Naegleria and Acanthamoeba can be cultured axenically in cell-free media or on tissue culture cells as feeder layers and in cultures with bacteria as a food source. Balamuthia, which has yet to be isolated from the environment, will not grow on bacteria. Instead, it requires tissue culture cells as feeder layers or an enriched cell-free medium. The recent identification of another ameba, Sappinia diploidea, suggests that other free-living forms may also be involved as causal agents of human infections. PMID:12097243

  7. New Pseudomonas spp. Are Pathogenic to Citrus

    PubMed Central

    Beiki, Farid; Busquets, Antonio; Gomila, Margarita; Rahimian, Heshmat; Lalucat, Jorge; García-Valdés, Elena

    2016-01-01

    Five putative novel Pseudomonas species shown to be pathogenic to citrus have been characterized in a screening of 126 Pseudomonas strains isolated from diseased citrus leaves and stems in northern Iran. The 126 strains were studied using a polyphasic approach that included phenotypic characterizations and phylogenetic multilocus sequence analysis. The pathogenicity of these strains against 3 cultivars of citrus is demonstrated in greenhouse and field studies. The strains were initially grouped phenotypically and by their partial rpoD gene sequences into 11 coherent groups in the Pseudomonas fluorescens phylogenetic lineage. Fifty-three strains that are representatives of the 11 groups were selected and analyzed by partial sequencing of their 16S rRNA and gyrB genes. The individual and concatenated partial sequences of the three genes were used to construct the corresponding phylogenetic trees. The majority of the strains were identified at the species level: P. lurida (5 strains), P. monteilii (2 strains), P. moraviensis (1 strain), P. orientalis (16 strains), P. simiae (7 strains), P. syringae (46 strains, distributed phylogenetically in at least 5 pathovars), and P. viridiflava (2 strains). This is the first report of pathogenicity on citrus of P. orientalis, P. simiae, P. lurida, P. moraviensis and P. monteilii strains. The remaining 47 strains that could not be identified at the species level are considered representatives of at least 5 putative novel Pseudomonas species that are not yet described. PMID:26919540

  8. New Pseudomonas spp. Are Pathogenic to Citrus.

    PubMed

    Beiki, Farid; Busquets, Antonio; Gomila, Margarita; Rahimian, Heshmat; Lalucat, Jorge; García-Valdés, Elena

    2016-01-01

    Five putative novel Pseudomonas species shown to be pathogenic to citrus have been characterized in a screening of 126 Pseudomonas strains isolated from diseased citrus leaves and stems in northern Iran. The 126 strains were studied using a polyphasic approach that included phenotypic characterizations and phylogenetic multilocus sequence analysis. The pathogenicity of these strains against 3 cultivars of citrus is demonstrated in greenhouse and field studies. The strains were initially grouped phenotypically and by their partial rpoD gene sequences into 11 coherent groups in the Pseudomonas fluorescens phylogenetic lineage. Fifty-three strains that are representatives of the 11 groups were selected and analyzed by partial sequencing of their 16S rRNA and gyrB genes. The individual and concatenated partial sequences of the three genes were used to construct the corresponding phylogenetic trees. The majority of the strains were identified at the species level: P. lurida (5 strains), P. monteilii (2 strains), P. moraviensis (1 strain), P. orientalis (16 strains), P. simiae (7 strains), P. syringae (46 strains, distributed phylogenetically in at least 5 pathovars), and P. viridiflava (2 strains). This is the first report of pathogenicity on citrus of P. orientalis, P. simiae, P. lurida, P. moraviensis and P. monteilii strains. The remaining 47 strains that could not be identified at the species level are considered representatives of at least 5 putative novel Pseudomonas species that are not yet described.

  9. Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen.

    PubMed

    Feeney, Audrey; Kropp, Kai A; O'Connor, Roxana; Sleator, Roy D

    2014-01-01

    A characteristic feature of the opportunistic foodborne pathogen Cronobacter sakazakii is its ability to survive in extremely arid environments, such as powdered infant formula, making it a dangerous opportunistic pathogen of individuals of all age groups, especially infants and neonates. Herein, we provide a brief overview of the pathogen; clinical manifestations, environmental reservoirs and our current understanding of stress response mechanisms and virulence factors which allow it to cause disease.

  10. Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen

    PubMed Central

    Feeney, Audrey; Kropp, Kai A; O’Connor, Roxana; Sleator, Roy D

    2014-01-01

    A characteristic feature of the opportunistic foodborne pathogen Cronobacter sakazakii is its ability to survive in extremely arid environments, such as powdered infant formula, making it a dangerous opportunistic pathogen of individuals of all age groups, especially infants and neonates. Herein, we provide a brief overview of the pathogen; clinical manifestations, environmental reservoirs and our current understanding of stress response mechanisms and virulence factors which allow it to cause disease. PMID:25562731

  11. Occurrence of Opportunistic Pathogens Legionella pneumophila and non-tuberculous mycobacteria in hospital plumbing systems

    EPA Science Inventory

    Occurrence of Opportunistic Pathogens Legionella pneumophila and non-tuberculous mycobacteria in hospital plumbing systems Jill Hoelle, Michael Coughlin, Elizabeth Sotkiewicz, Jingrang Lu, Stacy Pfaller, Mark Rodgers, and Hodon Ryu U.S. Environmental Protection Agency, Cincinnati...

  12. Occurrence of Opportunistic Pathogens Legionella pneumophila and non-tuberculous mycobacteria in hospital plumbing systems

    EPA Science Inventory

    Occurrence of Opportunistic Pathogens Legionella pneumophila and non-tuberculous mycobacteria in hospital plumbing systems Jill Hoelle, Michael Coughlin, Elizabeth Sotkiewicz, Jingrang Lu, Stacy Pfaller, Mark Rodgers, and Hodon Ryu U.S. Environmental Protection Agency, Cincinnati...

  13. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review.

    PubMed

    Wang, Hong; Bédard, Emilie; Prévost, Michèle; Camper, Anne K; Hill, Vincent R; Pruden, Amy

    2017-06-15

    Opportunistic premise (i.e., building) plumbing pathogens (OPPPs, e.g., Legionella pneumophila, Mycobacterium avium complex, Pseudomonas aeruginosa, Acanthamoeba, and Naegleria fowleri) are a significant and growing source of disease. Because OPPPs establish and grow as part of the native drinking water microbiota, they do not correspond to fecal indicators, presenting a major challenge to standard drinking water monitoring practices. Further, different OPPPs present distinct requirements for sampling, preservation, and analysis, creating an impediment to their parallel detection. The aim of this critical review is to evaluate the state of the science of monitoring OPPPs and identify a path forward for their parallel detection and quantification in a manner commensurate with the need for reliable data that is informative to risk assessment and mitigation. Water and biofilm sampling procedures, as well as factors influencing sample representativeness and detection sensitivity, are critically evaluated with respect to the five representative bacterial and amoebal OPPPs noted above. Available culturing and molecular approaches are discussed in terms of their advantages, limitations, and applicability. Knowledge gaps and research needs towards standardized approaches are identified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Draft Genome Sequence of Nocardia jinanensis, an Opportunistic Bacterial Pathogen That Causes Cellulitis.

    PubMed

    Chakrabortti, Alolika; Li, Jinming; Liang, Zhao-Xun

    2016-07-21

    The draft genome sequence of Nocardia jinanensis, an opportunistic pathogen that can cause skin infections, reveals genes that may contribute to the lifestyle and pathogenicity of N. jinanensis The genome also reveals the biosynthetic capacity of N. jinanensis in producing mycolic acids, siderophores, and other polyketide and nonribosomal peptide-derived secondary metabolites.

  15. Genome sequence of Aureobasidium pullulans AY4, an emerging opportunistic fungal pathogen with diverse biotechnological potential.

    PubMed

    Chan, Giek Far; Bamadhaj, Hasima Mustafa; Gan, Han Ming; Rashid, Noor Aini Abdul

    2012-11-01

    Aureobasidium pullulans AY4 is an opportunistic pathogen that was isolated from the skin of an immunocompromised patient. We present here the draft genome of strain AY4, which reveals an abundance of genes relevant to bioindustrial applications, including biocontrol and biodegradation. Putative genes responsible for the pathogenicity of strain AY4 were also identified.

  16. Antagonistic Effect of Pseudomonas sp. CMI-1 on
Foodborne Pathogenic Listeria monocytogenes.

    PubMed

    Belák, Ágnes; Maráz, Anna

    2015-06-01

    Bacterial isolates derived from food or raw food materials of animal origin were screened for potential antagonistic activity against foodborne pathogenic Listeria monocytogenes. Using the agar spot method, ten out of the 94 tested bacteria showed antilisterial activity. All of the antagonistic isolates identified by sequence analysis as strains of the genus Pseudomonas were able to inhibit the growth of all the examined Listeria species including the ruminal pathogenic L. ivanovii and the opportunistic human pathogenic L. innocua. Pseudomonas sp. CMI-1 had the highest inhibitory effect on the growth of different Listeria strains. Co-culturing studies revealed that the inhibition of L. monocytogenes could not be achieved efficiently. Although the population of the Pseudomonas sp. CMI-1 strain increased by up to 10 orders of magnitude during 2 days of culturing period at 20 °C in the presence of L. monocytogenes, the cell count of the pathogen also increased by approx. 6 orders of magnitude. At the same time, appropriate inhibition of cell-free supernatants generated from 6-day-old cultures of Pseudomonas sp. CMI-1 was observed. The inhibitory compound of this antagonistic strain is presumably a chromopeptide siderophore, whose activity and production can be affected by iron supplementation, and which had an absorption maximum typical of siderophores of fluorescent Pseudomonas species. Production of the antilisterial substance was influenced by the oxygen concentration, as in static cultures the concentration of the siderophore was higher than in shake flask cultures.

  17. Antagonistic Effect of Pseudomonas sp. CMI-1 on
Foodborne Pathogenic Listeria monocytogenes

    PubMed Central

    Maráz, Anna

    2015-01-01

    Summary Bacterial isolates derived from food or raw food materials of animal origin were screened for potential antagonistic activity against foodborne pathogenic Listeria monocytogenes. Using the agar spot method, ten out of the 94 tested bacteria showed antilisterial activity. All of the antagonistic isolates identified by sequence analysis as strains of the genus Pseudomonas were able to inhibit the growth of all the examined Listeria species including the ruminal pathogenic L. ivanovii and the opportunistic human pathogenic L. innocua. Pseudomonas sp. CMI-1 had the highest inhibitory effect on the growth of different Listeria strains. Co-culturing studies revealed that the inhibition of L. monocytogenes could not be achieved efficiently. Although the population of the Pseudomonas sp. CMI-1 strain increased by up to 10 orders of magnitude during 2 days of culturing period at 20 °C in the presence of L. monocytogenes, the cell count of the pathogen also increased by approx. 6 orders of magnitude. At the same time, appropriate inhibition of cell-free supernatants generated from 6-day-old cultures of Pseudomonas sp. CMI-1 was observed. The inhibitory compound of this antagonistic strain is presumably a chromopeptide siderophore, whose activity and production can be affected by iron supplementation, and which had an absorption maximum typical of siderophores of fluorescent Pseudomonas species. Production of the antilisterial substance was influenced by the oxygen concentration, as in static cultures the concentration of the siderophore was higher than in shake flask cultures. PMID:27904352

  18. Loss of competition in the outside host environment generates outbreaks of environmental opportunist pathogens.

    PubMed

    Anttila, Jani; Ruokolainen, Lasse; Kaitala, Veijo; Laakso, Jouni

    2013-01-01

    Environmentally transmitted pathogens face ecological interactions (e.g., competition, predation, parasitism) in the outside-host environment and host immune system during infection. Despite the ubiquitousness of environmental opportunist pathogens, traditional epidemiology focuses on obligatory pathogens incapable of environmental growth. Here we ask how competitive interactions in the outside-host environment affect the dynamics of an opportunist pathogen. We present a model coupling the classical SI and Lotka-Volterra competition models. In this model we compare a linear infectivity response and a sigmoidal infectivity response. An important assumption is that pathogen virulence is traded off with competitive ability in the environment. Removing this trade-off easily results in host extinction. The sigmoidal response is associated with catastrophic appearances of disease outbreaks when outside-host species richness, or overall competition pressure, decreases. This indicates that alleviating outside-host competition with antibacterial substances that also target the competitors can have unexpected outcomes by providing benefits for opportunist pathogens. These findings may help in developing alternative ways of controlling environmental opportunist pathogens.

  19. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    PubMed Central

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-01-01

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  20. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce.

    PubMed

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-10-05

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10(-4). However, the annual risk arising from P. aeruginosa was 9.55 × 10(-4), slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  1. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: a review.

    PubMed

    Williams, Margaret M; Armbruster, Catherine R; Arduino, Matthew J

    2013-01-01

    Several bacterial species that are natural inhabitants of potable water distribution system biofilms are opportunistic pathogens important to sensitive patients in healthcare facilities. Waterborne healthcare-associated infections (HAI) may occur during the many uses of potable water in the healthcare environment. Prevention of infection is made more challenging by lack of data on infection rate and gaps in understanding of the ecology, virulence, and infectious dose of these opportunistic pathogens. Some healthcare facilities have been successful in reducing infections by following current water safety guidelines. This review describes several infections, and remediation steps that have been implemented to reduce waterborne HAIs.

  2. Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines.

    PubMed

    Babič, Monika Novak; Zalar, Polona; Ženko, Bernard; Schroers, Hans-Josef; Džeroski, Sašo; Gunde-Cimerman, Nina

    2015-03-01

    Energy constraints have altered consumer practice regarding the use of household washing machines. Washing machines were developed that use lower washing temperatures, smaller amounts of water and biodegradable detergents. These conditions may favour the enrichment of opportunistic human pathogenic fungi. We focused on the isolation of fungi from two user-accessible parts of washing machines that often contain microbial biofilms: drawers for detergents and rubber door seals. Out of 70 residential washing machines sampled in Slovenia, 79% were positive for fungi. In total, 72 strains belonging to 12 genera and 26 species were isolated. Among these, members of the Fusarium oxysporum and Fusarium solani species complexes, Candida parapsilosis and Exophiala phaeomuriformis represented 44% of fungi detected. These species are known as opportunistic human pathogens and can cause skin, nail or eye infections also in healthy humans. A machine learning analysis revealed that presence of detergents and softeners followed by washing temperature, represent most critical factors for fungal colonization. Three washing machines with persisting malodour that resulted in bad smelling laundry were analysed for the presence of fungi and bacteria. In these cases, fungi were isolated in low numbers (7.5 %), while bacteria Micrococcus luteus, Pseudomonas aeruginosa, and Sphingomonas species prevailed. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Aspergillus fumigatus: contours of an opportunistic human pathogen.

    PubMed

    McCormick, Allison; Loeffler, Jürgen; Ebel, Frank

    2010-11-01

    Aspergillus fumigatus is currently the major air-borne fungal pathogen. It is able to cause several forms of disease in humans of which invasive aspergillosis is the most severe. The high mortality rate of this disease prompts increased efforts to disclose the basic principles of A. fumigatus pathogenicity. According to our current knowledge, A. fumigatus lacks sophisticated virulence traits; it is nevertheless able to establish infection due to its robustness and ability to adapt to a wide range of environmental conditions. This review focuses on two crucial aspects of invasive aspergillosis: (i) properties of A. fumigatus that are relevant during infection and may distinguish it from non-pathogenic Aspergillus species and (ii) interactions of the pathogen with the innate and adaptive immune systems.

  4. An opportunistic pathogen in a peritoneal dialysis patient: Ochrobactrum anthropi.

    PubMed

    Alparslan, Caner; Yavascan, Onder; Kose, Engin; Sanlioglu, Pinar; Aksu, Nejat

    2013-01-01

    The authors report a case of chronic peritoneal dialysis-related peritonitis from Ochrobactrum anthropi. O. anthropi is an emerging pathogen in immunocompromised patients. O. anthropi-related peritonitis in peritoneal dialysis patients has rarely been reported. To the authors' knowledge, no pediatric case of O. anthropi peritonitis has been reported to date in the literature.

  5. Complete Genome Sequence of Corynebacterium minutissimum, an Opportunistic Pathogen and the Causative Agent of Erythrasma.

    PubMed

    Penton, Patricia K; Tyagi, Eishita; Humrighouse, Ben W; McQuiston, John R

    2015-03-19

    Corynebacterium minutissimum was first isolated in 1961 from infection sites of patients presenting with erythrasma, a common cutaneous infection characterized by a rash. Since its discovery, C. minutissimum has been identified as an opportunistic pathogen in immunosuppressed cancer and HIV patients. Here, we report the whole-genome sequence of C. minutissimum.

  6. Draft Genome Sequence of the Rodent Opportunistic Pathogen Pasteurella pneumotropica ATCC 35149T.

    PubMed

    Sasaki, Hiraku; Ishikawa, Hiroki; Asano, Ryoki; Ueshiba, Hidehiro; Matsumoto, Tetsuya; Boot, Ron; Kawamoto, Eiichi

    2014-08-07

    Pasteurella pneumotropica is an opportunistic pathogen in rodents that is commonly isolated from upper respiratory tracts in laboratory rodents. Here, we report the draft genome sequence of the P. pneumotropica type strain ATCC 35149, which was first isolated and characterized as biotype Jawetz.

  7. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum

    PubMed Central

    Kautto, Liisa; Nevalainen, Helena

    2017-01-01

    Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5–75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases. PMID:28060882

  8. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum.

    PubMed

    Han, Zhiping; Kautto, Liisa; Nevalainen, Helena

    2017-01-01

    Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5-75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases.

  9. Fructooligosacharides Reduce Pseudomonas aeruginosa PAO1 Pathogenicity through Distinct Mechanisms

    PubMed Central

    Ortega-González, Mercedes; Sánchez de Medina, Fermín; Molina-Santiago, Carlos; López-Posadas, Rocío; Pacheco, Daniel; Krell, Tino; Martínez-Augustin, Olga; Abdelali, Daddaoua

    2014-01-01

    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed. PMID:24465697

  10. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen.

    PubMed

    Pham, Tu Anh N; Clare, Simon; Goulding, David; Arasteh, Julia M; Stares, Mark D; Browne, Hilary P; Keane, Jacqueline A; Page, Andrew J; Kumasaka, Natsuhiko; Kane, Leanne; Mottram, Lynda; Harcourt, Katherine; Hale, Christine; Arends, Mark J; Gaffney, Daniel J; Dougan, Gordon; Lawley, Trevor D

    2014-10-08

    Our intestinal microbiota harbors a diverse microbial community, often containing opportunistic bacteria with virulence potential. However, mutualistic host-microbial interactions prevent disease by opportunistic pathogens through poorly understood mechanisms. We show that the epithelial interleukin-22 receptor IL-22RA1 protects against lethal Citrobacter rodentium infection and chemical-induced colitis by promoting colonization resistance against an intestinal opportunistic bacterium, Enterococcus faecalis. Susceptibility of Il22ra1(-/-) mice to C. rodentium was associated with preferential expansion and epithelial translocation of pathogenic E. faecalis during severe microbial dysbiosis and was ameloriated with antibiotics active against E. faecalis. RNA sequencing analyses of primary colonic organoids showed that IL-22RA1 signaling promotes intestinal fucosylation via induction of the fucosyltransferase Fut2. Additionally, administration of fucosylated oligosaccharides to C. rodentium-challenged Il22ra1(-/-) mice attenuated infection and promoted E. faecalis colonization resistance by restoring the diversity of anaerobic commensal symbionts. These results support a model whereby IL-22RA1 enhances host-microbiota mutualism to limit detrimental overcolonization by opportunistic pathogens.

  11. Epithelial IL-22RA1-Mediated Fucosylation Promotes Intestinal Colonization Resistance to an Opportunistic Pathogen

    PubMed Central

    Pham, Tu Anh N.; Clare, Simon; Goulding, David; Arasteh, Julia M.; Stares, Mark D.; Browne, Hilary P.; Keane, Jacqueline A.; Page, Andrew J.; Kumasaka, Natsuhiko; Kane, Leanne; Mottram, Lynda; Harcourt, Katherine; Hale, Christine; Arends, Mark J.; Gaffney, Daniel J.; Dougan, Gordon; Lawley, Trevor D.

    2014-01-01

    Summary Our intestinal microbiota harbors a diverse microbial community, often containing opportunistic bacteria with virulence potential. However, mutualistic host-microbial interactions prevent disease by opportunistic pathogens through poorly understood mechanisms. We show that the epithelial interleukin-22 receptor IL-22RA1 protects against lethal Citrobacter rodentium infection and chemical-induced colitis by promoting colonization resistance against an intestinal opportunistic bacterium, Enterococcus faecalis. Susceptibility of Il22ra1−/− mice to C. rodentium was associated with preferential expansion and epithelial translocation of pathogenic E. faecalis during severe microbial dysbiosis and was ameloriated with antibiotics active against E. faecalis. RNA sequencing analyses of primary colonic organoids showed that IL-22RA1 signaling promotes intestinal fucosylation via induction of the fucosyltransferase Fut2. Additionally, administration of fucosylated oligosaccharides to C. rodentium-challenged Il22ra1−/− mice attenuated infection and promoted E. faecalis colonization resistance by restoring the diversity of anaerobic commensal symbionts. These results support a model whereby IL-22RA1 enhances host-microbiota mutualism to limit detrimental overcolonization by opportunistic pathogens. PMID:25263220

  12. Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in Pseudomonas.

    PubMed

    Mithani, Aziz; Hein, Jotun; Preston, Gail M

    2011-01-01

    Plant pathogenic pseudomonads such as Pseudomonas syringae colonize plant surfaces and tissues and have been reported to be nutritionally specialized relative to nonpathogenic pseudomonads. We performed comparative analyses of metabolic networks reconstructed from genome sequence data in order to investigate the hypothesis that P. syringae has evolved to be metabolically specialized for a plant pathogenic lifestyle. We used the metabolic network comparison tool Rahnuma and complementary bioinformatic analyses to compare the distribution of 1,299 metabolic reactions across nine genome-sequenced strains of Pseudomonas, including three strains of P. syringae. The two pathogenic Pseudomonas species analyzed, P. syringae and the opportunistic human pathogen P. aeruginosa, each displayed a high level of intraspecies metabolic similarity compared with nonpathogenic Pseudomonas. The three P. syringae strains lacked a significant number of reactions predicted to be present in all other Pseudomonas strains analyzed, which is consistent with the hypothesis that P. syringae is adapted for growth in a nutritionally constrained environment. Pathway predictions demonstrated that some of the differences detected in metabolic network comparisons could account for differences in amino acid assimilation ability reported in experimental analyses. Parsimony analysis and reaction neighborhood approaches were used to model the evolution of metabolic networks and amino acid assimilation pathways in pseudomonads. Both methods supported a model of Pseudomonas evolution in which the common ancestor of P. syringae had experienced a significant number of deletion events relative to other nonpathogenic pseudomonads. We discuss how the characteristic metabolic features of P. syringae could reflect adaptation to a pathogenic lifestyle.

  13. [An opportunistic pathogen frequently isolated from immunocompromised patients: Burkholderia cepacia complex].

    PubMed

    Baylan, Orhan

    2012-04-01

    Burkholderia cepacia complex is a group of 17 closely related species. For a long time B.cepacia complex is believed to be only a plant pathogen but later it has emerged as an important opportunistic pathogen causing morbidity and mortality in hospitalized patients. B.cepacia complex particularly causes bacteraemia/sepsis, septic arthritis, osteomyelitis, meningitis, peritonitis, urinary and respiratory tract infections. Patients with cystic fibrosis or chronic granulomatous disease are predisposed to B.cepacia complex infections. B.cepacia complex can survive for a long period of time and can easily multiply in aqueous environments such as disinfectant agents and intravenous fluids used in hospitals. Patients may acquire B.cepacia complex either from the environment or through patient-to-patient transmission. It has always been a tedious task for routine microbiology laboratory to identify B.cepacia complex. In these laboratories, the identification of B.cepacia complex isolates is generally performed using a combination of selective media, conventional biochemical analysis and/or commercial systems. Three media commonly used for isolation of B.cepacia complex are as follows: the Pseudomonas cepacia agar, the oxidation-fermentation based polymyxin bacitracin lactose agar, and more recently the B.cepacia selective agar. Members of the B.cepacia complex can be identified by available commercial tests, such as API 20NE, Phoenix, MicroScan or VITEK. Molecular techniques are useful for confirmation of phenotypic identification and discrimination beyond the species-level. B.cepacia complex is intrinsically resistant to antimicrobial agents such as aminoglycosides, first- and second-generation cephalosporins, antipseudomonal penicillins and polymyxins. B.cepacia complex bacteria often develop resistance to beta-lactams due to presence of inducible chromosomal beta-lactamases and altered penicillin- binding proteins. Antibiotic efflux pumps in B.cepacia complex bacteria

  14. Stress responses in the opportunistic pathogen Acinetobacter baumannii

    PubMed Central

    Fiester, Steven E; Actis, Luis A

    2013-01-01

    Acinetobacter baumannii causes a wide range of severe infections among compromised and injured patients worldwide. The relevance of these infections are, in part, due to the ability of this pathogen to sense and react to environmental and host stress signals, allowing it to persist and disseminate in medical settings and the human host. This review summarizes current knowledge on the roles that environmental and cellular stressors play in the ability of A. baumannii to resist nutrient deprivation, oxidative and nitrosative injury, and even the presence of the commonly used antiseptic ethanol, which could serve as a nutrient- and virulence-enhancing signal rather than just being a convenient disinfectant. Emerging experimental evidence supports the role of some of these responses in the pathogenesis of the infections A. baumannii causes in humans and its capacity to resist antibiotics and host response effectors. PMID:23464372

  15. Strains from the Burkholderia cepacia Complex: Relationship to Opportunistic Pathogens

    PubMed Central

    Vandamme, Peter; Mahenthiralingam, Eshwar

    2003-01-01

    Burkholderia cepacia-like organisms attract much interest from the agricultural industry as natural promoters of plant growth and biological control agents, and for bioremediation. Some of these organisms, however, cause life-threatening infections, particularly in cystic fibrosis patients for whom this multi-resistant bacterium is a major pathogen. The biodiversity of this group of bacteria is severely underestimated, and current identification procedures are inadequate. Presumed B. cepacia isolates belong to at least nine distinct genomic species (genomovars), referred to collectively as the B. cepacia complex. All these B. cepacia complex genomovars have been isolated from clinical and environmental sources. There are no phenotypic, genomic, or taxonomic grounds to differentiate environmental and clinical strains of the B. cepacia complex or to use the source of isolation to assess the safety of biopesticides containing members of the B. cepacia complex. PMID:19265996

  16. Annual variations and effects of temperature on Legionella spp. and other potential opportunistic pathogens in a bathroom.

    PubMed

    Lu, Jingrang; Buse, Helen; Struewing, Ian; Zhao, Amy; Lytle, Darren; Ashbolt, Nicholas

    2017-01-01

    Opportunistic pathogens (OPs) in drinking water, like Legionella spp., mycobacteria, Pseudomonas aeruginosa, and free-living amobae (FLA) are a risk to human health, due to their post-treatment growth in water systems. To assess and manage these risks, it is necessary to understand their variations and environmental conditions for the water routinely used. We sampled premise tap (N cold = 26, N hot = 26) and shower (N shower = 26) waters in a bathroom and compared water temperatures to levels of OPs via qPCR and identified Legionella spp. by 16S ribosomal RNA (rRNA) gene sequencing. The overall occurrence and cell equivalent quantities (CE L(-1)) of Mycobacterium spp. were highest (100 %, 1.4 × 10(5)), followed by Vermamoeba vermiformis (91 %, 493), Legionella spp. (59 %, 146), P. aeruginosa (14 %, 10), and Acanthamoeba spp. (5 %, 6). There were significant variations of OP's occurrence and quantities, and water temperatures were associated with their variations, especially for Mycobacterium spp., Legionella spp., and V. vermiformis. The peaks observed for Legionella, mainly consisted of Legionella pneumophila sg1 or Legionella anisa, occurred in the temperature ranged from 19 to 49 °C, while Mycobacterium spp. and V. vermiformis not only co-occurred with Legionella spp. but also trended to increase with increasing temperatures. There were higher densities of Mycobacterium in first than second draw water samples, indicating their release from faucet/showerhead biofilm. Legionella spp. were mostly at detectable levels and mainly consisted of L. pneumophila, L. anisa, Legionella donaldsonii, Legionella tunisiensis, and an unknown drinking water isolate based on sequence analysis. Results from this study suggested potential health risks caused by opportunistic pathogens when exposed to warm shower water with low chlorine residue and the use of Mycobacterium spp. as an indicator of premise pipe biofilm and the control management of those potential

  17. Genome of the Opportunistic Pathogen Streptococcus sanguinis▿ †

    PubMed Central

    Xu, Ping; Alves, Joao M.; Kitten, Todd; Brown, Arunsri; Chen, Zhenming; Ozaki, Luiz S.; Manque, Patricio; Ge, Xiuchun; Serrano, Myrna G.; Puiu, Daniela; Hendricks, Stephanie; Wang, Yingping; Chaplin, Michael D.; Akan, Doruk; Paik, Sehmi; Peterson, Darrell L.; Macrina, Francis L.; Buck, Gregory A.

    2007-01-01

    The genome of Streptococcus sanguinis is a circular DNA molecule consisting of 2,388,435 bp and is 177 to 590 kb larger than the other 21 streptococcal genomes that have been sequenced. The G+C content of the S. sanguinis genome is 43.4%, which is considerably higher than the G+C contents of other streptococci. The genome encodes 2,274 predicted proteins, 61 tRNAs, and four rRNA operons. A 70-kb region encoding pathways for vitamin B12 biosynthesis and degradation of ethanolamine and propanediol was apparently acquired by horizontal gene transfer. The gene complement suggests new hypotheses for the pathogenesis and virulence of S. sanguinis and differs from the gene complements of other pathogenic and nonpathogenic streptococci. In particular, S. sanguinis possesses a remarkable abundance of putative surface proteins, which may permit it to be a primary colonizer of the oral cavity and agent of streptococcal endocarditis and infection in neutropenic patients. PMID:17277061

  18. Interactions between the tropical sea anemone Aiptasia pallida and Serratia marcescens, an opportunistic pathogen of corals.

    PubMed

    Krediet, Cory J; Meyer, Julie L; Gimbrone, Nicholas; Yanong, Roy; Berzins, Ilze; Alagely, Ali; Castro, Herman; Ritchie, Kim B; Paul, Valerie J; Teplitski, Max

    2014-06-01

    Coral reefs are under increasing stress caused by global and local environmental changes, which are thought to increase the susceptibility of corals to opportunistic pathogens. In the absence of an easily culturable model animal, the understanding of the mechanisms of disease progression in corals remains fairly limited. In the present study, we tested the susceptibility of the tropical sea anemone Aiptasia pallida to an opportunistic coral pathogen (Serratia marcescens). A. pallida was susceptible to S. marcescens PDL100 and responded to this opportunistic coral pathogen with darkening of the tissues and retraction of tentacles, followed by complete disintegration of polyp tissues. Histological observations revealed loss of zooxanthellae and structural changes in eosinophilic granular cells in response to pathogen infection. A screen of S. marcescens mutants identified a motility and tetrathionate reductase mutants as defective in virulence in the A. pallida infection model. In co-infections with the wild-type strain, the tetrathionate reductase mutant was less fit within the surface mucopolysaccharide layer of the host coral Acropora palmata.

  19. Effect of GAC pre-treatment and disinfectant on microbial community structure and opportunistic pathogen occurrence.

    PubMed

    Wang, Hong; Pryor, Marsha A; Edwards, Marc A; Falkinham, Joseph O; Pruden, Amy

    2013-10-01

    Opportunistic pathogens in potable water systems are an emerging health concern; however, the factors influencing their proliferation are poorly understood. Here we investigated the effects of prior granular activated carbon (GAC) biofiltration [GAC-filtered water, unfiltered water, and a blend (30% GAC filtered and 70% unfiltered water)] and disinfectant type (chlorine, chloramine) on opportunistic pathogen occurrence using five annular reactors (ARs) to simulate water distribution systems, particularly premise plumbing. GAC pre-treatment effectively reduced total organic carbon (TOC), resulting in three levels of influent TOC investigated. Quantitative polymerase chain reaction (q-PCR) provided molecular evidence of natural colonization of Legionella spp., Mycobacterium spp., Acanthamoeba spp., Hartmannella vermiformis and Mycobacterium avium on AR coupons. Cultivable mycobacteria and amoeba, including pathogenic species, were also found in bulk water and biofilm samples. While q-PCR tends to overestimate live cells, it provided a quantitative comparison of target organisms colonizing the AR biofilms in terms of gene copy numbers. In most cases, total bacteria and opportunistic pathogens were higher in the three undisinfected ARs, but the levels were not proportional to the level of GAC pre-treatment/TOC. Chlorine was more effective for controlling mycobacteria and Acanthamoeba, whereas chloramine was more effective for controlling Legionella. Both chlorine and chloramine effectively inhibited M. avium and H. vermiformis colonization. Pyrosequencing of 16S rRNA genes in coupon biofilms revealed a significant effect of GAC pre-treatment and disinfectant type on the microbial community structure. Overall, this study provides insights into the potential of different disinfectants and GAC biofilters at the treatment plant and in buildings to control downstream opportunistic pathogens and broader drinking water microbial communities.

  20. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors.

    PubMed

    Murdoch, Sarah L; Trunk, Katharina; English, Grant; Fritsch, Maximilian J; Pourkarimi, Ehsan; Coulthurst, Sarah J

    2011-11-01

    The type VI secretion system (T6SS) is the most recently described and least understood of the protein secretion systems of Gram-negative bacteria. It is widely distributed and has been implicated in the virulence of various pathogens, but its mechanism and exact mode of action remain to be defined. Additionally there have been several very recent reports that some T6SSs can target bacteria rather than eukaryotic cells. Serratia marcescens is an opportunistic enteric pathogen, a class of bacteria responsible for a significant proportion of hospital-acquired infections. We describe the identification of a functional T6SS in S. marcescens strain Db10, the first report of type VI secretion by an opportunist enteric bacterium. The T6SS of S. marcescens Db10 is active, with secretion of Hcp to the culture medium readily detected, and is expressed constitutively under normal growth conditions from a large transcriptional unit. Expression of the T6SS genes did not appear to be dependent on the integrity of the T6SS. The S. marcescens Db10 T6SS is not required for virulence in three nonmammalian virulence models. It does, however, exhibit dramatic antibacterial killing activity against several other bacterial species and is required for S. marcescens to persist in a mixed culture with another opportunist pathogen, Enterobacter cloacae. Importantly, this antibacterial killing activity is highly strain specific, with the S. marcescens Db10 T6SS being highly effective against another strain of S. marcescens with a very similar and active T6SS. We conclude that type VI secretion plays a crucial role in the competitiveness, and thus indirectly the virulence, of S. marcescens and other opportunistic bacterial pathogens.

  1. [Opportunistic pathogenic and toxic micro-fungi among synthetic polymer destructors].

    PubMed

    Kurakov, A V; Novikova, N D; Ozerskaia, S M; Deshevaia, E A; Gevorkian, S A; Gogiian, V B

    2007-01-01

    Analysis of species diversity of the micro-fungi typically detected at the sites of biodamage of synthetic polymers on space vehicles exhibited the presence of a broad variety of opportunistic pathogens and toxic species. Thus, 78 species of micromycetes of 300 polymer destructing fungi are associated with biological risk levels BSL-1 and BSL-2 (low and moderate levels, respectively). As many as 56 species are able to produce toxic compounds.

  2. Globally panmictic population structure in the opportunistic fungal pathogen Aspergillus sydowii.

    PubMed

    Rypien, Krystal L; Andras, Jason P; Harvell, C Drew

    2008-09-01

    Recent outbreaks of new diseases in many ecosystems are caused by novel pathogens, impaired host immunity, or changing environmental conditions. Identifying the source of emergent pathogens is critical for mitigating the impacts of diseases, and understanding the cause of their recent appearances. One ecosystem suffering outbreaks of disease in the past decades is coral reefs, where pathogens such as the fungus Aspergillus sydowii have caused catastrophic population declines in their hosts. Aspergillosis is one of the best-characterized coral diseases, yet the origin of this typically terrestrial fungus in marine systems remains unknown. We examined the genetic structure of a global sample of A. sydowii, including isolates from diseased corals, diseased humans, and environmental sources. Twelve microsatellite markers reveal a pattern of global panmixia among the fungal isolates. A single origin of the pathogen into marine systems seems unlikely given the lack of isolation by distance and lack of evidence for a recent bottleneck. A neighbour-joining phylogeny shows that sea fan isolates are interspersed with environmental isolates, suggesting there have been multiple introductions from land into the ocean. Overall, our results underscore that A. sydowii is a true opportunist, with a diversity of nonrelated isolates able to cause disease in corals. This study highlights the challenge in distinguishing between the role of environment in allowing opportunistic pathogens to increase and actual introductions of new pathogenic microorganisms for coral diseases.

  3. Trehalose Biosynthesis Promotes Pseudomonas aeruginosa Pathogenicity in Plants

    PubMed Central

    Djonović, Slavica; Urbach, Jonathan M.; Drenkard, Eliana; Bush, Jenifer; Feinbaum, Rhonda; Ausubel, Jonathan L.; Traficante, David; Risech, Martina; Kocks, Christine; Fischbach, Michael A.; Priebe, Gregory P.; Ausubel, Frederick M.

    2013-01-01

    Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved “house-keeping” anabolic pathway

  4. Virulence Attributes and Host Response Assays for Determining Pathogenic Potential of Pseudomonas Strains Used in Biotechnology

    PubMed Central

    Tayabali, Azam F.; Coleman, Gordon; Nguyen, Kathy C.

    2015-01-01

    Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa), P.fluorescens (Pf), P.putida (Pp), P.stutzeri (Ps)) were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications. PMID:26619347

  5. Hypoxia Reduces the Pathogenicity of Pseudomonas aeruginosa by Decreasing the Expression of Multiple Virulence Factors.

    PubMed

    Schaible, Bettina; Rodriguez, Javier; Garcia, Amaya; von Kriegsheim, Alexander; McClean, Siobhán; Hickey, Caitríona; Keogh, Ciara E; Brown, Eric; Schaffer, Kirsten; Broquet, Alexis; Taylor, Cormac T

    2017-05-01

    Our understanding of how the course of opportunistic bacterial infection is influenced by the microenvironment is limited. We demonstrate that the pathogenicity of Pseudomonas aeruginosa strains derived from acute clinical infections is higher than that of strains derived from chronic infections, where tissues are hypoxic. Exposure to hypoxia attenuated the pathogenicity of strains from acute (but not chronic) infections, implicating a role for hypoxia in regulating bacterial virulence. Mass spectrometric analysis of the secretome of P. aeruginosa derived from an acute infection revealed hypoxia-induced repression of multiple virulence factors independent of altered bacterial growth. Pseudomonas aeruginosa lacking the Pseudomonas prolyl-hydroxylase domain-containing protein, which has been implicated in bacterial oxygen sensing, displays reduced virulence factor expression. Furthermore, pharmacological hydroxylase inhibition reduces virulence factor expression and pathogenicity in a murine model of pneumonia. We hypothesize that hypoxia reduces P. aeruginosa virulence at least in part through the regulation of bacterial hydroxylases. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  6. Virulence Attributes and Host Response Assays for Determining Pathogenic Potential of Pseudomonas Strains Used in Biotechnology.

    PubMed

    Tayabali, Azam F; Coleman, Gordon; Nguyen, Kathy C

    2015-01-01

    Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa), P.fluorescens (Pf), P.putida (Pp), P.stutzeri (Ps)) were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications.

  7. Within-host evolution decreases virulence in an opportunistic bacterial pathogen.

    PubMed

    Mikonranta, Lauri; Mappes, Johanna; Laakso, Jouni; Ketola, Tarmo

    2015-08-19

    Pathogens evolve in a close antagonistic relationship with their hosts. The conventional theory proposes that evolution of virulence is highly dependent on the efficiency of direct host-to-host transmission. Many opportunistic pathogens, however, are not strictly dependent on the hosts due to their ability to reproduce in the free-living environment. Therefore it is likely that conflicting selection pressures for growth and survival outside versus within the host, rather than transmission potential, shape the evolution of virulence in opportunists. We tested the role of within-host selection in evolution of virulence by letting a pathogen Serratia marcescens db11 sequentially infect Drosophila melanogaster hosts and then compared the virulence to strains that evolved only in the outside-host environment. We found that the pathogen adapted to both Drosophila melanogaster host and novel outside-host environment, leading to rapid evolutionary changes in the bacterial life-history traits including motility, in vitro growth rate, biomass yield, and secretion of extracellular proteases. Most significantly, selection within the host led to decreased virulence without decreased bacterial load while the selection lines in the outside-host environment maintained the same level of virulence with ancestral bacteria. This experimental evidence supports the idea that increased virulence is not an inevitable consequence of within-host adaptation even when the epidemiological restrictions are removed. Evolution of attenuated virulence could occur because of immune evasion within the host. Alternatively, rapid fluctuation between outside-host and within-host environments, which is typical for the life cycle of opportunistic bacterial pathogens, could lead to trade-offs that lower pathogen virulence.

  8. New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen.

    PubMed

    Brooke, Joanna S

    2014-01-01

    Stenotrophomonas maltophilia is a worldwide human opportunistic pathogen associated with serious infections in humans, and is most often recovered from respiratory tract infections. In addition to its intrinsic drug resistance, this organism may acquire resistance via multiple molecular mechanisms. New antimicrobial strategies are needed to combat S. maltophilia infections, particularly in immunocompromised patients, cystic fibrosis patients with polymicrobial infections of the lung, and in patients with chronic infections. This editorial reports on newer drugs and antimicrobial strategies and their potential for use in treatment of S. maltophilia infections, the development of new technologies to detect this organism, and identifies strategies currently in use to reduce transmission of this pathogen.

  9. Genetic and virulence variation in an environmental population of the opportunistic pathogen Aspergillus fumigatus.

    PubMed

    Alshareef, Fadwa; Robson, Geoffrey D

    2014-04-01

    Environmental populations of the opportunistic pathogen Aspergillus fumigatus have been shown to be genotypically diverse and to contain a range of isolates with varying pathogenic potential. In this study, we combined two RAPD primers to investigate the genetic diversity of environmental isolates from Manchester collected monthly over 1 year alongside Dublin environmental isolates and clinical isolates from patients. RAPD analysis revealed a diverse genotype, but with three major clinical isolate clusters. When the pathogenicity of clinical and Dublin isolates was compared with a random selection of Manchester isolates in a Galleria mellonella larvae model, as a group, clinical isolates were significantly more pathogenic than environmental isolates. Moreover, when relative pathogenicity of individual isolates was compared, clinical isolates were the most pathogenic, Dublin isolates were the least pathogenic and Manchester isolates showed a range in pathogenicity. Overall, this suggests that the environmental population is genetically diverse, displaying a range in pathogenicity, and that the most pathogenic strains from the environment are selected during patient infection.

  10. Draft Genome Sequence of the Serratia rubidaea CIP 103234T Reference Strain, a Human-Opportunistic Pathogen.

    PubMed

    Bonnin, Rémy A; Girlich, Delphine; Imanci, Dilek; Dortet, Laurent; Naas, Thierry

    2015-11-19

    We provide here the first genome sequence of a Serratia rubidaea isolate, a human-opportunistic pathogen. This reference sequence will permit a comparison of this species with others of the Serratia genus.

  11. Draft genome sequences of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from human patients.

    PubMed

    Mendoza-Olazarán, Soraya; Garcia-Mazcorro, José F; Morfín-Otero, Rayo; Villarreal-Treviño, Licet; Camacho-Ortiz, Adrián; Rodríguez-Noriega, Eduardo; Bocanegra-Ibarias, Paola; Maldonado-Garza, Héctor J; Dowd, Scot E; Garza-González, Elvira

    2017-01-01

    Herein, we report the draft-genome sequences and annotation of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from humans. One strain (SC-57) was isolated from blood from a male patient in May 2006 and the other (SC-532) from a catheter from a male patient in June 2006. Similar to other genomes of Staphylococcus species, most genes (42%) of both strains are involved in metabolism of amino acids and derivatives, carbohydrates and proteins. Eighty (4%) genes are involved in virulence, disease, and defense and both species show phenotypic low biofilm production and evidence of increased antibiotic resistance associated to biofilm production. From both isolates, a new Staphylococcal Cassette Chromosome mec was detected: mec class A, ccr type 1. This is the first report of whole genome sequences of opportunistic S. cohnii isolated from human patients.

  12. Volatile Compounds Emitted by Pseudomonas aeruginosa Stimulate Growth of the Fungal Pathogen Aspergillus fumigatus

    PubMed Central

    Briard, Benoit; Heddergott, Christoph

    2016-01-01

    ABSTRACT Chronic lung infections with opportunistic bacterial and fungal pathogens are a major cause of morbidity and mortality especially in patients with cystic fibrosis. Pseudomonas aeruginosa is the most frequently colonizing bacterium in these patients, and it is often found in association with the filamentous fungus Aspergillus fumigatus. P. aeruginosa is known to inhibit the growth of A. fumigatus in situations of direct contact, suggesting the existence of interspecies communication that may influence disease outcome. Our study shows that the lung pathogens P. aeruginosa and A. fumigatus can interact at a distance via volatile-mediated communication and expands our understanding of interspecific signaling in microbial communities. PMID:26980832

  13. [Genetic determinants of pathogenicity of opportunistic enterobacteria isolated from children with acute intestinal infections].

    PubMed

    Anganova, E V; Dukhanina, A V; Savilov, E D

    2012-01-01

    Detection of nucleotide sequences of genes controlling synthesis of pathogenicity factors in clinical strains of opportunistic enterobacteria isolated from children with acute intestinal infections (AII), as well as their association with resistance to antibiotics and the course of the infectious process. 175 clinical strains obtained from children with AII undergoing treatment in Irkutsk state infectious diseases hospital (2007-2010) were studied. Primers to a number of genes detected in Escherichia coli pathogenicity islands, controlling type S and type 1 adhesion; formation of hemolysins; iron-regulatory protein synthesis; capsule formation were used in the study. PCR products analysis was performed by agar gel electrophoresis. Genetic determinants of pathogenicity were detected in bacteria genera Klebsiella, Citrobacter, Enterobacter, Proteus, Kluyvera, Morganella, Pantoea, Serratia. Fragments of hlyA and hlyB genes (hemolysin production) were detected more frequently; less frequently--sfaA, sfaG, fimA (adhesion), as well as irp-2 gene (synthesis of iron-regulatory protein). The largest set of genetic determinants of pathogenicity was noted in clinical strains of Klebsiella spp. Cultures with DNA fragments specific to genes of E. coli pathogenicity clusters were obtained predominately from children aged up to 3 years, had multiple antibiotic resistance and were isolated significantly more frequently in severe forms of AII when compared with strains in which these determinants were not detected. The studies performed showed that clinical strains of opportunistic bacteria isolated from patients with AII have a certain pathogenic potential, as evidenced by the presence of genetic pathogenicity markers in them.

  14. Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii.

    PubMed

    Da Silva, Gabriela Jorge; Domingues, Sara

    2016-08-23

    Horizontal gene transfer (HGT) is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen.

  15. Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii

    PubMed Central

    Da Silva, Gabriela Jorge; Domingues, Sara

    2016-01-01

    Horizontal gene transfer (HGT) is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen. PMID:27681923

  16. Draft Genome Sequences of Vibrio alginolyticus Strains V1 and V2, Opportunistic Marine Pathogens

    PubMed Central

    Castillo, Daniel; D’Alvise, Paul; Kalatzis, Panos G.; Kokkari, Constantina; Middelboe, Mathias; Gram, Lone; Liu, Siyang

    2015-01-01

    We announce the draft genome sequences of Vibrio alginolyticus strains V1 and V2, isolated from juvenile Sparus aurata and Dentex dentex, respectively, during outbreaks of vibriosis. The genome sequences are 5,257,950 bp with a G+C content of 44.5% for V. alginolyticus V1 and 5,068,299 bp with a G+C content of 44.8% for strain V2. These genomes provide further insights into the putative virulence factors, prophage carriage, and evolution of this opportunistic marine pathogen. PMID:26139724

  17. Draft Genome Sequences of Vibrio alginolyticus Strains V1 and V2, Opportunistic Marine Pathogens.

    PubMed

    Castillo, Daniel; D'Alvise, Paul; Kalatzis, Panos G; Kokkari, Constantina; Middelboe, Mathias; Gram, Lone; Liu, Siyang; Katharios, Pantelis

    2015-07-02

    We announce the draft genome sequences of Vibrio alginolyticus strains V1 and V2, isolated from juvenile Sparus aurata and Dentex dentex, respectively, during outbreaks of vibriosis. The genome sequences are 5,257,950 bp with a G+C content of 44.5% for V. alginolyticus V1 and 5,068,299 bp with a G+C content of 44.8% for strain V2. These genomes provide further insights into the putative virulence factors, prophage carriage, and evolution of this opportunistic marine pathogen. Copyright © 2015 Castillo et al.

  18. Anticipating challenges with in-building disinfection for control of opportunistic pathogens.

    PubMed

    Rhoads, William J; Pruden, Amy; Edwards, Marc A

    2014-06-01

    A new American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) standard for control of Legionella (ASHRAE Standard 188, 2013) emphasizes use of in-building disinfection techniques to reduce the exposure of at-risk consumers to opportunistic pathogens in premise plumbing (OPPPs). This standard and other recommendations for OPPP control have implications for scaling in and corrosion of plumbing systems, which can sometimes adversely affect the efficacy of the disinfection method and physical integrity of the plumbing system, prompting this proactive critical review of challenges associated with implementation of Standard 188.

  19. Mitochondrial Telomeres as Molecular Markers for Identification of the Opportunistic Yeast Pathogen Candida parapsilosis

    PubMed Central

    Nosek, Jozef; Tomáška, L'ubomír; Ryčovská, Adriana; Fukuhara, Hiroshi

    2002-01-01

    Recent studies have demonstrated that a large number of organisms carry linear mitochondrial DNA molecules possessing specialized telomeric structures at their ends. Based on this specific structural feature of linear mitochondrial genomes, we have developed an approach for identification of the opportunistic yeast pathogen Candida parapsilosis. The strategy for identification of C. parapsilosis strains is based on PCR amplification of specific DNA sequences derived from the mitochondrial telomere region. This assay is complemented by immunodetection of a protein component of mitochondrial telomeres. The results demonstrate that mitochondrial telomeres represent specific molecular markers with potential applications in yeast diagnostics and taxonomy. PMID:11923346

  20. Analogous telesensing pathways regulate mating and virulence in two opportunistic human pathogens.

    PubMed

    Bennett, Richard J; Dunny, Gary M

    2010-09-07

    Telesensing, or probing of the environment by the release of chemical messengers, plays a central role in the sexual programs of microbial organisms. Sex pheromones secreted by mating cells are sensed by potential partner cells and mediate cell-to-cell contact and the subsequent exchange of genetic material. Although the mechanisms used by bacterial and fungal species to promote genetic exchange are distinct, recent studies have uncovered surprising parallels between pheromone signaling in these species. In addition, it is now apparent that pheromone signaling not only controls sexual reproduction and genetic exchange but can also activate expression of potential virulence factors in diverse opportunistic pathogens.

  1. The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens.

    PubMed

    Eason, Mia M; Fan, Xin

    2014-09-01

    Respiratory tract bacterial pathogens are the etiologic agents of a variety of illnesses. The ability of these bacteria to cause disease is imparted through survival within the host and avoidance of pathogen clearance by the immune system. Respiratory tract pathogens are continually bombarded by reactive oxygen species (ROS), which may be produced by competing bacteria, normal metabolic function, or host immunological responses. In order to survive and proliferate, bacteria have adapted defense mechanisms to circumvent the effects of ROS. Bacteria employ the use of anti-oxidant enzymes, catalases and catalase-peroxidases, to relieve the effects of the oxidative stressors to which they are continually exposed. The decomposition of ROS has been shown to provide favorable conditions in which respiratory tract opportunistic bacterial pathogens such as Haemophilus influenzae, Mycobacterium tuberculosis, Legionella pneumophila, and Neisseria meningitidis are able to withstand exposure to highly reactive molecules and yet survive. Bacteria possessing mutations in the catalase gene have a decreased survival rate, yet may be able to compensate for the lack of catalatic activity if peroxidatic activity is present. An incomplete knowledge of the mechanisms by which catalase and catalase-peroxidases are regulated still persists, however, in some bacterial species, a regulatory factor known as OxyR has been shown to either up-regulate or down-regulate catalase gene expression. Yet, more research is still needed to increase the knowledge base in relation to this enzyme class. As with this review, we focus on major respiratory tract opportunistic bacterial pathogens in order to elucidate the function and regulation of catalases. The importance of the research could lead to the development of novel treatments against respiratory bacterial infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Coinfection outcome in an opportunistic pathogen depends on the inter-strain interactions.

    PubMed

    Kinnula, Hanna; Mappes, Johanna; Sundberg, Lotta-Riina

    2017-03-14

    In nature, organisms are commonly coinfected by two or more parasite strains, which has been shown to influence disease virulence. Yet, the effects of coinfections of environmental opportunistic pathogens on disease outcome are still poorly known, although as host-generalists they are highly likely to participate in coinfections. We asked whether coinfection with conspecific opportunistic strains leads to changes in virulence, and if these changes are associated with bacterial growth or interference competition. We infected zebra fish (Danio rerio) with three geographically and/or temporally distant environmental opportunist Flavobacterium columnare strains in single and in coinfection. Growth of the strains was studied in single and in co-cultures in liquid medium, and interference competition (growth-inhibiting ability) on agar. The individual strains differed in their virulence, growth and ability for interference competition. Number of coinfecting strains significantly influenced the virulence of infection, with three-strain coinfection differing from the two-strain and single infections. Differences in virulence seemed to associate with the identity of the coinfecting bacterial strains, and their pairwise interactions. This indicates that benefits of competitive ability (production of growth-inhibiting compounds) for virulence are highest when multiple strains co-occur, whereas the high virulence in coinfection may be independent from in vitro bacterial growth. Intraspecific competition can lead to plastic increase in virulence, likely caused by faster utilization of host resources stimulated by the competitive interactions between the strains. However, disease outcome depends both on the characteristics of individual strains and their interactions. Our results highlight the importance of strain interactions in disease dynamics in environments where various pathogen genotypes co-occur.

  3. Draft Genome Sequences of Biosafety Level 2 Opportunistic Pathogens Isolated from the Environmental Surfaces of the International Space Station

    PubMed Central

    Checinska Sielaff, Aleksandra; Singh, Nitin K.; Allen, Jonathan E.; Thissen, James; Jaing, Crystal

    2016-01-01

    The draft genome sequences of 20 biosafety level 2 (BSL-2) opportunistic pathogens isolated from the environmental surfaces of the International Space Station (ISS) were presented. These genomic sequences will help in understanding the influence of microgravity on the pathogenicity and virulence of these strains when compared with Earth strains. PMID:28034853

  4. Draft Genome Sequences of Biosafety Level 2 Opportunistic Pathogens Isolated from the Environmental Surfaces of the International Space Station.

    PubMed

    Checinska Sielaff, Aleksandra; Singh, Nitin K; Allen, Jonathan E; Thissen, James; Jaing, Crystal; Venkateswaran, Kasthuri

    2016-12-29

    The draft genome sequences of 20 biosafety level 2 (BSL-2) opportunistic pathogens isolated from the environmental surfaces of the International Space Station (ISS) were presented. These genomic sequences will help in understanding the influence of microgravity on the pathogenicity and virulence of these strains when compared with Earth strains. Copyright © 2016 Checinska Sielaff et al.

  5. Emerging opportunistic protozoa and intestinal pathogenic protozoal infestation profile in children of western Nepal.

    PubMed

    Easow, Joshy Maducolil; Mukhopadhyay, Chiranjoy; Wilson, Godwin; Guha, Simantee; Jalan, Basavaraj Yogitha; Shivananda, Padavagadu Ganapati

    2005-12-01

    Intestinal parasitic infestation continues to be of public health importance in many tropical and subtropical countries for their high prevalence and effects on the morbidity in the population. This 5-year hospital-based retrospective analysis was aimed to find out the intestinal protozoal parasitic profile in 1790 pre-school and school-going children visiting the hospital with gastrointestinal illness. Giardia lamblia was the most prevalent pathogenic protozoan intestinal parasite (73.4%), followed by Entamoeba histolytica (24.4%). Interestingly, "newer" opportunistic pathogens like Cyclospora cayetanensis (1.0%) and Cryptosporidium sp. (1.0%) were detected from immunocompromised children below 2 years of age as a result of vertical transmission, which is alarming for a country like Nepal at the stage of 'concentrated epidemic' of HIV infection.

  6. Opportunistic fungal pathogen Candida glabrata circulates between humans and yellow-legged gulls.

    PubMed

    Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; L'Ollivier, Coralie; Lachaud, Laurence; Bourgeois, Nathalie; Rebaudet, Stanislas; Piarroux, Renaud; Mauffrey, Jean-François; Ranque, Stéphane

    2016-10-26

    The opportunistic pathogenic yeast Candida glabrata is a component of the mycobiota of both humans and yellow-legged gulls that is prone to develop fluconazole resistance. Whether gulls are a reservoir of the yeast and facilitate the dissemination of human C. glabrata strains remains an open question. In this study, MLVA genotyping highlighted the lack of genetic structure of 190 C. glabrata strains isolated from either patients in three hospitals or fecal samples collected from gull breeding colonies located in five distinct areas along the French Mediterranean littoral. Fluconazole-resistant isolates were evenly distributed between both gull and human populations. These findings demonstrate that gulls are a reservoir of this species and facilitate the diffusion of C. glabrata and indirect transmission to human or animal hosts via environmental contamination. This eco-epidemiological view, which can be applied to other vertebrate host species, broadens our perspective regarding the reservoirs and dissemination patterns of antifungal-resistant human pathogenic yeast.

