Sample records for opposed flow diffusion

  1. POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)

    EPA Science Inventory

    Abstract

    The effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...

  2. Thermosolutal convection in high-aspect-ratio enclosures

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chen, C. T.

    1988-01-01

    Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.

  3. Effect of Riblets on Pressure Recovery in a Straight-Walled Diffuser

    DTIC Science & Technology

    1990-12-01

    in the boundary layer velocity pro - file. As the flow continues to oppose the adverse pressure gradient, the fluid near the wall begins to flow in the...and was 37 inches long. The floor and ceiling of the test section were con - 3 structed of wood and the side panels were made of plexiglass. Both side...the diffuser remained fairly con - stant at 52 percent. The riblet results seem to follow the same trend, providing an approximate 35 percent increase in

  4. Opposing flow in square porous annulus: Influence of Dufour effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athani, Abdulgaphur, E-mail: abbu.bec@gmail.com; Al-Rashed, Abdullah A. A. A., E-mail: aa.alrashed@paaet.edu.kw; Khaleed, H. M. T., E-mail: khalid-tan@yahoo.com

    Heat and mass transfer in porous medium is very important area of research which is also termed as double diffusive convection or thermo-solutal convection. The buoyancy ratio which is the ratio of thermal to concentration buoyancy can have negative values thus leading to opposing flow. This article is aimed to study the influence of Dufour effect on the opposing flow in a square porous annulus. The partial differential equations that govern the heat and mass transfer behavior inside porous medium are solved using finite element method. A three node triangular element is used to divide the porous domain into smallermore » elements. Results are presented with respect to geometric and physical parameters such as duct diameter ratio, Rayleigh number, radiation parameter etc. It is found that the heat transfer increase with increase in Rayleigh number and radiation parameter. It is observed that Dufour coefficient has more influence on velocity profile.« less

  5. Analysis of opposed jet hydrogen-air counter flow diffusion flame

    NASA Technical Reports Server (NTRS)

    Ho, Y. H.; Isaac, K. M.

    1989-01-01

    A computational simulation of the opposed-jet diffusion flame is performed to study its structure and extinction limits. The present analysis concentrates on the nitrogen-diluted hydrogen-air diffusion flame, which provides the basic information for many vehicle designs such as the aerospace plane for which hydrogen is a candidate as the fuel. The computer program uses the time-marching technique to solve the energy and species equations coupled with the momentum equation solved by the collocation method. The procedure is implemented in two stages. In the first stage, a one-step forward overal chemical reaction is chosen with the gas phase chemical reaction rate determined by comparison with experimental data. In the second stage, a complete chemical reaction mechanism is introduced with detailed thermodynamic and transport property calculations. Comparison between experimental extinction data and theoretical predictions is discussed. The effects of thermal diffusion as well as Lewis number and Prandtl number variations on the diffusion flame are also presented.

  6. Variable mass diffusion effects on free convection flow past an impulsively started infinite vertical plate

    NASA Astrophysics Data System (ADS)

    Rushi Kumar, B.; Jayakar, R.; Vijay Kumar, A. G.

    2017-11-01

    An exact analysis of the problem of free convection flow of a viscous incompressible chemically reacting fluid past an infinite vertical plate with the flow due to impulsive motion of the plate with Newtonian heating in the presence of thermal radiation and variable mass diffusion is performed. The resulting governing equations were tackled by Laplace transform technique. Finally the effects of pertinent flow parameters such as the radiation parameter, chemical reaction parameter, buoyancy ratio parameter, thermal Grashof number, Schmidt number, Prandtl number and time on the velocity, temperature, concentration and skin friction for both aiding and opposing flows were examined in detail when Pr=0.71(conducting air) and Pr=7.0(water).

  7. OH and CH luminescence in opposed flow methane oxy-flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Leo, Maurizio; Saveliev, Alexei; Kennedy, Lawrence A.

    Emission spectroscopy is a 2-D nonintrusive diagnostic technique that offers spatially resolved data for combustion optimization and control. The UV and visible chemiluminescence of the excited radicals CH(A{sup 2}{delta},B{sup 2}{sigma}{sup -}) and OH(A{sup 2}{sigma}{sup +}) is studied experimentally and numerically in opposed-flow diffusion flames of methane and oxygen-enriched air. The oxidized oxygen content is varied from 21 to 100% while the range of the studied strain rates spans from 20 to 40 s{sup -1}. The spectrally resolved imaging is obtained by two different methods: scattering through a grating monochromator and interposition of interference filters along the optical path. Absolute measuredmore » chemiluminescence intensities, coupled with a numerical model based on the opposed flow flame code, are used to evaluate the chemical kinetics of the excited species. The predictions of the selected model are in good agreement with the experimental data over the range of the studied flame conditions. (author)« less

  8. Influence of oxygen concentration, fuel composition, and strain rate on synthesis of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Hou, Shuhn-Shyurng; Huang, Wei-Cheng

    2015-02-01

    This paper investigates the influence of flame parameters including oxygen concentration, fuel composition, and strain rate on the synthesis of carbon nanomaterials in opposed-jet ethylene diffusion flames with or without rigid-body rotation. In the experiments, a mixture of ethylene and nitrogen was introduced from the upper burner; meanwhile, a mixture of oxygen and nitrogen was supplied from the lower burner. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. With non-rotating opposed-jet diffusion flames, carbon nanotubes (CNTs) were successfully produced for oxygen concentrations in the range of 21-50 % at a fixed ethylene concentration of 20 %, and for ethylene concentrations ranging from 14 to 24 % at a constant oxygen concentration of 40 %. With rotating opposed-jet diffusion flames, the strain rate was varied by adjusting the angular velocities of the upper and lower burners. The strain rate governed by flow rotation greatly affects the synthesis of carbon nanomaterials [i.e., CNTs and carbon nano-onions (CNOs)] either through the residence time or carbon sources available. An increase in the angular velocity lengthened the residence time of the flow and thus caused the diffusion flame to experience a decreased strain rate, which in turn produced more carbon sources. The growth of multi-walled CNTs was achieved for the stretched flames experiencing a higher strain rate [i.e., angular velocity was equal to 0 or 1 rotations per second (rps)]. CNOs were synthesized at a lower strain rate (i.e., angular velocity was in the range of 2-5 rps). It is noteworthy that the strain rate controlled by flow rotation greatly influences the fabrication of carbon nanostructures owing to the residence time as well as carbon source. Additionally, more carbon sources and higher temperature are required for the synthesis of CNOs compared with those required for CNTs (i.e., about 605-625 °C for CNTs and 700-800 °C for CNOs).

  9. Effects of water-contaminated air on blowoff limits of opposed jet hydrogen-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Jentzen, Marilyn E.; Wilson, Lloyd G.; Northam, G. Burton

    1988-01-01

    The effects of water-contaminated air on the extinction and flame restoration of the central portion of N2-diluted H2 versus air counterflow diffusion flames are investigated using a coaxial tubular opposed jet burner. The results show that the replacement of N2 contaminant in air by water on a mole for mole basis decreases the maximum sustainable H2 mass flow, just prior to extinction, of the flame. This result contrasts strongly with the analogous substitution of water for N2 in a relatively hot premixed H2-O2-N2 flame, which was shown by Koroll and Mulpuru (1986) to lead to a significant, kinetically controlled increase in laminar burning velocity.

  10. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the serpentine channel with similar conditions. Simulations for mass transfer show that recombining of the flow streams generate more uniform current density unlike the serpentine configuration where the current density was concentrated at the entrance of the flow stream. The background section provides a brief overview of the governing equations, the theory of flow field operation and previous bodies of work on flow field design. Recommendations are made for further verification of the design using a real working cell based on the results.

  11. Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.

    2001-01-01

    Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.

  12. Sounding Rocket Microgravity Experiments Elucidating Diffusive and Radiative Transport Effects on Flame Spread over Thermally-Thick Solids

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Hegde, U.; Bhattacharjee, S.; Deering, J. L.; Tang, L.; Altenkirch, R. A.

    2003-01-01

    A series of 6-minute microgravity combustion experiments of opposed flow flame spread over thermally-thick PMMA has been conducted to extend data previously reported at high opposed flows to almost two decades lower in flow. The effect of flow velocity on flame spread shows a square root power law dependence rather than the linear dependence predicted by thermal theory. The experiments demonstrate that opposed flow flame spread is viable to very low velocities and more robust than expected from the numerical model, which predicts that at very low velocities (less than 5 centimeters per second), flame spread rates fall off more rapidly as flow is reduced. It is hypothesized that the enhanced flame spread observed in the experiments may be due to three- dimensional hydrodynamic effects, which are not included in the zero-gravity, two-dimensional hydrodynamic model. The effect of external irradiation was found to be more complex that the model predicted over the 0-2 Watts per square centimeter range. In the experiments, the flame compensated for the increased irradiation by stabilizing farther from the surface. A surface energy balance reveals that the imposed flux was at least partially offset by a reduced conductive flux from the increased standoff distance, so that the effect on flame spread was weaker than anticipated.

  13. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  14. Opposing Effects of cAMP and T259 Phosphorylation on Plasma Membrane Diffusion of the Water Channel Aquaporin-5 in Madin-Darby Canine Kidney Cells

    PubMed Central

    Koffman, Jennifer S.; Arnspang, Eva C.; Marlar, Saw; Nejsum, Lene N.

    2015-01-01

    Aquaporin-5 (AQP5) facilitates passive water transport in glandular epithelia in response to secretory stimuli via intracellular pathways involving calcium release, cAMP and protein kinase A (PKA). In epithelial plasma membranes, AQP5 may be acutely regulated to facilitate water transport in response to physiological stimuli by changes in protein modifications, interactions with proteins and lipids, nanoscale membrane domain organization, and turnover rates. Such regulatory mechanisms could potentially be associated with alteration of diffusion behavior, possibly resulting in a change in the plasma membrane diffusion coefficient of AQP5. We aimed to test the short-term regulatory effects of the above pathways, by measuring lateral diffusion of AQP5 and an AQP5 phospho-mutant, T259A, using k-space Image Correlation Spectroscopy of quantum dot- and EGFP-labeled AQP5. Elevated cAMP and PKA inhibition significantly decreased lateral diffusion of AQP5, whereas T259A mutation showed opposing effects; slowing diffusion without stimulation and increasing diffusion to basal levels after cAMP elevation. Thus, lateral diffusion of AQP5 is significantly regulated by cAMP, PKA, and T259 phosphorylation, which could be important for regulating water flow in glandular secretions. PMID:26218429

  15. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, Mahlon S.

    1997-01-01

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.

  16. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, M.S.

    1997-06-24

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.

  17. Counterflow diffusion flames of hydrogen, and hydrogen plus methane, ethylene, propane, and silane vs. air - Strain rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. Burton; Wilson, L. G.

    1991-01-01

    Five coaxial tubular opposed jet burners (OJBs) with tube diameter D(T) of 1.8-10 mm and 5 mm conical nozzles were used to form dish-shaped counterflow diffusion flames centered by opposing laminar jets of nitrogen and hydrocarbon-diluted H2 versus air in an argon-purged chamber at 1 atm. Area-averaged air jet velocities at blowoff of the central flame, U(air), characterized extinction of the airside flame as functions of input H2 concentration on the fuelside. A master plot of extensive U(air) data at blowoff versus D(T) shows that U(air) varies linearly with D(T). This and other data sets are used to find that nozzle OJB results for U(air)/diameter average 4.24 + or - 0.28 times larger than tubular OJB results for the same fuel compositions. Critical radial velocity gradients consistent with one-dimensional stagnation point boundary theory and with plug flow inputs are estimated. The results compare favorably with published numerical results based only on potential flow.

  18. Experimental Characterization of Soot Formation in Diffusion Flames and Explosive Fireballs

    DTIC Science & Technology

    2012-04-01

    49 Figure 48. A side view of the elevated pressure-opposed flow rig on the test stand. The IR cutoff filter is shown in front of the...turbulent flows of mixed gasses in excited states. To perform this measurement, we have built and characterized a sensitive, selective infrared ( IR ...tool for TDLAS (Kosterev and Tittel, 2002). The QCL operates near room temperature and provides a powerful (~10 mW), stable, single-mode, mid- IR

  19. Applicability of a diffusion model to lateral transport in the terrestrial and lunar exospheres.

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1972-01-01

    Kinetic theory is used to determine a series expansion of the vertical flux of particles in an exosphere in terms of time and space derivatives of particle concentration, exobase velocity, and temperature. For sufficiently large scale variations of these parameters in time and space, the series can be truncated to a form that is similar to a diffusion equation. Owing to this analogy, it is possible to unite the mathematical description of molecular diffusion, which governs thermospheric flow, and the corresponding exospheric equation by using effective transport coefficients which change smoothly with altitude through the transition from thermosphere to exosphere. A new definition of the exobase for lateral flow emerges from the analogy of exospheric and thermospheric diffusion, as the altitude where the horizontal mean free path length equals the mean horizontal extent of ballistic trajectories of the transported gas, as opposed to the scale height of the dominant gas which determines the exobase for escape. It is shown that the approximation of exospheric lateral flow as a diffusion process is applicable to global scale problems concerning terrestrial helium and heavier gases, and lunar gases heavier than helium.

  20. Reverse-Tangent Injection in a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  1. Unexpected consequences of bedload diffusion

    NASA Astrophysics Data System (ADS)

    Devauchelle, O.; Abramian, A.; Lajeunesse, E.

    2017-12-01

    Sedimentary grains transported as bedload bump and bounce on the rough bed of the river that entrains them. The succession of these random events causes bedload particles to diffuse across the flow, towards the less active areas of the bed. In a fashion reminiscent of that proposed by Parker (1978) for suspended load, this mechanism opposes gravity to maintain the banks of alluvial rivers. In fact, diffusion is so tightly linked to bedload that it appears in the most basic sediment transport experiment--the straight channel we use to calibrate transport laws. Indeed, the fixed sides of the channel cause the flow, and thus the bed shear stress, to vary across the flume. This variation induces bedload diffusion, which in turn deforms the bed. As a consequence, to reliably calibrate a transport law, we need to measure the full profiles of shear stress and bedload transport, rather than bulk-average these quantities. Unfortunately, using a larger channel does not solve the problem, as a large aspect ratio favors the growth of streaks caused by a diffusion-induced instability. Based on these observations, we propose a different design for sediment transport experiments.

  2. Wire Insulation Flammability Experiment: USML-1 One Year Post Mission Summary

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Sacksteder, Kurt R.; Kashiwagi, Takashi

    1994-01-01

    Herein we report the results from the Wire Insulation Flammability (WIF) Experiment performed in the Glovebox Facility on the USML-1 mission. This experiment explored various aspects of electrically induced fire scenarios in a reduced gravity environment. Under quiescent microgravity conditions, heat and mass transfer are dominated by diffusive and radiative transport; while in normal-gravity buoyancy induced convection often dominates. Of considerable scientific and practical interest is the intermediate situation of combustion occurring in the presence of imposed gas flows, with lower characteristic velocities than those induced by buoyancy in noma1 gravity. Two distinct cases naturally arise: flow direction opposed to, or concurrent with, the flame spread direction. Two tests of each kind were conducted in the WIF experiment, providing the first controlled demonstration of flame spreading in forced convection ever conducted in space. Four test modules were flown. The wire insulation, 1.5 mm in diameter, was polyethylene, extruded onto nichrome wire. Temperatures of the wh3 cores and insulation heated in quiescent and flowing environments were measured. Video and still-camera images of the samples, burning in air flowing at approximately 10 cm/sec, were recorded to obtain flame characteristics including spread rate, structure and temperature. Flame spread rates in concurrent flow were approximately twice those in opposed flow. In concurrent and opposed flow regimes, the spreading flames stabilized around a bead of molten insulation material, within which bubble nucleation was observed. An ignition attempt without flow mated a quiescent cloud of vaporized fuel which ignited dramatically yet failed to sustain normal flame spread. Finally, all tests produced substantial soot agglomerates, particularly the concurrent flow tests; and the collected soot has a morphology very distinct from soot formed in normal gravity flames. Several unexpected and unique microgravity combustion phenomena were observed.

  3. Strain-induced extinction of hydrogen-air counterflow diffusion flames - Effects of steam, CO2, N2, and O2 additives to air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.

    1992-01-01

    A fundamental study was performed using axisymmetric nozzle and tubular opposed jet burners to measure the effects of laminar plug flow and parabolic input velocity profiles on the extinction limits of H2-air counterflow diffusion flames. Extinction limits were quantified by 'flame strength', (average axial air jet velocity) at blowoff of the central flame. The effects of key air contaminants, on the extinction limits, are characterized and analyzed relative to utilization of combustion contaminated vitiated air in high enthalpy supersonic test facilities.

  4. Assessment of RANS and LES Turbulence Modeling for Buoyancy-Aided/Opposed Forced and Mixed Convection

    NASA Astrophysics Data System (ADS)

    Clifford, Corey; Kimber, Mark

    2017-11-01

    Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.

  5. Low velocity opposed-flow frame spread in a transport-controlled environment DARTFire

    NASA Technical Reports Server (NTRS)

    West, Jeff; Thomas, Pete; Chao, Ruian; Bhattacharjee, Subrata; Tang, TI; Altenkirch, Robert A.; Olson, Sandra L.

    1995-01-01

    The overall objectives of the DARTFire project are to uncover the underlying physics and increase understanding of the mechanisms that cause flames to propagate over solid fuels against a low velocity of oxidizer flow in a low-gravity environment. Specific objectives are (1) to analyze experimentally observed flame shapes, measured gas-phase field variables, spread rates, radiative characteristics, and solid-phase regression rates for comparison with previously developed model prediction capability that will be continually extended, and (2) to investigate the transition from ignition to either flame propagation or extinction in order to determine the characteristics of those environments that lead to flame evolution. To meet the objectives, a series of sounding rocket experiments has been designed to exercise several of the dimensional, controllable variables that affect the flame spread process over PMMA in microgravity, i.e., the opposing flow velocity (1-20 cm/s), the external radiant flux directed to the fuel surface (0-2 W/cm(exp 2)), and the oxygen concentration of the environment (35-70%). Because radiative heat transfer is critical to these microgravity flame spread experiments, radiant heating is imposed, and radiant heat loss will be measured. These are the first attempts at such an experimental control and measurement in microgravity. Other firsts associated with the experiment are (1) the control of the low velocity, opposed flow, which is of the same order as diffusive velocities and Stefan flows; (2) state-of-the-art quantitative flame imaging for species-specific emissions (both infrared and ultraviolet) in addition to novel intensified array imaging to obtain a color image of the very dim, low-gravity flames.

  6. Spirometry, Static Lung Volumes, and Diffusing Capacity.

    PubMed

    Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H

    2017-09-01

    Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11) because inspiratory capacity decreased with increasing air-flow obstruction ( P < .001), thus opposing the increased FRC ( P < .001). Finally, P values were similar whether adj LS Means were height-cubed standardized. A GLI-defined spirometric restrictive pattern is strongly associated with a restrictive ventilatory defect (decreased TLC, FRC, and RV), while GLI-defined spirometric air-flow obstruction is strongly associated with hyperinflation (increased FRC) and air trapping (increased RV and RV/TLC). Both spirometric impairments were strongly associated with impaired gas exchange (decreased hemoglobin-adjusted single-breath diffusing capacity). Copyright © 2017 by Daedalus Enterprises.

  7. Flame Spread and Extinction Over a Thick Solid Fuel in Low-Velocity Opposed and Concurrent Flows

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Lu, Zhanbin; Wang, Shuangfeng

    2016-05-01

    Flame spread and extinction phenomena over a thick PMMA in purely opposed and concurrent flows are investigated by conducting systematical experiments in a narrow channel apparatus. The present tests focus on low-velocity flow regime and hence complement experimental data previously reported for high and moderate velocity regimes. In the flow velocity range tested, the opposed flame is found to spread much faster than the concurrent flame at a given flow velocity. The measured spread rates for opposed and concurrent flames can be correlated by corresponding theoretical models of flame spread, indicating that existing models capture the main mechanisms controlling the flame spread. In low-velocity gas flows, however, the experimental results are observed to deviate from theoretical predictions. This may be attributed to the neglect of radiative heat loss in the theoretical models, whereas radiation becomes important for low-intensity flame spread. Flammability limits using oxygen concentration and flow velocity as coordinates are presented for both opposed and concurrent flame spread configurations. It is found that concurrent spread has a wider flammable range than opposed case. Beyond the flammability boundary of opposed spread, there is an additional flammable area for concurrent spread, where the spreading flame is sustainable in concurrent mode only. The lowest oxygen concentration allowing concurrent flame spread in forced flow is estimated to be approximately 14 % O2, substantially below that for opposed spread (18.5 % O2).

  8. A qualitative view of cryogenic fluid injection into high speed flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Schlumberger, J.; Proctor, M.

    1991-01-01

    The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.

  9. Mass Transfer in a Nanoscale Material Enhanced by an Opposing Flux

    NASA Astrophysics Data System (ADS)

    Chmelik, Christian; Bux, Helge; Caro, Jürgen; Heinke, Lars; Hibbe, Florian; Titze, Tobias; Kärger, Jörg

    2010-02-01

    Diffusion is known to be quantified by measuring the rate of molecular fluxes in the direction of falling concentration. In contrast with intuition, considering methanol diffusion in a novel type of nanoporous material (MOF ZIF-8), this rate has now been found to be enhanced rather than slowed down by an opposing flux of labeled molecules. In terms of the key quantities of random particle movement, this result means that the self-diffusivity exceeds the transport diffusivity. It is rationalized by considering the strong intermolecular interaction and the dominating role of intercage hopping in mass transfer in the systems under study.

  10. Diffusive parameters of tritiated water and uranium in chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Descostes, M.; UMR 8587 CEA, Universite d'Evry, CNRS,; Pili, E.

    2012-07-15

    The Cretaceous Chalk of North-western Europe exhibits a double porosity (matrix and fracture) providing pathways for both slow and rapid flow of water. The present study aims at understanding and predicting the contaminant transfer properties through a significant section of this formation, with a particular emphasis on diffusion. This requires to study the nature of porosity and to perform diffusion experiments in representative samples using uranium and tritiated water (HTO), respectively taken as a reactive tracer and an inert one. The diffusive parameters, i.e. the accessible porosity and the effective diffusion coefficient were determined. Additional information was obtained with mercurymore » porosimetry, gravimetric water content, textural and mineralogical characterization. The diffusion tests performed with HTO appear to be the best method to measure the total accessible porosity in any type of porous media, especially those having large pore size distributions. Our study demonstrates that classical gravimetric water content measurements are not sensitive to the reduction in pore size as opposed to HTO diffusion tests because capillary water is not extracted by conventional gravimetric method but can still be probed by diffusion experiments. We found effective diffusion coefficients D{sub e}(U(VI)) near 4 x 10{sup -10} m{sup 2}s{sup -1}). The slower migration of U(VI) compared to HTO indicates sorption, with R{sub d}(U(VI)) from 100 to 360 mL g{sup -1}. These values are one order of magnitude larger than other determinations of the U(VI) sorption coefficient because only the matrix porosity is concerned here. The migration of U(VI) in chalk is only limited by sorption on ancillary Fe-Pb-bearing minerals. Transport of HTO and U(VI) is independent of the porosity distribution. Uranium diffusion in the chalk matrix porosity is fast enough to allow the total invasion of the pore space within characteristic time scales of the order of 1000 years. This results in a partitioning of uranium velocities in fracture flow and matrix flow proportionally to the respective fracture and matrix porosities. (authors)« less

  11. Mixed Convection Opposing Flow in a Vertical Porous Annulus-Two Temperature Model

    NASA Astrophysics Data System (ADS)

    Al-Rashed, Abdullah A. AA; J, Salman Ahmed N.; Khaleed, H. M. T.; Yunus Khan, T. M.; NazimAhamed, K. S.

    2016-09-01

    The opposing flow in a porous medium refers to a condition when the forcing velocity flows in opposite direction to thermal buoyancy obstructing the buoyant force. The present research refers to the effect of opposing flow in a vertical porous annulus embedded with fluid saturated porous medium. The thermal non-equilibrium approach with Darcy modal is considered. The boundary conditions are such that the inner radius is heated with constant temperature Tw the outer radius is maintained at constant temperature Tc. The coupled nonlinear partial differential equations such as momentum equation, energy equation for fluid and energy equation for solid are solved using the finite element method. The opposing flow variation of average Nusselt number with respect to radius ratio Rr, Aspect ratioAr and Radiation parameter Rd for different values of Peclet number Pe are investigated. It is found that the flow behavior is quite different from that of aiding flow.

  12. Electroosmotic flow in a microcavity with nonuniform surface charges.

    PubMed

    Halpern, David; Wei, Hsien-Hung

    2007-08-28

    In this work, we theoretically explore the characteristics of electroosmostic flow (EOF) in a microcavity with nonuniform surface charges. It is well known that a uniformly charged EOF does not give rise to flow separation because of its irrotational nature, as opposed to the classical problem of viscous flow past a cavity. However, if the cavity walls bear nonuniform surface charges, then the similitude between electric and flow fields breaks down, leading to the generation of vorticity in the cavity. Because this vorticity must necessarily diffuse into the exterior region that possesses a zero vorticity set by a uniform EOF, a new flow structure emerges. Assuming Stokes flow, we employ a boundary element method to explore how a nonuniform charge distribution along the cavity surface affects the flow structure. The results show that the stream can be susceptible to flow separation and exhibits a variety of flow structures, depending on the distributions of zeta potentials and the aspect ratio of the cavity. The interactions between patterned EOF vortices and Moffatt eddies are further demonstrated for deep cavities. This work not only has implications for electrokinetic flow induced by surface imperfections but also provides optimal strategies for achieving effective mixing in microgrooves.

  13. An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarathy, S M; Thomson, M J; Pitz, W J

    2009-12-04

    Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents opposed-flow diffusion flame data for one large fatty acid methyl ester, methyl decanoate, and uses the experiments to validate an improved skeletal mechanism consisting of 648 species and 2998 reactions. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

  14. Opposed-flow virtual cyclone for particle concentration

    DOEpatents

    Rader, Daniel J.; Torczynski, John R.

    2000-12-05

    An opposed-flow virtual cyclone for aerosol collation which can accurately collect, classify, and concentrate (enrich) particles in a specific size range. The opposed-flow virtual cyclone is a variation on the virtual cyclone and has its inherent advantages (no-impact particle separation in a simple geometry), while providing a more robust design for concentrating particles in a flow-through type system. The opposed-flow virtual cyclone consists of two geometrically similar virtual cyclones arranged such that their inlet jets are inwardly directed and symmetrically opposed relative to a plane of symmetry located between the two inlet slits. A top plate bounds both jets on the "top" side of the inlets, while the other or lower wall curves "down" and away from each inlet jet. Each inlet jet will follow the adjacent lower wall as it turns away, and that particles will be transferred away from the wall and towards the symmetry plane by centrifugal action. After turning, the two jets merge smoothly along the symmetry line and flow parallel to it through the throat. Particles are transferred from the main flows, across a dividing streamline, and into a central recirculating region, where particle concentrations become greatly increased relative to the main stream.

  15. Grain size distribution in sheared polycrystals

    NASA Astrophysics Data System (ADS)

    Sarkar, Tanmoy; Biswas, Santidan; Chaudhuri, Pinaki; Sain, Anirban

    2017-12-01

    Plastic deformation in solids induced by external stresses is of both fundamental and practical interest. Using both phase field crystal modeling and molecular dynamics simulations, we study the shear response of monocomponent polycrystalline solids. We subject mesocale polycrystalline samples to constant strain rates in a planar Couette flow geometry for studying its plastic flow, in particular its grain deformation dynamics. As opposed to equilibrium solids where grain dynamics is mainly driven by thermal diffusion, external stress/strain induce a much higher level of grain deformation activity in the form of grain rotation, coalescence, and breakage, mediated by dislocations. Despite this, the grain size distribution of this driven system shows only a weak power-law correction to its equilibrium log-normal behavior. We interpret the grain reorganization dynamics using a stochastic model.

  16. Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.

  17. Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames. Appendix E

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.

  18. Modeling of hydrogen-air diffusion flame

    NASA Technical Reports Server (NTRS)

    Isaac, K. M.

    1988-01-01

    Work performed during the first six months of the project duration for NASA Grant (NAG-1-861) is reported. An analytical and computational study of opposed jet diffusion flame for the purpose of understanding the effects of contaminants in the reactants and thermal diffusion of light species on extinction and reignition of diffusion flames is in progress. The methodologies attempted so far are described.

  19. Low-gravity fluid dynamics and transport phenomena. Progress in Astronautics and Aeronautics. Vol. 130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koster, J.N.; Sani, R.L.

    1990-01-01

    Various papers on low-gravity fluid dynamics and transport phenomena are presented. Individual topics addressed include: fluid management in low gravity, nucleate pool boiling in variable gravity, application of energy-stability theory to problems in crystal growth, thermosolutal convection in liquid HgCdTe near the liquidus temperature, capillary surfaces in microgravity, thermohydrodynamic instabilities and capillary flows, interfacial oscillators, effects of gravity jitter on typical fluid science experiments and on natural convection in a vertical cylinder. Also discussed are: double-diffusive convection and its effects under reduced gravity, segregation and convection in dendritic alloys, fluid flow and microstructure development, analysis of convective situations with themore » Soret effect, complex natural convection in low Prandtl number metals, separation physics, phase partitioning in reduced gravity, separation of binary alloys with miscibility gap in the melt, Ostwald ripening in liquids, particle cloud combustion in reduced gravity, opposed-flow flame spread with implications for combustion at microgravity.« less

  20. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    PubMed Central

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-01-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. PMID:27251117

  1. Observations of Shock Diffusion and Interactions in Supersonic Freestreams with Counterflowing Jets

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O.; Pritchett, Victor E.; Wang, Ten-See; Blankson, Isiah M.; Auslender, Aaron H.

    2006-01-01

    One of the technical challenges in long-duration space exploration and interplanetary missions is controlled entry and re-entry into planetary and Earth atmospheres, which requires the dissipation of considerable kinetic energy as the spacecraft decelerates and penetrates the atmosphere. Efficient heat load management of stagnation points and acreage heating remains a technological challenge and poses significant risk, particularly for human missions. An innovative approach using active flow control concept is proposed to significantly modify the external flow field about the spacecraft in planetary atmospheric entry and re-entry in order to mitigate the harsh aerothermal environments, and significantly weaken and disperse the shock-wave system to reduce aerothermal loads and wave drag, as well as improving aerodynamic performance. To explore the potential benefits of this approach, we conducted fundamental experiments in a trisonic blow down wind tunnel to investigate the effects of counterflowing sonic and supersonic jets against supersonic freestreams to gain a better understanding of the flow physics of the interactions of the opposing flows and the resulting shock structure.

  2. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2014-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  3. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Buehrle, Ralph D. (Inventor); Silcox, Richard J. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor); Cano, Roberto J. (Inventor)

    2011-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  4. VALVE

    DOEpatents

    Arkelyan, A.M.; Rickard, C.L.

    1962-04-17

    A gate valve for controlling the flow of fluid in separate concentric ducts or channels by means of a single valve is described. In one position, the valve sealing discs engage opposed sets of concentric ducts leading to the concentric pipes defining the flow channels to block flow therethrough. In another position, the discs are withdrawn from engagement with the opposed ducts and at the same time a bridging section is interposed therebetween to define concentric paths coextensive with and connecting the opposed ducts to facilitate flow therebetween. A wedge block arrangement is employed with each sealing disc to enable it to engage the ducts. The wedge block arrangement also facilitates unobstructcd withdrawal of the discs out of the intervening space between the sets of ducts. (AEC)

  5. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of thesemore » methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.« less

  6. Flammability Aspects of a Cotton-Fiberglass Fabric in Opposed and Concurrent Airflow in Microgravity

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.; Olson, Sandra; Johnston, Michael C.; T'ien, James

    2012-01-01

    Microgravity combustion tests burning fabric samples were performed aboard the International Space Station. The cotton-fiberglass blend samples were mounted inside a small wind tunnel which could impose air flow speeds up to 40 cm/s. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed on flame appearance, flame growth, and spread rates were determined in both the opposed and concurrent flow configuration. For the opposed flow configuration, the flame quickly reached steady spread for each flow speed, and the spread rate was fastest at an intermediate value of flow speed. These tests show the enhanced flammability in microgravity for this geometry, since, in normal gravity air, a flame self-extinguishes in the opposed flow geometry (downward flame spread). In the concurrent flow configuration, flame size grew with time during the tests. A limiting length and steady spread rate were obtained only in low flow speeds ( 10 cm/s) for the short-length samples that fit in the small wind tunnel. For these conditions, flame spread rate increased linearly with increasing flow. This is the first time that detailed transient flame growth data was obtained in purely forced flows in microgravity. In addition, by decreasing flow speed to a very low value (around 1 cm/s), quenching extinction was observed. The valuable results from these long-duration experiments validate a number of theoretical predictions and also provide the data for a transient flame growth model under development.