  7. Opportunistic fungal pathogen Candida glabrata circulates between humans and yellow-legged gulls

    PubMed Central

    Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; L’Ollivier, Coralie; Lachaud, Laurence; Bourgeois, Nathalie; Rebaudet, Stanislas; Piarroux, Renaud; Mauffrey, Jean-François; Ranque, Stéphane

    2016-01-01

    The opportunistic pathogenic yeast Candida glabrata is a component of the mycobiota of both humans and yellow-legged gulls that is prone to develop fluconazole resistance. Whether gulls are a reservoir of the yeast and facilitate the dissemination of human C. glabrata strains remains an open question. In this study, MLVA genotyping highlighted the lack of genetic structure of 190 C. glabrata strains isolated from either patients in three hospitals or fecal samples collected from gull breeding colonies located in five distinct areas along the French Mediterranean littoral. Fluconazole-resistant isolates were evenly distributed between both gull and human populations. These findings demonstrate that gulls are a reservoir of this species and facilitate the diffusion of C. glabrata and indirect transmission to human or animal hosts via environmental contamination. This eco-epidemiological view, which can be applied to other vertebrate host species, broadens our perspective regarding the reservoirs and dissemination patterns of antifungal-resistant human pathogenic yeast. PMID:27782182

  8. Hiding in Fresh Fruits and Vegetables: Opportunistic Pathogens May Cross Geographical Barriers

    PubMed Central

    Al-Kharousi, Zahra S.; Al-Sadi, Abdullah M.; Al-Bulushi, Ismail M.; Shaharoona, Baby

    2016-01-01

    Different microbial groups of the microbiome of fresh produce can have diverse effects on human health. This study was aimed at identifying some microbial communities of fresh produce by analyzing 105 samples of imported fresh fruits and vegetables originated from different countries in the world including local samples (Oman) for aerobic plate count and the counts of Enterobacteriaceae, Enterococcus, and Staphylococcus aureus. The isolated bacteria were identified by molecular (PCR) and biochemical methods (VITEK 2). Enterobacteriaceae occurred in 60% of fruits and 91% of vegetables. Enterococcus was isolated from 20% of fruits and 42% of vegetables. E. coli and S. aureus were isolated from 22% and 7% of vegetables, respectively. Ninety-seven bacteria comprising 21 species were similarly identified by VITEK 2 and PCR to species level. E. coli, Klebsiella pneumoniae, Enterococcus casseliflavus, and Enterobacter cloacae were the most abundant species; many are known as opportunistic pathogens which may raise concern to improve the microbial quality of fresh produce. Phylogenetic trees showed no relationship between clustering of the isolates based on the 16S rRNA gene and the original countries of fresh produce. Intercountry passage of opportunistic pathogens in fresh produce cannot be ruled out, which requires better management. PMID:26989419

  9. Acanthamoeba polyphaga, a potential environmental vector for the transmission of food-borne and opportunistic pathogens.

    PubMed

    Anacarso, Immacolata; de Niederhäusern, Simona; Messi, Patrizia; Guerrieri, Elisa; Iseppi, Ramona; Sabia, Carla; Bondi, Moreno

    2012-06-01

    The endosymbiotic relationship could represent for many bacteria an important condition favouring their spread in the environment and in foods. For this purpose we studied the behaviour of some food-borne and opportunistic pathogens (Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, Salmonella enterica serovar Enteritidis, Aeromonas hydrophila, Yersinia enterocolitica) when internalized in Acanthamoeba polyphaga. Our results confirm the capability of the bacteria tested to grow within amoebal hosts. We can observe two types of interactions of the bacteria internalized in A. polyphaga. The first type, showed by Y. enterocolitica and A. hydrophila, was characterized by an early replication, probably followed by the killing and digestion of the bacteria. The second type, showed by E. faecalis and S. aureus was characterized by the persistence and grow inside the host without lysis. Lastly, when amoebae were co-cultured with L. monocytogenes and S. Enteritidis, an eclipse phase followed by an active intracellular growth was observed, suggesting a third type of predator-prey trend. The extracellular count in presence of A. polyphaga, as a result of an intracellular multiplication and subsequent release, was characterized by an increase of E. faecalis, S. aureus, L. monocytogenes and S. Enteritidis, and by a low or absent cell count for Y. enterocolitica and A. hydrophila. Our study suggests that the investigated food-borne and opportunistic pathogens are, in most cases, able to interact with A. polyphaga, to intracellularly replicate and, lastly, to be potentially spread in the environment, underlining the possible role of this protozoan in food contamination.

  10. Multiple rare opportunistic and pathogenic fungi in persistent foot skin infection.

    PubMed

    Chan, Giek Far; Sinniah, Sivaranjini; Idris, Tengku Idzzan Nadzirah Tengku; Puad, Mohamad Safwan Ahmad; Abd Rahman, Ahmad Zuhairi

    2013-03-01

    Persistent superficial skin infection caused by multiple fungi is rarely reported. Recently, a number of fungi, both opportunistic and persistent in nature were isolated from the foot skin of a 24-year old male in Malaysia. The fungi were identified as Candida parapsilosis, Rhodotorula mucilaginosa, Phoma spp., Debaryomyces hansenii, Acremonium spp., Aureobasidium pullulans and Aspergillus spp., This is the first report on these opportunistic strains were co-isolated from a healthy individual who suffered from persistent foot skin infection which was diagnosed as athlete's foot for more than 12 years. Among the isolated fungi, C. parapsilosis has been an increasingly common cause of skin infections. R. mucilaginosa and D. hansenii were rarely reported in cases of skin infection. A. pullulans, an emerging fungal pathogen was also being isolated in this case. Interestingly, it was noted that C. parapsilosis, R. mucilaginosa, D. hansenii and A. pullulans are among the common halophiles and this suggests the association of halotolerant fungi in causing persistent superficial skin infection. This discovery will shed light on future research to explore on effective treatment for inhibition of pathogenic halophiles as well as to understand the interaction of multiple fungi in the progress of skin infection.

  11. The Genomic Aftermath of Hybridization in the Opportunistic Pathogen Candida metapsilosis

    PubMed Central

    Pryszcz, Leszek P.; Németh, Tibor; Saus, Ester; Ksiezopolska, Ewa; Hegedűsová, Eva; Nosek, Jozef; Wolfe, Kenneth H.; Gacser, Attila; Gabaldón, Toni

    2015-01-01

    Candida metapsilosis is a rarely-isolated, opportunistic pathogen that belongs to a clade of pathogenic yeasts known as the C. parapsilosis sensu lato species complex. To gain insight into the recent evolution of C. metapsilosis and the genetic basis of its virulence, we sequenced the genome of 11 clinical isolates from various locations, which we compared to each other and to the available genomes of the two remaining members of the complex: C. orthopsilosis and C. parapsilosis. Unexpectedly, we found compelling genomic evidence that C. metapsilosis is a highly heterozygous hybrid species, with all sequenced clinical strains resulting from the same past hybridization event involving two parental lineages that were approximately 4.5% divergent in sequence. This result indicates that the parental species are non-pathogenic, but that hybridization between them formed a new opportunistic pathogen, C. metapsilosis, that has achieved a worldwide distribution. We show that these hybrids are diploid and we identified strains carrying loci for both alternative mating types, which supports mating as the initial mechanism for hybrid formation. We trace the aftermath of this hybridization at the genomic level, and reconstruct the evolutionary relationships among the different strains. Recombination and introgression -resulting in loss of heterozygosis- between the two subgenomes have been rampant, and includes the partial overwriting of the MTLa mating locus in all strains. Collectively, our results shed light on the recent genomic evolution within the C. parapsilosis sensu lato complex, and argue for a re-definition of species within this clade, with at least five distinct homozygous lineages, some of which having the ability to form hybrids. PMID:26517373

  12. The Genomic Aftermath of Hybridization in the Opportunistic Pathogen Candida metapsilosis.

    PubMed

    Pryszcz, Leszek P; Németh, Tibor; Saus, Ester; Ksiezopolska, Ewa; Hegedűsová, Eva; Nosek, Jozef; Wolfe, Kenneth H; Gacser, Attila; Gabaldón, Toni

    2015-10-01

    Candida metapsilosis is a rarely-isolated, opportunistic pathogen that belongs to a clade of pathogenic yeasts known as the C. parapsilosis sensu lato species complex. To gain insight into the recent evolution of C. metapsilosis and the genetic basis of its virulence, we sequenced the genome of 11 clinical isolates from various locations, which we compared to each other and to the available genomes of the two remaining members of the complex: C. orthopsilosis and C. parapsilosis. Unexpectedly, we found compelling genomic evidence that C. metapsilosis is a highly heterozygous hybrid species, with all sequenced clinical strains resulting from the same past hybridization event involving two parental lineages that were approximately 4.5% divergent in sequence. This result indicates that the parental species are non-pathogenic, but that hybridization between them formed a new opportunistic pathogen, C. metapsilosis, that has achieved a worldwide distribution. We show that these hybrids are diploid and we identified strains carrying loci for both alternative mating types, which supports mating as the initial mechanism for hybrid formation. We trace the aftermath of this hybridization at the genomic level, and reconstruct the evolutionary relationships among the different strains. Recombination and introgression -resulting in loss of heterozygosis- between the two subgenomes have been rampant, and includes the partial overwriting of the MTLa mating locus in all strains. Collectively, our results shed light on the recent genomic evolution within the C. parapsilosis sensu lato complex, and argue for a re-definition of species within this clade, with at least five distinct homozygous lineages, some of which having the ability to form hybrids.

  13. The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees.

    PubMed

    Foley, Kirsten; Fazio, Géraldine; Jensen, Annette B; Hughes, William O H

    2014-03-14

    Stonebrood is a disease of honey bee larvae caused by fungi from the genus Aspergillus. As very few studies have focused on the epidemiological aspects of stonebrood and diseased brood may be rapidly discarded by worker bees, it is possible that a high number of cases go undetected. Aspergillus spp. fungi are ubiquitous and associated with disease in many insects, plants, animals and man. They are regarded as opportunistic pathogens that require immunocompromised hosts to establish infection. Microbiological studies have shown high prevalences of Aspergillus spp. in apiaries which occur saprophytically on hive substrates. However, the specific conditions required for pathogenicity to develop remain unknown. In this study, an apiary was screened to determine the prevalence and diversity of Aspergillus spp. fungi. A series of dose-response tests were then conducted using laboratory reared larvae to determine the pathogenicity and virulence of frequently occurring isolates. The susceptibility of adult worker bees to Aspergillus flavus was also tested. Three isolates (A. flavus, Aspergillus nomius and Aspergillus phoenicis) of the ten species identified were pathogenic to honey bee larvae. Moreover, adult honey bees were also confirmed to be highly susceptible to A. flavus infection when they ingested conidia. Neither of the two Aspergillus fumigatus strains used in dose-response tests induced mortality in larvae and were the least pathogenic of the isolates tested. These results confirm the ubiquity of Aspergillus spp. in the apiary environment and highlight their potential to infect both larvae and adult bees.

  14. Cyanidin inhibits quorum signalling pathway of a food borne opportunistic pathogen.

    PubMed

    Gopu, Venkadesaperumal; Shetty, Prathapkumar Halady

    2016-02-01

    Quorum sensing (QS) is the process of population dependent cell to cell communication used by bacteria to regulate their phenotypic characteristics. Key virulence factors that determine the bacterial pathogenicity and food spoilage were found to be regulated by QS mechanism. Hence, disrupting the QS signaling pathway could be an attractive strategy to manage food borne pathogens. In the current study, QS inhibitory activity of a naturally occurring anthocyanin-cyanidin and its anti-biofilm property were assessed against an opportunistic pathogen Klebsiella pneumoniae, using a bio-sensor strain. Further, QS inhibitory property of a naturally occurring anthocyanin cyanidin was further confirmed using in-silico techniques like molecular docking and molecular dynamics simulation studies. Cyanidin at sub-lethal dose significantly inhibited QS-dependent phenotypes like violacein production (73.96 %), biofilm formation (72.43 %), and exopolysaccharide production (68.65) in a concentration-dependent manner. Cyanidin enhanced the sensitivity of test pathogen to conventional antibiotics in a synergistic manner. Molecular docking analysis revealed that cyanidin binds more rigidly with LasR receptor protein than the signaling compound with a docking score of -9.13 Kcal/mol. Molecular dynamics simulation predicted that QS inhibitory activity occurs through the conformational changes between the receptor and cyanidin complex. Our results indicate that cyanidin, can be a potential QS based antibiofilm and antibacterial agent for food borne pathogens.

  15. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata.

    PubMed

    Briones-Martin-Del-Campo, Marcela; Orta-Zavalza, Emmanuel; Juarez-Cepeda, Jacqueline; Gutierrez-Escobedo, Guadalupe; Cañas-Villamar, Israel; Castaño, Irene; De Las Peñas, Alejandro

    2014-01-01

    Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  16. The presence of opportunistic pathogens, Legionella spp., L. pneumophila and Mycobacterium avium complex, in South Australian reuse water distribution pipelines.

    PubMed

    Whiley, H; Keegan, A; Fallowfield, H; Bentham, R

    2015-06-01

    Water reuse has become increasingly important for sustainable water management. Currently, its application is primarily constrained by the potential health risks. Presently there is limited knowledge regarding the presence and fate of opportunistic pathogens along reuse water distribution pipelines. In this study opportunistic human pathogens Legionella spp., L. pneumophila and Mycobacterium avium complex were detected using real-time polymerase chain reaction along two South Australian reuse water distribution pipelines at maximum concentrations of 10⁵, 10³ and 10⁵ copies/mL, respectively. During the summer period of sampling the concentration of all three organisms significantly increased (P < 0.05) along the pipeline, suggesting multiplication and hence viability. No seasonality in the decrease in chlorine residual along the pipelines was observed. This suggests that the combination of reduced chlorine residual and increased water temperature promoted the presence of these opportunistic pathogens.

  17. Impact of untreated urban waste on the prevalence and antibiotic resistance profiles of human opportunistic pathogens in agricultural soils from Burkina Faso.

    PubMed

    Youenou, Benjamin; Hien, Edmond; Deredjian, Amélie; Brothier, Elisabeth; Favre-Bonté, Sabine; Nazaret, Sylvie

    2016-12-01

    This study examined the long-term effects of the landfill disposal of untreated urban waste for soil fertilization on the prevalence and antibiotic resistance profiles of various human opportunistic pathogens in soils from Burkina Faso. Samples were collected at three sites in the periphery of Ouagadougou during two campaigns in 2008 and 2011. At each site, amendment led to changes in physico-chemical characteristics as shown by the increase in pH, CEC, total C, total N, and metal contents. Similarly, the numbers of total heterotrophic bacteria were higher in the amended fields than in the control ones. No sanitation indicators, i.e., coliforms, Staphylococci, and Enterococci, were detected. Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) were detected at a low level in one amended field. Stenotrophomonas maltophilia was detected from both campaigns at the three sites in the amended fields and only once in an unamended field. Diversity analysis showed some opportunistic pathogen isolates to be closely related to reference clinical strains responsible for nosocomial- or community-acquired infections in Northern countries. Antibiotic resistance tests showed that P. aeruginosa and Bcc isolates had a wild-type phenotype and that most S. maltophilia isolates had a multi-drug resistance profile with resistance to 7 to 15 antibiotics. Then we were able to show that amendment led to an increase of some human opportunistic pathogens including multi-drug resistant isolates. Although the application of untreated urban waste increases both soil organic matter content and therefore soil fertility, the consequences of this practice on human health should be considered.

  18. Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans.

    PubMed

    Kim, Hanhae; Jung, Kwang-Woo; Maeng, Shinae; Chen, Ying-Lien; Shin, Junha; Shim, Jung Eun; Hwang, Sohyun; Janbon, Guilhem; Kim, Taeyup; Heitman, Joseph; Bahn, Yong-Sun; Lee, Insuk

    2015-03-05

    Cryptococcus neoformans is an opportunistic human pathogenic fungus that causes meningoencephalitis. Due to the increasing global risk of cryptococcosis and the emergence of drug-resistant strains, the development of predictive genetics platforms for the rapid identification of novel genes governing pathogenicity and drug resistance of C. neoformans is imperative. The analysis of functional genomics data and genome-scale mutant libraries may facilitate the genetic dissection of such complex phenotypes but with limited efficiency. Here, we present a genome-scale co-functional network for C. neoformans, CryptoNet, which covers ~81% of the coding genome and provides an efficient intermediary between functional genomics data and reverse-genetics resources for the genetic dissection of C. neoformans phenotypes. CryptoNet is the first genome-scale co-functional network for any fungal pathogen. CryptoNet effectively identified novel genes for pathogenicity and drug resistance using guilt-by-association and context-associated hub algorithms. CryptoNet is also the first genome-scale co-functional network for fungi in the basidiomycota phylum, as Saccharomyces cerevisiae belongs to the ascomycota phylum. CryptoNet may therefore provide insights into pathway evolution between two distinct phyla of the fungal kingdom. The CryptoNet web server (www.inetbio.org/cryptonet) is a public resource that provides an interactive environment of network-assisted predictive genetics for C. neoformans.

  19. Opportunistic Pathogens Mycobacterium Avium Complex (MAC) and Legionella spp. Colonise Model Shower.

    PubMed

    Whiley, Harriet; Giglio, Steven; Bentham, Richard

    2015-07-24

    Legionella spp. and Mycobacterium avium complex (MAC) are opportunistic pathogens of public health concern. Hot water systems, including showers, have been identified as a potential source of infection. This paper describes the colonization of Legionella and MAC on the flexible tubing within a model potable shower system, utilizing thermostatic mixing and a flexible shower head. A MAC qPCR method of enumeration was also developed. MAC and Legionella spp. were detected within the biofilm at maximum concentrations of 7.0 × 104 and 2.0 × 103 copies/cm2 PVC tubing respectively. No significant changes were observed between sample of the flexible shower tubing that dried between uses and those that remained filled with water. This suggested the "unhooking" showerheads and allowing them to dry is not an effective method to reduce the risk of Legionella or MAC colonisation.

  20. Structural diversity and biological significance of glycosphingolipids in pathogenic and opportunistic fungi.

    PubMed

    Guimarães, Luciana L; Toledo, Marcos S; Ferreira, Felipe A S; Straus, Anita H; Takahashi, Helio K

    2014-01-01

    Glycosphingolipids (GSLs) are ubiquitous membrane components and have key roles in biological systems, acting as second messengers or modulators of signal transduction by affecting several events, ranging from cell adhesion, cell growth, cell motility, regulation of apoptosis and cell cycle. Over the last 20 years our laboratory and other research groups determined the glycan and ceramide structures of more than 20 GSLs from several pathogenic/opportunistic fungi, using a combination of gas chromatography, mass spectrometry, nuclear magnetic resonance as well as other immunochemical and biochemical techniques. Fungal GSLs can be divided in two major classes: neutral GSLs, galactosyl- and glucosylceramide (GlcCer), and acidic GSLs, the glycosylinositol-phosphorylceramides (GIPCs). Glycosyl structures in fungal GIPCs exhibited significant structural diversity and distinct composition when compared to mammalian GSLs, e.g., the expression of inositol-mannose and inositol-glucosamine cores and the terminal residue of β-D-galactofuranose which are absent in mammalian cells. Studies performed by our group demonstrated that GIPC (Galfβ 6[Manα3]Manα2InsPCer) elicited in patients with paracoccidioidomycosis an immune response with production of antibodies directed to the terminal residue of β-D-galactofuranose. Further studies also showed that inhibition of GlcCer biosynthetic pathways affects fungal colony formation, spore germination and hyphal growth, indicating that enzymes involved in GlcCer biosynthesis may represent promising targets for the therapy of fungal infections. Recently, it was shown that GlcCer and GIPCs are preferentially localized in membrane microdomains and monoclonal antibodies directed to these GSLs interfere in several fungal biological processes such as growth and morphological transition. This review focuses on glycan structures carried on sphingolipids of pathogenic/opportunistic fungi, and aspects of their biological significance are

  1. C27 to C32 sterols found in Pneumocystis, an opportunistic pathogen of immunocompromised mammals.

    PubMed

    Kaneshiro, E S; Wyder, M A

    2000-03-01

    Pneumocystis carinii is the paradigm of opportunistic infections in immunocompromised mammals. Prior to the acquired immunodeficiency syndrome (AIDS) pandemic and the use of immunosuppressive therapy in organ transplant and cancer patients, P. carinii was regarded as a curiosity, rarely observed clinically. Interest in this organism exploded when it was identified as the agent of P. carinii pneumonia (PcP), the direct cause of death among many AIDS patients. Aggressive prophylaxis has decreased the number of acute PcP cases, but it remains among the most prevalent opportunistic infections found within this patient population. The taxonomic assignment of P. carinii has long been argued; molecular genetics data now demonstrate that it is a fungus. Several antimycotic drugs are targeted against ergosterol or its biosynthesis, but these are not as effective against PcP as they are against other fungal infections. This can now be explained in part by the identification of the sterols of P. carinii. The organism lacks ergosterol but contains distinct C28 and C29 delta7 24-alkylsterols. Also, 24-methylenelanost-8-en-3beta-ol (C31) and pneumocysterol, (24Z)-ethylidenelanost-8-en-3beta-ol (C32) were recently identified in organisms infecting humans. Together, the delta7 24-alkylsterols and pneumocysterol are regarded as signature lipids of the pathogen that can be useful for the diagnosis of PcP, since no other lung pathogen is known to contain them. Cholesterol (C27), the dominant sterol component in P. carinii, is probably totally scavenged from the host. De novo synthesis of sterols has been demonstrated by the presence of lovastatin-sensitive 3-hydroxy-3-methylglutaryl-CoA reductase activity, the incorporation of radiolabeled mevalonate and squalene into P. carinii sterols, and the reduction in cellular ATP in cells treated with inhibitors of enzymes in sterol biosynthesis.

  2. Proteomic profiling of Cronobacter turicensis 3032, a food-borne opportunistic pathogen.

    PubMed

    Carranza, Paula; Hartmann, Isabel; Lehner, Angelika; Stephan, Roger; Gehrig, Peter; Grossmann, Jonas; Barkow-Oesterreicher, Simon; Roschitzki, Bernd; Eberl, Leo; Riedel, Kathrin

    2009-07-01

    Members of the genus Cronobacter are opportunistic pathogens for neonates and are often associated with contaminated milk powder formulas. At present little is known about the virulence mechanisms or the natural reservoir of these organisms. The proteome of Cronobacter turicensis 3032, which has recently caused two deaths, was mapped aiming at a better understanding of physiology and putative pathogenic traits of this clinical isolate. Our analyses of extracellular, surface-associated and whole-cell proteins by two complementary proteomics approaches, 1D-SDS-PAGE combined with LC-ESI-MS/MS and 2D-LC-MALDI-TOF/TOF MS, lead to the identification of 832 proteins corresponding to a remarkable 19% of the theoretically expressed protein complement of C. turicensis. The majority of the identified proteins are involved in central metabolic pathways, translation, protein folding and stability. Several putative virulence factors, whose expressions were confirmed by phenotypic assays, could be identified: a macrophage infectivity potentiator involved in C. turicensis persistence in host cells, a superoxide dismutase protecting the pathogen against reactive oxygen species and an enterobactin-receptor protein for the uptake of siderophore-bound iron. Most interestingly, a chitinase and a metalloprotease that might act against insects and fungi but no casein hydrolysing enzymes were found, suggesting that there is an environmental natural habitat of C. turicensis 3032.

  3. Opportunistic pathogen Candida albicans elicits a temporal response in primary human mast cells.

    PubMed

    Lopes, José Pedro; Stylianou, Marios; Nilsson, Gunnar; Urban, Constantin F

    2015-07-20

    Immunosuppressed patients are frequently afflicted with severe mycoses caused by opportunistic fungal pathogens. Besides being a commensal, colonizing predominantly skin and mucosal surfaces, Candida albicans is the most common human fungal pathogen. Mast cells are present in tissues prone to fungal colonization being expectedly among the first immune cells to get into contact with C. albicans. However, mast cell-fungus interaction remains a neglected area of study. Here we show that human mast cells mounted specific responses towards C. albicans. Collectively, mast cell responses included the launch of initial, intermediate and late phase components determined by the secretion of granular proteins and cytokines. Initially mast cells reduced fungal viability and occasionally internalized yeasts. C. albicans could evade ingestion by intracellular growth leading to cellular death. Furthermore, secreted factors in the supernatants of infected cells recruited neutrophils, but not monocytes. Late stages were marked by the release of cytokines that are known to be anti-inflammatory suggesting a modulation of initial responses. C. albicans-infected mast cells formed extracellular DNA traps, which ensnared but did not kill the fungus. Our results suggest that mast cells serve as tissue sentinels modulating antifungal immune responses during C. albicans infection. Consequently, these findings open new doors for understanding fungal pathogenicity.

  4. Phylogenetic Analysis and Antimicrobial Profiles of Cultured Emerging Opportunistic Pathogens (Phyla Actinobacteria and Proteobacteria) Identified in Hot Springs

    PubMed Central

    Jardine, Jocelyn Leonie; Mavumengwana, Vuyo

    2017-01-01

    Hot spring water may harbour emerging waterborne opportunistic pathogens that can cause infections in humans. We have investigated the diversity and antimicrobial resistance of culturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo, South Africa. Aerobic bacteria were cultured and identified using 16S ribosomal DNA (rDNA) gene sequencing. The presence of Legionella spp. was investigated using real-time polymerase chain reaction. Isolates were tested for resistance to ten antibiotics representing six different classes: β-lactam (carbenicillin), aminoglycosides (gentamycin, kanamycin, streptomycin), tetracycline, amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria, Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteria were resistant to two antibiotics in different combinations of carbenicillin, ceftriaxone, nalidixic acid and chloramphenicol. Cronobacter sp. was sensitive to all ten antibiotics. This study suggests that hot springs are potential reservoirs for emerging opportunistic pathogens, including multiple antibiotic resistant strains, and highlights the presence of unknown populations of emerging and potential waterborne opportunistic pathogens in the environment. PMID:28914802

  5. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens.

    PubMed

    Ye, Lumeng; Hildebrand, Falk; Dingemans, Jozef; Ballet, Steven; Laus, George; Matthijs, Sandra; Berendsen, Roeland; Cornelis, Pierre

    2014-01-01

    Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors.

  6. Ochromobactrum intermedium: an emerging opportunistic pathogen-case of recurrent bacteraemia associated with infective endocarditis in a haemodialysis patient.

    PubMed

    Bharucha, T; Sharma, D; Sharma, H; Kandil, H; Collier, S

    2017-01-01

    We describe the first clinical case report of infective endocarditis related to Ochrobactrum intermedium infection. The case involved a 23-year-old man receiving dialysis via an internal jugular long-term haemodialysis catheter. He improved with a prolonged course of meropenem and minocycline. Ochrobactrum spp. are recognized as rare emerging opportunistic pathogens.

  7. The opportunistic human pathogen Acinetobacter baumannii senses and responds to light.

    PubMed

    Mussi, María A; Gaddy, Jennifer A; Cabruja, Matías; Arivett, Brock A; Viale, Alejandro M; Rasia, Rodolfo; Actis, Luis A

    2010-12-01

    Light is a ubiquitous environmental signal that many organisms sense and respond to by modulating their physiological responses accordingly. While this is an expected response among phototrophic microorganisms, the ability of chemotrophic prokaryotes to sense and react to light has become a puzzling and novel issue in bacterial physiology, particularly among bacterial pathogens. In this work, we show that the opportunistic pathogen Acinetobacter baumannii senses and responds to blue light. Motility and formation of biofilms and pellicles were observed only when bacterial cells were incubated in darkness. In contrast, the killing of Candida albicans filaments was enhanced when they were cocultured with bacteria under light. These bacterial responses depend on the expression of the A. baumannii ATCC 17978 A1S_2225 gene, which codes for an 18.6-kDa protein that contains an N-terminal blue-light-sensing-using flavin (BLUF) domain and lacks a detectable output domain(s). Spectral analyses of the purified recombinant protein showed its ability to sense light by a red shift upon illumination. Therefore, the A1S_2225 gene, which is present in several members of the Acinetobacter genus, was named blue-light-sensing A (blsA). Interestingly, temperature plays a role in the ability of A. baumannii to sense and respond to light via the BlsA photoreceptor protein.

  8. Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata.

    PubMed

    Cuéllar-Cruz, Mayra; Castaño, Irene; Arroyo-Helguera, Omar; De Las Peñas, Alejandro

    2009-07-01

    Candida glabrata is an opportunistic fungal pathogen that can cause severe invasive infections and can evade phagocytic cell clearance. We are interested in understanding the virulence of this fungal pathogen, in particular its oxidative stress response. Here we investigated C. glabrata, Saccharomyces cerevisiae and Candida albicans responses to two different oxidants: menadione and cumene hydroperoxide (CHP). In log-phase, in the presence of menadione, C. glabrata requires Cta1p (catalase), while in a stationary phase (SP), Cta1p is dispensable. In addition, C. glabrata is less resistant to menadione than C. albicans in SP. The S. cerevisiae laboratory reference strain is less resistant to menadione than C. glabrata and C. albicans; however S. cerevisiaeclinical isolates (CIs) are more resistant than the lab reference strain. Furthermore, S. cerevisiae CIs showed an increased catalase activity. Interestingly, in SP C. glabrata and S. cerevisiae are more resistant to CHP than C. albicans and Cta1p plays no apparent role in detoxifying this oxidant.

  9. Destruction of Opportunistic Pathogens via Polymer Nanoparticle-Mediated Release of Plant-Based Antimicrobial Payloads

    PubMed Central

    Amato, Dahlia N.; Amato, Douglas V.; Mavrodi, Olga V.; Braasch, Dwaine A.; Walley, Susan E.; Douglas, Jessica R.

    2017-01-01

    The synthesis of antimicrobial thymol/carvacrol-loaded polythioether nanoparticles (NPs) via a one-pot, solvent-free miniemulsion thiol-ene photopolymerization process is reported. The active antimicrobial agents, thymol and carvacrol, are employed as “solvents” for the thiol-ene monomer phase in the miniemulsion to enable facile high capacity loading (≈50% w/w), excellent encapsulation efficiencies (>95%), and elimination of all postpolymerization purification processes. The NPs serve as high capacity reservoirs for slow-release and delivery of thymol/carvacrol-combination payloads that exhibit inhibitory and bactericidal activity (>99.9% kill efficiency at 24 h) against gram-positive and gram-negative bacteria, including both saprophytic (Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 25922) and pathogenic species (E. coli ATCC 43895, Staphylococcus aureus RN6390, and Burkholderia cenocepacia K56-2). This report is among the first to demonstrate antimicrobial efficacy of essential oil-loaded nanoparticles against B. cenocepacia – an innately resistant opportunistic pathogen commonly associated with debilitating respiratory infections in cystic fibrosis. Although a model platform, these results point to promising pathways to particle-based delivery of plant-derived extracts for a range of antimicrobial applications, including active packaging materials, topical antiseptics, and innovative therapeutics. PMID:26946055

  10. Agent-based modeling approach of immune defense against spores of opportunistic human pathogenic fungi.

    PubMed

    Tokarski, Christian; Hummert, Sabine; Mech, Franziska; Figge, Marc Thilo; Germerodt, Sebastian; Schroeter, Anja; Schuster, Stefan

    2012-01-01

    Opportunistic human pathogenic fungi like the ubiquitous fungus Aspergillus fumigatus are a major threat to immunocompromised patients. An impaired immune system renders the body vulnerable to invasive mycoses that often lead to the death of the patient. While the number of immunocompromised patients is rising with medical progress, the process, and dynamics of defense against invaded and ready to germinate fungal conidia are still insufficiently understood. Besides macrophages, neutrophil granulocytes form an important line of defense in that they clear conidia. Live imaging shows the interaction of those phagocytes and conidia as a dynamic process of touching, dragging, and phagocytosis. To unravel strategies of phagocytes on the hunt for conidia an agent-based modeling approach is used, implemented in NetLogo. Different modes of movement of phagocytes are tested regarding their clearing efficiency: random walk, short-term persistence in their recent direction, chemotaxis of chemokines excreted by conidia, and communication between phagocytes. While the short-term persistence hunting strategy turned out to be superior to the simple random walk, following a gradient of chemokines released by conidial agents is even better. The advantage of communication between neutrophilic agents showed a strong dependency on the spatial scale of the focused area and the distribution of the pathogens.

  11. Genome-Wide Identification of Small RNAs in the Opportunistic Pathogen Enterococcus faecalis V583

    PubMed Central

    Shioya, Kouki; Michaux, Charlotte; Kuenne, Carsten; Hain, Torsten; Verneuil, Nicolas; Budin-Verneuil, Aurélie; Hartsch, Thomas; Hartke, Axel; Giard, Jean-Christophe

    2011-01-01

    Small RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the Gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5′ and 3′ RACE-PCR, and Northern blot analysis. Six sRNAs were specifically expressed at exponential phase, two sRNAs were observed at stationary phase, and three were detected during both phases. Searches of putative functions revealed that three of them (EFA0080_EFA0081 and EFB0062_EFB0063 on pTF1 and pTF2 plasmids, respectively, and EF0408_EF04092 located on the chromosome) are similar to antisense RNA involved in plasmid addiction modules. Moreover, EF1097_EF1098 shares strong homologies with tmRNA (bi-functional RNA acting as both a tRNA and an mRNA) and EF2205_EF2206 appears homologous to 4.5S RNA member of the Signal Recognition Particle (SRP) ribonucleoprotein complex. In addition, proteomic analysis of the ΔEF3314_EF3315 sRNA mutant suggests that it may be involved in the turnover of some abundant proteins. The expression patterns of these transcripts were evaluated by tiling array hybridizations performed with samples from cells grown under eleven different conditions some of which may be encountered during infection. Finally, distribution of these sRNAs among genome sequences of 54 E. faecalis strains was assessed. This is the first experimental genome-wide identification of sRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen. PMID:21912655

  12. Genome-wide identification of small RNAs in the opportunistic pathogen Enterococcus faecalis V583.

    PubMed

    Shioya, Kouki; Michaux, Charlotte; Kuenne, Carsten; Hain, Torsten; Verneuil, Nicolas; Budin-Verneuil, Aurélie; Hartsch, Thomas; Hartke, Axel; Giard, Jean-Christophe

    2011-01-01

    Small RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5' and 3' RACE-PCR, and Northern blot analysis. Six sRNAs were specifically expressed at exponential phase, two sRNAs were observed at stationary phase, and three were detected during both phases. Searches of putative functions revealed that three of them (EFA0080_EFA0081 and EFB0062_EFB0063 on pTF1 and pTF2 plasmids, respectively, and EF0408_EF04092 located on the chromosome) are similar to antisense RNA involved in plasmid addiction modules. Moreover, EF1097_EF1098 shares strong homologies with tmRNA (bi-functional RNA acting as both a tRNA and an mRNA) and EF2205_EF2206 appears homologous to 4.5S RNA member of the Signal Recognition Particle (SRP) ribonucleoprotein complex. In addition, proteomic analysis of the ΔEF3314_EF3315 sRNA mutant suggests that it may be involved in the turnover of some abundant proteins. The expression patterns of these transcripts were evaluated by tiling array hybridizations performed with samples from cells grown under eleven different conditions some of which may be encountered during infection. Finally, distribution of these sRNAs among genome sequences of 54 E. faecalis strains was assessed. This is the first experimental genome-wide identification of sRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen.

  13. Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus

    PubMed Central

    Sheridan, Kevin J.; Lechner, Beatrix Elisabeth; Keeffe, Grainne O’; Keller, Markus A.; Werner, Ernst R.; Lindner, Herbert; Jones, Gary W.; Haas, Hubertus; Doyle, Sean

    2016-01-01

    Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis. PMID:27748436

  14. Propionibacterium acnes: from Commensal to Opportunistic Biofilm-Associated Implant Pathogen

    PubMed Central

    Achermann, Yvonne; Goldstein, Ellie J. C.; Coenye, Tom

    2014-01-01

    SUMMARY Propionibacterium acnes is known primarily as a skin commensal. However, it can present as an opportunistic pathogen via bacterial seeding to cause invasive infections such as implant-associated infections. These infections have gained more attention due to improved diagnostic procedures, such as sonication of explanted foreign materials and prolonged cultivation time of up to 14 days for periprosthetic biopsy specimens, and improved molecular methods, such as broad-range 16S rRNA gene PCR. Implantassociated infections caused by P. acnes are most often described for shoulder prosthetic joint infections as well as cerebrovascular shunt infections, fibrosis of breast implants, and infections of cardiovascular devices. P. acnes causes disease through a number of virulence factors, such as biofilm formation. P. acnes is highly susceptible to a wide range of antibiotics, including beta-lactams, quinolones, clindamycin, and rifampin, although resistance to clindamycin is increasing. Treatment requires a combination of surgery and a prolonged antibiotic treatment regimen to successfully eliminate the remaining bacteria. Most authors suggest a course of 3 to 6 months of antibiotic treatment, including 2 to 6 weeks of intravenous treatment with a beta-lactam. While recently reported data showed a good efficacy of rifampin against P. acnes biofilms, prospective, randomized, controlled studies are needed to confirm evidence for combination treatment with rifampin, as has been performed for staphylococcal implant-associated infections. PMID:24982315

  15. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea.

    PubMed

    Visvesvara, Govinda S; Moura, Hercules; Schuster, Frederick L

    2007-06-01

    Among the many genera of free-living amoebae that exist in nature, members of only four genera have an association with human disease: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri and Sappinia diploidea. Acanthamoeba spp. and B. mandrillaris are opportunistic pathogens causing infections of the central nervous system, lungs, sinuses and skin, mostly in immunocompromised humans. Balamuthia is also associated with disease in immunocompetent children, and Acanthamoeba spp. cause a sight-threatening infection, Acanthamoeba keratitis, mostly in contact-lens wearers. Of more than 30 species of Naegleria, only one species, N. fowleri, causes an acute and fulminating meningoencephalitis in immunocompetent children and young adults. In addition to human infections, Acanthamoeba, Balamuthia and Naegleria can cause central nervous system infections in animals. Because only one human case of encephalitis caused by Sappinia diploidea is known, generalizations about the organism as an agent of disease are premature. In this review we summarize what is known of these free-living amoebae, focusing on their biology, ecology, types of disease and diagnostic methods. We also discuss the clinical profiles, mechanisms of pathogenesis, pathophysiology, immunology, antimicrobial sensitivity and molecular characteristics of these amoebae.

  16. Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus.

    PubMed

    Sheridan, Kevin J; Lechner, Beatrix Elisabeth; Keeffe, Grainne O'; Keller, Markus A; Werner, Ernst R; Lindner, Herbert; Jones, Gary W; Haas, Hubertus; Doyle, Sean

    2016-10-17

    Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis.

  17. Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium.

    PubMed

    Al-Hatmi, Abdullah M S; Van Den Ende, A H G Gerrits; Stielow, J Benjamin; Van Diepeningen, Anne D; Seifert, Keith A; McCormick, Wayne; Assabgui, Rafik; Gräfenhan, Tom; De Hoog, G Sybren; Levesque, C André

    2016-02-01

    The genus Fusarium includes more than 200 species of which 73 have been isolated from human infections. Fusarium species are opportunistic human pathogens with variable aetiology. Species determination is best made with the combined phylogeny of protein-coding genes such as elongation factor (TEF1), RNA polymerase (RPB2) and the partial β-tubulin (BT2) gene. The internal transcribed spacers 1, 2 and 5.8S rRNA gene (ITS) have also been used, however, ITS cannot discriminate several closely related species and has nonorthologous copies in Fusarium. Currently, morphological approaches and tree-building methods are in use to define species and to discover hitherto undescribed species. Aftter a species is defined, DNA barcoding approaches can be used to identify species by the presence or absence of discrete nucleotide characters. We demonstrate the potential of two recently discovered DNA barcode loci, topoisomerase I (TOP1) and phosphoglycerate kinase (PGK), in combination with other routinely used markers such as TEF1, in an analysis of 144 Fusarium strains belonging to 52 species. Our barcoding study using TOP1 and PKG provided concordance of molecular data with TEF1. The currently accepted Fusarium species sampled were well supported in phylogenetic trees of both new markers.

  18. Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen.

    PubMed

    Achermann, Yvonne; Goldstein, Ellie J C; Coenye, Tom; Shirtliff, Mark E

    2014-07-01

    Propionibacterium acnes is known primarily as a skin commensal. However, it can present as an opportunistic pathogen via bacterial seeding to cause invasive infections such as implant-associated infections. These infections have gained more attention due to improved diagnostic procedures, such as sonication of explanted foreign materials and prolonged cultivation time of up to 14 days for periprosthetic biopsy specimens, and improved molecular methods, such as broad-range 16S rRNA gene PCR. Implant-associated infections caused by P. acnes are most often described for shoulder prosthetic joint infections as well as cerebrovascular shunt infections, fibrosis of breast implants, and infections of cardiovascular devices. P. acnes causes disease through a number of virulence factors, such as biofilm formation. P. acnes is highly susceptible to a wide range of antibiotics, including beta-lactams, quinolones, clindamycin, and rifampin, although resistance to clindamycin is increasing. Treatment requires a combination of surgery and a prolonged antibiotic treatment regimen to successfully eliminate the remaining bacteria. Most authors suggest a course of 3 to 6 months of antibiotic treatment, including 2 to 6 weeks of intravenous treatment with a beta-lactam. While recently reported data showed a good efficacy of rifampin against P. acnes biofilms, prospective, randomized, controlled studies are needed to confirm evidence for combination treatment with rifampin, as has been performed for staphylococcal implant-associated infections.

  19. Biolistic transformation of a fluorescent tagged gene into the opportunistic fungal pathogen Cryptococcus neoformans.

    PubMed

    Taylor, Tonya; Bose, Indrani; Luckie, Taylor; Smith, Kerry

    2015-03-19

    The basidiomycete Cryptococcus neoformans, an invasive opportunistic pathogen of the central nervous system, is the most frequent cause of fungal meningitis worldwide resulting in more than 625,000 deaths per year worldwide. Although electroporation has been developed for the transformation of plasmids in Cryptococcus, only biolistic delivery provides an effective means to transform linear DNA that can be integrated into the genome by homologous recombination.  Acetate has been shown to be a major fermentation product during cryptococcal infection, but the significance of this is not yet known. A bacterial pathway composed of the enzymes xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (Xfp) and acetate kinase (Ack) is one of three potential pathways for acetate production in C. neoformans. Here, we demonstrate the biolistic transformation of a construct, which has the gene encoding Ack fused to the fluorescent tag mCherry, into C. neoformans. We then confirm integration of the ACK-mCherry fusion into the ACK locus.

  20. Evaluation of zebrafish as a model to study the pathogenesis of the opportunistic pathogen Cronobacter turicensis.

    PubMed

    Fehr, Alexander; Eshwar, Athmanya K; Neuhauss, Stephan C F; Ruetten, Maja; Lehner, Angelika; Vaughan, Lloyd

    2015-05-01

    Bacteria belonging to the genus Cronobacter spp. have been recognized as causative agents of life-threatening systemic infections, primarily in premature, low-birth weight and/or immune-compromised neonates. Knowledge remains scarce regarding the underlying molecular mechanisms of disease development. In this study, we evaluated the use of a zebrafish model to study the pathogenesis of Cronobacter turicensis LMG 23827(T), a clinical isolate responsible for two fatal sepsis cases in neonates. Here, the microinjection of approximately 50 colony forming units (CFUs) into the yolk sac resulted in the rapid multiplication of bacteria and dissemination into the blood stream at 24 h post infection (hpi), followed by the development of a severe bacteremia and larval death within 3 days. In contrast, the innate immune response of the embryos was sufficiently developed to control infection after the intravenous injection of up to 10(4) CFUs of bacteria. Infection studies using an isogenic mutant devoid of surviving and replicating in human macrophages (ΔfkpA) showed that this strain was highly attenuated in its ability to kill the larvae. In addition, the suitability of the zebrafish model system to study the effectiveness of antibiotics to treat Cronobacter infections in zebrafish embryos was examined. Our data indicate that the zebrafish model represents an excellent vertebrate model to study virulence-related aspects of this opportunistic pathogen in vivo.

  1. Structure of a novel exopolysaccharide produced by Burkholderia vietnamiensis, a cystic fibrosis opportunistic pathogen.

    PubMed

    Cescutti, Paola; Cuzzi, Bruno; Herasimenka, Yury; Rizzo, Roberto

    2013-04-15

    Burkholderia vietnamiensis belongs to the Burkholderia cepacia complex and is an opportunistic pathogen for cystic fibrosis patients. As many other Burkholderia species, it has a mucoide phenotype, producing abundant exopolysaccharide. In general, polysaccharides contribute to bacterial survival in a hostile environment, are recognised as virulence factors and as important components in biofilm formation. The primary structure of the exopolysaccharide produced by B. vietnamiensis LMG 10929 was determined mainly by use of 1D and 2D NMR spectroscopy and ESI mass spectrometry. The polymer consists of the trisaccharidic backbone 3)-β-D-Glcp-(1→4)-α-D-Glcp-(1→3)-α-L-Fucp-(1→ with the side chain α-D-Glcp-(1→4)-α-D-GlcAp-(1→3)-α-L-Fucp-(1→ linked to C-3 of the α-D-Glcp residue. The polysaccharide also bears acetyl substituents on about 20% of its repeating units and on at least two different positions. The presence of fucose residues is a novel structural feature among the exopolysaccharides produced by species of the B. cepacia complex.

  2. Seasonal Assessment of Opportunistic Premise Plumbing Pathogens in Roof-Harvested Rainwater Tanks.

    PubMed

    Hamilton, Kerry A; Ahmed, Warish; Palmer, Andrew; Smith, Kylie; Toze, Simon; Haas, Charles N

    2017-02-07

    A seasonal study on the occurrence of six opportunistic premise plumbing pathogens (OPPPs) in 24 roof-harvested rainwater (RHRW) tanks repeatedly sampled over six monthly sampling events (n = 144) from August 2015 to March 2016 was conducted using quantitative qPCR. Fecal indicator bacteria (FIB) Escherichia coli (E. coli) and Enterococcus spp. were enumerated using culture-based methods. All tank water samples over the six events were positive for at least one OPPP (Legionella spp., Legionella pneumophila, Mycobacterium avium, Mycobacterium intracellulare, Pseudmonas aeruginosa, or Acanthamoeba spp.) during the entire course of the study. FIB were positively but weakly correlated with P. aeruginosa (E. coli vs P. aeruginosa τ = 0.090, p = 0.027; Enterococcus spp. vs P. aeruginosa τ = 0.126, p = 0.002), but not the other OPPPs. FIBs were more prevalent during the wet season than the dry season, and L. pneumophila was only observed during the wet season. However, concentrations of Legionella spp., M. intracellulare, Acanthamoeba spp., and M. avium peaked during the dry season. Correlations were assessed between FIB and OPPPs with meteorological variables, and it was determined that P. aeruginosa was the only OPPP positively associated with an increased antecedent dry period, suggesting stagnation time may play a role for the occurrence of this OPPP in tank water. Infection risks may exceed commonly cited benchmarks for uses reported in the rainwater usage survey such as pool top-up, and warrant further exploration through quantitative microbial risk assessment (QMRA).

  3. Proteogenomics of Candida tropicalis--An Opportunistic Pathogen with Importance for Global Health.

    PubMed

    Datta, Keshava K; Patil, Arun H; Patel, Krishna; Dey, Gourav; Madugundu, Anil K; Renuse, Santosh; Kaviyil, Jyothi E; Sekhar, Raja; Arunima, Aryashree; Daswani, Bhavna; Kaur, Inderjeet; Mohanty, Jyotirmaya; Sinha, Ranjana; Jaiswal, Sangeeta; Sivapriya, S; Sonnathi, Yeshwanth; Chattoo, Bharat B; Gowda, Harsha; Ravikumar, Raju; Prasad, T S Keshava

    2016-04-01

    The frequency of Candida infections is currently rising, and thus adversely impacting global health. The situation is exacerbated by azole resistance developed by fungal pathogens. Candida tropicalis is an opportunistic pathogen that causes candidiasis, for example, in immune-compromised individuals, cancer patients, and those who undergo organ transplantation. It is a member of the non-albicans group of Candida that are known to be azole-resistant, and is frequently seen in individuals being treated for cancers, HIV-infection, and those who underwent bone marrow transplantation. Although the genome of C. tropicalis was sequenced in 2009, the genome annotation has not been supported by experimental validation. In the present study, we have carried out proteomics profiling of C. tropicalis using high-resolution Fourier transform mass spectrometry. We identified 2743 proteins, thus mapping nearly 44% of the computationally predicted protein-coding genes with peptide level evidence. In addition to identifying 2591 proteins in the cell lysate of this yeast, we also analyzed the proteome of the conditioned media of C. tropicalis culture and identified several unique secreted proteins among a total of 780 proteins. By subjecting the mass spectrometry data derived from cell lysate and conditioned media to proteogenomic analysis, we identified 86 novel genes, 12 novel exons, and corrected 49 computationally-predicted gene models. To our knowledge, this is the first high-throughput proteomics study of C. tropicalis validating predicted protein coding genes and refining the current genome annotation. The findings may prove useful in future global health efforts to fight against Candida infections.

  4. Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model.

    PubMed

    Swe, Pearl M; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja

    2014-01-01

    The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. This is the first experimental in vivo evidence supporting previous assumptions that

  5. Scabies Mites Alter the Skin Microbiome and Promote Growth of Opportunistic Pathogens in a Porcine Model

    PubMed Central

    Swe, Pearl M.; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja

    2014-01-01

    Background The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. Methodology/Principal Findings In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. Conclusions/Significance This is the first

  6. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen

    PubMed Central

    Krediet, Cory J; Ritchie, Kim B; Alagely, Ali; Teplitski, Max

    2013-01-01

    The outcome of the interactions between native commensal microorganisms and opportunistic pathogens is crucial to the health of the coral holobiont. During the establishment within the coral surface mucus layer, opportunistic pathogens, including a white pox pathogen Serratia marcescens PDL100, compete with native bacteria for available nutrients. Both commensals and pathogens employ glycosidases and N-acetyl-glucosaminidase to utilize components of coral mucus. This study tested the hypothesis that specific glycosidases were critical for the growth of S. marcescens on mucus and that their inhibition by native coral microbiota reduces fitness of the pathogen. Consistent with this hypothesis, a S. marcescens transposon mutant with reduced glycosidase and N-acetyl-glucosaminidase activities was unable to compete with the wild type on the mucus of the host coral Acropora palmata, although it was at least as competitive as the wild type on a minimal medium with glycerol and casamino acids. Virulence of the mutant was modestly reduced in the Aiptasia model. A survey revealed that ∼8% of culturable coral commensal bacteria have the ability to inhibit glycosidases in the pathogen. A small molecular weight, ethanol-soluble substance(s) produced by the coral commensal Exiguobacterium sp. was capable of the inhibition of the induction of catabolic enzymes in S. marcescens. This inhibition was in part responsible for the 10–100-fold reduction in the ability of the pathogen to grow on coral mucus. These results provide insight into potential mechanisms of commensal interference with early colonization and infection behaviors in opportunistic pathogens and highlight an important function for the native microbiota in coral health. PMID:23254513

  7. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen.

    PubMed

    Krediet, Cory J; Ritchie, Kim B; Alagely, Ali; Teplitski, Max

    2013-05-01

    The outcome of the interactions between native commensal microorganisms and opportunistic pathogens is crucial to the health of the coral holobiont. During the establishment within the coral surface mucus layer, opportunistic pathogens, including a white pox pathogen Serratia marcescens PDL100, compete with native bacteria for available nutrients. Both commensals and pathogens employ glycosidases and N-acetyl-glucosaminidase to utilize components of coral mucus. This study tested the hypothesis that specific glycosidases were critical for the growth of S. marcescens on mucus and that their inhibition by native coral microbiota reduces fitness of the pathogen. Consistent with this hypothesis, a S. marcescens transposon mutant with reduced glycosidase and N-acetyl-glucosaminidase activities was unable to compete with the wild type on the mucus of the host coral Acropora palmata, although it was at least as competitive as the wild type on a minimal medium with glycerol and casamino acids. Virulence of the mutant was modestly reduced in the Aiptasia model. A survey revealed that ∼8% of culturable coral commensal bacteria have the ability to inhibit glycosidases in the pathogen. A small molecular weight, ethanol-soluble substance(s) produced by the coral commensal Exiguobacterium sp. was capable of the inhibition of the induction of catabolic enzymes in S. marcescens. This inhibition was in part responsible for the 10-100-fold reduction in the ability of the pathogen to grow on coral mucus. These results provide insight into potential mechanisms of commensal interference with early colonization and infection behaviors in opportunistic pathogens and highlight an important function for the native microbiota in coral health.

  8. Mathematical modeling of bacterial virulence and host-pathogen interactions in the Dictyostelium/Pseudomonas system.

    PubMed

    Fumanelli, Laura; Iannelli, Mimmo; Janjua, Hussnain Ahmed; Jousson, Olivier

    2011-02-07

    We present some studies on the mechanisms of pathogenesis based on experimental work and on its interpretation through a mathematical model. Using a collection of clinical strains of the opportunistic human pathogen Pseudomonas aeruginosa, we performed co-culture experiments with Dictyostelium amoebae, to investigate the two organisms' interaction, characterized by a cross action between amoeba, feeding on bacteria, and bacteria exerting their pathogenic action against amoeba. In order to classify bacteria virulence, independently of this cross interaction, we have also performed killing experiments of bacteria against the nematode Caenorhabditis elegans. A mathematical model was developed to infer how the populations of the amoeba-bacteria system evolve according to a number of parameters, taking into account the specific features underlying the interaction. The model does not fall within the class of traditional prey-predator models because not only does an amoeba feed on bacteria, but also it is in turn attacked by them; thus the model must include a feedback term modeling this further interaction aspect. The model shows the existence of multiple steady states and the resulting behavior of the solutions, showing bi-stability of the system, gives a qualitative explanation of the co-culture experiments.

  9. Symptoms of Fern Distortion Syndrome Resulting from Inoculation with Opportunistic Endophytic Fluorescent Pseudomonas spp.

    PubMed Central

    Kloepper, Joseph W.; McInroy, John A.; Liu, Ke; Hu, Chia-Hui

    2013-01-01

    Background Fern Distortion Syndrome (FDS) is a serious disease of Leatherleaf fern (Rumohra adiantiformis). The main symptom of FDS is distortion of fronds, making them unmarketable. Additional symptoms include stunting, irregular sporulation, decreased rhizome diameter, and internal discoloration of rhizomes. We previously reported an association of symptoms with increased endophytic rhizome populations of fluorescent pseudomonads (FPs). The aim of the current study was to determine if FPs from ferns in Costa Rica with typical FDS symptoms would recreate symptoms of FDS. Methodology and Findings Greenhouse tests were conducted over a 29-month period. Micro-propagated ferns derived from tissue culture were first grown one year to produce rhizomes. Then, using an 8×9 randomized complete block experimental design, 8 replicate rhizomes were inoculated by dipping into 9 different treatments before planting. Treatments included water without bacteria (control), and four different groups of FPs, each at a two concentrations. The four groups of FPs included one group from healthy ferns without symptoms (another control treatment), two groups isolated from inside rhizomes of symptomatic ferns, and one group isolated from inside roots of symptomatic ferns. Symptoms were assessed 12 and 17 months later, and populations of FPs inside newly formed rhizomes were determined after 17 months. Results showed that inoculation with mixtures of FPs from ferns with FDS symptoms, but not from healthy ferns, recreated the primary symptom of frond deformities and also the secondary symptoms of irregular sporulation, decreased rhizome diameter, and internal discoloration of rhizomes. Conclusions These results suggest a model of causation of FDS in which symptoms result from latent infections by multiple species of opportunistic endophytic bacteria containing virulence genes that are expressed when populations inside the plant reach a minimum level. PMID:23516499

  10. [Production of inhibiting plant growth and development hormones by pathogenic for legumes Pseudomonas genus bacteria].

    PubMed

    Dankevich, L A

    2013-01-01

    It has been studied the ability of pathogenic for legumes pathovars of Pseudomonas genus to produce ethylene and abscisic acid in vitro. A direct correlation between the level of ethylene production by agent of bacterial pea burn--Pseudomonas syringae pv. pisi and level of its aggressiveness for plants has been found. It is shown that the amount of abscisic acid synthesized by pathogenic for legumes Pseudomonas genus bacteria correlates with their aggressiveness for plants.

  11. Opportunistic pathogens and elements of the resistome that are common in bottled mineral water support the need for continuous surveillance.

    PubMed

    Falcone-Dias, Maria Fernanda; Centrón, Daniela; Pavan, Fernando; Moura, Adriana Candido da Silva; Naveca, Felipe Gomes; de Souza, Victor Costa; Farache Filho, Adalberto; Leite, Clarice Queico Fujimura

    2015-01-01

    Several differences concerning bacterial species, opportunistic pathogens, elements of the resistome as well as variations concerning the CFU/mL counts were identified in some of the five most marketed bottled mineral water from Araraquara city, São Paulo, Brazil. Two out of five brands tested were confirmed as potential source of opportunistic pathogens, including Mycobacterium gordonae, Ralstonia picketti and Burkholderia cepacia complex (Bcc). A total of one hundred and six isolates were recovered from four of these bottled mineral water brands. Betaproteobacteria was predominant followed by Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Ninety percent of the bacteria isolated demonstrated resistance to seventeen of the nineteen antimicrobials tested. These antimicrobials included eight different classes, including 3rd and 4th generation cephalosporins, carbapenems and fluoroquinolones. Multidrug resistant bacteria were detected for fifty-nine percent of isolates in three water brands at counts up to 103 CFU/ml. Of major concern, the two bottled mineral water harboring opportunistic pathogens were also source of elements of the resistome that could be directly transferred to humans. All these differences found among brands highlight the need for continuous bacteriological surveillance of bottled mineral water.

  12. Opportunistic Pathogens and Elements of the Resistome that Are Common in Bottled Mineral Water Support the Need for Continuous Surveillance

    PubMed Central

    Falcone-Dias, Maria Fernanda; Centrón, Daniela; Pavan, Fernando; Moura, Adriana Candido da Silva; Naveca, Felipe Gomes; de Souza, Victor Costa; Farache Filho, Adalberto; Leite, Clarice Queico Fujimura

    2015-01-01

    Several differences concerning bacterial species, opportunistic pathogens, elements of the resistome as well as variations concerning the CFU/mL counts were identified in some of the five most marketed bottled mineral water from Araraquara city, São Paulo, Brazil. Two out of five brands tested were confirmed as potential source of opportunistic pathogens, including Mycobacterium gordonae, Ralstonia picketti and Burkholderia cepacia complex (Bcc). A total of one hundred and six isolates were recovered from four of these bottled mineral water brands. Betaproteobacteria was predominant followed by Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Ninety percent of the bacteria isolated demonstrated resistance to seventeen of the nineteen antimicrobials tested. These antimicrobials included eight different classes, including 3rd and 4th generation cephalosporins, carbapenems and fluoroquinolones. Multidrug resistant bacteria were detected for fifty-nine percent of isolates in three water brands at counts up to 103 CFU/ml. Of major concern, the two bottled mineral water harboring opportunistic pathogens were also source of elements of the resistome that could be directly transferred to humans. All these differences found among brands highlight the need for continuous bacteriological surveillance of bottled mineral water. PMID:25803794

  13. Multiplex Touchdown PCR for Rapid Typing of the Opportunistic Pathogen Propionibacterium acnes

    PubMed Central

    Barnard, Emma; Nagy, István; Hunyadkürti, Judit; Patrick, Sheila

    2015-01-01

    The opportunistic human pathogen Propionibacterium acnes is composed of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II, and III, which vary in their production of putative virulence factors, their inflammatory potential, and their biochemical, aggregative, and morphological characteristics. Although multilocus sequence typing (MLST) currently represents the gold standard for unambiguous phylogroup classification and individual strain identification, it is a labor-intensive and time-consuming technique. As a consequence, we developed a multiplex touchdown PCR assay that in a single reaction can confirm the species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA gene (all isolates), ATPase (types IA1, IA2, and IC), sodA (types IA2 and IB), atpD (type II), and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterized by MLST and representing types IA1 (n = 145), IA2 (n = 20), IB (n = 65), IC (n = 7), II (n = 45), and III (n = 30), the multiplex displayed 100% sensitivity and 100% specificity for detecting isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. This multiplex assay will provide researchers with a rapid, high-throughput, and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, and it will serve as a prescreening tool to maximize the number of genetically diverse isolates selected for downstream higher-resolution sequence-based analyses. PMID:25631794

  14. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters

    PubMed Central

    Williams, Krista; Pruden, Amy; Falkinham, Joseph O.; Edwards, Marc

    2015-01-01

    Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs). Here, the relationships between influent organic carbon (0–15,000 µg ozonated fulvic acid /L) and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs)] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium) were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs). The SGWHs were operated at 32–37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate) conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC) and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89). Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points) and over a limited TOC range (0–1000 µg/L), no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches. PMID:26066310

  15. Multiplex touchdown PCR for rapid typing of the opportunistic pathogen Propionibacterium acnes.

    PubMed

    Barnard, Emma; Nagy, István; Hunyadkürti, Judit; Patrick, Sheila; McDowell, Andrew

    2015-04-01

    The opportunistic human pathogen Propionibacterium acnes is composed of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II, and III, which vary in their production of putative virulence factors, their inflammatory potential, and their biochemical, aggregative, and morphological characteristics. Although multilocus sequence typing (MLST) currently represents the gold standard for unambiguous phylogroup classification and individual strain identification, it is a labor-intensive and time-consuming technique. As a consequence, we developed a multiplex touchdown PCR assay that in a single reaction can confirm the species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA gene (all isolates), ATPase (types IA1, IA2, and IC), sodA (types IA2 and IB), atpD (type II), and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterized by MLST and representing types IA1 (n=145), IA2 (n=20), IB (n=65), IC (n=7), II (n=45), and III (n=30), the multiplex displayed 100% sensitivity and 100% specificity for detecting isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. This multiplex assay will provide researchers with a rapid, high-throughput, and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, and it will serve as a prescreening tool to maximize the number of genetically diverse isolates selected for downstream higher-resolution sequence-based analyses.

  16. Burn Injury Leads to Increase in Relative Abundance of Opportunistic Pathogens in the Rat Gastrointestinal Microbiome

    PubMed Central

    Huang, Guangtao; Sun, Kedai; Yin, Supeng; Jiang, Bei; Chen, Yu; Gong, Yali; Chen, Yajie; Yang, Zichen; Chen, Jing; Yuan, Zhiqiang; Peng, Yizhi

    2017-01-01

    The gastrointestinal microbiome is crucial in human health. With greater than 10 times the cell count of an individual, the gastrointestinal microbiome provides many benefits to the host. It plays an important role in chronic illnesses and immune diseases and also following burns and trauma. This study aimed to determine whether severe burns affect the gastrointestinal microbiome during the early stages of after burn injury and the extent to which the microbiome is disturbed by such burns. We used a rat burn model to investigate any changes occurring in the microbiome after the burn trauma using 16S rRNA sequencing and downstream α-diversity, β-diversity, and taxonomy analysis. With 128631 and 143694 clean sequence reads, an average of 2287 and 2416 operational taxonomic units (OTUs) were recognized before and after the burn injury, respectively. Bacterial diversity within the pre- and post-burn groups was similar according to OTU richness, Chao 1 index, Shannon index and ACE index. However, the constituents of the gastrointestinal microbiota changed after the burn injury. Compared with the pre-burn samples, the post-burn samples showed a tendency to cluster together. The ratio of Firmicutes to Bacteroidetes decreased after the burn injury. Also, the abundance of some probiotic organisms (i.e., butyrate-producing bacteria and Lactobacillus) decreased after the burn injury. In contrast, opportunistic pathogenic bacteria, such as those of the genera Escherichia and Shigella and the phylum of Proteobacteria are more abundant post-burn. In conclusion, dysbiosis in the gastrointestinal microbiome was observed after the burn injury. Although the total number of species in the gastrointestinal microbiome did not differ significantly between the pre- and post-burn injury groups, the abundance of some bacterial components was affected to various extents. PMID:28729860

  17. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  18. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  19. Up-Regulation of TLR2 and TLR4 in Dendritic Cells in Response to HIV Type 1 and Coinfection with Opportunistic Pathogens

    PubMed Central

    Arteaga, Jose; Paul, Stéphane; Kumar, Ajit; Latz, Eicke; Urcuqui-Inchima, Silvio

    2011-01-01

    Abstract The ability to trigger an innate immune response against opportunistic pathogens associated with HIV-1 infection is an important aspect of AIDS pathogenesis. Toll-like receptors (TLRs) play a critical role in innate immunity against pathogens, but in HIV-1 patients coinfected with opportunistic infections, the regulation of TLR expression has not been studied. In this context, we have evaluated the expression of TLR2 and TLR4 in monocytes, plasmacytoid dendritic cells, and myeloid dendritic cells of HIV-1 patients with or without opportunistic infections. Forty-nine HIV-1-infected individuals were classified according to viral load, highly active antiretroviral therapy (HAART), and the presence or absence of opportunistic infections, and 21 healthy subjects served as controls. Increased expression of TLR2 and TLR4 was observed in myeloid dendritic cells of HIV-1 patients coinfected with opportunistic infections (without HAART), while TLR4 increased in plasmacytoid dendritic cells, compared to both HIV-1 without opportunistic infections and healthy subjects. Moreover, TLR2 expression was higher in patients with opportunistic infections without HAART and up-regulation of TLR expression in HIV-1 patients coinfected with opportunistic infections was more pronounced in dendritic cells derived from individuals coinfected with Mycobacterium tuberculosis. The results indicate that TLR expression in innate immune cells is up-regulated in patients with a high HIV-1 load and coinfected with opportunistic pathogens. We suggest that modulation of TLRs expression represents a mechanism that promotes HIV-1 replication and AIDS pathogenesis in patients coinfected with opportunistic pathogens. PMID:21406030

  20. Presence/absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis

    PubMed Central

    Araki, Hitoshi; Tian, Dacheng; Goss, Erica M.; Jakob, Katrin; Halldorsdottir, Solveig S.; Kreitman, Martin; Bergelson, Joy

    2006-01-01

    The contribution of arms race dynamics to plant–pathogen coevolution has been called into question by the presence of balanced polymorphisms in resistance genes of Arabidopsis thaliana, but less is known about the pathogen side of the interaction. Here we investigate structural polymorphism in pathogenicity islands (PAIs) in Pseudomonas viridiflava, a prevalent bacterial pathogen of A. thaliana. PAIs encode the type III secretion system along with its effectors and are essential for pathogen recognition in plants. P. viridiflava harbors two structurally distinct and highly diverged PAI paralogs (T- and S-PAI) that are integrated in different chromosome locations in the P. viridiflava genome. Both PAIs are segregating as presence/absence polymorphisms such that only one PAI ([T-PAI, ∇S-PAI] and [∇T-PAI, S-PAI]) is present in any individual cell. A worldwide population survey identified no isolate with neither or both PAI. T-PAI and S-PAI genotypes exhibit virulence differences and a host-specificity tradeoff. Orthologs of each PAI can be found in conserved syntenic locations in other Pseudomonas species, indicating vertical phylogenetic transmission in this genus. Molecular evolutionary analysis of PAI sequences also argues against “recent” horizontal transfer. Spikes in nucleotide divergence in flanking regions of PAI and ∇-PAI alleles suggest that the dual PAI polymorphism has been maintained in this species under some form of balancing selection. Virulence differences and host specificities are hypothesized to be responsible for the maintenance of the dual PAI system in this bacterial pathogen. PMID:16581904

  1. Presence/absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis.

    PubMed

    Araki, Hitoshi; Tian, Dacheng; Goss, Erica M; Jakob, Katrin; Halldorsdottir, Solveig S; Kreitman, Martin; Bergelson, Joy

    2006-04-11

    The contribution of arms race dynamics to plant-pathogen coevolution has been called into question by the presence of balanced polymorphisms in resistance genes of Arabidopsis thaliana, but less is known about the pathogen side of the interaction. Here we investigate structural polymorphism in pathogenicity islands (PAIs) in Pseudomonas viridiflava, a prevalent bacterial pathogen of A. thaliana. PAIs encode the type III secretion system along with its effectors and are essential for pathogen recognition in plants. P. viridiflava harbors two structurally distinct and highly diverged PAI paralogs (T- and S-PAI) that are integrated in different chromosome locations in the P. viridiflava genome. Both PAIs are segregating as presence/absence polymorphisms such that only one PAI ([T-PAI, nablaS-PAI] and [nablaT-PAI, S-PAI]) is present in any individual cell. A worldwide population survey identified no isolate with neither or both PAI. T-PAI and S-PAI genotypes exhibit virulence differences and a host-specificity tradeoff. Orthologs of each PAI can be found in conserved syntenic locations in other Pseudomonas species, indicating vertical phylogenetic transmission in this genus. Molecular evolutionary analysis of PAI sequences also argues against "recent" horizontal transfer. Spikes in nucleotide divergence in flanking regions of PAI and nabla-PAI alleles suggest that the dual PAI polymorphism has been maintained in this species under some form of balancing selection. Virulence differences and host specificities are hypothesized to be responsible for the maintenance of the dual PAI system in this bacterial pathogen.

  2. Host and Pathogen Biomarkers for Severe Pseudomonas aeruginosa Infections.

    PubMed

    Juan, Carlos; Peña, Carmen; Oliver, Antonio

    2017-02-15

    Pseudomonas aeruginosa is among the leading causes of severe nosocomial infections, particularly affecting critically ill and immunocompromised patients. Here we review the current knowledge on the factors underlying the outcome of P. aeruginosa nosocomial infections, including aspects related to the pathogen, the host, and treatment. Intestinal colonization and previous use of antibiotics are key risk factors for P. aeruginosa infections, whereas underlying disease, source of infection, and severity of acute presentation are key host factors modulating outcome; delayed adequate antimicrobial therapy is also independently associated with increased mortality. Among pathogen-related factors influencing the outcome of P. aeruginosa infections, antibiotic resistance, and particularly multidrug-resistant profiles, is certainly of paramount relevance, given its obvious effect on the chances of appropriate empirical therapy. However, the direct impact of antibiotic resistance in the severity and outcomes of P. aeruginosa infections is not yet well established. The interplay between antibiotic resistance, virulence, and the concerning international high-risk clones (such as ST111, ST175, and ST235) still needs to be further analyzed. On the other hand, differential presence or expression of virulence factors has been shown to significantly impact disease severity and mortality. The likely more deeply studied P. aeruginosa virulence determinant is the type III secretion system (T3SS); the production of T3SS cytotoxins, and particularly ExoU, has been well established to determine a worse outcome both in respiratory and bloodstream infections. Other relevant pathogen-related biomarkers of severe infections include the involvement of specific clones or O-antigen serotypes, the presence of certain horizontally acquired genomic islands, or the expression of other virulence traits, such as the elastase. Finally, recent data suggest that host genetic factors may also modulate the

  3. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440.

    PubMed

    Wittgens, Andreas; Tiso, Till; Arndt, Torsten T; Wenk, Pamela; Hemmerich, Johannes; Müller, Carsten; Wichmann, Rolf; Küpper, Benjamin; Zwick, Michaela; Wilhelm, Susanne; Hausmann, Rudolf; Syldatk, Christoph; Rosenau, Frank; Blank, Lars M

    2011-10-17

    Rhamnolipids are potent biosurfactants with high potential for industrial applications. However, rhamnolipids are currently produced with the opportunistic pathogen Pseudomonas aeruginosa during growth on hydrophobic substrates such as plant oils. The heterologous production of rhamnolipids entails two essential advantages: Disconnecting the rhamnolipid biosynthesis from the complex quorum sensing regulation and the opportunity of avoiding pathogenic production strains, in particular P. aeruginosa. In addition, separation of rhamnolipids from fatty acids is difficult and hence costly. Here, the metabolic engineering of a rhamnolipid producing Pseudomonas putida KT2440, a strain certified as safety strain using glucose as carbon source to avoid cumbersome product purification, is reported. Notably, P. putida KT2440 features almost no changes in growth rate and lag-phase in the presence of high concentrations of rhamnolipids (> 90 g/L) in contrast to the industrially important bacteria Bacillus subtilis, Corynebacterium glutamicum, and Escherichia coli. P. putida KT2440 expressing the rhlAB-genes from P. aeruginosa PAO1 produces mono-rhamnolipids of P. aeruginosa PAO1 type (mainly C(10):C(10)). The metabolic network was optimized in silico for rhamnolipid synthesis from glucose. In addition, a first genetic optimization, the removal of polyhydroxyalkanoate formation as competing pathway, was implemented. The final strain had production rates in the range of P. aeruginosa PAO1 at yields of about 0.15 g/g(glucose) corresponding to 32% of the theoretical optimum. What's more, rhamnolipid production was independent from biomass formation, a trait that can be exploited for high rhamnolipid production without high biomass formation. A functional alternative to the pathogenic rhamnolipid producer P. aeruginosa was constructed and characterized. P. putida KT24C1 pVLT31_rhlAB featured the highest yield and titer reported from heterologous rhamnolipid producers with glucose as

  4. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440

    PubMed Central

    2011-01-01

    Background Rhamnolipids are potent biosurfactants with high potential for industrial applications. However, rhamnolipids are currently produced with the opportunistic pathogen Pseudomonas aeruginosa during growth on hydrophobic substrates such as plant oils. The heterologous production of rhamnolipids entails two essential advantages: Disconnecting the rhamnolipid biosynthesis from the complex quorum sensing regulation and the opportunity of avoiding pathogenic production strains, in particular P. aeruginosa. In addition, separation of rhamnolipids from fatty acids is difficult and hence costly. Results Here, the metabolic engineering of a rhamnolipid producing Pseudomonas putida KT2440, a strain certified as safety strain using glucose as carbon source to avoid cumbersome product purification, is reported. Notably, P. putida KT2440 features almost no changes in growth rate and lag-phase in the presence of high concentrations of rhamnolipids (> 90 g/L) in contrast to the industrially important bacteria Bacillus subtilis, Corynebacterium glutamicum, and Escherichia coli. P. putida KT2440 expressing the rhlAB-genes from P. aeruginosa PAO1 produces mono-rhamnolipids of P. aeruginosa PAO1 type (mainly C10:C10). The metabolic network was optimized in silico for rhamnolipid synthesis from glucose. In addition, a first genetic optimization, the removal of polyhydroxyalkanoate formation as competing pathway, was implemented. The final strain had production rates in the range of P. aeruginosa PAO1 at yields of about 0.15 g/gglucose corresponding to 32% of the theoretical optimum. What's more, rhamnolipid production was independent from biomass formation, a trait that can be exploited for high rhamnolipid production without high biomass formation. Conclusions A functional alternative to the pathogenic rhamnolipid producer P. aeruginosa was constructed and characterized. P. putida KT24C1 pVLT31_rhlAB featured the highest yield and titer reported from heterologous rhamnolipid

  5. [Comparative analysis of the antibiotic sensitivity determination methods of conventionally pathogenic bacteria--agents of human opportunistic infections].

    PubMed

    Kulia, A F; Sabo, Iu; Koval', H M; Boĭko, N V

    2011-01-01

    Investigation of biological properties of pathogenic bacteria and, first of all, their sensitivity to antibiotics is the key to successful treatment of human opportunistic infections and to selection of appropriate tactics of their prevention. This paper is devoted to the comparative characteristic of modem and classical approaches to determination of sensitivities to antibiotics of conventionally pathogenic bacteria: methods applied in Ukraine and recommendations proposed by European Committee aimed to unify all the methods of testing sensitivity to antimicrobial agents (EUCAST). The major differences of the above-mentioned methods of testing sensitivity of clinical and non-clinical isolates of potentially pathogenic bacteria to antibiotics have been examined in order to confirm the feasibility of usage and permanent updating the EUCAST database and to promote creation of the appropriate unifield national electronic resource.

  6. Scolecobasidium granulomatous pneumonia and abscess - an emerging opportunistic fungal pathogen: a case report.

    PubMed

    Pundhir, P; Tuda, C; Vincentelli, C; Morlote, D; Rivera, C

    2017-01-01

    Scolecobasidium sp. are commensal soil and water thermophilic dematiaceous fungi. They are commonly isolated as contaminants from respiratory secretions due to their abundant presence in water supplies, but they are also rare yet emerging culprits producing severe opportunistic infections in immunocompromised individuals. The most consistent presentations reported in literature are life-threatening pulmonary and cerebral granulomatous lesions.

  7. Complete Genome Sequence of Staphylococcus xylosus HKUOPL8, a Potential Opportunistic Pathogen of Mammals.

    PubMed

    Ma, Angel Po Yee; Jiang, Jingwei; Tun, Hein Min; Mauroo, Nathalie France; Yuen, Chan San; Leung, Frederick Chi-Ching

    2014-07-24

    We report here the first complete genome sequence of Staphylococcus xylosus strain HKUOPL8, isolated from giant panda feces. The whole genome sequence of this strain will provide an important framework for investigating the genes responsible for potential opportunistic infections with this species, as well as its survival in various environments. Copyright © 2014 Ma et al.

  8. Complete Genome Sequence of Staphylococcus xylosus HKUOPL8, a Potential Opportunistic Pathogen of Mammals

    PubMed Central

    Ma, Angel Po Yee; Jiang, Jingwei; Tun, Hein Min; Mauroo, Nathalie France; Yuen, Chan San

    2014-01-01

    We report here the first complete genome sequence of Staphylococcus xylosus strain HKUOPL8, isolated from giant panda feces. The whole genome sequence of this strain will provide an important framework for investigating the genes responsible for potential opportunistic infections with this species, as well as its survival in various environments. PMID:25059860

  9. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea.

    PubMed

    Trantas, Emmanouil A; Licciardello, Grazia; Almeida, Nalvo F; Witek, Kamil; Strano, Cinzia P; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E; Jones, Jonathan D G; Guttman, David S; Catara, Vittoria; Sarris, Panagiotis F

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes.

  10. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    PubMed Central

    Trantas, Emmanouil A.; Licciardello, Grazia; Almeida, Nalvo F.; Witek, Kamil; Strano, Cinzia P.; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E.; Jones, Jonathan D. G.; Guttman, David S.; Catara, Vittoria; Sarris, Panagiotis F.

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes. PMID:26300874

  11. The Black Yeast Exophiala dermatitidis and Other Selected Opportunistic Human Fungal Pathogens Spread from Dishwashers to Kitchens

    PubMed Central

    Zupančič, Jerneja; Novak Babič, Monika; Zalar, Polona; Gunde-Cimerman, Nina

    2016-01-01

    We investigated the diversity and distribution of fungi in nine different sites inside 30 residential dishwashers. In total, 503 fungal strains were isolated, which belong to 10 genera and 84 species. Irrespective of the sampled site, 83% of the dishwashers were positive for fungi. The most frequent opportunistic pathogenic species were Exophiala dermatitidis, Candida parapsilosis sensu stricto, Exophiala phaeomuriformis, Fusarium dimerum, and the Saprochaete/Magnusiomyces clade. The black yeast E. dermatitidis was detected in 47% of the dishwashers, primarily at the dishwasher rubber seals, at up to 106 CFU/cm2; the other fungi detected were in the range of 102 to 105 CFU/cm2. The other most heavily contaminated dishwasher sites were side nozzles, doors and drains. Only F. dimerum was isolated from washed dishes, while dishwasher waste water contained E. dermatitidis, Exophiala oligosperma and Sarocladium killiense. Plumbing systems supplying water to household appliances represent the most probable route for contamination of dishwashers, as the fungi that represented the core dishwasher mycobiota were also detected in the tap water. Hot aerosols from dishwashers contained the human opportunistic yeast C. parapsilosis, Rhodotorula mucilaginosa and E. dermatitidis (as well as common air-borne genera such as Aspergillus, Penicillium, Trichoderma and Cladosporium). Comparison of fungal contamination of kitchens without and with dishwashers revealed that virtually all were contaminated with fungi. In both cases, the most contaminated sites were the kitchen drain and the dish drying rack. The most important difference was higher prevalence of black yeasts (E. dermatitidis in particular) in kitchens with dishwashers. In kitchens without dishwashers, C. parapsilosis strongly prevailed with negligible occurrence of E. dermatitidis. F. dimerum was isolated only from kitchens with dishwashers, while Saprochaete/Magnusiomyces isolates were only found within dishwashers. We

  12. The Black Yeast Exophiala dermatitidis and Other Selected Opportunistic Human Fungal Pathogens Spread from Dishwashers to Kitchens.

    PubMed

    Zupančič, Jerneja; Novak Babič, Monika; Zalar, Polona; Gunde-Cimerman, Nina

    2016-01-01

    We investigated the diversity and distribution of fungi in nine different sites inside 30 residential dishwashers. In total, 503 fungal strains were isolated, which belong to 10 genera and 84 species. Irrespective of the sampled site, 83% of the dishwashers were positive for fungi. The most frequent opportunistic pathogenic species were Exophiala dermatitidis, Candida parapsilosis sensu stricto, Exophiala phaeomuriformis, Fusarium dimerum, and the Saprochaete/Magnusiomyces clade. The black yeast E. dermatitidis was detected in 47% of the dishwashers, primarily at the dishwasher rubber seals, at up to 106 CFU/cm2; the other fungi detected were in the range of 102 to 105 CFU/cm2. The other most heavily contaminated dishwasher sites were side nozzles, doors and drains. Only F. dimerum was isolated from washed dishes, while dishwasher waste water contained E. dermatitidis, Exophiala oligosperma and Sarocladium killiense. Plumbing systems supplying water to household appliances represent the most probable route for contamination of dishwashers, as the fungi that represented the core dishwasher mycobiota were also detected in the tap water. Hot aerosols from dishwashers contained the human opportunistic yeast C. parapsilosis, Rhodotorula mucilaginosa and E. dermatitidis (as well as common air-borne genera such as Aspergillus, Penicillium, Trichoderma and Cladosporium). Comparison of fungal contamination of kitchens without and with dishwashers revealed that virtually all were contaminated with fungi. In both cases, the most contaminated sites were the kitchen drain and the dish drying rack. The most important difference was higher prevalence of black yeasts (E. dermatitidis in particular) in kitchens with dishwashers. In kitchens without dishwashers, C. parapsilosis strongly prevailed with negligible occurrence of E. dermatitidis. F. dimerum was isolated only from kitchens with dishwashers, while Saprochaete/Magnusiomyces isolates were only found within dishwashers. We

  13. Skin microbiota is the main reservoir of Roseomonas mucosa, an emerging opportunistic pathogen so far assumed to be environmental.

    PubMed

    Romano-Bertrand, S; Bourdier, A; Aujoulat, F; Michon, A-L; Masnou, A; Parer, S; Marchandin, H; Jumas-Bilak, E

    2016-08-01

    Roseomonas spp. are increasingly involved in human infectious diseases. The environmental source for infection is generally admitted in published cases owing to the origin of most Roseomonas species and to their affiliation to the family Acetobacteraceae in Rhodospirillales, which mainly groups environmental bacteria. For a better delineation of Roseomonas habitat and infectious reservoir, we related phenotype, phylotype (16S rRNA gene), genomotype (pulsed-field gel electrophoresis) and origin of 33 strains isolated from humans, hospital environment and natural environment. Genetic and metagenomic databases were also surveyed. The population structure of the genus showed clades associated with humans, whereas others grouped environmental strains only. Roseomonas mucosa is the main human-associated species and the study supported the idea that opportunistic infections due to this species are related to the patient skin microbiota rather than to the environment. In contrast, some strains belonging to other species isolated from patients with cystic fibrosis were related to environmental clades, suggesting an exogenous source for patient colonization. Accurate knowledge about the reservoirs of opportunistic pathogens that have long been considered of environmental origin is still needed and would be helpful to improve infection control and epidemiological survey of emerging human pathogens.

  14. Genome sequence of Pantoea sp. strain Sc 1, an opportunistic cotton pathogen.

    PubMed

    Medrano, Enrique G; Bell, Alois A

    2012-06-01

    Pantoea is comprised of a broad spectrum of species, including plant pathogens. Here, we provide an annotated genome sequence of Pantoea sp. strain Sc 1, which was isolated from a diseased cotton boll. This research provides the first genome sequence of a bona fide Pantoea sp. insect-vectored cotton pathogen.

  15. Genome Sequence of Pantoea sp. Strain Sc 1, an Opportunistic Cotton Pathogen

    PubMed Central

    Bell, Alois A.

    2012-01-01

    Pantoea is comprised of a broad spectrum of species, including plant pathogens. Here, we provide an annotated genome sequence of Pantoea sp. strain Sc 1, which was isolated from a diseased cotton boll. This research provides the first genome sequence of a bona fide Pantoea sp. insect-vectored cotton pathogen. PMID:22582377

  16. Draft genome sequence of Pseudomonas fuscovaginae, a broad-host-range pathogen of plants.

    PubMed

    Patel, Hitendra Kumar; da Silva, Daniel Passos; Devescovi, Giulia; Maraite, Henri; Paszkiewicz, Konrad; Studholme, David J; Venturi, Vittorio

    2012-05-01

    Pseudomonas fuscovaginae was first reported as a pathogen of rice causing sheath rot in plants grown at high altitudes. P. fuscovaginae is now considered a broad-host-range plant pathogen causing disease in several economically important plants. We report what is, to our knowledge, the first draft genome sequence of a P. fuscovaginae strain.

  17. Draft Genome Sequence of Pseudomonas fuscovaginae, a Broad-Host-Range Pathogen of Plants

    PubMed Central

    Patel, Hitendra Kumar; Passos da Silva, Daniel; Devescovi, Giulia; Maraite, Henri; Paszkiewicz, Konrad; Studholme, David J.

    2012-01-01

    Pseudomonas fuscovaginae was first reported as a pathogen of rice causing sheath rot in plants grown at high altitudes. P. fuscovaginae is now considered a broad-host-range plant pathogen causing disease in several economically important plants. We report what is, to our knowledge, the first draft genome sequence of a P. fuscovaginae strain. PMID:22535942

  18. Memory CD4+ T cells are required for optimal NK cell effector functions against the opportunistic fungal pathogen Pneumocystis murina.

    PubMed

    Kelly, Michelle N; Zheng, Mingquan; Ruan, Sanbao; Kolls, Jay; D'Souza, Alain; Shellito, Judd E

    2013-01-01

    Little is known about the role of NK cells or their interplay with other immune cells during opportunistic infections. Using our murine model of Pneumocystis pneumonia, we found that loss of NK cells during immunosuppression results in substantial Pneumocystis lung burden. During early infection of C57B/6 CD4(+) T cell-depleted mice, there were significantly fewer NK cells in the lung tissue compared with CD4(+) T cell-intact animals, and the NK cells present demonstrated decreased upregulation of the activation marker NKp46 and production of the effector cytokine, IFN-γ. Furthermore, coincubation studies revealed a significant increase in fungal killing when NK cells were combined with CD4(+) T cells compared with either cell alone, which was coincident with a significant increase in perforin production by NK cells. Finally, however, we found through adoptive transfer that memory CD4(+) T cells are required for significant NK cell upregulation of the activation marker NK group 2D and production of IFN-γ, granzyme B, and perforin during Pneumocystis infection. To the best of our knowledge, this study is the first to demonstrate a role for NK cells in immunity to Pneumocystis pneumonia, as well as to establish a functional relationship between CD4(+) T cells and NK cells in the host response to an opportunistic fungal pathogen.

  19. An opportunistic human pathogen on the fly: strains of Aspergillus flavus vary in virulence in Drosophila melanogaster.

    PubMed

    Ramírez-Camejo, Luis A; Torres-Ocampo, Ana P; Agosto-Rivera, José L; Bayman, Paul

    2014-02-01

    Aspergilloses are fungal diseases in humans and animals that is caused by members of the genus Aspergillus. Aspergillus flavus is an important opportunistic pathogen, second only to A. fumigatus as a cause of human aspergillosis. Differences in virulence among A. flavus isolates from clinical and other substrates and mating types are not well known. The fruit fly Drosophila melanogaster has become a model organism for investigating virulence of human pathogens due to similarities between its immune system and that of mammals. In this study we used D. melanogaster as a model host to compare virulence among A. flavus strains obtained from clinical sources as compared with other substrates, between isolates of different mating types, and between isolates of A. flavus and A. fumigatus. Anesthetized flies were infected with A. flavus; mortality ranged from 15% to >90%. All strains were virulent, but some were significantly more so than others, which in turn led to the wide mortality range. Clinical strains were significantly less virulent than environmental strains, probably because the clinical strains were from culture collections and the environmental strains were recent isolates. Mean virulence did not differ between MAT1-1 and MAT1-2 mating types and the phylogeny of A. flavus isolates did not predict virulence. A. flavus was on average significantly more virulent than A. fumigatus on two lines of wild-type flies, Canton-S and Oregon-R. D. melanogaster is an attractive model to test pathogenicity and could be useful for identifying genes involved in virulence.

  20. Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens.

    PubMed

    Ardizzoni, Andrea; Neglia, Rachele G; Baschieri, Maria C; Cermelli, Claudio; Caratozzolo, Manuela; Righi, Elena; Palmieri, Beniamino; Blasi, Elisabetta

    2011-10-01

    Hyaluronic acid (HA) has several clinical applications (aesthetic surgery, dermatology, orthopaedics and ophtalmology). Following recent evidence, suggesting antimicrobial and antiviral properties for HA, we investigated its effects on 15 ATCC strains, representative of clinically relevant bacterial and fungal species. The in vitro system employed allowed to assess optical density of broth cultures as a measure of microbial load in a time-dependent manner. The results showed that different microbial species and, sometimes, different strains belonging to the same species, are differently affected by HA. In particular, staphylococci, enterococci, Streptococcus mutans, two Escherichia coli strains, Pseudomonas aeruginosa, Candida glabrata and C. parapsilosis displayed a HA dose-dependent growth inhibition; no HA effects were detected in E. coli ATCC 13768 and C. albicans; S. sanguinis was favoured by the highest HA dose. Therefore, the influence of HA on bacteria and fungi warrants further studies aimed at better establishing its relevance in clinical applications.

  1. The Intraperitoneal Transcriptome of the Opportunistic Pathogen Enterococcus faecalis in Mice

    PubMed Central

    Muller, Cécile; Cacaci, Margherita; Sauvageot, Nicolas; Sanguinetti, Maurizio; Rattei, Thomas; Eder, Thomas; Giard, Jean-Christophe; Kalinowski, Jörn; Hain, Torsten; Hartke, Axel

    2015-01-01

    Enterococcus faecalis is a Gram-positive lactic acid intestinal opportunistic bacterium with virulence potential. For a better understanding of the adapation of this bacterium to the host conditions, we performed a transcriptome analysis of bacteria isolated from an infection site (mouse peritonitis) by RNA-sequencing. We identified a total of 211 genes with significantly higher transcript levels and 157 repressed genes. Our in vivo gene expression database reflects well the infection process since genes encoding important virulence factors like cytolysin, gelatinase or aggregation substance as well as stress response proteins, are significantly induced. Genes encoding metabolic activities are the second most abundant in vivo induced genes demonstrating that the bacteria are metabolically active and adapt to the special nutrient conditions of the host. α- and β- glucosides seem to be important substrates for E. faecalis inside the host. Compared to laboratory conditions, the flux through the upper part of glycolysis seems to be reduced and more carbon may enter the pentose phosphate pathway. This may reflect the need of the bacteria under infection conditions to produce more reducing power for biosynthesis. Another important substrate is certainly glycerol since both pathways of glycerol catabolism are strongly induced. Strongly in vivo induced genes should be important for the infection process. This assumption has been verified in a virulence test using well characterized mutants affected in glycerol metabolism. This showed indeed that mutants unable to metabolize this sugar alcohol are affected in organ colonisation in a mouse model. PMID:25978463

  2. The Intraperitoneal Transcriptome of the Opportunistic Pathogen Enterococcus faecalis in Mice.

    PubMed

    Muller, Cécile; Cacaci, Margherita; Sauvageot, Nicolas; Sanguinetti, Maurizio; Rattei, Thomas; Eder, Thomas; Giard, Jean-Christophe; Kalinowski, Jörn; Hain, Torsten; Hartke, Axel

    2015-01-01

    Enterococcus faecalis is a Gram-positive lactic acid intestinal opportunistic bacterium with virulence potential. For a better understanding of the adapation of this bacterium to the host conditions, we performed a transcriptome analysis of bacteria isolated from an infection site (mouse peritonitis) by RNA-sequencing. We identified a total of 211 genes with significantly higher transcript levels and 157 repressed genes. Our in vivo gene expression database reflects well the infection process since genes encoding important virulence factors like cytolysin, gelatinase or aggregation substance as well as stress response proteins, are significantly induced. Genes encoding metabolic activities are the second most abundant in vivo induced genes demonstrating that the bacteria are metabolically active and adapt to the special nutrient conditions of the host. α- and β- glucosides seem to be important substrates for E. faecalis inside the host. Compared to laboratory conditions, the flux through the upper part of glycolysis seems to be reduced and more carbon may enter the pentose phosphate pathway. This may reflect the need of the bacteria under infection conditions to produce more reducing power for biosynthesis. Another important substrate is certainly glycerol since both pathways of glycerol catabolism are strongly induced. Strongly in vivo induced genes should be important for the infection process. This assumption has been verified in a virulence test using well characterized mutants affected in glycerol metabolism. This showed indeed that mutants unable to metabolize this sugar alcohol are affected in organ colonisation in a mouse model.

  3. THE OPPORTUNISTIC PATHOGEN TOXOPLASMA GONDII DEPLOYS A DIVERSE LEGION OF INVASION AND SURVIVAL PROTEINS

    PubMed Central

    Zhou, Xing W.; Kafsack, Björn F. C.; Cole, Robert N.; Beckett, Phil; Shen, Rong F.; Carruthers, Vern B.

    2006-01-01

    Host cell invasion is an essential step during infection by Toxoplasma gondii, an intracellular protozoan that causes the severe opportunistic disease toxoplasmosis in humans. Recent evidence strongly suggests that proteins discharged from Toxoplasma apical secretory organelles (micronemes, dense granules, and rhoptries) play key roles in host cell invasion and survival during infection. However, to date, only a limited number of secretory proteins have been discovered and the full spectrum of effector molecules involved in parasite invasion and survival remains unknown. To address these issues, we analyzed a large cohort of freely released Toxoplasma secretory proteins using two complementary methodologies, 2-DE/MS and LC/ESI-MS-MS (MudPIT, shotgun proteomics). Visualization of Toxoplasma secretory products by 2-DE revealed ∼100 spots, most of which were successfully identified by protein microsequencing or MALDI-MS analysis. Many proteins were present in multiple species suggesting they are subjected to substantial posttranslational modification. Shotgun proteomic analysis of the secretory fraction revealed several additional products including novel putative adhesive proteins, proteases, and hypothetical secretory proteins similar to products expressed by other related parasites including Plasmodium, the etiologic agent of malaria. A subset of novel proteins were re-expressed as fusions to yellow fluorescent protein and this initial screen revealed shared and distinct localizations within secretory compartments of T. gondii tachyzoites. The findings provide a uniquely broad view of Toxoplasma secretory proteins that participate in parasite survival and pathogenesis during infection. PMID:16002397

  4. Exploring the Unique N-Glycome of the Opportunistic Human Pathogen Acanthamoeba*

    PubMed Central

    Schiller, Birgit; Makrypidi, Georgia; Razzazi-Fazeli, Ebrahim; Paschinger, Katharina; Walochnik, Julia; Wilson, Iain B. H.

    2012-01-01

    Glycans play key roles in host-pathogen interactions; thus, knowing the N-glycomic repertoire of a pathogen can be helpful in deciphering its methods of establishing and sustaining a disease. Therefore, we sought to elucidate the glycomic potential of the facultative amoebal parasite Acanthamoeba. This is the first study of its asparagine-linked glycans, for which we applied biochemical tools and various approaches of mass spectrometry. An initial glycomic screen of eight strains from five genotypes of this human pathogen suggested, in addition to the common eukaryotic oligomannose structures, the presence of pentose and deoxyhexose residues on their N-glycans. A more detailed analysis was performed on the N-glycans of a genotype T11 strain (4RE); fractionation by HPLC and tandem mass spectrometric analyses indicated the presence of a novel mannosylfucosyl modification of the reducing terminal core as well as phosphorylation of mannose residues, methylation of hexose and various forms of pentosylation. The largest N-glycan in the 4RE strain contained two N-acetylhexosamine, thirteen hexose, one fucose, one methyl, and two pentose residues; however, in this and most other strains analyzed, glycans with compositions of Hex8–9HexNAc2Pnt0–1 tended to dominate in terms of abundance. Although no correlation between pathogenicity and N-glycan structure can be proposed, highly unusual structures in this facultative parasite can be found which are potential virulence factors or therapeutic targets. PMID:23139421

  5. Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans

    USDA-ARS?s Scientific Manuscript database

    Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal ...

  6. Genome sequence of Pantoea sp. strain Sc 1 an opportunistic cotton pathogen

    USDA-ARS?s Scientific Manuscript database

    Pantoea is comprised of a broad spectrum of species including plant pathogens. Here, we provide an annotated genome sequence of Pantoea sp. strain Sc 1, which was isolated from a diseased cotton boll. This research provides the first genome sequence of a bona fide Pantoea sp. insect vectored cotton...

  7. Ralstonia solanacearum and R. pseudosolanacearum on Eucalyptus: Opportunists or Primary Pathogens?

    PubMed

    Coutinho, Teresa A; Wingfield, Michael J

    2017-01-01

    Ralstonia solanacearum and R. pseudosolanacearum are well known primary pathogens of herbaceous crops. Reports of wilt caused by these pathogens in tree species are limited other than on Eucalyptus species. Despite the widespread occurrence of so-called bacterial wilt on eucalypts in tropical and sub-tropical parts of Africa, Asia, and the Americas, there remain many contradictions relating to the disease. Our field observations over many years in most regions where the disease occurs on Eucalyptus show that it is always associated with trees that have been subjected to severe stress. The disease is typically diagnosed by immersing cut stems in water and observing bacterial streaming, but the identity of the bacteria within this suspension is seldom considered. To add to the confusion, pathogenicity tests on susceptible species or clones are rarely successful. When they do work, they are on small plants in greenhouse trials. It has become all to easy to attribute Eucalyptus death exclusively to Ralstonia infection. Our data strongly suggest that Ralstonia species and probably other bacteria are latent colonists commonly occurring in healthy and particularly clonally propagated eucalypts. The onset of stress factors provide the bacteria with an opportunity to develop. We believe that the resulting stress weakens the defense systems of the trees allowing Ralstonia and bacterial endophytes to proliferate. Overall our research suggests that R. solanacearum and R. pseudosolanacearum are not primary pathogens of Eucalyptus. Short of clear evidence that they are primary pathogens of Eucalyptus it is inappropriate to attribute this disease solely to infection by Ralstonia species.

  8. Ralstonia solanacearum and R. pseudosolanacearum on Eucalyptus: Opportunists or Primary Pathogens?

    PubMed Central

    Coutinho, Teresa A.; Wingfield, Michael J.

    2017-01-01

    Ralstonia solanacearum and R. pseudosolanacearum are well known primary pathogens of herbaceous crops. Reports of wilt caused by these pathogens in tree species are limited other than on Eucalyptus species. Despite the widespread occurrence of so-called bacterial wilt on eucalypts in tropical and sub-tropical parts of Africa, Asia, and the Americas, there remain many contradictions relating to the disease. Our field observations over many years in most regions where the disease occurs on Eucalyptus show that it is always associated with trees that have been subjected to severe stress. The disease is typically diagnosed by immersing cut stems in water and observing bacterial streaming, but the identity of the bacteria within this suspension is seldom considered. To add to the confusion, pathogenicity tests on susceptible species or clones are rarely successful. When they do work, they are on small plants in greenhouse trials. It has become all to easy to attribute Eucalyptus death exclusively to Ralstonia infection. Our data strongly suggest that Ralstonia species and probably other bacteria are latent colonists commonly occurring in healthy and particularly clonally propagated eucalypts. The onset of stress factors provide the bacteria with an opportunity to develop. We believe that the resulting stress weakens the defense systems of the trees allowing Ralstonia and bacterial endophytes to proliferate. Overall our research suggests that R. solanacearum and R. pseudosolanacearum are not primary pathogens of Eucalyptus. Short of clear evidence that they are primary pathogens of Eucalyptus it is inappropriate to attribute this disease solely to infection by Ralstonia species. PMID:28553301

  9. Risk assessment of the schmutzdecke of biosand filters: identification of an opportunistic pathogen in schmutzdecke developed by an unsafe water source.

    PubMed

    Hwang, Hyun Gyu; Kim, Min Seo; Shin, Soo Min; Hwang, Cher Won

    2014-02-14

    The biosand filter (BSF) is widely applied in developing counties as an appropriate technology-based product for supplying "safe" water. Biosand filters exhibit relatively high purifying efficiency because of the schmutzdecke (biofilm) embedded in them. However, schmutzdecke should be cleaned or discarded on a regular basis to maintain the purifying efficiency of the BSF. Due to its role in BSFs, the purifying function of schmutzdecke, rather than its potential risk when not properly discarded, has so far been the primary focus of research. This study aims to provide a risk assessment of schmutzdecke in an attempt to draw attention to a wholly new angle of schmutzdecke usage. We conducted 16S rRNA gene sequencing and phylogenetic analysis to identify opportunistic pathogens in schmutzdecke developed using water from the Hyung-San River. The results reveal that the schmutzdecke derived from this water source contains diverse and relatively high portions of opportunistic pathogen strains; 55% of all isolates collected from schmutzdecke were identified as opportunistic pathogens. Moreover, the diversity of microorganisms is increased in the schmutzdecke compared to its water source in terms of diversity of genus, phylum and opportunistic pathogen strain. As a whole, our study indicates a potential risk associated with schmutzdecke and the necessity of a solid guideline for the after-treatment of discarded schmutzdecke.

  10. Risk Assessment of the Schmutzdecke of Biosand Filters: Identification of an Opportunistic Pathogen in Schmutzdecke Developed by an Unsafe Water Source

    PubMed Central

    Hwang, Hyun Gyu; Kim, Min Seo; Shin, Soo Min; Hwang, Cher Won

    2014-01-01

    The biosand filter (BSF) is widely applied in developing counties as an appropriate technology-based product for supplying “safe” water. Biosand filters exhibit relatively high purifying efficiency because of the schmutzdecke (biofilm) embedded in them. However, schmutzdecke should be cleaned or discarded on a regular basis to maintain the purifying efficiency of the BSF. Due to its role in BSFs, the purifying function of schmutzdecke, rather than its potential risk when not properly discarded, has so far been the primary focus of research. This study aims to provide a risk assessment of schmutzdecke in an attempt to draw attention to a wholly new angle of schmutzdecke usage. We conducted 16S rRNA gene sequencing and phylogenetic analysis to identify opportunistic pathogens in schmutzdecke developed using water from the Hyung-San River. The results reveal that the schmutzdecke derived from this water source contains diverse and relatively high portions of opportunistic pathogen strains; 55% of all isolates collected from schmutzdecke were identified as opportunistic pathogens. Moreover, the diversity of microorganisms is increased in the schmutzdecke compared to its water source in terms of diversity of genus, phylum and opportunistic pathogen strain. As a whole, our study indicates a potential risk associated with schmutzdecke and the necessity of a solid guideline for the after-treatment of discarded schmutzdecke. PMID:24534769

  11. Multiple gene genealogical analyses suggest divergence and recent clonal dispersal in the opportunistic human pathogen Candida guilliermondii.

    PubMed

    Lan, Lisa; Xu, Jianping

    2006-05-01

    Candida guilliermondii is a haploid opportunistic pathogen accounting for about 2 % of human blood yeast infections. Recent analyses using multilocus enzyme electrophoresis and karyotyping suggest that strains from human sources traditionally designated C. guilliermondii in fact include at least two species, C. guilliermondii and Candida fermentati. However, the patterns of molecular variation within and between these two species remain largely unknown. In this study, DNA fragments were sequenced from five genes for each of 37 strains collected from Canada, China, the Philippines and Tanzania. The analyses identified significant sequence differences between C. guilliermondii and C. fermentati. The five gene genealogies showed no apparent incongruence, suggesting a predominantly clonal reproductive structure for both species in nature. Indeed, two large clones of C. guilliermondii were identified, with one from Ontario, Canada, and the other from China. Interestingly, the results indicate that strains currently designated C. guilliermondii may contain additional divergent lineages. On the practical side, the results revealed several diagnostic molecular markers that can be used in clinical microbiology laboratories to distinguish C. guilliermondii and C. fermentati. The multiple gene genealogical analyses conducted here revealed significant divergence and clonal dispersal in this important pathogenic yeast complex.

  12. The DSF type quorum sensing signalling system RpfF/R regulates diverse phenotypes in the opportunistic pathogen Cronobacter.

    PubMed

    Suppiger, Angela; Eshwar, Athmanya Konegadde; Stephan, Roger; Kaever, Volkhard; Eberl, Leo; Lehner, Angelika

    2016-01-04

    Several bacterial pathogens produce diffusible signal factor (DSF)-type quorum sensing (QS) signals to control biofilm formation and virulence. Previous work showed that in Burkholderia cenocepacia the RpfFBc/RpfR system is involved in sensing and responding to DSF signals and that this signal/sensor gene pair is highly conserved in several bacterial species including Cronobacter spp. Here we show that C. turicensis LMG 23827(T) possesses a functional RpfF/R system that is involved in the regulation of various phenotypes, including colony morphology, biofilm formation and swarming motility. In vivo experiments using the zebrafish embryo model revealed a role of this regulatory system in virulence of this opportunistic pathogen. We provide evidence that the RpfF/R system modulates the intracellular c-di-GMP level of the organism, an effect that may underpin the alteration in phenotype and thus the regulated phenotypes may be a consequence thereof. This first report on an RpfF/R-type QS system of an organism outside the genus Burkholderia revealed that both the underlying molecular mechanisms as well as the regulated functions show a high degree of conservation.

  13. The DSF type quorum sensing signalling system RpfF/R regulates diverse phenotypes in the opportunistic pathogen Cronobacter

    PubMed Central

    Suppiger, Angela; Eshwar, Athmanya Konegadde; Stephan, Roger; Kaever, Volkhard; Eberl, Leo; Lehner, Angelika

    2016-01-01

    Several bacterial pathogens produce diffusible signal factor (DSF)-type quorum sensing (QS) signals to control biofilm formation and virulence. Previous work showed that in Burkholderia cenocepacia the RpfFBc/RpfR system is involved in sensing and responding to DSF signals and that this signal/sensor gene pair is highly conserved in several bacterial species including Cronobacter spp. Here we show that C. turicensis LMG 23827T possesses a functional RpfF/R system that is involved in the regulation of various phenotypes, including colony morphology, biofilm formation and swarming motility. In vivo experiments using the zebrafish embryo model revealed a role of this regulatory system in virulence of this opportunistic pathogen. We provide evidence that the RpfF/R system modulates the intracellular c-di-GMP level of the organism, an effect that may underpin the alteration in phenotype and thus the regulated phenotypes may be a consequence thereof. This first report on an RpfF/R-type QS system of an organism outside the genus Burkholderia revealed that both the underlying molecular mechanisms as well as the regulated functions show a high degree of conservation. PMID:26725701

  14. Draft Genome Sequence of Pseudomonas fluorescens LMG 5329, a White Line-Inducing Principle-Producing Bioindicator for the Mushroom Pathogen Pseudomonas tolaasii

    PubMed Central

    Rokni-Zadeh, Hassan; Zarrineh, Peyman

    2013-01-01

    Pseudomonas tolaasii, the causative agent of Agaricus bisporus brown blotch disease, can be identified by the white line reaction, occurring upon confrontation of the tolaasin-producing mushroom pathogen with “Pseudomonas reactans,” producing the lipopeptide white line-inducing principle (WLIP). The draft genome sequence of the WLIP-producing indicator Pseudomonas fluorescens strain LMG 5329 is reported here. PMID:23887909

  15. Characterization and genome analysis of novel bacteriophages infecting the opportunistic human pathogens Klebsiella oxytoca and K. pneumoniae.

    PubMed

    Park, Eun-Ah; Kim, You-Tae; Cho, Jae-Hyun; Ryu, Sangryeol; Lee, Ju-Hoon

    2017-04-01

    Klebsiella is a genus of well-known opportunistic human pathogens that are associated with diabetes mellitus and chronic pulmonary obstruction; however, this pathogen is often resistant to multiple drugs. To control this pathogen, two Klebsiella-infecting phages, K. oxytoca phage PKO111 and K. pneumoniae phage PKP126, were isolated from a sewage sample. Analysis of their host range revealed that they infect K. pneumoniae and K. oxytoca, suggesting host specificity for members of the genus Klebsiella. Stability tests confirmed that the phages are stable under various temperature (4 to 60 °C) and pH (3 to 11) conditions. A challenge assay showed that PKO111 and PKP126 inhibit growth of their host strains by 2 log and 4 log, respectively. Complete genome sequencing of the phages revealed that their genome sizes are quite different (168,758 bp for PKO111 and 50,934 bp for PKP126). Their genome annotation results showed that they have no human virulence-related genes, an important safety consideration. In addition, no lysogen-formation gene cluster was detected in either phage genome, suggesting that they are both virulent phages in their bacterial hosts. Based on these results, PKO111 and PKP126 may be good candidates for development of biocontrol agents against members of the genus Klebsiella for therapeutic purposes. A comparative analysis of tail-associated gene clusters of PKO111 and PKP126 revealed relatively low homology, suggesting that they might differ in the way they recognize and infect their specific hosts.

  16. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus

    PubMed Central

    O’Hanlon, Karen A.; Margison, Geoffrey P.; Hatch, Amy; Fitzpatrick, David A.; Owens, Rebecca A.; Doyle, Sean; Jones, Gary W.

    2012-01-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O6-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O6-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system. PMID:22669901

  17. Multicenter Outbreak of Infections by Saprochaete clavata, an Unrecognized Opportunistic Fungal Pathogen

    PubMed Central

    Vaux, Sophie; Criscuolo, Alexis; Desnos-Ollivier, Marie; Diancourt, Laure; Tarnaud, Chloé; Vandenbogaert, Matthias; Brisse, Sylvain; Coignard, Bruno; Garcia-Hermoso, Dea; Blanc, Catherine; Hoinard, Damien; Lortholary, Olivier; Bretagne, Stéphane; Thiolet, Jean-Michel; de Valk, Henriette; Courbil, Rémi; Chabanel, Anne; Simonet, Marion; Maire, Francoise; Jbilou, Saadia; Tiberghien, Pierre; Blanchard, Hervé; Venier, Anne-Gaëlle; Bernet, Claude; Simon, Loïc; Sénéchal, Hélène; Pouchol, Elodie; Angot, Christiane; Ribaud, Patricia; Socié, G.; Flèche, M.; Brieu, Nathalie; Lagier, Evelyne; Chartier, Vanessa; Allegre, Thierry; Maulin, Laurence; Lanic, Hélène; Tilly, Hervé; Bouchara, Jean-Philippe; Pihet, Marc; Schmidt, Aline; Kouatchet, Achille; Vandamme, Yves-Marie; Ifrah, Norbert; Mercat, Alain; Accoceberry, Isabelle; Albert, Olivier; Leguay, Thibaut; Rogues, Anne-Marie; Bonhomme, Julie; Reman, Oumédaly; Lesteven, Claire; Poirier, Philippe; Chabrot, Cécile Molucon; Calvet, Laure; Baud, Olivier; Cambon, Monique; Farkas, Jean Chistophe; Lafon, Bruno; Dalle, Frédéric; Caillot, Denis; Lazzarotti, Aline; Aho, Serge; Combret, Sandrine; Facon, Thierry; Sendid, Boualem; Loridant, Séverine; Louis, Terriou; Cazin, Bruno; Grandbastien, Bruno; Bourgeois, Nathalie; Lotthé, Anne; Cartron, Guillaume; Ravel, Christophe; Colson, Pascal; Gaudard, Philippe; Bonmati, Caroline; Simon, Loic; Rabaud, Christian; Machouart, Marie; Poisson, Didier; Carp, Diana; Meunier, Jérôme; Gaschet, Anne; Miquel, Chantal; Sanhes, Laurence; Ferreyra, Milagros; Leibinger, Franck; Geudet, Philippe; Toubas, Dominique; Himberlin, Chantal; Bureau-Chalot, Florence; Delmer, Alain; Favennec, Loïc; Gargala, Gilles; Michot, Jean-Baptiste; Girault, Christophe; David, Marion; Leprêtre, Stéphane; Jardin, Fabrice; Honderlick, Pierre; Caille, Vincent; Cerf, Charles; Cassaing, Sophie; Recher, Christian; Picard, Muriel; Protin, Caroline; Huguet, Françoise; Huynh, Anne; Ruiz, Jean; Riu-Poulenc, Béatrice; Letocart, Philippe; Marchou, Bruno; Verdeil, Xavier; Cavalié, Laurent; Chauvin, Pamela; Iriart, Xavier; Valentin, Alexis; Bouvet, Emmanuelle; Delmas-Marsalet, Béatrice; Jeblaoui, Asma; Kassis-Chikhani, Najiby; Mühlethaler, Konrad; Zimmerli, Stefan; Zalar, Polona; Sánchez-Reus, Ferran; Gurgui, Merce

    2014-01-01

    ABSTRACT Rapidly fatal cases of invasive fungal infections due to a fungus later identified as Saprochaete clavata were reported in France in May 2012. The objectives of this study were to determine the clonal relatedness of the isolates and to investigate possible sources of contamination. A nationwide alert was launched to collect cases. Molecular identification methods, whole-genome sequencing (WGS), and clone-specific genotyping were used to analyze recent and historical isolates, and a case-case study was performed. Isolates from thirty cases (26 fungemias, 22 associated deaths at day 30) were collected between September 2011 and October 2012. Eighteen cases occurred within 8 weeks (outbreak) in 10 health care facilities, suggesting a common source of contamination, with potential secondary cases. Phylogenetic analysis identified one clade (clade A), which accounted for 16/18 outbreak cases. Results of microbiological investigations of environmental, drug, or food sources were negative. Analysis of exposures pointed to a medical device used for storage and infusion of blood products, but no fungal contamination was detected in the unused devices. Molecular identification of isolates from previous studies demonstrated that S. clavata can be found in dairy products and has already been involved in monocentric outbreaks in hematology wards. The possibility that S. clavata may transmit through contaminated medical devices or can be associated with dairy products as seen in previous European outbreaks is highly relevant for the management of future outbreaks due to this newly recognized pathogen. This report also underlines further the potential of WGS for investigation of outbreaks due to uncommon fungal pathogens. PMID:25516620

  18. Sequence survey of the genome of the opportunistic microsporidian pathogen, Vittaforma corneae.

    PubMed

    Mittleider, Derek; Green, Linda C; Mann, Victoria H; Michael, Scott F; Didier, Elizabeth S; Brindley, Paul J

    2002-01-01

    The microsporidian Vittaforma corneae has been reported as a pathogen of the human stratum corneum, where it can cause keratitis, and is associated with systemic infections. In addition to this direct role as an infectious, etiologic agent of human disease, V. corneae has been used as a model organism for another microsporidian, Enterocytozoon bieneusi, a frequent and problematic pathogen of HIV-infected patients that, unlike V. corneae, is difficult to maintain and to study in vitro. Unfortunately, few molecular sequences are available for V. corneae. In this study, seventy-four genome survey sequences (GSS) were obtained from genomic DNA of spores of laboratory-cultured V. corneae. Approximately, 41 discontinuous kilobases of V. corneae were cloned and sequenced to generate these GSS. Putative identities were assigned to 44 of the V. corneae GSS based on BLASTX searches, representing 21 discrete proteins. Of these 21 deduced V. corneae proteins, only two had been reported previously from other microsporidia (until the recent report of the Encephalitozoon cuniculi genome). Two of the V. corneae proteins were of particular interest, reverse transcriptase and topoisomerase IV (parC). Since the existence of transposable elements in microsporidia is controversial, the presence of reverse transcriptase in V. corneae will contribute to resolution of this debate. The presence of topoisomerase IV was remarkable because this enzyme previously had been identified only from prokaryotes. The 74 GSS included 26.7 kilobases of unique sequences from which two statistics were generated: GC content and codon usage. The GC content of the unique GSS was 42%, lower than that of another microsporidian, E. cuniculi (48% for protein-encoding regions), and substantially higher than that predicted for a third microsporidian, Spraguea lophii (28%). A comparison using the Pearson correlation coefficient showed that codon usage in V. corneae was similar to that in the yeasts, Saccharomyces

  19. Pseudomonas-based approaches for suppression of soilborne pathogens and pests

    USDA-ARS?s Scientific Manuscript database

    Soilborne necrotrophic fungal and oomycete pathogens, together with plant-parasitic nematodes, account for billions of dollars in yearly losses to agriculture in the US and worldwide. Introduced biopesticide strains of Pseudomonas appear to have limited application in the dryland wheat production re...