  7. Velocity Fields of Axisymmetric Hydrogen-Air Counterflow Diffusion Flames from LDV, PIV, and Numerical Computation

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Wilson, Lloyd G.; Humphreys, William M., Jr.; Bartram, Scott M.; Gartrell, Luther R.; Isaac, K. M.

    1995-01-01

    Laminar fuel-air counterflow diffusion flames (CFDFs) were studied using axisymmetric convergent-nozzle and straight-tube opposed jet burners (OJBs). The subject diagnostics were used to probe a systematic set of H2/N2-air CFDFs over wide ranges of fuel input (22 to 100% Ha), and input axial strain rate (130 to 1700 Us) just upstream of the airside edge, for both plug-flow and parabolic input velocity profiles. Laser Doppler Velocimetry (LDV) was applied along the centerline of seeded air flows from a convergent nozzle OJB (7.2 mm i.d.), and Particle Imaging Velocimetry (PIV) was applied on the entire airside of both nozzle and tube OJBs (7 and 5 mm i.d.) to characterize global velocity structure. Data are compared to numerical results from a one-dimensional (1-D) CFDF code based on a stream function solution for a potential flow input boundary condition. Axial strain rate inputs at the airside edge of nozzle-OJB flows, using LDV and PIV, were consistent with 1-D impingement theory, and supported earlier diagnostic studies. The LDV results also characterized a heat-release hump. Radial strain rates in the flame substantially exceeded 1-D numerical predictions. Whereas the 1-D model closely predicted the max I min axial velocity ratio in the hot layer, it overpredicted its thickness. The results also support previously measured effects of plug-flow and parabolic input strain rates on CFDF extinction limits. Finally, the submillimeter-scale LDV and PIV diagnostics were tested under severe conditions, which reinforced their use with subcentimeter OJB tools to assess effects of aerodynamic strain, and fueVair composition, on laminar CFDF properties, including extinction.

  8. Perceptual thresholds for non-ideal diffuse field reverberation.

    PubMed

    Romblom, David; Guastavino, Catherine; Depalle, Philippe

    2016-11-01

    The objective of this study is to understand listeners' sensitivity to directional variations in non-ideal diffuse field reverberation. An ABX discrimination test was conducted using a semi-spherical 28-loudspeaker array; perceptual thresholds were estimated by systematically varying the level of a segment of loudspeakers for lateral, height, and frontal conditions. The overall energy was held constant using a gain compensation scheme. When compared to an ideal diffuse field, the perceptual threshold for detection is -2.5 dB for the lateral condition, -6.8 dB for the height condition, and -3.2 dB for the frontal condition. Measurements of the experimental stimuli were analyzed using a Head and Torso Simulator as well as with opposing cardioid microphones aligned on the three Cartesian axes. Additionally, opposing cardioid measurements made in an acoustic space demonstrate that level differences corresponding to the perceptual thresholds can be found in practice. These results suggest that non-ideal diffuse field reverberation may be a previously unrecognized component of spatial impression.

  9. Gas-core reactor power transient analysis

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1972-01-01

    The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of this study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process.

  10. State Relationships of Laminar Permanently-Blue Opposed-Jet Hydrocarbon-Fueled Diffusion Flames. Appendix D

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently-blue) diffusion flames at various strain rates were studied experimentally using an opposed-jet configuration, motivated by the importance of soot-free hydrocarbon-fueled diffusion flames for many practical applications. Measurements of gas velocities, temperatures and compositions were carried out along the stagnation stream line. Flame conditions studied included propylene- and 1,3-butadiene-fueled opposed-jet diffusion flames having a stoichiometric mixture fractions of 0.7 and strain rates of 60-240 s (exp -1) at normal temperature and pressure. It was found that oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures for these flames were found to exist over broad ranges of strain rates. In addition, current measurements, as well as previous measurements and predictions of ethylene-fueled permanently-blue diffusion flames, all having a stoichiometric mixture fraction of 0.7, were combined to establish generalized state relationships for permanently-blue diffusion flames for this stoichiometric mixture fraction. The combined measurements and predictions support relatively universal generalized state relationships for N2, CO2, H2O and fuel over a broad range of strain rates and fuel types. State relationships for O2 in the fuel-rich region, and for CO in the fuel-lean region, however, are functions of strain rate and fuel type. State relationships for H2 and temperature exhibit less universality, mainly due to the increased experimental uncertainties for these variables. The existence of state relationships for soot-free hydrocarbon-fueled diffusion flames provides potential for significant computational simplifications for modeling purposes in many instances, allowing for effects of finite-rate chemistry while avoiding time-consuming computations of Arrhenius expressions.

  11. Spot Radiative Ignition and Subsequent Three Dimensional Flame Spread Over Thin Cellulose Fuels

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Kashiwagi, T.; Kikuchi, M.; Fujita, O.; Ito, K.

    1999-01-01

    Spontaneous radiative ignition and transition to flame spread over thin cellulose fuel samples was studied aboard the USMP-3 STS-75 Space Shuttle mission, and in three test series in the 10 second Japan Microgravity Center (JAMIC). A focused beam from a tungsten/halogen lamp was used to ignite the center of the fuel sample while an external air flow was varied from 0 to 10 cm/s. Non-piloted radiative ignition of the paper was found to occur more easily in microgravity than in normal gravity. Ignition of the sample was achieved under all conditions studied (shuttle cabin air, 21%-50% O2 in JAMIC), with transition to flame spread occurring for all but the lowest oxygen and flow conditions. While radiative ignition in a quiescent atmosphere was achieved, the flame quickly extinguished in air. The ignition delay time was proportional to the gas-phase mixing time, which is estimated using the inverse flow rate. The ignition delay was a much stronger function of flow at lower oxygen concentrations. After ignition, the flame initially spread only upstream, in a fan-shaped pattern. The fan angle increased with increasing external flow and oxygen concentration from zero angle (tunneling flame spread) at the limiting 0.5 cm/s external air flow, to 90 degrees (semicircular flame spread) for external flows at and above 5 cm/s, and higher oxygen concentrations. The fan angle was shown to be directly related to the limiting air flow velocity. Despite the convective heating from the upstream flame, the downstream flame was inhibited due to the 'oxygen shadow' of the upstream flame for the air flow conditions studied. Downstream flame spread rates in air, measured after upstream flame spread was complete and extinguished, were slower than upstream flame spread rates at the same flow. The quench regime for the transition to flame spread was skewed toward the downstream, due to the augmenting role of diffusion for opposed flow flame spread, versus the canceling effect of diffusion at very low cocurrent flows.

  12. Opposed slant tube diabatic sorber

    DOEpatents

    Erickson, Donald C.

    2004-01-20

    A sorber comprised of at least three concentric coils of tubing contained in a shell with a flow path for liquid sorbent in one direction, a flow path for heat transfer fluid which is in counter-current heat exchange relationship with sorbent flow, a sorbate vapor port in communication with at least one of sorbent inlet or exit ports, wherein each coil is coiled in opposite direction to those coils adjoining it, whereby the opposed slant tube configuration is achieved, with structure for flow modification in the core space inside the innermost coil.

  13. Predicting Average Vehicle Speed in Two Lane Highways Considering Weather Condition and Traffic Characteristics

    NASA Astrophysics Data System (ADS)

    Mirbaha, Babak; Saffarzadeh, Mahmoud; AmirHossein Beheshty, Seyed; Aniran, MirMoosa; Yazdani, Mirbahador; Shirini, Bahram

    2017-10-01

    Analysis of vehicle speed with different weather condition and traffic characteristics is very effective in traffic planning. Since the weather condition and traffic characteristics vary every day, the prediction of average speed can be useful in traffic management plans. In this study, traffic and weather data for a two-lane highway located in Northwest of Iran were selected for analysis. After merging traffic and weather data, the linear regression model was calibrated for speed prediction using STATA12.1 Statistical and Data Analysis software. Variables like vehicle flow, percentage of heavy vehicles, vehicle flow in opposing lane, percentage of heavy vehicles in opposing lane, rainfall (mm), snowfall and maximum daily wind speed more than 13m/s were found to be significant variables in the model. Results showed that variables of vehicle flow and heavy vehicle percent acquired the positive coefficient that shows, by increasing these variables the average vehicle speed in every weather condition will also increase. Vehicle flow in opposing lane, percentage of heavy vehicle in opposing lane, rainfall amount (mm), snowfall and maximum daily wind speed more than 13m/s acquired the negative coefficient that shows by increasing these variables, the average vehicle speed will decrease.

  14. Extinction Criteria for Opposed-Flow Flame Spread in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Subrata; Paolini, Chris; Wakai, Kazunori; Takahashi, Shuhei

    2003-01-01

    A simplified analysis is presented to extend a previous work on flame extinction in a quiescent microgravity environment to a more likely situation of a mild opposing flow. The energy balance equation, that includes surface re-radiation, is solved to yield a closed form spread rate expression in terms of its thermal limit, and a radiation number that can be evaluated from the known parameters of the problem. Based on this spread rate expression, extinction criterions for a flame over solid fuels, both thin and thick, have been developed that are qualitatively verified with experiments conducted at the MGLAB in Japan. Flammability maps with oxygen level, opposing flow velocity and fuel thickness as independent variables are extracted from the theory that explains the well-established trends in the existing experimental data.

  15. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    NASA Astrophysics Data System (ADS)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  16. Isotachophoresis-Based Surface Immunoassay.

    PubMed

    Paratore, Federico; Zeidman Kalman, Tal; Rosenfeld, Tally; Kaigala, Govind V; Bercovici, Moran

    2017-07-18

    In the absence of amplification methods for proteins, the immune-detection of low-abundance proteins using antibodies is fundamentally limited by binding kinetic rates. Here, we present a new class of surface-based immunoassays in which protein-antibody reaction is accelerated by isotachophoresis (ITP). We demonstrate the use of ITP to preconcentrate and deliver target proteins to a surface decorated with specific antibodies, where effective utilization of the focused sample is achieved by modulating the driving electric field (stop-and-diffuse ITP mode) or applying a counter flow that opposes the ITP motion (counterflow ITP mode). Using enhanced green fluorescent protein (EGFP) as a model protein, we carry out an experimental optimization of the ITP-based immunoassay and demonstrate a 1300-fold improvement in limit of detection compared to a standard immunoassay, in a 6 min protein-antibody reaction. We discuss the design of buffer chemistries for other protein systems and, in concert with experiments, provide full analytical solutions for the two operation modes, elucidating the interplay between reaction, diffusion, and accumulation time scales and enabling the prediction and design of future immunoassays.

  17. DIRECT OBSERVATION OF THE TURBULENT emf AND TRANSPORT OF MAGNETIC FIELD IN A LIQUID SODIUM EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahbarnia, Kian; Brown, Benjamin P.; Clark, Mike M.

    2012-11-10

    For the first time, we have directly measured the transport of a vector magnetic field by isotropic turbulence in a high Reynolds number liquid metal flow. In analogy with direct measurements of the turbulent Reynolds stress (turbulent viscosity) that governs momentum transport, we have measured the turbulent electromotive force (emf) by simultaneously measuring three components of velocity and magnetic fields, and computed the correlations that lead to mean-field current generation. Furthermore, we show that this turbulent emf tends to oppose and cancel out the local current, acting to increase the effective resistivity of the medium, i.e., it acts as anmore » enhanced magnetic diffusivity. This has important implications for turbulent transport in astrophysical objects, particularly in dynamos and accretion disks.« less

  18. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2017-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  19. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  20. Computational And Experimental Studies Of Three-Dimensional Flame Spread Over Liquid Fuel Pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Technical Monitor); Cai, Jinsheng; Liu, Feng; Sirignano, William A.; Miller, Fletcher J.

    2003-01-01

    Schiller, Ross, and Sirignano (1996) studied ignition and flame spread above liquid fuels initially below the flashpoint temperature by using a two-dimensional computational fluid dynamics code that solves the coupled equations of both the gas and the liquid phases. Pulsating flame spread was attributed to the establishment of a gas-phase recirculation cell that forms just ahead of the flame leading edge because of the opposing effect of buoyancy-driven flow in the gas phase and the thermocapillary-driven flow in the liquid phase. Schiller and Sirignano (1996) extended the same study to include flame spread with forced opposed flow in the gas phase. A transitional flow velocity was found above which an originally uniform spreading flame pulsates. The same type of gas-phase recirculation cell caused by the combination of forced opposed flow, buoyancy-driven flow, and thermocapillary-driven concurrent flow was responsible for the pulsating flame spread. Ross and Miller (1998) and Miller and Ross (1998) performed experimental work that corroborates the computational findings of Schiller, Ross, and Sirignano (1996) and Schiller and Sirignano (1996). Cai, Liu, and Sirignano (2002) developed a more comprehensive three-dimensional model and computer code for the flame spread problem. Many improvements in modeling and numerical algorithms were incorporated in the three-dimensional model. Pools of finite width and length were studied in air channels of prescribed height and width. Significant three-dimensional effects around and along the pool edge were observed. The same three-dimensional code is used to study the detailed effects of pool depth, pool width, opposed air flow velocity, and different levels of air oxygen concentration (Cai, Liu, and Sirignano, 2003). Significant three-dimensional effects showing an unsteady wavy flame front for cases of wide pool width are found for the first time in computation, after being noted previously by experimental observers (Ross and Miller, 1999). Regions of uniform and pulsating flame spread are mapped for the flow conditions of pool depth, opposed flow velocity, initial pool temperature, and air oxygen concentration under both normal and microgravity conditions. Details can be found in Cai et al. (2002, 2003). Experimental results recently performed at NASA Glenn of flame spread across a wide, shallow pool as a function of liquid temperature are also presented here.

  1. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Jarrett, Olin, Jr.; Antcliff, R. R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF.

  2. Effects of H2O, CO2, and N2 Air Contaminants on Critical Airside Strain Rates for Extinction of Hydrogen-Air Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Wilson, L. G.; Northam, G. B.; Guerra, Rosemary

    1989-01-01

    Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity.

  3. Numerical investigation on properties of attack angle for an opposing jet thermal protection system

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Bo; Liu, Wei-Qiang

    2012-08-01

    The three-dimensional Navier—Stokes equation and the k-in viscous model are used to simulate the attack angle characteristics of a hemisphere nose-tip with an opposing jet thermal protection system in supersonic flow conditions. The numerical method is validated by the relevant experiment. The flow field parameters, aerodynamic forces, and surface heat flux distributions for attack angles of 0°, 2°, 5°, 7°, and 10° are obtained. The detailed numerical results show that the cruise attack angle has a great influence on the flow field parameters, aerodynamic force, and surface heat flux distribution of the supersonic vehicle nose-tip with an opposing jet thermal protection system. When the attack angle reaches 10°, the heat flux on the windward generatrix is close to the maximal heat flux on the wall surface of the nose-tip without thermal protection system, thus the thermal protection has failed.

  4. Design criterion for the heat-transfer coefficient in opposing flow, mixed convention heat transfer in a vertical tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joye, D.D.

    1996-07-01

    Mixed convection heat transfer in a vertical tube with opposing flow (downflow heating) was studied experimentally for Reynolds numbers ranging from about 1,000 to 30,000 at constant Grashof numbers ranging about 1{1/2} orders of magnitude under constant wall temperature (CWT) conditions. Three correlations developed for opposing mixed convection flows in vertical conduits predicted the data reasonably well, except near and into the asymptote region for which these equations were not designed. A critical Reynolds number is developed here, above which these equations can be used for design purposes regardless of the boundary condition. Below Re{sub crit}, the correlations, the asymptotemore » equation should be used for the CWT boundary condition, which is more prevalent in process situations than the uniform heat flux (UHF) boundary condition.« less

  5. PIV measurements in a compact return diffuser under multi-conditions

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Lu, W. G.; Shi, W. D.

    2013-12-01

    Due to the complex three-dimensional geometries of impellers and diffusers, their design is a delicate and difficult task. Slight change could lead to significant changes in hydraulic performance and internal flow structure. Conversely, the grasp of the pump's internal flow pattern could benefit from pump design improvement. The internal flow fields in a compact return diffuser have been investigated experimentally under multi-conditions. A special Particle Image Velocimetry (PIV) test rig is designed, and the two-dimensional PIV measurements are successfully conducted in the diffuser mid-plane to capture the complex flow patterns. The analysis of the obtained results has been focused on the flow structure in diffuser, especially under part-load conditions. The vortex and recirculation flow patterns in diffuser are captured and analysed accordingly. Strong flow separation and back flow appeared at the part-load flow rates. Under the design and over-load conditions, the flow fields in diffuser are uniform, and the flow separation and back flow appear at the part-load flow rates, strong back flow is captured at one diffuser passage under 0.2Qdes.

  6. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, S.; Jivkov, A.P.

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes.more » The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the disposal system to evolve in a physically realistic manner. In the example presented the reactive-transport coupling develops chemically reducing zones, which limit the transport of uranium. This illustrates the potential significance of media degradation and chemical effect on the transport of radionuclides which would need to be taken into account when examining the long-term behaviour and containment properties of the geological disposal system. Microstructure-informed modelling and its potential linkage with continuum flow modelling is a subject of ongoing studies. The approach of microstructure-informed modelling is discussed to provide insight and a mechanistic understanding of macroscopic parameters and their evolution. The proposed theoretical and methodological basis for microstructure-informed modelling of porous quasi-brittle media has the potential to develop into an explanatory and predictive tool for deriving mechanism-based, as opposed to phenomenological, evolution laws for macroscopic properties. These concepts in micro-scale modelling are likely to be applicable to the diffusion process, in addition to advective transport illustrated here for porous media. (authors)« less

  7. Effect of Slow External Flow on Flame Spreading over Solid Material: Opposed Spreading over Polyethylene Wire Insulation

    NASA Technical Reports Server (NTRS)

    Fujita, O.; Nishizawa, K.; Ito, K.; Olson, S. L.; Kashigawa, T.

    2001-01-01

    The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.

  8. An experimental and kinetic modeling study on dimethyl carbonate (DMC) pyrolysis and combustion

    DOE PAGES

    Sun, Wenyu; Yang, Bin; Hansen, Nils; ...

    2015-12-08

    Because of the absence of C–C bonds and the large oxygen content in its molecular structure, dimethyl carbonate (DMC) is a promising oxygenated additive or substitute for hydrocarbon fuels. In order to understand its chemical oxidation and combustion kinetics, flow reactor pyrolysis at different pressures (40, 200 and 1040 mbar) and low-pressure laminar premixed flames with different equivalence ratios (1.0 and 1.5) were investigated. Mole fraction profiles of many reaction intermediates and products were obtained within estimated experimental uncertainties. From theoretical calculations and estimations, a detailed kinetic model for DMC pyrolysis and high-temperature combustion consisting of 257 species and 1563more » reactions was developed. The performance of the kinetic model was then analyzed using detailed chemical composition information, primarily from the present measurements. In addition, it was examined against the chemical structure of an opposed-flow diffusion flame, relying on global combustion properties such as the ignition delay times and laminar burning velocities. Furthermore, these extended comparisons yielded overall satisfactory agreement, demonstrating the applicability of the present model over a wide range of high-temperature conditions.« less

  9. Effect of high negative incidence on the performance of a centrifugal compressor stage with conventional vaned diffusers

    NASA Astrophysics Data System (ADS)

    Jaatinen, Ahti; Grönman, Aki; Turunen-Saaresti, Teemu; Backman, Jari

    2011-06-01

    Three vaned diffusers, designed to have high negative incidence (-8°) at the design operating point, are studied experimentally. The overall performance (efficiency and pressure ratio) are measured at three rotational speeds, and flow angles before and after the diffuser are measured at the design rotational speed and with three mass flow rates. The results are compared to corresponding results of the original vaneless diffuser design. Attention is paid to the performance at lower mass flows than the design mass flow. The results show that it is possible to improve the performance at mass flows lower than the design mass flow with a vaned diffuser designed with high negative incidence. However, with the vaned diffusers, the compressor still stalls at higher mass flow rates than with the vaneless one. The flow angle distributions after the diffuser are more uniform with the vaned diffusers.

  10. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 1 -- Discrete-passage diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filipenco, V.G.; Deniz, S.; Johnston, J.M.

    2000-01-01

    This is Part 1 of a two-part paper considering the performance of radial diffusers for use in a high-performance centrifugal compressor. Part 1 reports on discrete-passage diffusers, while Part 2 describes a test of a straight-channel diffuser designed for equivalent duty. Two builds of discrete-passage diffuser were tested, with 30 and 38 separate passages. Both the 30 and 38 passage diffusers investigated showed comparable range of unstalled operation and similar level of overall diffuser pressure recovery. The paper concentrates on the influence of inlet flow conditions on the pressure recovery and operating range of radial diffusers for centrifugal compressor stages.more » The flow conditions examined include diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity. The investigation was carried out in a specially built test facility, designed to provide a controlled inlet flow field to the test diffusers. The facility can provide a wide range of diffuser inlet velocity profile distortion and skew with Mach numbers up to unity and flow angles of 63 to 75 deg from the radical direction. The consequences of different averaging methods for the inlet total pressure distributions, which are needed in the definition of diffuser pressure recovery coefficient for nonuniform diffuser inlet conditions, were also assessed. The overall diffuser pressure recovery coefficient, based on suitably averaged inlet total pressure, was found to correlate well with the momentum-averaged flow angle into the diffuser. It is shown that the generally accepted sensitivity of diffuser pressure recovery performance to inlet flow distortion and boundary layer blockage can be largely attributed to inappropriate quantification of the average dynamic pressure at diffuser inlet. Use of an inlet dynamic pressure based on availability or mass-averaging in combination with definition of inlet flow angle based on mass average of the radial and tangential velocity at diffuser inlet removes this sensitivity.« less

  11. Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation

    NASA Astrophysics Data System (ADS)

    Amit, Hagay; Christensen, Ulrich R.

    2008-12-01

    We use numerical dynamos to investigate the possible role of magnetic diffusion at the top of the core. We find that the contribution of radial magnetic diffusion to the secular variation is correlated with that of tangential magnetic diffusion for a wide range of control parameters. The correlation between the two diffusive terms is interpreted in terms of the variation in the strength of poloidal flow along a columnar flow tube. The amplitude ratio of the two diffusive terms is used to estimate the probable contribution of radial magnetic diffusion to the secular variation at Earth-like conditions. We then apply a model where radial magnetic diffusion is proportional to tangential diffusion to core flow inversions of geomagnetic secular variation data. We find that including magnetic diffusion does not change dramatically the global flow but some significant local variations appear. In the non frozen-flux core flow models (termed `diffusive'), the hemispherical dichotomy between the active Atlantic and quiet Pacific is weaker, a cyclonic vortex below North America emerges and the vortex below Asia is stronger. Our results have several important geophysical implications. First, our diffusive flow models contain some flow activity at low latitudes in the Pacific, suggesting a local balance between magnetic field advection and diffusion in that region. Second, the cyclone below North America in our diffusive flows reconciles the difference between mantle-driven thermal wind predictions and frozen-flux core flow models, and is consistent with the prominent intense magnetic flux patch below North America in geomagnetic field models. Finally, we hypothesize that magnetic diffusion near the core surface plays a larger role in the geomagnetic secular variation than usually assumed.

  12. Efficacy of Distortion Correction on Diffusion Imaging: Comparison of FSL Eddy and Eddy_Correct Using 30 and 60 Directions Diffusion Encoding

    PubMed Central

    Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki

    2014-01-01

    Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, “eddy_correct” and the combination of “eddy” and “topup” in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non–diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non–diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme. PMID:25405472

  13. Efficacy of distortion correction on diffusion imaging: comparison of FSL eddy and eddy_correct using 30 and 60 directions diffusion encoding.

    PubMed

    Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki

    2014-01-01

    Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, "eddy_correct" and the combination of "eddy" and "topup" in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme.

  14. Dynamic Infrared Thermography Study of Blood Flow Relative to Lower Limp Position

    NASA Astrophysics Data System (ADS)

    Stathopoulos, I.; Skouroliakou, K.; Michail, C.; Valais, I.

    2015-09-01

    Thermography is an established method for studying skin temperature distribution. Temperature distribution on body surface is influenced by a variety of physiological mechanisms and has been proven a reliable indicator of various physiological disorders. Blood flow is an important factor that influences body heat diffusion and skin temperature. In an attempt to validate and further elucidate thermal models characterizing the human skin, dynamic thermography of the lower limp in horizontal and vertical position was performed, using a FLIR T460 thermographic camera. Temporal variation of temperature was recorded on five distinct points of the limp. Specific points were initially cooled by the means of an ice cube and measurements of the skin temperature were obtained every 30 seconds as the skin temperature was locally reduced and afterwards restored at its initial value. The return to thermal balance followed roughly the same pattern for all points of measurement, although the heating rate was faster when the foot was in horizontal position. Thermal balance was achieved faster at the spots that were positioned on a vein passage. Our results confirm the influence of blood flow on the thermal regulation of the skin. Spots located over veins exhibit different thermal behaviour due to thermal convection through blood flow. Changing the position of the foot from vertical to horizontal, effectively affects blood perfusion as in the vertical position blood circulation is opposed by gravity.

  15. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 2 -- Straight-channel diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deniz, S.; Greitzer, E.M.; Cumpsty, N.A.

    2000-01-01

    This is Part 2 of an examination of the influence of inlet flow conditions on the performance and operating range of centrifugal compressor vaned diffusers. The paper describes tests of a straight-channel type diffuser, sometimes called a wedge-vane diffuser, and compares the results with those from the discrete-passage diffusers described in Part 1. Effects of diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity on diffuser pressure recovery and operating range are addressed. The straight-channel diffuser investigated has 30 vanes and was designed for the same aerodynamic duty as the discrete-passage diffuser described in Part 1. The rangesmore » of the overall pressure recovery coefficients were 0.50--0.78 for the straight-channel diffuser and 0.50--0.70 for the discrete-passage diffuser, except when the diffuser was choked. In other words, the maximum pressure recovery of the straight-channel diffuser was found to be roughly 10% higher than that of the discrete-passage diffuser investigated. The two types of diffuser showed similar behavior regarding the dependence of pressure recovery on diffuser inlet flow angle and the insensitivity of the performance to inlet flow field axial distortion and Mach number. The operating range of the straight-channel diffuser, as for the discrete-passage diffusers, was limited by the onset of rotating stall at a fixed momentum-averaged flow angle into the diffuser, which was for the straight-channel diffuser, {alpha}{sub crit} = 70 {+-} 0.5 deg. The background, nomenclature, and description of the facility and method are all given in Part 1.« less

  16. Inverse design of centrifugal compressor vaned diffusers in inlet shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zangeneh, M.

    1996-04-01

    A three-dimensional inverse design method in which the blade (or vane) geometry is designed for specified distributions of circulation and blade thickness is applied to the design of centrifugal compressor vaned diffusers. Two generic diffusers are designed, one with uniform inlet flow (equivalent to a conventional design) and the other with a sheared inlet flow. The inlet shear flow effects are modeled in the design method by using the so-called ``Secondary Flow Approximation`` in which the Bernoulli surfaces are convected by the tangentially mean inviscid flow field. The difference between the vane geometry of the uniform inlet flow and nonuniformmore » inlet flow diffusers is found to be most significant from 50 percent chord to the trailing edge region. The flows through both diffusers are computed by using Denton`s three-dimensional inviscid Euler solver and Dawes` three-dimensional Navier-Stokes solver under sheared in-flow conditions. The predictions indicate improved pressure recovery and internal flow field for the diffuser designed for shear inlet flow conditions.« less

  17. Application of pulsed-gradient Fourier transform nuclear magnetic resonance to the study of self-diffusion of phospholipid vesicles.

    PubMed

    McDonald, G G; Vanderkooi, J M

    1975-05-20

    A pulsed-gradient Fourier transform nuclear magnetic resonance (NMR) technique was appplied to the study of diffusion of phospholipid vesicles. The diffusion coefficient of dimyristoyllecithin vesicles (DML) in a D2O-phospahte buffer at 37 degrees is D = 1.9 TIMES 10(-6) cm2/sec. In a solution made viscous by DNA addition, the diffusion coefficient of DML vesicles was 3.5 times 10(-7) cm2/sec. These values compare favorably with the diffusion rate for liposomes as determined by ultracentrifugation and by Stokes law calculation. The data suggest that DML diffusion is controlled primarily by whole liposome migration as opposed to movement of individual molecules within the liposome, liposome rotation, or fast exchange between lecithin molecules in solution and in vesicles.

  18. Development of an NCHRP report 350 TL-3 New Jersey shape 50-inch portable concrete barrier : final report, June 2006.

    DOT National Transportation Integrated Search

    2006-06-01

    For roadside work-zones in areas that have opposing traffic flow, safety is enhanced if the temporary barriers incorporate a "glare-shield" that blocks headlight glare from opposing traffic. Currently-available 32-inch portable concrete barriers requ...

  19. Spatial variation of a short-lived intermediate chemical species in a Couette reactor

    NASA Astrophysics Data System (ADS)

    Vigil, R. Dennis; Ouyang, Q.; Swinney, Harry L.

    1992-04-01

    We have conducted experiments and simulations of the spatial variation of a short-lived intermediate species (triiodide) in the autocatalytic oxidation of arsenite by iodate in a reactor that is essentially one dimensional—the Couette reactor. (This reactor consists of two concentric cylinders with the inner one rotating and the outer one at rest; reagents are continuously fed and removed at each end in such a way that there is no net axial flux and there are opposing arsenite and iodate gradients.) The predictions of a one-dimensional reaction-diffusion model, which has no adjustable parameters, are in good qualitative (and, in some cases, quantitative) agreement with experiments. Thus, the Couette reactor, which is used to deliberately create spatial inhomogeneities, can be exploited to enhance the recovery of short-lived intermediate species relative to that which can be obtained with either a batch or continuous-flow stirred-tank reactor.

  20. An experimental study of opposed flow diffusion flame extinction over a thin fuel in microgravity. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.

    1989-01-01

    The flame spread and flame extinction characteristics of a thin fuel burning in a low-speed forced convective environment in microgravity were examined. The flame spread rate was observed to decrease both with decreasing ambient oxygen concentration as well as decreasing free stream velocity. A new mode of flame extinction was observed, caused by either of two means: keeping the free stream velocity constant and decreasing the oxygen concentration, or keeping the oxygen concentration constant and decreasing the free stream velocity. This extinction is called quenching extinction. By combining this data together with a previous microgravity quiescent flame study and normal-gravity blowoff extinction data, a flammability map was constructed with molar percentage oxygen and characteristic relative velocity as coordinates. The Damkohler number is not sufficient to predict flame spread and extinction in the near quench limit region.

  1. Microfluidic quadrupole and floating concentration gradient.

    PubMed

    Qasaimeh, Mohammad A; Gervais, Thomas; Juncker, David

    2011-09-06

    The concept of fluidic multipoles, in analogy to electrostatics, has long been known as a particular class of solutions of the Navier-Stokes equation in potential flows; however, experimental observations of fluidic multipoles and of their characteristics have not been reported yet. Here we present a two-dimensional microfluidic quadrupole and a theoretical analysis consistent with the experimental observations. The microfluidic quadrupole was formed by simultaneously injecting and aspirating fluids from two pairs of opposing apertures in a narrow gap formed between a microfluidic probe and a substrate. A stagnation point was formed at the centre of the microfluidic quadrupole, and its position could be rapidly adjusted hydrodynamically. Following the injection of a solute through one of the poles, a stationary, tunable, and movable-that is, 'floating'-concentration gradient was formed at the stagnation point. Our results lay the foundation for future combined experimental and theoretical exploration of microfluidic planar multipoles including convective-diffusive phenomena.

  2. The influence of different diffusion pattern to the sub- and super-critical fluid flow in brown coal

    NASA Astrophysics Data System (ADS)

    Peng, Peihuo

    2018-03-01

    Sub- and super-critical CO2 flowing in nanoscale pores are recently becoming of great interest due to that it is closely related to many engineering applications, such as geological burial and sequestration of carbon dioxide, Enhanced Coal Bed Methane recovery ( ECBM), super-critical CO2 fracturing and so on. Gas flow in nanopores cannot be described simply by the Darcy equation. Different diffusion pattern such as Fick diffusion, Knudsen diffusion, transitional diffusion and slip flow at the solid matrix separate the seepage behaviour from Darcy-type flow. According to the principle of different diffusion pattern, the flow of sub- and super-critical CO2 in brown coal was simulated by numerical method, and the results were compared with the experimental results to explore the contribution of different diffusion pattern and swelling effect in sub- and super-critical CO2 flow in nanoscale pores.