  20. Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans

    PubMed Central

    Tornberg-Belanger, Stephanie N.; Matthan, Nirupa R.; Lichtenstein, Alice H.

    2015-01-01

    ABSTRACT Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal drugs prevents C. albicans-associated mortalities. C. albicans provides a clinically relevant system for studying the relationship between diet and the microbiota as it relates to commensalism and pathogenicity. As a first step toward a dietary intervention to reduce C. albicans GI colonization, we investigated the impact of dietary lipids on murine colonization by C. albicans. Coconut oil and its constituent fatty acids have antifungal activity in vitro; we hypothesized that dietary coconut oil would reduce GI colonization by C. albicans. Colonization was lower in mice fed a coconut oil-rich diet than in mice fed diets rich in beef tallow or soybean oil. Switching beef tallow-fed mice to a coconut oil diet reduced preexisting colonization. Coconut oil reduced colonization even when the diet also contained beef tallow. Dietary coconut oil also altered the metabolic program of colonizing C. albicans cells. Long-chain fatty acids were less abundant in the cecal contents of coconut oil-fed mice than in the cecal contents of beef tallow-fed mice; the expression of genes involved in fatty acid utilization was lower in C. albicans from coconut oil-fed mice than in C. albicans from beef tallow-fed mice. Extrapolating to humans, these findings suggest that coconut oil could become the first dietary intervention to reduce C. albicans GI colonization. IMPORTANCE Candida albicans, the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient’s immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of

  1. Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans.

    PubMed

    Gunsalus, Kearney T W; Tornberg-Belanger, Stephanie N; Matthan, Nirupa R; Lichtenstein, Alice H; Kumamoto, Carol A

    2016-01-01

    Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal drugs prevents C. albicans-associated mortalities. C. albicans provides a clinically relevant system for studying the relationship between diet and the microbiota as it relates to commensalism and pathogenicity. As a first step toward a dietary intervention to reduce C. albicans GI colonization, we investigated the impact of dietary lipids on murine colonization by C. albicans. Coconut oil and its constituent fatty acids have antifungal activity in vitro; we hypothesized that dietary coconut oil would reduce GI colonization by C. albicans. Colonization was lower in mice fed a coconut oil-rich diet than in mice fed diets rich in beef tallow or soybean oil. Switching beef tallow-fed mice to a coconut oil diet reduced preexisting colonization. Coconut oil reduced colonization even when the diet also contained beef tallow. Dietary coconut oil also altered the metabolic program of colonizing C. albicans cells. Long-chain fatty acids were less abundant in the cecal contents of coconut oil-fed mice than in the cecal contents of beef tallow-fed mice; the expression of genes involved in fatty acid utilization was lower in C. albicans from coconut oil-fed mice than in C. albicans from beef tallow-fed mice. Extrapolating to humans, these findings suggest that coconut oil could become the first dietary intervention to reduce C. albicans GI colonization. IMPORTANCE Candida albicans, the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient's immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of susceptible

  2. Involvement of the opportunistic pathogen Aspergillus tubingensis in osteomyelitis of the maxillary bone: a case report

    PubMed Central

    2013-01-01

    Background Aspergillus tubingensis is a black Aspergillus belonging to the Aspergillus section Nigri, which includes species that morphologically resemble Aspergillus niger. Recent developments in species determination have resulted in clinical isolates presumed to be Aspergillus niger being reclassified as Aspergillus tubingensis by sequencing. We present a report of a patient with an osteomyelitis of the maxillary bone with a probable invasive Aspergillus tubingensis infection. Case presentation We describe an immune compromised patient suffering from osteomyelitis of the maxillary bone after tooth extraction. The osteomyelitis probably resulted in dentogenic pansinusitis presenting as an acute ethmoiditis. Histologic examination of biopsy samples showed osteomyelitis, and inflammation of the surrounding connective tissue. Cultures of the alveolar wound grew Aspergillus tubingensis. The patient was treated with liposomal amphoterocin B, which was changed to oral treatment with voriconazole based on susceptibility testing (MIC for voriconazole was 1 μg/ml). Conclusion This case shows that Aspergillus tubingensis may have the potential to cause severe invasive infections in immunocompromised hosts. A larger proportion of Aspergillus tubingensis isolates are less susceptible to azoles compared to Aspergillus niger. Therefore, correct species identification and susceptibility testing is crucial for the choice of anti-fungal treatment, screening of azole resistance, and characterization of the pathogenic potential of the various species within Aspergillus section Nigri. PMID:23374883

  3. Opportunistic invasive fungal pathogen Macrophomina phaseolina prognosis from immunocompromised humans to potential mitogenic RBL with an exceptional and novel antitumor and cytotoxic effect.

    PubMed

    Arora, P; Dilbaghi, N; Chaudhury, A

    2012-02-01

    With the ever-increasing risk for fungal infections, one can no longer ignore fungi. It is imperative that clinical manifestations "presume fungus" with their epidemiologic and pathogenic features when evaluating a potentially infected patient. In the high-risk patient groups, fungi with intrinsic resistance to antifungal agents already exist, with a tendency to emerge as opportunistic pathogens. One of the smart pathogens is Macrophomina phaseolina, with the potential to disarm plant, animal, and human immunity. The response prophylaxis may vary from antifungal therapy and surgical measures to biochemical (Rhizoctonia bataticola lectin [RBL] with antitumor and cytotoxic nature) and gene therapeutics.

  4. Network analysis suggests a potentially 'evil' alliance of opportunistic pathogens inhibited by a cooperative network in human milk bacterial communities.

    PubMed

    Sam Ma, Zhanshan; Guan, Qiong; Ye, Chengxi; Zhang, Chengchen; Foster, James A; Forney, Larry J

    2015-02-05

    The critical importance of human milk to infants and even human civilization has been well established. Yet our understanding of the milk microbiome has been limited to cataloguing OTUs and computation of community diversity. To the best of our knowledge, there has been no report on the bacterial interactions within the milk microbiome. To bridge this gap, we reconstructed a milk bacterial community network based on Hunt et al. Our analysis revealed that the milk microbiome network consists of two disconnected sub-networks. One sub-network is a fully connected complete graph consisting of seven genera as nodes and all of its pair-wise interactions among the bacteria are facilitative or cooperative. In contrast, the interactions in the other sub-network of eight nodes are mixed but dominantly cooperative. Somewhat surprisingly, the only 'non-cooperative' nodes in the second sub-network are mutually cooperative Staphylococcus and Corynebacterium that include some opportunistic pathogens. This potentially 'evil' alliance between Staphylococcus and Corynebacterium could be inhibited by the remaining nodes that cooperate with one another in the second sub-network. We postulate that the 'confrontation' between the 'evil' alliance and 'benign' alliance and the shifting balance between them may be responsible for dysbiosis of the milk microbiome that permits mastitis.

  5. Strategies for the identification and tracking of cronobacter species: an opportunistic pathogen of concern to neonatal health.

    PubMed

    Yan, Qiongqiong; Fanning, Séamus

    2015-01-01

    Cronobacter species are emerging opportunistic food-borne pathogens, which consists of seven species, including C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, C. universalis, and C. condimenti. The organism can cause severe clinical infections, including necrotizing enterocolitis, septicemia, and meningitis, predominately among neonates <4 weeks of age. Cronobacter species can be isolated from various foods and their surrounding environments; however, powdered infant formula (PIF) is the most frequently implicated food source linked with Cronobacter infection. This review aims to provide a summary of laboratory-based strategies that can be used to identify and trace Cronobacter species. The identification of Cronobacter species using conventional culture method and immuno-based detection protocols were first presented. The molecular detection and identification at genus-, and species-level along with molecular-based serogroup approaches are also described, followed by the molecular sub-typing methods, in particular pulsed-field gel electrophoresis and multi-locus sequence typing. Next generation sequence approaches, including whole genome sequencing, DNA microarray, and high-throughput whole-transcriptome sequencing, are also highlighted. Appropriate application of these strategies would contribute to reduce the risk of Cronobacter contamination in PIF and production environments, thereby improving food safety and protecting public health.

  6. Growth promotion of the opportunistic human pathogen, Staphylococcus lugdunensis, by heme, hemoglobin, and coculture with Staphylococcus aureus.

    PubMed

    Brozyna, Jeremy R; Sheldon, Jessica R; Heinrichs, David E

    2014-04-01

    Staphylococcus lugdunensis is both a commensal of humans and an opportunistic pathogen. Little is currently known about the molecular mechanisms underpinning the virulence of this bacterium. Here, we demonstrate that in contrast to S. aureus, S. lugdunensis makes neither staphyloferrin A (SA) nor staphyloferrin B (SB) in response to iron deprivation, owing to the absence of the SB gene cluster, and a large deletion in the SA biosynthetic gene cluster. As a result, the species grows poorly in serum-containing media, and this defect was complemented by introduction of the S. aureus SA gene cluster into S. lugdunensis. S. lugdunensis expresses the HtsABC and SirABC transporters for SA and SB, respectively; the latter gene set is found within the isd (heme acquisition) gene cluster. An isd deletion strain was significantly debilitated for iron acquisition from both heme and hemoglobin, and was also incapable of utilizing ferric-SB as an iron source, while an hts mutant could not grow on ferric-SA as an iron source. In iron-restricted coculture experiments, S. aureus significantly enhanced the growth of S. lugdunensis, in a manner dependent on staphyloferrin production by S. aureus, and the expression of the cognate transporters by S. lugdunensis.

  7. The EPA2 adhesin encoding gene is responsive to oxidative stress in the opportunistic fungal pathogen Candida glabrata.

    PubMed

    Juárez-Cepeda, Jacqueline; Orta-Zavalza, Emmanuel; Cañas-Villamar, Israel; Arreola-Gómez, Jorge; Pérez-Cornejo, Gloria Patricia; Hernández-Carballo, Carmen Yudith; Gutiérrez-Escobedo, Guadalupe; Castaño, Irene; De Las Peñas, Alejandro

    2015-11-01

    Candida glabrata has emerged as an important opportunistic pathogen in both mucosal and bloodstream infections. C. glabrata contains 67 adhesin-like glycosylphosphatidylinositol-cell-wall proteins (GPI-CWPs), which are classified into seven groups and the largest is the Epa family. Epa proteins are very diverse and their expression is differentially regulated. Like many of the EPA genes, EPA2 is localized in a subtelomeric region where it is subject to chromatin-based transcriptional silencing and its role remains largely unexplored. In this study, we show that EPA2 gene is induced specifically in vitro in the presence of oxidative stress generated by H2O2. This induction is dependent on both Yap1 and Skn7, whereas Msn4 represses EPA2 expression. Interestingly, EPA2 is not induced during phagocytosis, but its expression can be identified in the liver in a murine model of systemic infection. Epa2 has no effect on the virulence of C. glabrata. The work presented herein provides a foundation for future studies to dissect the molecular mechanism(s) by which EPA2 of C. glabrata can be induced in the presence of oxidative stress in a region subject to subtelomeric silencing.

  8. Gene flow, recombination, and positive selection in Stenotrophomonas maltophilia: mechanisms underlying the diversity of the widespread opportunistic pathogen.

    PubMed

    Yu, Dong; Yin, Zhiqiu; Li, Beiping; Jin, Yuan; Ren, Hongguang; Zhou, Jing; Zhou, Wei; Liang, Long; Yue, Junjie

    2016-12-01

    Stenotrophomonas maltophilia is a global multidrug-resistant human opportunistic pathogen in clinical environments. Stenotrophomonas maltophilia is also ubiquitous in aqueous environments, soil, and plants. Various molecular typing methods have revealed that S. maltophilia exhibits high levels of phenotypic and genotypic diversity. However, information regarding the genomic diversity within S. maltophilia and the corresponding genetic mechanisms resulting in said diversity remain scarce. The genome sequences of 17 S. maltophilia strains were selected to investigate the mechanisms contributing to genetic diversity at the genome level. The core and large pan-genomes of the species were first estimated, resulting in a large, open pan-genome. A species phylogeny was also reconstructed based on 344 orthologous genes with one copy per genome, and the contribution of four evolutionary mechanisms to the species genome diversity was quantified: 15%-35% of the genes showed evidence for recombination, 0%-25% of the genes in one genome were likely gained, 0%-44% of the genes in some genomes were likely lost, and less than 0.3% of the genes in a genome were under positive selection pressures. We observed that, among the four main mechanisms, homologous recombination plays a key role in maintaining diversity in S. maltophilia. In this study, we provide an overview of evolution in S. maltophilia to provide a better understanding of its evolutionary dynamics and its relationship with genome diversity.

  9. β-1,3-Glucan recognition protein (βGRP) is essential for resistance against fungal pathogen and opportunistic pathogenic gut bacteria in Locusta migratoria manilensis.

    PubMed

    Zheng, Xiaoli; Xia, Yuxian

    2012-03-01

    Pattern recognition proteins, which form part of the innate immune system, initiate host defense reactions in response to pathogen surface molecules. The pattern recognition protein β-1,3-glucan recognition protein (βGRP) binds to β-1,3-glucan on fungal surfaces to mediate melanization via the prophenoloxidase (PPO)-activating cascade. In this study, cDNA encoding a 53-kDa βGRP (LmβGRP) was cloned from Locusta migratoria manilensis. LmβGRP mRNA shown to be constitutively expressed specifically in hemocytes and was highly upregulated following fungal infection. LmβGRP-silenced (LmβGRP-RNAi) mutant locusts exhibited significantly reduced survival rate following fungal infection (Metarhizium acridum) compared with the wild-type. Furthermore, LmβGRP-RNAi mutants exhibited abnormally loose stools indicative of a gut defect. 16S rRNA gene analysis detected the opportunistic pathogenic bacterium, Vibrio vulnificus in LmβGRP mutant but not wild-type locusts, suggesting changes in the composition of gut bacterial communities. These results indicate that LmβGRP is essential to gut immunity in L. migratoria manilensis.

  10. AsrR is an oxidative stress sensing regulator modulating Enterococcus faecium opportunistic traits, antimicrobial resistance, and pathogenicity.

    PubMed

    Lebreton, François; van Schaik, Willem; Sanguinetti, Maurizio; Posteraro, Brunella; Torelli, Riccardo; Le Bras, Florian; Verneuil, Nicolas; Zhang, Xinglin; Giard, Jean-Christophe; Dhalluin, Anne; Willems, Rob J L; Leclercq, Roland; Cattoir, Vincent

    2012-01-01

    Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial resistance and

  11. AsrR Is an Oxidative Stress Sensing Regulator Modulating Enterococcus faecium Opportunistic Traits, Antimicrobial Resistance, and Pathogenicity

    PubMed Central

    Lebreton, François; van Schaik, Willem; Sanguinetti, Maurizio; Posteraro, Brunella; Torelli, Riccardo; Le Bras, Florian; Verneuil, Nicolas; Zhang, Xinglin; Giard, Jean-Christophe; Dhalluin, Anne; Willems, Rob J. L.; Leclercq, Roland; Cattoir, Vincent

    2012-01-01

    Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial resistance and

  12. High Rates of Homologous Recombination in the Mite Endosymbiont and Opportunistic Human Pathogen Orientia tsutsugamushi

    PubMed Central

    Sonthayanon, Piengchan; Peacock, Sharon J.; Chierakul, Wirongrong; Wuthiekanun, Vanaporn; Blacksell, Stuart D.; Holden, Mathew T. G.; Bentley, Stephen D.; Feil, Edward J.; Day, Nicholas P. J.

    2010-01-01

    Orientia tsutsugamushi is an intracellular α-proteobacterium which resides in trombiculid mites, and is the causative agent of scrub typhus in East Asia. The genome sequence of this species has revealed an unprecedented number of repeat sequences, most notably of the genes encoding the conjugative properties of a type IV secretion system (T4SS). Although this observation is consistent with frequent intragenomic recombination, the extent of homologous recombination (gene conversion) in this species is unknown. To address this question, and to provide a protocol for the epidemiological surveillance of this important pathogen, we have developed a multilocus sequence typing (MLST) scheme based on 7 housekeeping genes (gpsA, mdh, nrdB, nuoF, ppdK, sucD, sucB). We applied this scheme to the two published genomes, and to DNA extracted from blood taken from 84 Thai scrub typhus patients, from 20 cultured Thai patient isolates, 1 Australian patient sample, and from 3 cultured type strains. These data demonstrated that the O. tsutsugamushi population was both highly diverse [Simpson's index (95% CI) = 0.95 (0.92–0.98)], and highly recombinogenic. These results are surprising given the intracellular life-style of this species, but are broadly consistent with results obtained for Wolbachia, which is an α-proteobacterial reproductive parasite of arthropods. We also compared the MLST data with ompA sequence data and noted low levels of consistency and much higher discrimination by MLST. Finally, twenty-five percent of patients in this study were simultaneously infected with multiple sequence types, suggesting multiple infection caused by either multiple mite bites, or multiple strains co-existing within individual mites. PMID:20651929

  13. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen.

    PubMed

    Strope, Pooja K; Skelly, Daniel A; Kozmin, Stanislav G; Mahadevan, Gayathri; Stone, Eric A; Magwene, Paul M; Dietrich, Fred S; McCusker, John H

    2015-05-01

    Saccharomyces cerevisiae, a well-established model for species as diverse as humans and pathogenic fungi, is more recently a model for population and quantitative genetics. S. cerevisiae is found in multiple environments-one of which is the human body-as an opportunistic pathogen. To aid in the understanding of the S. cerevisiae population and quantitative genetics, as well as its emergence as an opportunistic pathogen, we sequenced, de novo assembled, and extensively manually edited and annotated the genomes of 93 S. cerevisiae strains from multiple geographic and environmental origins, including many clinical origin strains. These 93 S. cerevisiae strains, the genomes of which are near-reference quality, together with seven previously sequenced strains, constitute a novel genetic resource, the "100-genomes" strains. Our sequencing coverage, high-quality assemblies, and annotation provide unprecedented opportunities for detailed interrogation of complex genomic loci, examples of which we demonstrate. We found most phenotypic variation to be quantitative and identified population, genotype, and phenotype associations. Importantly, we identified clinical origin associations. For example, we found that an introgressed PDR5 was present exclusively in clinical origin mosaic group strains; that the mosaic group was significantly enriched for clinical origin strains; and that clinical origin strains were much more copper resistant, suggesting that copper resistance contributes to fitness in the human host. The 100-genomes strains are a novel, multipurpose resource to advance the study of S. cerevisiae population genetics, quantitative genetics, and the emergence of an opportunistic pathogen.

  14. [A sepsis case caused by a rare opportunistic pathogen: Bacillus pumilus].

    PubMed

    Borsa, Barış Ata; Aldağ, Mehmet Ersoy; Tunalı, Birsen; Dinç, Uğur; Güngördü Dalar, Zeynep; Özalp, Veli Cengiz

    2016-07-01

    The high prevalence of Bacillus species in nature and the detection of these bacteria as contaminant in cultures may lead diagnostic dilemma, however they should still be considered as a pathogen particularly in case of repeated positive cultures from patients with risk factors. Bacillus pumilus is a bacteria, though rarely, been reported as the causative agent of various infections such as sepsis, endocarditis, skin infections and food poisoning in human. In this report, a sepsis case in an immunocompetent patient caused by B.pumilus was presented. A 38-year-old female patient was admitted to emergency service of our hospital with the complaints of headache, dizziness and diarrhea. She had not any risk factors except a history of heart valve replacement operation two years ago. In physical examination, she had abdominal retention, high fever and hypotension, together with the high levels of sedimentation rate (ESR) and C-reactive protein (CRP). The patient was hospitalized with the preliminary diagnosis of sepsis. Three sets of blood samples at two different periods were taken for the culture. All blood culture vials had a positive signal at the second day of incubation in BD BACTEC™ 9050 system, therefore subcultures were performed in sheep blood agar, chocolate agar and MacConkey agar, and incubated in aerobic and anaerobic conditions. Beta-haemolytic, gray-colored large colonies were isolated from anaerobic culture at the end of 18-24 hours incubation, and Gram staining from colonies showed gram-positive rods. The isolate was identified as B.pumilus with 99% accuracy rate by using BD Phoenix™ 100 identification system. This result was also confirmed by MALDI-TOF based VITEK® MS system and 16S rRNA sequencing by Illumina MiSeq® platform. Antibiotic susceptibility test performed by BD Phoenix™ 100 system and the isolate was found to be resistant against penicillin, while it was susceptible to vancomycin, erythromycin, clindamycin, levofloxacin, and

  15. Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections.

    PubMed

    Lorenz, Anne; Pawar, Vinay; Häussler, Susanne; Weiss, Siegfried

    2016-11-01

    Pseudomonas aeruginosa is an important opportunistic pathogen that can cause acute respiratory infections in immunocompetent patients or chronic infections in immunocompromised individuals and in patients with cystic fibrosis. When acquiring the chronic infection state, bacteria are encapsulated within biofilm structures enabling them to withstand diverse environmental assaults, including immune reactions and antimicrobial therapy. Understanding the molecular interactions within the bacteria, as well as with the host or other bacteria, is essential for developing innovative treatment strategies. Such knowledge might be accumulated in vitro. However, it is ultimately necessary to confirm these findings in vivo. In the present Review, we describe state-of-the-art in vivo models that allow studying P. aeruginosa infections in molecular detail. The portrayed mammalian models exclusively focus on respiratory infections. The data obtained by alternative animal models which lack lung tissue, often provide molecular insights that are easily transferable to mammals. Importantly, these surrogate in vivo systems reveal complex molecular interactions of P. aeruginosa with the host. Herein, we also provide a critical assessment of the advantages and disadvantages of such models.

  16. Effect of temperature on the shift of Pseudomonas fluorescens from an environmental microorganism to a potential human pathogen.

    PubMed

    Donnarumma, G; Buommino, E; Fusco, A; Paoletti, I; Auricchio, L; Tufano, M A

    2010-01-01

    Pseudomonas fluorescens is a Gram-negative bacterium generally considered of scarce clinical significance. However, in the last few years, the isolation of P. fluorescens as the causative agent of nosocomial infections has rapidly increased. P. fluorescens is a psychrophile microorganism which grows at an optimal temperature of 25-30 degrees Celcius. In spite of this constraint, it has recently been reported that the human physiological temperature does not appear to be a barrier for this microorganism. In this study we examined the ability of P. fluorescens, grown at 28 degrees C or at 37 degrees C, to adhere to cultured human A549 pulmonary cells and to form biofilm. The ability of P. fluorescens to induce expression of proinflammatory cytokines, beta-defensin 2 and the intercellular adhesion molecule-1 was also investigated. Our results clearly indicate that inflammatory mediators are induced when the microorganism is grown at a lower temperature, while biofilm is formed only at 37 degrees C. The results presented are consistent with previous reports indicating P. fluorescens as an opportunistic pathogen and underscore the urgent need for further studies to better characterize the virulence of this microorganism.

  17. Pseudomonas spp. diversity is negatively associated with suppression of the wheat take-all pathogen

    PubMed Central

    Mehrabi, Zia; McMillan, Vanessa E.; Clark, Ian M.; Canning, Gail; Hammond-Kosack, Kim E.; Preston, Gail; Hirsch, Penny R.; Mauchline, Tim H.

    2016-01-01

    Biodiversity and ecosystem functioning research typically shows positive diversity- productivity relationships. However, local increases in species richness can increase competition within trophic levels, reducing the efficacy of intertrophic level population control. Pseudomonas spp. are a dominant group of soil bacteria that play key roles in plant growth promotion and control of crop fungal pathogens. Here we show that Pseudomonas spp. richness is positively correlated with take-all disease in wheat and with yield losses of ~3 t/ha in the field. We modeled the interactions between Pseudomonas and the take-all pathogen in abstract experimental microcosms, and show that increased bacterial genotypic richness escalates bacterial antagonism and decreases the ability of the bacterial community to inhibit growth of the take-all pathogen. Future work is required to determine the generality of these negative biodiversity effects on different media and directly at infection zones on root surfaces. However, the increase in competition between bacteria at high genotypic richness and the potential loss of fungal biocontrol activity highlights an important mechanism to explain the negative Pseudomonas diversity-wheat yield relationship we observed in the field. Together our results suggest that the effect of biodiversity on ecosystem functioning can depend on both the function and trophic level of interest. PMID:27549739

  18. Identification of virulence associated loci in the emerging broad host range plant pathogen Pseudomonas fuscovaginae.

    PubMed

    Patel, Hitendra Kumar; Matiuzzo, Maura; Bertani, Iris; Bigirimana, Vincent de Paul; Ash, Gavin J; Höfte, Monica; Venturi, Vittorio

    2014-11-14

    Pseudomonas fuscovaginae (Pfv) is an emerging plant pathogen of rice and also of other gramineae plants. It causes sheath brown rot disease in rice with symptoms that are characterized by brown lesions on the flag leaf sheath, grain discoloration and sterility. It was first isolated as a high altitude pathogen in Japan and has since been reported in several countries throughout the world. Pfv is a broad host range pathogen and very little is known about its virulence mechanisms. An in planta screen of 1000 random independent Tn5 genomic mutants resulted in the isolation of nine mutants which showed altered virulence. Some of these isolates are mutated for functions which are known to be virulence associated factors in other phytopathogenic bacteria (eg. pil gene, phytotoxins and T6SS) and others might represent novel virulence loci. Being an emerging pathogen worldwide, the broad host range pathogen Pfv has not yet been studied for its virulence functions. The roles of the nine loci identified in the in planta screen are discussed in relation to pathogenicity of Pfv. In summary, this article reports a first study on the virulence of this pathogen involving in planta screening studies and suggests the presence of several virulence features with known and novel functions in the Pseudomonas group of bacteria.

  19. Deciphering host resistance and pathogen virulence: the Arabidopsis/Pseudomonas interaction as a model.

    PubMed

    Quirino, Betania F; Bent, Andrew F

    2003-11-01

    SUMMARY The last decade has witnessed steady progress in deciphering the molecular basis of plant disease resistance and pathogen virulence. Although contributions have been made using many different plant and pathogen species, studies of the interactions between Arabidopsis thaliana and Pseudomonas syringae have yielded a particularly significant body of information. The present review focuses on recent findings regarding R gene products and the guard hypothesis, RAR1/SGT1 and other examples where protein processing activity is implicated in disease resistance or susceptibility, the use of microarray expression profiling to generate information and experimental leads, and important molecular- and genome-level discoveries regarding P. syringae effectors that mediate bacterial virulence. The development of the Arabidopsis-Pseudomonas model system is also reviewed briefly, and we close with a discussion of characteristics to consider when selecting other pathosystems as experimentally tractable models for future research.

  20. Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains.

    PubMed

    Rufián, José S; Macho, Alberto P; Corry, David S; Mansfield, John W; Ruiz-Albert, Javier; Arnold, Dawn L; Beuzón, Carmen R

    2017-01-24

    Recent advances in genomics and single-cell analysis have demonstrated the extraordinary complexity reached by microbial populations within their hosts. Communities range from complex multispecies groups to homogeneous populations differentiating into lineages through genetic or non-genetic mechanisms. Diversity within bacterial populations is recognized as a key driver of the evolution of animal pathogens. In plants, however, little is known about how interactions between different pathogenic and non-pathogenic variants within the host impact on defence responses, or how the presence within a mixture may affect the development or the fate of each variant. Using confocal fluorescence microscopy, we analysed the colonization of the plant apoplast by individual virulence variants of Pseudomonas syringae within mixed populations. We found that non-pathogenic variants can proliferate and even spread beyond the inoculated area to neighbouring tissues when in close proximity to pathogenic bacteria. The high bacterial concentrations reached at natural entry points promote such interactions during the infection process. We also found that a diversity of interactions take place at a cellular level between virulent and avirulent variants, ranging from dominant negative effects on proliferation of virulent bacteria to in trans suppression of defences triggered by avirulent bacteria. Our results illustrate the spatial dynamics and complexity of the interactions found within mixed infections, and their potential impact on pathogen evolution. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  1. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells*

    PubMed Central

    Wittmann, Alexandra; Lamprinaki, Dimitra; Bowles, Kristian M.; Katzenellenbogen, Ewa; Knirel, Yuriy A.; Whitfield, Chris; Nishimura, Takashi; Matsumoto, Naoki; Yamamoto, Kazuo; Iwakura, Yoichiro; Saijo, Shinobu; Kawasaki, Norihito

    2016-01-01

    LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2. PMID:27358401

  2. Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity

    PubMed Central

    Recinos, David A.; Sekedat, Matthew D.; Hernandez, Adriana; Cohen, Taylor Sitarik; Sakhtah, Hassan; Prince, Alice S.; Price-Whelan, Alexa; Dietrich, Lars E. P.

    2012-01-01

    Evolutionary biologists have postulated that several fitness advantages may be conferred by the maintenance of duplicate genes, including environmental adaptation resulting from differential regulation. We examined the expression and physiological contributions of two redundant operons in the adaptable bacterium Pseudomonas aeruginosa PA14. These operons, phzA1-G1 (phz1) and phzA2-G2 (phz2), encode nearly identical sets of proteins that catalyze the synthesis of phenazine-1-carboxylic acid, the precursor for several phenazine derivatives. Phenazines perform diverse roles in P. aeruginosa physiology and act as virulence factors during opportunistic infections of plant and animal hosts. Although reports have indicated that phz1 is regulated by the Pseudomonas quinolone signal, factors controlling phz2 expression have not been identified, and the relative contributions of these redundant operons to phenazine biosynthesis have not been evaluated. We found that in liquid cultures, phz1 was expressed at higher levels than phz2, although phz2 showed a greater contribution to phenazine production. In colony biofilms, phz2 was expressed at high levels, whereas phz1 expression was not detectable, and phz2 was responsible for virtually all phenazine production. Analysis of mutants defective in quinolone signal synthesis revealed a critical role for 4-hydroxy-2-heptylquinoline in phz2 induction. Finally, deletion of phz2, but not of phz1, decreased lung colonization in a murine model of infection. These results suggest that differential regulation of the redundant phz operons allows P. aeruginosa to adapt to diverse environments. PMID:23129634

  3. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia.

    PubMed

    Liu, Yiying; Rzeszutek, Elzbieta; van der Voort, Menno; Wu, Cheng-Hsuan; Thoen, Even; Skaar, Ida; Bulone, Vincent; Dorrestein, Pieter C; Raaijmakers, Jos M; de Bruijn, Irene

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture.

  4. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia

    PubMed Central

    Liu, Yiying; Rzeszutek, Elzbieta; van der Voort, Menno; Wu, Cheng-Hsuan; Thoen, Even; Skaar, Ida; Bulone, Vincent; Dorrestein, Pieter C.; Raaijmakers, Jos M.; de Bruijn, Irene

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture. PMID:26317985

  5. Tomato response traits to pathogenic Pseudomonas species: Does nitrogen limitation matter?

    PubMed

    Royer, Mathilde; Larbat, Romain; Le Bot, Jacques; Adamowicz, Stéphane; Nicot, Philippe C; Robin, Christophe

    2016-03-01

    Induced chemical defence is a cost-efficient protective strategy, whereby plants induce the biosynthesis of defence-related compounds only in the case of pest attack. Plant responses that are pathogen specific lower the cost of defence, compared to constitutive defence. As nitrogen availability (N) in the root zone is one of the levers mediating the concentration of defence-related compounds in plants, we investigated its influence on response traits of tomato to two pathogenic bacteria, growing plants hydroponically at low or high N supply. Using two sets of plants for each level of N supply, we inoculated one leaf of one set of plants with Pseudomonas syringae, and inoculated the stem of other set of plants with Pseudomonas corrugata. Tomato response traits (growth, metabolites) were investigated one and twelve days after inoculation. In infected areas, P. syringae decreased carbohydrate concentrations whereas they were increased by P. corrugata. P. syringae mediated a redistribution of carbon within the phenylpropanoid pathway, regardless of N supply: phenolamides, especially caffeoylputrescine, were stimulated, impairing defence-related compounds such as chlorogenic acid. Inoculation of P. syringae produced strong and sustainable systemic responses. By contrast, inoculation of P. corrugata induced local and transient responses. The effects of pathogens on plant growth and leaf gas exchanges appeared to be independant of N supply. This work shows that the same genus of plant pathogens with different infection strategies can mediate contrasted plant responses.

  6. Synthesis and electrochemical detection of a thiazolyl-indole natural product isolated from the nosocomial pathogen Pseudomonas aeruginosa.

    PubMed

    Buzid, Alyah; Muimhneacháin, Eoin Ó; Reen, F Jerry; Hayes, Phyllis E; Pardo, Leticia M; Shang, Fengjun; O'Gara, Fergal; Sperry, Jonathan; Luong, John H T; Glennon, Jeremy D; McGlacken, Gerard P

    2016-09-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, capable of surviving in a broad range of natural environments and quickly acquiring resistance. It is associated with hospital-acquired infections, particularly in patients with compromised immunity, and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa is also of nosocomial importance on dairy farms and veterinary hospitals, where it is a key morbidity factor in bovine mastitis. P. aeruginosa uses a cell-cell communication system consisting of signalling molecules to coordinate bacterial secondary metabolites, biofilm formation, and virulence. Simple and sensitive methods for the detection of biomolecules as indicators of P. aeruginosa infection would be of great clinical importance. Here, we report the synthesis of the P. aeruginosa natural product, barakacin, which was recently isolated from the bovine ruminal strain ZIO. A simple and sensitive electrochemical method was used for barakacin detection using a boron-doped diamond (BDD) and glassy carbon (GC) electrodes, based on cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The influence of electrolyte pH on the peak potential and peak currents was also investigated. At pH 2.0, the peak current was linearly dependent on barakacin concentration (in the range used, 1-10 μM), with correlation coefficients greater than 0.98 on both electrodes. The detection limit (S/N = 3) on the BDD electrode was 100-fold lower than that obtained on the GC electrode. The optimized method using the BDD electrode was extended to bovine (cow feces) and human (sputum of a CF patient) samples. Spiked barakacin was easily detected in these matrices at a limit of 0.5 and 0.05 μM, respectively. Graphical abstract Electrochemical detection of barakacin.

  7. Genetic background of host-pathogen interaction between Cucumis sativus L. and Pseudomonas syringae pv. lachrymans.

    PubMed

    Olczak-Woltman, H; Schollenberger, M; Niemirowicz-Szczytt, K

    2009-01-01

    The interplay of plant resistance mechanisms and bacterial pathogenicity is very complex. This applies also to the interaction that takes place between the pathogen Pseudomonas syringae pv. lachrymans (Smith et Bryan) and the cucumber (Cucumis sativus L.) as its host plant. Research on P. syringae pv. lachrymans has led to the discovery of specific factors produced during pathogenesis, i.e. toxins or enzymes. Similarly, studies on cucumber have identified the specific types of plant resistance expressed, namely Systemic Acquired Resistance (SAR) or Induced Systemic Resistance (ISR). This paper presents a summary of the current state of knowledge about this particular host-pathogen interaction, with reference to general information about interactions of P. syringae pathovars with host plants.

  8. The conserved hypothetical protein PSPTO_3957 is essential for virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000

    USDA-ARS?s Scientific Manuscript database

    The plant pathogen Pseudomonas syringae accounts for substantial crop losses and is considered an important agricultural issue. Although many genes involved in interactions of this pathogen with hosts have been identified and characterized, little is known about processes involving bacterial metabol...

  9. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens

    PubMed Central

    Monteil, Caroline L.; Yahara, Koji; Studholme, David J.; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E.

    2016-01-01

    Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae. PMID:28348830

  10. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens.

    PubMed

    Monteil, Caroline L; Yahara, Koji; Studholme, David J; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E; Vinatzer, Boris A; Sheppard, Samuel K

    2016-10-01

    Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae.

  11. USE of pseudomonas stutzeri and candida utilis in the improvement of the conditions of artemia culture and protection against pathogens

    PubMed Central

    Abdelkarim, Mahdhi; Kamel, Chaieb; Fathi, Kammoun; Amina, Bakhrouf

    2010-01-01

    To evaluate the effect of two bacterial strains isolated from Artemia cysts and yeast (Candida utilis) on the survival, growth and total biomass production of its larvae, challenge tests were performed with Candida utilis, Pseudomonas stutzeri and Pasteurella haemolityca. In addition, a pathogenic strain of Vibrio alginolyticus was tested for comparative purposes. Pseudomonas stutzeri and Candida utilis have no impact on survival, but enhance growth and total biomass production of the larvae. However, we noted that Pasteurella haemolityca affect negatively Artemia larvae. The adhesion and antagonism assay demonstrates that Candida utilis and Pseudomonas stutzeri are fairly adherent and play an important role in the enhancement of the protection of Artemia culture against pathogens. On the basis of these results, it’s suggested that it’s possible to use Candida utilis and Pseudomonas stutzeri, potential candidates, as probiotic for the culture of Artemia larvae. PMID:24031470

  12. SufA of the opportunistic pathogen finegoldia magna modulates actions of the antibacterial chemokine MIG/CXCL9, promoting bacterial survival during epithelial inflammation.

    PubMed

    Karlsson, Christofer; Eliasson, Mette; Olin, Anders I; Mörgelin, Matthias; Karlsson, Anna; Malmsten, Martin; Egesten, Arne; Frick, Inga-Maria

    2009-10-23

    The anaerobic bacterium Finegoldia magna is part of the human commensal microbiota, but is also an important opportunistic pathogen. This bacterium expresses a subtilisin-like serine proteinase, SufA, which partially degrade the antibacterial chemokine MIG/CXCL9. Here, we show that MIG/CXCL9 is produced by human keratinocytes in response to inflammatory stimuli. In contrast to the virulent human pathogen Streptococcus pyogenes, the presence of F. magna had no enhancing effect on the MIG/CXCL9 expression by keratinocytes, suggesting poor detection of the latter by pathogen-recognition receptors. When MIG/CXCL9 was exposed to SufA-expressing F. magna, the molecule was processed into several smaller fragments. Analysis by mass spectrometry showed that SufA cleaves MIG/CXCL9 at several sites in the COOH-terminal region of the molecule. At equimolar concentrations, SufA-generated MIG/CXCL9 fragments were not bactericidal against F. magna, but retained their ability to kill S. pyogenes. Moreover, the SufA-generated MIG/CXCL9 fragments were capable of activating the angiostasis-mediating CXCR3 receptor, which is expressed on endothelial cells, in an order of magnitude similar to that of intact MIG/CXCL9. F. magna expresses a surface protein called FAF that is released from the bacterial surface by SufA. Soluble FAF was found to bind and inactivate the antibacterial activity of MIG/CXCL9, thereby further potentially promoting the survival of F. magna. The findings suggest that SufA modulation of the inflammatory response could be a mechanism playing an important role in creating an ecologic niche for F. magna, decreasing antibacterial activity and suppressing angiogenesis, thus providing advantage in survival for this anaerobic opportunist compared with competing pathogens during inflammation.

  13. SufA of the Opportunistic Pathogen Finegoldia magna Modulates Actions of the Antibacterial Chemokine MIG/CXCL9, Promoting Bacterial Survival during Epithelial Inflammation*

    PubMed Central

    Karlsson, Christofer; Eliasson, Mette; Olin, Anders I.; Mörgelin, Matthias; Karlsson, Anna; Malmsten, Martin; Egesten, Arne; Frick, Inga-Maria

    2009-01-01

    The anaerobic bacterium Finegoldia magna is part of the human commensal microbiota, but is also an important opportunistic pathogen. This bacterium expresses a subtilisin-like serine proteinase, SufA, which partially degrade the antibacterial chemokine MIG/CXCL9. Here, we show that MIG/CXCL9 is produced by human keratinocytes in response to inflammatory stimuli. In contrast to the virulent human pathogen Streptococcus pyogenes, the presence of F. magna had no enhancing effect on the MIG/CXCL9 expression by keratinocytes, suggesting poor detection of the latter by pathogen-recognition receptors. When MIG/CXCL9 was exposed to SufA-expressing F. magna, the molecule was processed into several smaller fragments. Analysis by mass spectrometry showed that SufA cleaves MIG/CXCL9 at several sites in the COOH-terminal region of the molecule. At equimolar concentrations, SufA-generated MIG/CXCL9 fragments were not bactericidal against F. magna, but retained their ability to kill S. pyogenes. Moreover, the SufA-generated MIG/CXCL9 fragments were capable of activating the angiostasis-mediating CXCR3 receptor, which is expressed on endothelial cells, in an order of magnitude similar to that of intact MIG/CXCL9. F. magna expresses a surface protein called FAF that is released from the bacterial surface by SufA. Soluble FAF was found to bind and inactivate the antibacterial activity of MIG/CXCL9, thereby further potentially promoting the survival of F. magna. The findings suggest that SufA modulation of the inflammatory response could be a mechanism playing an important role in creating an ecologic niche for F. magna, decreasing antibacterial activity and suppressing angiogenesis, thus providing advantage in survival for this anaerobic opportunist compared with competing pathogens during inflammation. PMID:19628464

  14. Nonagricultural reservoirs contribute to emergence and evolution of Pseudomonas syringae crop pathogens.

    PubMed

    Monteil, Caroline L; Cai, Rongman; Liu, Haijie; Llontop, Marco E Mechan; Leman, Scotland; Studholme, David J; Morris, Cindy E; Vinatzer, Boris A

    2013-08-01

    While the existence of environmental reservoirs of human pathogens is well established, less is known about the role of nonagricultural environments in emergence, evolution, and spread of crop pathogens. Here, we analyzed phylogeny, virulence genes, host range, and aggressiveness of Pseudomonas syringae strains closely related to the tomato pathogen P. syringae pv. tomato (Pto), including strains isolated from snowpack and streams. The population of Pto relatives in nonagricultural environments was estimated to be large and its diversity to be higher than that of the population of Pto and its relatives on crops. Ancestors of environmental strains, Pto, and other genetically monomorphic crop pathogens were inferred to have frequently recombined, suggesting an epidemic population structure for P. syringae. Some environmental strains have repertoires of type III-secreted effectors very similar to Pto, are almost as aggressive on tomato as Pto, but have a wider host range than typical Pto strains. We conclude that crop pathogens may have evolved through a small number of evolutionary events from a population of less aggressive ancestors with a wider host range present in nonagricultural environments.

  15. Opportunistic Infections

    MedlinePlus

    ... Infections Opportunistic Infections and Their Relationship to HIV/AIDS People with healthy immune systems can be exposed ... Disease Dementia Hospitalization & Palliative Care Related Topics on AIDS.gov Signs and Symptoms Immune System 101 Stages ...

  16. The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity

    PubMed Central

    Gruber, Jordon D.; Chen, Wei; Parnham, Stuart; Beauchesne, Kevin; Moeller, Peter; Flume, Patrick A.

    2016-01-01

    Bacteria synchronize group behaviors using quorum sensing, which is advantageous during an infection to thwart immune cell attack and resist deleterious changes in the environment. In Pseudomonas aeruginosa, the Pseudomonas quinolone signal (Pqs) quorum-sensing system is an important component of an interconnected intercellular communication network. Two alkylquinolones, 2-heptyl-4-quinolone (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), activate transcriptional regulator PqsR to promote the production of quinolone signals and virulence factors. Our work focused on the most abundant quinolone produced from the Pqs system, 2,4-dihydroxyquinoline (DHQ), which was shown previously to sustain pyocyanin production and antifungal activity of P. aeruginosa. However, little is known about how DHQ affects P. aeruginosa pathogenicity. Using C. elegans as a model for P. aeruginosa infection, we found pqs mutants only able to produce DHQ maintained virulence towards the nematodes similar to wild-type. In addition, DHQ-only producing mutants displayed increased colonization of C. elegans and virulence factor production compared to a quinolone-null strain. DHQ also bound to PqsR and activated the transcription of pqs operon. More importantly, high extracellular concentration of DHQ was maintained in both aerobic and anaerobic growth. High levels of DHQ were also detected in the sputum samples of cystic fibrosis patients. Taken together, our findings suggest DHQ may play an important role in sustaining P. aeruginosa pathogenicity under oxygen-limiting conditions. PMID:26788419

  17. Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India

    PubMed Central

    Banerjee, S.; Batabyal, K.; Joardar, S. N.; Isore, D. P.; Dey, S.; Samanta, I.; Samanta, T. K.; Murmu, S.

    2017-01-01

    Aim: Subclinical mastitis in bovines is mainly responsible for the huge economic loss of the dairy farmers, of which Pseudomonas aeruginosa is one of the causative agents. The study was aimed at a screening of suspected milk samples from different cattle farms of West Bengal for detection and confirmation of P. aeruginosa strains followed by their characterization. Materials and Methods: Around 422 milk samples were screened from different dairy farms primarily by on-spot bromothymol blue (BTB) test and then in the lab by somatic cell counts (SCC) to finally consider 352 samples for detection of P. aeruginosa. Selective isolation and confirmation of the isolates were done using selective media, viz., cetrimide and Pseudomonas agar followed by confirmation by fluorescent technique. Molecular characterization of the strains was done by polymerase chain reaction for the presence of toxA (enterotoxin A, 352 bp) and exoS (exoenzyme S, 504 bp) genes. Results: Approximately, 371 (87.9%) samples were positive in on-spot BTB test among which 352 (94.8%) samples revealed high SCC values (more than 3 lakh cells/ml) showing infection when screened. Among these, 23 (6.5%) samples yielded typical Pseudomonas sp. isolates out of which only 19 (5.4%) isolates were confirmed to be P. aeruginosa which showed characteristic blue-green fluorescence due to the presence of pigment pyoverdin under ultraviolet light. Out of these 19 isolates, 11 isolates were positive for toxA, 6 isolates for exoS, and 2 for both these pathogenic genes. Conclusion: Approximately, 5.4% cases of bovine subclinical mastitis infections in South Bengal were associated with P. aeruginosa which possess pathogenic genes such as toxA (63.2%) and exoS (36.8%). PMID:28831214

  18. Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India.

    PubMed

    Banerjee, S; Batabyal, K; Joardar, S N; Isore, D P; Dey, S; Samanta, I; Samanta, T K; Murmu, S

    2017-07-01

    Subclinical mastitis in bovines is mainly responsible for the huge economic loss of the dairy farmers, of which Pseudomonas aeruginosa is one of the causative agents. The study was aimed at a screening of suspected milk samples from different cattle farms of West Bengal for detection and confirmation of P. aeruginosa strains followed by their characterization. Around 422 milk samples were screened from different dairy farms primarily by on-spot bromothymol blue (BTB) test and then in the lab by somatic cell counts (SCC) to finally consider 352 samples for detection of P. aeruginosa. Selective isolation and confirmation of the isolates were done using selective media, viz., cetrimide and Pseudomonas agar followed by confirmation by fluorescent technique. Molecular characterization of the strains was done by polymerase chain reaction for the presence of toxA (enterotoxin A, 352 bp) and exoS (exoenzyme S, 504 bp) genes. Approximately, 371 (87.9%) samples were positive in on-spot BTB test among which 352 (94.8%) samples revealed high SCC values (more than 3 lakh cells/ml) showing infection when screened. Among these, 23 (6.5%) samples yielded typical Pseudomonas sp. isolates out of which only 19 (5.4%) isolates were confirmed to be P. aeruginosa which showed characteristic blue-green fluorescence due to the presence of pigment pyoverdin under ultraviolet light. Out of these 19 isolates, 11 isolates were positive for toxA, 6 isolates for exoS, and 2 for both these pathogenic genes. Approximately, 5.4% cases of bovine subclinical mastitis infections in South Bengal were associated with P. aeruginosa which possess pathogenic genes such as toxA (63.2%) and exoS (36.8%).

  19. Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex.

    PubMed

    Dryahina, Kseniya; Sovová, Kristýna; Nemec, Alexandr; Španěl, Patrik

    2016-08-10

    As a contribution to the continuing search for breath biomarkers of lung and airways infection in patients with cystic fibrosis, CF, we have analysed the volatile metabolites released in vitro by Pseudomonas aeruginosa and other bacteria involved in respiratory infections in these patients, i.e. those belonging to the Burkholderia cepacia complex, Staphylococcus aureus or Stenotrophomonas maltophilia. These opportunistic pathogens are generally harmless to healthy people but they may cause serious infections in patients with severe underlying disease or impaired immunity such as CF patients. Volatile organic compounds emitted from the cultures of strains belonging to the above-mentioned four taxa were analysed by selected ion flow tube mass spectrometry. In order to minimize the effect of differences in media composition all strains were cultured in three different liquid media. Multivariate statistical analysis reveals that the four taxa can be well discriminated by the differences in the headspace VOC concentration profiles. The compounds that should be targeted in breath as potential biomarkers of airway infection were identified for each of these taxa of CF pathogens.

  20. Pneumocysterol [(24Z)-ethylidenelanost-8-en-3beta-ol], a rare sterol detected in the opportunistic pathogen Pneumocystis carinii hominis: structural identity and chemical synthesis.

    PubMed

    Kaneshiro, E S; Amit, Z; Swonger, M M; Kreishman, G P; Brooks, E E; Kreishman, M; Jayasimhulu, K; Parish, E J; Sun, H; Kizito, S A; Beach, D H

    1999-01-05

    Pneumocystis carinii pneumonia (PcP) remains among the most prevalent opportunistic infections among AIDS patients. Currently, drugs used clinically for deep mycosis act by binding ergosterol or disrupting its biosynthesis. Although classified as a fungus, P. carinii lacks ergosterol. Instead, the pathogen synthesizes a number of distinct Delta7, 24-alkylsterols, despite the abundance of cholesterol, which it can scavenge from the lung alveolus. Thus, the pathogen-specific sterols appear vital for organism survival and proliferation. In the present study, high concentrations of a C32 sterol were found in human-derived P. carinii hominis. The definitive structural identities of two C-24 alkylated lanosterol compounds, previously not reported for rat-derived P. carinii carinii, were determined by using GLC, MS, and NMR spectroscopy together with the chemical syntheses of authentic standards. The C31 and C32 sterols were identified as euphorbol (24-methylenelanost-8-en-3beta-ol) and pneumocysterol [(24Z)-ethylidenelanost-8-en-3beta-ol], respectively. The identification of these and other 24-alkylsterols in P. carinii hominis suggests that (i) sterol C-24 methyltransferase activities are extraordinarily high in this organism, (ii) 24-alkylsterols are important components of the pathogen's membranes, because the addition of these side groups onto the sterol side chain requires substantial ATP equivalents, and (iii) the inefficacy of azole drugs against P. carinii can be explained by the ability of this organism to form 24-alkysterols before demethylation of the lanosterol nucleus. Because mammals cannot form 24-alkylsterols, their biosyntheses in P. carinii are attractive targets for the development of chemotherapeutic strategies against this opportunistic infection.

  1. Maladaptation in wild populations of the generalist plant pathogen Pseudomonas syringae

    PubMed Central

    Kniskern, Joel M.; Barrett, Luke G.; Bergelson, Joy

    2010-01-01

    Multi-host pathogens occur widely on both natural and agriculturally managed hosts. Despite the importance of such generalists, evolutionary studies of host-pathogen interactions have largely focused on tightly coupled interactions between species pairs. We characterized resistance in a collection of Arabidopsis thaliana hosts, including 24 accessions collected from the Midwest USA and 24 from around the world, and patterns of virulence in a collection of Pseudomonas syringae strains, including 24 strains collected from wild Midwest populations of A. thaliana (residents) and 18 from an array of cultivated species (non-residents). All of the non-resident strains and half of the resident strains elicited a resistance response on one or more A. thaliana accessions. The resident strains that failed to elicit any resistance response possessed an alternative type III secretion system (T3SS) that is unable to deliver effectors into plant host cells; as a result, these seemingly non-pathogenic strains are incapable of engaging in gene for gene interactions with A. thaliana. The remaining resident strains triggered greater resistance compared to non-resident strains, consistent with maladaptation of the resident bacterial population. We weigh the plausibility of two explanations: general maladaptation of pathogen strains and a more novel hypothesis whereby community level epidemiological dynamics result in adaptive dynamics favoring ephemeral hosts like A. thaliana. PMID:21044058

  2. Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis.

    PubMed

    Alegre, Isabel; Viñas, Inmaculada; Usall, Josep; Teixidó, Neus; Figge, Marian J; Abadias, Maribel

    2013-06-01

    The consumption of fresh-cut fruit has substantially risen over the last few years, leading to an increase in the number of outbreaks associated with fruit. Moreover, consumers are currently demanding wholesome, fresh-like, safe foods without added chemicals. As a response, the aim of this study was to determine if the naturally occurring microorganisms on fruit are "competitive with" or "antagonistic to" potentially encountered pathogens. Of the 97 and 107 isolates tested by co-inoculation with Escherichia coli O157:H7, Salmonella and Listeria innocua on fresh-cut apple and peach, respectively, and stored at 20 °C, seven showed a strong antagonistic capacity (more than 1-log unit reduction). One of the isolates, CPA-7, achieved the best reduction values (from 2.8 to 5.9-log units) and was the only isolate able to inhibit E. coli O157:H7 at refrigeration temperatures on both fruits. Therefore, CPA-7 was selected for further assays. Dose-response assays showed that CPA-7 should be present in at least the same amount as the pathogen to adequately reduce the numbers of the pathogen. From the results obtained in in vitro assays, competition seemed to be CPA-7's mode of action against E. coli O157:H7. The CPA-7 strain was identified as Pseudomonas graminis. Thus, the results support the potential use of CPA-7 as a bioprotective agent against foodborne pathogens in minimally processed fruit.

  3. Strains of Pseudomonas syringae pv. syringae from pea are phylogenetically and pathogenically diverse.

    PubMed

    Martín-Sanz, Alberto; de la Vega, Marcelino Pérez; Murillo, Jesús; Caminero, Constantino

    2013-07-01

    Pseudomonas syringae pv. syringae causes extensive yield losses in the pea crop worldwide, although there is little information on its host specialization and its interactions with pea. A collection of 88 putative P. syringae pv. syringae strains (including 39 strains isolated from pea) was characterized by repetitive polymerase chain reaction (rep-PCR), multilocus sequence typing (MLST), and syrB amplification and evaluated for pathogenicity and virulence. rep-PCR data grouped the strains from pea into two groups (1B and 1C) together with strains from other hosts; a third group (1A) was formed exclusively with strains isolated from non-legume species. MLST data included all strains from pea in the genomospecies 1 of P. syringae pathovars defined in previous studies; they were distributed in the same three groups defined by rep-PCR. The inoculations performed in two pea cultivars showed that P. syringae pv. syringae strains from groups 1A and 1C were less virulent than strains from group 1B, suggesting a possible pathogenic specialization in this group. This study shows the existence of genetically and pathogenically distinct P. syringae pv. syringae strain groups from pea, which will be useful for the diagnostic and epidemiology of this pathogen and for disease resistance breeding.

  4. From the root to the stem: interaction between the biocontrol root endophyte Pseudomonas fluorescens PICF7 and the pathogen Pseudomonas savastanoi NCPPB 3335 in olive knots

    PubMed Central

    Maldonado-González, M Mercedes; Prieto, Pilar; Ramos, Cayo; Mercado-Blanco, Jesús

    2013-01-01

    Olive knot disease, caused by Pseudomonas savastanoi pv. savastanoi, is one of the most important biotic constraints for olive cultivation. Pseudomonas fluorescens PICF7, a natural colonizer of olive roots and effective biological control agent (BCA) against Verticillium wilt of olive, was examined as potential BCA against olive knot disease. Bioassays using in vitro-propagated olive plants were carried out to assess whether strain PICF7 controlled knot development either when co-inoculated with the pathogen in stems or when the BCA (in roots) and the pathogen (in stems) were spatially separated. Results showed that PICF7 was able to establish and persist in stem tissues upon artificial inoculation. While PICF7 was not able to suppress disease development, its presence transiently decreased pathogen population size, produced less necrotic tumours, and sharply altered the localization of the pathogen in the hyperplasic tissue, which may pose epidemiological consequences. Confocal laser scanning microscopy combined with fluorescent tagging of bacteria revealed that when PICF7 was absent the pathogen tended to be localized at the knot surface. However, presence of the BCA seemed to confine P. savastanoi at inner regions of the tumours. This approach has also enabled to prove that the pathogen can moved systemically beyond the hypertrophied tissue. PMID:23425069

  5. Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates

    PubMed Central

    Romanchuk, Artur; Chang, Jeff H.; Mukhtar, M. Shahid; Cherkis, Karen; Roach, Jeff; Grant, Sarah R.; Jones, Corbin D.; Dangl, Jeffery L.

    2011-01-01

    Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species. PMID:21799664

  6. Sodium Nitrite-Mediated Killing of the Major Cystic Fibrosis Pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia under Anaerobic Planktonic and Biofilm Conditions▿

    PubMed Central

    Major, Tiffany A.; Panmanee, Warunya; Mortensen, Joel E.; Gray, Larry D.; Hoglen, Niel; Hassett, Daniel J.

    2010-01-01

    A hallmark of airways in patients with cystic fibrosis (CF) is highly refractory, chronic infections by several opportunistic bacterial pathogens. A recent study demonstrated that acidified sodium nitrite (A-NO2−) killed the highly refractory mucoid form of Pseudomonas aeruginosa, a pathogen that significantly compromises lung function in CF patients (S. S. Yoon et al., J. Clin. Invest. 116:436-446, 2006). Therefore, the microbicidal activity of A-NO2− (pH 6.5) against the following three major CF pathogens was assessed: P. aeruginosa (a mucoid, mucA22 mutant and a sequenced nonmucoid strain, PAO1), Staphylococcus aureus USA300 (methicillin resistant), and Burkholderia cepacia, a notoriously antibiotic-resistant organism. Under planktonic, anaerobic conditions, growth of all strains except for P. aeruginosa PAO1 was inhibited by 7.24 mM (512 μg ml−1 NO2−). B. cepacia was particularly sensitive to low concentrations of A-NO2− (1.81 mM) under planktonic conditions. In antibiotic-resistant communities known as biofilms, which are reminiscent of end-stage CF airway disease, A-NO2− killed mucoid P. aeruginosa, S. aureus, and B. cepacia; 1 to 2 logs of cells were killed after a 2-day incubation with a single dose of ∼15 mM A-NO2−. Animal toxicology and phase I human trials indicate that these bactericidal levels of A-NO2− can be easily attained by aerosolization. Thus, in summary, we demonstrate that A-NO2− is very effective at killing these important CF pathogens and could be effective in other infectious settings, particularly under anaerobic conditions where bacterial defenses against the reduction product of A-NO2−, nitric oxide (NO), are dramatically reduced. PMID:20696868

  7. Sodium nitrite-mediated killing of the major cystic fibrosis pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia under anaerobic planktonic and biofilm conditions.

    PubMed

    Major, Tiffany A; Panmanee, Warunya; Mortensen, Joel E; Gray, Larry D; Hoglen, Niel; Hassett, Daniel J

    2010-11-01

    A hallmark of airways in patients with cystic fibrosis (CF) is highly refractory, chronic infections by several opportunistic bacterial pathogens. A recent study demonstrated that acidified sodium nitrite (A-NO(2)(-)) killed the highly refractory mucoid form of Pseudomonas aeruginosa, a pathogen that significantly compromises lung function in CF patients (S. S. Yoon et al., J. Clin. Invest. 116:436-446, 2006). Therefore, the microbicidal activity of A-NO(2)(-) (pH 6.5) against the following three major CF pathogens was assessed: P. aeruginosa (a mucoid, mucA22 mutant and a sequenced nonmucoid strain, PAO1), Staphylococcus aureus USA300 (methicillin resistant), and Burkholderia cepacia, a notoriously antibiotic-resistant organism. Under planktonic, anaerobic conditions, growth of all strains except for P. aeruginosa PAO1 was inhibited by 7.24 mM (512 μg ml(-1) NO(2)(-)). B. cepacia was particularly sensitive to low concentrations of A-NO(2)(-) (1.81 mM) under planktonic conditions. In antibiotic-resistant communities known as biofilms, which are reminiscent of end-stage CF airway disease, A-NO(2)(-) killed mucoid P. aeruginosa, S. aureus, and B. cepacia; 1 to 2 logs of cells were killed after a 2-day incubation with a single dose of ∼15 mM A-NO(2)(-). Animal toxicology and phase I human trials indicate that these bactericidal levels of A-NO(2)(-) can be easily attained by aerosolization. Thus, in summary, we demonstrate that A-NO(2)(-) is very effective at killing these important CF pathogens and could be effective in other infectious settings, particularly under anaerobic conditions where bacterial defenses against the reduction product of A-NO(2)(-), nitric oxide (NO), are dramatically reduced.

  8. Pseudomonas aeruginosa identified as a key pathogen in hospitalised children with aspiration pneumonia and a high aspiration risk.

    PubMed

    Ashkenazi-Hoffnung, Liat; Ari, Anne; Bilavsky, Efraim; Scheuerman, Oded; Amir, Jacob; Prais, Dario

    2016-12-01

    Data on the causative pathogens and optimal empirical therapy of aspiration pneumonia in children are limited. This study sought to describe the bacteriology of aspiration pneumonia in hospitalised children with a high aspiration risk. Respiratory tract specimens were prospectively collected using the induced sputum technique from children with a high aspiration risk who were hospitalised for aspiration pneumonia in a tertiary paediatric medical centre from 2009 to 2014. Clinical, microbiological and treatment data were recorded and analysed for each admission. The cohort comprised 50 children with 235 hospital admissions. Of the 183 respiratory tract cultures performed, 110 were positive for bacteria, with 169 isolates, mostly Gram-negative. The most common Gram-negative pathogen was Pseudomonas aeruginosa. If patients had Pseudomonas aeruginosa isolation, the risk of them having the pathogen again was 81%. The multivariate analysis showed that the use of antibiotic prophylaxis and number of hospitalisations were significantly associated with Pseudomonas aeruginosa isolation. Gram-negative bacilli, especially Pseudomonas aeruginosa, were the major causative agents of paediatric aspiration pneumonia in our study. Empiric antipseudomonas treatment should be considered, particularly in patients who are receiving antibiotic prophylaxis, have experienced recurrent hospitalisations or with previous respiratory cultures that showed Pseudomonas aeruginosa isolation. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  9. Fatal infection in human flora-associated piglets caused by the opportunistic pathogen Klebsiella pneumoniae from an apparently healthy human donor.

    PubMed

    Wei, Hua; Shen, Jian; Pang, Xiaoyan; Ding, Dezhong; Zhang, Yan; Zhang, Baorang; Lu, Haifeng; Wang, Tingting; Zhang, Chenhong; Hua, Xiuguo; Cui, Li; Zhao, Liping

    2008-07-01

    Seventeen out of 24 human flora-associated (HFA) piglets died after oral administration of whole fecal flora from an apparently healthy human donor. The bacteria isolated from the organs of the infected piglets were identified as Klebsiella pneumoniae by bacteriological and biochemical tests and 16S rRNA gene sequence analysis. The identical K. pneumoniae strain was also isolated from the donor's fecal flora. All three neonatal piglets inoculated with K. pneumoniae from the donor's fecal flora developed severe diarrhea, with 2 eventually dying. This strongly suggests that the opportunistic pathogen K. pneumoniae from the human donor caused the fatal infection in the HFA piglets. The results underscore the importance of safety evaluation of the human donor's fecal flora for HFA piglet development.

  10. (1)H, (13)C and (15)N resonance assignments of the RodA hydrophobin from the opportunistic pathogen Aspergillus fumigatus.

    PubMed

    Pille, Ariane; Kwan, Ann H; Cheung, Ivan; Hampsey, Matthew; Aimanianda, Vishukumar; Delepierre, Muriel; Latge, Jean-Paul; Sunde, Margaret; Guijarro, J Iñaki

    2015-04-01

    Hydrophobins are fungal proteins characterised by their amphipathic properties and an idiosyncratic pattern of eight cysteine residues involved in four disulphide bridges. The soluble form of these proteins spontaneously self-assembles at hydrophobic/hydrophilic interfaces to form an amphipathic monolayer. The RodA hydrophobin of the opportunistic pathogen Aspergillus fumigatus forms an amyloid layer with a rodlet morphology that covers the surface of fungal spores. This rodlet layer bestows hydrophobicity to the spores facilitating their dispersal in the air and rendering the conidia inert relative to the human immune system. As a first step in the analysis of the solution structure and self-association of RodA, we report the (1)H, (13)C and (15)N resonance assignments of the soluble monomeric form of RodA.

  11. Hospitalizations due to selected infections caused by opportunistic premise plumbing pathogens (OPPP) and reported drug resistance in the United States older adult population in 1991-2006.

    PubMed

    Naumova, Elena N; Liss, Alexander; Jagai, Jyotsna S; Behlau, Irmgard; Griffiths, Jeffrey K

    2016-09-12

    The Flint Water Crisis-due to changes of water source and treatment procedures-has revealed many unsolved social, environmental, and public health problems for US drinking water, including opportunistic premise plumbing pathogens (OPPP). The true health impact of OPPP, especially in vulnerable populations such as the elderly, is largely unknown. We explored 10(8) claims in the largest US national uniformly collected data repository to determine rates and costs of OPPP-related hospitalizations. In 1991-2006, 617,291 cases of three selected OPPP infections resulted in the elderly alone of $0.6 billion USD per year of payments. Antibiotic resistance significantly increased OPPP illness costs that are likely to be underreported. More precise estimates for OPPP burdens could be obtained if better clinical, microbiological, administrative, and environmental monitoring data were cross-linked. An urgent dialog across governmental and disciplinary divides, and studies on preventing OPPP through drinking water exposure, are warranted.

  12. Hospitalizations due to selected infections caused by opportunistic premise plumbing pathogens (OPPP) and reported drug resistance in the United States older adult population in 1991-2006.

    PubMed

    Naumova, Elena N; Liss, Alexander; Jagai, Jyotsna S; Behlau, Irmgard; Griffiths, Jeffrey K

    2016-12-01

    The Flint Water Crisis-due to changes of water source and treatment procedures-has revealed many unsolved social, environmental, and public health problems for US drinking water, including opportunistic premise plumbing pathogens (OPPP). The true health impact of OPPP, especially in vulnerable populations such as the elderly, is largely unknown. We explored 10(8) claims in the largest US national uniformly collected data repository to determine rates and costs of OPPP-related hospitalizations. In 1991-2006, 617,291 cases of three selected OPPP infections resulted in the elderly alone of $0.6 billion USD per year of payments. Antibiotic resistance significantly increased OPPP illness costs that are likely to be underreported. More precise estimates for OPPP burdens could be obtained if better clinical, microbiological, administrative, and environmental monitoring data were cross-linked. An urgent dialog across governmental and disciplinary divides, and studies on preventing OPPP through drinking water exposure, are warranted.

  13. Complete genome and gene expression analyses of Asaia bogorensis reveal unique responses to culture with mammalian cells as a potential opportunistic human pathogen.

    PubMed

    Kawai, Mikihiko; Higashiura, Norie; Hayasaki, Kimie; Okamoto, Naruhei; Takami, Akiko; Hirakawa, Hideki; Matsushita, Kazunobu; Azuma, Yoshinao

    2015-10-01

    Asaia bogorensis, a member of acetic acid bacteria (AAB), is an aerobic bacterium isolated from flowers and fruits, as well as an opportunistic pathogen that causes human peritonitis and bacteraemia. Here, we determined the complete genomic sequence of the As. bogorensis type strain NBRC 16594, and conducted comparative analyses of gene expression under different conditions of co-culture with mammalian cells and standard AAB culture. The genome of As. bogorensis contained 2,758 protein-coding genes within a circular chromosome of 3,198,265 bp. There were two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases: cyoABCD-1 and cyoABCD-2. The cyoABCD-1 operon was phylogenetically common to AAB genomes, whereas the cyoABCD-2 operon belonged to a lineage distinctive from the cyoABCD-1 operon. Interestingly, cyoABCD-1 was less expressed under co-culture conditions than under the AAB culture conditions, whereas the converse was true for cyoABCD-2. Asaia bogorensis shared pathogenesis-related genes with another pathogenic AAB, Granulibacter bethesdensis, including a gene coding pathogen-specific large bacterial adhesin and additional genes for the inhibition of oxidation and antibiotic resistance. Expression alteration of the respiratory chain and unique hypothetical genes may be key traits that enable the bacterium to survive under the co-culture conditions.

  14. Pseudomonas viridiflava, a Multi Host Plant Pathogen with Significant Genetic Variation at the Molecular Level

    PubMed Central

    Mpalantinaki, Evaggelia; Ververidis, Filippos; Goumas, Dimitrios E.

    2012-01-01

    The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan), as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR) and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB), and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species. PMID:22558343

  15. Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv tomato DC3000.

    PubMed

    Río-Álvarez, Isabel; Rodríguez-Herva, José Juan; Martínez, Pedro Manuel; González-Melendi, Pablo; García-Casado, Gloria; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2014-07-01

    Pseudomonas syringae pv tomato DC3000 (Pto) is the causal agent of the bacterial speck of tomato, which leads to significant economic losses in this crop. Pto inhabits the tomato phyllosphere, where the pathogen is highly exposed to light, among other environmental factors. Light represents a stressful condition and acts as a source of information associated with different plant defence levels. Here, we analysed the presence of both blue and red light photoreceptors in a group of Pseudomonas. In addition, we studied the effect of white, blue and red light on Pto features related to epiphytic fitness. While white and blue light inhibit motility, bacterial attachment to plant leaves is promoted. Moreover, these phenotypes are altered in a blue-light receptor mutant. These light-controlled changes during the epiphytic stage cause a reduction in virulence, highlighting the relevance of motility during the entry process to the plant apoplast. This study demonstrated the key role of light perception in the Pto phenotype switching and its effect on virulence.

  16. Disruption of the endothelial barrier by proteases from the bacterial pathogen Pseudomonas aeruginosa: implication of matrilysis and receptor cleavage.

    PubMed

    Beaufort, Nathalie; Corvazier, Elisabeth; Mlanaoindrou, Saouda; de Bentzmann, Sophie; Pidard, Dominique

    2013-01-01

    Within the vasculature, uncontrolled pericellular proteolysis can lead to disruption of cell-to-cell and cell-to-matrix interactions and subsequent detachment-induced cell apoptosis, or anoikis, contributing to inflammatory vascular diseases, with the endothelium as the major target. Most studies so far have focused on endogenous proteinases. However, during bloodstream infections, bacterial proteinases may also trigger endothelial anoikis. We thus investigated the potential apoptotic activity of the proteinases secreted by the haematotropic opportunistic pathogen, Pseudomonas aeruginosa, and particularly its predominant metalloproteinase, LasB. For this, we used the secretome of the LasB-expressing pseudomonal strain, PAO1, and compared it with that from the isogenic, LasB-deficient strain (PAO1∆lasB), as well as with purified LasB. Secretomes were tested for apoptotic activity on cultured human endothelial cells derived from the umbilical vein or from the cerebral microvasculature. We found that the PAO1 secretome readily induced endothelial cell anoikis, as did secretomes of LasB-positive clinical pseudomonal isolates, while the PAO1∆lasB secretome had only a limited impact on endothelial adherence and viability. Notably, purified LasB reproduced most of the effects of the LasB-containing secretomes, and these were drastically reduced in the presence of the LasB-selective inhibitor, phosphoramidon. A precocious and extensive LasB-dependent degradation of several proteins associated with the endothelial extracellular matrix, fibronectin and von Willebrand factor, was observed by immunofluorescence and/or immunoblotting analysis of cell cultures. Moreover, the PAO1 secretome, but not that from PAO1∆lasB, specifically induced rapid endoproteolysis of two major interendothelial junction components, VE-cadherin and occludin, as well as of the anti-anoikis, integrin-associated urokinase receptor, uPAR. Taken as a prototype for exogenous haemorrhagic proteinases

  17. First report of the crucifer pathogen Pseudomonas cannabina pv. alisalensis causing bacterial blight on radish (Raphanus sativus) in Germany

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas cannabina pv. alisalensis is a severe pathogen of crucifers across the U.S. We compared a strain isolated from diseased radish (Raphanus sativus) in Germany to pathotypes and additional strains of P. cannabina pv. alisalensis and P. syringae pv. maculicola. We demonstrated that the patho...

  18. A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages.

    PubMed

    Torres-Barceló, Clara; Arias-Sánchez, Flor I; Vasse, Marie; Ramsayer, Johan; Kaltz, Oliver; Hochberg, Michael E

    2014-01-01

    The evolution of antibiotic resistance in bacteria is a global concern and the use of bacteriophages alone or in combined therapies is attracting increasing attention as an alternative. Evolutionary theory predicts that the probability of bacterial resistance to both phages and antibiotics will be lower than to either separately, due for example to fitness costs or to trade-offs between phage resistance mechanisms and bacterial growth. In this study, we assess the population impacts of either individual or combined treatments of a bacteriophage and streptomycin on the nosocomial pathogen Pseudomonas aeruginosa. We show that combining phage and antibiotics substantially increases bacterial control compared to either separately, and that there is a specific time delay in antibiotic introduction independent of antibiotic dose, that minimizes both bacterial density and resistance to either antibiotics or phage. These results have implications for optimal combined therapeutic approaches.

  19. Cellulose production in Pseudomonas syringae pv. syringae: a compromise between epiphytic and pathogenic lifestyles.

    PubMed

    Arrebola, Eva; Carrión, Víctor J; Gutiérrez-Barranquero, José Antonio; Pérez-García, Alejandro; Rodríguez-Palenzuela, Pablo; Cazorla, Francisco M; de Vicente, Antonio

    2015-07-01

    Genome sequencing and annotation have revealed a putative cellulose biosynthetic operon in the strain Pseudomonas syringae pv. syringae UMAF0158, the causal agent of bacterial apical necrosis. Bioinformatics analyses and experimental methods were used to confirm the functionality of the cellulose biosynthetic operon. In addition, the results showed the contribution of the cellulose operon to important aspects of P. syringae pv. syringae biology, such as the formation of biofilms and adhesion to the leaf surface of mango, suggesting that this operon increases epiphytic fitness. However, based on the incidence and severity of the symptoms observed in tomato leaflets, cellulose expression reduces virulence, as cellulose-deficient mutants increased the area of necrosis, whereas the cellulose-overproducing strain decreased the area of necrosis compared with the wild type. In conclusion, the results of this study show that the epiphytic and pathogenic stages of the P. syringae pv. syringae UMAF0158 lifestyle are intimately affected by cellulose production.

  20. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung.

    PubMed

    O'Brien, Siobhán; Fothergill, Joanne L

    2017-08-15

    Pseudomonas aeruginosa is a major pathogen in the lungs of cystic fibrosis (CF) patients. However, it is now recognised that a diverse microbial community exists in the airways comprising aerobic and anaerobic bacteria as well as fungi and viruses. This rich soup of microorganisms provides ample opportunity for interspecies interactions, particularly when considering secreted compounds. Here, we discuss how P. aeruginosa-secreted products can have community-wide effects, with the potential to ultimately shape microbial community dynamics within the lung. We focus on three well-studied traits associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation, and discuss how secretions can shape interactions between P. aeruginosa and other commonly encountered members of the lung microbiome: Staphylococcus aureus, the Burkholderia cepacia complex, Candida albicans and Aspergillus fumigatus. These interactions may shape the evolutionary trajectory of P. aeruginosa while providing new opportunities for therapeutic exploitation of the CF lung microbiome. © FEMS 2017.

  1. Miniaturized and High-Throughput Assays for Analysis of T-Cell Immunity Specific for Opportunistic Pathogens and HIV

    PubMed Central

    Ivaldi, Federico; Starc, Nadia; Landi, Fabiola; Locatelli, Franco; Rutella, Sergio; Tripodi, Gino; Manca, Fabrizio

    2014-01-01

    Monitoring of antigen-specific T-cell responses is valuable in numerous conditions that include infectious diseases, vaccinations, and opportunistic infections associated with acquired or congenital immune defects. A variety of assays that make use of peripheral lymphocytes to test activation markers, T-cell receptor expression, or functional responses are currently available. The last group of assays calls for large numbers of functional lymphocytes. The number of cells increases with the number of antigens to be tested. Consequently, cells may be the limiting factor, particularly in lymphopenic subjects and in children, the groups that more often require immune monitoring. We have developed immunochemical assays that measure secreted cytokines in the same wells in which peripheral blood mononuclear cells (PBMC) are cultured. This procedure lent itself to miniaturization and automation. Lymphoproliferation and the enzyme-linked immunosorbent spot (ELISPOT) assay have been adapted to a miniaturized format. Here we provide examples of immune profiles and describe a comparison between miniaturized assays based on cytokine secretion or proliferation. We also demonstrate that these assays are convenient for use in testing antigen specificity in established T-cell lines, in addition to analysis of PBMC. In summary, the applicabilities of miniaturization to save cells and reagents and of automation to save time and increase accuracy were demonstrated in this study using different methodological approaches valuable in the clinical immunology laboratory. PMID:24477854

  2. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle.

    PubMed

    Morris, Cindy E; Sands, David C; Vinatzer, Boris A; Glaux, Catherine; Guilbaud, Caroline; Buffière, Alain; Yan, Shuangchun; Dominguez, Hélène; Thompson, Brian M

    2008-03-01

    Pseudomonas syringae is a plant pathogen well known for its capacity to grow epiphytically on diverse plants and for its ice-nucleation activity. The ensemble of its known biology and ecology led us to postulate that this bacterium is also present in non-agricultural habitats, particularly those associated with water. Here, we report the abundance of P. syringae in rain, snow, alpine streams and lakes and in wild plants, in addition to the previously reported abundance in epilithic biofilms. Each of these substrates harbored strains that corresponded to P. syringae in terms of biochemical traits, pathogenicity and pathogenicity-related factors and that were ice-nucleation active. Phylogenetic comparisons of sequences of four housekeeping genes of the non-agricultural strains with strains of P. syringae from disease epidemics confirmed their identity as P. syringae. Moreover, strains belonging to the same clonal lineage were isolated from snow, irrigation water and a diseased crop plant. Our data suggest that the different substrates harboring P. syringae modify the structure of the associated populations. Here, we propose a comprehensive life cycle for P. syringae--in agricultural and non-agricultural habitats--driven by the environmental cycle of water. This cycle opens the opportunity to evaluate the importance of non-agricultural habitats in the evolution of a plant pathogen and the emergence of virulence. The ice-nucleation activity of all strains from snow, unlike from other substrates, strongly suggests that P. syringae plays an active role in the water cycle as an ice nucleus in clouds.

  3. Banana infecting fungus, Fusarium musae, is also an opportunistic human pathogen: are bananas potential carriers and source of fusariosis?

    PubMed

    Triest, David; Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Detandt, Monique; Hendrickx, Marijke

    2015-01-01

    During re-identification of Fusarium strains in the BCCM™/IHEM fungal collection by multilocus sequence-analysis we observed that five strains, previously identified as Fusarium verticillioides, were Fusarium musae, a species described in 2011 from banana fruits. Four strains were isolated from blood samples or biopsies of immune-suppressed patients and one was isolated from the clinical environment, all originating from different hospitals in Belgium or France, 2001-2008. The F. musae identity of our isolates was confirmed by phylogenetic analysis using reference sequences of type material. Absence of the gene cluster necessary for fumonisin biosynthesis, characteristic to F. musae, was also the case for our isolates. In vitro antifungal susceptibility testing revealed no important differences in their susceptibility compared to clinical F. verticillioides strains and terbinafine was the most effective drug. Additional clinical F. musae strains were searched by performing BLAST queries in GenBank. Eight strains were found, of which six were keratitis cases from the U.S. multistate contact lens-associated outbreak in 2005 and 2006. The two other strains were also from the U.S., causing either a skin infection or sinusitis. This report is the first to describe F. musae as causative agent of superficial and opportunistic, disseminated infections in humans. Imported bananas might act as carriers of F. musae spores and be a potential source of infection with F. musae in humans. An alternative hypothesis is that the natural distribution of F. musae is geographically a lot broader than originally suspected and F. musae is present on different plant hosts. © 2015 by The Mycological Society of America.

  4. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen.

    PubMed

    Saeidi, Nazanin; Wong, Choon Kit; Lo, Tat-Ming; Nguyen, Hung Xuan; Ling, Hua; Leong, Susanna Su Jan; Poh, Chueh Loo; Chang, Matthew Wook

    2011-08-16

    Synthetic biology aims to systematically design and construct novel biological systems that address energy, environment, and health issues. Herein, we describe the development of a synthetic genetic system, which comprises quorum sensing, killing, and lysing devices, that enables Escherichia coli to sense and kill a pathogenic Pseudomonas aeruginosa strain through the production and release of pyocin. The sensing, killing, and lysing devices were characterized to elucidate their detection, antimicrobial and pyocin release functionalities, which subsequently aided in the construction of the final system and the verification of its designed behavior. We demonstrated that our engineered E. coli sensed and killed planktonic P. aeruginosa, evidenced by 99% reduction in the viable cells. Moreover, we showed that our engineered E. coli inhibited the formation of P. aeruginosa biofilm by close to 90%, leading to much sparser and thinner biofilm matrices. These results suggest that E. coli carrying our synthetic genetic system may provide a novel synthetic biology-driven antimicrobial strategy that could potentially be applied to fighting P. aeruginosa and other infectious pathogens.

  5. Antibiotic stress selects against cooperation in the pathogenic bacterium Pseudomonas aeruginosa

    PubMed Central

    Vasse, Marie; Noble, Robert J.; Akhmetzhanov, Andrei R.; Torres-Barceló, Clara; Gurney, James; Benateau, Simon; Gougat-Barbera, Claire; Kaltz, Oliver; Hochberg, Michael E.

    2017-01-01

    Cheats are a pervasive threat to public goods production in natural and human communities, as they benefit from the commons without contributing to it. Although ecological antagonisms such as predation, parasitism, competition, and abiotic environmental stress play key roles in shaping population biology, it is unknown how such stresses generally affect the ability of cheats to undermine cooperation. We used theory and experiments to address this question in the pathogenic bacterium, Pseudomonas aeruginosa. Although public goods producers were selected against in all populations, our competition experiments showed that antibiotics significantly increased the advantage of nonproducers. Moreover, the dominance of nonproducers in mixed cultures was associated with higher resistance to antibiotics than in either monoculture. Mathematical modeling indicates that accentuated costs to producer phenotypes underlie the observed patterns. Mathematical analysis further shows how these patterns should generalize to other taxa with public goods behaviors. Our findings suggest that explaining the maintenance of cooperative public goods behaviors in certain natural systems will be more challenging than previously thought. Our results also have specific implications for the control of pathogenic bacteria using antibiotics and for understanding natural bacterial ecosystems, where subinhibitory concentrations of antimicrobials frequently occur. PMID:28049833

  6. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen

    PubMed Central

    Saeidi, Nazanin; Wong, Choon Kit; Lo, Tat-Ming; Nguyen, Hung Xuan; Ling, Hua; Leong, Susanna Su Jan; Poh, Chueh Loo; Chang, Matthew Wook

    2011-01-01

    Synthetic biology aims to systematically design and construct novel biological systems that address energy, environment, and health issues. Herein, we describe the development of a synthetic genetic system, which comprises quorum sensing, killing, and lysing devices, that enables Escherichia coli to sense and kill a pathogenic Pseudomonas aeruginosa strain through the production and release of pyocin. The sensing, killing, and lysing devices were characterized to elucidate their detection, antimicrobial and pyocin release functionalities, which subsequently aided in the construction of the final system and the verification of its designed behavior. We demonstrated that our engineered E. coli sensed and killed planktonic P. aeruginosa, evidenced by 99% reduction in the viable cells. Moreover, we showed that our engineered E. coli inhibited the formation of P. aeruginosa biofilm by close to 90%, leading to much sparser and thinner biofilm matrices. These results suggest that E. coli carrying our synthetic genetic system may provide a novel synthetic biology-driven antimicrobial strategy that could potentially be applied to fighting P. aeruginosa and other infectious pathogens. PMID:21847113

  7. Tea polyphenols as an antivirulence compound Disrupt Quorum-Sensing Regulated Pathogenicity of Pseudomonas aeruginosa.

    PubMed

    Yin, Hongping; Yin, Honging; Deng, Yifeng; Wang, Huafu; Liu, Wugao; Zhuang, Xiyi; Chu, Weihua

    2015-11-09

    Green tea, a water extract of non-fermented leaves of Camellia sinensis L., is one of the nonalcoholic beverages in China. It is becoming increasingly popular worldwide, because of its refreshing, mild stimulant and medicinal properties. Here we examined the quorum sensing inhibitory potentials of tea polyphenols (TP) as antivirulence compounds both in vitro and in vivo. Biosensor assay data suggested minimum inhibitory concentrations (MICs) of TP against selected pathogens were 6.25 ~ 12.5 mg/mL. At sub-MIC, TP can specifically inhibit the production of violacein in Chromobacterium violaceum 12472 with almost 98% reduction at 3.125 mg/mL without affecting its growth rate. Moreover, TP exhibited inhibitory effects on virulence phenotypes regulated by QS in Pseudomonas aeruginosa. The total proteolytic activity, elastase, swarming motility and biofilm formation were reduced in a concentration-dependent manner. In vivo, TP treatment resulted in the reduction of P. aeruginosa pathogenicity in Caenorhabditis elegans. When its concentration was 3.125 mg/mL, the survival rate reached 63.3%. In the excision wound infection model, the wound contraction percentage in treatment groups was relatively increased and the colony-forming units (CFU) in the wound area were significantly decreased. These results suggested that TP could be developed as a novel non-antibiotic QS inhibitor without killing the bacteria but as an antivirulence compound to control bacterial infection.

  8. Tea polyphenols as an antivirulence compound Disrupt Quorum-Sensing Regulated Pathogenicity of Pseudomonas aeruginosa

    PubMed Central

    Yin, Honging; Deng, Yifeng; Wang, Huafu; Liu, Wugao; Zhuang, Xiyi; Chu, Weihua

    2015-01-01

    Green tea, a water extract of non-fermented leaves of Camellia sinensis L., is one of the nonalcoholic beverages in China. It is becoming increasingly popular worldwide, because of its refreshing, mild stimulant and medicinal properties. Here we examined the quorum sensing inhibitory potentials of tea polyphenols (TP) as antivirulence compounds both in vitro and in vivo. Biosensor assay data suggested minimum inhibitory concentrations (MICs) of TP against selected pathogens were 6.25 ~ 12.5 mg/mL. At sub-MIC, TP can specifically inhibit the production of violacein in Chromobacterium violaceum 12472 with almost 98% reduction at 3.125 mg/mL without affecting its growth rate. Moreover, TP exhibited inhibitory effects on virulence phenotypes regulated by QS in Pseudomonas aeruginosa. The total proteolytic activity, elastase, swarming motility and biofilm formation were reduced in a concentration-dependent manner. In vivo, TP treatment resulted in the reduction of P. aeruginosa pathogenicity in Caenorhabditis elegans. When its concentration was 3.125 mg/mL, the survival rate reached 63.3%. In the excision wound infection model, the wound contraction percentage in treatment groups was relatively increased and the colony-forming units (CFU) in the wound area were significantly decreased. These results suggested that TP could be developed as a novel non-antibiotic QS inhibitor without killing the bacteria but as an antivirulence compound to control bacterial infection. PMID:26548447

  9. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae.

    PubMed

    Pecenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-09-01

    Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root

  10. The evolution of alternative biofilms in an opportunistic fungal pathogen: an explanation for how new signal transduction pathways may evolve.

    PubMed

    Soll, David R

    2014-03-01

    The evolution of two types of biofilms, one pathogenic and one sexual, is unique for Candidaalbicans, the most pervasive fungal pathogen in humans. When in the predominant a/α configuration, cells can form a traditional biofilm made up of a basal layer of yeast cells and an extensive upper layer of hyphae and dense matrix. This a/α biofilm is impermeable, impenetrable and drug-resistant. When in the a/a or α/α configuration, white cells form a biofilm of similar architecture, but which is permeable, penetrable and drug-susceptible. The latter biofilm facilitates mating between minority opaque a/a and α/α cells. The two biofilms are regulated by different signal transduction pathways that provide clues for deducing not only how the sexual a/a or α/α biofilms evolved, but how the pathogenic a/α biofilm evolved as well. In the deduced evolutionary models, regulatory molecules, including components of the signal transduction pathways and transcription factors, are recruited from conserved pathways. The evolution of the alternative biofilms of C. albicans provides a rare glimpse into how new regulatory pathways may evolve in general.

  11. Biofilm formation and cellulose expression by Bordetella avium 197N, the causative agent of bordetellosis in birds and an opportunistic respiratory pathogen in humans.

    PubMed

    McLaughlin, Kimberley; Folorunso, Ayorinde O; Deeni, Yusuf Y; Foster, Dona; Gorbatiuk, Oksana; Hapca, Simona M; Immoor, Corinna; Koza, Anna; Mohammed, Ibrahim U; Moshynets, Olena; Rogalsky, Sergii; Zawadzki, Kamil; Spiers, Andrew J

    2017-01-26

    Although bacterial cellulose synthase (bcs) operons are widespread within the Proteobacteria phylum, subunits required for the partial-acetylation of the polymer appear to be restricted to a few γ-group soil, plant-associated and phytopathogenic pseudomonads, including Pseudomonas fluorescens SBW25 and several Pseudomonas syringae pathovars. However, a bcs operon with acetylation subunits has also been annotated in the unrelated β-group respiratory pathogen, Bordetella avium 197N. Our comparison of subunit protein sequences and GC content analyses confirms the close similarity between the B. avium 197N and pseudomonad operons and suggests that, in both cases, the cellulose synthase and acetylation subunits were acquired as a single unit. Using static liquid microcosms, we can confirm that B. avium 197N expresses low levels of cellulose in air-liquid interface biofilms and that biofilm strength and attachment levels could be increased by elevating c-di-GMP levels like the pseudomonads, but cellulose was not required for biofilm formation itself. The finding that B. avium 197N is capable of producing cellulose from a highly-conserved, but relatively uncommon bcs operon raises the question of what functional role this modified polymer plays during the infection of the upper respiratory tract or survival between hosts, and what environmental signals control its production.

  12. Metabolic pathways of Pseudomonas aeruginosa involved in competition with respiratory bacterial pathogens

    PubMed Central

    Beaume, Marie; Köhler, Thilo; Fontana, Thierry; Tognon, Mikael; Renzoni, Adriana; van Delden, Christian

    2015-01-01

    Background: Chronic airway infection by Pseudomonas aeruginosa considerably contributes to lung tissue destruction and impairment of pulmonary function in cystic-fibrosis (CF) patients. Complex interplays between P. aeruginosa and other co-colonizing pathogens including Staphylococcus aureus, Burkholderia sp., and Klebsiella pneumoniae may be crucial for pathogenesis and disease progression. Methods: We generated a library of PA14 transposon insertion mutants to identify P. aeruginosa genes required for exploitative and direct competitions with S. aureus, Burkholderia cenocepacia, and K. pneumoniae. Results: Whereas wild-type PA14 inhibited S. aureus growth, two transposon insertions located in pqsC and carB, resulted in reduced growth inhibition. PqsC is involved in the synthesis of 4-hydroxy-2-alkylquinolines (HAQs), a family of molecules having antibacterial properties, while carB is a key gene in pyrimidine biosynthesis. The carB mutant was also unable to grow in the presence of B. cepacia and K. pneumoniae but not Escherichia coli and S. epidermidis. We further identified a transposon insertion in purF, encoding a key enzyme of purine metabolism. This mutant displayed a severe growth deficiency in the presence of Gram-negative but not of Gram-positive bacteria. We identified a beneficial interaction in a bioA transposon mutant, unable to grow on rich medium. This growth defect could be restored either by addition of biotin or by co-culturing the mutant in the presence of K. pneumoniae or E. coli. Conclusion: Complex interactions take place between the various bacterial species colonizing CF-lungs. This work identified both detrimental and beneficial interactions occurring between P. aeruginosa and three other respiratory pathogens involving several major metabolic pathways. Manipulating these pathways could be used to interfere with bacterial interactions and influence the colonization by respiratory pathogens. PMID:25954256

  13. Characterisation of the CipC-like protein AFUA_5G09330 of the opportunistic human pathogenic mould Aspergillus fumigatus.

    PubMed

    Bauer, Bettina; Schwienbacher, Monika; Broniszewska, Marzena; Israel, Lars; Heesemann, Jürgen; Ebel, Frank

    2010-07-01

    Aspergillus fumigatus is currently the major airborne fungal pathogen that menaces immunocompromised individuals. Germination of inhaled conidia is a hallmark of the early infection process, but little is known about the underlying mechanisms. The intention of our ongoing studies is the identification of A. fumigatus proteins that are differentially expressed during germination and may provide insights in the germination process. Using a proteomic approach, we identified AFUA_5G09330 as a major hyphal-specific protein. This result was confirmed using monoclonal antibodies generated in this study. AFUA_5G09330 belongs to a fungal-specific protein family. The eponymous CipC protein of A. nidulans has been shown to be induced by concanamycin A, and transcriptional data from Cryptococcus neoformans demonstrate a strong up-regulation of the expression of a homologous gene during infection. Our data provide evidence that AFUA_5G09330 is a monomeric, cytoplasmic protein. We found no evidence for an overexpression of AFUA_5G09330 induced by concanamycin A or other stress conditions. AFUA_5G09330 is exclusively found in the hyphal morphotype that enables an invasive growth of A. fumigatus during infection. Further studies are required to define the biological function of this hyphae-specific protein and its potential relevance for the pathogenicity of A. fumigatus.

  14. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment

    PubMed Central

    Berjeaud, Jean-Marc; Chevalier, Sylvie; Schlusselhuber, Margot; Portier, Emilie; Loiseau, Clémence; Aucher, Willy; Lesouhaitier, Olivier; Verdon, Julien

    2016-01-01

    Legionella pneumophila, the major causative agent of Legionnaires’ disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing. PMID:27092135

  15. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment.

    PubMed

    Berjeaud, Jean-Marc; Chevalier, Sylvie; Schlusselhuber, Margot; Portier, Emilie; Loiseau, Clémence; Aucher, Willy; Lesouhaitier, Olivier; Verdon, Julien

    2016-01-01

    Legionella pneumophila, the major causative agent of Legionnaires' disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing.

  16. Opportunistic microorganisms in patients undergoing antibiotic therapy for pulmonary tuberculosis

    PubMed Central

    Querido, Silvia Maria Rodrigues; Back-Brito, Graziella Nuernberg; dos Santos, Silvana Soléo Ferreira; Leão, Mariella Vieira Pereira; Koga-Ito, Cristiane Yumi; Jorge, Antonio Olavo Cardoso

    2011-01-01

    Antimicrobial therapy may cause changes in the resident oral microbiota, with the increase of opportunistic pathogens. The aim of this study was to compare the prevalence of Candida, Staphylococcus, Pseudomonas and Enterobacteriaceae in the oral cavity of fifty patients undergoing antibiotic therapy for pulmonary tuberculosis and systemically healthy controls. Oral rinsing and subgingival samples were obtained, plated in Sabouraud dextrose agar with chloramphenicol, mannitol agar and MacConkey agar, and incubated for 48 h at 37°C. Candida spp. and coagulase-positive staphylococci were identified by phenotypic tests, C. dubliniensis, by multiplex PCR, and coagulase-negative staphylococci, Enterobacteriaceae and Pseudomonas spp., by the API systems. The number of Candida spp. was significantly higher in tuberculosis patients, and C. albicans was the most prevalent specie. No significant differences in the prevalence of other microorganisms were observed. In conclusion, the antimicrobial therapy for pulmonary tuberculosis induced significant increase only in the amounts of Candida spp. PMID:24031759

  17. Candida and candidiasis in HIV-infected patients: where commensalism, opportunistic behavior and frank pathogenicity lose their borders.

    PubMed

    Cassone, Antonio; Cauda, Roberto

    2012-07-31

    In this era of efficacious antiretroviral therapy and consequent immune reconstitution, oropharyngeal and esophageal candidiasis (OPC and OEC) still remain two clinically relevant presentations in the global HIV setting. Both diseases are predominantly caused by Candida albicans, a polymorphic fungus which is a commensal microbe in the healthy individual but can become an aggressive pathogen in a debilitated host. Actually, C. albicans commensalism is not the result of a benign behavior of one of the many components of human microbiota, but rather the result of host's potent innate and adaptive immune responses that restrict the growth of a potentially dangerous microrganism on the epithelia. An important asset guarding against the fungus is the Th17 functional subset of T helper cells. The selective loss of these cells with the progression of HIV infection causes the decay of fungal containment on the oral epithelium and allows C. albicans to express its pathogenic potential. An important part of this potential is represented by mechanisms to evade host immunity and enhance inflammation and immunoactivation. In C. albicans, these mechanisms are mostly incorporated into and expressed by characteristic morphogenic transitions such as the yeast-to-hyphal growth and the white-to-opaque switch. In addition, HIV infection generates an 'environment' selecting for overexpression of the virulence potential by the fungus, particularly concerning the secreted aspartyl proteinases (Saps). These enzymes can degrade critical host defense components such as complement and epithelial defensive proteins such as histatin-5 and E-cadherin. It appears that part of this enhanced Candida virulence could be induced by the binding of the fungus to HIV and/or induced by HIV proteins such as GP160 and tat. Both OPC and OEC can be controlled by old and new antimycotics, but in the absence of host collaboration, anticandidal therapy may become ineffective in the long run. For these reasons

  18. VeA Regulates Conidiation, Gliotoxin Production, and Protease Activity in the Opportunistic Human Pathogen Aspergillus fumigatus

    PubMed Central

    Dhingra, Sourabh; Andes, David

    2012-01-01

    Invasive aspergillosis by Aspergillus fumigatus is a leading cause of infection-related mortality in immunocompromised patients. In this study, we show that veA, a major conserved regulatory gene that is unique to fungi, is necessary for normal morphogenesis in this medically relevant fungus. Although deletion of veA results in a strain with reduced conidiation, overexpression of this gene further reduced conidial production, indicating that veA has a major role as a regulator of development in A. fumigatus and that normal conidiation is only sustained in the presence of wild-type VeA levels. Furthermore, our studies revealed that veA is a positive regulator in the production of gliotoxin, a secondary metabolite known to be a virulent factor in A. fumigatus. Deletion of veA resulted in a reduction of gliotoxin production with respect to that of the wild-type control. This reduction in toxin coincided with a decrease in gliZ and gliP expression, which is necessary for gliotoxin biosynthesis. Interestingly, veA also influences protease activity in this organism. Specifically, deletion of veA resulted in a reduction of protease activity; this is the first report of a veA homolog with a role in controlling fungal hydrolytic activity. Although veA affects several cellular processes in A. fumigatus, pathogenicity studies in a neutropenic mouse infection model indicated that veA is dispensable for virulence. PMID:23087369

  19. Microbial Indicators, Opportunistic Bacteria, and Pathogenic Protozoa for Monitoring Urban Wastewater Reused for Irrigation in the Proximity of a Megacity.

    PubMed

    Fonseca-Salazar, María Alejandra; Díaz-Ávalos, Carlos; Castañón-Martínez, María Teresa; Tapia-Palacios, Marco Antonio; Mazari-Hiriart, Marisa

    2016-12-01

    In Latin America and the Caribbean, with a population of approximately 580 million inhabitants, less than 20 % of wastewater is treated. Megacities in this region face common challenges and problems related with water quality and sanitation, which require urgent actions, such as changes in the sustainable use of water resources. The Mexico City Metropolitan Area is one of the most populous urban agglomerations in the world, with over 20 million inhabitants, and is no exception to the challenges of sustainable water management. For more than 100 years, wastewater from Mexico City has been transported north to the Mezquital Valley, which is ranked as the largest wastewater-irrigated area in the world. In this study, bacteria and pathogenic protozoa were analyzed to determine the association between the presence of such microorganisms and water types (WTs) across sampling sites and seasons in Mexico City and the Mezquital Valley. Our results show a difference in microbiological water quality between sampling sites and WTs. There is no significant interaction between sampling sites and seasons in terms of bacterial concentration, demonstrating that water quality remains constant at each site regardless of whether it is the dry or the rainy season. The results illustrate the quantity of these microorganisms in wastewater, provide a current diagnosis of water quality across the area which could affect the health of residents in both Mexico City and the Mezquital Valley, and demonstrate the need to transition in the short term to treat wastewater from a local to a regional scale.

  20. Identification of opportunistic pathogenic bacteria in drinking water samples of different rural health centers and their clinical impacts on humans.

    PubMed

    Pindi, Pavan Kumar; Yadav, P Raghuveer; Shanker, A Shiva

    2013-01-01

    International drinking water quality monitoring programs have been established in order to prevent or to reduce the risk of contracting water-related infections. A survey was performed on groundwater-derived drinking water from 13 different hospitals in the Mahabubnagar District. A total of 55 bacterial strains were isolated which belonged to both gram-positive and gram-negative bacteria. All the taxa were identified based on the 16S rRNA gene sequence analysis based on which they are phylogenetically close to 27 different taxa. Many of the strains are closely related to their phylogenetic neighbors and exhibit from 98.4 to 100% sequence similarity at the 16S rRNA gene sequence level. The most common group was similar to Acinetobacter junii (21.8%) and Acinetobacter calcoaceticus (10.9%) which were shared by 7 and 5 water samples, respectively. Out of 55 isolates, only 3 isolates belonged to coliform group which are Citrobacter freundii and Pantoea anthophila. More than half (52.7%, 29 strains) of the phylogenetic neighbors which belonged to 12 groups were reported to be pathogenic and isolated from clinical specimens. Out of 27 representative taxa are affiliated have eight representative genera in drinking water except for those affiliated with the genera Exiguobacterium, Delftia, Kocuria, and Lysinibacillus.

  1. Identification of Opportunistic Pathogenic Bacteria in Drinking Water Samples of Different Rural Health Centers and Their Clinical Impacts on Humans

    PubMed Central

    Pindi, Pavan Kumar; Raghuveer Yadav, P.; Shiva Shanker, A.

    2013-01-01

    International drinking water quality monitoring programs have been established in order to prevent or to reduce the risk of contracting water-related infections. A survey was performed on groundwater-derived drinking water from 13 different hospitals in the Mahabubnagar District. A total of 55 bacterial strains were isolated which belonged to both gram-positive and gram-negative bacteria. All the taxa were identified based on the 16S rRNA gene sequence analysis based on which they are phylogenetically close to 27 different taxa. Many of the strains are closely related to their phylogenetic neighbors and exhibit from 98.4 to 100% sequence similarity at the 16S rRNA gene sequence level. The most common group was similar to Acinetobacter junii (21.8%) and Acinetobacter calcoaceticus (10.9%) which were shared by 7 and 5 water samples, respectively. Out of 55 isolates, only 3 isolates belonged to coliform group which are Citrobacter freundii and Pantoea anthophila. More than half (52.7%, 29 strains) of the phylogenetic neighbors which belonged to 12 groups were reported to be pathogenic and isolated from clinical specimens. Out of 27 representative taxa are affiliated have eight representative genera in drinking water except for those affiliated with the genera Exiguobacterium, Delftia, Kocuria, and Lysinibacillus. PMID:23862144

  2. When Good Bugs Go Bad: Epidemiology and Antimicrobial Resistance Profiles of Corynebacterium striatum, an Emerging Multidrug Resistant, Opportunistic Pathogen.

    PubMed

    McMullen, Allison R; Anderson, Neil; Wallace, Meghan A; Shupe, Angela; Burnham, C A

    2017-08-28

    Infections with Corynebacterium striatum have been described in the literature over the last two decades, with the majority being bacteremia, central line infections, and occasionally endocarditis. In recent years, the frequency of C. striatum infections appears to be increasing; a likely factor contributing to this is the increased ease and accuracy of the identification of Corynebacterium spp., including C. striatum, from clinical cultures. The objective of this study was to retrospectively characterize C. striatum isolates recovered from specimens submitted as part of routine patient care at a 1250 bed, tertiary care academic medical center. Multiple strain types were recovered, as demonstrated by repetitive-sequence-based PCR. Most of the strains of C. striatum characterized were resistant to antimicrobials commonly used to treat Gram positive organisms, such as penicillin, ceftriaxone, meropenem, clindamycin, and tetracycline. The MIC50 for ceftaroline was >32 μg/mL. Although there are no interpretive criteria for susceptibility, telavancin appeared to have potent in vitro efficacy against this species, with an MIC50 and MIC90 of 0.064 and 0.125 μg/mL, respectively. Finally, as previously reported in case studies, we demonstrated rapid in vitro development of daptomycin resistance in 100% of isolates tested (n=50), indicating caution should be exhibited when using daptomycin for treatment of C. striatum infections. C. striatum is an emerging, multidrug pathogen that can be associated with a variety of infection types. Copyright © 2017 American Society for Microbiology.

  3. Potential of Pseudomonas putida PCI2 for the Protection of Tomato Plants Against Fungal Pathogens.

    PubMed

    Pastor, Nicolás; Masciarelli, Oscar; Fischer, Sonia; Luna, Virginia; Rovera, Marisa

    2016-09-01

    Tomato is one of the most economically attractive vegetable crops due to its high yields. Diseases cause significant losses in tomato production worldwide. We carried out Polymerase Chain Reaction studies to detect the presence of genes encoding antifungal compounds in the DNA of Pseudomonas putida strain PCI2. We also used liquid chromatography-electrospray tandem mass spectrometry to detect and quantify the production of compounds that increase the resistance of plants to diseases from culture supernatants of PCI2. In addition, we investigated the presence of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in PCI2. Finally, PCI2 was used for inoculation of tomato seeds to study its potential biocontrol activity against Fusarium oxysporum MR193. The obtained results showed that no fragments for the encoding genes of hydrogen cyanide, pyoluteorin, 2,4-diacetylphloroglucinol, pyrrolnitrin, or phenazine-1-carboxylic acid were amplified from the DNA of PCI2. On the other hand, PCI2 produced salicylic acid and jasmonic acid in Luria-Bertani medium and grew in a culture medium containing ACC as the sole nitrogen source. We observed a reduction in disease incidence from 53.33 % in the pathogen control to 30 % in tomato plants pre-inoculated with PCI2 as well as increases in shoot and root dry weights in inoculated plants, as compared to the pathogenicity control. This study suggests that inoculation of tomato seeds with P. putida PCI2 increases the resistance of plants to root rot caused by F. oxysporum and that PCI2 produces compounds that may be involved at different levels in increasing such resistance. Thus, PCI2 could represent a non-contaminating management strategy potentially applicable in vegetable crops such as tomato.

  4. Role of Arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava.

    PubMed

    Rossi, F R; Marina, M; Pieckenstain, F L

    2015-07-01

    Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non-infected wild-type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid- and jasmonic acid-dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen-induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident.

  5. Characterization of the gacA-dependent surface and coral mucus colonization by an opportunistic coral pathogen Serratia marcescens PDL100.

    PubMed

    Krediet, Cory J; Carpinone, Emily M; Ritchie, Kim B; Teplitski, Max

    2013-05-01

    Opportunistic pathogens rely on global regulatory systems to assess the environment and to control virulence and metabolism to overcome host defenses and outcompete host-associated microbiota. In Gammaproteobacteria, GacS/GacA is one such regulatory system. GacA orthologs direct the expression of the csr (rsm) small regulatory RNAs, which through their interaction with the RNA-binding protein CsrA (RsmA), control genes with functions in carbon metabolism, motility, biofilm formation, and virulence. The csrB gene was controlled by gacA in Serratia marcescens PDL100. A disruption of the S. marcescens gacA gene resulted in an increased fitness of the mutant on mucus of the host coral Acropora palmata and its high molecular weight fraction, whereas the mutant was as competitive as the wild type on the low molecular weight fraction of the mucus. Swarming motility and biofilm formation were reduced in the gacA mutant. This indicates a critical role for gacA in the efficient utilization of specific components of coral mucus and establishment within the surface mucopolysaccharide layer. While significantly affecting early colonization behaviors (coral mucus utilization, swarming motility, and biofilm formation), gacA was not required for virulence of S. marcescens PDL100 in either a model polyp Aiptasia pallida or in brine shrimp Artemia nauplii.

  6. Network analysis suggests a potentially ‘evil' alliance of opportunistic pathogens inhibited by a cooperative network in human milk bacterial communities

    PubMed Central

    (Sam) Ma, Zhanshan; Guan, Qiong; Ye, Chengxi; Zhang, Chengchen; Foster, James A.; Forney, Larry J.

    2015-01-01

    The critical importance of human milk to infants and even human civilization has been well established. Yet our understanding of the milk microbiome has been limited to cataloguing OTUs and computation of community diversity. To the best of our knowledge, there has been no report on the bacterial interactions within the milk microbiome. To bridge this gap, we reconstructed a milk bacterial community network based on Hunt et al. Our analysis revealed that the milk microbiome network consists of two disconnected sub-networks. One sub-network is a fully connected complete graph consisting of seven genera as nodes and all of its pair-wise interactions among the bacteria are facilitative or cooperative. In contrast, the interactions in the other sub-network of eight nodes are mixed but dominantly cooperative. Somewhat surprisingly, the only ‘non-cooperative' nodes in the second sub-network are mutually cooperative Staphylococcus and Corynebacterium that include some opportunistic pathogens. This potentially ‘evil' alliance between Staphylococcus and Corynebacterium could be inhibited by the remaining nodes that cooperate with one another in the second sub-network. We postulate that the ‘confrontation' between the ‘evil' alliance and ‘benign' alliance and the shifting balance between them may be responsible for dysbiosis of the milk microbiome that permits mastitis. PMID:25651890

  7. Mycobacterium genavense in the Netherlands: an opportunistic pathogen in HIV and non-HIV immunocompromised patients. An observational study in 14 cases.

    PubMed

    Hoefsloot, W; van Ingen, J; Peters, E J G; Magis-Escurra, C; Dekhuijzen, P N R; Boeree, M J; van Soolingen, D

    2013-05-01

    Mycobacterium genavense is an opportunistic non-tuberculous mycobacterium previously mostly associated with HIV-infected patients with CD4 counts below 100/μL. In this retrospective observational study of medical charts we studied all Dutch patients in whom M. genavense was detected between January 2002 and January 2010. Of the 14 patients identified, 13 (93%) showed clinically relevant M. genavense disease. All patients with M. genavense disease were severely immunocompromised, including HIV-infected patients, solid organ transplant recipients, those with chronic steroid use in combination with other immune modulating drugs, recipients of chemotherapy for non-Hodgkin lymphoma, and those with immunodeficiency syndromes. Two patients had non-disseminated pulmonary M. genavense disease. Of the 12 patients treated, eight (75%) showed a favourable outcome. Four patients died in this study, three despite treatment for M. genavense disease. We conclude that M. genavense is a clinically relevant pathogen in severely immunocompromised patients that causes predominantly disseminated disease with serious morbidity and mortality. M. genavense is increasingly seen among non-HIV immunocompromised patients.

  8. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae

    PubMed Central

    Laue, Bridget E.; Sharp, Paul M.; Green, Sarah

    2016-01-01

    Summary The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae. PMID:27145446

  9. Soil water flow is a source of the plant pathogen Pseudomonas syringae in subalpine headwaters.

    PubMed

    Monteil, Caroline L; Lafolie, François; Laurent, Jimmy; Clement, Jean-Christophe; Simler, Roland; Travi, Yves; Morris, Cindy E

    2014-07-01

    The airborne plant pathogenic bacterium Pseudomonas syringae is ubiquitous in headwaters, snowpack and precipitation where its populations are genetically and phenotypically diverse. Here, we assessed its population dynamics during snowmelt in headwaters of the French Alps. We revealed a continuous and significant transport of P.syringae by these waters in which the population density is correlated with water chemistry. Via in situ observations and laboratory experiments, we validated that P.syringae is effectively transported with the snow melt and rain water infiltrating through the soil of subalpine grasslands, leading to the same range of concentrations as measured in headwaters (10(2) -10(5) CFU l(-1) ). A population structure analysis confirmed the relatedness between populations in percolated water and those above the ground (i.e. rain, leaf litter and snowpack). However, the transport study in porous media suggested that water percolation could have different efficiencies for different strains of P.syringae. Finally, leaching of soil cores incubated for up to 4 months at 8°C showed that indigenous populations of P.syringae were able to survive in subalpine soil under cold temperature. This study brings to light the underestimated role of hydrological processes involved in the long distance dissemination of P.syringae.