  3. Design principle for improved three-dimensional ac electro-osmotic pumps

    NASA Astrophysics Data System (ADS)

    Burch, Damian; Bazant, Martin Z.

    2008-05-01

    Three-dimensional (3D) ac electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a “fluid conveyor belt” by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions—rather than the geometry—and predict that flow rates can be further doubled by fabricating 3D features with nonpolarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities that drive the flow.

  4. Design principle for improved three-dimensional ac electro-osmotic pumps.

    PubMed

    Burch, Damian; Bazant, Martin Z

    2008-05-01

    Three-dimensional (3D) ac electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a "fluid conveyor belt" by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions-rather than the geometry-and predict that flow rates can be further doubled by fabricating 3D features with nonpolarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities that drive the flow.

  5. Research on thermal protection mechanism of forward-facing cavity and opposing jet combinatorial thermal protection system

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Bo; Liu, Wei-Qiang

    2014-04-01

    Validated by the correlated experiments, a nose-tip with forward-facing cavity/opposing jet/the combinatorial configuration of forward-facing cavity and opposing jet thermal protection system (TPS) are investigated numerically. The physical mechanism of these TPS is discussed, and the cooling efficiency of them is compared. The combinatorial system is more suitable to be the TPS for the high speed vehicles which need fly under various flow conditions with long-range and long time.

  6. Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-guo; Sun, Xi-wan; Huang, Wei; Li, Shi-bin; Yan, Li

    2016-12-01

    The drag and heat reduction problem of hypersonic vehicles has always attracted the attention worldwide, and the experimental test approach is the basis of theoretical analysis and numerical simulation. In the current study, research progress of experimental investigations on drag and heat reduction are summarized by several kinds of mechanism, namely the forward-facing cavity, the opposing jet, the aerospike, the energy deposition and their combinational configurations, and the combinational configurations include the combinational opposing jet and forward-facing cavity concept and the combinational opposing jet and aerospike concept. The geometric models and flow conditions are emphasized, especially for the basic principle for the drag and heat flux reduction of each device. The measurement results of aerodynamic and aerothermodynamic are compared and analyzed as well, which can be a reference for assessing the accuracy of numerical results.

  7. Re: Penetration Behavior of Opposed Rows of Staggered Secondary Air Jets Depending on Jet Penetration Coefficient and Momentum Flux Ratio

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    2016-01-01

    The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.

  8. The Effect of Upstream Vane Wakes on Annular Diffuser Flows

    NASA Astrophysics Data System (ADS)

    Cherry, Erica; Padilla, Angelina; Elkins, Christopher; Eaton, John

    2008-11-01

    Experiments were performed to determine the sensitivity to inlet conditions of the flow in two annular diffusers. One of the diffusers was a conservative design typical of a diffuser directly upstream of the combustor in a jet engine. The other had the same length and inlet shape as the first diffuser but a larger area ratio and was meant to operate on the verge of separation. Each diffuser was connected to two different inlets, one containing a fully-developed channel flow, the other containing wakes from a row of airfoils. Three-component velocity measurements were taken on the flow in each inlet/diffuser combination using Magnetic Resonance Velocimetry. Results will be presented on the 3D velocity fields in the two diffusers and the effect of the airfoil wakes on separation and secondary flows.

  9. Flow interaction in the combustor-diffusor system of industrial gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, A.K.; Kapat, J.S.; Yang, T.

    1996-05-01

    This paper presents an experimental/computational study of cold flow in the combustor-diffuser system of industrial gas turbines to address issues relating to flow interactions and pressure losses in the pre- and dump diffusers. The present configuration with can annular combustors differs substantially from the aircraft engines which typically use a 360 degree annular combustor. Experiments were conducted in a one-third scale, annular 360-degree model using several can combustors equispaced around the turbine axis. A 3-D computational fluid dynamics analysis employing the multidomain procedure was performed to supplement the flow measurements. The measured data correlated well with the computations. The airflowmore » in the dump diffuser adversely affected the prediffuser flow by causing it to accelerate in the outer region at the prediffuser exit. This phenomenon referred to as the sink-effect also caused a large fraction of the flow to bypass much of the dump diffuser and go directly from the prediffuser exit to the bypass air holes on the combustor casing, thereby, rendering the dump diffuser ineffective in diffusing the flow. The dump diffuser was occupied by a large recirculation region which dissipated the flow kinetic energy. Approximately 1.2 dynamic head at the prediffuser inlet was lost in the combustor-diffuser system; much of it in the dump diffuser where the fluid passed through the narrow gaps and pathways. Strong flow interactions in the combustor-diffuser system indicate the need for design modifications which could not be addressed by empirical correlations based on simple flow configurations.« less

  10. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    PubMed

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  11. A Chimeric Kinesin-1 Head/Kinesin-5 Tail Motor Switches between Diffusive and Processive Motility

    PubMed Central

    Thiede, Christina; Lakämper, Stefan; Wessel, Alok D.; Kramer, Stefanie; Schmidt, Christoph F.

    2013-01-01

    Homotetrameric kinesin-5 motors are essential for chromosome separation and assembly of the mitotic spindle. These kinesins bind between two microtubules (MTs) and slide them apart, toward the spindle poles. This process must be tightly regulated in mitosis. In in vitro assays, Eg5 moves diffusively on single MTs and switches to a directed mode between MTs. How allosteric communication between opposing motor domains works remains unclear, but kinesin-5 tail domains may be involved. Here we present a single-molecule fluorescence study of a tetrameric kinesin-1 head/kinesin-5 tail chimera, DK4mer. This motor exhibited fast processive motility on single MTs interrupted by pauses. Like Eg5, DK4mer diffused along MTs with ADP, and slid antiparallel MTs apart with ATP. In contrast to Eg5, diffusive and processive periods were clearly distinguishable. This allowed us to measure transition rates among states and for unbinding as a function of buffer ionic strength. These data, together with results from controls using tail-less dimers, indicate that there are two modes of interaction with MTs, separated by an energy barrier. This result suggests a scheme of motor regulation that involves switching between two bound states, possibly allosterically controlled by the opposing tetramer end. Such a scheme is likely to be relevant for the regulation of native kinesin-5 motors. PMID:23442865

  12. Directed transport of active magnetotactic bacteria in porous media flow

    NASA Astrophysics Data System (ADS)

    Waisbord, Nicolas; Dehkharghani, Amin; Coons, Thomas; Guasto, Jeffrey S.

    2017-11-01

    Swimming cell migration through porous media is a topic of ecological and technical relevance for understanding sediment ecosystems and bioremediation of soil for decontamination. We focus on magnetotactic bacteria - which align passively with Earth's magnetic field and migrate in such sediment environments - as a model system. The transport properties of magnetotactic bacteria are measured in a 2D microfluidic porous medium as a function of the porous microstructure geometry and under a variety of environmental conditions. In a quiescent fluid and in the absence of an external, guiding magnetic field, the effective diffusion of cells' random walk is unsurprisingly hindered with decreasing porosity due to cell-surface interactions. When guided by a magnetic field, cell trajectories acquire a net direction and form lanes, a behavior that is enhanced with increasing magnetic field. When the directed motility is coupled with an opposing fluid flow through the porous medium, convective cells form and locally trap the swimming bacteria. These results, which are corroborated by Langevin Simulations are an important step toward understanding magnetotactic bacterial ecology as well as for the magnetic guidance of microrobots in complex environments. Supported by NSF Grant CBET-1511340.

  13. Thermal protection performance of opposing jet generating with solid fuel

    NASA Astrophysics Data System (ADS)

    Shen, Binxian; Liu, Weiqiang

    2018-03-01

    A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.

  14. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities.

    PubMed

    Campbell, Barbara J; Polson, Shawn W; Zeigler Allen, Lisa; Williamson, Shannon J; Lee, Charles K; Wommack, K Eric; Cary, S Craig

    2013-01-01

    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.

  15. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities

    PubMed Central

    Campbell, Barbara J.; Polson, Shawn W.; Zeigler Allen, Lisa; Williamson, Shannon J.; Lee, Charles K.; Wommack, K. Eric; Cary, S. Craig

    2013-01-01

    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments. PMID:23898323

  16. Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Kapusta, Joseph I.; Plumberg, Christopher

    2018-01-01

    We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.

  17. Passive lipoidal diffusion and carrier-mediated cell uptake are both important mechanisms of membrane permeation in drug disposition.

    PubMed

    Smith, Dennis; Artursson, Per; Avdeef, Alex; Di, Li; Ecker, Gerhard F; Faller, Bernard; Houston, J Brian; Kansy, Manfred; Kerns, Edward H; Krämer, Stefanie D; Lennernäs, Hans; van de Waterbeemd, Han; Sugano, Kiyohiko; Testa, Bernard

    2014-06-02

    Recently, it has been proposed that drug permeation is essentially carrier-mediated only and that passive lipoidal diffusion is negligible. This opposes the prevailing hypothesis of drug permeation through biological membranes, which integrates the contribution of multiple permeation mechanisms, including both carrier-mediated and passive lipoidal diffusion, depending on the compound's properties, membrane properties, and solution properties. The prevailing hypothesis of drug permeation continues to be successful for application and prediction in drug development. Proponents of the carrier-mediated only concept argue against passive lipoidal diffusion. However, the arguments are not supported by broad pharmaceutics literature. The carrier-mediated only concept lacks substantial supporting evidence and successful applications in drug development.

  18. Flow field investigation in a bulb turbine diffuser

    NASA Astrophysics Data System (ADS)

    Pereira, M.; Duquesne, P.; Aeschlimann, V.; Deschênes, C.

    2017-04-01

    An important drop in turbine performances has been measured in a bulb turbine model operated at overload. Previous investigations have correlated the performance drop with diffuser losses, and particularly to the flow separation zone at the diffuser wall. The flow has been investigated in the transition part of the diffuser using two LDV measurement sections. The transition part is a diffuser section that transforms from a circular to a rectangular section. The two measurement sections are at the inlet and outlet of the diffuser transition part. The turbine has been operated at three operating points, which are representative of different flow patterns at the diffuser exit at overload. In addition to the average velocity field, the analysis is conducted based on a backflow occurrence function and on the swirl level. Results reveal a counter-rotating zone in the diffuser, which intensifies with the guide vanes opening. The guide vanes opening induces a modification of the flow phenomena: from a central backflow recirculation zone at the lowest flowrate to a backflow zone induced by flow separation at the wall at the highest flowrate.

  19. Cortical Polarity of the RING Protein PAR-2 Is Maintained by Exchange Rate Kinetics at the Cortical-Cytoplasmic Boundary.

    PubMed

    Arata, Yukinobu; Hiroshima, Michio; Pack, Chan-Gi; Ramanujam, Ravikrishna; Motegi, Fumio; Nakazato, Kenichi; Shindo, Yuki; Wiseman, Paul W; Sawa, Hitoshi; Kobayashi, Tetsuya J; Brandão, Hugo B; Shibata, Tatsuo; Sako, Yasushi

    2016-08-23

    Cell polarity arises through the spatial segregation of polarity regulators. PAR proteins are polarity regulators that localize asymmetrically to two opposing cortical domains. However, it is unclear how the spatially segregated PAR proteins interact to maintain their mutually exclusive partitioning. Here, single-molecule detection analysis in Caenorhabditis elegans embryos reveals that cortical PAR-2 diffuses only short distances, and, as a result, most PAR-2 molecules associate and dissociate from the cortex without crossing into the opposing domain. Our results show that cortical PAR-2 asymmetry is maintained by the local exchange reactions that occur at the cortical-cytoplasmic boundary. Additionally, we demonstrate that local exchange reactions are sufficient to maintain cortical asymmetry in a parameter-free mathematical model. These findings suggest that anterior and posterior PAR proteins primarily interact through the cytoplasmic pool and not via cortical diffusion. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Finding the best windows: An apparent environmental threshold determines which diffuse flows are dominated by subsurface microbes

    NASA Astrophysics Data System (ADS)

    Olins, H. C.; Rogers, D.; Scholin, C. A.; Preston, C. J.; Vidoudez, C.; Ussler, W.; Pargett, D.; Jensen, S.; Roman, B.; Birch, J. M.; Girguis, P. R.

    2014-12-01

    Hydrothermal vents are hotspots of microbial primary productivity often described as "windows into the subsurface biosphere." High temperature vents have received the majority of research attention, but cooler diffuse flows are as, if not more, important a source of heat and chemicals to the overlying ocean. We studied patterns of in situ gene expression and co-registered geochemistry in order to 1) describe the diversity and physiological poise of active microbial communities that span thermal and geochemical gradients from active diffuse flow to background vent field seawater, and 2) determine to what extent seawater or subsurface microbes were active throughout this environment. Analyses of multiple metatranscriptomes from 5 geochemically distinct sites (some from samples preserved in situ) show that proximate diffuse flows showed strikingly different transcription profiles. Specifically, caldera background and some diffuse flows were similar, both dominated by seawater-derived Gammaproteobacteria despite having distinct geochemistries. Intra-field community shows evidence of increased primary productivity throughout the entire vent field and not just at individual diffuse flows. In contrast, a more spatially limited, Epsilonproteobacteria-dominated transcription profile from the most hydrothermally-influenced diffuse flow appeared to be driven by the activity of vent-endemic microbes, likely reflecting subsurface microbial activity. We suggest that the microbial activity within many diffuse flow vents is primarily attributable to seawater derived Gammaproteobacterial sulfur oxidizers, while in certain other flows vent-endemic Epsilonproteobactiera are most active. These data reveal a diversity in microbial activity at diffuse flows that has not previously been recognized, and reshapes our thinking about the relative influence that different microbial communities may have on local processes (such as primary production) and potentially global biogeochemical cycles.

  1. Numerical analysis of the air chemical non-equilibrium effect in combustion for a semi-sphere with opposing jet

    NASA Astrophysics Data System (ADS)

    Zhao, Fa-Ming; Wang, Jiang-Feng; Li, Long-Fei

    2018-05-01

    The air chemical non-equilibrium effect (ACNEE) on hydrogen-air combustion flow fields at Mach number of 10 is numerically analyzed for a semi-sphere with a sonic opposing-hydrogen jet. The 2D axisymmetric multi-components N-S equations are solved by using the central scheme with artificial dissipation and the S-A turbulence model. Numerical results show that as compared to the result without ACNEE, the ACNEE has little influence on the structure of flow field, but has a considerable impact on fluid characteristics which reduces the maximum value of mass fraction of water in the flow field and increases the maximum value of mass fraction of water on solid surface, as well as the maximum surface temperature.

  2. Microgravity Flame Spread in Exploration Atmospheres: Pressure, Oxygen, and Velocity Effects on Opposed and Concurrent Flame Spread

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Ruff, Gary A.; Fletcher, J. Miller

    2008-01-01

    Microgravity tests of flammability and flame spread were performed in a low-speed flow tunnel to simulate spacecraft ventilation flows. Three thin fuels were tested for flammability (Ultem 1000 (General Electric Company), 10 mil film, Nomex (Dupont) HT90-40, and Mylar G (Dupont) and one fuel for flame spread testing (Kimwipes (Kimberly-Clark Worldwide, Inc.). The 1g Upward Limiting Oxygen Index (ULOI) and 1g Maximum Oxygen Concentration (MOC) are found to be greater than those in 0g, by up to 4% oxygen mole fraction, meaning that the fuels burned in 0g at lower oxygen concentrations than they did using the NASA Standard 6001 Test 1 protocol. Flame spread tests with Kimwipes were used to develop correlations that capture the effects of flow velocity, oxygen concentration, and pressure on flame spread rate. These correlations were used to determine that over virtually the entire range of spacecraft atmospheres and flow conditions, the opposed spread is faster, especially for normoxic atmospheres. The correlations were also compared with 1g MOC for various materials as a function of pressure and oxygen. The lines of constant opposed flow agreed best with the 1g MOC trends, which indicates that Test 1 limits are essentially dictated by the critical heat flux for ignition. Further evaluation of these and other materials is continuing to better understand the 0g flammability of materials and its effect on the oxygen margin of safety.

  3. Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng

    2015-09-01

    Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.

  4. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  5. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  6. Method of separating organic contaminants from fluid feedstreams with polyphosphazene membranes

    DOEpatents

    McCaffrey, Robert R.; Cummings, Daniel G.

    1991-01-01

    A method is provided for separating halogenated hydrocarbons from a fluid feedstream. The fluid feedstream is flowed across a first surface of a polyphosphazene semipermeable membrane. At least one halogenated hydrocarbon from the fluid feedstream permeates through the polyphosphazene semipermeable membrane to a second opposed surface of the semipermeable membrane. Then the permeated polar hydrocarbon is removed from the second opposed surface of the polyphosphazene semipermeable membrane. Outstanding and unexpected separation selectivities on the order of 10,000 were obtained for methylene chloride when a methylene chloride in water feedstream was flowed across the polyphosphazene semipermeable membrane in the invented method.

  7. Detailed flow measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1994-07-01

    Hot-wire anemometer measurements have been made in the vaneless diffuser of a 1-m-dia low-speed backswept centrifugal compressor using a phase lock loop technique. Radial, tangential, and axial velocity measurements have been made on eight measurement planes through the diffuser. The flow field at the diffuser entry clearly shows the impeller jet-wake flow pattern and the blade wakes. The passage wake is located on the shroud side of the diffuser and mixes out slowly as the flow moves through the diffuser. The blade wakes, on the other hand, distort and mix out rapidly in the diffuser. Contours of turbulent kinetic energymore » are also presented on each of the measurement stations, from which the regions of turbulent mixing can be deduced.« less

  8. Engine Systems Ownership Cost Reduction - Aircraft Propulsion Subsystems Integration (APSI)

    DTIC Science & Technology

    1975-08-01

    compreusor fabrication costs. Hybrid Radial Compresscr Diffuser - Combining both the radial and axial sections of a standard diffuser into a single cascade...compressor diffuser by using a single mixed-flow diffuser instead of the separate radial and axial diffuser stator rows. The proposed mixed-flow diffuser...to an axial diffuser. A cost analyses of the hybrid radial diffuser was made and compared to baseline configuration ( radial and axial diffusers). The

  9. Unsteady behavior and control of vortices in centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Ohta, Yutaka; Fujisawa, Nobumichi

    2014-10-01

    Two examples of the use of vortex control to reduce noise and enhance the stable operating range of a centrifugal compressor are presented in this paper. In the case of high-flow operation of a centrifugal compressor with a vaned diffuser, a discrete frequency noise induced by interaction between the impeller-discharge flow and the diffuser vane, which appears most notably in the power spectra of the radiated noise, can be reduced using a tapered diffuser vane (TDV) without affecting the performance of the compressor. Twin longitudinal vortices produced by leakage flow passing through the tapered portion of the diffuser vane induce secondary flow in the direction of the blade surface and prevent flow separation from the leading edge of the diffuser. The use of a TDV can effectively reduce both the discrete frequency noise generated by the interaction between the impeller-discharge flow and the diffuser surface and the broadband turbulent noise component. In the case of low-flow operation, a leading-edge vortex (LEV) that forms on the shroud side of the suction surface near the leading edge of the diffuser increases significantly in size and blocks flow in the diffuser passage. The formation of an LEV may adversely affect the performance of the compressor and may cause the diffuser to stall. Using a one-side tapered diffuser vane to suppress the evolution of an LEV, the stable operating range of the compressor can be increased by more than 12 percent, and the pressure-rise characteristics of the compressor can be improved. The results of a supplementary examination of the structure and unsteady behavior of LEVs, conducted by means of detailed numerical simulations, are also presented.

  10. Effects of Impeller-Diffuser Interaction on Centrifugal Compressor Performance

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.

    2003-01-01

    This research program focuses on characterizing the effect of impeller-diffuser interactions in a centrifugal compressor stage on its performance using unsteady threedimensional Reynolds-averaged Navier-Stokes simulations. The computed results show that the interaction between the downstream diffuser pressure field and the impeller tip clearance flow can account for performance changes in the impeller. The magnitude of performance change due to this interaction was examined for an impeller with varying tip clearance followed by a vaned or vaneless diffuser. The impact of unsteady impeller-diffuser interaction, primarily through the impeller tip clearance flow, is reflected through a time-averaged change in impeller loss, blockage and slip. The results show that there exists a tip clearance where the beneficial effect of the impeller-diffuser interaction on the impeller performance is at a maximum. A flow feature that consists of tip flow back leakage was shown to occur at design speed for the centrifugal compressor stage. This flow phenomenon is described as tip flow that originates in one passage, flows downstream of the impeller trailing edge and then returns to upstream of the impeller trailing edge of a neighboring passage. Such a flow feature is a source of loss in the impeller. A hypothesis is put forth to show that changing the diffuser vane count and changing impeller-diffuser gap has an analogous effect on the impeller performance. The centrifugal compressor stage was analyzed using diffusers of different vane counts, producing an impeller performance trend similar to that when the impeller-diffuser gap was varied, thus supporting the hypothesis made. This has the implication that the effect impeller performance associated with changing the impeller-diffuser gap and changing diffuser vane count can be described by the non-dimensional ratio of impeller-diffuser gap to diffuser vane pitch. A procedure is proposed and developed for isolating impeller passage blockage change without the need to define the region of blockage generation (which may incur a certain degree of arbitrariness). This method has been assessed for its applicability and utility.

  11. An experimental investigation of compressible three-dimensional boundary layer flow in annular diffusers

    NASA Technical Reports Server (NTRS)

    Om, Deepak; Childs, Morris E.

    1987-01-01

    An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.

  12. Heat transfer device

    NASA Technical Reports Server (NTRS)

    Eaton, L. R. (Inventor)

    1976-01-01

    An improved heat transfer device particularly suited for use as an evaporator plate in a diffusion cloud chamber. The device is characterized by a pair of mutually spaced heat transfer plates, each being of a planar configuration, having a pair of opposed surfaces defining therebetween a heat pipe chamber. Within the heat pipe chamber, in contiguous relation with the pair of opposed surfaces, there is disposed a pair of heat pipe wicks supported in a mutually spaced relationship by a foraminous spacer of a planar configuration. A wick including a foraminous layer is contiguously related to the external surfaces of the heat transfer plates for uniformly wetting these surfaces.

  13. Memories Are Made of This.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1983-01-01

    Provides comments on research studies related to memory systems, considering those exploring the nature of memory traces. One researcher suggests that memory trace circuits are extremely localized (as opposed to being diffuse), such that a lesion in a rabbit's brain can completely destroy the trace for a particular learned response. (JN)

  14. Wave Augmented Diffuser for Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)

    2001-01-01

    A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.

  15. Making Sense of Dynamic Systems: How Our Understanding of Stocks and Flows Depends on a Global Perspective.

    PubMed

    Fischer, Helen; Gonzalez, Cleotilde

    2016-03-01

    Stocks and flows (SF) are building blocks of dynamic systems: Stocks change through inflows and outflows, such as our bank balance changing with withdrawals and deposits, or atmospheric CO2 with absorptions and emissions. However, people make systematic errors when trying to infer the behavior of dynamic systems, termed SF failure, whose cognitive explanations are yet unknown. We argue that SF failure appears when people focus on specific system elements (local processing), rather than on the system structure and gestalt (global processing). Using a standard SF task (n = 148), SF failure decreased by (a) a global as opposed to local task format; (b) individual global as opposed to local processing styles; and (c) global as opposed to local perceptual priming. These results converge toward local processing as an explanation for SF failure. We discuss theoretical and practical implications on the connections between the scope of attention and understanding of dynamic systems. Copyright © 2015 Cognitive Science Society, Inc.

  16. Pure climb creep mechanism drives flow in Earth’s lower mantle

    PubMed Central

    Boioli, Francesca; Carrez, Philippe; Cordier, Patrick; Devincre, Benoit; Gouriet, Karine; Hirel, Pierre; Kraych, Antoine; Ritterbex, Sebastian

    2017-01-01

    At high pressure prevailing in the lower mantle, lattice friction opposed to dislocation glide becomes very high, as reported in recent experimental and theoretical studies. We examine the consequences of this high resistance to plastic shear exhibited by ringwoodite and bridgmanite on creep mechanisms under mantle conditions. To evaluate the consequences of this effect, we model dislocation creep by dislocation dynamics. The calculation yields to an original dominant creep behavior for lower mantle silicates where strain is produced by dislocation climb, which is very different from what can be activated under high stresses under laboratory conditions. This mechanism, named pure climb creep, is grain-size–insensitive and produces no crystal preferred orientation. In comparison to the previous considered diffusion creep mechanism, it is also a more efficient strain-producing mechanism for grain sizes larger than ca. 0.1 mm. The specificities of pure climb creep well match the seismic anisotropy observed of Earth’s lower mantle. PMID:28345037

  17. The experimental study of matching between centrifugal compressor impeller and diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamaki, H.; Nakao, H.; Saito, M.

    1999-01-01

    the centrifugal compressor for a marine use turbocharger with its design pressure ratio of 3.2 was tested with a vaneless diffuser and various vaned diffusers. Vaned diffusers were chosen to cover impeller operating range as broad as possible. The analysis of the static pressure ratio in the impeller and the diffusing system, consisting of the diffuser and scroll, showed that there were four possible combinations of characteristics of impeller pressure ratio and diffusing system pressure ratio. The flow rate, Q{sub P}, where the impeller achieved maximum static pressure ratio, was surge flow rate of the centrifugal compressor determined by themore » critical flow rate. In order to operate the compressor at a rate lower than Q{sub P}, the diffusing system, whose pressure recovery factor was steep negative slope near Q{sub P}, was needed. When the diffuser throat area was less than a certain value, the compressor efficiency deteriorated; however, the compressor stage pressure ratio was almost constant. In this study, by reducing the diffuser throat area, the compressor could be operated at a flow rate less than 40% of its design flow rate. Analysis of the pressure ratio in the impeller and diffusing systems at design and off-design speeds showed that the irregularities in surge line occurred when the component that controlled the negative slope on the compressor stage pressure ratio changed.« less

  18. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOEpatents

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  19. Flow field and performance characteristics of combustor diffusers: A basic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hestermann, R.; Kim, S.; Ben Khaled, A.

    1995-10-01

    Results of a detailed study concerning the influence of geometric as well as fluid mechanic parameters o the performance of a plane model combustor diffuser in cold flow are presented. For a qualitative insight into the complex flow field inside the prediffuser, the sudden expansion region, and the flow field around the flame tube dome, results of a flow visualization study with the hydrogen bubble method as well as with the ink jet method are presented for different opening angles of the prediffuser and for different flame tube distances. Also, quantitative data from detailed measurements with LDV and conventional pressuremore » probes in a geometrically similar air-driven setup are presented. These data clearly demonstrate the effect of boundary layer thickness as well as the influence of different turbulence levels at the entry of the prediffuser on the performance characteristics of combustor diffusers. The possibility of getting an unseparated flow field inside the prediffuser even at large opening angles by appropriately matching the diffuser`s opening angle and the flame tube distance is demonstrated. Also, for flows with an increased turbulence level at the entrance--all other conditions held constant--an increased opening angle can be realized without experiencing flow separation. The comparison of the experimental data with predictions utilizing a finite-volume-code based on a body-fitted coordinate system for diffusers with an included total opening angle less than 18 deg demonstrates the capability of describing the flow field in combustor diffusers with reasonable accuracy.« less

  20. Use of Inert Gases to Study the Interaction of Blood Flow and Diffusion during Passive Absorption from the Gastrointestinal Tract of the Rat

    PubMed Central

    Levitt, Michael D.; Levitt, David G.

    1973-01-01

    Measurement of the relative absorption rates of inert gases (H2, He, CH4, SF6, and 133Xe) was used to investigate the interaction between diffusion and blood flow during passive absorption from the stomach, small bowel, and colon of the rat. If uptake is blood flow limited, the gases should be absorbed in proportion to their solubilities in blood, but if diffusion limited, uptake should be proportional to the diffusion rate of the gases in mucosal tissues. The observed absorption data were fitted to a series of models of interaction between perfusion and diffusion. A simple model accurately predicted the absorption rates of the gases from all segments of bowel. In this model, gas is absorbed into two distinct blood flows: one which flows in proximity to the lumen and completely equilibrates with the lumen, and a second which is sufficiently rapid and distant from the lumen that its gas uptake is entirely diffusion limited. The fraction of the total absorption attributable to the equilibrating flow can be readily calculated and equalled 93%, 77%, and 33% for the small bowel, colon, and stomach, respectively. Thus the rate of passive absorption of gases from the small bowel is limited almost entirely by the blood flow to the mucosa, and absorption from the stomach is largely limited by the diffusion rate of the gases. The flow which equilibrates with the lumen can be quantitated, and this flow may provide a useful measure of “effective” mucosal blood flow. Images PMID:4719667

  1. A new boundary scheme for simulation of gas flow in kerogen pores with considering surface diffusion effect

    NASA Astrophysics Data System (ADS)

    Wang, Lingquan; Zeng, Zhong; Zhang, Liangqi; Qiao, Long; Zhang, Yi; Lu, Yiyu

    2018-04-01

    Navier-Stokes (NS) equations with no-slip boundary conditions fail to realistically describe micro-flows with considering nanoscale phenomena. Particularly, in kerogen pores, slip-flow and surface diffusion are important. In this study, we propose a new slip boundary scheme for the lattice Boltzmann (LB) method through the non-equilibrium extrapolation scheme to simulate the slip-flow considering surface diffusion effect. Meanwhile, the second-order slip velocity can be taken into account. The predicted characteristics in a two-dimensional micro-flow, including slip-velocity, velocity distribution along the flow direction with/without surface diffusion are present. The results in this study are compared with available analytical and reference results, and good agreements are achieved.

  2. A numerical study of candidate transverse fuel injector configurations in the Langley scramjet engine

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.

    1980-01-01

    A computer program has been developed that numerically solves the two-dimensional Navier-Stokes and species equations near one or more transverse hydrogen fuel injectors in a scramjet engine. The program currently computes the turbulent mixing and reaction of hydrogen fuel and air, and allows the study of separated regions of the flow immediately preceding and following the injectors. The complex shock-expansion structure produced by the injectors in this region of the engine can also be represented. Results are presented that describe the flow field near two opposing transverse fuel injectors and two opposing staged (multiple) injectors, and comparisons between the two configurations are made to assess their mixing and flameholding qualities.

  3. Modified Beer-Lambert law for blood flow.

    PubMed

    Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G

    2014-11-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.

  4. Characteristics of Perforated Diffusers at Free-stream Mach Number 1.90

    NASA Technical Reports Server (NTRS)

    Hunczak, Henry R; Kremzier, Emil J

    1950-01-01

    An investigation was conducted at Mach number 1.90 to determine pressure recovery and mass-flow characteristics of series of perforated convergent-divergent supersonic diffusers. Pressure recoveries as high as 96 percent were obtained, but at reduced mass flows through the diffuser. Theoretical considerations of effect of perforation distribution on shock stability in converging section of diffuser are presented and correlated with experimental data. A method of estimating relative importance of pressure recovery and mass flow on internal thrust coefficient basis is given and a comparison of various diffusers investigated is made.

  5. Steady and Unsteady Simulations of the Flow in an Impeller/Diffuser Stage

    NASA Technical Reports Server (NTRS)

    Canabal, Francisco; Dorney, Daniel J.; Garcia, Roberto; Turner, James E. (Technical Monitor)

    2002-01-01

    SLI engine designs will require pumps to throttle over a wide flow range while maintaining high performance. Unsteadiness generated by impeller/diffuser interaction is one of the major factors affecting off-design performance. Initial unsteady simulations are completed for impeller/diffuser stage. The Corsair simulations will continue across a wide flow range and for inducer/impeller/diffuser combinations. Results of unsteady simulations are being used to guide and explore new designs.

  6. Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2004-01-01

    Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at 8, 0 and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Leading edge loading and semi-vaneless space diffusion showed trends similar to those reported earlier from shroud surface experiments that did improve compressor flow range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that different hub-side techniques may produce range improvement in centrifugal compressors.

  7. A Device to Emulate Diffusion and Thermal Conductivity Using Water Flow

    ERIC Educational Resources Information Center

    Blanck, Harvey F.

    2005-01-01

    A device designed to emulate diffusion and thermal conductivity using flowing water is reviewed. Water flowing through a series of cells connected by a small tube in each partition in this plastic model is capable of emulating diffusion and thermal conductivity that occurs in variety of systems described by several mathematical equations.

  8. The effect of shear flow on the rotational diffusivity of a single axisymmetric particle

    NASA Astrophysics Data System (ADS)

    Leahy, Brian; Koch, Donald; Cohen, Itai

    2014-11-01

    Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.