  10. Temporal variation in antibiotic environments slows down resistance evolution in pathogenic Pseudomonas aeruginosa

    PubMed Central

    Roemhild, Roderich; Barbosa, Camilo; Beardmore, Robert E; Jansen, Gunther; Schulenburg, Hinrich

    2015-01-01

    Antibiotic resistance is a growing concern to public health. New treatment strategies may alleviate the situation by slowing down the evolution of resistance. Here, we evaluated sequential treatment protocols using two fully independent laboratory-controlled evolution experiments with the human pathogen Pseudomonas aeruginosa PA14 and two pairs of clinically relevant antibiotics (doripenem/ciprofloxacin and cefsulodin/gentamicin). Our results consistently show that the sequential application of two antibiotics decelerates resistance evolution relative to monotherapy. Sequential treatment enhanced population extinction although we applied antibiotics at sublethal dosage. In both experiments, we identified an order effect of the antibiotics used in the sequential protocol, leading to significant variation in the long-term efficacy of the tested protocols. These variations appear to be caused by asymmetric evolutionary constraints, whereby adaptation to one drug slowed down adaptation to the other drug, but not vice versa. An understanding of such asymmetric constraints may help future development of evolutionary robust treatments against infectious disease. PMID:26640520

  11. Rabbit hepatitis E virus is an opportunistic pathogen in specific-pathogen-free rabbits with the capability of cross-species transmission.

    PubMed

    Liu, Baoyuan; Sun, Yani; Du, Taofeng; Chen, Yiyang; Wang, Xinjie; Huang, Baicheng; Li, Huixia; Nan, Yuchen; Xiao, Shuqi; Zhang, Gaiping; Hiscox, Julian A; Zhou, En-Min; Zhao, Qin

    2017-03-01

    Hepatitis E virus (HEV) has been detected in rabbits, a recently identified natural reservoir. In this study, anti-HEV antibodies and viral RNA were detected in rabbits sourced from a specific-pathogen-free (SPF) rabbit vendor in Shaanxi Province, China. BLAST results of partial HEV ORF2 genes cloned here indicated that two viral strains circulated in the rabbits. Sequence determination of the complete genome (7302bp) of one strain and a partial ORF1 gene (1537bp) of the other strain showed that they shared 90% identity with one another and 78%-94% identity with other known rabbit HEVs. In addition, inoculation with rabbit HEV from SPF rabbits studied here resulted in infection of SPF pigs; this cross-species transmission was evidenced by seroconversion, viremia and faecal virus shedding. These results suggest that to prevent spread of this zoonotic pathogen, rabbits should be tested routinely for HEV RNA in SPF vendor facilities.

  12. The Trophic Life Cycle Stage of the Opportunistic Fungal Pathogen Pneumocystis murina Hinders the Ability of Dendritic Cells To Stimulate CD4(+) T Cell Responses.

    PubMed

    Evans, Heather M; Simpson, Andrew; Shen, Shu; Stromberg, Arnold J; Pickett, Carol L; Garvy, Beth A

    2017-10-01

    The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4(+) T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells. Copyright © 2017 American Society for Microbiology.

  13. Effect of Ethanol on Differential Protein Production and Expression of Potential Virulence Functions in the Opportunistic Pathogen Acinetobacter baumannii

    PubMed Central

    Nwugo, Chika C.; Arivett, Brock A.; Zimbler, Daniel L.; Gaddy, Jennifer A.; Richards, Ashley M.; Actis, Luis A.

    2012-01-01

    Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA), a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments. PMID:23284824

  14. Fucose-binding lectin from opportunistic pathogen Burkholderia ambifaria binds to both plant and human oligosaccharidic epitopes.

    PubMed

    Audfray, Aymeric; Claudinon, Julie; Abounit, Saïda; Ruvoën-Clouet, Nathalie; Larson, Göran; Smith, David F; Wimmerová, Michaela; Le Pendu, Jacques; Römer, Winfried; Varrot, Annabelle; Imberty, Anne

    2012-02-03

    Burkholderia ambifaria is generally associated with the rhizosphere of plants where it has biocontrol effects on other microorganisms. It is also a member of the Burkholderia cepacia complex, a group of closely related bacteria that cause lung infections in immunocompromised patients as well as in patients with granulomatous disease or cystic fibrosis. Our previous work indicated that fucose on human epithelia is a frequent target for lectins and adhesins of lung pathogens (Sulák, O., Cioci, G., Lameignère, E., Balloy, V., Round, A., Gutsche, I., Malinovská, L., Chignard, M., Kosma, P., Aubert, D. F., Marolda, C. L., Valvano, M. A., Wimmerová, M., and Imberty, A. (2011) PLoS Pathog. 7, e1002238). Analysis of the B. ambifaria genome identified BambL as a putative fucose-binding lectin. The 87-amino acid protein was produced recombinantly and demonstrated to bind to fucosylated oligosaccharides with a preference for αFuc1-2Gal epitopes. Crystal structures revealed that it associates as a trimer with two fucose-binding sites per monomer. The overall fold is a six-bladed β-propeller formed by oligomerization as in the Ralstonia solanacearum lectin and not by sequential domains like the fungal fucose lectin from Aleuria aurantia. The affinity of BambL for small fucosylated glycans is very high as demonstrated by microcalorimetry (K(D) < 1 μM). Plant cell wall oligosaccharides and human histo-blood group oligosaccharides H-type 2 and Lewis Y are bound with equivalent efficiency. Binding to artificial glycosphingolipid-containing vesicles, human saliva, and lung tissues confirmed that BambL could recognize a wide spectrum of fucosylated epitopes, albeit with a lower affinity for biological material from nonsecretor individuals.

  15. Effect of ethanol on differential protein production and expression of potential virulence functions in the opportunistic pathogen Acinetobacter baumannii.

    PubMed

    Nwugo, Chika C; Arivett, Brock A; Zimbler, Daniel L; Gaddy, Jennifer A; Richards, Ashley M; Actis, Luis A

    2012-01-01

    Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA), a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments.

  16. Evidence for Genetic Differentiation and Variable Recombination Rates among Dutch Populations of the Opportunistic Human Pathogen Aspergillus fumigatus

    PubMed Central

    Klaassen, Corné H.W.; Gibbons, John G.; Fedorova, Natalie D.; Meis, Jacques F.; Rokas, Antonis

    2011-01-01

    As the frequency of antifungal drug resistance continues to increase, understanding the genetic structure of fungal populations, where resistant isolates have emerged and spread, is of major importance. Aspergillus fumigatus is a ubiquitously distributed fungus and the primary causative agent of invasive aspergillosis (IA), a potentially lethal infection in immunocompromised individuals. In the last few years, an increasing number of A. fumigatus isolates has evolved resistance to triazoles, the primary drugs for treating IA infections. In most isolates, this multiple-triazole-resistance (MTR) phenotype is caused by mutations in the cyp51A gene, which encodes the protein targeted by the triazoles. We investigated the genetic differentiation and reproductive mode of A. fumigatus in the Netherlands, the country where the MTR phenotype likely originated, to determine their role in facilitating the emergence and distribution of resistance genotypes. Using 20 genome-wide neutral markers, we genotyped 255 Dutch isolates including 25 isolates with the MTR phenotype. In contrast to previous reports, our results show that Dutch A. fumigatus genotypes are genetically differentiated into five distinct populations. Four of the five populations show significant linkage disequilibrium, indicative of an asexual reproductive mode, whereas the fifth population is in linkage equilibrium, indicative of a sexual reproductive mode. Notably, the observed genetic differentiation among Dutch isolates does not correlate with geography, although all isolates with the MTR phenotype nest within a single, predominantly asexual, population. These results suggest that both reproductive mode and genetic differentiation contribute to the structure of Dutch A. fumigatus populations, and are likely shaping the evolutionary dynamics of drug resistance in this potentially deadly pathogen. PMID:22106836

  17. Fucose-binding Lectin from Opportunistic Pathogen Burkholderia ambifaria Binds to Both Plant and Human Oligosaccharidic Epitopes*

    PubMed Central

    Audfray, Aymeric; Claudinon, Julie; Abounit, Saïda; Ruvoën-Clouet, Nathalie; Larson, Göran; Smith, David F.; Wimmerová, Michaela; Le Pendu, Jacques; Römer, Winfried; Varrot, Annabelle; Imberty, Anne

    2012-01-01

    Burkholderia ambifaria is generally associated with the rhizosphere of plants where it has biocontrol effects on other microorganisms. It is also a member of the Burkholderia cepacia complex, a group of closely related bacteria that cause lung infections in immunocompromised patients as well as in patients with granulomatous disease or cystic fibrosis. Our previous work indicated that fucose on human epithelia is a frequent target for lectins and adhesins of lung pathogens (Sulák, O., Cioci, G., Lameignère, E., Balloy, V., Round, A., Gutsche, I., Malinovská, L., Chignard, M., Kosma, P., Aubert, D. F., Marolda, C. L., Valvano, M. A., Wimmerová, M., and Imberty, A. (2011) PLoS Pathog. 7, e1002238). Analysis of the B. ambifaria genome identified BambL as a putative fucose-binding lectin. The 87-amino acid protein was produced recombinantly and demonstrated to bind to fucosylated oligosaccharides with a preference for αFuc1–2Gal epitopes. Crystal structures revealed that it associates as a trimer with two fucose-binding sites per monomer. The overall fold is a six-bladed β-propeller formed by oligomerization as in the Ralstonia solanacearum lectin and not by sequential domains like the fungal fucose lectin from Aleuria aurantia. The affinity of BambL for small fucosylated glycans is very high as demonstrated by microcalorimetry (KD < 1 μm). Plant cell wall oligosaccharides and human histo-blood group oligosaccharides H-type 2 and Lewis Y are bound with equivalent efficiency. Binding to artificial glycosphingolipid-containing vesicles, human saliva, and lung tissues confirmed that BambL could recognize a wide spectrum of fucosylated epitopes, albeit with a lower affinity for biological material from nonsecretor individuals. PMID:22170069

  18. Effector proteins of the bacterial pathogen Pseudomonas syringae alter the extracellular proteome of the host plant, Arabidopsis thaliana.

    PubMed

    Kaffarnik, Florian A R; Jones, Alexandra M E; Rathjen, John P; Peck, Scott C

    2009-01-01

    In plants, potential pathogenic bacteria do not enter the host cell. Therefore, a large portion of the molecular interaction between microbial pathogen and host occurs in the extracellular space. To investigate potential mechanisms of disease resistance and susceptibility, we analyzed changes in the extracellular proteome, or secretome, using the Arabidopsis-Pseudomonas syringae pathosystem. This system provides the possibility to directly compare interactions resulting in basal resistance, susceptibility, and gene-specific resistance by using different genotypes of Pseudomonas on the same host. After infecting suspension-cultured cells of Arabidopsis with the Pseudomonas strain of interest, we isolated protein from the cell culture medium representing the secretome. After one-dimensional gel separation and in-gel digestion of proteins, we used iTRAQ (isobaric tags for relative and absolute quantitation) labeling in conjunction with LC-MS/MS to perform relative quantitative comparisons of the secretomes from each of these interactions. We obtained quantitative information from 45 Arabidopsis proteins that were present in all three biological experiments. We observed complex patterns of accumulation, ranging from proteins that decreased in abundance in the presence of all three bacterial strains to proteins that specifically increased or decreased during only one of the interactions. A particularly intriguing result was that the virulent bacteria (e.g. a susceptible interaction) caused the extracellular accumulation of a specific subset of host proteins lacking traditional signal peptides. These results indicate that the pathogen may manipulate host secretion to promote the successful invasion of plants.

  19. Silver(I) complexes with phthalazine and quinazoline as effective agents against pathogenic Pseudomonas aeruginosa strains.

    PubMed

    Glišić, Biljana Đ; Senerovic, Lidija; Comba, Peter; Wadepohl, Hubert; Veselinovic, Aleksandar; Milivojevic, Dusan R; Djuran, Miloš I; Nikodinovic-Runic, Jasmina

    2016-02-01

    Five silver(I) complexes with aromatic nitrogen-containing heterocycles, phthalazine (phtz) and quinazoline (qz), were synthesized, characterized and analyzed by single-crystal X-ray diffraction analysis. Although different AgX salts reacted with phtz, only dinuclear silver(I) complexes of the general formula {[Ag(X-O)(phtz-N)]2(μ-phtz-N,N')2} were formed, X=NO3(-) (1), CF3SO3(-) (2) and ClO4(-) (3). However, reactions of qz with an equimolar amount of AgCF3SO3 and AgBF4 resulted in the formation of polynuclear complexes, {[Ag(CF3SO3-O)(qz-N)]2}n (4) and {[Ag(qz-N)][BF4]}n (5). Complexes 1-5 were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. The obtained results indicate that all tested silver(I) complexes have good antibacterial activity with MIC (minimum inhibitory concentration) values in the range from 2.9 to 48.0μM against the investigated strains. Among the investigated strains, these complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC=2.9-29μM) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. On the other hand, their activity against the fungus Candida albicans was moderate. In order to determine the therapeutic potential of silver(I) complexes 1-5, their antiproliferative effect on the human lung fibroblastic cell line MRC5, has been also evaluated. The binding of complexes 1-5 to the genomic DNA of P. aeruginosa was demonstrated by gel electrophoresis techniques and well supported by molecular docking into the DNA minor groove. All investigated complexes showed an improved cytotoxicity profile in comparison to the clinically used AgNO3.

  20. Defense Responses in Two Ecotypes of Lotus japonicus against Non-Pathogenic Pseudomonas syringae

    PubMed Central

    Bordenave, Cesar D.; Escaray, Francisco J.; Menendez, Ana B.; Serna, Eva; Carrasco, Pedro; Ruiz, Oscar A.; Gárriz, Andrés

    2013-01-01

    Lotus japonicus is a model legume broadly used to study many important processes as nitrogen fixing nodule formation and adaptation to salt stress. However, no studies on the defense responses occurring in this species against invading microorganisms have been carried out at the present. Understanding how this model plant protects itself against pathogens will certainly help to develop more tolerant cultivars in economically important Lotus species as well as in other legumes. In order to uncover the most important defense mechanisms activated upon bacterial attack, we explored in this work the main responses occurring in the phenotypically contrasting ecotypes MG-20 and Gifu B-129 of L. japonicus after inoculation with Pseudomonas syringae DC3000 pv. tomato. Our analysis demonstrated that this bacterial strain is unable to cause disease in these accessions, even though the defense mechanisms triggered in these ecotypes might differ. Thus, disease tolerance in MG-20 was characterized by bacterial multiplication, chlorosis and desiccation at the infiltrated tissues. In turn, Gifu B-129 plants did not show any symptom at all and were completely successful in restricting bacterial growth. We performed a microarray based analysis of these responses and determined the regulation of several genes that could play important roles in plant defense. Interestingly, we were also able to identify a set of defense genes with a relative high expression in Gifu B-129 plants under non-stress conditions, what could explain its higher tolerance. The participation of these genes in plant defense is discussed. Our results position the L. japonicus-P. syringae interaction as a interesting model to study defense mechanisms in legume species. PMID:24349460

  1. Characterization of an Insecticidal Toxin and Pathogenicity of Pseudomonas taiwanensis against Insects

    PubMed Central

    Chen, Wen-Jen; Hsieh, Feng-Chia; Hsu, Fu-Chiun; Tasy, Yi-Fang; Liu, Je-Ruei; Shih, Ming-Che

    2014-01-01

    Pseudomonas taiwanensis is a broad-host-range entomopathogenic bacterium that exhibits insecticidal activity toward agricultural pests Plutella xylostella, Spodoptera exigua, Spodoptera litura, Trichoplusia ni and Drosophila melanogaster. Oral infection with different concentrations (OD = 0.5 to 2) of wild-type P. taiwanensis resulted in insect mortality rates that were not significantly different (92.7%, 96.4% and 94.5%). The TccC protein, a component of the toxin complex (Tc), plays an essential role in the insecticidal activity of P. taiwanensis. The ΔtccC mutant strain of P. taiwanensis, which has a knockout mutation in the tccC gene, only induced 42.2% mortality in P. xylostella, even at a high bacterial dose (OD = 2.0). TccC protein was cleaved into two fragments, an N-terminal fragment containing an Rhs-like domain and a C-terminal fragment containing a Glt symporter domain and a TraT domain, which might contribute to antioxidative stress activity and defense against macrophagosis, respectively. Interestingly, the primary structure of the C-terminal region of TccC in P. taiwanensis is unique among pathogens. Membrane localization of the C-terminal fragment of TccC was proven by flow cytometry. Sonicated pellets of P. taiwanensis ΔtccC strain had lower toxicity against the Sf9 insect cell line and P. xylostella larvae than the wild type. We also found that infection of Sf9 and LD652Y-5d cell lines with P. taiwanensis induced apoptotic cell death. Further, natural oral infection by P. taiwanensis triggered expression of host programmed cell death-related genes JNK-2 and caspase-3. PMID:25144637

  2. An ice nucleation reporter gene system: identification of inducible pathogenicity genes in Pseudomonas syringae pv. phaseolicola.

    PubMed Central

    Lindgren, P B; Frederick, R; Govindarajan, A G; Panopoulos, N J; Staskawicz, B J; Lindow, S E

    1989-01-01

    We have constructed derivatives of the transposon Tn3 that allow an ice nucleation gene (inaZ) to be used as 'reporter' of the transcriptional activity of genes into which it is inserted. In these derivatives (Tn3-Ice and Tn3-Spice), the lacZYA sequences of transposon Tn3-HoHo1 were replaced with inaZ lacking its native promoter. The ice nucleation activity of virB::inaZ fusions in the correct transcriptional orientation was inducible by acetosyringone, a plant metabolite which activates the vir operon of Agrobacterium tumefaciens Ti plasmids, while fusions in the opposite orientation were unresponsive to the inducer. Tn3-Spice was also used to investigate the expression of a cluster of genes (hrp) which control pathogenicity and hypersensitivity elicited by Pseudomonas syringae pv. phaseolicola. An inducible region was identified which is expressed at low levels in vitro but becomes activated when the bacteria come into contact with the susceptible host, bean. Activation of this region occurred within 2 h post-inoculation and was nearly complete by the time the bacteria began to multiply in the leaf tissue. The inaZ reporter appears to be at least 10(5)-fold more sensitive than lacZ in P.s.phaseolicola. Thus, the inaZ fusion system provides a sensitive, convenient and inexpensive tool for the study of bacterial gene expression, particularly during plant pathogenesis, and should be generally useful as a reporter gene system in Gram-negative bacteria. PMID:2548841

  3. Characterization of an insecticidal toxin and pathogenicity of Pseudomonas taiwanensis against insects.

    PubMed

    Chen, Wen-Jen; Hsieh, Feng-Chia; Hsu, Fu-Chiun; Tasy, Yi-Fang; Liu, Je-Ruei; Shih, Ming-Che

    2014-08-01

    Pseudomonas taiwanensis is a broad-host-range entomopathogenic bacterium that exhibits insecticidal activity toward agricultural pests Plutella xylostella, Spodoptera exigua, Spodoptera litura, Trichoplusia ni and Drosophila melanogaster. Oral infection with different concentrations (OD = 0.5 to 2) of wild-type P. taiwanensis resulted in insect mortality rates that were not significantly different (92.7%, 96.4% and 94.5%). The TccC protein, a component of the toxin complex (Tc), plays an essential role in the insecticidal activity of P. taiwanensis. The ΔtccC mutant strain of P. taiwanensis, which has a knockout mutation in the tccC gene, only induced 42.2% mortality in P. xylostella, even at a high bacterial dose (OD = 2.0). TccC protein was cleaved into two fragments, an N-terminal fragment containing an Rhs-like domain and a C-terminal fragment containing a Glt symporter domain and a TraT domain, which might contribute to antioxidative stress activity and defense against macrophagosis, respectively. Interestingly, the primary structure of the C-terminal region of TccC in P. taiwanensis is unique among pathogens. Membrane localization of the C-terminal fragment of TccC was proven by flow cytometry. Sonicated pellets of P. taiwanensis ΔtccC strain had lower toxicity against the Sf9 insect cell line and P. xylostella larvae than the wild type. We also found that infection of Sf9 and LD652Y-5d cell lines with P. taiwanensis induced apoptotic cell death. Further, natural oral infection by P. taiwanensis triggered expression of host programmed cell death-related genes JNK-2 and caspase-3.

  4. Phosphatidylcholine synthesis is essential for HrpZ harpin secretion in plant pathogenic Pseudomonas syringae and non-pathogenic Pseudomonas sp. 593.

    PubMed

    Xiong, Min; Long, Deliang; He, Huoguang; Li, Yang; Li, Yadong; Wang, Xingguo

    2014-01-01

    Pseudomonas syringae pv. syringae van Hall is important phytopathogenic bacterium of stone fruit trees, and able to elicit hypersensitive response (HR) in nonhost plants. The HrpZ, secreted via type III secretion system (T3SS) to the extracellular space of the plant, is a T3SS-dependent protein and a sole T3SS effector able to induce the host defense response outside host cells. We deleted the phosphatidylcholine synthase gene (pcs) of P. syringae pv. syringae van Hall CFCC 1336, and found that the 1336 pcs(-) mutant was unable to synthesize phosphatidylcholine and elicit a typical HR in soybean. Further studies showed that the 1336 pcs(-) mutant was unable to secrete HrpZ harpin but could express HrpZ protein in cytoplasm as effectively as the wild type. To confirm if phosphatidylcholine affects HrpZ harpin secretion, we introduced the hrpZ gene into the soil-dwelling bacterium Pseudomonas sp. 593 and the 593 pcs(-) mutant, which were unable to express HrpZ harpin and elicit HR in tobacco or soybean. Western blotting and HR assay showed that the 593H not only secreted HrpZ harpin but also caused a strong HR in tobacco and soybean. In contrast, the 593 pcs(-)H only expressed HrpZ protein in its cytoplasm at the wild type level, but did not secrete HrpZ harpin or elicit HR reaction. Our results demonstrate that phosphatidylcholine is essential for the secretion of HrpZ harpin in P. syringae pv. syringae van Hall and other Pseudomonas strains.

  5. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean.

    PubMed Central

    Whalen, M C; Innes, R W; Bent, A F; Staskawicz, B J

    1991-01-01

    To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean. PMID:1824334

  6. [Colonization properties of opportunistic bacteria isolated from children with pneumonia].

    PubMed

    Kholodok, G N; Alekseeva, I N; Strel'nikova, N V; Kozlov, V K

    2014-01-01

    Evaluation of phenotypes and pathogenicity factors of 476 opportunistic bacteria isolated from respiratory samples of 973 children with community-acquired pneumonia and 36 children without respiratory infection symptoms. Quantitative method of tracheal aspirate and nasopharyngeal swab seeding into certified nutrient media was used, identification was carried out according to standard techniques. Adhesive, "anti-interferon", anti-lysozyme and inherent bactericidal activity of Escherichia coli and Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter spp. were established to ensure in combination with known aggression factors their colonization advantage compared with other pneumopathogens. Adhesion indexes of Gram-negative bacteria lower than 2.5 are shown as markers of invasive strains. Anti-lysozyme activity level lower than 2.14 microg/ml and lack of "anti-interferon" activity characterize non-invasive opportunistic bacteria strains. The detected phenotypic features of opportunistic bacteria may be used in clinical practice for evaluatio of etiologic importance of microorganisms isolated from tracheal aspirate in pneumonia patients.

  7. The Plant Pathogen Pseudomonas syringae pv. tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato Immunity

    PubMed Central

    Yan, Shuangchun; Liu, Haijie; Clarke, Christopher R.; Campanile, Francesco; Almeida, Nalvo F.; Studholme, David J.; Lindeberg, Magdalen; Schneider, David; Zaccardelli, Massimo; Setubal, Joao C.; Morales-Lizcano, Nadia P.; Bernal, Adriana; Coaker, Gitta; Baker, Christy; Bender, Carol L.; Leman, Scotland; Vinatzer, Boris A.

    2011-01-01

    Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain. PMID:21901088

  8. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity.

    PubMed

    Cai, Rongman; Lewis, James; Yan, Shuangchun; Liu, Haijie; Clarke, Christopher R; Campanile, Francesco; Almeida, Nalvo F; Studholme, David J; Lindeberg, Magdalen; Schneider, David; Zaccardelli, Massimo; Setubal, Joao C; Morales-Lizcano, Nadia P; Bernal, Adriana; Coaker, Gitta; Baker, Christy; Bender, Carol L; Leman, Scotland; Vinatzer, Boris A

    2011-08-01

    Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.

  9. Biology of Pseudomonas stutzeri

    PubMed Central

    Lalucat, Jorge; Bennasar, Antoni; Bosch, Rafael; García-Valdés, Elena; Palleroni, Norberto J.

    2006-01-01

    Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its particular metabolic properties: it has been proposed as a model organism for denitrification studies; many strains have natural transformation properties, making it relevant for study of the transfer of genes in the environment; several strains are able to fix dinitrogen; and others participate in the degradation of pollutants or interact with toxic metals. This review considers the history of the discovery, nomenclatural changes, and early studies, together with the relevant biological and ecological properties, of P. stutzeri. PMID:16760312

  10. Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots

    PubMed Central

    Sarris, Panagiotis F.; Trantas, Emmanouil A.; Baltrus, David A.; Bull, Carolee T.; Wechter, William Patrick; Yan, Shuangchun; Ververidis, Filippos; Almeida, Nalvo F.; Jones, Corbin D.; Dangl, Jeffery L.; Panopoulos, Nickolas J.; Vinatzer, Boris A.; Goumas, Dimitrios E.

    2013-01-01

    Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity. PMID:23555661

  11. Drastic Attenuation of Pseudomonas aeruginosa Pathogenicity in a Holoxenic Mouse Experimental Model Induced by Subinhibitory Concentrations of Phenyllactic acid (PLA)

    PubMed Central

    Chifiriuc, Mariana–Carmen; Veronica, Lazar; Dracea, Olguta; Ditu, Lia-Mara; Smarandache, Diana; Bucur, Marcela; Larion, Cristina; Cernat, Ramona; Sasarman, Elena

    2007-01-01

    The discovery of communication systems regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. In this paper we describe the effect of subinhibitory concentrations of phenyllactic acid (PLA) on the pathogenicity of Pseudomonas aeruginosa in mice. The animals were inoculated by oral (p.o.), intranasal (i.n.), intravenous (i.v.) and intraperitoneal (i.p.) routes with P. aeruginoasa wild and PLA-treated cultures. The mice were followed up during 16 days after infection and the body weight, mortality and morbidity rate were measured every day. The microbial charge was studied by viable cell counts in lungs, spleen, intestinal mucosa and blood. The mice batches infected with wild P. aeruginosa bacterial cultures exhibited high mortality rates (100 % after i.v. and i.p. route) and very high cell counts in blood, lungs, intestine and spleen. In contrast, the animal batches infected with PLA treated bacterial cultures exhibited good survival rates (0 % mortality) and the viable cell counts in the internal organs revealed with one exception the complete abolition of the invasive capacity of the tested strains. In this study, using a mouse infection model we show that D-3-phenyllactic acid (PLA) can act as a potent antagonist of Pseudomonas (P.) aeruginosa pathogenicity, without interfering with the bacterial growth, as demonstrated by the improvement of the survival rates as well as the clearance of bacterial strains from the body.

  12. Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa

    PubMed Central

    Korneev, Kirill V.; Arbatsky, Nikolay P.; Molinaro, Antonio; Palmigiano, Angelo; Shaikhutdinova, Rima Z.; Shneider, Mikhail M.; Pier, Gerald B.; Kondakova, Anna N.; Sviriaeva, Ekaterina N.; Sturiale, Luisa; Garozzo, Domenico; Kruglov, Andrey A.; Nedospasov, Sergei A.; Drutskaya, Marina S.; Knirel, Yuriy A.; Kuprash, Dmitry V.

    2015-01-01

    Toll-like receptor 4 (TLR4) is required for activation of innate immunity upon recognition of lipopolysaccharide (LPS) of Gram-negative bacteria. The ability of TLR4 to respond to a particular LPS species is important since insufficient activation may not prevent bacterial growth while excessive immune reaction may lead to immunopathology associated with sepsis. Here, we investigated the biological activity of LPS from Burkholderia mallei that causes glanders, and from the two well-known opportunistic pathogens Acinetobacter baumannii and Pseudomonas aeruginosa (causative agents of nosocomial infections). For each bacterial strain, R-form LPS preparations were purified by hydrophobic chromatography and the chemical structure of lipid A, an LPS structural component, was elucidated by HR-MALDI-TOF mass spectrometry. The biological activity of LPS samples was evaluated by their ability to induce production of proinflammatory cytokines, such as IL-6 and TNF, by bone marrow-derived macrophages. Our results demonstrate direct correlation between the biological activity of LPS from these pathogenic bacteria and the extent of their lipid A acylation. PMID:26635809

  13. Inhibitory effect against pathogenic and spoilage bacteria of Pseudomonas strains isolated from spoiled and fresh fish.

    PubMed Central

    Gram, L

    1993-01-01

    The antibacterial effects of 209 Pseudomonas strains isolated from spoiled iced fish and newly caught fish were assessed by screening target organisms in agar diffusion assays. One-third (67 strains) inhibited the growth of one or several of six target organisms (Escherichia coli, Shewanella putrefaciens, Aeromonas sobria, Pseudomonas fluorescens, Listeria monocytogenes, and Staphylococcus aureus), of which S. aureus and A. sobria were the most sensitive. The inhibitory action was most pronounced among the strains producing siderophores, and the presence of iron eliminated the antibacterial effect of two-thirds of the inhibitory strains. Siderophore-mediated competition for iron may explain the inhibitory activity of these strains. All but nine of the inhibiting strains were found to inhibit the growth of 38 psychrotrophic S. putrefaciens strains isolated from spoiling fish and fish products. Siderophore-containing Pseudomonas culture supernatants inhibited growth of S. putrefaciens, as did the addition of iron chelators (ethylenediamine dihydroxyphenylacetic acid [EDDHA]). In particular, Pseudomonas strains isolated from newly caught and spoiled Nile perch (Lates niloticus) inhibited S. putrefaciens. This suggests that microbial interaction (e.g., competition or antagonism) may influence the selection of a microflora for some chilled food products. PMID:8357253

  14. The Pseudomonas aeruginosa Pathogenicity Island PAPI-1 is transferred via a novel Type IV pilus

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments including humans is in part due to its large and diverse genomic repertoi...

  15. Pseudomonas fluorescens Filamentous Hemagglutinin, an Iron-Regulated Protein, Is an Important Virulence Factor that Modulates Bacterial Pathogenicity

    PubMed Central

    Sun, Yuan-Yuan; Chi, Heng; Sun, Li

    2016-01-01

    Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA) as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i) exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii) displayed no apparent flagella and motility, (iii) was defective in the attachment to host cells and unable to form self-aggregation, (iv) displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity. PMID:27602029

  16. Pseudomonas fluorescens Filamentous Hemagglutinin, an Iron-Regulated Protein, Is an Important Virulence Factor that Modulates Bacterial Pathogenicity.

    PubMed

    Sun, Yuan-Yuan; Chi, Heng; Sun, Li

    2016-01-01

    Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA) as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i) exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii) displayed no apparent flagella and motility, (iii) was defective in the attachment to host cells and unable to form self-aggregation, (iv) displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity.

  17. Pseudomonas 2007 Meeting Review

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas is an important genus of bacteria. Pseudomonas aeruginosa is the third most common nosocomial pathogen in our society, associated with chronic and eventually fatal lung disease in cystic fibrosis patients, while Pseudomonas syringae species are prominent plant pathogens. The fluorescen...

  18. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    PubMed Central

    Hayes, Byron W.; Runde, Brendan J.; Markel, Eric; Swingle, Bryan M.; Vinatzer, Boris A.

    2016-01-01

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, to replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacteria use chemical-directed regulation of flagellar rotation, a process known as chemotaxis, to move towards favorable environmental conditions. Chemotactic sensing of the plant surface is a potential mechanism through which foliar plant pathogens home in on wounds or stomata, but chemotactic systems in foliar plant pathogens are not well characterized. Comparative genomics of the plant pathogen Pseudomonas syringae pathovar tomato (Pto) implicated annotated chemotaxis genes in the recent adaptations of one Pto lineage. We therefore characterized the chemosensory system of Pto. The Pto genome contains two primary chemotaxis gene clusters, che1 and che2. The che2 cluster is flanked by flagellar biosynthesis genes and similar to the canonical chemotaxis gene clusters of other bacteria based on sequence and synteny. Disruption of the primary phosphorelay kinase gene of the che2 cluster, cheA2, eliminated all swimming and surface motility at 21 °C but not 28 °C for Pto. The che1 cluster is located next to Type IV pili biosynthesis genes but disruption of cheA1 has no observable effect on twitching motility for Pto. Disruption of cheA2 also alters in planta fitness of the pathogen with strains lacking functional cheA2 being less fit in host plants but more fit in a non-host interaction. PMID:27812402

  19. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity.

    PubMed

    Clarke, Christopher R; Hayes, Byron W; Runde, Brendan J; Markel, Eric; Swingle, Bryan M; Vinatzer, Boris A

    2016-01-01

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, to replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacteria use chemical-directed regulation of flagellar rotation, a process known as chemotaxis, to move towards favorable environmental conditions. Chemotactic sensing of the plant surface is a potential mechanism through which foliar plant pathogens home in on wounds or stomata, but chemotactic systems in foliar plant pathogens are not well characterized. Comparative genomics of the plant pathogen Pseudomonas syringae pathovar tomato (Pto) implicated annotated chemotaxis genes in the recent adaptations of one Pto lineage. We therefore characterized the chemosensory system of Pto. The Pto genome contains two primary chemotaxis gene clusters, che1 and che2. The che2 cluster is flanked by flagellar biosynthesis genes and similar to the canonical chemotaxis gene clusters of other bacteria based on sequence and synteny. Disruption of the primary phosphorelay kinase gene of the che2 cluster, cheA2, eliminated all swimming and surface motility at 21 °C but not 28 °C for Pto. The che1 cluster is located next to Type IV pili biosynthesis genes but disruption of cheA1 has no observable effect on twitching motility for Pto. Disruption of cheA2 also alters in planta fitness of the pathogen with strains lacking functional cheA2 being less fit in host plants but more fit in a non-host interaction.

  20. Relationships between Root Pathogen Resistance, Abundance and Expression of Pseudomonas Antimicrobial Genes, and Soil Properties in Representative Swiss Agricultural Soils

    PubMed Central

    Imperiali, Nicola; Dennert, Francesca; Schneider, Jana; Laessle, Titouan; Velatta, Christelle; Fesselet, Marie; Wyler, Michele; Mascher, Fabio; Mavrodi, Olga; Mavrodi, Dmitri; Maurhofer, Monika; Keel, Christoph

    2017-01-01

    Strains of Pseudomonas that produce antimicrobial metabolites and control soilborne plant diseases have often been isolated from soils defined as disease-suppressive, i.e., soils, in which specific plant pathogens are present, but plants show no or reduced disease symptoms. Moreover, it is assumed that pseudomonads producing antimicrobial compounds such as 2,4-diacetylphloroglucinol (DAPG) or phenazines (PHZ) contribute to the specific disease resistance of suppressive soils. However, pseudomonads producing antimicrobial metabolites are also present in soils that are conducive to disease. Currently, it is still unknown whether and to which extent the abundance of antimicrobials-producing pseudomonads is related to the general disease resistance of common agricultural soils. Moreover, virtually nothing is known about the conditions under which pseudomonads express antimicrobial genes in agricultural field soils. We present here results of the first side-by-side comparison of 10 representative Swiss agricultural soils with a cereal-oriented cropping history for (i) the resistance against two soilborne pathogens, (ii) the abundance of Pseudomonas bacteria harboring genes involved in the biosynthesis of the antimicrobials DAPG, PHZ, and pyrrolnitrin on roots of wheat, and (iii) the ability to support the expression of these genes on the roots. Our study revealed that the level of soil disease resistance strongly depends on the type of pathogen, e.g., soils that are highly resistant to Gaeumannomyces tritici often are highly susceptible to Pythium ultimum and vice versa. There was no significant correlation between the disease resistance of the soils, the abundance of Pseudomonas bacteria carrying DAPG, PHZ, and pyrrolnitrin biosynthetic genes, and the ability of the soils to support the expression of the antimicrobial genes. Correlation analyses indicated that certain soil factors such as silt, clay, and some macro- and micronutrients influence both the abundance and

  1. Relationships between Root Pathogen Resistance, Abundance and Expression of Pseudomonas Antimicrobial Genes, and Soil Properties in Representative Swiss Agricultural Soils.

    PubMed

    Imperiali, Nicola; Dennert, Francesca; Schneider, Jana; Laessle, Titouan; Velatta, Christelle; Fesselet, Marie; Wyler, Michele; Mascher, Fabio; Mavrodi, Olga; Mavrodi, Dmitri; Maurhofer, Monika; Keel, Christoph

    2017-01-01

    Strains of Pseudomonas that produce antimicrobial metabolites and control soilborne plant diseases have often been isolated from soils defined as disease-suppressive, i.e., soils, in which specific plant pathogens are present, but plants show no or reduced disease symptoms. Moreover, it is assumed that pseudomonads producing antimicrobial compounds such as 2,4-diacetylphloroglucinol (DAPG) or phenazines (PHZ) contribute to the specific disease resistance of suppressive soils. However, pseudomonads producing antimicrobial metabolites are also present in soils that are conducive to disease. Currently, it is still unknown whether and to which extent the abundance of antimicrobials-producing pseudomonads is related to the general disease resistance of common agricultural soils. Moreover, virtually nothing is known about the conditions under which pseudomonads express antimicrobial genes in agricultural field soils. We present here results of the first side-by-side comparison of 10 representative Swiss agricultural soils with a cereal-oriented cropping history for (i) the resistance against two soilborne pathogens, (ii) the abundance of Pseudomonas bacteria harboring genes involved in the biosynthesis of the antimicrobials DAPG, PHZ, and pyrrolnitrin on roots of wheat, and (iii) the ability to support the expression of these genes on the roots. Our study revealed that the level of soil disease resistance strongly depends on the type of pathogen, e.g., soils that are highly resistant to Gaeumannomyces tritici often are highly susceptible to Pythium ultimum and vice versa. There was no significant correlation between the disease resistance of the soils, the abundance of Pseudomonas bacteria carrying DAPG, PHZ, and pyrrolnitrin biosynthetic genes, and the ability of the soils to support the expression of the antimicrobial genes. Correlation analyses indicated that certain soil factors such as silt, clay, and some macro- and micronutrients influence both the abundance and

  2. Pseudomonas aeruginosa renews its virulence factors.

    PubMed

    Huber, Philippe; Basso, Pauline; Reboud, Emeline; Attrée, Ina

    2016-07-18

    Highly divergent strains of the major human opportunistic pathogen Pseudomonas aeruginosa have been isolated around the world by different research laboratories. They came from patients with various types of infectious diseases or from the environment. These strains are devoid of the major virulence factor used by classical strains, the Type III secretion system, but possess additional putative virulence factors, including a novel two-partner secretion system, ExlBA, responsible for the hypervirulent behavior of some clinical isolates. Here, we review the genetic and phenotypic characteristics of these recently-discovered P. aeruginosa outliers. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Identification of an ISR-related metabolite produced by Pseudomonas chlororaphis O6 against the wildfire pathogen pseudomonas syringae pv.tabaci in tobacco.

    PubMed

    Park, Myung Ryeol; Kim, Young Cheol; Park, Ju Yeon; Han, Song Hee; Kim, Kil Yong; Lee, Sun Woo; Kim, In Seon

    2008-10-01

    Pseudomonas chlororaphis O6 exhibits induced systemic resistance (ISR) against P. syringae pv. tabaci in tobacco. To identify one of the ISR metabolites, O6 cultures were extracted with organic solvents, and the organic extracts were subjected to column chromatography followed by spectroscopy analyses. The ISR bioassay-guided fractionation was carried out for isolation of the metabolite. Highresolution mass spectrometric analysis of the metabolite found C(9)H(9)O(3)N with an exact mass of 179.0582. LC/MS analysis in positive mode showed an (M+H)(+) peak at m/zeta 180. Nuclear magnetic resonance ((1)H, (13)C) analyses identified all protons and carbons of the metabolite. Based on the spectroscopy data, the metabolite was identified 4-(aminocarbonyl) phenylacetate (4-ACPA). 4-ACPA applied at 68.0 mM exhibited ISR activity at a level similar 1.0 mM salicylic acid. This is the first report to identify an ISR metabolite produced by P. chlororaphis O6 against the wildfire pathogen P. syringae pv. tabaci in tobacco.

  4. N-acylhomoserine lactone-regulation of genes mediating motility and pathogenicity in Pseudomonas syringae pathovar tabaci 11528.

    PubMed

    Cheng, Feifei; Ma, Anzhou; Luo, Jinxue; Zhuang, Xuliang; Zhuang, Guoqiang

    2017-01-29

    Pseudomonas syringae pathovar tabaci 11528 (P. syringae 11528) is a phytopathogen that causes wild-fire disease in soybean and tobacco plants. It utilizes a cell density-dependent regulation system known as quorum sensing (QS). In its QS system, the psyI is responsible for the biosynthesis of N-acylhomoserine lactones (AHLs). By comparing the transcripts from P. syringae 11528 wild-type strain with those of the ΔpsyI mutant using RNA sequencing (RNA-seq) technology, 1118 AHL-regulated genes were identified in the transition from exponential to stationary growth phase. Numerous AHL-regulated genes involved in pathogenicity were negatively controlled, including genes linked to flagella, chemotaxis, pilus, extracellular polysaccharides, secretion systems, and two-component system. Moreover, gene ontology and pathway enrichment analysis revealed that the most pronounced regulation was associated with bacterial motility. Finally, phenotypic assays showed that QS-regulated traits were involved in epiphytic growth of pathogens and disease development in plants. These findings imply that the AHL-mediated QS system in P. syringae 11528 plays significant roles in distinct stages of interactions between plants and pathogens, including early plant colonization and late plant infection.

  5. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants.

    PubMed

    Xin, Xiu-Fang; He, Sheng Yang

    2013-01-01

    Since the early 1980s, various strains of the gram-negative bacterial pathogen Pseudomonas syringae have been used as models for understanding plant-bacterial interactions. In 1991, a P. syringae pathovar tomato (Pst) strain, DC3000, was reported to infect not only its natural host tomato but also Arabidopsis in the laboratory, a finding that spurred intensive efforts in the subsequent two decades to characterize the molecular mechanisms by which this strain causes disease in plants. Genomic analysis shows that Pst DC3000 carries a large repertoire of potential virulence factors, including proteinaceous effectors that are secreted through the type III secretion system and a polyketide phytotoxin called coronatine, which structurally mimics the plant hormone jasmonate (JA). Study of Pst DC3000 pathogenesis has not only provided several conceptual advances in understanding how a bacterial pathogen employs type III effectors to suppress plant immune responses and promote disease susceptibility but has also facilitated the discovery of the immune function of stomata and key components of JA signaling in plants. The concepts derived from the study of Pst DC3000 pathogenesis may prove useful in understanding pathogenesis mechanisms of other plant pathogens.

  6. Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1

    PubMed Central

    Betts, Alex; Vasse, Marie; Kaltz, Oliver; Hochberg, Michael E

    2013-01-01

    Antibiotic resistance is becoming increasingly problematic for the treatment of infectious disease in both humans and livestock. The bacterium Pseudomonas aeruginosa is often found to be resistant to multiple antibiotics and causes high patient mortality in hospitals. Bacteriophages represent a potential option to combat pathogenic bacteria through their application in phage therapy. Here, we capitalize on previous studies showing how evolution may increase phage infection capacity relative to ancestral genotypes. We passaged four different phage isolates (podoviridae, myoviridae) through six serial transfers on the ancestral strain of Pseudomonas aeruginosa PAO1. We first demonstrate that repeated serial passage on ancestral bacteria increases infection capacity of bacteriophage on ancestral hosts and on those evolved for one transfer. This result is confirmed when examining the ability of evolved phage to reduce ancestral host population sizes. Second, through interaction with a single bacteriophage for 24 h, P. aeruginosa can evolve resistance to the ancestor of that bacteriophage; this also provides these evolved bacteria with cross-resistance to the other three bacteriophages. We discuss how the evolutionary training of phages could be employed as effective means of combatting bacterial infections or disinfecting surfaces in hospital settings, with reduced risk of bacterial resistance compared with conventional methods. PMID:24187587

  7. The Role of 2,4-diacetylphloroglucinol- and phenazine-1-carboxylic acid-producing Pseudomonas spp. in Natural Protection of Wheat from Soilborne Pathogens

    USDA-ARS?s Scientific Manuscript database

    Fluorescent Pseudomonas isolated from the rhizosphere of diverse plants have been studied as biocontrol agents of soilborne pathogens worldwide. Certain strains of these bacteria are capable of exerting a variety of mechanisms of plant growth promotion and protection, including the production of the...

  8. Complete Genome Sequence of Pseudomonas brassicacearum LBUM300, a Disease-Suppressive Bacterium with Antagonistic Activity toward Fungal, Oomycete, and Bacterial Plant Pathogens.

    PubMed

    Novinscak, Amy; Gadkar, Vijay J; Joly, David L; Filion, Martin

    2016-01-28

    Pseudomonas brassicacearum LBUM300, a plant rhizosphere-inhabiting bacterium, produces 2,4-diacetylphloroglucinol and hydrogen cyanide and has shown antagonistic activity against the plant pathogens Verticillium dahliae, Phytophthora cactorum, and Clavibacter michiganensis subsp. michiganensis. Here, we report the complete genome sequence of P. brassicacearum LBUM300.

  9. Two strains of Pseudomonas fluorscens bacteria differentially affect survivorship of waxworm (Galleria mellonella) larvae exposed to an arthropod fungal pathogen, Beauveria bassiana

    USDA-ARS?s Scientific Manuscript database

    Two strains of Pseudomonas fluorescens were found contaminating a biopesticide used in a previous study against Varroa destructor infestations in honey bee hives. In the aforementioned study the biopesticide, a formulation of the arthropod pathogen Beauveria bassiana, failed to have any impact on t...

  10. Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions

    USDA-ARS?s Scientific Manuscript database

    The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a consensus promoter sequence, often designated as the “hrp promoter.” Although...

  11. Complete genome of Pseudomonas chlororaphis strain UFB2, a soil bacterium with antibacterial activity against bacterial canker pathogen of tomato.

    PubMed

    Deng, Peng; Wang, Xiaoqiang; Baird, Sonya M; Lu, Shi-En

    2015-01-01

    Strain UFB2 was isolated from a soybean field soil in Mississippi and identified as a member of Pseudomonas chlororaphis. Strain UFB2 has a broad-spectrum antimicrobial activity against common soil-borne pathogens. Plate assays showed that strain UFB2 was especially efficient in inhibiting the growth of Clavibacter michiganensis 1-07, the causal agent of the devastating bacterial canker of tomato. Here, the complete genome sequence of P. chlororaphis strain UFB2 is reported and described. The strain UFB2 genome consists of a circular chromosome of 6,360,256 bp of which 87.86 % are protein-coding bases. Genome analysis revealed multiple gene islands encoding various secondary metabolites such as 2,4-diacetylphloroglucinol. Further genome analysis will provide more details about strain UFB2 antibacterial activities mechanisms and the use of this strain as a potential biocontrol agent.

  12. Altering the Ratio of Phenazines in Pseudomonas chlororaphis (aureofaciens) Strain 30-84: Effects on Biofilm Formation and Pathogen Inhibition▿

    PubMed Central

    Maddula, V. S. R. K.; Pierson, E. A.; Pierson, L. S.

    2008-01-01

    Pseudomonas chlororaphis strain 30-84 is a plant-beneficial bacterium that is able to control take-all disease of wheat caused by the fungal pathogen Gaeumannomyces graminis var. tritici. The production of phenazines (PZs) by strain 30-84 is the primary mechanism of pathogen inhibition and contributes to the persistence of strain 30-84 in the rhizosphere. PZ production is regulated in part by the PhzR/PhzI quorum-sensing (QS) system. Previous flow cell analyses demonstrated that QS and PZs are involved in biofilm formation in P. chlororaphis (V. S. R. K. Maddula, Z. Zhang, E. A. Pierson, and L. S. Pierson III, Microb. Ecol. 52:289-301, 2006). P. chlororaphis produces mainly two PZs, phenazine-1-carboxylic acid (PCA) and 2-hydroxy-PCA (2-OH-PCA). In the present study, we examined the effect of altering the ratio of PZs produced by P. chlororaphis on biofilm formation and pathogen inhibition. As part of this study, we generated derivatives of strain 30-84 that produced only PCA or overproduced 2-OH-PCA. Using flow cell assays, we found that these PZ-altered derivatives of strain 30-84 differed from the wild type in initial attachment, mature biofilm architecture, and dispersal from biofilms. For example, increased 2-OH-PCA production promoted initial attachment and altered the three-dimensional structure of the mature biofilm relative to the wild type. Additionally, both alterations promoted thicker biofilm development and lowered dispersal rates compared to the wild type. The PZ-altered derivatives of strain 30-84 also differed in their ability to inhibit the fungal pathogen G. graminis var. tritici. Loss of 2-OH-PCA resulted in a significant reduction in the inhibition of G. graminis var. tritici. Our findings suggest that alterations in the ratios of antibiotic secondary metabolites synthesized by an organism may have complex and wide-ranging effects on its biology. PMID:18263718

  13. Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity.

    PubMed

    Llamas, María A; Imperi, Francesco; Visca, Paolo; Lamont, Iain L

    2014-07-01

    Membrane-spanning signaling pathways enable bacteria to alter gene expression in response to extracytoplasmic stimuli. Many such pathways are cell-surface signaling (CSS) systems, which are tripartite molecular devices that allow Gram-negative bacteria to transduce an extracellular stimulus into a coordinated transcriptional response. Typically, CSS systems are composed of the following: (1) an outer membrane receptor, which senses the extracellular stimulus; (2) a cytoplasmic membrane-spanning protein involved in signal transduction from the periplasm to the cytoplasm; and (3) an extracytoplasmic function (ECF) sigma factor that initiates expression of the stimulus-responsive gene(s). Members of genus Pseudomonas provide a paradigmatic example of how CSS systems contribute to the global control of gene expression. Most CSS systems enable self-regulated uptake of iron via endogenous (pyoverdine) or exogenous (xenosiderophores, heme, and citrate) carriers. Some are also implicated in virulence, biofilm formation, and cell-cell interactions. Incorporating insights from the well-characterized alginate regulatory circuitry, this review will illustrate common themes and variations at the level of structural and functional properties of Pseudomonas CSS systems. Control of the expression and activity of ECF sigma factors are central to gene regulation via CSS, and the variety of intrinsic and extrinsic factors influencing these processes will be discussed.

  14. Differential habitat use and niche partitioning by Pseudomonas species in human homes.

    PubMed

    Remold, Susanna K; Brown, Christopher K; Farris, Justin E; Hundley, Thomas C; Perpich, Jessica A; Purdy, Megan E

    2011-10-01

    Many species of Pseudomonas have the ability to use a variety of resources and habitats, and as a result Pseudomonas are often characterized as having broad fundamental niches. We questioned whether actual habitat use by Pseudomonas species is equally broad. To do this, we sampled extensively to describe the biogeography of Pseudomonas within the human home, which presents a wide variety of habitats for microbes that live in close proximity to humans but are not part of the human flora, and for microbes that are opportunistic pathogens, such as Pseudomonas aeruginosa. From 960 samples taken in 20 homes, we obtained 163 Pseudomonas isolates. The most prevalent based on identification using the SepsiTest BLAST analysis of 16S rRNA (http://www.sepsitest-blast.de) were Pseudomonas monteilii (42 isolates), Pseudomonas plecoglossicida, Pseudomonas fulva, and P. aeruginosa (approximately 25 each). Of these, all but P. fulva differed in recovery rates among evaluated habitat types (drains, soils, water, internal vertebrate sites, vertebrate skin, inanimate surfaces, and garbage/compost) and all four species also differed in recovery rates among subcategories of habitat types (e.g., types of soils or drains). We also found that at both levels of habitat resolution, each of these six most common species (the four above plus Pseudomonas putida and Pseudomonas oryzihabitans) were over- or under-represented in some habitats relative to their contributions to the total Pseudomonas collected across all habitats. This pattern is consistent with niche partitioning. These results suggest that, whereas Pseudomonas are often characterized as generalists with broad fundamental niches, these species in fact have more restricted realized niches. Furthermore, niche partitioning driven by competition among Pseudomonas species may be contributing to the observed variability in habitat use by Pseudomonas in this system.

  15. Domain shuffling in a sensor protein contributed to the evolution of insect pathogenicity in plant-beneficial Pseudomonas protegens.

    PubMed

    Kupferschmied, Peter; Péchy-Tarr, Maria; Imperiali, Nicola; Maurhofer, Monika; Keel, Christoph

    2014-02-01

    Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots. By using quantitative single cell microscopy and mutant analysis, we provide evidence that the sensor histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that it is indeed functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive modifications of the recruited sensor domain were critical for the microorganism to express its potent insect toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial pathogenicity.

  16. Photodynamic inactivation of pathogenic species Pseudomonas aeruginosa and Candida albicans with lutetium (III) acetate phthalocyanines and specific light irradiation.

    PubMed

    Mantareva, Vanya; Kussovski, Vesselin; Durmuş, Mahmut; Borisova, Ekaterina; Angelov, Ivan

    2016-11-01

    Photodynamic inactivation (PDI) is a light-associated therapeutic approach suitable for treatment of local acute infections. The method is based on specific light-activated compound which by specific irradiation and in the presence of molecular oxygen produced molecular singlet oxygen and other reactive oxygen species, all toxic for pathogenic microbial cells. The study presents photodynamic impact of two recently synthesized water-soluble cationic lutetium (III) acetate phthalocyanines (LuPc-5 and LuPc-6) towards two pathogenic strains, namely, the Gram-negative bacterium Pseudomonas aeruginosa and a fungus Candida albicans. The photodynamic effect was evaluated for the cells in suspensions and organized in 48-h developed biofilms. The relatively high levels of uptakes of LuPc-5 and LuPc-6 were determined for fungal cells compared to bacterial cells. The penetration depths and distribution of both LuPcs into microbial biofilms were investigated by means of confocal fluorescence microscopy. The photoinactivation efficiency was studied for a wide concentration range (0.85-30 μM) of LuPc-5 and LuPc-6 at a light dose of 50 J cm(-2) from red light-emitting diode (LED; 665 nm). The PDI study on microbial biofilms showed incomplete photoinactivation (<3 logs) for the used gentle drug-light protocol.

  17. Multi drug resistant Pseudomonas aeruginosa: Pathogen burden and associated antibiogram in a tertiary care hospital of Pakistan.

    PubMed

    Ullah, Waheed; Qasim, Muhammad; Rahman, Hazir; Bari, Fazli; Khan, Saadullah; Rehman, Zia Ur; Khan, Zahid; Dworeck, Tamara; Muhammad, Noor

    2016-08-01

    Pseudomonas aeruginosa is an important pathogen of both community and hospital acquired infections, and a major threat to public health for continuous emergence of multi-drug resistance. Current prevalence and pattern of multidrug resistance in the clinical isolates of P. aeruginosa is reported here. Samples were collected from September 2013 to January 2014 tertiary care hospital, Peshawar. Samples were subjected to phenotypic and molecular based detection of P. aeruginosa and were further processed for multidrug resistance pattern. Out of 3700 samples, 102 were identified as MDR P. aeruginosa. Prevalence of MDR isolates were found in pus (34.3%), wounds (28.4%), urine (19.6%), blood (14.7%) and sputum (2.9%) respectively. Isolates were more resistant to Sulphamethoxazole/Trimethoprim (98.04%), Amoxycillin/Clavulanic acid, Doxycycline and Chloramphenicol (95.1%) each, while least resistant to Imipenem (43.1%), Cefoperazone/Sulbactam (50.98%) and Amikacin (53.9%). Extensive MDR pattern was observed in P. aeruginosa was found as (n = 17, 16.6%) isolates were resistant to all four classes of antibiotics. Increased burden of MDR P. aeruginosa was documented in the study. Moreover, some isolates were even resistant to four classes of antibiotics. Findings of the study will be helpful to devise an appropriate antibiotic treatment strategy against MDR P. aeruginosa to cope the chances of evolving resistant pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The hrp pathogenicity island of Pseudomonas syringae pv. tomato DC3000 is induced by plant phenolic acids.

    PubMed

    Lee, Jun Seung; Ryu, Hye Ryun; Cha, Ji Young; Baik, Hyung Suk

    2015-10-01

    Plants produce a wide array of antimicrobial compounds, such as phenolic compounds, to combat microbial pathogens. The hrp PAI is one of the major virulence factors in the plant pathogen, Pseudomonas syringae. A major role of hrp PAI is to disable the plant defense system during bacterial invasion. We examined the influence of phenolic compounds on hrp PAI gene expression at low and high concentrations. There was approximately 2.5 times more hrpA and hrpZ mRNA in PtoDC3000 that was grown in minimal media (MM) supplemented with 10 -M of ortho-coumaric acid than in PtoDC3000 grown in MM alone. On the other hand, a significantly lower amount of hrpA mRNA was observed in bacteria grown in MM supplemented with a high concentration of phenolic compounds. To determine the regulation pathway for hrp PAI gene expression, we performed qRTPCR using gacS, gacA, and hrpS deletion mutants.

  19. Domain Shuffling in a Sensor Protein Contributed to the Evolution of Insect Pathogenicity in Plant-Beneficial Pseudomonas protegens

    PubMed Central

    Kupferschmied, Peter; Péchy-Tarr, Maria; Imperiali, Nicola; Maurhofer, Monika; Keel, Christoph

    2014-01-01

    Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots. By using quantitative single cell microscopy and mutant analysis, we provide evidence that the sensor histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that it is indeed functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive modifications of the recruited sensor domain were critical for the microorganism to express its potent insect toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial pathogenicity. PMID:24586167

  20. In vitro activity of antimicrobial agents against Pseudomonas tolaasii, pathogen of cultivated button mushroom.

    PubMed

    Todorović, Biljana; Milijasević-Marčić, Svetlana; Potočnik, Ivana; Stepanović, Miloš; Rekanović, Emil; Nikolić-Bujanović, Ljiljana; Cekerevac, Milan

    2012-01-01

    In vitro antibacterial activity tests of seven biofungicides (Ekstrasol, Bisolbisan, Bisolbifit, Serenade, Sonata, Timorex, F-Stop) and two disinfectants (colloidal silver alone and in combination with hydrogen peroxide) against the Pseudomonas tolaasii strain (NS3B6) were carried out by the disc-diffusion, broth microdilution and broth macrodilution method. Biofungicides tested in this study did not exhibit any antimicrobial activity in neither one of the methods used. Disc diffusion method revealed high sensitivity of the tested P. tolaasii strain to Ecocute based on colloidal silver and hydrogen peroxide. Both microdilution and macrodilution methods identified the same MICs and MBCs of Ecocute (0.19 mg/L) for P. tolaasii strain. MICs and MBCs values of silver alone were much higher (10 mg/L) compared to silver in combination with hydrogen peroxide.

  1. Characterization of the bacterial stem blight pathogen of alfalfa, Pseudomonas syringae pv. syringae ALF3

    USDA-ARS?s Scientific Manuscript database

    Bacterial stem blight of alfalfa occurs sporadically in the central and western U.S. Yield losses of up to 50% of the first harvest can occur with some cultivars. Developing resistant cultivars is hampered by lack of information on the pathogen and a standard test for evaluating plant germplasm. Bac...

  2. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system.

    PubMed

    Innerebner, Gerd; Knief, Claudia; Vorholt, Julia A

    2011-05-01

    Diverse bacterial taxa live in association with plants without causing deleterious effects. Previous analyses of phyllosphere communities revealed the predominance of few bacterial genera on healthy dicotyl plants, provoking the question of whether these commensals play a particular role in plant protection. Here, we tested two of them, Methylobacterium and Sphingomonas, with respect to their ability to diminish disease symptom formation and the proliferation of the foliar plant pathogen Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Plants were grown under gnotobiotic conditions in the absence or presence of the potential antagonists and then challenged with the pathogen. No effect of Methylobacterium strains on disease development was observed. However, members of the genus Sphingomonas showed a striking plant-protective effect by suppressing disease symptoms and diminishing pathogen growth. A survey of different Sphingomonas strains revealed that most plant isolates protected A. thaliana plants from developing severe disease symptoms. This was not true for Sphingomonas strains isolated from air, dust, or water, even when they reached cell densities in the phyllosphere comparable to those of the plant isolates. This suggests that plant protection is common among plant-colonizing Sphingomonas spp. but is not a general trait conserved within the genus Sphingomonas. The carbon source profiling of representative isolates revealed differences between protecting and nonprotecting strains, suggesting that substrate competition plays a role in plant protection by Sphingomonas. However, other mechanisms cannot be excluded at this time. In conclusion, the ability to protect plants as shown here in a model system may be an unexplored, common trait of indigenous Sphingomonas spp. and may be of relevance under natural conditions.

  3. Protection of Arabidopsis thaliana against Leaf-Pathogenic Pseudomonas syringae by Sphingomonas Strains in a Controlled Model System ▿ †

    PubMed Central

    Innerebner, Gerd; Knief, Claudia; Vorholt, Julia A.

    2011-01-01

    Diverse bacterial taxa live in association with plants without causing deleterious effects. Previous analyses of phyllosphere communities revealed the predominance of few bacterial genera on healthy dicotyl plants, provoking the question of whether these commensals play a particular role in plant protection. Here, we tested two of them, Methylobacterium and Sphingomonas, with respect to their ability to diminish disease symptom formation and the proliferation of the foliar plant pathogen Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Plants were grown under gnotobiotic conditions in the absence or presence of the potential antagonists and then challenged with the pathogen. No effect of Methylobacterium strains on disease development was observed. However, members of the genus Sphingomonas showed a striking plant-protective effect by suppressing disease symptoms and diminishing pathogen growth. A survey of different Sphingomonas strains revealed that most plant isolates protected A. thaliana plants from developing severe disease symptoms. This was not true for Sphingomonas strains isolated from air, dust, or water, even when they reached cell densities in the phyllosphere comparable to those of the plant isolates. This suggests that plant protection is common among plant-colonizing Sphingomonas spp. but is not a general trait conserved within the genus Sphingomonas. The carbon source profiling of representative isolates revealed differences between protecting and nonprotecting strains, suggesting that substrate competition plays a role in plant protection by Sphingomonas. However, other mechanisms cannot be excluded at this time. In conclusion, the ability to protect plants as shown here in a model system may be an unexplored, common trait of indigenous Sphingomonas spp. and may be of relevance under natural conditions. PMID:21421777

  4. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates.

    PubMed

    Friman, V-P; Soanes-Brown, D; Sierocinski, P; Molin, S; Johansen, H K; Merabishvili, M; Pirnay, J-P; De Vos, D; Buckling, A

    2016-01-01

    Recent years have seen renewed interest in phage therapy--the use of viruses to specifically kill disease-causing bacteria--because of the alarming rise in antibiotic resistance. However, a major limitation of phage therapy is the ease at with bacteria can evolve resistance to phages. Here, we determined whether in vitro experimental coevolution can increase the efficiency of phage therapy by limiting the resistance evolution of intermittent and chronic cystic fibrosis Pseudomonas aeruginosa lung isolates to four different phages. We first pre-adapted all phage strains against all bacterial strains and then compared the efficacy of pre-adapted and nonadapted phages against ancestral bacterial strains. We found that evolved phages were more efficient in reducing bacterial densities than ancestral phages. This was primarily because only 50% of bacterial strains were able to evolve resistance to evolved phages, whereas all bacteria were able to evolve some level of resistance to ancestral phages. Although the rate of resistance evolution did not differ between intermittent and chronic isolates, it incurred a relatively higher growth cost for chronic isolates when measured in the absence of phages. This is likely to explain why evolved phages were more effective in reducing the densities of chronic isolates. Our data show that pathogen genotypes respond differently to phage pre-adaptation, and as a result, phage therapies might need to be individually adjusted for different patients. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  5. Pseudomonas aeruginosa, an emerging pathogen among burn patients in Kurdistan Province, Iran.

    PubMed

    Kalantar, Enayat; Taherzadeh, Shadi; Ghadimi, Tayeb; Soheili, Fariborz; Salimizand, Heiman; Hedayatnejad, Alireza

    2012-05-01

    This study was conducted to determine the incidence of Pseudomonas aeruginosa infections among burn patients at Tohid Hospital, Iran. A total of 176 clinical specimens were obtained from 145 burn patients admitted to the burn unit of Tohid Hospital to detect the presence of P. aeruginosa. Antimicrobial susceptibility testing was conducted to detect extended spectrum beta-lactamase (ESBL) producing P. aeruginiosa using Clinical and Laboratory Standards Institute guidelines with the double disc synergy test (DDST). A polymerase chain reaction was used to detect PER-1 and OXA-10 among the isolates. The mean age, total body surface area and length of hospital stay among patients were 29 years, 37.7%, and 10 days, respectively. Kerosene was the commonest cause of burn (60%), followed by gas (30%). During the study, P. aeruginosa was detected in 100 isolates. The antibiotics they were most commonly resistant to were cefotaxime, ceftriaxone and ciprofloxacin. Of the 100 P. aeroginusa isolates, 28% were positive for ESBL production with the DDST, 48% and 52% were PER-1 and OXA-10 producers, respectively. The high frequency of PER-1 and OXA-10 producers at this hospital is of concern considering their potential spread among burn patients.

  6. Pathogenic Effects of Biofilm on Pseudomonas Aeruginosa Pulmonary Infection and Its Relationship to Cytokines

    PubMed Central

    Cai, Shuangqi; Li, Yanan; Wang, Ke; Cen, Yanling; Lu, Huasong; Dong, Biying; Chen, Yiqiang; Kong, Jinliang

    2016-01-01

    Background An animal (Sprague-Dawley rat) model of Pseudomonas aeruginosa biofilm associated with chronic pulmonary infection in vivo was established and the effects of the biofilm on P. aeruginosa and its relationship to cytokines were investigated. Material/Methods Biofilm of P. aeruginosa in alginate beads and planktonic PA0725 were purified by anion-exchange chromatograph. Sprague-Dawley (SD) rats were immunized with the biofilm and then inhaled the same strain of P. aeruginosa. Anti-biofilm antibody titer was detected using the enzyme linked immunosorbent assay (ELISA) method. The cell count and differential count in the bronchoalveolar lavage fluid (BALF) were measured. The levels of cytokines (IL-17, IL-1β, MIP-2, and G-CSF) and tumor necrosis factor (TNF)-α in sera were also measured using an ELISA kit. Results The sera anti-biofilm IgG antibody titer of immunized SD rats was increased significantly on the 5th and 8th days after inhalation. The IL-17 concentration was significantly higher on the 8th day after inhalation. The results indicated that when biofilm-pre-immunized rats were challenged with inhalation of PA0725 of P. aeruginosa, the biofilm acted as an antigen substance and mediated the antibody reaction of the antigen, which might cause serious airway inflammatory response and lung tissue injury. This effect may be related to IL-17. Conclusions P. aeruginosa biofilm protected the bacterium from antibiotics and might induce host immune damage in lung tissue and facilitate bacterium evading the host barrier. PMID:27941713

  7. Survival of pathogenic bacteria under nutrient starvation conditions. [aboard orbiting space stations

    NASA Technical Reports Server (NTRS)

    Boyle, Michael; Ford, Tim; Mitchell, Ralph; Maki, James

    1990-01-01

    The survival of opportunistic pathogenic microorganisms in water, under nutrient-limiting conditions, has been investigated in order to ascertain whether human pathogens can survive within a water-distribution system of the kind proposed for the NASA Space Station. Cultures of a strain of pseudomonas aeruginosa and two strains of staphylococcus aureus were incubated at 10, 25, or 37 C, and samples at 1 day, 1 week, 1 month, and six weeks. While neither of the staphylococcus strains tested were detected after 1 week of starvation, the pseudomonas strain can survive in deionized water at all three temperatures.

  8. Survival of pathogenic bacteria under nutrient starvation conditions. [aboard orbiting space stations

    NASA Technical Reports Server (NTRS)

    Boyle, Michael; Ford, Tim; Mitchell, Ralph; Maki, James

    1990-01-01

    The survival of opportunistic pathogenic microorganisms in water, under nutrient-limiting conditions, has been investigated in order to ascertain whether human pathogens can survive within a water-distribution system of the kind proposed for the NASA Space Station. Cultures of a strain of pseudomonas aeruginosa and two strains of staphylococcus aureus were incubated at 10, 25, or 37 C, and samples at 1 day, 1 week, 1 month, and six weeks. While neither of the staphylococcus strains tested were detected after 1 week of starvation, the pseudomonas strain can survive in deionized water at all three temperatures.

  9. Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae—a Pathogen, Ice Nucleus, and Epiphyte

    PubMed Central

    Hirano, Susan S.; Upper, Christen D.

    2000-01-01

    The extremely large number of leaves produced by terrestrial and aquatic plants provide habitats for colonization by a diversity of microorganisms. This review focuses on the bacterial component of leaf microbial communities, with emphasis on Pseudomonas syringae—a species that participates in leaf ecosystems as a pathogen, ice nucleus, and epiphyte. Among the diversity of bacteria that colonize leaves, none has received wider attention than P. syringae, as it gained notoriety for being the first recombinant organism (Ice− P. syringae) to be deliberately introduced into the environment. We focus on P. syringae to illustrate the attractiveness and somewhat unique opportunities provided by leaf ecosystems for addressing fundamental questions of microbial population dynamics and mechanisms of plant-bacterium interactions. Leaf ecosystems are dynamic and ephemeral. The physical environment surrounding phyllosphere microbes changes continuously with daily cycles in temperature, radiation, relative humidity, wind velocity, and leaf wetness. Slightly longer-term changes occur as weather systems pass. Seasonal climatic changes impose still a longer cycle. The physical and physiological characteristics of leaves change as they expand, mature, and senesce and as host phenology changes. Many of these factors influence the development of populations of P. syringae upon populations of leaves. P. syringae was first studied for its ability to cause disease on plants. However, disease causation is but one aspect of its life strategy. The bacterium can be found in association with healthy leaves, growing and surviving for many generations on the surfaces of leaves as an epiphyte. A number of genes and traits have been identified that contribute to the fitness of P. syringae in the phyllosphere. While still in their infancy, such research efforts demonstrate that the P. syringae-leaf ecosystem is a particularly attractive system with which to bridge the gap between what is known

  10. Antagonistic effect of Pseudomonas graminis CPA-7 against foodborne pathogens in fresh-cut apples under simulated commercial conditions.

    PubMed

    Alegre, Isabel; Viñas, Inmaculada; Usall, Josep; Anguera, Marina; Altisent, Rosa; Abadias, Maribel

    2013-04-01

    Recently, we reported that the application of the strain CPA-7 of Pseudomonas graminis, previously isolated from apple, could reduce the population of foodborne pathogens on minimally processed (MP) apples and peaches under laboratory conditions. Therefore, the objective of the present work was to find an antioxidant treatment and a packaging atmosphere condition to improve CPA-7 efficacy in reducing a cocktail of four Salmonella and five Listeria monocytogenes strains on MP apples under simulated commercial processing. The effect of CPA-7 application on apple quality and its survival to simulated gastric stress were also evaluated. Ascorbic acid (2%, w/v) and N-acetyl-l-cysteine (1%, w/v) as antioxidant treatments reduced Salmonella, L. monocytogenes and CPA-7 recovery, meanwhile no reduction was observed with NatureSeal(®) AS1 (NS, 6%, w/v). The antagonistic strain was effective on NS-treated apple wedges stored at 10 °C with or without modified atmosphere packaging (MAP). Then, in a semi-commercial assay, efficacy of CPA-7 inoculated at 10(5) and 10(7) cfu mL(-1) against Salmonella and L. monocytogenes strains on MP apples with NS and MAP and stored at 5 and 10 °C was evaluated. Although high CPA-7 concentrations/populations avoided Salmonella growth at 10 °C and lowered L. monocytogenes population increases were observed at both temperatures, the effect was not instantaneous. No effect on apple quality was detected and CPA-7 did not survived to simulated gastric stress throughout storage. Therefore, CPA-7 could avoid pathogens growth on MP apples during storage when use as part of a hurdle technology in combination with disinfection techniques, low storage temperature and MAP. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A Blue Light Inducible Two-Component Signal Transduction System in the Plant Pathogen Pseudomonas syringae pv. tomato☆

    PubMed Central

    Cao, Z.; Buttani, V.; Losi, A.; Gärtner, W.

    2008-01-01

    Abstract The open reading frame PSPTO2896 from the plant pathogen Pseudomonas syringae pv. tomato encodes a protein of 534 amino acids showing all salient features of a blue light-driven two-component system. The N-terminal LOV (light, oxygen, voltage) domain, potentially binding a flavin chromophore, is followed by a histidine kinase (HK) motif and a response regulator (RR). The full-length protein (PST-LOV) and, separately, the RR and the LOV+HK part (PST-LOVΔRR) were heterologously expressed and functionally characterized. The two LOV proteins showed typical LOV-like spectra and photochemical reactions, with the blue light-driven, reversible formation of a covalent flavin-cysteine bond. The fluorescence changes in the lit state of full-length PST-LOV, but not in PST-LOVΔRR, indicating a direct interaction between the LOV core and the RR module. Experiments performed with radioactive ATP uncover the light-driven kinase activity. For both PST-LOV and PST-LOVΔRR, much more radioactivity is incorporated when the protein is in the lit state. Furthermore, addition of the RR domain to the fully phosphorylated PST-LOVΔRR leads to a very fast transfer of radioactivity, indicating a highly efficient HK activity and a tight interaction between PST-LOVΔRR and RR, possibly facilitated by the LOV core itself. PMID:17905842

  12. Emigration of the plant pathogen Pseudomonas syringae from leaf litter contributes to its population dynamics in alpine snowpack.

    PubMed

    Monteil, Caroline L; Guilbaud, Caroline; Glaux, Catherine; Lafolie, François; Soubeyrand, Samuel; Morris, Cindy E

    2012-08-01

    The recently discovered ubiquity of the plant pathogen Pseudomonas syringae in headwaters and alpine ecosystems worldwide elicits new questions about the ecology of this bacterium and subsequent consequences for disease epidemiology. Because of the major contribution of snow to river run-off during crop growth, we evaluated the population dynamics of P.syringae in snowpack and the underlying leaf litter during two years in the Southern French Alps. High population densities of P.syringae were found on alpine grasses, and leaf litter was identified as the main source of populations of P.syringae in snowpack, contributing more than the populations arriving with the snowfall. The insulating properties of snow foster survival of P.syringae throughout the winter in the 10 cm layer of snow closest to the soil. Litter and snowpack harboured populations of P.syringae that were very diverse in terms of phenotypes and genotypes. Neither substrate nor sampling site had a marked effect on the structure of P.syringae populations, and snow and litter had genotypes in common with other non-agricultural habitats and with crops. These results contribute to the mounting evidence that a highly diverse P.syringae metapopulation is disseminated throughout drainage basins between cultivated and non-cultivated zones.

  13. The Drosophila melanogaster Toll Pathway Participates in Resistance to Infection by the Gram-Negative Human Pathogen Pseudomonas aeruginosa

    PubMed Central

    Lau, Gee W.; Goumnerov, Boyan C.; Walendziewicz, Cynthia L.; Hewitson, Jennifer; Xiao, Wenzhong; Mahajan-Miklos, Shalina; Tompkins, Ronald G.; Perkins, Lizabeth A.; Rahme, Laurence G.

    2003-01-01

    Pseudomonas aeruginosa is a gram-negative pathogen that infects immunocompromised and cystic fibrosis patients. The molecular basis of the host-P. aeruginosa interaction and the effect of specific P. aeruginosa virulence factors on various components of the innate immunity pathways are largely unknown. We examine interactions between P. aeruginosa virulence factors and components of innate immunity response in the Drosophila melanogaster model system to reveal the importance of the Toll signaling pathway in resistance to infection by the P. aeruginosa human isolate PA14. Using the two PA14-isogenic mutants plcS and dsbA, we show that Drosophila loss-of-function mutants of Spatzle, the extracellular ligand of Toll, and Dorsal and Dif, two NF-κB-like transcription factors, allow increased P. aeruginosa infectivity within fly tissues. In contrast, a constitutively active Toll mutant and a loss-of-function mutant of Cactus, an IκB-like factor that inhibits the Toll signaling, reduce infectivity. Our finding that Dorsal activity is required to restrict P. aeruginosa infectivity in Drosophila provides direct in vivo evidence for Dorsal function in adult fly immunity. Additionally, our results provide the basis for future studies into interactions between P. aeruginosa virulence factors and components of the Toll signaling pathway, which is functionally conserved between flies and humans. PMID:12819096

  14. Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae.

    PubMed Central

    Rohmer, Laurence; Guttman, David S; Dangl, Jeffery L

    2004-01-01

    Many gram-negative pathogenic bacteria directly translocate effector proteins into eukaryotic host cells via type III delivery systems. Type III effector proteins are determinants of virulence on susceptible plant hosts; they are also the proteins that trigger specific disease resistance in resistant plant hosts. Evolution of type III effectors is dominated by competing forces: the likely requirement for conservation of virulence function, the avoidance of host defenses, and possible adaptation to new hosts. To understand the evolutionary history of type III effectors in Pseudomonas syringae, we searched for homologs to 44 known or candidate P. syringae type III effectors and two effector chaperones. We examined 24 gene families for distribution among bacterial species, amino acid sequence diversity, and features indicative of horizontal transfer. We assessed the role of diversifying and purifying selection in the evolution of these gene families. While some P. syringae type III effectors were acquired recently, others have evolved predominantly by descent. The majority of codons in most of these genes were subjected to purifying selection, suggesting selective pressure to maintain presumed virulence function. However, members of 7 families had domains subject to diversifying selection. PMID:15280247

  15. Agaricus blazei hot water extract shows anti quorum sensing activity in the nosocomial human pathogen Pseudomonas aeruginosa.

    PubMed

    Soković, Marina; Ćirić, Ana; Glamočlija, Jasmina; Nikolić, Miloš; van Griensven, Leo J L D

    2014-04-03

    The edible mushroom Agaricus blazei Murill is known to induce protective immunomodulatory action against a variety of infectious diseases. In the present study we report potential anti-quorum sensing properties of A. blazei hot water extract. Quorum sensing (QS) plays an important role in virulence, biofilm formation and survival of many pathogenic bacteria, including the Gram negative Pseudomonas aeruginosa, and is considered as a novel and promising target for anti-infectious agents. In this study, the effect of the sub-MICs of Agaricus blazei water extract on QS regulated virulence factors and biofilm formation was evaluated against P. aeruginosa PAO1. Sub-MIC concentrations of the extract which did not kill P. aeruginosa nor inhibited its growth, demonstrated a statistically significant reduction of virulence factors of P. aeruginosa, such as pyocyanin production, twitching and swimming motility. The biofilm forming capability of P. aeruginosa was also reduced in a concentration-dependent manner at sub-MIC values. Water extract of A. blazei is a promising source of antiquorum sensing and antibacterial compounds.

  16. Multicentric study in five African countries of antibiotic susceptibility for three main pathogens: Streptococcus pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa.

    PubMed

    Zerouali, Khalid; Ramdani-Bouguessa, Nadjia; Boye, Cheikh; Hammami, Adnane

    2016-08-01

    Antibiotic resistance is a growing clinical and epidemiological problem. We report on the antibiotic susceptibility of three pathogens isolated from patients in Algeria, Egypt, Morocco, Senegal, and Tunisia during 2010-2011. In total, 218 Streptococcus pneumoniae, 428 Staphylococcus aureus, and 414 Pseudomonas aeruginosa strains were collected. S. pneumoniae resistance was noted against penicillin (30.2%), erythromycin (27.4%), cefpodoxime (19.1%), amoxicillin (12.0%), cefotaxime (7.4%), and levofloxacin (3.2%). All the strains were teicoplanin susceptible. Staphylococcus aureus methicillin resistance differed between countries, from 5.0% in Senegal to 62.7% in Egypt. Levofloxacin resistance was low in all countries, and the highest rate (in Egypt) was still only 13.6% for intermediate and resistant strains combined. Most strains were susceptible to fosfomycin (99.3%) and pristinamycin (94.2%). P. aeruginosa resistance was found against levofloxacin (30.4%), ciprofloxacin (29.9%), tobramycin (19.7%), ceftazidime (19.2%), and imipenem (17.9%), but not colistin. Antibiotic susceptibility varied widely between countries, with resistance typically most prevalent in Egypt.

  17. Effect of Holarrhena antidysentrica (Ha) and Andrographis paniculata (Ap) on the biofilm formation and cell membrane integrity of opportunistic pathogen Salmonella typhimurium.

    PubMed

    Tanwar, Ankit; Chawla, Raman; Chakotiya, Ankita Singh; Thakur, Pallavi; Goel, Rajeev; Basu, Mitra; Arora, Rajesh; Khan, Haider Ali

    2016-12-01

    Increasing occurrence of gastroenteritis outbreaks caused by food borne opportunistic microorganisms has become a major problem in food industry as well as in immunocompromised host. Antimicrobial agents are losing their efficacy due to increase in the microbial resistance. For such reasons, conventional treatment has become limited to manage the infections state. Need of the hour is to instigate the search for safer holistic alternatives. The present study was hence conducted to assess the antibiofilm effect and mode of action of aquo alcoholic extracts of Holarrhena antidysentrica (Ha) and Andrographis paniculata (Ap) against the Salmonella enterica serovar typhimurium. Both the extracts were screened for the presence of phytocompounds followed by the characterization using Attenuated Total Reflection (ATR) infrared spectroscopy and bioactivity finger print analysis. Anti-biofilm assays were determined to test the potential of both extracts to inhibit the biofilm formation, while Propidium Iodide (PI) uptake analysis revealed that cell membrane was damaged by the exposure of nutraceuticals for 1 h. This study has demonstrated that both nutraceuticals have anti-biofilm and antimicrobial activity perturbing the membrane integrity of food-borne S. typhimurium and could be used as curative remedy to control the food borne microbial infection.

  18. Transposon insertion libraries for the characterization of mutants from the kiwifruit pathogen Pseudomonas syringae pv. actinidiae.

    PubMed

    Mesarich, Carl H; Rees-George, Jonathan; Gardner, Paul P; Ghomi, Fatemeh Ashari; Gerth, Monica L; Andersen, Mark T; Rikkerink, Erik H A; Fineran, Peter C; Templeton, Matthew D

    2017-01-01

    Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit canker, is one of the most devastating plant diseases of recent times. We have generated two mini-Tn5-based random insertion libraries of Psa ICMP 18884. The first, a 'phenotype of interest' (POI) library, consists of 10,368 independent mutants gridded into 96-well plates. By replica plating onto selective media, the POI library was successfully screened for auxotrophic and motility mutants. Lipopolysaccharide (LPS) biosynthesis mutants with 'Fuzzy-Spreader'-like morphologies were also identified through a visual screen. The second, a 'mutant of interest' (MOI) library, comprises around 96,000 independent mutants, also stored in 96-well plates, with approximately 200 individuals per well. The MOI library was sequenced on the Illumina MiSeq platform using Transposon-Directed Insertion site Sequencing (TraDIS) to map insertion sites onto the Psa genome. A grid-based PCR method was developed to recover individual mutants, and using this strategy, the MOI library was successfully screened for a putative LPS mutant not identified in the visual screen. The Psa chromosome and plasmid had 24,031 and 1,236 independent insertion events respectively, giving insertion frequencies of 3.65 and 16.6 per kb respectively. These data suggest that the MOI library is near saturation, with the theoretical probability of finding an insert in any one chromosomal gene estimated to be 97.5%. However, only 47% of chromosomal genes had insertions. This surprisingly low rate cannot be solely explained by the lack of insertions in essential genes, which would be expected to be around 5%. Strikingly, many accessory genes, including most of those encoding type III effectors, lacked insertions. In contrast, 94% of genes on the Psa plasmid had insertions, including for example, the type III effector HopAU1. These results suggest that some chromosomal sites are rendered inaccessible to transposon insertion, either by DNA

  19. Transposon insertion libraries for the characterization of mutants from the kiwifruit pathogen Pseudomonas syringae pv. actinidiae

    PubMed Central

    Mesarich, Carl H.; Rees-George, Jonathan; Gardner, Paul P.; Ghomi, Fatemeh Ashari; Gerth, Monica L.; Andersen, Mark T.; Rikkerink, Erik H. A.; Fineran, Peter C.

    2017-01-01

    Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit canker, is one of the most devastating plant diseases of recent times. We have generated two mini-Tn5-based random insertion libraries of Psa ICMP 18884. The first, a ‘phenotype of interest’ (POI) library, consists of 10,368 independent mutants gridded into 96-well plates. By replica plating onto selective media, the POI library was successfully screened for auxotrophic and motility mutants. Lipopolysaccharide (LPS) biosynthesis mutants with ‘Fuzzy-Spreader’-like morphologies were also identified through a visual screen. The second, a ‘mutant of interest’ (MOI) library, comprises around 96,000 independent mutants, also stored in 96-well plates, with approximately 200 individuals per well. The MOI library was sequenced on the Illumina MiSeq platform using Transposon-Directed Insertion site Sequencing (TraDIS) to map insertion sites onto the Psa genome. A grid-based PCR method was developed to recover individual mutants, and using this strategy, the MOI library was successfully screened for a putative LPS mutant not identified in the visual screen. The Psa chromosome and plasmid had 24,031 and 1,236 independent insertion events respectively, giving insertion frequencies of 3.65 and 16.6 per kb respectively. These data suggest that the MOI library is near saturation, with the theoretical probability of finding an insert in any one chromosomal gene estimated to be 97.5%. However, only 47% of chromosomal genes had insertions. This surprisingly low rate cannot be solely explained by the lack of insertions in essential genes, which would be expected to be around 5%. Strikingly, many accessory genes, including most of those encoding type III effectors, lacked insertions. In contrast, 94% of genes on the Psa plasmid had insertions, including for example, the type III effector HopAU1. These results suggest that some chromosomal sites are rendered inaccessible to transposon insertion, either

  20. Onychomycosis due to opportunistic molds*

    PubMed Central

    Martínez-Herrera, Erick Obed; Arroyo-Camarena, Stefanie; Tejada-García, Diana Luz; Porras-López, Carlos Francisco; Arenas, Roberto

    2015-01-01

    BACKGROUND: Onychomycosis are caused by dermatophytes and Candida, but rarely by non- dermatophyte molds. These opportunistic agents are filamentous fungi found as soil and plant pathogens. OBJECTIVES: To determine the frequency of opportunistic molds in onychomycosis. METHODS: A retrospective analysis of 4,220 cases with onychomycosis, diagnosed in a 39-month period at the Institute of Dermatology and Skin surgery "Prof. Dr. Fernando A. Cordero C." in Guatemala City, and confirmed with a positive KOH test and culture. RESULTS: 32 cases (0.76%) of onychomycosis caused by opportunistic molds were confirmed. The most affected age group ranged from 41 to 65 years (15 patients, 46.9%) and females were more commonly affected (21 cases, 65.6%) than males. Lateral and distal subungual onychomycosis (OSD-L) was detected in 20 cases (62.5%). The microscopic examination with KOH showed filaments in 19 cases (59.4%), dermatophytoma in 9 cases (28.1%), spores in 2 cases (6.25%), and filaments and spores in 2 cases (6.25%). Etiologic agents: Aspergillus sp., 11 cases (34.4%); Scopulariopsis brevicaulis, 8 cases (25.0%); Cladosporium sp., 3 cases (9.4%); Acremonium sp., 2 cases (6.25%); Paecilomyces sp., 2 cases (6.25%); Tritirachium oryzae, 2 cases (6.25%); Fusarium sp., Phialophora sp., Rhizopus sp. and Alternaria alternate, 1 case (3.1%) each. CONCLUSIONS: We found onychomycosis by opportunistic molds in 0.76% of the cases and DLSO was present in 62.5%. The most frequent isolated etiological agents were: Aspergillus sp. and Scopulariopsis brevicaulis. PMID:26131862

  1. Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems.

    PubMed

    Wang, Hong; Edwards, Marc; Falkinham, Joseph O; Pruden, Amy

    2012-09-01

    The spread of opportunistic pathogens via public water systems is of growing concern. The purpose of this study was to identify patterns of occurrence among three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa) relative to biotic and abiotic factors in two representative chloraminated drinking water distribution systems using culture-independent methods. Generally, a high occurrence of Legionella (≥69.0%) and mycobacteria (100%), lower occurrence of L. pneumophila (≤20%) and M. avium (≤33.3%), and rare detection of Pseudomonas aeruginosa (≤13.3%) were observed in both systems according to quantitative PCR. Also, Hartmanella vermiformis was more prevalent than Acanthamoeba, both of which are known hosts for opportunistic pathogen amplification, the latter itself containing pathogenic members. Three-minute flushing served to distinguish distribution system water from plumbing in buildings (i.e., premise plumbing water) and resulted in reduced numbers of copies of Legionella, mycobacteria, H. vermiformis, and 16S rRNA genes (P < 0.05) while yielding distinct terminal restriction fragment polymorphism (T-RFLP) profiles of 16S rRNA genes. Within certain subgroups of samples, some positive correlations, including correlations of numbers of mycobacteria and total bacteria (16S rRNA genes), H. vermiformis and total bacteria, mycobacteria and H. vermiformis, and Legionella and H. vermiformis, were noted, emphasizing potential microbial ecological relationships. Overall, the results provide insight into factors that may aid in controlling opportunistic pathogen proliferation in real-world water systems.

  2. Molecular Survey of the Occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and Amoeba Hosts in Two Chloraminated Drinking Water Distribution Systems

    PubMed Central

    Wang, Hong; Edwards, Marc; Falkinham, Joseph O.

    2012-01-01

    The spread of opportunistic pathogens via public water systems is of growing concern. The purpose of this study was to identify patterns of occurrence among three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa) relative to biotic and abiotic factors in two representative chloraminated drinking water distribution systems using culture-independent methods. Generally, a high occurrence of Legionella (≥69.0%) and mycobacteria (100%), lower occurrence of L. pneumophila (≤20%) and M. avium (≤33.3%), and rare detection of Pseudomonas aeruginosa (≤13.3%) were observed in both systems according to quantitative PCR. Also, Hartmanella vermiformis was more prevalent than Acanthamoeba, both of which are known hosts for opportunistic pathogen amplification, the latter itself containing pathogenic members. Three-minute flushing served to distinguish distribution system water from plumbing in buildings (i.e., premise plumbing water) and resulted in reduced numbers of copies of Legionella, mycobacteria, H. vermiformis, and 16S rRNA genes (P < 0.05) while yielding distinct terminal restriction fragment polymorphism (T-RFLP) profiles of 16S rRNA genes. Within certain subgroups of samples, some positive correlations, including correlations of numbers of mycobacteria and total bacteria (16S rRNA genes), H. vermiformis and total bacteria, mycobacteria and H. vermiformis, and Legionella and H. vermiformis, were noted, emphasizing potential microbial ecological relationships. Overall, the results provide insight into factors that may aid in controlling opportunistic pathogen proliferation in real-world water systems. PMID:22752174

  3. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens.

    PubMed Central

    O'Sullivan, D J; O'Gara, F

    1992-01-01

    Certain members of the fluorescent pseudomonad group have been shown to be potential agents for the biocontrol of plant root diseases. The major problems with the commercialization of these beneficial strains are that few wild-type strains contain all the desired characteristics for this process and the performance of strains in different soil and climatic conditions is not reproducible. Consequently, prior to selection and/or improvement of suitable strains for biocontrol purposes, it is necessary to understand the important traits required for this purpose. The production of fluorescent siderophores (iron-binding compounds) and antibiotic compounds has been recognized as important for the inhibition of plant root pathogens. Efficient root colonization is also a prerequisite for successful biocontrol strains. This review discusses some of the characteristics of fluorescent pseudomonads that have been suggested to be important for biocontrol. The genetic organization and regulation of these processes is also examined. This information is necessary for attempts aimed at the improvement of strains based on deregulating pathways or introducing traits from one strain to another. The release of genetically engineered organisms into the environment is governed by regulations, and this aspect is summarized. The commercialization of fluorescent pseudomonads for the biological control of plant root diseases remains an exciting possibility. The understanding of the relevant characteristics will facilitate this process by enabling the direct selection and/or construction of strains which will perform under a variety of environmental conditions. PMID:1480114

  4. C-type lectin Langerin is a beta-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi.

    PubMed

    de Jong, Marein A W P; Vriend, Lianne E M; Theelen, Bart; Taylor, Maureen E; Fluitsma, Donna; Boekhout, Teun; Geijtenbeek, Teunis B H

    2010-03-01

    Langerhans cells (LCs) lining the stratified epithelia and mucosal tissues are the first antigen presenting cells to encounter invading pathogens, such as viruses, bacteria and fungi. Fungal infections form a health threat especially in immuno-compromised individuals. LCs express C-type lectin Langerin that has specificity for mannose, fucose and GlcNAc structures. Little is known about the role of human Langerin in fungal infections. Our data show that Langerin interacts with both mannan and beta-glucan structures, common cell-wall carbohydrate structures of fungi. We have screened a large panel of fungi for recognition by human Langerin and, strikingly, we observed strong binding of Langerin to a variety of Candida and Saccharomyces species and Malassezia furfur, but very weak binding was observed to Cryptococcus gattii and Cryptococcus neoformans. Notably, Langerin is the primary fungal receptor on LCs, since the interaction of LCs with the different fungi was blocked by antibodies against Langerin. Langerin recognizes both mannose and beta-glucans present on fungal cell walls and our data demonstrate that Langerin is the major fungal pathogen receptor on human LCs that recognizes pathogenic and commensal fungi. Together these data may provide more insight in the role of LCs in fungal infections. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Vaccines for Pseudomonas aeruginosa: A long and winding road

    PubMed Central

    Priebe, Gregory P.; Goldberg, Joanna B.

    2015-01-01

    Summary Despite the recognition of Pseudomonas aeruginosa is an opportunistic pathogen, no vaccine against this bacteria have come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed. PMID:24575895

  6. Bactericidal Compounds Controlling Growth of the Plant Pathogen Pseudomonas syringae pv. actinidiae, Which Forms Biofilms Composed of a Novel Exopolysaccharide

    PubMed Central

    Ghods, Shirin; Sims, Ian M.; Moradali, M. Fata

    2015-01-01

    Pseudomonas syringae pv. actinidiae is the major cause of bacterial canker and is a severe threat to kiwifruit production worldwide. Many aspects of the disease caused by P. syringae pv. actinidiae, such as the pathogenicity-relevant formation of a biofilm composed of extracellular polymeric substances (EPSs), are still unknown. Here, a highly virulent strain of P. syringae pv. actinidiae, NZ V-13, was studied with respect to biofilm formation and architecture using a flow cell system combined with confocal laser scanning microscopy. The biofilm formed by P. syringae pv. actinidiae NZ V-13 was heterogeneous, consisting of a thin cellular base layer 5 μm thick and microcolonies with irregular structures. The major component of the EPSs produced by P. syringae pv. actinidiae NZ V-13 bacteria was isolated and identified to be an exopolysaccharide. Extensive compositional and structural analysis showed that rhamnose, fucose, and glucose were the major constituents, present at a ratio of 5:1.5:2. Experimental evidence that P. syringae pv. actinidiae NZ V-13 produces two polysaccharides, a branched α-d-rhamnan with side chains of terminal α-d-Fucf and an α-d-1,4-linked glucan, was obtained. The susceptibility of the cells in biofilms to kasugamycin and chlorine dioxide was assessed. About 64 and 73% of P. syringae pv. actinidiae NZ V-13 cells in biofilms were killed when kasugamycin and chlorine dioxide were used at 5 and 10 ppm, respectively. Kasugamycin inhibited the attachment of P. syringae pv. actinidiae NZ V-13 to solid surfaces at concentrations of 80 and 100 ppm. Kasugamycin was bacteriostatic against P. syringae pv. actinidiae NZ V-13 growth in the planktonic mode, with the MIC being 40 to 60 ppm and a bactericidal effect being found at 100 ppm. Here we studied the formation, architecture, and composition of P. syringae pv. actinidiae biofilms as well as used the biofilm as a model to assess the efficacies of bactericidal compounds. PMID:25841017

  7. Pseudomonas aeruginosa and Periodontal Pathogens in the Oral Cavity and Lungs of Cystic Fibrosis Patients: a Case-Control Study

    PubMed Central

    Le Gall, Florence; Revert, Krista; Rault, Gilles; Virmaux, Michèle; Gouriou, Stephanie; Héry-Arnaud, Geneviève; Barbier, Georges; Boisramé, Sylvie

    2015-01-01

    Cystic fibrosis (CF) is the most frequent lethal genetic disease in the Caucasian population. Lung destruction is the principal cause of death by chronic Pseudomonas aeruginosa colonization. There is a high prevalence of oropharyngeal anaerobic bacteria in sputum of CF patients. This study was carried out due to the lack of results comparing subgingival periodontal pathogenic bacteria between the oral cavity and lungs in patients with CF in relation with P. aeruginosa presence. Our first goal was to detect P. aeruginosa in oral and sputum samples by culture and molecular methods and to determine clonality of isolates. In addition, subgingival periodontal anaerobic bacteria were searched for in sputum. A cross-sectional pilot case-control study was conducted in the CF Reference Center in Roscoff, France. Ten CF patients with a ΔF508 homozygous mutation (5 chronically colonized [CC] and 5 not colonized [NC]) were enrolled. P. aeruginosa was detected in saliva, sputum, and subgingival plaque samples by real-time quantitative PCR (qPCR). Subsequently, periodontal bacteria were also detected and quantified in subgingival plaque and sputum samples by qPCR. In CC patients, P. aeruginosa was recovered in saliva and subgingival plaque samples. Sixteen P. aeruginosa strains were isolated in saliva and sputum from this group and compared by pulsed-field gel electrophoresis (PFGE). Subgingival periodontal anaerobic bacteria were found in sputum samples. A lower diversity of these species was recovered in the CC patients than in the NC patients. The presence of the same P. aeruginosa clonal types in saliva and sputum samples underlines that the oral cavity is a possible reservoir for lung infection. PMID:25854483

  8. Pseudomonas aeruginosa and Periodontal Pathogens in the Oral Cavity and Lungs of Cystic Fibrosis Patients: a Case-Control Study.

    PubMed

    Rivas Caldas, Rocio; Le Gall, Florence; Revert, Krista; Rault, Gilles; Virmaux, Michèle; Gouriou, Stephanie; Héry-Arnaud, Geneviève; Barbier, Georges; Boisramé, Sylvie

    2015-06-01

    Cystic fibrosis (CF) is the most frequent lethal genetic disease in the Caucasian population. Lung destruction is the principal cause of death by chronic Pseudomonas aeruginosa colonization. There is a high prevalence of oropharyngeal anaerobic bacteria in sputum of CF patients. This study was carried out due to the lack of results comparing subgingival periodontal pathogenic bacteria between the oral cavity and lungs in patients with CF in relation with P. aeruginosa presence. Our first goal was to detect P. aeruginosa in oral and sputum samples by culture and molecular methods and to determine clonality of isolates. In addition, subgingival periodontal anaerobic bacteria were searched for in sputum. A cross-sectional pilot case-control study was conducted in the CF Reference Center in Roscoff, France. Ten CF patients with a ΔF508 homozygous mutation (5 chronically colonized [CC] and 5 not colonized [NC]) were enrolled. P. aeruginosa was detected in saliva, sputum, and subgingival plaque samples by real-time quantitative PCR (qPCR). Subsequently, periodontal bacteria were also detected and quantified in subgingival plaque and sputum samples by qPCR. In CC patients, P. aeruginosa was recovered in saliva and subgingival plaque samples. Sixteen P. aeruginosa strains were isolated in saliva and sputum from this group and compared by pulsed-field gel electrophoresis (PFGE). Subgingival periodontal anaerobic bacteria were found in sputum samples. A lower diversity of these species was recovered in the CC patients than in the NC patients. The presence of the same P. aeruginosa clonal types in saliva and sputum samples underlines that the oral cavity is a possible reservoir for lung infection.

  9. Arabidopsis clade I TGA factors regulate apoplastic defences against the bacterial pathogen Pseudomonas syringae through endoplasmic reticulum-based processes.

    PubMed

    Wang, Lipu; Fobert, Pierre R

    2013-01-01

    During the plant immune response, large-scale transcriptional reprogramming is modulated by numerous transcription (co) factors. The Arabidopsis basic leucine zipper transcription factors TGA1 and TGA4, which comprise the clade I TGA factors, have been shown to positively contribute to disease resistance against virulent strains of the bacterial pathogen Pseudomonas syringae. Despite physically interacting with the key immune regulator, NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), following elicitation with salicylic acid (SA), clade I function was shown to be largely independent of NPR1. Unlike mutants in NPR1, tga1-1 tga4-1 plants do not display reductions in steady-state levels of SA-pathway marker genes following treatment with this phenolic signaling metabolite or after challenge with virulent or avirulent P. syringae. By exploiting bacterial strains that have limited capacity to suppress Arabidopsis defence responses, the present study demonstrates that tga1-1 tga4-1 plants are compromised in basal resistance and defective in several apoplastic defence responses, including the oxidative burst of reactive oxygen species, callose deposition, as well as total and apoplastic PATHOGENESIS-RELATED 1 (PR-1) protein accumulation. Furthermore, analysis of npr1-1 and the tga1-1 tga4-1 npr1-1 triple mutant indicates that clade I TGA factors act substantially independent of NPR1 in mediating disease resistance against these strains of P. syringae. Increased sensitivity to the N-glycosylation inhibitor tunicamycin and elevated levels of endoplasmic reticulum (ER) stress marker genes encoding ER-resident chaperones in mutant seedlings suggest that loss of apoplastic defence responses is associated with aberrant protein secretion and implicate clade I TGA factors as positive regulators of one or more ER-related secretion pathways.

  10. Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes

    PubMed Central

    Wang, Lipu; Fobert, Pierre R.

    2013-01-01

    During the plant immune response, large-scale transcriptional reprogramming is modulated by numerous transcription (co) factors. The Arabidopsis basic leucine zipper transcription factors TGA1 and TGA4, which comprise the clade I TGA factors, have been shown to positively contribute to disease resistance against virulent strains of the bacterial pathogen Pseudomonas syringae. Despite physically interacting with the key immune regulator, NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), following elicitation with salicylic acid (SA), clade I function was shown to be largely independent of NPR1. Unlike mutants in NPR1, tga1-1 tga4-1 plants do not display reductions in steady-state levels of SA-pathway marker genes following treatment with this phenolic signaling metabolite or after challenge with virulent or avirulent P. syringae. By exploiting bacterial strains that have limited capacity to suppress Arabidopsis defence responses, the present study demonstrates that tga1-1 tga4-1 plants are compromised in basal resistance and defective in several apoplastic defence responses, including the oxidative burst of reactive oxygen species, callose deposition, as well as total and apoplastic PATHOGENESIS-RELATED 1 (PR-1) protein accumulation. Furthermore, analysis of npr1-1 and the tga1-1 tga4-1 npr1-1 triple mutant indicates that clade I TGA factors act substantially independent of NPR1 in mediating disease resistance against these strains of P. syringae. Increased sensitivity to the N-glycosylation inhibitor tunicamycin and elevated levels of endoplasmic reticulum (ER) stress marker genes encoding ER-resident chaperones in mutant seedlings suggest that loss of apoplastic defence responses is associated with aberrant protein secretion and implicate clade I TGA factors as positive regulators of one or more ER-related secretion pathways. PMID:24086773

  11. Pollution of modern metalworking fluids containing biocides by pathogenic bacteria in France. Reexamination of chemical treatments accuracy.

    PubMed

    Chazal, P M

    1995-02-01

    Pollution by pathogenic bacteria was examined in 150 French metalworking fluid samples. Gram-negative micro-organisms such as Salmonella spp., Shigella spp., and Vibrio spp. as well as Gram-positive cocci were never isolated. Nevertheless opportunistic pathogens such as Pseudomonas aeruginosa and Klebsiella pneumoniae still contaminated these fluids with an isolation frequency of 17% of samples for each. These two micro-organisms failed to grow or even survive in vitro in sterile cutting fluids protected by biocides. Preliminary growth of other micro-organisms such as Pseudomonas putida or Pseudomonas fluorescens, which are the major part of the indigenous microflora, seemed to be a prerequisite for their growth. These former two Pseudomonas could resist three different classes of biocides and, at least in the case of formaldehyde-releasers, adaptation was followed by biocide deterioration. Resistance magnification was observed in the presence of the three different types of biocides and, in the case of formaldehyde releasers the resistance and deterioration levels were close to those recommended by the manufacturers. This is probably the reason why the preliminary growth of Pseudomonas putida allowed in vitro differed growth of Klebsiella pneumoniae and Pseudomonas aeruginosa. Due to relatively high isolation frequencies of opportunistic pathogens (17% of samples) periodical microbiological examination of cutting fluids should be carried out in order to evaluate risks for human health. Wearing masks and gloves is still recommended, at least in France.

  12. Further studies on 2,4-diamino-5-(2',5'-disubstituted benzyl)pyrimidines as potent and selective inhibitors of dihydrofolate reductases from three major opportunistic pathogens of AIDS.

    PubMed

    Rosowsky, Andre; Forsch, Ronald A; Queener, Sherry F

    2003-04-24

    As part of an ongoing effort to discover novel small-molecule antifolates combining the enzyme-binding species selectivity of trimethoprim (TMP) with the potency of piritrexim (PTX), 10 previously unreported 2,4-diamino-5-(2'-methoxy-5'-substituted)benzylpyrimidines (2-11) containing a carboxyl group at the distal end of the 5'-substituent were synthesized and tested as inhibitors of dihydrofolate reductase (DHFR) from Pneumocystis carinii (Pc), Toxoplasma gondii (Tg), and Mycobacterium avium (Ma), three of the opportunistic pathogens frequently responsible for life-threatening illness in people with impaired immune systems as a result of HIV infection or immunosuppressive chemotherapy. The selectivity index of DHFR inhibition was evaluated by comparing the potency of each compound against the parasite enzymes with its potency against rat liver DHFR. 2,4-Diamino-5-[5'-(5-carboxy-1-pentynyl)-2'-methoxybenzyl]pyrimidine (3) inhibited Pc DHFR with a selectivity index of 79 and was 430 times more potent than TMP. 2,4-Diamino-5-[5'-(4-carboxy-1-butynyl)-2'-methoxybenzyl]pyrimidine (2), with one less carbon than 3 in the side chain, had a selectivity index of 910 against Ma DHFR and was 43 times more potent than TMP. 2,4-Diamino-5-[5'-(5-carboxypentyl)-2'-methoxybenzyl]pyrimidine (6) had a selectivity index of 490 against Tg DHFR and was 320 times more potent than TMP. 2,4-Diamino-5-[5'-(6-carboxy-1-hexynyl)-2'-methoxybenzyl]pyrimidine (4), with one more carbon than 3, was less potent against all three of the parasite enzymes than either 3 or 6 and also had a lower selectivity index than 3 against the Pc enzyme. However, 4 was the only member of the series with a selectivity index of >300 against both Tg and Ma DHFR. Given that PTX is at least 10 times more potent against rat DHFR than against P. carinii or T. gondii DHFR and that the selectivity index of several of the compounds matches or exceeds that of TMP as well as PTX, our results suggest that it may be possible

  13. A guide to taming a toxin: recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer

    PubMed Central

    Weldon, John E.; Pastan, Ira

    2011-01-01

    Summary Pseudomonas exotoxin A (PE) is a highly toxic protein secreted by the opportunistic pathogen Pseudomonas aeruginosa. The modular structure and corresponding mechanism of action of PE make it amenable to extensive modifications that can redirect its potent cytotoxicity from disease to a therapeutic function. In combination with a variety of artificial targeting elements, such as receptor ligands and antibody fragments, PE becomes a selective agent for the elimination of specific cell populations. This review summarizes our current understanding of PE, its intoxication pathway, and ongoing efforts to convert this toxin into a treatment for cancer. PMID:21585657

  14. Crystal structure of a putative quorum sensing-regulated protein (PA3611) from the Pseudomonas-specific DUF4146 family

    PubMed Central

    Das, Debanu; Chiu, Hsiu-Ju; Farr, Carol L.; Grant, Joanna C.; Jaroszewski, Lukasz; Knuth, Mark W.; Miller, Mitchell D.; Tien, Henry J.; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen commonly found in humans and other organisms and is an important cause of infection, especially in patients with compromised immune defense mechanisms. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein of unknown function, which has been recently classified into a small Pseudomonas-specific protein family called DUF4146. As part of our effort to extend structural coverage of novel protein space and provide a structure-based functional insight into new protein families, we report the crystal structure of PA3611, the first structural representative of the DUF4146 protein family. PMID:24174223

  15. Crystal structure of a putative quorum sensing-regulated protein (PA3611) from the Pseudomonas-specific DUF4146 family.

    PubMed

    Das, Debanu; Chiu, Hsiu-Ju; Farr, Carol L; Grant, Joanna C; Jaroszewski, Lukasz; Knuth, Mark W; Miller, Mitchell D; Tien, Henry J; Elsliger, Marc-André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2014-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen commonly found in humans and other organisms and is an important cause of infection especially in patients with compromised immune defense mechanisms. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein of unknown function, which has been recently classified into a small Pseudomonas-specific protein family called DUF4146. As part of our effort to extend structural coverage of novel protein space and provide a structure-based functional insight into new protein families, we report the crystal structure of PA3611, the first structural representative of the DUF4146 protein family.

  16. A generalized transducing phage (phiIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen.

    PubMed

    Petty, Nicola K; Foulds, Ian J; Pradel, Elizabeth; Ewbank, Jonathan J; Salmond, George P C

    2006-06-01

    A bacteriophage (phiIF3) capable of mediating generalized transduction in Serratia marcescens strain Db11 has been isolated and characterized. The genome of this Serratia strain has recently been sequenced and is likely to become the reference strain for S. marcescens researchers. phiIF3 is most likely a virulent phage, which can transduce markers at frequencies of 10(-6) transductants per p.f.u. It has a lipopolysaccharide receptor and was determined to have a latent period of 50 min and a burst size of approximately 100 phages. The phage DNA was resistant to digestion with restriction enzymes. Electron microscopy showed phiIF3 to be a member of the family Myoviridae. This is the first report of a generalized transducing phage able to infect Db11 and this phage will be a valuable tool for functional genomic analysis of the pathogen host.

  17. Regulation of Pseudomonas aeruginosa Virulence by Distinct Iron Sources

    PubMed Central

    Reinhart, Alexandria A.; Oglesby-Sherrouse, Amanda G.

    2016-01-01

    Pseudomonas aeruginosa is a ubiquitous environmental bacterium and versatile opportunistic pathogen. Like most other organisms, P. aeruginosa requires iron for survival, yet iron rapidly reacts with oxygen and water to form stable ferric (FeIII) oxides and hydroxides, limiting its availability to living organisms. During infection, iron is also sequestered by the host innate immune system, further limiting its availability. P. aeruginosa’s capacity to cause disease in diverse host environments is due to its ability to scavenge iron from a variety of host iron sources. Work over the past two decades has further shown that different iron sources can affect the expression of distinct virulence traits. This review discusses how the individual components of P. aeruginosa’s iron regulatory network allow this opportunist to adapt to a multitude of host environments during infection. PMID:27983658

  18. Weissella confusa: problems with identification of an opportunistic pathogen that has been found in fermented foods and proposed as a probiotic

    PubMed Central

    Fairfax, Marilynn R.; Lephart, Paul R.; Salimnia, Hossein

    2014-01-01

    Weissella confusa is found in fermented foods and has been suggested as a probiotic, but also causes sepsis and other serious infections in humans and animals. The incidence of human infections is underestimated partly due to confusion with viridans streptococci and partly due to difficulty making a definitive identification, even if the organism is recognized to belong to another genus, owing to the inability of commercial organism systems to identify it. We report our experiences identifying W. confusa isolated from two immune-compromised patients, both of whom developed sepsis with this organism. Two MicroScan gram positive combination panels, could not identify the organism because they did not have W. confusa in their data bases, but did not provide a false identification. Other laboratorians have reported failure to identify or false identifications of W. confusa with other commercial systems. W. confusa is in the data base of the RapID™ Str panel (Remel), which gave three incorrect, high probability results (≥95%). 16S rDNA sequencing identified the isolates as W. confusa. Maldi-Tof, performed by two of our reference laboratories, also correctly identified both isolates. Use of W. confusa as a probiotic should be approached with caution because its true incidence as an opportunisitic pathogen is unknown. PMID:24971076

  19. Pleiotropic consequences of gene knockouts in the phthiocerol dimycocerosate and phenolic glycolipid biosynthetic gene cluster of the opportunistic human pathogen Mycobacterium marinum.

    PubMed

    Mohandas, Poornima; Budell, William C; Mueller, Emily; Au, Andrew; Bythrow, Glennon V; Quadri, Luis E N

    2016-03-01

    Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) contribute to the pathogenicity of several mycobacteria. Biosynthesis of these virulence factors requires polyketide synthases and other enzymes that represent potential targets for the development of adjuvant antivirulence drugs. We used six isogenic Mycobacterium marinum mutants, each with a different gene knockout in the PDIM/PGL biosynthetic pathway, to probe the pleiotropy of mutations leading to PDIM(-) PGL(-), PDIM(+) PGL(-) or PDIM(-) PGL(+) phenotypes. We evaluated the M. marinum mutants for changes in antibiotic susceptibility, cell envelope permeability, biofilm formation, surface properties, sliding motility and virulence in an amoeba model. The analysis also permitted us to begin exploring the hypothesis that different gene knockouts rendering the same PDIM and/or PGL deficiency phenotypes lead to M. marinum mutants with equivalent pleiotropic profiles. Overall, the results of our study revealed a complex picture of pleiotropic patterns emerging from different gene knockouts, uncovered unexpected phenotypic inequalities between mutants, and provided new insight into the phenotypic consequences of gene knockouts in the PDIM/PGL biosynthetic pathway.

  20. In Vitro Activity of the New Triazole Voriconazole (UK-109,496) against Opportunistic Filamentous and Dimorphic Fungi and Common and Emerging Yeast Pathogens

    PubMed Central

    Espinel-Ingroff, Ana

    1998-01-01

    The in vitro antifungal activity of a new triazole derivative, voriconazole, was compared with those of itraconazole and amphotericin B against 67 isolates of Aspergillus flavus, Aspergillus fumigatus, Bipolaris spp., Fusarium oxysporum, Fusarium solani, Pseudallescheria boydii, Rhizopus arrhizus, Blastomyces dermatitidis, Histoplasma capsulatum, and Sporothrix schenckii. The in vitro activities of voriconazole were also compared with those of amphotericin B, fluconazole, and itraconazole against 189 isolates of emerging and common yeast pathogens of Blastoschizomyces capitatus, Candida (13 species), Cryptococcus neoformans, Hansenula anomala, Rhodotorula rubra, Saccharomyces cerevisiae, Sporobolomyces salmonicolor, and Trichosporon beigelii. MICs were determined according to a procedure under evaluation by the National Committee for Clinical Laboratory Standards (NCCLS) for broth microdilution testing of filamentous fungi and by the NCCLS M27-A broth microdilution method for yeasts. The in vitro activities of voriconazole were similar to or better than those of itraconazole and amphotericin B against Aspergillus spp., Fusarium spp., and P. boydii as well as against B. dermatitidis and H. capsulatum. The activities of voriconazole were also comparable to or better than those of amphotericin B, fluconazole, and itraconazole against most species of yeasts tested. Exceptions were certain isolates of R. rubra and S. salmonicolor. These results suggest that voriconazole has a wide spectrum of activity in vitro; its effectiveness in the treatment of human mycoses is under evaluation in clinical trials. PMID:9431946

  1. The Pseudomonas viridiflava phylogroups in the P. syringae species complex are characterized by genetic variability and phenotypic plasticity of pathogenicity-related traits.