  9. OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.

    PubMed

    Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao

    2014-12-01

    It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow.

  10. Flow measurements in two cambered vane diffusers with different passage widths

    NASA Astrophysics Data System (ADS)

    Stein, W.; Rautenberg, M.

    1985-03-01

    To investigate the influence of the vaneless space between impeller exit and the diffuser vanes, detailed flow measurements in two diffusers with the same vane geometry but different passage width are compared. The three-dimensional character of the flow changes between impeller exit and the entry to the two dimensional vanes depending on the shape of the shroud. After initial measurements with a constant area vaneless space, the width of the vaned diffuser was later on reduced by 10 percent. The compressor maps show increases in overall pressure rise and efficiency with the width reduction. To get further details of the flow field, measurements of the static pressure distribution at hub and shroud have been performed at several operation points for both diffusers. At the same points, the flow angle and total pressure distribution between hub and shroud upstream and downstream of the vanes have been measured with probes. The maximum efficiency of the narrow diffuser is nearly 2 percent higher than for the wide diffuser. The measurements give further details to explain this improvement.

  11. Study of compressible flow through a rectangular-to-semiannular transition duct

    NASA Technical Reports Server (NTRS)

    Foster, Jeffry; Okiishi, Theodore H.; Wendt, Bruce J.; Reichert, Bruce A.

    1995-01-01

    Detailed flow field measurements are presented for compressible flow through a diffusing rectangular-to-semiannular transition duct. Comparisons are made with published computational results for flow through the duct. Three-dimensional velocity vectors and total pressures were measured at the exit plane of the diffuser model. The inlet flow was also measured. These measurements are made using calibrated five-hole probes. Surface oil flow visualization and surface static pressure data were also taken. The study was conducted with an inlet Mach number of 0.786. The diffuser Reynolds based on the inlet centerline velocity and the exit diameter of the diffuser was 3,200,000. Comparison of the measured data with previously published computational results are made. Data demonstrating the ability of vortex generators to reduce flow separation and circumferential distortion is also presented.

  12. Self-diffusion in dense granular shear flows.

    PubMed

    Utter, Brian; Behringer, R P

    2004-03-01

    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.

  13. Microgravity flame spread over thick solids in low velocity opposed flow

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Zhu, Feng

    2016-07-01

    Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.

  14. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    NASA Astrophysics Data System (ADS)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion device and is good to transform the dynamic energy to pressure energy. Then through the hydraulic loss analysis of each pump component for all diffusers, it shows that the impeller takes up the biggest part of the whole loss about 8.19% averagely, the radial diffuser about 3.70% and the volute about 1.65%. The hydraulic loss of impeller is dominant at the large flow rate while the radial diffuser is at the small flow rate. Among all diffusers, the ES profile diffuser generates the least loss and combined to the distribution of velocity vector and turbulent kinetic energy for two kinds of diffusers it also shows that ES profile is fit to apply in radial diffuser. This research can offer a significant reference for the radial diffuser hydraulic design of such centrifugal pumps.

  15. A Student Diffusion Activity

    ERIC Educational Resources Information Center

    Kutzner, Mickey; Pearson, Bryan

    2017-01-01

    Diffusion is a truly interdisciplinary topic bridging all areas of STEM education. When biomolecules are not being moved through the body by fluid flow through the circulatory system or by molecular motors, diffusion is the primary mode of transport over short distances. The direction of the diffusive flow of particles is from high concentration…

  16. Electrokinetic transport in unsteady flow through peristaltic microchannel

    NASA Astrophysics Data System (ADS)

    Tripathi, Dharmendra; Mulchandani, Janak; Jhalani, Shubham

    2016-04-01

    We analyze the electrokinetic transport of aqueous electrolyte fluids with Newtonian model in presence of peristalsis through microchannel. Debye-Hückel linearization is employed to simplify the problem. Low Reynolds number and large wavelength approximations are taken into account subjected to microfluidics applications. Electrical double layer (EDL) is considered very thin and electroosmotic slip velocity (i.e. Helmholtz-Smoluchowski velocity) at the wall is subjected to study the effect of applied electrical field. The solutions for axial velocity and pressure difference along the channel length are obtained analytically and the effects of adding and opposing the flow by applied electric field have been discussed. It is revealed that the axial velocity and pressure gradient enhances with adding electric field and an opposite behavior is found in the flow direction on opposing the electric field. These results may also help towards designing organ-on-a-chip like devices for better drug design.

  17. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  18. Fluid pressure arrival time tomography: Estimation and assessment in the presence of inequality constraints, with an application to a producing gas field at Krechba, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucci, A.; Vasco, D.W.; Novali, F.

    2010-04-01

    Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based upon these changes we estimate diffusive travel times associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage an approach based upon travel times, as opposed to one based upon the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production onlymore » results in pore volume decreases within the reservoir. We apply the formulation to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is approximately 0.5 cm, overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly-spaced images of range change, we calculate the diffusive travel times associated with the startup of a gas production well. The inequality constraints are incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30 to 40%.« less

  19. A craniometric perspective on the transition to agriculture in Europe.

    PubMed

    Pinhasi, Ron; von Cramon-Taubadel, Noreen

    2012-02-01

    Debates surrounding the nature of the Neolithic demographic transition in Europe have historically centered on two opposing models: a "demic" diffusion model whereby incoming farmers from the Near East and Anatolia effectively replaced or completely assimilated indigenous Mesolithic foraging communities, and an "indigenist" model resting on the assumption that ideas relating to agriculture and animal domestication diffused from the Near East but with little or no gene flow. The extreme versions of these dichotomous models were heavily contested primarily on the basis of archeological and modern genetic data. However, in recent years a growing acceptance has arisen of the likelihood that both processes were ongoing throughout the Neolithic transition and that a more complex, regional approach is required to fully understand the change from a foraging to a primarily agricultural mode of subsistence in Europe. Craniometric data were particularly useful for testing these more complex scenarios, as they can reliably be employed as a proxy for the genetic relationships among Mesolithic and Neolithic populations. In contrast, modern genetic data assume that modern European populations accurately reflect the genetic structure of Europe at the time of the Neolithic transition, while ancient DNA data are still not geographically or temporally detailed enough to test continent-wide processes. Here, with particular emphasis on the role of craniometric analyses, we review the current state of knowledge regarding the cultural and biological nature of the Neolithic transition in Europe.

  20. Modified Beer-Lambert law for blood flow

    PubMed Central

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2014-01-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues. PMID:25426330

  1. Computational fluid dynamics characterization of a novel mixed cell raceway design

    USDA-ARS?s Scientific Manuscript database

    Computational fluid dynamics (CFD) analysis was performed on a new type of mixed cell raceway (MCR) that incorporates longitudinal plug flow using inlet and outlet weirs for the primary fraction of the total flow. As opposed to regular MCR wherein vortices are entirely characterized by the boundary ...

  2. Measurement of shear-induced diffusion of red blood cells using dynamic light scattering-optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.

    2018-02-01

    Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.

  3. Diffusion-limited mixing by incompressible flows

    NASA Astrophysics Data System (ADS)

    Miles, Christopher J.; Doering, Charles R.

    2018-05-01

    Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).

  4. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.

    PubMed

    Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui

    2018-02-08

    The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.

  5. Fuel cell assembly unit for promoting fluid service and electrical conductivity

    DOEpatents

    Jones, Daniel O.

    1999-01-01

    Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.

  6. Unsteady behavior of leading-edge vortex and diffuser stall in a centrifugal compressor with vaned diffuser

    NASA Astrophysics Data System (ADS)

    Fujisawa, Nobumichi; Hara, Shotaro; Ohta, Yutaka

    2016-02-01

    The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge (i.e., the leading-edge vortex (LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading- edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor.

  7. Experimental Measurements of Two-dimensional Planar Propagating Edge Flames

    NASA Technical Reports Server (NTRS)

    Villa-Gonzalez, Marcos; Marchese, Anthony J.; Easton, John W.; Miller, Fletcher J.

    2007-01-01

    The study of edge flames has received increased attention in recent years. This work reports the results of a recent study into two-dimensional, planar, propagating edge flames that are remote from solid surfaces (called here, free-layer flames, as opposed to layered flames along floors or ceilings). They represent an ideal case of a flame propagating down a flammable plume, or through a flammable layer in microgravity. The results were generated using a new apparatus in which a thin stream of gaseous fuel is injected into a low-speed laminar wind tunnel thereby forming a flammable layer along the centerline. An airfoil-shaped fuel dispenser downstream of the duct inlet issues ethane from a slot in the trailing edge. The air and ethane mix due to mass diffusion while flowing up towards the duct exit, forming a flammable layer with a steep lateral fuel concentration gradient and smaller axial fuel concentration gradient. We characterized the flow and fuel concentration fields in the duct using hot wire anemometer scans, flow visualization using smoke traces, and non-reacting, numerical modeling using COSMOSFloWorks. In the experiment, a hot wire near the exit ignites the ethane air layer, with the flame propagating downwards towards the fuel source. Reported here are tests with the air inlet velocity of 25 cm/s and ethane flows of 967-1299 sccm, which gave conditions ranging from lean to rich along the centerline. In these conditions the flame spreads at a constant rate faster than the laminar burning rate for a premixed ethane air mixture. The flame spread rate increases with increasing transverse fuel gradient (obtained by increasing the fuel flow rate), but appears to reach a maximum. The flow field shows little effect due to the flame approach near the igniter, but shows significant effect, including flow reversal, well ahead of the flame as it approaches the airfoil fuel source.

  8. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)

    1999-01-01

    A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.

  9. Phase-Field Simulation of Concentration and Temperature Distribution During Dendritic Growth in a Forced Liquid Metal Flow

    NASA Astrophysics Data System (ADS)

    Du, Lifei; Zhang, Rong

    2014-12-01

    A phase-field model with convection is employed to investigate the effect of liquid flow on the dendritic structure formation of a Ni-Cu alloy during rapid solidification. Temperature and solute diffusion are significantly changed with induced liquid metal flow, and distribution changes of concentration and temperature are also analyzed and discussed. The solute segregation is affected due to the concentration diffusion layer thickness change caused by the liquid flow. The flow reduces the solute segregation in the upstream and leads to a fast dendrite growing, while solidifying in the downstream gets constrained with the large solute diffusion layer. Increasing flow velocity increases the asymmetry of dendrite morphology with much more suppressed growth in the downstream. The temperature distribution is also asymmetrical due to the non-uniform latent heat released during solidification coupling with heat diffusion changed by the liquid flow. Therefore, the forced liquid flow significantly affects the dendrite morphology, concentration, and temperature distributions in the solidifying microstructure.

  10. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li

    2017-02-01

    The drag reduction and thermal protection system applied to hypersonic re-entry vehicles have attracted an increasing attention, and several novel concepts have been proposed by researchers. In the current study, the influences of performance parameters on drag and heat reduction efficiency of combinational novel cavity and opposing jet concept has been investigated numerically. The Reynolds-average Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flowfields, and the first-order spatially accurate upwind scheme appears to be more suitable for three-dimensional flowfields after grid independent analysis. Different cases of performance parameters, namely jet operating conditions, freestream angle of attack and physical dimensions, are simulated based on the verification of numerical method, and the effects on shock stand-off distance, drag force coefficient, surface pressure and heat flux distributions have been analyzed. This is the basic study for drag reduction and thermal protection by multi-objective optimization of the combinational novel cavity and opposing jet concept in hypersonic flows in the future.

  11. The effects of inlet temperature and turbulence characteristics on the flow development inside a gas turbine exhaust diffuser

    NASA Astrophysics Data System (ADS)

    Bomela, Christian Loangola

    The overall industrial gas turbine efficiency is known to be influenced by the pressure recovery in the exhaust system. The design and, subsequently, the performance of an industrial gas turbine exhaust diffuser largely depend on its inflow conditions dictated by the turbine last stage exit flow state and the restraints of the diffuser internal geometry. Recent advances in Computational Fluid Dynamics (CFD) tools and the availability of computer hardware at an affordable cost made the virtual tool a very attractive one for the analysis of fluid flow through devices like a diffuser. In this backdrop, CFD analyses of a typical industrial gas turbine hybrid exhaust diffuser, consisting of an annular diffuser followed by a conical portion, have been carried out with the purpose of improving the performance of these thermal devices using an open-source CFD code "OpenFOAM". The first phase in the research involved the validation of the CFD approach using OpenFOAM by comparing CFD results against published benchmark experimental data. The numerical results closely captured the flow reversal and the separated boundary layer at the shroud wall where a steep velocity gradient has been observed. The standard k --epsilon turbulence model slightly over-predicted the mean velocity profile in the casing boundary layer while slightly under-predicted it in the reversed flow region. A reliable prediction of flow characteristics in this region is very important as the presence of the annular diffuser inclined wall has the most dominant effect on the downstream flow development. The core flow region and the presence of the hub wall have only a minor influence as reported by earlier experimental studies. Additional simulations were carried out in the second phase to test the veracity of other turbulence models; these include RNG k--epsilon, the SST k--o, and the Spalart-Allmaras turbulence models. It was found that a high resolution case with 47.5 million cells using the SST k--o turbulence model produced a mean flow velocity profile at the middle of the annular diffuser portion that had the best overall match with the experiment. The RNG k --epsilon, however, better predicted the diffuser performance along the exhaust diffuser length by means of the pressure recovery coefficient. These results were obtained using uniform inflow conditions and steady-state simulations. As such, the last phase of our investigations involved varying the inflow parameters like the turbulence intensity, the inlet flow temperature, and the flow angularity, which constitute important characteristics of the turbine blade wake, to investigate their impact on the diffuser design and performance. These isothermal CFD simulations revealed that by changing the flow temperature from 15 to 427°C, the pressure recovery coefficient significantly increased. However, it has been shown that the increase of temperature had no effects on the size of the reversed flow region and the thickness of the separated casing boundary layer, although the flow appears to be more turbulent. Furthermore, it has been established that an optimum turbulence intensity of about 4% produced comparable diffuser performance as the experiment. We also found that a velocity angle of about 2.5° at the last turbine stage will ensure a better exhaust diffuser performance.

  12. Anomalous Diffusion of Particles Dispersed in Xanthan Solutions Subjected to Shear Flow

    NASA Astrophysics Data System (ADS)

    Takikawa, Yoshinori; Yasuta, Muneharu; Fujii, Shuji; Orihara, Hiroshi; Tanaka, Yoshimi; Nishinari, Katsuyoshi

    2018-05-01

    Xanthan gum exhibits viscoelastic and shear-thinning properties. We investigate the Brownian motion of particles dispersed in xanthan gum solutions that are subjected to simple shear flow. The mean square displacements (MSDs) are obtained in both the flow and vorticity directions. In the absence of shear flow, subdiffusion is observed, MSD ∝ tα with α < 1, where t is time. In the presence of shear flow, however, the exponent α becomes larger together with the MSD itself in both the flow and vorticity directions. We show that the diffusion is enhanced by Taylor dispersion in the flow direction, whereas in the vorticity direction it is enhanced by nonthermal self-diffusion.

  13. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  14. Diffusive mixing through velocity profile variation in microchannels

    NASA Astrophysics Data System (ADS)

    Yakhshi-Tafti, Ehsan; Cho, Hyoung J.; Kumar, Ranganathan

    2011-03-01

    Rapid mixing does not readily occur at low Reynolds number flows encountered in microdevices; however, it can be enhanced by passive diffusive mixing schemes. This study of micromixing of two miscible fluids is based on the principle that (1) increased velocity at the interface of co-flowing fluids results in increased diffusive mass flux across their interface, and (2) diffusion interfaces between two liquids progress transversely as the flow proceeds downstream. A passive micromixer is proposed that takes advantage of the peak velocity variation, inducing diffusive mixing. The effect of flow variation on the enhancement of diffusive mixing is investigated analytically and experimentally. Variation of the flow profile is confirmed using micro-Particle Image Velocimetry (μPIV) and mixing is evaluated by color variations resulting from the mixing of pH indicator and basic solutions. Velocity profile variations obtained from μPIV show a shift in peak velocities. The mixing efficiency of the Σ-micromixer is expected to be higher than that for a T-junction channel and can be as high as 80%. The mixing efficiency decreases with Reynolds number and increases with downstream length, exhibiting a power law.

  15. METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS

    DOEpatents

    Hoffman, J.D.; Ballou, J.K.

    1957-11-19

    A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

  16. Emerging Entrepreneurial Universities in University Reforms: The Moderating Role of Personalities and the Social/Economic Environment

    ERIC Educational Resources Information Center

    Berács, József

    2014-01-01

    University education, research and other services are increasingly becoming private goods as opposed to the traditional public goods concept. This trend is a highly debated process, and its consequences for universities are unquestionable. One of the consequences may be the diffusion of entrepreneurship in the higher education sector. The aim of…

  17. Magnetically Driven Flows of Suspensions of Rods to Deliver Clot-Busting Drugs to Dead-End Arteries

    NASA Astrophysics Data System (ADS)

    Bonnecaze, Roger; Clements, Michael

    2014-11-01

    Suspensions of iron particles in the presence of a magnetic field create flows that could significantly increase the delivery of drugs to dissolve clots in stroke victims. An explanation of this flow rests on the foundation of the seminal works by Prof. Acrivos and his students on effective magnetic permittivity of suspensions of rods, hydrodynamic diffusion of particles, and the flow of suspensions. Intravenous administration of the clot dissolving tissue plasminogen activator (tPA) is the most used therapy for stroke. This therapy is often unsuccessful because the tPA delivery is diffusion-limited and too slow to be effective. Observations show that added iron particles in a rotating magnetic field form rotating rods along the wall of the occluded vessel, creating a convective flow that can carry tPA much faster than diffusion. We present a proposed mechanism for this magnetically driven flow in the form of coupled particle-scale and vessel-scale flow models. At the particle-scale, particles chain up to form rods that rotate, diffuse and translate in the presence of the flow and magnetic fields. Localized vorticity created by the rotating particles drives a macroscopic convective flow in the vessel. Suspension transport equations describe the flow at the vessel-scale. The flow affects the convection and diffusion of the suspension of particles, linking the two scales. The model equations are solved asymptotically and numerically to understand how to create convective flows in dead-end or blocked vessels.

  18. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  19. Premixed Atmosphere and Convection Influences on Flame Inhibition and Combustion (Pacific)

    NASA Technical Reports Server (NTRS)

    Honda, Linton K.; Ronney, Paul D.

    1997-01-01

    Flame spread over flat solid fuel beds is a useful paradigm for studying the behavior of more complex two-phase nonpremixed flames. For practical applications, two of the most important elements of flame spreading are the effects of (1) the ambient atmosphere (e.g. pressure and composition) and (2) the flow environment on the spread rate and extinction conditions. Concerning (1), studies of flame spread in vitiated air and non-standard atmospheres such as those found in undersea vessels and spacecraft are particularly important for the assessment of fire hazards in these environments as well as determination of the effectiveness of fire suppressants. Concerning (2), the flow environment may vary widely even when no forced flow is present because of buoyancy effects. Consequently, the goal of this work is to employ microgravity (micro g) experiments to extend previous studies of the effects of ambient atmosphere and the flow environment on flame spread through the use of microgravity (micro g) experiments. Because of the considerable differences between upward (concurrent-flow) and downward (opposed-flow) flame spread at 1g (Williams, 1976, Fernandez-Pello, 1984), in this work both upward and downward 1g spread are tested. Two types of changes to the oxidizing atmosphere are considered in this work. One is the addition of sub-flammability-limit concentrations of a gaseous fuel ('partially premixed' atmospheres). This is of interest because in fires in enclosures, combustion may occur under poorly ventilated conditions, so that oxygen is partially depleted from the air and is replaced by combustible gases such as fuel vapors, H2 or CO. Subsequent fire spread over the solid fuel could occur under conditions of varying oxygen and gaseous fuel content. The potential significance of flame spread under vitiated or partially premixed conditions has been noted previously (Beyler, 1984). The second change is the diluent type, which affects the radiative properties of the mixture as well as the Lewis number (Le) of the reactants in the atmosphere, which for oxygen is defined as the thermal diffusivity of the bulk mixture divided by the mass diffusivity of oxygen into the bulk mixture. Understanding the effect of diluent type is desirable because in some undersea and spaceborne habitations, it is desirable to use diluent gases other than nitrogen. Prior experiments have shown that both radiation (Bhattacharjee and Altenkirch, 1993) and Lewis number (Zhang et al, 1992) effects are important in flame spreading problems.

  20. Wavy flow cooling concept for turbine airfoils

    DOEpatents

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  1. Explosive Deep Sea Volcanism Produces Composite Volcanoes (Stratocones) with Predominantly Diffuse Flow Hydrothermal Ecosystems

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Chadwick, W. C.; Embley, R. W.; Butterfield, D. A.

    2018-05-01

    Newly-discovered extensive explosive deep sea volcanism produces distinct stratovolcano structures and physical rock characteristics, and host primarily diffuse flow hydrothermal activity, unlike focused flow systems at effusive submarine volcanoes.

  2. SIMULATION OF WIND FIELDS OVER POINT ARGUELLO, CALIFORNIA, BY WIND-TUNNEL FLOW OVER A TOPOGRAPHIC MODEL.

    DTIC Science & Technology

    decay rates for diffusing tracers. The data revealed that a laminar laboratory flow may be used to simulate a turbulent field flow under conditions of...stable thermal stratification and complex terrain. In such flow conditions, diffusion is dominated by convective dispersion. (Author)

  3. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel diffuser

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    The purpose was to document the airflow characteristics in the diffuser of the NASA Lewis Research Center Icing Research Tunnel and to determine the effects of vortex generators on the flow quality in the diffuser. The results were used to determine how to improve the flow in this portion of the tunnel so that it can be more effectively used as an icing test section and such that overall tunnel efficiency can be improved. The demand for tunnel test time and the desire to test models that are too large for the test section were two of the drivers behind this diffuser study. For all vortex generator configurations tested, the flow quality was improved.

  4. Renormalization group analysis of anisotropic diffusion in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1991-01-01

    The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.

  5. Geometry: A Flow Proof Approach.

    ERIC Educational Resources Information Center

    McMurray, Robert

    The inspiration for this text was provided by an exposure to the flow proof approach to a proof format as opposed to the conventional two-column approach. Historical background is included, to provide a frame of reference to give the student an appreciation of the subject. The basic constructions are introduced early and briefly, to aid the…

  6. Opposed-flow flame spread and extinction in mixed-convection boundary layers

    NASA Technical Reports Server (NTRS)

    Altenkirch, R. A.; Wedha-Nayagam, M.

    1989-01-01

    Experimental data for flame spread down thin fuel samples in an opposing, mixed-convection, boundary-layer flow are analyzed to determine the gas-phase velocity that characterizes how the flame reacts as it spreads toward the leading edge of the fuel sample into a thinning boundary layer. In the forced-flow limit where the cube of the Reynolds number divided by the Grashof number, Re exp 3/Gr, is large, L(q)/L(e), where L(q) is a theoretical flame standoff distance at extinction and L(e) is the measured distance from the leading edge of the sample where extinction occurs, is found to be proportional to Re exp n with n = -0.874 and Re based on L(e). The value of n is established by the character of the flow field near the leading edge of the flame. The Re dependence is used, along with a correction for the mixed-convection situation where Re exp 3/Gr is not large, to construct a Damkohler number with which the measured spread rates correlate for all values of Re exp 3/Gr.

  7. Solution of mixed convection heat transfer from isothermal in-line fins

    NASA Technical Reports Server (NTRS)

    Khalilollahi, Amir

    1993-01-01

    Transient and steady state combined natural and forced convective flows over two in-line finite thickness fins (louvers) in a vertical channel are numerically solved using two methods. The first method of solution is based on the 'Simple Arbitrary Lagrangian Eulerian' (SALE) technique which incorporates mainly two computational phases: (1) a Lagrangian phase in which the velocity field is updated by the effects of all forces, and (2) an Eulerian phase that executes all advective fluxes of mass, momentum and energy. The second method of solution uses the finite element code entitled FIDAP. In the first part, comparison of the results by FIDAP, SALE, and available experimental work were done and discussed for steady state forced convection over louvered fins. Good agreements were deduced between the three sets of results especially for the flow over a single fin. In the second part and in the absence of experimental literature, the numerical predictions were extended to the transient transports and to the opposing flow where pressure drop is reversed. Results are presented and discussed for heat transfer and pressure drop in assisting and opposing mixed convection flows.

  8. Elemental and cooperative diffusion in a liquid, supercooled liquid and glass resolved

    NASA Astrophysics Data System (ADS)

    Cassar, Daniel R.; Lancelotti, Ricardo F.; Nuernberg, Rafael; Nascimento, Marcio L. F.; Rodrigues, Alisson M.; Diz, Luiza T.; Zanotto, Edgar D.

    2017-07-01

    The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic processes are still unknown. The main objective of this work is to shed some light on this mystery, advancing the knowledge on this phenomenon. For that matter, we measured the crystal growth rates, the viscosity, and lead diffusivities in PbSiO3 liquid and glass in a wide temperature range. We compared our measured values with published data covering 16 orders of magnitude. We suggest that above a certain temperature range Td (1.2Tg-1.3Tg), crystal growth and viscous flow are controlled by the diffusion of silicon and lead. Below this temperature, crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. Therefore, Td marks the temperature where decoupling between the (measured) cationic diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates occurs. We reasonably propose that the nature or size of the diffusional entities controlling viscous flow and crystal growth below Td is quite different; the slowest is the one controlling viscous flow, but both processes require cooperative movements of some larger structural units rather than jumps of only one or a few isolated atoms.

  9. Passive Rocket Diffuser Testing: Reacting Flow Performance of Four Second-Throat Geometries

    NASA Technical Reports Server (NTRS)

    Jones, Daniel R.; Allgood, Daniel C.; Saunders, Grady P.

    2016-01-01

    Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure. As one of the nation's largest rocket testing facilities, the performance and design limitations of diffusers are of great interest to NASA's Stennis Space Center. This paper describes a series of tests conducted on four diffuser configurations to better understand the effects of inlet geometry and throat area on starting behavior and boundary layer separation. The diffusers were tested for a duration of five seconds with a 1455-pound thrust, LO2/GH2 thruster to ensure they each reached aerodynamic steady state. The effects of a water spray ring at the diffuser exits and a water-cooled deflector plate were also evaluated. Static pressure and temperature measurements were taken at multiple axial locations along the diffusers, and Computational Fluid Dynamics (CFD) simulations were used as a tool to aid in the interpretation of data. The hot combustion products were confirmed to enable the diffuser start condition with tighter second throats than predicted by historical cold-flow data or the theoretical normal shock method. Both aerodynamic performance and heat transfer were found to increase with smaller diffuser throats. Spray ring and deflector cooling water had negligible impacts on diffuser boundary layer separation. CFD was found to accurately capture diffuser shock structures and full-flowing diffuser wall pressures, and the qualitative behavior of heat transfer. However, the ability to predict boundary layer separated flows was not consistent.

  10. Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser

    NASA Technical Reports Server (NTRS)

    Moore, F. K.

    1988-01-01

    A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.

  11. Measuring the diffusion of linguistic change

    PubMed Central

    Nerbonne, John

    2010-01-01

    We examine situations in which linguistic changes have probably been propagated via normal contact as opposed to via conquest, recent settlement and large-scale migration. We proceed then from two simplifying assumptions: first, that all linguistic variation is the result of either diffusion or independent innovation, and, second, that we may operationalize social contact as geographical distance. It is clear that both of these assumptions are imperfect, but they allow us to examine diffusion via the distribution of linguistic variation as a function of geographical distance. Several studies in quantitative linguistics have examined this relation, starting with Séguy (Séguy 1971 Rev. Linguist. Romane 35, 335–357), and virtually all report a sublinear growth in aggregate linguistic variation as a function of geographical distance. The literature from dialectology and historical linguistics has mostly traced the diffusion of individual features, however, so that it is sensible to ask what sort of dynamic in the diffusion of individual features is compatible with Séguy's curve. We examine some simulations of diffusion in an effort to shed light on this question. PMID:21041207

  12. Measuring the diffusion of linguistic change.

    PubMed

    Nerbonne, John

    2010-12-12

    We examine situations in which linguistic changes have probably been propagated via normal contact as opposed to via conquest, recent settlement and large-scale migration. We proceed then from two simplifying assumptions: first, that all linguistic variation is the result of either diffusion or independent innovation, and, second, that we may operationalize social contact as geographical distance. It is clear that both of these assumptions are imperfect, but they allow us to examine diffusion via the distribution of linguistic variation as a function of geographical distance. Several studies in quantitative linguistics have examined this relation, starting with Séguy (Séguy 1971 Rev. Linguist. Romane 35, 335-357), and virtually all report a sublinear growth in aggregate linguistic variation as a function of geographical distance. The literature from dialectology and historical linguistics has mostly traced the diffusion of individual features, however, so that it is sensible to ask what sort of dynamic in the diffusion of individual features is compatible with Séguy's curve. We examine some simulations of diffusion in an effort to shed light on this question.

  13. Fluidic Oscillator Having Decoupled Frequency and Amplitude Control

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2017-01-01

    A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.

  14. Fluidic Oscillator Having Decoupled Frequency and Amplitude Control

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.

  15. Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers

    NASA Astrophysics Data System (ADS)

    Farough, A.; Lowell, R. P.; Corrigan, R.

    2012-12-01

    Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.

  16. Absolute Wavelength Calibration of the IDSII Spectrometer for Impurity Ion Velocity Measurements in the MST

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; MST Team

    2014-10-01

    The MST operates two Ion Doppler Spectrometers (IDS) for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometers record data within 0.3 nm of the line of interest, and commercial calibration lamps do not produce lines in this narrow range . Four calibration methods were investigated. First, emission along the chord bisecting the poloidal plane was measured as it should have no time-averaged Doppler shift. Second, a calibrated CCD spectrometer and the IDSII were used to observe the same plasma from opposing sides so as to measure opposite Doppler shifts. The unshifted line is located halfway between the two opposing measurements. Third, the two fibers of the IDSI were positioned to take absolute flow measurements using opposing views. Substituting the IDSII for one of the IDSI fibers, absolute measurements of flow from the IDSI were used to calibrate the IDSII. Finally, an optical system was designed to filter an ultraviolet LED, providing a known wavelength source within the spectral range covered by the IDSII. The optical train is composed of an air-gapped etalon and fused silica lenses. The quality of calibration for each of these methods is analyzed and their results compared. Preliminary impurity ion velocity measurements are shown. This work has been supported by the US DOE and the NSF.

  17. An improved design method and experimental performance of two dimensional curved wall diffusers

    NASA Technical Reports Server (NTRS)

    Yang, T.; Hudson, W. G.; El-Nashar, A. M.

    1972-01-01

    A computer design program was developed to incorporate the suction slots in solving the potential flow equations with prescribed boundary conditions. Using the contour generated from this program two Griffith diffusers were tested having area ratios AR = 3 and 4. The inlet Reynolds number ranged from 600,000 to 7 million. It was found that the slot suction required for metastable operation depends on the sidewall suction applied. Values of slot suction of 8% of the inlet flow rate was required for AR = 4 with metastable condition, provided that enough sidewall suction was applied. For AR = 3, the values of slot suction was about 25% lower than those required for AR = 4. For nearly all unseparated test runs, the effectiveness was 100% and the exit flow was uniform. In addition to the Griffith diffusers, dump and cusp diffusers of comparable area ratios were built and tested. The results obtained from these diffusers were compared with those of the Griffith diffusers. Flow separation occurred in all test runs with the dump and cusp diffusers.

  18. Reduced integrity of the left arcuate fasciculus is specifically associated with auditory verbal hallucinations in schizophrenia.

    PubMed

    McCarthy-Jones, Simon; Oestreich, Lena K L; Whitford, Thomas J

    2015-03-01

    Schizophrenia patients with auditory verbal hallucinations (AVH) have reduced structural integrity in the left arcuate fasciculus (AFL) compared to healthy controls. However, it is neither known whether these changes are specific to AVH, as opposed to hallucinations or schizophrenia per se, nor how radial and/or axial diffusivity are altered. This study aimed to test the hypothesis that reductions to the structural integrity of the AFL are specifically associated with AVH in schizophrenia. Diffusion tensor imaging scans and clinical data were obtained from the Australian Schizophrenia Research Bank for 39 schizophrenia patients with lifetime AVH (18 current, 21 remitted), 74 schizophrenia patients with no lifetime AVH (40 with lifetime hallucinations in other modalities, 34 no lifetime hallucinations) and 40 healthy controls. Fractional anisotropy was significantly reduced in the AFL of patients with lifetime AVH compared to both healthy controls (Cohen's d=1.24) and patients without lifetime AVH (d=.72), including compared to the specific subsets of patients without AVH who either had hallucinations in other modalities (d=.69) or no history of any hallucinations (d=.73). Radial, but not axial, diffusivity was significantly increased in patients with lifetime AVH compared to both healthy controls (d=.89) and patients without lifetime AVH (d=.39). Evidence was found for a non-linear relation between fractional anisotropy in the AFL and state AVH. Reduced integrity of the AFL is specifically associated with AVH, as opposed to schizophrenia in general or hallucinations in other modalities. Increased radial diffusivity suggests dysmyelination or demyelination of the AFL may play a role in AVH. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Unsteady Extinction of Opposed Jet Ethylene/Methane HIFiRE Surrogate Fuel Mixtures vs Air

    NASA Technical Reports Server (NTRS)

    Vaden, Sarah N.; Debes, Rachel L.; Lash, E. Lara; Burk, Rachel S.; Boyd, C. Merritt; Wilson, Lloyd G.; Pellett, Gerald L.

    2009-01-01

    A unique idealized study of the subject fuel vs. air systems was conducted using an Oscillatory-input Opposed Jet Burner (OOJB) system and a newly refined analysis. Extensive dynamic-extinction measurements were obtained on unanchored (free-floating) laminar Counter Flow Diffusion Flames (CFDFs) at 1-atm, stabilized by steady input velocities (e.g., U(sub air)) and perturbed by superimposed in-phase sinusoidal velocity inputs at fuel and air nozzle exits. Ethylene (C2H4) and methane (CH4), and intermediate 64/36 and 15/85 molar percent mixtures were studied. The latter gaseous surrogates were chosen earlier to mimic ignition and respective steady Flame Strengths (FS = U(sub air)) of vaporized and cracked, and un-cracked, JP-7 "like" kerosene for a Hypersonic International Flight Research Experimentation (HIFiRE) scramjet. For steady idealized flameholding, the 100% C2H4 flame is respectively approx. 1.3 and approx.2.7 times stronger than a 64/36 mix and CH4; but is still 12.0 times weaker than a 100% H2-air flame. Limited Hot-Wire (HW) measurements of velocity oscillations at convergent-nozzle exits, and more extensive Probe Microphone (PM) measurements of acoustic pressures, were used to normalize Dynamic FSs, which decayed linearly with pk/pk U(sub air) (velocity magnitude, HW), and also pk/pk P (pressure magnitude, PM). Thus Dynamic Flame Weakening (DFW) is defined as % decrease in FS per Pascal of pk/pk P oscillation, namely, DFW = -100 d(U(sub air)/U(sub air),0Hz)/d(pkpk P). Key findings are: (1) Ethylene flames are uniquely strong and resilient to extinction by oscillating inflows below 150 Hz; (2) Methane flames are uniquely weak; (3) Ethylene / methane surrogate flames are disproportionately strong with respect to ethylene content; and (4) Flame weakening is consistent with limited published results on forced unsteady CFDFs. Thus from 0 to approx. 10 Hz and slightly higher, lagging diffusive responses of key species led to progressive phase lags (relative to inputs) in the oscillating flames, and caused maximum weakening. At 20 to 150 Hz, diffusion-rate-limited effects diminished, causing flames to "regain strengnth," and eventually become completely insensitive beyond 300 Hz. Detailed mechanistic understanding is needed. Overall, ethylene flames are remarkably resilient to dynamic extinction by oscillating inflows. They are the strongest, with the notable exception of H2. For HIFiRE tests, the 64%/36% surrogate disproportionally retains the high dynamic FS of ethylene, so the potential for loss of scramjet flameholding (flameout) due to low frequency oscillations is significantly mitigated.

  20. Detailed Studies on the Structure and Dynamics of Reacting Dusty Flows at Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Andac, M. Gurhan; Cracchiola, Brad; Egolfopoulos, Fokion N.; Campbell, Charles S.

    1999-01-01

    Dusty reacting flows are of particular interest for a wide range of applications. Inert particles can alter the flammability and extinction limits of a combustible mixture. Reacting particles can release substantial amount of heat and can be used either for power generation or propulsion. Accumulation of combustible particles in air can result in explosions which, for example, can occur in grain elevators, during lumber milling and in mine galleries. Furthermore, inert particles are used as flow velocity markers in reacting flows, and their velocity is measured by non-intrusive laser diagnostic techniques. Despite their importance, dusty reacting flows have been less studied and understood compared to gas phase as well as sprays. The addition of solid particles in a flowing gas stream can lead to strong couplings between the two phases, which can be of dynamic, thermal, and chemical nature. The dynamic coupling between the two phases is caused by the inertia that causes the phases to move with different velocities. Furthermore, gravitational, thermophoretic, photophoretic, electrophoretic, diffusiophoretic, centrifugal, and magnetic forces can be exerted on the particles. In general, magnetic, electrophoretic, centrifugal, photophoretic, and diffusiophoretic can be neglected. On the other hand, thermophoretic forces, caused by steep temperature gradients, can be important. The gravitational forces are almost always present and can affect the dynamic response of large particles. Understanding and quantifying the chemical coupling between two phases is a challenging task. However, all reacting particles begin this process as inert particles, and they must be heated before they participate in the combustion process. Thus, one must first understand the interactions of inert particles in a combustion environment. The in-detail understanding of the dynamics and structure of dusty flows can be only advanced by considering simple flow geometries such as the opposed-jet, stagnation-type. In such configurations the imposed strain rate is well characterized, and the in-depth understanding of the details of the physico-chemical processes can be systematically obtained. A number of computational and experimental studies on spray and particle flows have been conducted in stagnation-type configurations. Numerically, the need for a hybrid Eulerian-Lagrangian approach has been identified by Continillo and Sirignano, and the use of such approach has allowed for the prediction of the phenomenon of droplet flow reversal. Gomez and Rosner have conducted a detailed study on the particle response in the opposed-jet configuration, and the particle thermophoretic diffusivities were determined experimentally. Sung, Law and co-workers have conducted numerical studies on the effect of strain rate and temperature gradients on the dynamics of inert particles, as a way of understanding potential errors in experimental LDV data that may arise from thermophoretic forces. This investigation is a combined experimental and numerical study on the details of reacting dusty flows. The specific tasks are: (1) Experimental determination of laminar flame speeds, and extinction strain rates of dusty flows at normal- and micro-gravity as functions of the particle type, particle initial diameter, particle initial number density, and gas phase chemical composition; (2) Detailed numerical simulation of the experiments. Results are compared with experiments and the adequacy of theoretical models is assessed; and (3) Provision of enhanced insight into the thermo-chemical coupling between the two phases.

  1. LIF measurements and chemical kinetic analysis of methylidyne formation in high-pressure counter-flow partially premixed and non-premixed flames

    NASA Astrophysics Data System (ADS)

    Naik, S. V.; Laurendeau, N. M.

    2004-11-01

    We report quantitative, spatially resolved, linear laser-induced fluorescence (LIF) measurements of methylidyne concentration ([CH]) in laminar, methane air, counter-flow partially premixed and non-premixed flames using excitation near 431.5 nm in the A X (0,0) band. For partially premixed flames, fuel-side equivalence ratios (ϕB) of 1.45, 1.6 and 2.0 are studied at pressures of 1, 3, 6, 9 and 12 atm. For non-premixed flames, the fuel-side mixture consists of 25% CH4 and 75% N2; measurements are obtained at pressures of 1, 2, 3, 4, 5, 6, 9 and 12 atm. The quantitative CH measurements are compared with predictions from an opposed-flow flame code utilizing two GRI chemical kinetic mechanisms (versions 2.11 and 3.0). LIF measurements of [CH] are corrected for variations in the quenching rate coefficient by using major species concentrations and temperatures generated by the code along with suitable quenching cross sections for CH available from the literature. A pathway analysis provides relative contributions from important elementary reactions to the total amount of CH produced at various pressures. Key reactions controlling peak CH concentrations are also identified by using a sensitivity analysis. For the partially premixed flames, measured CH profiles are reproduced reasonably well by GRI 3.0, although some quantitative disagreement exists at all pressures. Two CH radical peaks are observed for ϕB=1.45 and ϕB=1.6 at pressures above 3 atm. Peak CH concentrations for the non-premixed flames are significantly underpredicted by GRI 3.0. The latter agrees with previously reported NO concentrations, which are also underpredicted in these same high-pressure counter-flow diffusion flames.

  2. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    USGS Publications Warehouse

    Schilling, K.E.; Helmers, M.

    2008-01-01

    The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All rights reserved.

  3. Wave Augmented Diffusers for Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  4. Numerical schemes for anomalous diffusion of single-phase fluids in porous media

    NASA Astrophysics Data System (ADS)

    Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine

    2016-10-01

    Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.

  5. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  6. New Layer Thickness Parameterization of Diffusive Convection

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng-Qi; Lu, Yuan-Zheng; Guo, Shuang-Xi; Song, Xue-Long; Qu, Ling; Cen, Xian-Rong; Fer, Ilker

    2017-11-01

    Double-diffusion convection is one of the most important non-mechanically driven mixing processes. Its importance has been particular recognized in oceanography, material science, geology, and planetary physics. Double-diffusion occurs in a fluid in which there are gradients of two (or more) properties with different molecular diffusivities and of opposing effects on the vertical density distribution. It has two primary modes: salt finger and diffusive convection. Recently, the importance of diffusive convection has aroused more interest due to its impact to the diapycnal mixing in the interior ocean and the ice and the ice-melting in the Arctic and Antarctic Oceans. In our recent work, we constructed a length scale of energy-containing eddy and proposed a new layer thickness parameterization of diffusive convection by using the laboratory experiment and in situ observations in the lakes and oceans. The new parameterization can well describe the laboratory convecting layer thicknesses (0.01 0.1 m) and those observed in oceans and lakes (0.1 1000 m). This work was supported by China NSF Grants (41476167,41406035 and 41176027), NSF of Guangdong Province, China (2016A030311042) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030302).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Munir, Asif

    In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphicallymore » for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case.« less

  8. Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects

    NASA Technical Reports Server (NTRS)

    Olson, S. L.

    1991-01-01

    Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.

  9. Actin Filament Elasticity and Retrograde Flow Shape the Force-Velocity Relation of Motile Cells

    PubMed Central

    Zimmermann, Juliane; Brunner, Claudia; Enculescu, Mihaela; Goegler, Michael; Ehrlicher, Allen; Käs, Josef; Falcke, Martin

    2012-01-01

    Cells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude. At larger opposing forces, the retrograde flow of the actin network accelerates until it compensates for polymerization, and cell motion stalls. Subsequently, the lamellipodium adapts to the stalled state. We present a mechanism quantitatively explaining the cell's force-velocity relation and its changes upon application of drugs that hinder actin polymerization or actomyosin-based contractility. Elastic properties of filaments, close to the lamellipodium leading edge, and retrograde flow shape the force-velocity relation. To our knowledge, our results shed new light on how these migratory responses are regulated, and on the mechanics and structure of the lamellipodium. PMID:22339865

  10. Off-design flow measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1995-10-01

    Detailed measurements have been taken of the three-dimensional velocity field within the vaneless diffuser of a backswept low speed centrifugal compressor using hot-wire anemometry. A 16% below and an 11% above design flow rate were used in the present study. Results at both flow rates show how the blade wake mixes out more rapidly than the passage wake. Strong secondary flows inherited from the impeller at the higher flow rate delay the mixing out of the circumferential velocity variations, but at both flow rates these circumferential variations are negligible at the last measurement station. The measured tangential/radial flow angle ismore » used to recommend optimum values for the vaneless space and vane angle for design of a vaned diffuser.« less

  11. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  12. Bistable front dynamics in a contractile medium: travelling wave and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions

    NASA Astrophysics Data System (ADS)

    Neufeld, Zoltan

    Recent studies have demonstrated that mechanical forces can lead to novel mechanisms of pattern formation such as clustering and oscillations in contractile systems. We investigate how contractile forces in mechanically active media can affect bistable front propagation. We found that contraction regulates the front speed or can fully suppress its propagation in space to create a static localized zone. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the actomyosin cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. The dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behaviour of the system when contractility is inhibited are in qualitative agreement with the predictions of the model. In collaboration with: Zoltan Neufeld, Guillermo A. Gomez, and Alpha S. Yap, University of Queensland, Brisbane, Australia

  13. Evaluating the hydraulic and transport properties of peat soil using pore network modeling and X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Gharedaghloo, Behrad; Price, Jonathan S.; Rezanezhad, Fereidoun; Quinton, William L.

    2018-06-01

    Micro-scale properties of peat pore space and their influence on hydraulic and transport properties of peat soils have been given little attention so far. Characterizing the variation of these properties in a peat profile can increase our knowledge on the processes controlling contaminant transport through peatlands. As opposed to the common macro-scale (or bulk) representation of groundwater flow and transport processes, a pore network model (PNM) simulates flow and transport processes within individual pores. Here, a pore network modeling code capable of simulating advective and diffusive transport processes through a 3D unstructured pore network was developed; its predictive performance was evaluated by comparing its results to empirical values and to the results of computational fluid dynamics (CFD) simulations. This is the first time that peat pore networks have been extracted from X-ray micro-computed tomography (μCT) images of peat deposits and peat pore characteristics evaluated in a 3D approach. Water flow and solute transport were modeled in the unstructured pore networks mapped directly from μCT images. The modeling results were processed to determine the bulk properties of peat deposits. Results portray the commonly observed decrease in hydraulic conductivity with depth, which was attributed to the reduction of pore radius and increase in pore tortuosity. The increase in pore tortuosity with depth was associated with more decomposed peat soil and decreasing pore coordination number with depth, which extended the flow path of fluid particles. Results also revealed that hydraulic conductivity is isotropic locally, but becomes anisotropic after upscaling to core-scale; this suggests the anisotropy of peat hydraulic conductivity observed in core-scale and field-scale is due to the strong heterogeneity in the vertical dimension that is imposed by the layered structure of peat soils. Transport simulations revealed that for a given solute, the effective diffusion coefficient decreases with depth due to the corresponding increase of diffusional tortuosity. Longitudinal dispersivity of peat also was computed by analyzing advective-dominant transport simulations that showed peat dispersivity is similar to the empirical values reported in the same peat soil; it is not sensitive to soil depth and does not vary much along the soil profile.

  14. A noninvasive method for measuring the velocity of diffuse hydrothermal flow by tracking moving refractive index anomalies

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Davaille, Anne; van Keken, Peter E.; Gracias, Nuno; Escartin, Javier

    2010-10-01

    Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g., rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperature-dependent viscosity. Results show that average RMS errors are ˜5%-7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck'09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ˜10°C-15°C effluent reach ˜5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2-D flows where background objects have a small spatial scale, such as sand or gravel.

  15. The Dynamics of Controlled Flow Separation within a Diverter Duct Diffuser

    NASA Astrophysics Data System (ADS)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2016-11-01

    The evolution and receptivity to fluidic actuation of the flow separation within a rectangular, constant-width, diffuser that is branched off of a primary channel is investigated experimentally at speeds up to M = 0.4. The coupling between the diffuser's adverse pressure gradient and the internal separation that constricts nearly half of the flow passage through the duct is controlled using a spanwise array of fluidic actuators on the surface upstream of the diffuser's inlet plane. The dynamics of the separating surface vorticity layer in the absence and presence of actuation are investigated using high-speed particle image velocimetry combined with surface pressure measurements and total pressure distributions at the primary channel's exit plane. It is shown that the actuation significantly alters the incipient dynamics of the separating vorticity layer as the characteristic cross stream scales of the boundary layer upstream of separation and of the ensuing vorticity concentrations within the separated flow increase progressively with actuation level. It is argued that the dissipative (high frequency) actuation alters the balance between large- and small-scale motions near separation by intensifying the large-scale motions and limiting the small-scale dynamics. Controlling separation within the diffuser duct also has a profound effect on the global flow. In the presence of actuation, the mass flow rate in the primary duct increases 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45% at 0.7% actuation mass fraction. Supported by the Boeing Company.

  16. Sedimentation and gravitational instability of Escherichia coli Suspension

    NASA Astrophysics Data System (ADS)

    Douarche, Carine; Salin, Dominique; Collaboration between Laboratory FAST; LPS Collaboration

    2016-11-01

    The successive run and tumble of Escherichia coli bacteria provides an active matter suspension of rod-like particles with a large swimming diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering and instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analyzing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume.

  17. Effects of H2O, CO2, and N2 air contaminants on critical airside strain rates for extinction of hydrogen-air counterflow diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Guerra, Rosemary

    1989-01-01

    Dish-shaped counterflow diffusion flames centered by opposing laminar jets of H2 and clean and contaminant O2/N2 mixtures in an argon bath at 1 atm were used to study the effects of contaminants on critical airside strain. The jet velocities for both flame extinction and restoration are found for a wide range of contaminant and O2 concentrations in the air jet. The tests are also conducted for a variety of input H2 concentrations. The results are compared with those from several other studies.

  18. Computational Study of Separating Flow in a Planar Subsonic Diffuser

    NASA Technical Reports Server (NTRS)

    DalBello, Teryn; Dippold, Vance, III; Georgiadis, Nicholas J.

    2005-01-01

    A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been performed. The Wind Computational Fluid Dynamics code is used to predict the separation and reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional, turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline velocity and the channel height. Wind solutions computed with the Menter SST, Chien k-epsilon, Spalart-Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence model study, the effects of grid resolution and use of wall functions were investigated. The grid studies varied the number of grid points across the diffuser and varied the initial wall spacing from y(sup +) = 0.2 to 60. The wall function study assessed the applicability of wall functions for analysis of separated flow. The SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is recommended wall functions should only be used with a high level of caution.

  19. Analysis of Delayed Sea Breeze Onset for Fort Ord Prescribed Burning Operations

    DTIC Science & Technology

    2015-12-01

    Gahmberg et al. (2009) provided additional detail to the synoptic flow through the Coriolis effect . All directions are as seen from the sea with...ambient flows left of the offshore direction providing the strongest opposing winds as Coriolis effects provide additional support in the offshore...support the development of the sea breeze due to Coriolis effects , the mesoscale flow at the surface is quite different. The 1600 UTC through 1900

  20. CFD Analysis of a T-38 Wing Fence

    DTIC Science & Technology

    2007-06-01

    or making major adjustments to the existing airframe. The answer lies in flow control. Flow control devices like vortex generators, winglets , and wing...proposed by the Air Force Test Pilot School. The driving force for considering a wing fence as opposed to vane vortex generators or winglets 3 was a row of...devices are vortex generators, fences, high lift flaps, and winglets . Active flow control injects the boundary layer with energy from small jets of

  1. FLOW STRUCTURE AND TURBULENT DIFFUSION AROUND A THREE-DIMENSIONAL HILL. FLUID MODELING STUDY ON EFFECTS OF STRATIFICATION. PART I. FLOW STRUCTURE

    EPA Science Inventory

    This research program was initiated with the overall objective of gaining understanding of the flow and diffusion of pollutants in complex terrain under both neutral and stably stratified conditions. This report covers the first phase of the project; it describes the flow structu...

  2. Diffuse Optics for Tissue Monitoring and Tomography

    PubMed Central

    Durduran, T; Choe, R; Baker, W B; Yodh, A G

    2015-01-01

    This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics. PMID:26120204

  3. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOEpatents

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  4. Three mechanisms model of shale gas in real state transport through a single nanopore

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Zhang, Yanyu; Sun, Xiaofei; Li, Peng; Zhao, Fengkai

    2018-02-01

    At present, the apparent permeability models of shale gas consider only the viscous flow and Knudsen diffusion of free gas, but do not take into account the influence of surface diffusion. Moreover, it is assumed that shale gas is in ideal state. In this paper, shale gas is assumed in real state, a new apparent permeability model for shale gas transport through a single nanopore is developed that captures many important migration mechanisms, such as viscous flow and Knudsen diffusion of free gas, surface diffusion of adsorbed gas. According to experimental data, the accuracy of apparent permeability model was verified. What’s more, the effects of pressure and pore radius on apparent permeability, and the effects on the permeability fraction of viscous flow, Knudsen diffusion and surface diffusion were analysed, separately. Finally, the results indicate that the error of the developed model in this paper was 3.02%, which is less than the existing models. Pressure and pore radius seriously affect the apparent permeability of shale gas. When the pore radius is small or pressure is low, the surface diffusion cannot be ignored. When the pressure and the pore radius is big, the viscous flow occupies the main position.

  5. Unity and diversity in mixing: Stretching, diffusion, breakup, and aggregation in chaotic flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino, J.M.

    1991-05-01

    Experiments and theory have produced a reasonably good qualitative understanding of the evolution of chaotic mixing of passive tracers, especially in two-dimensional time-periodic flow fields. Such an understanding forms a fabric for the evolution of breakup, aggregation, and diffusion-controlled reactions in more complex flows. These systems can be viewed as a population of microstructures'' whose behavior is dictated by iterations of a chaotic flow; microstructures break, diffuse, and aggregate, causing the population to evolve in space and time. This paper presents simple physical models for such processes. Self-similarity is common to all the problems; examples arise in the context ofmore » the distribution of stretchings within chaotic flows, in the asymptotic evolution of diffusion-reaction processes at striation thickness scales, in the equilibrium distribution of drop sizes generated upon mixing of immiscible fluids, in the equations describing mean-field kinetics of coagulation, in the sequence of actions necessary for the destruction of islands in two-dimensional flow, and in the fractal structure of clusters produced upon aggregation in chaotic flows.« less

  6. Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single-ratio in/opposed phase analysis vs. dual-ratio Dixon discrimination.

    PubMed

    Bashir, Mustafa R; Merkle, Elmar M; Smith, Alastair D; Boll, Daniel T

    2012-02-01

    To assess whether in vivo dual-ratio Dixon discrimination can improve detection of diffuse liver disease, specifically steatosis, iron deposition and combined disease over traditional single-ratio in/opposed phase analysis. Seventy-one patients with biopsy-proven (17.7 ± 17.0 days) hepatic steatosis (n = 16), iron deposition (n = 11), combined deposition (n = 3) and neither disease (n = 41) underwent MR examinations. Dual-echo in/opposed-phase MR with Dixon water/fat reconstructions were acquired. Analysis consisted of: (a) single-ratio hepatic region-of-interest (ROI)-based assessment of in/opposed ratios; (b) dual-ratio hepatic ROI assessment of in/opposed and fat/water ratios; (c) computer-aided dual-ratio assessment evaluating all hepatic voxels. Disease-specific thresholds were determined; statistical analyses assessed disease-dependent voxel ratios, based on single-ratio (a) and dual-ratio (b and c) techniques. Single-ratio discrimination succeeded in identifying iron deposition (I/O(Ironthreshold)<0.88) and steatosis (I/O(Fatthreshold>1.15)) from normal parenchyma, sensitivity 70.0%; it failed to detect combined disease. Dual-ratio discrimination succeeded in identifying abnormal hepatic parenchyma (F/W(Normalthreshold)>0.05), sensitivity 96.7%; logarithmic functions for iron deposition (I/O(Irondiscriminator)e((F/W(Fat)-0.01)/0.48)) differentiated combined from isolated diseases, sensitivity 100.0%; computer-aided dual-ratio analysis was comparably sensitive but less specific, 90.2% vs. 97.6%. MR two-point-Dixon imaging using dual-ratio post-processing based on in/opposed and fat/water ratios improved in vivo detection of hepatic steatosis, iron deposition, and combined storage disease beyond traditional in/opposed analysis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport

    NASA Astrophysics Data System (ADS)

    Soler, Josep M.

    2001-12-01

    In this study, the potential effects of coupled transport phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay in Switzerland, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), are addressed. The solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows that thermal osmosis is the only coupled transport mechanism that could, on its own, have a strong effect on repository performance. Based on the results from the analytical model, two-dimensional finite-difference models incorporating advection and thermal osmosis, and taking conservation of fluid mass into account, have been formulated. The results show that, under the conditions in the vicinity of the repository at the time scales of interest, and due to the constraints imposed by conservation of fluid mass, the advective component of flow will oppose and cancel the thermal-osmotic component. The overall conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, in terms of fluid and solute fluxes, at least under the conditions prevailing at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years).

  8. DEVELOPMENT OF LOW-DIFFUSION FLUX-SPLITTING METHODS FOR DENSE GAS-SOLID FLOWS

    EPA Science Inventory

    The development of a class of low-diffusion upwinding methods for computing dense gas-solid flows is presented in this work. An artificial compressibility/low-Mach preconditioning strategy is developed for a hyperbolic two-phase flow equation system consisting of separate solids ...

  9. Performance Characteristics of Plane-Wall Two-Dimensional Diffusers

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1953-01-01

    Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery

  10. Computation of flow in radial- and mixed-flow cascades by an inviscid-viscous interaction method

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Hansen, E. C.

    1980-01-01

    The use of inviscid-viscous interaction methods for the case of radial or mixed-flow cascade diffusers is discussed. A literature review of investigations considering cascade flow-field prediction by inviscid-viscous iterative computation is given. Cascade aerodynamics in the third blade row of a multiple-row radial cascade diffuser are specifically investigated.

  11. Experimental investigation on flow in diffuser of 1090 MW steam turbine

    NASA Astrophysics Data System (ADS)

    Hoznedl, Michal; Sedlák, Kamil; Mrózek, Lukáš; Bednář, Lukáš; Kalista, Robert

    2016-06-01

    The paper deals with flow of wet water steam in diffuser of turbine engine 1090 MW on saturated water steam. Experimental measurements were done while the turbine was in operation for a wide range of outputs. Defining the outlet velocity from the last stage and with knowledge of static pressures on the diffuser outlet, it is possible to define the contribution of the diffuser to the whole low pressure part efficiency.

  12. Flow Distribution Control Characteristics in Marine Gas Turbine Waste-Heat Recovery Systems. Phase I. Flow Distribution Characteristics and Control in Diffusers.

    DTIC Science & Technology

    1981-08-01

    provide the lowest rate of momentum outflow and thus yield maximum diffuser efficiency. In their study, Wolf and Johnston (Ref. 1.12) used screens made...other words, the uniform velocity at the diffuser exit implies the lowest exit velocity attainable for a given flow rate and lowest rate of momentum ... momentum , and energy and the equation of state. The procedures of manipulating these partial differential iations into an analytical model for analyzing

  13. Mixing of Multiple Jets with a Confined Subsonic Crossflow. Part 2; Opposed Rows of Orifices in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Liscinsky, D. S.; Bain, D. B.

    1999-01-01

    This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex three-dimensional flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the orifices investigated were often very large (jet-to-mainstream mass-flow ratio > 1 and the ratio of orifices-area-to-mainstream- cross-sectional-area up to 0.5, respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.

  14. Mixing of Multiple Jets With a Confined Subsonic Crossflow. Part 2; Opposed Rows of Orifices in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Liscinsky, David S.; Bain, Daniel B.

    1997-01-01

    This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex 3-D flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the offices investigated were often very large (jet-to-mainstream mass-flow ratio greater than 1 and the ratio of orifices-area-to-mainstream-cross-sectional-area up to 0.5 respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.

  15. Flow range enhancement by secondary flow effect in low solidity circular cascade diffusers

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Tun, Min Thaw; Mizokoshi, Kanata; Kishikawa, Daiki

    2014-08-01

    High-pressure ratio and wide operating range are highly required for compressors and blowers. The technical issue of the design is achievement of suppression of flow separation at small flow rate without deteriorating the efficiency at design flow rate. A numerical simulation is very effective in design procedure, however, cost of the numerical simulation is generally high during the practical design process, and it is difficult to confirm the optimal design which is combined with many parameters. A multi-objective optimization technique is the idea that has been proposed for solving the problem in practical design process. In this study, a Low Solidity circular cascade Diffuser (LSD) in a centrifugal blower is successfully designed by means of multi-objective optimization technique. An optimization code with a meta-model assisted evolutionary algorithm is used with a commercial CFD code ANSYS-CFX. The optimization is aiming at improving the static pressure coefficient at design point and at low flow rate condition while constraining the slope of the lift coefficient curve. Moreover, a small tip clearance of the LSD blade was applied in order to activate and to stabilize the secondary flow effect at small flow rate condition. The optimized LSD blade has an extended operating range of 114 % towards smaller flow rate as compared to the baseline design without deteriorating the diffuser pressure recovery at design point. The diffuser pressure rise and operating flow range of the optimized LSD blade are experimentally verified by overall performance test. The detailed flow in the diffuser is also confirmed by means of a Particle Image Velocimeter. Secondary flow is clearly captured by PIV and it spreads to the whole area of LSD blade pitch. It is found that the optimized LSD blade shows good improvement of the blade loading in the whole operating range, while at small flow rate the flow separation on the LSD blade has been successfully suppressed by the secondary flow effect.

  16. Modeling of tritium transport in a fusion reactor pin-type solid breeder blanket using the diffuse code

    NASA Astrophysics Data System (ADS)

    Martin, Rodger; Ghoniem, Nasr M.

    1986-11-01

    A pin-type fusion reactor blanket is designed using γ-LiAlO 2 solid tritium breeder. Tritium transport and diffusive inventory are modeled using the DIFFUSE code. Two approaches are used to obtain characteristic LiAlO 2 grain temperatures. DIFFUSE provides intragranular diffusive inventories which scale up to blanket size. These results compare well with a numerical analysis, giving a steady-state blanket tritium inventory of 13 g. Start-up transient inventories are modeled using DIFFUSE for both full and restricted coolant flow. Full flow gives rapid inventory buildup while restricted flow prevents this buildup. Inventories after shutdown are modeled: reduced cooling is found to have little effect on removing tritium, but preheating rapidly purges inventory. DIFFUSE provides parametric modeling of solid breeder density, radiation, and surface effects. 100% dense pins are found to give massive inventory and marginal tritium release. Only large trapping energies and concentrations significantly increase inventory. Diatomic surface recombination is only significant at high temperatures.

  17. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  18. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, Charles R.; Rockett, Paul D.

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  19. Experiments and modeling of dilution jet flow fields

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    1986-01-01

    Experimental and analytical results of the mixing of single, double, and opposed rows of jets with an isothermal or variable-temperature main stream in a straight duct are presented. This study was performed to investigate flow and geometric variations typical of the complex, three-dimensional flow field in the dilution zone of gas-turbine-engine combustion chambers. The principal results, shown experimentally and analytically, were the following: (1) variations in orifice size and spacing can have a significant effect on the temperature profiles; (2) similar distributions can be obtained, independent of orifice diameter, if momentum-flux ratio and orifice spacing are coupled; (3) a first-order approximation of the mixing of jets with a variable-temperature main stream can be obtained by superimposing the main-stream and jets-in-an-isothermal-crossflow profiles; (4) the penetration of jets issuing mixing is slower and is asymmetric with respect to the jet centerplanes, which shift laterally with increasing downstream distance; (5) double rows of jets give temperature distributions similar to those from a single row of equally spaced, equal-area circular holes; (6) for opposed rows of jets, with the orifice centerlines in line, the optimum ratio of orifice spacing to duct height is one-half the optimum value for single-side injection at the same momentum-flux ratiol and (7) for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single-side injection at the same momentum-flux ratio.

  20. The role of moisture on combustion of pyrolysis gases in wildland fires

    Treesearch

    Selina C. Ferguson; Ambarish Dahale; Babak Shotorban; S. Mahalingam; David R. Weise

    2013-01-01

    The role of water vapor, originated from the moisture content in vegetation, on the combustion process was investigated via simulating an opposed diffusion flame and a laminar premixed flame with pyrolysis gases as the fuel and air as the oxidizer. The fuel was mixed with water vapor, and the simulation was repeated for various water mole fractions. In both of the...

  1. A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process

    NASA Astrophysics Data System (ADS)

    Jia, B.; Tsau, J. S.; Barati, R.

    2017-12-01

    Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.

  2. Employing a Modified Diffuser Momentum Model to Simulate Ventilation of the Orion CEV

    NASA Technical Reports Server (NTRS)

    Straus, John; Lewis, John F.

    2011-01-01

    The Ansys CFX CFD modeling tool was used to support the design efforts of the ventilation system for the Orion CEV. CFD modeling was used to establish the flow field within the cabin for several supply configurations. A mesh and turbulence model sensitivity study was performed before the design studies. Results were post-processed for comparison with performance requirements. Most configurations employed straight vaned diffusers to direct and throw the flow. To manage the size of the models, the diffuser vanes were not resolved. Instead, a momentum model was employed to account for the effect of the diffusers. The momentum model was tested against a separate, vane-resolved side study. Results are presented for a single diffuser configuration for a low supply flow case.