    PubMed

    Bartoli, Claudia; Berge, Odile; Monteil, Caroline L; Guilbaud, Caroline; Balestra, Giorgio M; Varvaro, Leonardo; Jones, Corbin; Dangl, Jeffery L; Baltrus, David A; Sands, David C; Morris, Cindy E

    2014-07-01

    As a species complex, Pseudomonas syringae exists in both agriculture and natural aquatic habitats. P.viridiflava, a member of this complex, has been reported to be phenotypically largely homogenous. We characterized strains from different habitats, selected based on their genetic similarity to previously described P.viridiflava strains. We revealed two distinct phylogroups and two different kinds of variability in phenotypic traits and genomic content. The strains exhibited phase variation in phenotypes including pathogenicity and soft rot on potato. We showed that the presence of two configurations of the Type III Secretion System [single (S-PAI) and tripartite (T-PAI) pathogenicity islands] are not correlated with pathogenicity or with the capacity to induce soft rot in contrast to previous reports. The presence/absence of the avrE effector gene was the only trait we found to be correlated with pathogenicity of P.viridiflava. Other Type III secretion effector genes were not correlated with pathogenicity. A genomic region resembling an exchangeable effector locus (EEL) was found in S-PAI strains, and a probable recombination between the two PAIs is described. The ensemble of the variability observed in these phylogroups of P.syringae likely contributes to their adaptability to alternating opportunities for pathogenicity or saprophytic survival.

  2. The C-terminal region of the RNA helicase CshA is required for the interaction with the degradosome and turnover of bulk RNA in the opportunistic pathogen Staphylococcus aureus

    PubMed Central

    Giraud, Caroline; Hausmann, Stéphane; Lemeille, Sylvain; Prados, Julien; Redder, Peter; Linder, Patrick

    2015-01-01

    Staphylococcus aureus is a versatile opportunistic pathogen that adapts readily to a variety of different growth conditions. This adaptation requires a rapid regulation of gene expression including the control of mRNA abundance. The CshA DEAD-box RNA helicase was previously shown to be required for efficient turnover of the agr quorum sensing mRNA. Here we show by transcriptome-wide RNA sequencing and microarray analyses that CshA is required for the degradation of bulk mRNA. Moreover a subset of mRNAs is significantly stabilised in absence of CshA. Deletion of the C-terminal extension affects RNA turnover similar to the full deletion of the cshA gene. In accordance with RNA decay data, the C-terminal region of CshA is required for an RNA-independent interaction with components of the RNA degradation machinery. The C-terminal truncation of CshA reduces its ATPase activity and this reduction cannot be compensated at high RNA concentrations. Finally, the deletion of the C-terminal extension does affect growth at low temperatures, but to a significantly lesser degree than the full deletion, indicating that the core of the helicase can assume a partial function and opening the possibility that CshA is involved in different cellular processes. PMID:25997461

  3. The C-terminal region of the RNA helicase CshA is required for the interaction with the degradosome and turnover of bulk RNA in the opportunistic pathogen Staphylococcus aureus.

    PubMed

    Giraud, Caroline; Hausmann, Stéphane; Lemeille, Sylvain; Prados, Julien; Redder, Peter; Linder, Patrick

    2015-01-01

    Staphylococcus aureus is a versatile opportunistic pathogen that adapts readily to a variety of different growth conditions. This adaptation requires a rapid regulation of gene expression including the control of mRNA abundance. The CshA DEAD-box RNA helicase was previously shown to be required for efficient turnover of the agr quorum sensing mRNA. Here we show by transcriptome-wide RNA sequencing and microarray analyses that CshA is required for the degradation of bulk mRNA. Moreover a subset of mRNAs is significantly stabilised in absence of CshA. Deletion of the C-terminal extension affects RNA turnover similar to the full deletion of the cshA gene. In accordance with RNA decay data, the C-terminal region of CshA is required for an RNA-independent interaction with components of the RNA degradation machinery. The C-terminal truncation of CshA reduces its ATPase activity and this reduction cannot be compensated at high RNA concentrations. Finally, the deletion of the C-terminal extension does affect growth at low temperatures, but to a significantly lesser degree than the full deletion, indicating that the core of the helicase can assume a partial function and opening the possibility that CshA is involved in different cellular processes.

  4. Diverse responses to UV light exposure in Acinetobacter include the capacity for DNA damage-induced mutagenesis in the opportunistic pathogens Acinetobacter baumannii and Acinetobacter ursingii.

    PubMed

    Hare, Janelle M; Bradley, James A; Lin, Ching-li; Elam, Tyler J

    2012-03-01

    Error-prone and error-free DNA damage repair responses that are induced in most bacteria after exposure to various chemicals, antibiotics or radiation sources were surveyed across the genus Acinetobacter. The error-prone SOS mutagenesis response occurs when DNA damage induces a cell's umuDC- or dinP-encoded error-prone polymerases. The model strain Acinetobacter baylyi ADP1 possesses an unusual, regulatory umuD allele (umuDAb) with an extended 5' region and only incomplete fragments of umuC. Diverse Acinetobacter species were investigated for the presence of umuDC and their ability to conduct UV-induced mutagenesis. Unlike ADP1, most Acinetobacter strains possessed multiple umuDC loci containing either umuDAb or a umuD allele resembling that of Escherichia coli. The nearly omnipresent umuDAb allele was the ancestral umuD in Acinetobacter, with horizontal gene transfer accounting for over half of the umuDC operons. Despite multiple umuD(Ab)C operons in many strains, only three species conducted UV-induced mutagenesis: Acinetobacter baumannii, Acinetobacter ursingii and Acinetobacter beijerinckii. The type of umuDC locus or mutagenesis phenotype a strain possessed was not correlated with its error-free response of survival after UV exposure, but similar diversity was apparent. The survival of 30 Acinetobacter strains after UV treatment ranged over five orders of magnitude, with the Acinetobacter calcoaceticus-A. baumannii (Acb) complex and haemolytic strains having lower survival than non-Acb or non-haemolytic strains. These observations demonstrate that a genus can possess a range of DNA damage response mechanisms, and suggest that DNA damage-induced mutation could be an important part of the evolution of the emerging pathogens A. baumannii and A. ursingii.

  5. Diverse responses to UV light exposure in Acinetobacter include the capacity for DNA damage-induced mutagenesis in the opportunistic pathogens Acinetobacter baumannii and Acinetobacter ursingii

    PubMed Central

    Bradley, James A.; Lin, Ching-li; Elam, Tyler J.

    2012-01-01

    Error-prone and error-free DNA damage repair responses that are induced in most bacteria after exposure to various chemicals, antibiotics or radiation sources were surveyed across the genus Acinetobacter. The error-prone SOS mutagenesis response occurs when DNA damage induces a cell’s umuDC- or dinP-encoded error-prone polymerases. The model strain Acinetobacter baylyi ADP1 possesses an unusual, regulatory umuD allele (umuDAb) with an extended 5′ region and only incomplete fragments of umuC. Diverse Acinetobacter species were investigated for the presence of umuDC and their ability to conduct UV-induced mutagenesis. Unlike ADP1, most Acinetobacter strains possessed multiple umuDC loci containing either umuDAb or a umuD allele resembling that of Escherichia coli. The nearly omnipresent umuDAb allele was the ancestral umuD in Acinetobacter, with horizontal gene transfer accounting for over half of the umuDC operons. Despite multiple umuD(Ab)C operons in many strains, only three species conducted UV-induced mutagenesis: Acinetobacter baumannii, Acinetobacter ursingii and Acinetobacter beijerinckii. The type of umuDC locus or mutagenesis phenotype a strain possessed was not correlated with its error-free response of survival after UV exposure, but similar diversity was apparent. The survival of 30 Acinetobacter strains after UV treatment ranged over five orders of magnitude, with the Acinetobacter calcoaceticus–A. baumannii (Acb) complex and haemolytic strains having lower survival than non-Acb or non-haemolytic strains. These observations demonstrate that a genus can possess a range of DNA damage response mechanisms, and suggest that DNA damage-induced mutation could be an important part of the evolution of the emerging pathogens A. baumannii and A. ursingii. PMID:22117008

  6. Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both Monocots and Dicots

    USDA-ARS?s Scientific Manuscript database

    Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Sequencing multiple strains of the same pathogen further reveals information concerning pathogen diversity and the molecular basis of vi...

  7. Optimization of Culture Conditions for Mass Production of the Probiotics Pseudomonas MCCB 102 and 103 Antagonistic to Pathogenic Vibrios in Aquaculture.

    PubMed

    Preetha, R; Vijayan, K K; Jayapraksh, N S; Alavandi, S V; Santiago, T C; Singh, I S Bright

    2015-06-01

    Rapid growth of shrimp farming industry is affected by the recurrence of diverse diseases, among which vibriosis is predominant. Eco-friendly disease management strategy by the application of antagonistic probiotics is widely accepted. In the present study, culture conditions of antagonistic probiotics, Pseudomonas MCCB 102 and 103, were optimized to enhance their biomass production and antagonistic activity against the shrimp pathogen V. harveyi MCCB 111. Primarily, one-dimensional screening was carried out to fix the optimum range of sodium chloride concentration, pH and temperature. The second step optimization was done using a full-factorial central composite design of response surface methodology. As per the model, 12.9 g/L sodium chloride and pH 6.5 for Pseudomonas MCCB 102, and 5 g/L sodium chloride and pH 7 for Pseudomonas MCCB 103 were found to be ideal to maximize antagonistic activity. However, optimum temperature was the same (25 °C) for both isolates. Finally, the models were experimentally validated for enhanced biomass production and antagonistic activity. The optima for biomass and antagonistic activity were more or less the same, suggesting the possible influence of biomass on antagonistic activity.

  8. The HigB/HigA Toxin/Antitoxin System of Pseudomonas aeruginosa Influences the Virulence Factors Pyochelin, Pyocyanin, and Biofilm Formation

    DTIC Science & Technology

    2016-08-24

    499 Introduction Pseudomonas aeruginosa is an opportunistic, Gram - negative pathogen (Mace et al. 2008), and it is the primary cause of important...formation was assayed in 96- well polystyrene plates using 0.1% crystal violet staining as described previously (Fletcher 1977) with some modifications...the genome of P. aeruginosa PA14 by using the RASTA Bacteria pro- gram (Sevin and Barloy- Hubler 2007). This program searches for type II TA systems

  9. [THE FORMATION OF BIOFILM IN OPPORTUNISTIC MICROORGANISMS IN BLOOD PLASMA DEPENDING ON CONTENT OF IRON].

    PubMed

    Leonov, V V; Mironov, A Yu

    2016-01-01

    The article considers results of analysis offormation of biofilm of priority opportunistic pathogens in blood plasma and LB-broth. As compared with LB-broth, bloodplasma stimulates formation of biofilm of microorganisms in the following sequence: Staphylococcus aureus > Pseudomonas aeruginosa > Escherichia coli. The application oftechnique of infra-redspectroscopy of bio-films established that blood plasma promotes formation of external exopolysaccharides of S.aureus. The cultivation of bio-films in plasma depending on content of iron demonstrated that the analyzed strains of S. aureus, P. aeruginosa, E. coli form bio-films in a better way in plasma with normal content of iron and iron-deficient and iron-loaded plasma decreases their activity of formation of biofilm.

  10. 2-Heptyl-4-Quinolone, a Precursor of the Pseudomonas Quinolone Signal Molecule, Modulates Swarming Motility in Pseudomonas aeruginosa▿

    PubMed Central

    Ha, Dae-Gon; Merritt, Judith H.; Hampton, Thomas H.; Hodgkinson, James T.; Janecek, Matej; Spring, David R.; Welch, Martin; O'Toole, George A.

    2011-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen capable of group behaviors, including biofilm formation and swarming motility. These group behaviors are regulated by both the intracellular signaling molecule c-di-GMP and acylhomoserine lactone quorum-sensing systems. Here, we show that the Pseudomonas quinolone signal (PQS) system also contributes to the regulation of swarming motility. Specifically, our data indicate that 2-heptyl-4-quinolone (HHQ), a precursor of PQS, likely induces the production of the phenazine-1-carboxylic acid (PCA), which in turn acts via an as-yet-unknown downstream mechanism to repress swarming motility. We show that this HHQ- and PCA-dependent swarming repression is apparently independent of changes in global levels of c-di-GMP, suggesting complex regulation of this group behavior. PMID:21965567

  11. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  12. Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa.

    PubMed

    Murray, Justine L; Kwon, Taejoon; Marcotte, Edward M; Whiteley, Marvin

    2015-10-27

    Antimicrobial-resistant bacteria pose a serious threat in the clinic. This is particularly true for opportunistic pathogens that possess high intrinsic resistance. Though many studies have focused on understanding the acquisition of bacterial resistance upon exposure to antimicrobials, the mechanisms controlling intrinsic resistance are not well understood. In this study, we subjected the model opportunistic superbug Pseudomonas aeruginosa to 14 antimicrobials under highly controlled conditions and assessed its response using expression- and fitness-based genomic approaches. Our results reveal that gene expression changes and mutant fitness in response to sub-MIC antimicrobials do not correlate on a genomewide scale, indicating that gene expression is not a good predictor of fitness determinants. In general, fewer fitness determinants were identified for antiseptics and disinfectants than for antibiotics. Analysis of gene expression and fitness data together allowed the prediction of antagonistic interactions between antimicrobials and insight into the molecular mechanisms controlling these interactions. Infections involving multidrug-resistant pathogens are difficult to treat because the therapeutic options are limited. These infections impose a significant financial burden on infected patients and on health care systems. Despite years of antimicrobial resistance research, we lack a comprehensive understanding of the intrinsic mechanisms controlling antimicrobial resistance. This work uses two fine-scale genomic approaches to identify genetic loci important for antimicrobial resistance of the opportunistic pathogen Pseudomonas aeruginosa. Our results reveal that antibiotics have more resistance determinants than antiseptics/disinfectants and that gene expression upon exposure to antimicrobials is not a good predictor of these resistance determinants. In addition, we show that when used together, genomewide gene expression and fitness profiling can provide

  13. Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections.

    PubMed

    Aragon, Isabel M; Pérez-Mendoza, Daniel; Moscoso, Joana A; Faure, Emmanuel; Guery, Benoit; Gallegos, María-Trinidad; Filloux, Alain; Ramos, Cayo

    2015-11-01

    The second messenger cyclic di-GMP (c-di-GMP) controls the transition between different lifestyles in bacterial pathogens. Here, we report the identification of DgcP (diguanylate cyclase conserved in Pseudomonads), whose activity in the olive tree pathogen Pseudomonas savastanoi pv. savastanoi is dependent on the integrity of its GGDEF domain. Furthermore, deletion of the dgcP gene revealed that DgcP negatively regulates motility and positively controls biofilm formation in both the olive tree pathogen P. savastanoi pv. savastanoi and the human opportunistic pathogen Pseudomonas aeruginosa. Overexpression of the dgcP gene in P. aeruginosa PAK led to increased exopolysaccharide production and upregulation of the type VI secretion system; in turn, it repressed the type III secretion system, which is a hallmark of chronic infections and persistence for P. aeruginosa. Deletion of the dgcP gene in P. savastanoi pv. savastanoi NCPPB 3335 and P. aeruginosa PAK reduced their virulence in olive plants and in a mouse acute lung injury model respectively. Our results show that diguanylate cyclase DgcP is a conserved Pseudomonas protein with a role in virulence, and confirm the existence of common c-di-GMP signalling pathways that are capable of regulating plant and human Pseudomonas spp. infections. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000.

    PubMed

    Lewis, Laura A; Polanski, Krzysztof; de Torres-Zabala, Marta; Jayaraman, Siddharth; Bowden, Laura; Moore, Jonathan; Penfold, Christopher A; Jenkins, Dafyd J; Hill, Claire; Baxter, Laura; Kulasekaran, Satish; Truman, William; Littlejohn, George; Prusinska, Justyna; Mead, Andrew; Steinbrenner, Jens; Hickman, Richard; Rand, David; Wild, David L; Ott, Sascha; Buchanan-Wollaston, Vicky; Smirnoff, Nick; Beynon, Jim; Denby, Katherine; Grant, Murray

    2015-11-01

    Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae. © 2015 American Society of Plant Biologists. All rights reserved.

  15. Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000[OPEN

    PubMed Central

    Lewis, Laura A.; Polanski, Krzysztof; de Torres-Zabala, Marta; Bowden, Laura; Jenkins, Dafyd J.; Hill, Claire; Baxter, Laura; Truman, William; Prusinska, Justyna; Hickman, Richard; Wild, David L.; Ott, Sascha; Buchanan-Wollaston, Vicky; Beynon, Jim

    2015-01-01

    Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae. PMID:26566919

  16. Pseudomonas aeruginosa biofilms in disease

    PubMed Central

    Mulcahy, Lawrence R.; Isabella, Vincent M.; Lewis, Kim

    2013-01-01

    Pseudomonas aeruginosa is a ubiquitous organism that is the focus of intense research because of its prominent role in disease. Due to its relatively large genome and flexible metabolic capabilities, this organism exploits numerous environmental niches. It is an opportunistic pathogen that sets upon the human host when the normal immune defenses are disabled. It’s deadliness is most apparent in cystic fibrosis patients, but it also is a major problem in burn wounds, chronic wounds, chronic obstructive pulmonary disorder (COPD), surface growth on implanted biomaterials, and within hospital surface and water supplies where it poses a host of threats to vulnerable patients [1,2]. Once established in the patient, P. aeruginosa can be especially difficult to treat. The genome encodes a host of resistance genes, including multidrug efflux pumps [3]and enzymes conferring resistance to beta-lactam and aminoglycoside antibotics [4], making therapy against this gram-negative pathogen particularly challenging due to the lack of novel antimicrobial therapeutics [5]. This challenge is compounded by the ability of P. aerugionsa to grow in a biofilm, which may enhance its ability to cause infections by protecting bacteria from host defenses and chemotherapy. Here we review recent studies of P. aeruginosa biofilms with a focus on how this unique mode of growth contributes to its ability to cause recalcitrant infections. PMID:24096885

  17. Arcobacter: An Opportunistic Human Foodborne Pathogen?

    USDA-ARS?s Scientific Manuscript database

    Arcobacter are gram negative, motile, aerotolerant campylobacter-like microbes which grow at 30C. The 10 described Arcobacter species are but a fraction of the total taxa, which encompass bacteria exploiting diverse ecological niches, such as seawater, oil fields, and estuaries. This physiological r...

  18. [Acanthamoeba spp. as opportunistic pathogens parasites].

    PubMed

    Castrillón, Juan C; Orozco, Lina P

    2013-04-01

    Among free-living amoeba in nature, species of the genus Acanthamoeba have been associated with human disease. These amoeba are among the most abundant protozoa in nature due to its cosmopolitan distribution and are able to survive in a wide variety of habitats because its low demand for food and in harsh environments by forming structures known as cysts. However, ecological changes and incursion of its different habitats have made this organism can invade a host and live as parasites within him. That's why this type of protozoa are known as amphizoic organism, because human can be constituted as its host, causing infections in the central nervous system, disseminated infections in skin and lungs, and keratitis. Thus, since an increase in the number of cases of Acanthamoeba infections has occurred worldwide, these protozoa have become increasingly important as agents of human disease. This review summarizes what is known of this kind of free-living amoeba, focusing on the biology, ecology, pathogenesis, diagnosis, treatment and human defense mechanism against infection by the amoeba.

  19. Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens

    PubMed Central

    Aboubaker Osman, Djaltou; Bouzid, Feriel; Canaan, Stéphane; Drancourt, Michel

    2016-01-01

    Smooth tubercle bacilli (STB) including “Mycobacterium canettii” are members of the Mycobacterium tuberculosis complex (MTBC), which cause non-contagious tuberculosis in human. This group comprises <100 isolates characterized by smooth colonies and cordless organisms. Most STB isolates have been obtained from patients exposed to the Republic of Djibouti but seven isolates, including the three seminal ones obtained by Georges Canetti between 1968 and 1970, were recovered from patients in France, Madagascar, Sub-Sahara East Africa, and French Polynesia. STB form a genetically heterogeneous group of MTBC organisms with large 4.48 ± 0.05 Mb genomes, which may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission suggested a yet unknown environmental reservoir. Clinical data indicate a respiratory tract route of contamination and the digestive tract as an alternative route of contamination. Further epidemiological and clinical studies are warranted to elucidate areas of uncertainty regarding these unusual mycobacteria and the tuberculosis they cause. PMID:26793699

  20. Pathogens in drinking water: Are there any new ones

    SciTech Connect

    Reasoner, D.J.

    1993-01-01

    Since 1976 three newly recognized human pathogens have become familiar to the drinking water industry as waterborne disease agents. These are: the legionnaires disease agent, Legionella pneumophila and related species; and two protozoan pathogens, Giardia lamblia and Cryptosporidium parvum, both of which form highly disinfectant resistant cysts that are shed in the feces of infected individuals. The question frequently arises - are there other emerging waterborne pathogens that may pose a human health problem that the drinking water industry will have to deal with. The paper will review the current state of knowledge of the occurrence and incidence of pathogens and opportunistic pathogens other than Legionella, Giardia and Cryptosporidium in treated and untreated drinking water. Bacterial agents that will be reviewed include Aeromonas, Pseudomonas, Campylobacter, Mycobacterium, Yersinia and Plesiomonas. Aspects of detection of these agents including detection methods and feasibility of monitoring will be addressed.

  1. Calcium-induced Folding and Stabilization of the Pseudomonas aeruginosa Alkaline Protease*

    PubMed Central

    Zhang, Liang; Conway, James F.; Thibodeau, Patrick H.

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that contributes to the mortality of immunocompromised individuals and patients with cystic fibrosis. Pseudomonas infection presents clinical challenges due to its ability to form biofilms and modulate host-pathogen interactions through the secretion of virulence factors. The calcium-regulated alkaline protease (AP), a member of the repeats in toxin (RTX) family of proteins, is implicated in multiple modes of infection. A series of full-length and truncation mutants were purified for structural and functional studies to evaluate the role of Ca2+ in AP folding and activation. We find that Ca2+ binding induces RTX folding, which serves to chaperone the folding of the protease domain. Subsequent association of the RTX domain with an N-terminal α-helix stabilizes AP. These results provide a basis for the Ca2+-mediated regulation of AP and suggest mechanisms by which Ca2+ regulates the RTX family of virulence factors. PMID:22170064

  2. Assessment of periodontal and opportunistic flora in patients with peri-implantitis.

    PubMed

    Albertini, Matteo; López-Cerero, Lorena; O'Sullivan, Manuel G; Chereguini, Carlos F; Ballesta, Sofia; Ríos, Vicente; Herrero-Climent, Mariano; Bullón, Pedro

    2015-08-01

    To assess the presence of periodontal and opportunistic organisms in patients with peri-implantitis. Thirty-three partially edentulous subjects (22 women, 11 men), aged 32-90 years, who had one or more implants with peri-implantitis were included. Peri-implantitis was defined as: (i) the presence of bleeding on probing and/or suppuration and (ii) radiographic images showed marginal bone loss >1.8 mm after 1 year in function. Criteria for inclusion were: (i) partially edentulous patients having at least one implant diagnosed with peri-implantitis; (ii) no antibiotic therapy for 6 months prior to clinical examination. Following this definition, a total of 48 implants were diagnosed with peri-implantitis. Subgingival bacterial samples were obtained with sterile paper points from infected implants and selected teeth of each individual. Periodontopathogens (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia and Treponema denticola) were detected by multiplex PCR targeting 16S rDNA. Samples were placed in reduced transport medium and cultured for opportunistic pathogens (Staphylococcus aureus, enteric bacteria, Pseudomonas and yeasts). Twenty-two patients yielded positive results for P. gingivalis, 25 for T. forsythia, eight for P. intermedia and 13 for T. denticola. None of the patients yielded a positive result for A. actinomycetemcomitans. Non-periodontal species were found in five patients (15% of total). P. aeruginosa was found in four (12%) patients, and C. albicans (3%) and S. aureus in one patient (3%) each. In two cases of peri-implantitis, none of the periodontal or opportunistic microorganisms studied were detected in either implant or tooth samples. When results of the periodontopathic bacteria from the implant and tooth samples of the same patient were compared, 18 patients (54%) showed the same results for both samples and 15 (45%) patients different results. The implant surface may be colonized with

  3. Investigation for zoonotic disease pathogens (Aeromonas hydrophila, Pseudomonas fluorescens, Streptococcus iniae) seen in carp farms in Duhok region of Northern Iraq by molecular methods

    NASA Astrophysics Data System (ADS)

    Mohammed, Kamiran Abdulrahman; Arabacı, Muhammed; Önalan, Şükrü

    2017-04-01

    The aim of this study was to determine the zoonotic bacteria in carp farms in Duhok region of the Northern Iraq. Carp is the main fish species cultured in the Duhok region. The most common zoonotic bacteria generally seen in carp farms are Aeromonas hydrophila, Pseudomonas fluorescens and Streptococcus iniae. Samples were collected from 20 carp farms in the Duhok Region of the Northern Iraq. Six carp samples were collected from each carp farm. Head kidney tissue samples and intestine tissue samples were collected from each carp sample. Than head kidney and intestine tissue samples were pooled. The total bacterial DNA extraction from the pooled each 20 head kidney tissue samples and pooled each 20 intestinal tissue samples. Primers for pathogens were originally designed from 16S Ribosomal gene region. Zoonotic bacteria were scanned in all tissue samples by absent / present analysis in the RT-PCR. After RT-PCR, Capillary gel electrophoresis bands were used for the confirmation of the size of amplicon which was planned during primer designing stage. As a result, one sample was positive in respect to Aeromonas hydrophila, from intestine and one carp farm was positive in respect to Pseudomonas fluorescens from intestine and two carp farms were positive in respect to Streptococcus iniae. Totally 17 of 20 carp farms were negative in respect to the zoonotic bacteria. In conclusion the zoonotic bacteria were very low (15 %) in carp farms from the Duhok Region in the Northern Iraq. Only in one Carp farms, both Aeromonas hydrophila and Pseudomonas fluorescens were positive. Also Streptococcus inia were positive in two carp farms.

  4. Inferring the Evolutionary History of the Plant Pathogen Pseudomonas syringae from Its Biogeography in Headwaters of Rivers in North America, Europe, and New Zealand

    PubMed Central

    Morris, C. E.; Sands, D. C.; Vanneste, J. L.; Montarry, J.; Oakley, B.; Guilbaud, C.; Glaux, C.

    2010-01-01

    Nonhost environmental reservoirs of pathogens play key roles in their evolutionary ecology and in particular in the evolution of pathogenicity. In light of recent reports of the plant pathogen Pseudomonas syringae in pristine waters outside agricultural regions and its dissemination via the water cycle, we have examined the genetic and phenotypic diversity, population structure, and biogeography of P. syringae from headwaters of rivers on three continents and their phylogenetic relationship to strains from crops. A collection of 236 strains from 11 sites in the United States, in France, and in New Zealand was characterized for genetic diversity based on housekeeping gene sequences and for phenotypic diversity based on measures of pathogenicity and ice nucleation activity. Phylogenetic analyses revealed several new genetic clades from water. The genetic structure of P. syringae populations was not influenced by geographic location or water chemistry, whereas the phenotypic structure was affected by these parameters. Comparison with strains from crops revealed that the metapopulation of P. syringae is structured into three genetic ecotypes: a crop-specific type, a water-specific type, and an abundant ecotype found in both habitats. Aggressiveness of strains was significantly and positively correlated with ice nucleation activity. Furthermore, the ubiquitous genotypes were the most aggressive, on average. The abundance and diversity in water relative to crops suggest that adaptation to the freshwater habitat has played a nonnegligible role in the evolutionary history of P. syringae. We discuss how adaptation to the water cycle is linked to the epidemiological success of this plant pathogen. PMID:20802828

  5. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    PubMed Central

    Song, Geun C.; Choi, Hye K.; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen. PMID:26500665

  6. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis.

    PubMed

    Song, Geun C; Choi, Hye K; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  7. Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen interactions.

    PubMed

    Finiti, I; Leyva, M O; López-Cruz, J; Calderan Rodrigues, B; Vicedo, B; Angulo, C; Bennett, A B; Grant, M; García-Agustín, P; González-Bosch, C

    2013-09-01

    Plant cell wall modification is a critical component in stress responses. Endo-1,4-β-glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence-signalling network. A study of a set of Arabidopsis EG T-DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant-pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant-pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses.

  8. Comparative genomics of pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    USDA-ARS?s Scientific Manuscript database

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacter...

  9. Pseudomonas aeruginosa dose response and bathing water infection.

    PubMed

    Roser, D J; van den Akker, B; Boase, S; Haas, C N; Ashbolt, N J; Rice, S A

    2014-03-01

    Pseudomonas aeruginosa is the opportunistic pathogen mostly implicated in folliculitis and acute otitis externa in pools and hot tubs. Nevertheless, infection risks remain poorly quantified. This paper reviews disease aetiologies and bacterial skin colonization science to advance dose-response theory development. Three model forms are identified for predicting disease likelihood from pathogen density. Two are based on Furumoto & Mickey's exponential 'single-hit' model and predict infection likelihood and severity (lesions/m2), respectively. 'Third-generation', mechanistic, dose-response algorithm development is additionally scoped. The proposed formulation integrates dispersion, epidermal interaction, and follicle invasion. The review also details uncertainties needing consideration which pertain to water quality, outbreaks, exposure time, infection sites, biofilms, cerumen, environmental factors (e.g. skin saturation, hydrodynamics), and whether P. aeruginosa is endogenous or exogenous. The review's findings are used to propose a conceptual infection model and identify research priorities including pool dose-response modelling, epidermis ecology and infection likelihood-based hygiene management.

  10. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    PubMed Central

    Zeng, Guanghong; Vad, Brian S.; Dueholm, Morten S.; Christiansen, Gunna; Nilsson, Martin; Tolker-Nielsen, Tim; Nielsen, Per H.; Meyer, Rikke L.; Otzen, Daniel E.

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm mechanical robustness. PMID:26500638

  11. Opportunistic infections after blood and marrow transplantation.

    PubMed

    Wingard, J R

    1999-03-01

    Opportunistic infections are major causes of morbidity and mortality following bone marrow transplantation. Technological advances in stem cell procurement, the introduction of hematologic growth factors to speed engraftment, the development of new immunosuppressive regimens to control graft-versus-host disease (GVHD), the development of technology to perform graft engineering with removal of T lymphocytes in toto or subpopulations of T lymphocytes, the use of molecular techniques to optimize donor and recipient matching, advances in blood banking, and development of international donor registries, are among the various factors that have led to tremendous changes in transplant practices. Because of such changes in transplant practices, along with the advent of new antimicrobial agents, and development of infection control measures affecting pathogen exposure, alterations in the interplay between host and potential pathogens have occurred. Shifts in the incidence and types of opportunistic pathogens are taking place. Several historically important infectious syndromes are today well controlled; others have diminished in importance early after transplant but are more problematic at a later time; new emerging pathogens are being recognized due to selection pressures from antimicrobial usage and new hosts, such as recipients of alternate donor allogeneic transplant procedures, with even more profound and prolonged immune suppression. Such shifts and new syndromes pose continuing new challenges to the transplant clinician.

  12. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.

    PubMed Central

    Govan, J R; Deretic, V

    1996-01-01

    Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity. PMID:8840786

  13. Pseudomonas cepacia: a new pathogen in patients with cystic fibrosis referred to a large centre in the United Kingdom.

    PubMed Central

    Simmonds, E J; Conway, S P; Ghoneim, A T; Ross, H; Littlewood, J M

    1990-01-01

    Pseudomonas cepacia infection has become increasingly common among patients with cystic fibrosis in North America. In a large cystic fibrosis centre in the United Kingdom 11 cases have been identified during the last six years, with a maximum prevalence of 7% in 1988. Three patients have died, two of whom deteriorated rapidly shortly after acquisition of the organism despite intensive treatment with appropriate antibiotics. Analysis of possible causes of the increase in P cepacia infection suggested that neither patient to patient transmission nor the use of nebulised antibiotics was associated with an increased risk of infection. PMID:2400225

  14. When Genome-Based Approach Meets the “Old but Good”: Revealing Genes Involved in the Antibacterial Activity of Pseudomonas sp. P482 against Soft Rot Pathogens

    PubMed Central

    Krzyżanowska, Dorota M.; Ossowicki, Adam; Rajewska, Magdalena; Maciąg, Tomasz; Jabłońska, Magdalena; Obuchowski, Michał; Heeb, Stephan; Jafra, Sylwia

    2016-01-01

    Dickeya solani and Pectobacterium carotovorum subsp. brasiliense are recently established species of bacterial plant pathogens causing black leg and soft rot of many vegetables and ornamental plants. Pseudomonas sp. strain P482 inhibits the growth of these pathogens, a desired trait considering the limited measures to combat these diseases. In this study, we determined the genetic background of the antibacterial activity of P482, and established the phylogenetic position of this strain. Pseudomonas sp. P482 was classified as Pseudomonas donghuensis. Genome mining revealed that the P482 genome does not contain genes determining the synthesis of known antimicrobials. However, the ClusterFinder algorithm, designed to detect atypical or novel classes of secondary metabolite gene clusters, predicted 18 such clusters in the genome. Screening of a Tn5 mutant library yielded an antimicrobial negative transposon mutant. The transposon insertion was located in a gene encoding an HpcH/HpaI aldolase/citrate lyase family protein. This gene is located in a hypothetical cluster predicted by the ClusterFinder, together with the downstream homologs of four nfs genes, that confer production of a non-fluorescent siderophore by P. donghuensis HYST. Site-directed inactivation of the HpcH/HpaI aldolase gene, the adjacent short chain dehydrogenase gene, as well as a homolog of an essential nfs cluster gene, all abolished the antimicrobial activity of the P482, suggesting their involvement in a common biosynthesis pathway. However, none of the mutants showed a decreased siderophore yield, neither was the antimicrobial activity of the wild type P482 compromised by high iron bioavailability. A genomic region comprising the nfs cluster and three upstream genes is involved in the antibacterial activity of P. donghuensis P482 against D. solani and P. carotovorum subsp. brasiliense. The genes studied are unique to the two known P. donghuensis strains. This study illustrates that mining of

  15. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    SciTech Connect

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  16. Post-translational modifications in Pseudomonas aeruginosa revolutionized by proteomic analysis.

    PubMed

    Ouidir, Tassadit; Jouenne, Thierry; Hardouin, Julie

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in vulnerable individuals. It is known that post-translational modifications (PTMs) play a key role in bacterial physiology. Their characterization is still challenging and the recent advances in proteomics allow large-scale and high-throughput analyses of PTMs. Here, we provide an overview of proteomic data about the modified proteins in P. aeruginosa. We emphasize the significant contribution of proteomics in knowledge enhancement of PTMs (phosphorylation, N-acetylation and glycosylation) and we discuss their importance in P. aeruginosa physiology.

  17. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa.

    PubMed

    Wade, Dana S; Calfee, M Worth; Rocha, Edson R; Ling, Elizabeth A; Engstrom, Elana; Coleman, James P; Pesci, Everett C

    2005-07-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis patients and is a major source of nosocomial infections. This bacterium controls many virulence factors by using two quorum-sensing systems, las and rhl. The las system is composed of the LasR regulator protein and its cell-to-cell signal, N-(3-oxododecanoyl) homoserine lactone, and the rhl system is composed of RhlR and the signal N-butyryl homoserine lactone. A third intercellular signal, the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4-quinolone), also regulates numerous virulence factors. PQS synthesis requires the expression of multiple operons, one of which is pqsABCDE. Previous experiments showed that the transcription of this operon, and therefore PQS production, is negatively regulated by the rhl quorum-sensing system and positively regulated by the las quorum-sensing system and PqsR (also known as MvfR), a LysR-type transcriptional regulator protein. With the use of DNA mobility shift assays and beta-galactosidase reporter fusions, we have studied the regulation of pqsR and its relationship to pqsA, lasR, and rhlR. We show that PqsR binds the promoter of pqsA and that this binding increases dramatically in the presence of PQS, implying that PQS acts as a coinducer for PqsR. We have also mapped the transcriptional start site for pqsR and found that the transcription of pqsR is positively regulated by lasR and negatively regulated by rhlR. These results suggest that a regulatory chain occurs where pqsR is under the control of LasR and RhlR and where PqsR in turn controls pqsABCDE, which is required for the production of PQS.

  18. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp.

    PubMed

    Barret, Matthieu; Frey-Klett, Pascale; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Guernec, Gregory; Sarniguet, Alain

    2009-12-01

    Traits contributing to the competence of biocontrol bacteria to colonize plant roots are often induced in the rhizosphere in response to plant components. These interactions have been studied using the two partners in gnotobiotic systems. However, in nature, beneficial or pathogenic fungi often colonize roots. Influence of these plant-fungus interactions on bacterial behavior remains to be investigated. Here, we have examined the influence of colonization of wheat roots by the take-all fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Bacteria were inoculated onto healthy, early G. graminis var. tritici-colonized and necrotic roots and transcriptomes were compared by shotgun DNA microarray. Pf29Arp decreased disease severity when inoculated before the onset of necrosis. Necrotic roots exerted a broader effect on gene expression compared with early G. graminis var. tritici-colonized and healthy roots. A gene encoding a putative type VI secretion system effector was only induced in necrotic conditions. A common pool of Pf29Arp genes differentially expressed on G. graminis var. tritici-colonized roots was related to carbon metabolism and oxidative stress, with a highest fold-change with necrosis. Overall, the data showed that the association of the pathogenic fungus with the roots strongly altered Pf29Arp adaptation with differences between early and late G. graminis var. tritici infection steps.

  19. Thermo-responsive expression and differential secretion of the extracellular enzyme levansucrase in the plant pathogenic bacterium Pseudomonas syringae pv. glycinea.

    PubMed

    Li, Hongqiao; Schenk, Alexander; Srivastava, Abhishek; Zhurina, Daria; Ullrich, Matthias S

    2006-12-01

    In the plant pathogen Pseudomonas syringae, production of the exopolysaccharide levan is mediated by extracellular levansucrase (Lsc), which is encoded by two functional genes, lscB and lscC. Comparison of extracellular protein profiles of P. syringae pv. glycinea PG4180 grown at 18 and 28 degrees C and Western blots revealed that Lsc was predominantly found in the supernatant at 18 degrees C, a temperature fostering virulence of this pathogen. Northern blot analysis indicated that transcription of lscB and lscC was temperature-dependent. Quantification of Lsc in supernatants and cellular protein samples of mutants defective in either lscB or lscC confirmed that LscB secretion at low temperature was due to a combination of thermo-regulated transcription and secretion. In contrast, LscC accumulated in the periplasmic space. LscB and LscC differ in only five amino acid residues, one of which is a cysteine residue. Temperature shift experiments suggested that de novo synthesized protein(s) at 18 degrees C might be responsible for differential LscB secretion and that the presumed secretory machinery was stable when cells were shifted to 28 degrees C. Our results imply that Lsc export and secretion may occur by yet-to-be identified novel mechanism(s).

  20. Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa

    PubMed Central

    Murray, Justine L.; Kwon, Taejoon; Marcotte, Edward M.

    2015-01-01

    ABSTRACT Antimicrobial-resistant bacteria pose a serious threat in the clinic. This is particularly true for opportunistic pathogens that possess high intrinsic resistance. Though many studies have focused on understanding the acquisition of bacterial resistance upon exposure to antimicrobials, the mechanisms controlling intrinsic resistance are not well understood. In this study, we subjected the model opportunistic superbug Pseudomonas aeruginosa to 14 antimicrobials under highly controlled conditions and assessed its response using expression- and fitness-based genomic approaches. Our results reveal that gene expression changes and mutant fitness in response to sub-MIC antimicrobials do not correlate on a genomewide scale, indicating that gene expression is not a good predictor of fitness determinants. In general, fewer fitness determinants were identified for antiseptics and disinfectants than for antibiotics. Analysis of gene expression and fitness data together allowed the prediction of antagonistic interactions between antimicrobials and insight into the molecular mechanisms controlling these interactions. PMID:26507235

  1. Opportunistic Marketing in Higher Education.

    ERIC Educational Resources Information Center

    Wonders, Thomas J.; Gyure, James F.

    1991-01-01

    The experiences of University of Pittsburgh at Johnstown (Pennsylvania) with opportunistic marketing are outlined. Opportunistic marketing takes advantage of reactive decision making within the administration by repeatedly creating marketing situations that force decisions, then eliciting acknowledgment that the marketing efforts worked. Special…

  2. Opportunistic Marketing in Higher Education.

    ERIC Educational Resources Information Center

    Wonders, Thomas J.; Gyure, James F.

    1991-01-01

    The experiences of University of Pittsburgh at Johnstown (Pennsylvania) with opportunistic marketing are outlined. Opportunistic marketing takes advantage of reactive decision making within the administration by repeatedly creating marketing situations that force decisions, then eliciting acknowledgment that the marketing efforts worked. Special…

  3. Sigma factors in Pseudomonas aeruginosa.

    PubMed

    Potvin, Eric; Sanschagrin, François; Levesque, Roger C

    2008-01-01

    In Pseudomonas aeruginosa, as in most bacterial species, the expression of genes is tightly controlled by a repertoire of transcriptional regulators, particularly the so-called sigma (sigma) factors. The basic understanding of these proteins in bacteria has initially been described in Escherichia coli where seven sigma factors are involved in core RNA polymerase interactions and promoter recognition. Now, 7 years have passed since the completion of the first genome sequence of the opportunistic pathogen P. aeruginosa. Information from the genome of P. aeruginosa PAO1 identified 550 transcriptional regulators and 24 putative sigma factors. Of the 24 sigma, 19 were of extracytoplasmic function (ECF). Here, basic knowledge of sigma and ECF proteins was reviewed with particular emphasis on their role in P. aeruginosa global gene regulation. Summarized data are obtained from in silico analysis of P. aeruginosasigma and ECF including rpoD (sigma(70)), RpoH (sigma(32)), RpoF (FliA or sigma(28)), RpoS (sigma(S) or sigma(38)), RpoN (NtrA, sigma(54) or sigma(N)), ECF including AlgU (RpoE or sigma(22)), PvdS, SigX and a collection of uncharacterized sigma ECF, some of which are implicated in iron transport. Coupled to systems biology, identification and functional genomics analysis of P. aeruginosasigma and ECF are expected to provide new means to prevent infection, new targets for antimicrobial therapy, as well as new insights into the infection process.

  4. Klebsiella oxytoca: opportunistic infections in laboratory rodents.

    PubMed

    Bleich, Andre; Kirsch, Petra; Sahly, Hany; Fahey, Jim; Smoczek, Anna; Hedrich, Hans-Jürgen; Sundberg, John P

    2008-07-01

    Opportunistic pathogens have become increasingly relevant as the causative agents of clinical disease and pathological lesions in laboratory animals. This study was conducted to evaluate the role of Klebsiella oxytoca as an opportunistic pathogen in laboratory rodents. Therefore, K. oxytoca-induced lesions were studied from 2004 to early 2006 in naturally infected rodent colonies maintained at The Jackson Laboratory (TJL), Bar Harbor, USA, the Animal Research Centre (Tierforschungszentrum, TFZ) of the University of Ulm, Germany and the Central Animal Facility (ZTM) of the Hannover Medical School, Germany. K. oxytoca infections were observed in substrains of C3H/HeJ mice, which carry the Tlr4(Lps-d) allele; in LEW.1AR1-iddm rats, the latter being prone to diabetes mellitus; in immunodeficient NMRI-Foxn1(nu) mice; and in mole voles, Ellobius lutescens. The main lesions observed were severe suppurative otitis media, urogenital tract infections and pneumonia. Bacteriological examination revealed K. oxytoca as monocultures in all cases. Clonality analysis performed on strains isolated at the ZTM and TFZ (serotyping, pulse field gel electrophoresis [PFGE], enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction, sequencing of 16S rRNA and rpoB genes) revealed that the majority of bacteria belonged to two clones, one in each facility, expressing the capsule type K55 (ZTM) or K72 (TFZ). Two strains, one isolated at the ZTM and one at the TFZ, showed different PFGE and ERIC pattern than all other isolates and both expressed capsule type K35. In conclusion, K. oxytoca is an opportunistic pathogen capable of inducing pathological lesions in different rodent species.

  5. Developing an international Pseudomonas aeruginosa reference panel.

    PubMed

    De Soyza, Anthony; Hall, Amanda J; Mahenthiralingam, Eshwar; Drevinek, Pavel; Kaca, Wieslaw; Drulis-Kawa, Zuzanna; Stoitsova, Stoyanka R; Toth, Veronika; Coenye, Tom; Zlosnik, James E A; Burns, Jane L; Sá-Correia, Isabel; De Vos, Daniel; Pirnay, Jean-Paul; Kidd, Timothy J; Reid, David; Manos, Jim; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard; McClean, Siobhán; Winstanley, Craig

    2013-12-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents.

  6. Sequencing and Analysis of the Pseudomonas fluorescens GcM5-1A Genome: A Pathogen Living in the Surface Coat of Bursaphelenchus xylophilus

    PubMed Central

    Chen, Yingnan; Zhao, Boguang; Yin, Tongming

    2015-01-01

    It is known that several bacteria are adherent to the surface coat of pine wood nematode (Bursaphelenchus xylophilus), but their function and role in the pathogenesis of pine wilt disease remains debatable. The Pseudomonas fluorescens GcM5-1A is a bacterium isolated from the surface coat of pine wood nematodes. In previous studies, GcM5-1A was evident in connection with the pathogenicity of pine wilt disease. In this study, we report the de novo sequencing of the GcM5-1A genome. A 600-Mb collection of high-quality reads was obtained and assembled into sequence contigs spanning a 6.01-Mb length. Sequence annotation predicted 5,413 open reading frames, of which 2,988 were homologous to genes in the other four sequenced P. fluorescens isolates (SBW25, WH6, Pf0-1 and Pf-5) and 1,137 were unique to GcM5-1A. Phylogenetic studies and genome comparison revealed that GcM5-1A is more closely related to SBW25 and WH6 isolates than to Pf0-1 and Pf-5 isolates. Towards study of pathogenesis, we identified 79 candidate virulence factors in the genome of GcM5-1A, including the Alg, Fl, Waa gene families, and genes coding the major pathogenic protein fliC. In addition, genes for a complete T3SS system were identified in the genome of GcM5-1A. Such systems have proved to play a critical role in subverting and colonizing the host organisms of many gram-negative pathogenic bacteria. Although the functions of the candidate virulence factors need yet to be deciphered experimentally, the availability of this genome provides a basic platform to obtain informative clues to be addressed in future studies by the pine wilt disease research community. PMID:26517369

  7. Spectrum of opportunistic infections in AIDS cases.

    PubMed

    Singh, A; Bairy, I; Shivananda, P G

    2003-01-01

    Human Immunodeficiency viruses are the initial causative agents in AIDS, but most of the morbidity and mortality in AIDS cases result from opportunistic infections, Identification of such pathogen is very important for clinicians and health planners to tackle the AIDS epidemic in more effective manner. The present study describes the clinical and laboratory profile of 100 AIDS causes who presented to a referral hospital. Oral candidiasis (59.00%) was found to be the most common opportunistic infection, followed by tuberculosis (56.00%), Cryptosporidium infection (47.00%) and Pneumocystis carinii (7.00%). Presence of oral candidiasis and weight loss is highly predictive of low DC4 count and can be considered as a marker of HIV disease progression. The patients coinfected with HIV and tuberculosis are also on rise. Recognition of dual infection and taking adequate steps to deal with this epidemic is needed. As Cryptosporidium infection was detected in large number, provision of safe drinking water and maintaining good hygiene is important for prevention. Early diagnosis of opportunistic infection and prompt treatment, delays the progression towards AIDS. 91.00% of patients were infected with HIV1 and 4.00% had HIV2 infection and 5.00% were dully infected. 87.00% of patients were males and 13.00% were belonging to 21-40 years of age. Majority of them were belonging to lower socioeconomic status and heterosexual route of transmission was the commonest mode of spread.

  8. Investigation of zoonotic disease pathogens (Aeromonas hydrophila, Pseudomonas fluorescens, Streptococcus iniae) seen in carp farms in the Northern Iraq-Erbil region by molecular methods

    NASA Astrophysics Data System (ADS)

    Ibraheem, Azad Saber; Önalan, Şükrü; Arabacı, Muhammed

    2017-04-01

    The aim of this study was to determine the zoonotic bacteria in carp farms in the Northern Iraq-Erbil region. Carp is the main fish species cultured in Erbil region. The most common zoonotic bacteria generally seen in carp farms are Aeromonas hydrophila, Pseudomonas fluorescens and Streptococcus iniae. Samples were collected from 25 carp farms in the Northern Iraq-Erbil region. Six carp samples were collected from each carp farm. Head kidney and intestine tissue samples were collected from each carp sample. Then head kidney and intestine tissue samples were pooled separately from each carp farm. Total bacterial DNA had been extracted from the 25 pooled head kidney and 25 intestinal tissue samples. The pathogen Primers were originally designed from 16S RNA gene region. Zoonotic bacteria were scanned in all tissue samples with absent/present analysis by RT-PCR. Furthermore, the capillary gel electrophoresis bands were used for confirmation of amplicon size which was planned during primer designing stage. As a result, thirteen carp farms were positive in the respect to Aeromonas hydrophila, eight carp farms were positive from head kidney and six carp farms were positive from the intestine, only one carp farm was positive from both head kidney and the intestine tissue samples. In the respect to Streptococcus iniae, four carp farms were positive from head kidney and two carp farms were positive from the intestine. Only one carp farm was positive in the respect to Pseudomonas fluorescens from the intestine. Totally, 9 of 25 carp farms were cleared (negative) the zoonotic bacteria. In conclusion, the zoonotic bacteria were high (64 %) in carp farms in the Northern Iraq-Erbil region.

  9. Pseudomonas orchitis in puberty.

    PubMed

    Rajagopal, Ambil S

    2004-10-01

    Acute epididymo-orchitis is a common cause of 'acute scrotum' in adolescence and young adults, and the common causative pathogens are Chlamydia trachomatis and Neisseria gonorrhoeae. This is a rare case of acute epididymo-orchitis due to Pseudomonas aeruginosa in a pubertal boy with a history of 'ano-receptive' intercourse. On Medline search there are no reports of pseudomonas orchitis in this age group.

  10. Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients.

    PubMed Central

    May, T B; Shinabarger, D; Maharaj, R; Kato, J; Chu, L; DeVault, J D; Roychoudhury, S; Zielinski, N A; Berry, A; Rothmel, R K

    1991-01-01

    Pulmonary infection by mucoid, alginate-producing Pseudomonas aeruginosa is the leading cause of mortality among patients suffering from cystic fibrosis. Alginate-producing P. aeruginosa is uniquely associated with the environment of the cystic fibrosis-affected lung, where alginate is believed to increase resistance to both the host immune system and antibiotic therapy. Recent evidence indicates that P. aeruginosa is most resistant to antibiotics when the infecting cells are present as a biofilm, as they appear to be in the lungs of cystic fibrosis patients. Inhibition of the protective alginate barrier with nontoxic compounds targeted against alginate biosynthetic and regulatory proteins may prove useful in eradicating P. aeruginosa from this environment. Our research has dealt with elucidating the biosynthetic pathway and regulatory mechanism(s) responsible for alginate synthesis by P. aeruginosa. This review summarizes reports on the role of alginate in cystic fibrosis-associated pulmonary infections caused by P. aeruginosa and provides details about the biosynthesis and regulation of this exopolysaccharide. PMID:1906371

  11. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host–pathogen interactions in cystic fibrosis

    PubMed Central

    MOSER, CLAUS; VAN GENNIP, MARIA; BJARNSHOLT, THOMAS; JENSEN, PETER ØSTRUP; LEE, BAOLERI; HOUGEN, HANS PETTER; CALUM, HENRIK; CIOFU, OANA; GIVSKOV, MICHAEL; MOLIN, SØREN; HØIBY, NIELS

    2009-01-01

    The dominant cause of premature death in patients suffering from cystic fibrosis (CF) is chronic lung infection with Pseudomonas aeruginosa. The chronic lung infection often lasts for decades with just one clone. However, as a result of inflammation, antibiotic treatment and different niches in the lungs, the clone undergoes significant genetic changes, resulting in diversifying geno- and phenotypes. Such an adaptation may generate different host responses. To experimentally reflect the year-long chronic lung infection in CF, groups of BALB/c mice were infected with clonal isolates from different periods (1980, 1988, 1997, 1999 and 2003) of the chronic lung infection of one CF patient using the seaweed alginate embedment model. The results showed that the non-mucoid clones reduced their virulence over time, resulting in faster clearing of the bacteria from the lungs, improved pathology and reduced pulmonary production of macrophage inflammatory protein-2 (MIP-2) and granulocyte colony-stimulating factor (G-CSF). In contrast, the mucoid clones were more virulent and virulence increased with time, resulting in impaired pulmonary clearing of the latest clone, severe inflammation and increased pulmonary MIP-2 and G-CSF production. In conclusion, adaptation of P. aeruginosa in CF is reflected by changed ability to establish lung infection and results in distinct host responses to mucoid and non-mucoid phenotypes. PMID:19239431

  12. Analysis of the small RNA spf in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000.

    PubMed

    Park, So Hae; Bao, Zhongmeng; Butcher, Bronwyn G; D'Amico, Katherine; Xu, Yun; Stodghill, Paul; Schneider, David J; Cartinhour, Samuel; Filiatrault, M J

    2014-05-01

    Bacteria contain small non-coding RNAs (ncRNAs) that are typically responsible for altering transcription, translation or mRNA stability. ncRNAs are important because they often regulate virulence factors and susceptibility to various stresses. Here, the regulation of a recently described ncRNA of Pseudomonas syringae DC3000, spot 42 (now referred to as spf), was investigated. A putative RpoE binding site was identified upstream of spf in strain DC3000. RpoE is shown to regulate the expression of spf. Also, deletion of spf results in increased sensitivity to hydrogen peroxide compared with the wild-type strain, suggesting that spf plays a role in susceptibility to oxidative stress. Furthermore, expression of alg8 is shown to be influenced by spf, suggesting that this ncRNA plays a role in alginate biosynthesis. Structural and comparative genomic analyses show this ncRNA is well conserved among the pseudomonads. The findings provide new information on the regulation and role of this ncRNA in P. syringae.

  13. Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence

    PubMed Central

    Chan, Kok-Gan; Liu, Yi-Chia; Chang, Chien-Yi

    2015-01-01

    Bacteria sense their own population size, tune the expression of responding genes, and behave accordingly to environmental stimuli by secreting signaling molecules. This phenomenon is termed as quorum sensing (QS). By exogenously manipulating the signal transduction bacterial population behaviors could be controlled, which may be done through quorum quenching (QQ). QS related regulatory networks have been proven their involvement in regulating many virulence determinants in pathogenic bacteria in the course of infections. Interfering with QS signaling system could be a novel strategy against bacterial infections and therefore requires more understanding of their fundamental mechanisms. Here we review the development of studies specifically on the inhibition of production of N-acyl-homoserine lactone (AHL), a common proteobacterial QS signal. The opportunistic pathogen, Pseudomonas aeruginosa, equips the alkylquinolone (AQ)-mediated QS which also plays crucial roles in its pathogenicity. The studies in QQ targeting on AQ are also discussed. PMID:26539190

  14. The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent

    PubMed Central

    Banin, Ehud; Lozinski, Alina; Brady, Keith M.; Berenshtein, Eduard; Butterfield, Phillip W.; Moshe, Maya; Chevion, Mordechai; Greenberg, Everett Peter; Banin, Eyal

    2008-01-01

    The opportunistic pathogen Pseudomonas aeruginosa causes infections that are difficult to treat by antibiotic therapy. This bacterium can cause biofilm infections where it shows tolerance to antibiotics. Here we report the novel use of a metallo-complex, desferrioxamine-gallium (DFO-Ga) that targets P. aeruginosa iron metabolism. This complex kills free-living bacteria and blocks biofilm formation. A combination of DFO-Ga and the anti-Pseudomonas antibiotic gentamicin caused massive killing of P. aeruginosa cells in mature biofilms. In a P. aeruginosa rabbit corneal infection, topical administration of DFO-Ga together with gentamicin decreased both infiltrate and final scar size by about 50% compared to topical application of gentamicin alone. The use of DFO-Ga as a Trojan horse delivery system that interferes with iron metabolism shows promise as a treatment for P. aeruginosa infections. PMID:18931304

  15. Pseudomonas fluorescens F113 Mutant with Enhanced Competitive Colonization Ability and Improved Biocontrol Activity against Fungal Root Pathogens

    PubMed Central

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-01-01</