  3. Numerical simulation and sensitivity analysis of a low-Reynolds-number flow around a square cylinder controlled using plasma actuators

    NASA Astrophysics Data System (ADS)

    Anzai, Yosuke; Fukagata, Koji; Meliga, Philippe; Boujo, Edouard; Gallaire, François

    2017-04-01

    Flow around a square cylinder controlled using plasma actuators (PAs) is numerically investigated by direct numerical simulation in order to clarify the most effective location of actuator installation and to elucidate the mechanism of control effect. The Reynolds number based on the cylinder diameter and the free-stream velocity is set to be 100 to study the fundamental effect of PAs on two-dimensional vortex shedding, and three different locations of PAs are considered. The mean drag and the root-mean-square of lift fluctuations are found to be reduced by 51% and 99% in the case where two opposing PAs are aligned vertically on the rear surface. In that case, a jet flow similar to a base jet is generated by the collision of the streaming flows induced by the two opposing PAs, and the vortex shedding is completely suppressed. The simulation results are ultimately revisited in the frame of linear sensitivity analysis, whose computational cost is much lower than that of performing the full simulation. A good agreement is reported for low control amplitudes, which allows further discussion of the linear optimal arrangement for any number of PAs.

  4. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  5. In-situ Measurement of Reversed Flow Event in the Cusp Ionosphere

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Moen, J.; Miloch, W. J.; Spicher, A.; Clausen, L. B. N.

    2017-12-01

    The Reversed Flow Events (RFEs) are a new category of flow channel that frequently occur in the cusp ionosphere. The RFEs are 100-200 km wide and east-west elongated flow channels, in which plasma flow opposes to the background convection direction. The RFEs are thought to be an important source for the rapid development of the ionospheric irregularities. We present an overview of the ionospheric conditions during the launch of the Investigation of Cusp Irregularities 3 (ICI-3) sounding rockets. The ICI-3 was launched from Ny-Ålesund, Svalbard at 7:21.31 UT on December 3, 2011. The objective of the ICI-3 was to target a RFE. The IMF was characterized by strongly negative Bz and weakly negative By during the time period of interest. The EISCAT Svalbard Radar (ESR) 32m beam was operating in a fast azimuth sweep mode between 180° (south) and 300° (northwest) at an elevation angle of 30°. The ESR observed a series of RFEs as westward flow channels opposing to the eastward normal plasma flow in the prenoon sector. The ICI-3 was shot to cross the first observed RFE in the ESR field of view. The ICI-3 observed flow structures that were consistent with the ESR. Furthermore, the ICI-3 reveals fine-scale of the flow structures inside the RFE observed by the ESR. The high resolution electron density data show intense fluctuations at all scales throughout the RFE region. The GPS TEC and scintillation data inside the same RFE region are used to compare with the in-situ measurements.

  6. The development of reactive fuel grains for pyrophoric relight of in-space hybrid rocket thrusters

    NASA Astrophysics Data System (ADS)

    Steiner, Matthew Wellington

    This study presents and investigates a novel hybrid fuel grain that reacts pyrophorically with gaseous oxidizer to achieve restart of a hybrid rocket motor propulsion system while reducing cost and handling concerns. This reactive fuel grain (RFG) relies on the pyrophoric nature of finely divided metal particles dispersed in a solid dicyclopentadiene (DCPD) binder, which has been shown to encapsulate air-sensitive additives until they are exposed to combustion gases. An RFG is thus effectively inert in open air in the absence of an ignition source, though the particles encapsulated within remain pyrophoric. In practice, this means that an RFG that is ignited in the vacuum of space and then extinguished will expose unoxidized pyrophoric particles, which can be used to generate sufficient heat to relight the propellant when oxidizer is flowed. The experiments outlined in this work aim to develop a suitable pyrophoric material for use in an RFG, demonstrate pyrophoric relight, and characterize performance under conditions relevant to a hybrid rocket thruster. Magnesium, lithium, calcium, and an alloy of titanium, chromium, and manganese (TiCrMn) were investigated to determine suitability of pure metals as RFG additives. Additionally, aluminum hydride (AlH3), lithium aluminum hydride (LiAlH4), lithium borohydride (LiBH4), and magnesium hydride (MgH2) were investigated to determine suitability of metals hydrides as RFG additives or as precursors for pure-metal RFG additives. Pyrophoric metals have been previously investigated as additives for increasing the regression rate of hybrid fuels, but to the author's knowledge, these materials have not been specifically investigated for their ability to ignite a propellant pyrophorically. Commercial research-grade metals were obtained as coarse powders, then ball-milled to attempt to reduce particle size below a critical diameter needed for pyrophoricity. Magnesium hydride was ball-milled and then cycled in a hydride cycling apparatus to attempt to fracture the particles through hydrogen sorption and thermal stresses. These powders were then tested for pyrophoricity with atmospheric and pure concentrations of oxygen. The TiCrMn powder was chosen as the material for evaluation of propellant performance, and was mixed with DCPD in various weight ratios to determine the required additive loading needed for pyrophoricity of the bulk propellant. Weight percentages of 10, 20, 30, and 50 wt.% TiCrMn were used to evaluate relight capability and propellant performance, and weight loadings of 50, 70, and 90 wt.% TiCrMn were used to evaluate approximate maximum loading possible without rendering the propellant structurally unsound. Propellant tests were conducted in an opposed flow burner apparatus for sub-scale regression rate and relight experiments, and an optically accessible cylindrical combustion chamber (OCC) that allows high speed cameras to record the regressing propellant surface during combustion. Gaseous oxygen (GOX) was used as an oxidizer for all tests due to its ready availability and common use as a hybrid rocket oxidizer. Opposed flow burner experiments are an inexpensive means of rapidly testing various propellant formulations at different conditions, whereas OCC tests are useful for obtaining realistic data on how an RFG would likely operate as part of a propulsion system. Relight in the opposed flow burner was attempted by cycling oxygen and nitrogen flows with carefully timed solenoid valves to initiate and extinguish combustion, and to control the slow diffusion of oxygen to the surface of the propellant, which would render the TiCrMn non-pyrophoric. The opposed flow burner experiments did not conclusively demonstrate the pyrophoric relight capability of the RFG propellant due in part to the persistence of hot spots between oxygen and purge nitrogen cycles, as determined by high-speed imaging in the near infrared range. An opposed flow burner apparatus was then constructed within a vacuum chamber assembly thus preventing atmospheric oxygen from diffusing to the propellant surface, but these tests did not demonstrate pyrophoric relight. Future work is proposed to evaluate the effect of pyrophoric particle size in order to determine the role ignition delay of each particle has in the relight capability of RFGs. OCC experiments were conducted at a low and high GOX mass flux of approximately 150 and 300 kg/s/m2, respectively, at a nominal chamber pressure of 150 psia. Four strand compositions were used: pure DCPD, 30 wt.% pyrophoric TiCrMn powder with average particle diameters of approximately 1-10 microns, 30 wt.% oxidized TiCrMn powder with average particle diameters of approximately 1-10 microns, and 30 wt.% TiCrMn powder with average particle diameters of approximately 1-4 mm. Regression rate was measure by weight loss, average web thickness change at three axial locations on the strand, and through time-resolved tracking of the regressing propellant surface via high speed video. While visual observations suggest that the addition of TiCrMn significantly increases regression rate, initial data do not show a significant trend. Additionally, it is observed that the oxidized TiCrMn strands regress at the same rate as those loaded with pyrophoric TiCrMn, suggesting that erosive burning and heat addition of the added metal may be the cause of the observed increase in regression rate. The data are too sparse to make conclusions about the effect of particle size on regression rate, so further tests are recommended to develop a significant data set for the effect of pyrophoricity and particle size on regression rate. The test article was damaged at the end of the regression rate experimental campaign, which precluded the collection of relight data that was planned for strands loaded with 50 wt.% TiCrMn particles with an average diameter of approximately 1-4 mm. Though further tests are needed to demonstrate pyrophoric relight of an RFG, the current work establishes a baseline for RFG performance and suggests that pyrophoric relight is possible by tailoring the particle size of the pyrophoric metal additive to control heat release and ignition delay.

  7. Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi

    The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.

  8. Effects of rainfall and surface flow on chemical diffusion from soil to runoff water

    USDA-ARS?s Scientific Manuscript database

    Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...

  9. Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Katta, V. R.

    2001-01-01

    Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.

  10. Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow

    NASA Astrophysics Data System (ADS)

    Holden, Matthew A.; Kumar, Saurabh; Beskok, Ali; Cremer, Paul S.

    2003-05-01

    The bulging of microfluidic systems during pressure-driven flow is potentially a major consideration for polydimethylsiloxane (PDMS)-based devices. Microchannel cross-sectional areas can change drastically as a function of flow rate and downstream microchannel position. Such geometrical flexibility leads to difficulties in predicting convective/diffusive transport for these systems. We have previously introduced a non-dimensional parameter, kappa, for characterizing convection and diffusion behavior for pressure-driven flow in rigid all-glass systems. This paper describes a modification of that concept for application to non-rigid systems, which is accomplished by incorporating an experimental step to account for the bulging in PDMS/glass microsystems. Specifically, an experimental measurement of channel height by fluorescence microscopy is combined with the aforementioned theory to characterize convective/diffusive behavior at a single location in the device. This allowed the parameter kappa to be determined at that point and applied to predict fluid flow in the subsequent portion of the PDMS microsystem. This procedure was applied to a PDMS/glass microfluidic diffusion dilution (muDD) device designed for generating concentration gradients. Theoretically predicted and experimentally measured distributions of concentrations within the microsystem matched well.

  11. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  12. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow

    PubMed Central

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2012-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584

  13. Investigations inside a vaned diffuser of a centrifugal pump at low flowrates.

    NASA Astrophysics Data System (ADS)

    Bayeul-Lainé, A. C.; Dupont, P.; Dazin, A.; Bois, G.

    2016-11-01

    This paper focuses on the unsteady flow behaviour inside the vaned diffuser of a radial flow pump model, operating at partial flowrates (0.387Qi, 0.584Qi and 0.766Qi where Qi is the impeller design flowrate).The effects of the leakage flows are taken into account in the analysis. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation, for several flowrates and different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-holes probe in the same experimental conditions. The unsteady numerical simulations were carried out with Star CCM+ 10.02 code with and without leakage flow. The PIV measurements showed a high unsteadiness at very low flowrate which was confirmed by the numerical calculations. In previous studies it has been shown that the global performances, as the efficiencies are in good agreement between calculations and measurements. In this paper, a joint analysis of measurements and numerical calculations is proposed to improve the understanding of the flow behaviour in a vaned diffuser.

  14. Two-dimensional dynamics of a trapped active Brownian particle in a shear flow

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Marchesoni, Fabio; Debnath, Tanwi; Ghosh, Pulak K.

    2017-12-01

    We model the two-dimensional dynamics of a pointlike artificial microswimmer diffusing in a harmonic trap subject to the shear flow of a highly viscous medium. The particle is driven simultaneously by the linear restoring force of the trap, the drag force exerted by the flow, and the torque due to the shear gradient. For a Couette flow, elliptical orbits in the noiseless regime, and the correlation functions between the particle's displacements parallel and orthogonal to the flow are computed analytically. The effects of thermal fluctuations (translational) and self-propulsion fluctuations (angular) are treated separately. Finally, we discuss how to extend our approach to the diffusion of a microswimmer in a Poiseuille flow. These results provide an accurate reference solution to investigate, both numerically and experimentally, hydrodynamics corrections to the diffusion of active matter in confined geometries.

  15. Effects of interstage diffuser flow distortion on the performance of a 15.41-centimeter tip diameter axial power turbine

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Kofskey, M. G.; Civinskas, K. C.

    1983-01-01

    The performance of a variable-area stator, axial flow power turbine was determined in a cold-air component research rig for two inlet duct configurations. The two ducts were an interstage diffuser duct and an accelerated-flow inlet duct which produced stator inlet boundary layer flow blockages of 11 percent and 3 percent, respectively. Turbine blade total efficiency at design point was measured to be 5.3 percent greater with the accelerated-flow inlet duct installed due to the reduction in inlet blockage. Blade component measurements show that of this performance improvement, 35 percent occurred in the stator and 65 percent occurred in the rotor. Analysis of inlet duct internal flow using an Axisymmetric Diffuser Duct Code (ADD Code) were in substantial agreement with the test data.

  16. Conservative Diffusions: a Constructive Approach to Nelson's Stochastic Mechanics.

    NASA Astrophysics Data System (ADS)

    Carlen, Eric Anders

    In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions; this thesis is a study of that description. We emphasize that we are concerned here with the possibility of describing, as opposed to explaining, quantum phenomena in terms of diffusions. In this direction, the following questions arise: "Do the diffusions of stochastic mechanics--which are formally given by stochastic differential equations with extremely singular coefficients--really exist?" Given that they exist, one can ask, "Do these diffusions have physically reasonable sample path behavior, and can we use information about sample paths to study the behavior of physical systems?" These are the questions we treat in this thesis. In Chapter I we review stochastic mechanics and diffusion theory, using the Guerra-Morato variational principle to establish the connection with the Schroedinger equation. This chapter is largely expository; however, there are some novel features and proofs. In Chapter II we settle the first of the questions raised above. Using PDE methods, we construct the diffusions of stochastic mechanics. Our result is sufficiently general to be of independent mathematical interest. In Chapter III we treat potential scattering in stochastic mechanics and discuss direct probabilistic methods of studying quantum scattering problems. Our results provide a solid "Yes" in answer to the second question raised above.

  17. Simulation of Helical Flow Hydrodynamics in Meanders and Advection-Turbulent Diffusion Using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.

    2013-12-01

    Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.

  18. Characterization of electrokinetic gating valve in microfluidic channels.

    PubMed

    Zhang, Guiseng; Du, Wei; Liu, Bi-Feng; Hisamoto, Hideaki; Terabe, Shigeru

    2007-02-12

    Electrokinetic gating, functioning as a micro-valve, has been widely employed in microfluidic chips for sample injection and flow switch. Investigating its valving performance is fundamentally vital for microfluidics and microfluidics-based chemical analysis. In this paper, electrokinetic gating valve in microchannels was evaluated using optical imaging technique. Microflow profiles at channels junction were examined, revealing that molecular diffusion played a significant role in the valving disable; which could cause analyte leakage in sample injection. Due to diffusion, the analyte crossed the interface of the analyte flow and gating flow, and then formed a cometic tail-like diffusion area at channels junction. From theoretical calculation and some experimental evidences, the size of the area was related to the diffusion coefficient and the velocity of analytes. Additionally, molecular diffusion was also believed to be another reason of sampling bias in gated injection.

  19. Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow

    NASA Astrophysics Data System (ADS)

    Gonzalez, M.

    2018-04-01

    The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.

  20. Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System

    NASA Astrophysics Data System (ADS)

    Begum, M.; Das, N.

    2018-01-01

    The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.

  1. Effects of plasma flows on particle diffusion in stochastic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlad, M.; Spineanu, F.; Misguich, J.H.

    1996-07-01

    The study of collisional test particle diffusion in stochastic magnetic fields is extended to include the effects of the macroscopic flows of the plasma (drifts). We show that a substantial amplification of the diffusion coefficient can be obtained. This effect is produced by the combined action of the parallel collisional velocity and of the average drifts. The perpendicular collisional velocity influences the effective diffusion only in the limit of small average drifts. {copyright} {ital 1996 The American Physical Society.}

  2. Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects

    NASA Technical Reports Server (NTRS)

    Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.

    1999-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe the nature of the stagnation plane for strain rates smaller than 100 (1/s). These experiments were conducted with a non-reacting flow. Video images of a propane air diffusion flame were used to describe the behaviour of a diffusion flame in this regime. Flame geometry and pulsation frequency are described.

  3. A nu-space for image correlation spectroscopy: characterization and application to measure protein transport in live cells

    NASA Astrophysics Data System (ADS)

    Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.

    2013-08-01

    We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for spatio-temporal ICS (STICS) that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and intercellular adhesion molecule 1 (ICAM-1) ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrin-ligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.

  4. Cyber Capability Development Centre (CCDC) Private Cloud Design

    DTIC Science & Technology

    2014-11-01

    68 8.4 Shared Services Canada (SSC) Controlled Firewall .......................................................... 69 9 Cloud...opposed to east-west traffic (VM to VM). With North-South traffic, Shared Services Canada will want to ensure that the lab environment is contained. One...way traffic flow into the lab should be acceptable, Shared Services Canada will need to ensure that traffic doesn’t flow north or out of the CCDC

  5. Large-eddy simulation of flow in a plane, asymmetric diffuser

    NASA Technical Reports Server (NTRS)

    Kaltenbach, Hans-Jakob

    1993-01-01

    Recent improvements in subgrid-scale modeling as well as increases in computer power make it feasible to investigate flows using large-eddy simulation (LES) which have been traditionally studied with techniques based on Reynolds averaging. However, LES has not yet been applied to many flows of immediate technical interest. Preliminary results from LES of a plane diffuser flow are described. The long term goal of this work is to investigate flow separation as well as separation control in ducts and ramp-like geometries.

  6. The 3-D numerical study of airflow in the compressor/combustor prediffuser and dump diffuser of an industrial gas turbine

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Yang, Tah-Teh

    1993-01-01

    This paper describes the 3D computations of a flow field in the compressor/combustor diffusers of an industrial gas turbine. The geometry considered includes components such as the combustor support strut, the transition piece and the impingement sleeve with discrete cooling air holes on its surface. Because the geometry was complex and 3D, the airflow path was divided into two computational domains sharing an interface region. The body-fitted grid was generated independently in each of the two domains. The governing equations for incompressible Navier-Stokes equations were solved using the finite volume approach. The results show that the flow in the prediffuser is strongly coupled with the flow in the dump diffuser and vice versa. The computations also revealed that the flow in the dump diffuser is highly nonuniform.

  7. Turbine exhaust diffuser flow path with region of reduced total flow area

    DOEpatents

    Orosa, John A.

    2012-12-25

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub that has an upstream end and a downstream end. The outer boundary has a region in which the outer boundary extends radially inward toward the hub. The region can begin at a point that is substantially aligned with the downstream end of the hub or, alternatively, at a point that is proximately upstream of the downstream end of the hub. The region directs at least a portion of an exhaust flow in the diffuser toward the hub. As a result, the exhaust diffuser system and method can achieve the performance of a long hub system while enjoying the costs of a short hub system.

  8. Method for noninvasive determination of acoustic properties of fluids inside pipes

    DOEpatents

    None

    2016-08-02

    A method for determining the composition of fluids flowing through pipes from noninvasive measurements of acoustic properties of the fluid is described. The method includes exciting a first transducer located on the external surface of the pipe through which the fluid under investigation is flowing, to generate an ultrasound chirp signal, as opposed to conventional pulses. The chirp signal is received by a second transducer disposed on the external surface of the pipe opposing the location of the first transducer, from which the transit time through the fluid is determined and the sound speed of the ultrasound in the fluid is calculated. The composition of a fluid is calculated from the sound speed therein. The fluid density may also be derived from measurements of sound attenuation. Several signal processing approaches are described for extracting the transit time information from the data with the effects of the pipe wall having been subtracted.

  9. An experimental description of the flow in a centrifugal compressor from alternate stall to surge

    NASA Astrophysics Data System (ADS)

    Moënne-Loccoz, V.; Trébinjac, I.; Benichou, E.; Goguey, S.; Paoletti, B.; Laucher, P.

    2017-08-01

    The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered unshrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the diffuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pressure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.

  10. Sedimentation and gravitational instability of Escherichia coli Suspension

    NASA Astrophysics Data System (ADS)

    Salin, Dominique; Douarche, Carine

    2017-11-01

    The successive runs and tumbles of Escherichia coli bacteria provide an active matter suspension of rod-like particles with a large swimming, Brownian like, diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering of the particles and hence instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analysing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume. Comparing these quantities to the ones of equivalent passive particles (ellipsoid, rod) we tentatively infer the effective shape and size of the bacteria involved in its buoyancy induced advection and diffusion. Laboratoire FAST University Paris Saclay France.

  11. A theoretical study of fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser

    NASA Technical Reports Server (NTRS)

    Tsujimoto, Yoshinobu; Acosta, Allan J.; Yoshida, Yoshiki

    1989-01-01

    The fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser are analyzed on the assumption that the number of impeller and diffuser vanes is so large that the flows are perfectly guided by the vanes. The flow is taken to be two dimensional, inviscid, and incompressible, but the effects of impeller and diffuser losses are taken into account. It is shown that the interaction with the vaned diffuser may cause destabilizing fluid forces. From these discussions, it is found that the whirling forces are closely related to the steady head-capacity characteristics of the impeller. This physical understanding of the whirling forces can be applied also to the cases with volute casings. At partial capacities, it is shown that the impeller forces change greatly when the flow rate and whirl velocity are near to the impeller or vaned diffuser attributed rotating stall onset capacity, and the stall propagation velocity, respectively. In such cases the impeller forces may become destabilizing for impeller whirl.

  12. Summer Work Experience: Determining Methane Combustion Mechanisms and Sub-Scale Diffuser Properties for Space Transporation System Engine Testing

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.

    1998-01-01

    To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.

  13. Diffuse-flow conceptualization and simulation of the Edwards aquifer, San Antonio region, Texas

    USGS Publications Warehouse

    Lindgren, R.J.

    2006-01-01

    A numerical ground-water-flow model (hereinafter, the conduit-flow Edwards aquifer model) of the karstic Edwards aquifer in south-central Texas was developed for a previous study on the basis of a conceptualization emphasizing conduit development and conduit flow, and included simulating conduits as one-cell-wide, continuously connected features. Uncertainties regarding the degree to which conduits pervade the Edwards aquifer and influence ground-water flow, as well as other uncertainties inherent in simulating conduits, raised the question of whether a model based on the conduit-flow conceptualization was the optimum model for the Edwards aquifer. Accordingly, a model with an alternative hydraulic conductivity distribution without conduits was developed in a study conducted during 2004-05 by the U.S. Geological Survey, in cooperation with the San Antonio Water System. The hydraulic conductivity distribution for the modified Edwards aquifer model (hereinafter, the diffuse-flow Edwards aquifer model), based primarily on a conceptualization in which flow in the aquifer predominantly is through a network of numerous small fractures and openings, includes 38 zones, with hydraulic conductivities ranging from 3 to 50,000 feet per day. Revision of model input data for the diffuse-flow Edwards aquifer model was limited to changes in the simulated hydraulic conductivity distribution. The root-mean-square error for 144 target wells for the calibrated steady-state simulation for the diffuse-flow Edwards aquifer model is 20.9 feet. This error represents about 3 percent of the total head difference across the model area. The simulated springflows for Comal and San Marcos Springs for the calibrated steady-state simulation were within 2.4 and 15 percent of the median springflows for the two springs, respectively. The transient calibration period for the diffuse-flow Edwards aquifer model was 1947-2000, with 648 monthly stress periods, the same as for the conduit-flow Edwards aquifer model. The root-mean-square error for a period of drought (May-November 1956) for the calibrated transient simulation for 171 target wells is 33.4 feet, which represents about 5 percent of the total head difference across the model area. The root-mean-square error for a period of above-normal rainfall (November 1974-July 1975) for the calibrated transient simulation for 169 target wells is 25.8 feet, which represents about 4 percent of the total head difference across the model area. The root-mean-square error ranged from 6.3 to 30.4 feet in 12 target wells with long-term water-level measurements for varying periods during 1947-2000 for the calibrated transient simulation for the diffuse-flow Edwards aquifer model, and these errors represent 5.0 to 31.3 percent of the range in water-level fluctuations of each of those wells. The root-mean-square errors for the five major springs in the San Antonio segment of the aquifer for the calibrated transient simulation, as a percentage of the range of discharge fluctuations measured at the springs, varied from 7.2 percent for San Marcos Springs and 8.1 percent for Comal Springs to 28.8 percent for Leona Springs. The root-mean-square errors for hydraulic heads for the conduit-flow Edwards aquifer model are 27, 76, and 30 percent greater than those for the diffuse-flow Edwards aquifer model for the steady-state, drought, and above-normal rainfall synoptic time periods, respectively. The goodness-of-fit between measured and simulated springflows is similar for Comal, San Marcos, and Leona Springs for the diffuse-flow Edwards aquifer model and the conduit-flow Edwards aquifer model. The root-mean-square errors for Comal and Leona Springs were 15.6 and 21.3 percent less, respectively, whereas the root-mean-square error for San Marcos Springs was 3.3 percent greater for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. The root-mean-square errors for San Antonio and San Pedro Springs were appreciably greater, 80.2 and 51.0 percent, respectively, for the diffuse-flow Edwards aquifer model. The simulated water budgets for the diffuse-flow Edwards aquifer model are similar to those for the conduit-flow Edwards aquifer model. Differences in percentage of total sources or discharges for a budget component are 2.0 percent or less for all budget components for the steady-state and transient simulations. The largest difference in terms of the magnitude of water budget components for the transient simulation for 1956 was a decrease of about 10,730 acre-feet per year (about 2 per-cent) in springflow for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. This decrease in springflow (a water budget discharge) was largely offset by the decreased net loss of water from storage (a water budget source) of about 10,500 acre-feet per year.

  14. The Performance of a Subsonic Diffuser Designed for High Speed Turbojet-Propelled Flight

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J. (Technical Monitor); Wendt, Bruce J.

    2004-01-01

    An initial-phase subsonic diffuser has been designed for the turbojet flowpath of the hypersonic x43B flight demonstrator vehicle. The diffuser fit into a proposed mixed-compression supersonic inlet system and featured a cross-sectional shape transitioning flowpath (high aspect ratio rectangular throat-to-circular engine face) and a centerline offset. This subsonic diffuser has been fabricated and tested at the W1B internal flow facility at NASA Glenn Research Center. At an operating throat Mach number of 0.79, baseline Pitot pressure recovery was found to be just under 0.9, and DH distortion intensity was about 0.4 percent. The diffuser internal flow stagnated, but did not separate on the offset surface of this initial-phase subsonic diffuser. Small improvements in recovery (+0.4 percent) and DH distortion (-32 percent) were obtained from using vane vortex generator flow control applied just downstream of the diffuser throat. The optimum vortex generator array patterns produced inflow boundary layer divergence (local downwash) on the offset surface centerline of the diffuser, and an inflow boundary layer convergence (local upwash) on the centerline of the opposite surface.

  15. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).

    PubMed

    Suresh, P V; Jayanti, Sreenivas

    2016-10-01

    Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.

  16. On the motion of viscous fluids in the presence of diffusion

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo

    1988-01-01

    The flow of a viscous incompressible two-component fluid with Fick's-law diffusion is investigated analytically. The existence of a unique global solution for small values of the diffusion coefficient (lambda) is proved for two-dimensional flow. The two- and three-dimensional solutions are also shown to converge toward the solutions of the Navier-Stokes equations for inhomogeneous fluids as lambda approaches zero.

  17. Generating a Simulated Fluid Flow Over an Aircraft Surface Using Anisotropic Diffusion

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.

  18. Time-derivative preconditioning for viscous flows

    NASA Technical Reports Server (NTRS)

    Choi, Yunho; Merkle, Charles L.

    1991-01-01

    A time-derivative preconditioning algorithm that is effective over a wide range of flow conditions from inviscid to very diffusive flows and from low speed to supersonic flows was developed. This algorithm uses a viscous set of primary dependent variables to introduce well-conditioned eigenvalues and to avoid having a nonphysical time reversal for viscous flow. The resulting algorithm also provides a mechanism for controlling the inviscid and viscous time step parameters to be of order one for very diffusive flows, thereby ensuring rapid convergence at very viscous flows as well as for inviscid flows. Convergence capabilities are demonstrated through computation of a wide variety of problems.

  19. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1986-01-01

    Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed.

  20. The effect of prewhirl on the internal aerodynamics and performance of a mixed flow research centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Bryan, William B.; Fleeter, Sanford

    1987-01-01

    The internal three-dimensional steady and time-varying flow through the diffusing elements of a centrifugal impeller were investigated using a moderate scale, subsonic, mixed flow research compressor facility. The characteristics of the test facility which permit the measurement of internal flow conditions throughout the entire research compressor and radial diffuser for various operating conditions are described. Results are presented in the form of graphs and charts to cover a range of mass flow rates with inlet guide vane settings varying from minus 15 degrees to plus 45 degrees. The static pressure distributions in the compressor inlet section and on the impeller and exit diffuser vanes, as well as the overall pressure and temperature rise and mass flow rate, were measured and analyzed at each operating point to determine the overall performance as well as the detailed aerodynamics throughout the compressor.

  1. Generating a Simulated Fluid Flow over a Surface Using Anisotropic Diffusion

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2016-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using the gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and the gradient vector.

  2. Natural ventilation of buildings: opposing wind and buoyancy

    NASA Astrophysics Data System (ADS)

    Linden, Paul; Hunt, Gary

    1998-11-01

    The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.

  3. Effects of g-Jitter on Diffusion in Binary Liquids

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1999-01-01

    The microgravity environment offers the potential to measure the binary diffusion coefficients in liquids without the masking effects introduced by buoyancy-induced flows due to Earth s gravity. However, the background g-jitter (vibrations from the shuttle, onboard machinery, and crew) normally encountered in many shuttle experiments may alter the benefits of the microgravity environment and introduce vibrations that could offset its intrinsic advantages. An experiment during STS-85 (August 1997) used the Microgravity Vibration Isolation Mount (MIM) to isolate and introduce controlled vibrations to two miscible liquids inside a cavity to study the effects of g-jitter on liquid diffusion. Diffusion in a nonhomogeneous liquid system is caused by a nonequilibrium condition that results in the transport of mass (dispersion of the different kinds of liquid molecules) to approach equilibrium. The dynamic state of the system tends toward equilibrium such that the system becomes homogeneous. An everyday example is the mixing of cream and coffee (a nonhomogeneous system) via stirring. The cream diffuses into the coffee, thus forming a homogeneous system. At equilibrium the system is said to be mixed. However, during stirring, simple observations show complex flow field dynamics-stretching and folding of material interfaces, thinning of striation thickness, self-similar patterns, and so on. This example illustrates that, even though mixing occurs via mass diffusion, stirring to enhance transport plays a major role. Stirring can be induced either by mechanical means (spoon or plastic stirrer) or via buoyancy-induced forces caused by Earth s gravity. Accurate measurements of binary diffusion coefficients are often inhibited by buoyancy-induced flows. The microgravity environment minimizes the effect of buoyancy-induced flows and allows the true diffusion limit to be achieved. One goal of this experiment was to show that the microgravity environment suppresses buoyancy-induced convection, thereby mass diffusion becomes the dominant mechanism for transport. Since g-jitter transmitted by the shuttle to the experiment can potentially excite buoyancy-induced flows, we also studied the effects of controlled vibrations on the system.

  4. Connection between encounter volume and diffusivity in geophysical flows

    NASA Astrophysics Data System (ADS)

    Rypina, Irina I.; Smith, Stefan G. Llewellyn; Pratt, Larry J.

    2018-04-01

    Trajectory encounter volume - the volume of fluid that passes close to a reference fluid parcel over some time interval - has been recently introduced as a measure of mixing potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. We derive the analytical relationship between the encounter volume and diffusivity under the assumption of an isotropic random walk, i.e., diffusive motion, in one and two dimensions. We apply the derived formulas to produce maps of encounter volume and the corresponding diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula for estimating diffusivity from oceanographic data are discussed, as well as applications to other disciplines.

  5. Diffuse Myocardial Fibrosis Reduces Electrocardiographic Voltage Measures of Left Ventricular Hypertrophy Independent of Left Ventricular Mass.

    PubMed

    Maanja, Maren; Wieslander, Björn; Schlegel, Todd T; Bacharova, Ljuba; Abu Daya, Hussein; Fridman, Yaron; Wong, Timothy C; Schelbert, Erik B; Ugander, Martin

    2017-01-22

    Myocardial fibrosis quantified by myocardial extracellular volume fraction (ECV) and left ventricular mass (LVM) index (LVMI) measured by cardiovascular magnetic resonance might represent independent and opposing contributors to ECG voltage measures of left ventricular hypertrophy (LVH). Diffuse myocardial fibrosis can occur in LVH and interfere with ECG voltage measures. This phenomenon could explain the decreased sensitivity of LVH detectable by ECG, a fundamental diagnostic tool in cardiology. We identified 77 patients (median age, 53 [interquartile range, 26-60] years; 49% female) referred for contrast-enhanced cardiovascular magnetic resonance with ECV measures and 12-lead ECG. Exclusion criteria included clinical confounders that might influence ECG measures of LVH. We evaluated ECG voltage-based LVH measures, including Sokolow-Lyon index, Cornell voltage, 12-lead voltage, and the vectorcardiogram spatial QRS voltage, with respect to LVMI and ECV. ECV and LVMI were not correlated (R 2 =0.02; P=0.25). For all voltage-related parameters, higher LVMI resulted in greater voltage (r=0.33-0.49; P<0.05 for all), whereas increased ECV resulted in lower voltage (r=-0.32 to -0.57; P<0.05 for all). When accounting for body fat, LV end-diastolic volume, and mass-to-volume ratio, both LVMI (β=0.58, P=0.03) and ECV (β=-0.46, P<0.001) were independent predictors of QRS voltage (multivariate adjusted R 2 =0.39; P<0.001). Myocardial mass and diffuse myocardial fibrosis have independent and opposing effects upon ECG voltage measures of LVH. Diffuse myocardial fibrosis quantified by ECV can obscure the ECG manifestations of increased LVM. This provides mechanistic insight, which can explain the limited sensitivity of the ECG for detecting increased LVM. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  6. Flow in out-of-plane double S-bonds

    NASA Technical Reports Server (NTRS)

    Schmidt, M. C.; Whitelaw, J. H.; Yianneskis, M.

    1986-01-01

    Developing flows in two out-of-plane double S-bend configurations have been measured by laser-Doppler anemometry. The first duct had a rectangular cross-section 40mmx40mm at the inlet and consisted of a uniform area 22.5 deg. - 22.5 deg. S-duct upstream with a 22.5 deg.- 22.5 deg. S- diffuser downstream. The second duct had a circular cross-section and consisted of a 45 deg. - 45 deg. uniform area S-duct upstream with a 22.5 deg. -22.5 deg. S-diffuser downstream. In both configurations the ratio of the mean radius of curvature to the inlet hydraulic diameter was 7.0, the exit-to-inlet area ratio of the diffusers was 1.5 and the ducts were connected so that the centerline of the S-duct lay in a plane normal to that of the S-diffuser. Streamwise and cross-stream velocity components were measured in laminar flow for the rectangular duct and in turbulent flow for both configurations; measurements of the turbulence levels, cross-correlations and wall static pressures were also made in the turbulent flow cases. Secondary flows of the first kind are present in the first S-duct and they are complemented or counteracted by the secondary flows generated by the area expansion and by the curvature of the S-diffusers downstream. Cross-stream velocities with magnitudes up to 0.19 and 0.11 of the bulk velocity were measured in the laminar and turbulent flows respectively in the rectangular duct and six cross-flow vortices were evident at the exit of the duct in both flow cases. The turbulent flow in the circular duct was qualitatively similar to that in the rectangular configuration, but the cross-stream velocities measured at the exit plane were smaller in the circular geometry. The results are presented in sufficient detail and accuracy for the assessment of numerical calculation methods and are listed in tabular form for this purpose.

  7. Direct estimation of mass flow and diffusion of nitrogen compounds in solution and soil.

    PubMed

    Oyewole, Olusegun Ayodeji; Inselsbacher, Erich; Näsholm, Torgny

    2014-02-01

    Plant nutrient uptake from soil is mainly governed by diffusion and transpirationally induced mass flow, but the current methods for assessing the relative importance of these processes are indirect. We developed a microdialysis method using solutions of different osmotic potentials as perfusates to simulate diffusion and mass flow processes, and assessed how induced mass flow affected fluxes of nitrogen (N) compounds in solution and in boreal forest soil. Varying the osmotic potential of perfusates induced vertical fluxes in the direction of the dialysis membranes at rates of between 1 × 10(-8) and 3 × 10(-7)  m s(-1) , thus covering the estimated range of water velocities perpendicular to root surfaces and induced by transpiration. Mass flow increased N fluxes in solution but even more so in soil. This effect was explained by an indirect effect of mass flow on rates of diffusive fluxes, possibly caused by the formation of steeper gradients in concentrations of N compounds from membrane surfaces out in the soil. Our results suggest that transpiration may be an essential driver of plant N acquisition. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Forward-facing cavity and opposing jet combined thermal protection system

    NASA Astrophysics Data System (ADS)

    Lu, H. B.; Liu, W. Q.

    2012-12-01

    This paper focuses on the design of a forward-facing cavity and opposing jet combined configuration for thermal protection system (TPS) of hypersonic vehicles. The cooling efficiency of the combined TPS was investigated numerically, and the numerical method was validated by the related experiment in the open literature. The flow field parameters, aerodynamic force, and surface heat flux distribution were obtained. The detailed numerical results show that this kind of combined TPS has an excellent impact on cooling the nose-tip, and it is suitable for the thermal protection of hypersonic vehicles which require long-range and time to cruise.

  9. Recent development of a jet-diffuser ejector

    NASA Technical Reports Server (NTRS)

    Alperin, M.; Wu, J. J.

    1980-01-01

    The paper considers thrust augmenting ejectors in which the processes of mixing and diffusion are partly carried out downstream of the ejector solid surfaces. A jet sheet surrounding the periphery of a widely diverging diffuser prevents separation and forms a gaseous, curved surface to provide effective diffuser ratio and additional length for mixing of primary and induced flows. Three-dimensional potential flow methods achieved a large reduction in the length of the associated solid surface; primary nozzle design further reduced the volume required by the jet-diffuser ejectors, resulting in thrust augmentation in excess of two, and an overall length of about 2 1/2 times the throat width.

  10. Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle

    PubMed Central

    Li, Zhe; Baker, Wesley B.; Parthasarathy, Ashwin B.; Ko, Tiffany S.; Wang, Detian; Schenkel, Steven; Durduran, Turgut; Li, Gang; Yodh, Arjun G.

    2015-01-01

    Abstract. We investigate and assess the utility of a simple scheme for continuous absolute blood flow monitoring based on diffuse correlation spectroscopy (DCS). The scheme calibrates DCS using venous-occlusion diffuse optical spectroscopy (VO-DOS) measurements of arm muscle tissue at a single time-point. A calibration coefficient (γ) for the arm is determined, permitting conversion of DCS blood flow indices to absolute blood flow units, and a study of healthy adults (N=10) is carried out to ascertain the variability of γ. The average DCS calibration coefficient for the right (i.e., dominant) arm was γ=(1.24±0.15)×108 (mL·100  mL−1·min−1)/(cm2/s). However, variability can be significant and is apparent in our site-to-site and day-to-day repeated measurements. The peak hyperemic blood flow overshoot relative to baseline resting flow was also studied following arm-cuff ischemia; excellent agreement between VO-DOS and DCS was found (R2=0.95, slope=0.94±0.07, mean difference=−0.10±0.45). Finally, we show that incorporation of subject-specific absolute optical properties significantly improves blood flow calibration accuracy. PMID:26720870

  11. The fluid mechanics of thrombus formation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Experimental data are presented for the growth of thrombi (blood clots) in a stagnation point flow of fresh blood. Thrombus shape, size and structure are shown to depend on local flow conditions. The evolution of a thrombus is described in terms of a physical model that includes platelet diffusion, a platelet aggregation mechanism, and diffusion and convection of the chemical species responsible for aggregation. Diffusion-controlled and convection-controlled regimes are defined by flow parameters and thrombus location, and the characteristic growth pattern in each regime is explained. Quantitative comparisons with an approximate theoretical model are presented, and a more general model is formulated.

  12. A numerical simulation of the flow in the diffuser of the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Keith, Theo G., Jr.

    1990-01-01

    The flow in the diffuser section of the Icing Research Tunnel at the NASA Lewis Research Center is numerically investigated. To accomplish this, an existing computer code is utilized. The code, known as PARC3D, is based on the Beam-Warming algorithm applied to the strong conservation law form of the complete Navier-Stokes equations. The first portion of the paper consists of a brief description of the diffuser and its current flow characteristics. A brief discussion of the code work follows. Predicted velocity patterns are then compared with the measured values.

  13. Mass-conserving advection-diffusion Lattice Boltzmann model for multi-species reacting flows

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Darabiha, N.; Thévenin, D.

    2018-06-01

    Given the complex geometries usually found in practical applications, the Lattice Boltzmann (LB) method is becoming increasingly attractive. In addition to the simple treatment of intricate geometrical configurations, LB solvers can be implemented on very large parallel clusters with excellent scalability. However, reacting flows and especially combustion lead to additional challenges and have seldom been studied by LB methods. Indeed, overall mass conservation is a pressing issue in modeling multi-component flows. The classical advection-diffusion LB model recovers the species transport equations with the generalized Fick approximation under the assumption of an incompressible flow. However, for flows involving multiple species with different diffusion coefficients and density fluctuations - as is the case with weakly compressible solvers like Lattice Boltzmann -, this approximation is known not to conserve overall mass. In classical CFD, as the Fick approximation does not satisfy the overall mass conservation constraint a diffusion correction velocity is usually introduced. In the present work, a local expression is first derived for this correction velocity in a LB framework. In a second step, the error due to the incompressibility assumption is also accounted for through a modified equilibrium distribution function. Theoretical analyses and simulations show that the proposed scheme performs much better than the conventional advection-diffusion Lattice Boltzmann model in terms of overall mass conservation.

  14. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures.

    PubMed

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2012-11-01

    The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0.06) did not exhibit significant differences, quantitative DW single-shot TSE imaging (p = 0.002) and quantitative chemical-shift imaging (p = 0.01) showed significant differences between benign and malignant fractures. The DW-PSIF sequence (delta = 3 ms) had the highest accuracy in differentiating benign from malignant vertebral fractures. Quantitative chemical-shift imaging and quantitative DW single-shot TSE imaging had a lower accuracy than DW-PSIF imaging because of a large overlap. Qualitative assessment of opposed-phase, DW-EPI, and DW single-shot TSE sequences and quantitative assessment of the DW-EPI sequence were not suitable for distinguishing between benign and malignant vertebral fractures.

  15. Pre-Darcy Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Dejam, Morteza; Hassanzadeh, Hassan; Chen, Zhangxin

    2017-10-01

    Fluid flow in porous media is very important in a wide range of science and engineering applications. The entire establishment of fluid flow application in porous media is based on the use of an experimental law proposed by Darcy (1856). There are evidences in the literature that the flow of a fluid in consolidated and unconsolidated porous media does not follow Darcy law at very low fluxes, which is called pre-Darcy flow. In this paper, the unsteady flow regimes of a slightly compressible fluid under the linear and radial pre-Darcy flow conditions are modeled and the corresponding highly nonlinear diffusivity equations are solved analytically by aid of a generalized Boltzmann transformation technique. The influence of pre-Darcy flow on the pressure diffusion for homogeneous porous media is studied in terms of the nonlinear exponent and the threshold pressure gradient. In addition, the pressure gradient, flux, and cumulative production per unit area are compared with the classical solution of the diffusivity equation based on Darcy flow. The presented results advance our understanding of fluid flow in low-permeability media such as shale and tight formations, where pre-Darcy is the dominant flow regime.

  16. Pre-Darcy flow in tight and shale formations

    NASA Astrophysics Data System (ADS)

    Dejam, Morteza; Hassanzadeh, Hassan; Chen, Zhangxin

    2017-11-01

    There are evidences that the fluid flow in tight and shale formations does not follow Darcy law, which is identified as pre-Darcy flow. Here, the unsteady linear flow of a slightly compressible fluid under the action of pre-Darcy flow is modeled and a generalized Boltzmann transformation technique is used to solve the corresponding highly nonlinear diffusivity equation analytically. The effect of pre-Darcy flow on the pressure diffusion in a homogenous formation is studied in terms of the nonlinear exponent, m, and the threshold pressure gradient, G1. In addition, the pressure gradient, flux, and cumulative production per unit area for different m and G1 are compared with the classical solution of the diffusivity equation based on Darcy flow. Department of Petroleum Engineering in College of Engineering and Applied Science at University of Wyoming and NSERC/AI-EES(AERI)/Foundation CMG and AITF (iCORE) Chairs in Department of Chemical and Petroleum Engineering at University of Calgary.

  17. Porous Flow and Diffusion of Water in the Mantle Wedge: Melting and Hydration Patterns

    NASA Astrophysics Data System (ADS)

    Conder, J. A.

    2005-12-01

    It is widely accepted that melting at volcanic arcs is primarily triggered by fluxing the mantle wedge from the dehydrating subducting slab. However, there is less concensus regarding how water moves into and within the mantle wedge. There are at least four possible mechanisms for water migration in the wedge: buoyant porous flow, diffusion through mineral crystals, advection of hydrated minerals, and compositionally buoyant diapers. The latter two mechanisms require at least one of the first two to occur to get water from the slab into the wedge before they can function. Using geodynamic models of mantle flow in a simplified subduction setting, we explore the implications of diffusion and porous flow of water in the wedge, particularly as they would affect the time for recycling water through the subduction factory and the predicted pattern of basalt hydration across the arc. The slab is assumed to dehydrate in a continuous fashion as the solubility of water in subducted oceanic crust decreases with temperature and pressure and the water then enters the wedge via one of the two transport mechanisms. Diffusion is controlled by temperature and by which minerals are present. Although olivine dominates the mantle mineral fraction, pyroxenes may control the diffusion of water in the wedge as the diffusivity of pyroxene is one or more orders of magnitude greater than olivine. Even assuming the faster diffusion rate of orthopyroxene in the models, diffusion can only be an important transport mechanism when subduction rates are slower than ~3 cm/yr. Flux melting occurs in the wedge above where the slab is ~100-160 km deep with the maximum above where the slab is ~120 km deep. Models including porous flow can result in melting at higher subduction rates provided the permeability of the mantle is greater than 10-17 m2. The true magnitude of the permeability likely varies with the corresponding porosity created by the free phase. With porous flow, melting occurs 20-30 km closer to the trench and the degree of melting is larger than when only diffusion is allowed. The rate of dehydration depends on the thermal structure which can affect the permeability. The dependence of permeability and diffusion with temperature may explain the variations in volcanic front location as observed at different arcs.

  18. Controlling Two-dimensional Tethered Vesicle Motion Using an Electric Field

    PubMed Central

    Yoshina-Ishii, Chiaki; Boxer, Steven G.

    2008-01-01

    We recently introduced methods to tether phospholipid vesicles or proteoliposomes onto a fluid supported lipid bilayer using DNA hybridization. These intact tethered vesicles diffuse in two dimensions parallel to the supporting membrane surface. In this paper, we report the dynamic response of individual tethered vesicles to an electric field applied parallel to the bilayer surface. Vesicles respond to the field by moving in the direction of electro-osmotic flow, and this can be used to reversibly concentrate tethered vesicles against a barrier. By adding increasing amounts of negatively charged phosphatidylserine to the supporting bilayer to increase electro-osmosis, the electrophoretic mobility of the tethered vesicles can be increased. The electro-osmotic contribution can be modeled well by a sphere connected to a cylindrical anchor in a viscous membrane with charged head groups. The electrophoretic force on the negatively charged tethered vesicles opposes the electro-osmotic force. By increasing the amount of negative charge on the tethered vesicle, drift in the direction of electro-osmotic flow can be slowed; at high negative charge on the tethered vesicle, motion can be forced in the direction of electrophoresis. The balance between these forces can be visualized on a patterned supporting bilayer containing negatively charged lipids which themselves reorganize in an externally applied electric field to create a gradient of charge within a corralled region. The charge gradient at the surface creates a gradient of electro-osmotic flow, and vesicles carrying similar amounts of negative charge can be focused to a region perpendicular to the applied field where electrophoresis is balanced by electro-osmosis, away from the corral boundary. Electric fields are effective tools to direct tethered vesicles, concentrate them and to measure the tethered vesicle’s electrostatic properties. PMID:16489833

  19. Cross-shore variation of wind-driven flows on the inner shelf in Long Bay, South Carolina, United States

    NASA Astrophysics Data System (ADS)

    Gutierrez, Benjamin T.; Voulgaris, George; Work, Paul A.

    2006-03-01

    The cross-shore structure of subtidal flows on the inner shelf (7 to 12 m water depth) of Long Bay, South Carolina, a concave-shaped bay, is examined through the analysis of nearly 80 days of near-bed (1.7-2.2 m above bottom) current observations acquired during the spring and fall of 2001. In the spring and under northeastward winds (upwelling favorable) a two-layered flow was observed at depths greater than 10 m, while closer to the shore the currents were aligned with the wind. The two-layered flow is attributed to the presence of stratification, which has been observed under similar conditions in the South Atlantic Bight. When the wind stress was southwestward (downwelling favorable) and exceeded 0.1 N/m2, vertical mixing occurred, the two-layered flow pattern disappeared, and currents were directed alongshore with the wind at all sites and throughout the water column. In the fall, near-bed flows close to the shore (water depth <7 m) were often reduced compared to or opposed those measured farther offshore under southwestward winds. A simplified analysis of the depth-averaged, alongshore momentum balance illustrates that the alongshore pressure gradient approached or exceeded the magnitude of the alongshore wind stress at the same time that the nearshore alongshore current opposed the wind stress and alongshore currents farther offshore. In addition, the analysis suggests that the wind stress is reduced closer to shore so that the alongshore pressure gradient is large enough to drive the flow against the wind.

  20. Effects of pressure, oxygen concentration, and forced convection on flame spread rate of Plexiglas, Nylon and Teflon

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Burkhardt, L. A.; Cochran, T. H.

    1974-01-01

    Experiments were conducted in which the burning of cylindrical materials in a flowing oxidant stream was studied. Plexiglas, Nylon, and Teflon fuel specimens were oriented such that the flames spread along the surface in a direction opposed to flowing gas. Correlations of flame spread rate were obtained that were power law relations in terms of pressure, oxygen concentration, and gas velocity.

  1. Crash reduction following installation of centerline rumble strips on rural two-lane roads.

    PubMed

    Persaud, Bhagwant N; Retting, Richard A; Lyon, Craig A

    2004-11-01

    Rural two-lane roads generally lack physical measures such as wide medians or barriers to separate opposing traffic flows. As a result, a major crash problem on these roads involves vehicles crossing the centerline and either sideswiping or striking the front ends of opposing vehicles. These types of opposing-direction crashes account for about 20% all fatal crashes on rural two-lane roads and result in about 4,500 fatalities annually in the US. The present study evaluated a potential engineering countermeasure for such crashes-installation of rumble strips along the centerlines of undivided rural two-lane roads to alert distracted, fatigued, or speeding motorists whose vehicles are about to cross the centerlines and encroach into opposing traffic lanes. Data were analyzed for approximately 210 miles of treated roads in seven states before and after installation of centerline rumble strips. An empirical Bayes before-after procedure was employed to properly account for regression to the mean while normalizing for differences in traffic volume and other factors between the before and after periods. Overall results indicated significant reductions for all injury crashes combined (14%, 95% confidence interval (95% CI) = 5-23%) as well as for frontal and opposing-direction sideswipe injury crashes (25%, 95% CI = 6-44%)--the primary target of centerline rumble strips. In light of their effectiveness and relatively low installation costs, consideration should be given to installing centerline rumble strips more widely on rural two-lane roads to reduce the risk of frontal and opposing-direction sideswipe crashes.

  2. Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions

    NASA Technical Reports Server (NTRS)

    Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).

  3. Compressible flow in a diffusing S-duct with flow separation

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Bhat, M. K.; Liver, P.

    1987-01-01

    Local flow velocity vectors, as well as static and total pressures along ten radial traverses, were obtained at six stations for secondary flows in a diffusing 30-30-deg S-duct with circular cross section. The strong secondary flow measured in the first bend continued into the second with new vorticity produced in the opposite direction. Contour plots representing the transverse velocity field, as well as total and static pressure contours, have been obtained. As a result of the secondary flow and subsequent separation, substantial total pressure distortion is noted to occur at the duct exit.

  4. Inferring functional connectivity in MRI using Bayesian network structure learning with a modified PC algorithm

    PubMed Central

    Iyer, Swathi; Shafran, Izhak; Grayson, David; Gates, Kathleen; Nigg, Joel; Fair, Damien

    2013-01-01

    Resting state functional connectivity MRI (rs-fcMRI) is a popular technique used to gauge the functional relatedness between regions in the brain for typical and special populations. Most of the work to date determines this relationship by using Pearson's correlation on BOLD fMRI timeseries. However, it has been recognized that there are at least two key limitations to this method. First, it is not possible to resolve the direct and indirect connections/influences. Second, the direction of information flow between the regions cannot be differentiated. In the current paper, we follow-up on recent work by Smith et al (2011), and apply a Bayesian approach called the PC algorithm to both simulated data and empirical data to determine whether these two factors can be discerned with group average, as opposed to single subject, functional connectivity data. When applied on simulated individual subjects, the algorithm performs well determining indirect and direct connection but fails in determining directionality. However, when applied at group level, PC algorithm gives strong results for both indirect and direct connections and the direction of information flow. Applying the algorithm on empirical data, using a diffusion-weighted imaging (DWI) structural connectivity matrix as the baseline, the PC algorithm outperformed the direct correlations. We conclude that, under certain conditions, the PC algorithm leads to an improved estimate of brain network structure compared to the traditional connectivity analysis based on correlations. PMID:23501054

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezeshki, Alan M.; Sacci, Robert L.; Delnick, Frank M.

    Here, an improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V 2+/V 3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmicmore » resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.« less

  6. Influence of definition of impeller-vaneless diffuser boundary on physical validity of numerical simulations of viscid flow in the vaneless diffuser of a centrifugal compressor: A short review of case studies

    NASA Astrophysics Data System (ADS)

    Kabalyk, K.; Kryllowicz, W.

    2017-09-01

    The study aims to work out a set of recommendations for setting a proper distance between the trailing edge of impeller and the interface boundary, which on the one hand would not be too large to overpredict the impeller efficiency and not too short to introduce artificial wake-like flow structures at diffuser inlet on the other. Three individual two-element stages belonging to three different types known as medium- and low-flow coefficient stages are studied. Besides of the design flow coefficient, the focus is on the influence of impeller tip Mach number on the optimal location of the boundary.

  7. Transport across Schlemm's canal endothelium and the blood-aqueous barrier.

    PubMed

    Braakman, Sietse T; Moore, James E; Ethier, C Ross; Overby, Darryl R

    2016-05-01

    The majority of trabecular outflow likely crosses Schlemm's canal (SC) endothelium through micron-sized pores, and SC endothelium provides the only continuous cell layer between the anterior chamber and episcleral venous blood. SC endothelium must therefore be sufficiently porous to facilitate outflow, while also being sufficiently restrictive to preserve the blood-aqueous barrier and prevent blood and serum proteins from entering the eye. To understand how SC endothelium satisfies these apparently incompatible functions, we examined how the diameter and density of SC pores affects retrograde diffusion of serum proteins across SC endothelium, i.e. from SC lumen into the juxtacanalicular tissue (JCT). Opposing retrograde diffusion is anterograde bulk flow velocity of aqueous humor passing through pores, estimated to be approximately 5 mm/s. As a result of this relatively large through-pore velocity, a mass transport model predicts that upstream (JCT) concentrations of larger solutes such as albumin are less than 1% of the concentration in SC lumen. However, smaller solutes such as glucose are predicted to have nearly the same concentration in the JCT and SC. In the hypothetical case that, rather than micron-sized pores, SC formed 65 nm fenestrae, as commonly observed in other filtration-active endothelia, the predicted concentration of albumin in the JCT would increase to approximately 50% of that in SC. These results suggest that the size and density of SC pores may have developed to allow SC endothelium to maintain the blood-aqueous barrier while simultaneously facilitating aqueous humor outflow. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development of a hybrid broadband NIRS/diffusion correlation spectroscopy system to monitor preterm brain injury (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rajaram, Ajay; St. Lawrence, Keith; Diop, Mamadou

    2017-02-01

    In Canada, 8% of births occur prematurely. Preterm infants weighing less than 1500g are at a high risk of neurodevelopmental impairment: 5-10% develop major disabilities such as cerebral palsy and 40-50% show other cognitive and behavioural deficits. The brain is vulnerable to periods of low cerebral blood flow (CBF) that can impair energy metabolism and cause tissue damage. There is, therefore, a need for an efficient neuromonitoring system to alert the neonatal intensive care team to clinically significant changes in CBF and metabolism, before injury occurs. Optical technologies offer safe, non-invasive, and cost-effective methods for neuromonitoring. Cerebral oxygen saturation (ScO2) can be measured by exploiting the absorption properties of hemoglobin though Near-Infrared Spectroscopy (NIRS), and Diffuse Correlation Spectroscopy (DCS) can monitor CBF by tracking red blood cells. These measures can be combined to describe metabolism, a key indicator of tissue viability. In this study we present the development and testing of a hybrid broadband NIRS/DCS neuromonitor. This system is novel in its ability to simultaneously acquire broadband NIRS and DCS signals, providing a truly real-time measure of metabolism. Narrow bandpass and notch filters have been incorporated to diminish light contamination between the two modalities, preferentially filtering out each source from the opposing detector, allowing for an accurate measure of ScO2, CBF, and metabolism. With a broadband NIRS/DCS system, a real-time measure of CBF and metabolism within the developing brain can aid clinicians in monitoring events that precede brain injury, ultimately leading to better clinical outcomes.

  9. Three-dimensional flow of Prandtl fluid with Cattaneo-Christov double diffusion

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2018-06-01

    This research paper intends to investigate the 3D flow of Prandtl liquid in the existence of improved heat conduction and mass diffusion models. Flow is created by considering linearly bidirectional stretchable sheet. Thermal and concentration diffusions are considered by employing Cattaneo-Christov double diffusion models. Boundary layer approach has been used to simplify the governing PDEs. Suitable nondimensional similarity variables correspond to strong nonlinear ODEs. Optimal homotopy analysis method (OHAM) is employed for solutions development. The role of various pertinent variables on temperature and concentration are analyzed through graphs. The physical quantities such as surface drag coefficients and heat and mass transfer rates at the wall are also plotted and discussed. Our results indicate that the temperature and concentration are decreasing functions of thermal and concentration relaxation parameters respectively.

  10. Bistable flow occurrence in the 2D model of a steam turbine valve

    NASA Astrophysics Data System (ADS)

    Pavel, Procházka; Václav, Uruba

    2017-09-01

    The internal flow inside a steam turbine valve was investigated experimentally using PIV measurement. The valve model was proposed to be two-dimensional. The model was connected to the blow-down wind tunnel. The flow conditions were set by the different position of the valve plug. Several angles of the diffuser by diverse radii were investigated concerning flow separation and flow dynamics. It was found that the flow takes one of two possible bistable modes. The first regime is characterized by a massive flow separation just at the beginning of the diffuser section on the one side. The second regime is axisymmetric and the flow separation is not detected at all.

  11. Numerical investigation of rotating stall in centrifugal compressor with vaned and vaneless diffuser

    NASA Astrophysics Data System (ADS)

    Halawa, Taher; Alqaradawi, Mohamed; Gadala, Mohamed S.; Shahin, Ibrahim; Badr, Osama

    2015-06-01

    This study presents a numerical simulation of the stall and surge in a centrifugal compressor and presents a descriptionof the stall development in two different cases. The first case is for a compressor with vaneless diffuser and the second is for a compressor with vaned diffuser of the vane island shape. The main aim of this study is to compare the flow characteristics and behavior for the two compressors near the surge operating condition and provide further understanding of the diffuser role when back flow occurs at surge. Results showed that for a locationnear the diffuser entrance, the amplitude of the static pressure fluctuations for the vaneless diffuser case is higher than that for the vaned diffuser case near surge condition. These pressure fluctuations in the case of the vaneless diffuser appear with a gradual decrease of the mean pressure value as a part of the surge cycle. While for the case of the vaned diffuser, the pressure drop during surge occurs faster than the case of the vaneless diffuser. Also, results indicated that during surge in the case of vaneless diffuser, there is a region with low velocity and back flow that appears as a layer connecting all impeller passages near shroud surface and this layer develops in size with time. On the other hand, for the case of vaned diffuser during surge, the low velocity regions appear in random locations in some passages and these regions expand with time towards the shroud surface. Results showed that during stall, the impeller passages are exposed to identical impact from stall cells in the case of vaneless diffuser while the stall effect varies from passage to another in the case of the vaned diffuser.

  12. Diffuse versus discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E. L.; Escartin, J.; Gracias, N.; Olive, J. L.; Barreyre, T.; Davaille, A. B.; Cannat, M.

    2010-12-01

    Two styles of fluid flow at the seafloor are widely recognized: (1) localized outflows of high temperature (>300°C) fluids, often black or grey color in color (“black smokers”) and (2) diffuse, lower temperature (<100°C), fluids typically transparent and which escape through fractures, porous rock, and sediment. The partitioning of heat flux between these two types of hydrothermal venting is debated and estimates of the proportion of heat carried by diffuse flow at ridge axes range from 20% to 90% of the total axial heat flux. Here, we attempt to improve estimates of this partitioning by carefully characterizing the heat fluxes carried by diffuse and discrete flows at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperature and video data were acquired during the recent Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September, 2009) by Victor aboard “Pourquoi Pas?” (IFREMER, France). Temperature measurements were made of fluid exiting discrete vents, of diffuse effluents immediately above the seafloor, and of vertical temperature gradients within discrete hydrothermal plumes. Video data allow us to calculate the fluid velocity field associated with these outflows: for diffuse fluids, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time; for individual hydrothermal plumes, Particle Image Velocimetry tracks eddies by cross-correlation of pixels intensities between subsequent images. Diffuse fluids exhibit temperatures of 8-60°C and fluid velocities of ~1-10 cm s-1. Discrete outflows at 204-300°C have velocities of ~1-2 m s-1. Combined fluid flow velocities, temperature measurements, and full image mosaics of the actively venting areas are used to estimate heat flux of both individual discrete vents and diffuse outflow. The total integrated heat flux and the partitioning between diffuse and discrete venting at Tour Eiffel, and its implications for the nature of hydrothermal activity across the Lucky Strike site are discussed along with the implications for crustal permeability, associated ecosystems, and mid-ocean ridge processes.

  13. Pollutant formation in fuel lean recirculating flows. Ph.D. Thesis. Final Report; [in an Opposed Reacting Jet Combustor

    NASA Technical Reports Server (NTRS)

    Schefer, R. W.; Sawyer, R. F.

    1976-01-01

    An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.

  14. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William

    A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a differencemore » between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.« less

  15. Optical measurement of transverse molecular diffusion in a microchannel.

    PubMed Central

    Kamholz, A E; Schilling, E A; Yager, P

    2001-01-01

    Quantitative analysis of molecular diffusion is a necessity for the efficient design of most microfluidic devices as well as an important biophysical method in its own right. This study demonstrates the rapid measurement of diffusion coefficients of large and small molecules in a microfluidic device, the T-sensor, by means of conventional epifluorescence microscopy. Data were collected by monitoring the transverse flux of analyte from a sample stream into a second stream flowing alongside it. As indicated by the low Reynolds numbers of the system (< 1), flow is laminar, and molecular transport between streams occurs only by diffusion. Quantitative determinations were made by fitting data with predictions of a one-dimensional model. Analysis was made of the flow development and its effect on the distribution of diffusing analyte using a three-dimensional modeling software package. Diffusion coefficients were measured for four fluorescently labeled molecules: fluorescein-biotin, insulin, ovalbumin, and streptavidin. The resulting values differed from accepted results by an average of 2.4%. Microfluidic system parameters can be selected to achieve accurate diffusion coefficient measurements and to optimize other microfluidic devices that rely on precise transverse transport of molecules. PMID:11259309

  16. Drying in porous media with gravity-stabilized fronts: experimental results.

    PubMed

    Yiotis, A G; Salin, D; Tajer, E S; Yortsos, Y C

    2012-08-01

    In a recent paper [Yiotis et al., Phys. Rev. E 85, 046308 (2012)] we developed a model for the drying of porous media in the presence of gravity. It incorporated effects of corner film flow, internal and external mass transfer, and the effect of gravity. Analytical results were derived when gravity opposes drying and hence leads to a stable percolation drying front. In this paper, we test the theory using laboratory experiments. A series of isothermal drying experiments in glass bead packings saturated with volatile hydrocarbons is conducted. The transparent glass cells containing the packing allow for the visual monitoring of the phase distribution patterns below the surface, including the formation of liquid films, as the gaseous phase invades the pore space, and for the control of the thickness of the diffusive mass boundary layer over the packing. The experimental results agree very well with theory, provided that the latter is generalized to account for the effects of corner roundness in the film region (which was neglected in the theoretical part). We demonstrate the existence of an early constant rate period (CRP), which lasts as long as the films saturate the surface of the packing, and of a subsequent falling rate period (FRP), which begins practically after the detachment of the film tips from the external surface. During the CRP, the process is controlled by diffusion within the stagnant gaseous phase in the upper part of the cells, yielding a Stefan tube problem solution. During the FRP, the process is controlled by diffusion within the packing, with a drying rate inversely proportional to the observed position of the film tips in the cell. Theoretical and experimental results compare favorably for a specific value of the roundness of the films, which is found to be constant and equal to 0.2 for various conditions, and verify the theoretical dependence on the capillary Ca(f), Bond Bo, and Sherwood Sh numbers.

  17. An experimental investigation of two large annular diffusers with swirling and distorted inflow

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Johnston, J. P.; Simons, T. D.; Mort, K. W.; Page, V. R.

    1980-01-01

    Two annular diffusers downstream of a nacelle-mounted fan were tested for aerodynamic performance, measured in terms of two static pressure recovery parameters (one near the diffuser exit plane and one about three diameters downstream in the settling duct) in the presence of several inflow conditions. The two diffusers each had an inlet diameter of 1.84 m, an area ratio of 2.3, and an equivalent cone angle of 11.5, but were distinguished by centerbodies of different lengths. The dependence of diffuser performance on various combinations of swirling, radially distorted, and/or azimuthally distorted inflow was examined. Swirling flow and distortions in the axial velocity profile in the annulus upstream of the diffuser inlet were caused by the intrinsic flow patterns downstream of a fan in a duct and by artificial intensification of the distortions. Azimuthal distortions or defects were generated by the addition of four artificial devices (screens and fences). Pressure recovery data indicated beneficial effects of both radial distortion (for a limited range of distortion levels) and inflow swirl. Small amounts of azimuthal distortion created by the artificial devices produced only small effects on diffuser performance. A large artificial distortion device was required to produce enough azimuthal flow distortion to significantly degrade the diffuser static pressure recovery.

  18. Spin Hall and Spin Swapping Torques in Diffusive Ferromagnets

    NASA Astrophysics Data System (ADS)

    Pauyac, Christian Ortiz; Chshiev, Mairbek; Manchon, Aurelien; Nikolaev, Sergey A.

    2018-04-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession, and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precession effects displays a complex spatial dependence that can be exploited to generate torques and nucleate or propagate domain walls in centrosymmetric geometries without the use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  19. Elimination of numerical diffusion in 1 - phase and 2 - phase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajamaeki, M.

    1997-07-01

    The new hydraulics solution method PLIM (Piecewise Linear Interpolation Method) is capable of avoiding the excessive errors, numerical diffusion and also numerical dispersion. The hydraulics solver CFDPLIM uses PLIM and solves the time-dependent one-dimensional flow equations in network geometry. An example is given for 1-phase flow in the case when thermal-hydraulics and reactor kinetics are strongly coupled. Another example concerns oscillations in 2-phase flow. Both the example computations are not possible with conventional methods.

  20. Active Flow Control in an Aggressive Transonic Diffuser

    NASA Astrophysics Data System (ADS)

    Skinner, Ryan W.; Jansen, Kenneth E.

    2017-11-01

    A diffuser exchanges upstream kinetic energy for higher downstream static pressure by increasing duct cross-sectional area. The resulting stream-wise and span-wise pressure gradients promote extensive separation in many diffuser configurations. The present computational work evaluates active flow control strategies for separation control in an asymmetric, aggressive diffuser of rectangular cross-section at inlet Mach 0.7 and Re 2.19M. Corner suction is used to suppress secondary flows, and steady/unsteady tangential blowing controls separation on both the single ramped face and the opposite flat face. We explore results from both Spalart-Allmaras RANS and DDES turbulence modeling frameworks; the former is found to miss key physics of the flow control mechanisms. Simulated baseline, steady, and unsteady blowing performance is validated against experimental data. Funding was provided by Northrop Grumman Corporation, and this research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

  1. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2014-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  2. Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows

    NASA Astrophysics Data System (ADS)

    Saurel, Richard; Pantano, Carlos

    2018-01-01

    Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.

  3. Global Search of a Three-dimensional Low Solidity Circular Cascade Diffuser for Centrifugal Blowers by Meta-model Assisted Optimization

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Sakue, Daiki; Tun, Min Thaw

    2018-04-01

    A three-dimensional blade of a low solidity circular cascade diffuser in centrifugal blowers is designed by means of a multi-point optimization technique. The optimization aims at improving static pressure coefficient at a design point and at a small flow rate condition. Moreover, a clear definition of secondary flow expressed by positive radial velocity at hub side is taken into consideration in constraints. The number of design parameters for three-dimensional blade reaches to 10 in this study, such as a radial gap, a radial chord length and mean camber angle distribution of the LSD blade with five control points, control point between hub and shroud with two design freedom. Optimization results show clear Pareto front and selected optimum design shows good improvement of pressure rise in diffuser at small flow rate conditions. It is found that three-dimensional blade has advantage to stabilize the secondary flow effect with improving pressure recovery of the low solidity circular cascade diffuser.

  4. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  5. NRA8-21 Cycle 2 RBCC Turbopump Risk Reduction

    NASA Technical Reports Server (NTRS)

    Ferguson, Thomas V.; Williams, Morgan; Marcu, Bogdan

    2004-01-01

    This project was composed of three sub-tasks. The objective of the first task was to use the CFD code INS3D to generate both on- and off-design predictions for the consortium optimized impeller flowfield. The results of the flow simulations are given in the first section. The objective of the second task was to construct a turbomachinery testing database comprised of measurements made on several different impellers, an inducer and a diffuser. The data was in the form of static pressure measurements as well as laser velocimeter measurements of velocities and flow angles within the stated components. Several databases with this information were created for these components. The third subtask objective was two-fold: first, to validate the Enigma CFD code for pump diffuser analysis, and secondly, to perform steady and unsteady analyses on some wide flow range diffuser concepts using Enigma. The code was validated using the consortium optimized impeller database and then applied to two different concepts for wide flow diffusers.

  6. Serpentine Diffuser Performance with Emphasis on Future Introduction to a Transonic Fan (Postprint)

    DTIC Science & Technology

    2013-01-01

    conditioning barrel . The velocity distribution across the flow conditioning barrel was measured at the same axial location of inlet temperature and...rakes at the same axial plane (AIP) of the total pressure probe tips. The probes were constructed from stainless steel tubing with 0.027 inch inside...numbers with 195 axial and circumferential static pressure measurements within the diffuser flow path. Pressure distortion at the diffuser discharge

  7. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2-relaxometry and chemical shift-based sequences.

    PubMed

    Henninger, B; Zoller, H; Rauch, S; Schocke, M; Kannengiesser, S; Zhong, X; Reiter, G; Jaschke, W; Kremser, C

    2015-05-01

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm ("screening" sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. • MRI plays a major role in the clarification of diffuse liver disease. • The screening sequence was introduced for the assessment of diffuse liver disease. • It is a fast and automated algorithm for the evaluation of hepatic iron and fat. • It is capable of estimating the amount of hepatic fat and iron.

  8. Turbulent flow separation in three-dimensional asymmetric diffusers

    NASA Astrophysics Data System (ADS)

    Jeyapaul, Elbert

    2011-12-01

    Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models k--o SST,k--epsilon and v2- f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddyresolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow separation is due to effects of lateral straining, streamline curvature, secondary flow of second kind, transverse pressure gradient on turbulence. Resolving these effects is possible with anisotropy turbulence models as the Explicit Algebraic Reynolds stress model (EARSM). This model has provided accurate prediction of streamwise and transverse velocity, however the wall pressure is under predicted. An improved EARSM model is developed by correcting the coefficients, which predicts a more accurate wall pressure. There exists scope for improvement of this model, by including convective effects and dynamics of velocity gradient invariants.

  9. Impact of local diffusion on macroscopic dispersion in three-dimensional porous media

    NASA Astrophysics Data System (ADS)

    Dartois, Arthur; Beaudoin, Anthony; Huberson, Serge

    2018-02-01

    While macroscopic longitudinal and transverse dispersion in three-dimensional porous media has been simulated previously mostly under purely advective conditions, the impact of diffusion on macroscopic dispersion in 3D remains an open question. Furthermore, both in 2D and 3D, recurring difficulties have been encountered due to computer limitation or analytical approximation. In this work, we use the Lagrangian velocity covariance function and the temporal derivative of second-order moments to study the influence of diffusion on dispersion in highly heterogeneous 2D and 3D porous media. The first approach characterizes the correlation between the values of Eulerian velocity components sampled by particles undergoing diffusion at two times. The second approach allows the estimation of dispersion coefficients and the analysis of their behaviours as functions of diffusion. These two approaches allowed us to reach new results. The influence of diffusion on dispersion seems to be globally similar between highly heterogeneous 2D and 3D porous media. Diffusion induces a decrease in the dispersion in the direction parallel to the flow direction and an increase in the dispersion in the direction perpendicular to the flow direction. However, the amplification of these two effects with the permeability variance is clearly different between 2D and 3D. For the direction parallel to the flow direction, the amplification is more important in 3D than in 2D. It is reversed in the direction perpendicular to the flow direction.

  10. Dynamic Distortion in a Short S-Shaped Subsonic Diffuser with Flow Separation. [Lewis 8 by 6 foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stumpf, R.; Neumann, H. E.; Giamati, C. C.

    1983-01-01

    An experimental investigation of the time varying distortion at the diffuser exit of a subscale HiMAT forebody and inlet was conducted at Mach 0.9 in the Lewis 8 by 6 foot Supersonic Wind Tunnel. A transitory separation was detected within the subsonic diffuser. Vortex generators were installed to eliminate the flow separation. Results from a study of the instantaneous pressure variations at the diffuser exit are presented. The time unsteady total pressures at the diffuser exit are computer interpolated and presented in the form of a movie showing the transitory separation. Limited data showing the instantaneous distortion levels is also presented.

  11. Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.R.; Wang, G.X.; Massarotto, P.

    2007-12-15

    The kinetics of binary gas counter-diffusion and Darcy flow in a large coal sample were modeled, and the results compared with data from experimental laboratory investigations. The study aimed for a better understanding of the CO{sub 2}-sequestration enhanced coalbed methane (ECBM) recovery process. The transport model used was based on the bidisperse diffusion mechanism and Maxwell-Stefan (MS) diffusion theory. This provides an alternative approach to simulate multicomponent gas diffusion and flow in bulk coals. A series of high-stress core flush tests were performed on a large coal sample sourced from a Bowen Basin coal mine in Queensland, Australia to investigatemore » the kinetics of one gas displacing another. These experimental results were used to derive gas diffusivities, and to examine the predictive capability of the diffusion model. The simulations show good agreements with the displacement experiments revealing that MS diffusion theory is superior for describing diffusion of mixed gases in coals compared with the constant Fick diffusivity model. The optimized effective micropore and macropore diffusivities are comparable with experimental measurements achieved by other researchers.« less

  12. Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model.

    PubMed

    Chen, Wenjie; Huang, Guoru; Zhang, Han

    2017-12-01

    With rapid urbanization, inundation-induced property losses have become more and more severe. Urban inundation modeling is an effective way to reduce these losses. This paper introduces a simplified urban stormwater inundation simulation model based on the United States Environmental Protection Agency Storm Water Management Model (SWMM) and a geographic information system (GIS)-based diffusive overland-flow model. SWMM is applied for computation of flows in storm sewer systems and flooding flows at junctions, while the GIS-based diffusive overland-flow model simulates surface runoff and inundation. One observed rainfall scenario on Haidian Island, Hainan Province, China was chosen to calibrate the model and the other two were used for validation. Comparisons of the model results with field-surveyed data and InfoWorks ICM (Integrated Catchment Modeling) modeled results indicated the inundation model in this paper can provide inundation extents and reasonable inundation depths even in a large study area.

  13. Study of the propagation of a plane turbulent jet in flow-through chamber workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laigna, K.Yu.; Potter, E.A.

    1988-05-01

    The purpose of this study was to determine experimentally the parameters of microstructures of confined planar jets and to investigate the specific features of turbulent diffusion of impurities in such flows for problems of mine ventilation and pollution abatement in underground workings. A confined planar jet flowing from a slot coaxially into the model of a chamber working of rectangular transverse cross section was studied. The averaged and pulsating characteristics of the jet were measured by a thermoanemometer. Transient and channel zones were identified and the movement of the jet within them was described. Results demonstrated that the turbulent diffusionmore » coefficient in the jet-affected zone was greater by two or three orders of magnitude than in the remainder of the flow and that it is therefore incorrect to use turbulent diffusion coefficients of confined flows for evaluations of the jet diffusion of impurities.« less

  14. Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle.

    PubMed

    Wittsack, Hans-Jörg; Lanzman, Rotem S; Quentin, Michael; Kuhlemann, Julia; Klasen, Janina; Pentang, Gael; Riegger, Caroline; Antoch, Gerald; Blondin, Dirk

    2012-04-01

    To evaluate the influence of pulsatile blood flow on apparent diffusion coefficients (ADC) and the fraction of pseudodiffusion (F(P)) in the human kidney. The kidneys of 6 healthy volunteers were examined by a 3-T magnetic resonance scanner. Electrocardiogram (ECG)-gated and respiratory-triggered diffusion-weighted imaging (DWI) and phase-contrast flow measurements were performed. Flow imaging of renal arteries was carried out to quantify the dependence of renal blood flow on the cardiac cycle. ECG-triggered DWI was acquired in the coronal plane with 16 b values in the range of 0 s/mm(2) and 750 s/mm(2) at the time of minimum (MIN) (20 milliseconds after R wave) and maximum renal blood flow (MAX) (197 ± 24 milliseconds after R wave). The diffusion coefficients were calculated using the monoexponential approach as well as the biexponential intravoxel incoherent motion model and correlated to phase-contrast flow measurements. Flow imaging showed pulsatile renal blood flow depending on the cardiac cycle. The mean flow velocity at MIN was 45 cm/s as compared with 61 cm/s at MAX. F(p) at MIN (0.29) was significantly lower than at MAX (0.40) (P = 0.001). Similarly, ADC(mono), derived from the monoexponential model, also showed a significant difference (P < 0.001) between MIN (ADC(mono) = 2.14 ± 0.08 × 10(-3) mm(2)/s) and MAX (ADC(mono) = 2.37 ± 0.04 × 10(-3) mm(2)/s). The correlation between renal blood flow and F(p) (r = 0.85) as well as ADC(mono) (r = 0.67) was statistically significant. Temporally resolved ECG-gated DWI enables for the determination of the diffusion coefficients at different time points of the cardiac cycle. ADC(mono) and FP vary significantly among acquisitions at minimum (diastole) and maximum (systole) renal blood flow. Temporally resolved ECG-gated DWI might therefore serve as a novel technique for the assessment of pulsatility in the human kidney.

  15. Downstream boundary effects on the frequency of self-excited oscillations in transonic diffuser flows

    NASA Astrophysics Data System (ADS)

    Hsieh, T.

    1986-10-01

    Investigation of downstream boundary effects on the frequency of self-excited oscillations in two-dimensional, separated transonic diffuser flows were conducted numerically by solving the compressible, Reynolds-averaged, thin-layer Navier-Stokes equation with two equation turbulence models. It was found that the flow fields are very sensitive to the location of the downstream boundary. Extension of the diffuser downstream boundary significantly reduces the frequency and amplitude of oscillations for pressure, velocity, and shock. The existence of a suction slot in the experimental setpup obscures the physical downstream boundary and therefore presents a difficulty for quantitative comparisons between computation and experiment.

  16. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  17. Turbulent flow near the wall of a conical diffuser

    NASA Astrophysics Data System (ADS)

    Satyaprakash, B. R.; Azad, R. S.; Nagabushana, K. A.; Kassab, S. Z.

    The turbulent flow in a conical diffuser is predicted adapting the boundary layer calculation method of Bradshaw, Ferris and Atwell. The predicted mean velocity and shear stress profiles, using the experimental data as initial input, agree well with the measured profiles. The universal low of the wall present at the inlet vahishes in the initial region and reappears later, but the width of validity is diminished considerably. The effect of divergence is present in the initial region of the diffuser only. This technique fails to predict beyond one half the total length of the diffuser.

  18. From convection rolls to finger convection in double-diffusive turbulence

    PubMed Central

    Verzicco, Roberto; Lohse, Detlef

    2016-01-01

    Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars' transfer rate and flow structures. Here we systematically investigate DDC flow between two horizontal plates, driven by an unstable salinity gradient and stabilized by a temperature gradient. Counterintuitively, when increasing the stabilizing temperature gradient, the salinity flux first increases, even though the velocity monotonically decreases, before it finally breaks down to the purely diffusive value. The enhanced salinity transport is traced back to a transition in the overall flow pattern, namely from large-scale convection rolls to well-organized vertically oriented salt fingers. We also show and explain that the unifying theory of thermal convection originally developed by Grossmann and Lohse for Rayleigh–Bénard convection can be directly applied to DDC flow for a wide range of control parameters (Lewis number and density ratio), including those which cover the common values relevant for ocean flows. PMID:26699474

  19. Method and apparatus for continuous electrophoresis

    DOEpatents

    Watson, Jack S.

    1992-01-01

    A method and apparatus for conducting continuous separation of substances by electrophoresis are disclosed. The process involves electrophoretic separation combined with couette flow in a thin volume defined by opposing surfaces. By alternating the polarity of the applied potential and producing reciprocating short rotations of at least one of the surfaces relative to the other, small increments of separation accumulate to cause substantial, useful segregation of electrophoretically separable components in a continuous flow system.

  20. Experimental and Computational Studies of the Control of Convection of Non-Conducting Liquids During solidification by Means of a Magnetic Field Gradient

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2001-01-01

    The elimination of convection is essential in experimental investigations of diffusive transport (of heat and matter) during solidification. One classical approach to damping convection in a conducting liquid is the application of a magnetic field. The damping phenomenon is the induction, by the motion of a conductor in a magnetic field, of currents which interact with the field to produce Lorentz forces that oppose the flow. However, there are many liquids which are not sufficiently conducting to exploit this phenomenon; examples include the transparent liquids (such as succinonitrile-acetone) that are used as "model alloys" in fundamental solidification studies. There have been several investigations of the solidification of these liquids that have been carried out in orbiting laboratories to eliminate natural convection. The paper describes an investigation of an alternative approach whereby a magnetic field gradient is applied to the liquid. A magnetic body force then arises which is dependent on the susceptibility of the liquid and thereby on the temperature and or concentration. With the field gradient aligned vertically and of correct magnitude, the variation of gravitational body force due to temperature/concentration dependent density can be counterbalanced by a variation in magnetic body force. Experiments have been carried out in a super-conducting magnet at Marshall Space Flight Center to measure velocities in an aqueous manganese chloride solution. The solution was contained in a chamber with temperature controlled end walls and glass side walls. Velocities were measured by particle image velocimetry. Starting from zero current in the magnet (zero field gradient) flow driven by the temperature difference between the end walls was measured. At a critical current the flow was halted. At higher currents the normal convection was reversed. The experiments included ones where the solution was solidified and were accompanied by solution of the flow/transport equations using the software package FLUENT.

  1. Flame spread over thick polymethylmethacrylate samples in a simulated and actual microgravity environment

    NASA Astrophysics Data System (ADS)

    Shah, Tirthesh Jayesh

    The NASA Burning and Suppression of Solids-II (BASS II) experiment examines the combustion of different solid materials and material geometries in microgravity. While flames in microgravity are driven by diffusion and weak advection due to crew movements and ventilation, the current NASA spacecraft material selection test method (NASA-STD- 6001 Test 1) is driven by buoyant forces as gravity is present. The overall goal of this project is to understand the burning of intermediate and thick fuels in microgravity, and devise a normal gravity test to apply to future materials. Clear cast polymethylmethacrylate (PMMA) samples 10 cm long by 1 or 2 cm wide with thicknesses ranging from 1-5 mm were investigated. PMMA is the ideal choice since it is widely used and we know its stoichiometric chemistry. Tests included both one sided and two sided burns. Samples are ignited by heating a wire behind the sample. The samples are burned in a flow duct within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS) to ensure true microgravity conditions. The experiment takes place in opposed flow with varying Oxygen concentrations and flow velocities. Flames are recorded on two cameras and later tracked to determine spread rate. Currently we are modeling combustion of PMMA using Fire Dynamics Simulator (FDS 5.5.3) and Smokeview. The entire modelling for BASS-II is done in DNS mode because of the laminar conditions and small domain. In DNS mode the Navier Stokes equations are solved without the Turbulence model. The model employs the same test sample and MSG geometry as the experiment; but in 2D. The experimental data gave upstream velocity at several points using an anemometer. A flow profile for the inlet velocity is obtained using Matlab and input into the model. The flame spread rates obtained after tracking are then compared with the experimental data and the results follow the trends but the spread rates are higher.

  2. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the design speed, and similar results were obtained. In most cases, the greatest improvement in surge margin occurred at fairly low levels of injected flow rate. Externally supplied injection air was used in these experiments. However, the injected flow rates that provided the greatest benefit could be produced using injection air that is recirculating between the diffuser discharge and nozzles located in the diffuser vaneless region. Future experiments will evaluate the effectiveness of recirculating air injection.

  3. Real scale experimental study for performance evaluation of unidirectional air diffuser perforated panels

    NASA Astrophysics Data System (ADS)

    Tăcutu, Laurenţiu; Nastase, Ilinca; Iordache, Vlad; Catalina, Tiberiu; Croitoru, Cristiana Verona

    2018-02-01

    Nowadays, there is an increasing emphasis on indoor air quality due to technological evolution and the fact that people spend most of the time in enclosed spaces. Also, energy efficiency is another related factor that gains more and more attention. Improving air distribution in an enclosure can lead to achieve these goals. This improvement can be done by adjustingthe air terminals position, theredimensions or the air diffuser perforations. The paper presents the study of 8 types of panels with different perforations shapes. The systems were characterized by flow, pressure loss and noise. Usualand special geometries were chosen, all having the same flowsurface. The perforated panels were mounted in a unidirectional air flow (UAF)diffuser, also called a laminar air flow (LAF)diffuser, that is placed in a real scale operating room (OR) in our laboratory.The purpose of this study is to determine whether changing the shape in the perforated panels can improve the technical parameters of the diffuser.

  4. Thermal Wadis in Support of Lunar Exploration: Concept Development and Utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Wegeng, Robert S.; Burgess, Jeremy M.

    2009-10-12

    Thermal wadis, engineered sources of heat, can be used to extend the life of lunar rovers by keeping them warm during the extreme cold of the lunar night. Thermal wadis can be manufactured by sintering or melting lunar regolith into a solid mass with more than two orders of magnitude higher thermal diffusivities compared to native regolith dust. Small simulant samples were sintered and melted in the electrical furnaces at different temperatures, different heating and cooling rates, various soaking times, under air, or in an argon atmosphere. The samples were analyzed with scanning electron microscopy and energy dispersive spectroscopy, X-raymore » diffraction, a laser-flash thermal diffusivity system, and the millimeter-wave system. The melting temperature of JSC-1AF simulant was ~50°C lower in an Ar atmosphere compared to an air atmosphere. The flow of Ar during sintering and melting resulted in a small mass loss of 0.04 to 0.1 wt% because of the volatization of alkali compounds. In contrast, the samples that were heat-treated under an air atmosphere gained from 0.012 to 0.31 wt% of the total weight. A significantly higher number of cavities were formed inside the samples melted under an argon atmosphere, possibly because of the evolution of oxygen bubbles from iron redox reactions. The calculated emissivity of JSCf-1AF simulant did not change much with temperature, varying between 0.8 and 0.95 at temperatures from 100 to 1200°C. The thermal diffusivities of raw regolith that was compressed under a pressure of 9 metric tons ranged from 0.0013 to 00011 in the 27 to 390°C temperature range. The thermal diffusivities of sintered and melted JSC-1AF simulant varied from 0.0028 to 0.0072 cm2/s with the maximum thermal diffusivities observed in the samples that were heated up 5°C/min from RT to 1150°C under Ar or air. These thermal diffusivities are high enough for the rovers to survive the extreme cold of the Moon at the rim of the Shackleton Crater and allow them to operate for months (or years) as opposed to weeks on the lunar surface. Future investigations will be focused on a system that can efficiently construct a thermal wadi from the lunar mare regolith. Solar heating, microwave heating, or electrical resistance melting are considered.« less

  5. Optimal-mass-transfer-based estimation of glymphatic transport in living brain

    NASA Astrophysics Data System (ADS)

    Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2015-03-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs . It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data. Keywords: inverse problem, optimal mass transport, diffusion equation, cerebrospinal fluid flow in brain, optical flow, liquid flow modeling, Monge Kantorovich problem, diffusion tensor estimation

  6. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behavior of the mantle

    USGS Publications Warehouse

    Kirby, S.H.; Raleigh, C.B.

    1973-01-01

    The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.

  7. The Turbulent Flow in Diffusers of Small Divergence Angle

    NASA Technical Reports Server (NTRS)

    Gourzhienko, G. A.

    1947-01-01

    The turbulent flow in a conical diffuser represents the type of turbulent boundary layer with positive longitudinal pressure gradient. In contrast to the boundary layer problem, however, it is not necessary that the pressure distribution along the limits of the boundary layer(along the axis of the diffuser) be given, since this distribution can be obtained from the computation. This circumstance, together with the greater simplicity of the problem as a whole, provides a useful basis for the study of the extension of the results of semiempirical theories to the case of motion with a positive pressure gradient. In the first part of the paper,formulas are derived for the computation of the velocity and.pressure distributions in the turbulent flow along, and at right angles to, the axis of a diffuser of small cone angle. The problem is solved.

  8. Integrating flood modelling in a hydrological catchment model: flow approximations and spatial resolution.

    NASA Astrophysics Data System (ADS)

    van den Bout, Bastian; Jetten, Victor

    2017-04-01

    Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity, the spatial resolution of the model, and by the manner in which flow routing is implemented. The assumptions of these approximations can furthermore limit emergent behavior, and influence flow behavior under space-time scaling. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement these flow approximations and channel flooding based on dynamic flow. The kinematic routing uses a predefined converging flow network, the diffusive and dynamic routing uses a 2D flow solution over a DEM. The channel flow in all cases is a 1D kinematic wave approximation. The flow approximations are used to recreate measured discharge in three catchments of different size in China, Spain and Italy, among which is the hydrograph of the 2003 flood event in the Fella river basin (Italy). Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured temporal variation of the discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 meters. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. In the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration, leading to significant errors. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, flow approximations substantially influenced the predictive potential of the (flash) flood model.

  9. Surge dynamics coupled to pore-pressure evolution in debris flows

    USGS Publications Warehouse

    Savage, S.B.; Iverson, R.M.; ,

    2003-01-01

    Temporally and spatially varying pore-fluid pressures exert strong controls on debris-flow motion by mediating internal and basal friction at grain contacts. We analyze these effects by deriving a one-dimensional model of pore-pressure diffusion explicitly coupled to changes in debris-flow thickness. The new pore-pressure equation is combined with Iverson's (1997) extension of the depth-averaged Savage-Hutter (1989, 1991) granular avalanche equations to predict motion of unsteady debris-flow surges with evolving pore-pressure distributions. Computational results illustrate the profound effects of pore-pressure diffusivities on debris-flow surge depths and velocities. ?? 2003 Millpress,.

  10. Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth

    NASA Technical Reports Server (NTRS)

    Kim, Inchul; Sirignano, William A.

    1999-01-01

    This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.

  11. High-Fidelity Thermal Radiation Models and Measurements for High-Pressure Reacting Laminar and Turbulent Flows

    DTIC Science & Technology

    2013-06-26

    flow code used ( OpenFOAM ) to include differential diffusion and cell-based stochastic RTE solvers. The models were validated by simulation of laminar...wavenumber selection is improved about by a factor of 10. (5) OpenFOAM Improvements for Laminar Flames A laminar-diffusion combustion solver, taking into...account the effects of differential diffusion, was developed within the open source CFD package OpenFOAM [18]. In addition, OpenFOAM was augmented to take

  12. Spectral Analysis and Computation of Effective Diffusivities for Steady Random Flows

    DTIC Science & Technology

    2016-04-28

    even in the motion of sea ice floes influenced by winds and ocean currents. The long time, large scale behavior of such systems is equivalent to an...flow plays a key role in many important processes in the global climate system [55] and Earth’s ecosys- tems [14]. Advection of geophysical fluids...HOMOGENIZATION OF THE ADVECTION-DIFFUSION EQUATION The dispersion of a cloud of passive scalars with density φ diffusing with molecular dif- fusivity ε and

  13. Spatially dependent diffusion coefficient as a model for pH sensitive microgel particles in microchannels

    PubMed Central

    Pieprzyk, S.; Heyes, D. M.; Brańka, A. C.

    2016-01-01

    Solute transport and intermixing in microfluidic devices is strongly dependent on diffusional processes. Brownian Dynamics simulations of pressure-driven flow of model microgel particles in microchannels have been carried out to explore these processes and the factors that influence them. The effects of a pH-field that induces a spatial dependence of particle size and consequently the self-diffusion coefficient and system thermodynamic state were focused on. Simulations were carried out in 1D to represent some of the cross flow dependencies, and in 2D and 3D to include the effects of flow and particle concentration, with typical stripe-like diffusion coefficient spatial variations. In 1D, the mean square displacement and particle displacement probability distribution function agreed well with an analytically solvable model consisting of infinitely repulsive walls and a discontinuous pH-profile in the middle of the channel. Skew category Brownian motion and non-Gaussian dynamics were observed, which follows from correlations of step lengths in the system, and can be considered to be an example of so-called “diffusing diffusivity.” In Poiseuille flow simulations, the particles accumulated in regions of larger diffusivity and the largest particle concentration throughput was found when this region was in the middle of the channel. The trends in the calculated cross-channel diffusional behavior were found to be very similar in 2D and 3D. PMID:27795750

  14. A workstation based simulator for teaching compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    A workstation-based interactive flow simulator has been developed to aid in the teaching of undergraduate compressible aerodynamics. By solving the equations found in NACA 1135, the simulator models three basic fluids problems encountered in supersonic flow: flow past a compression corner, flow past two wedges in series, and flow past two opposed wedges. The study can vary the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the results of the flow calculations to the student. The simulator includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use.

  15. Effect of advective flow in fractures and matrix diffusion on natural gas production

    DOE PAGES

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; ...

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less

  16. Leakage flow simulation in a specific pump model

    NASA Astrophysics Data System (ADS)

    Dupont, P.; Bayeul-Lainé, A. C.; Dazin, A.; Bois, G.; Roussette, O.; Si, Q.

    2014-03-01

    This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 8.06 code (RANS frozen and unsteady calculations). Comparisons between numerical and experimental results are presented and discussed for three flow rates. The performances of the diffuser obtained by numerical simulation results are compared to the performances obtained by three-hole probe indications. The comparisons show few influence of fluid leakage on global performances but a real improvement concerning the efficiency of the impeller, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

  17. Spreading of a liquid film on a substrate by the evaporation-adsorption process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayner, P.C. Jr.; Schonberg, J.

    1992-09-01

    The importance of evaporation followed by multilayer adsorption in comparison to liquid flow at the leading edge of a volatile spreading film is analyzed. Presuming that both flows are functions of the same chemical potential gradient, a dimensionless group (N) which delineates the relative importance of vapor diffusion flow to viscous flow on the surface is obtained: N = [rho][sub i]D[nu]x/([minus][bar A][pi]). The relative importance of vapor flow increases with the vapor-pressure dependent partial density, [rho][sub i], and diffusivity, D, of the diffusing vapor, the kinematic viscosity of the liquid, [nu], and the distance downstream from the bulk liquid region,more » x, and decreases with the Hamaker constant, 6[pi][bar A]. Using physical properties the modifiers volatile'' and nonvolatile'' can thereby be put in perspective. Changes in the interfacial force field are a function of [bar A]. The spreading velocity due to the vapor diffusion process is obtained and is found to decrease with a decrease in the interfacial force field and the bulk vapor pressure. The infinite stress at the contact line can be easily relieved by evaporation-adsorption in many systems.« less

  18. Design, Construction and Testing of Annular Diffusers for High Speed Civil Transportation Combustor Applications

    NASA Technical Reports Server (NTRS)

    Okhio, Cyril B.

    1996-01-01

    A theoretical and an experimental design study of subsonic flow through curved-wall annular diffusers has been initiated under this award in order to establish the most pertinent design parameters and hence performance characteristics for such devices, an the implications of their application in the design of engine components in the aerospace industries. The diffusers under this study are expected to contain appreciable regions of stall and the effects of swirl on their performance are being studied. The experimental work involves the application of Computer Aided Design software tool to the development of a suitable annular diffuse geometry and the subsequent downloading of such data to a CNC machine at Central State University (CSU). Two experimental run segments have been completed so far during FY-95 involving flow visualization and diffuser performance evaluation based on Kinetic Energy Dissipation. The method of calculation of the performance of diffusers based on pressure recovery coefficient has been shown to have some shortcomings and so the kinetic energy dissipation approach has been introduced in the run segment two with some success. The application of the discretized, full Navier Stokes and Continuity equations to the numerical study of the problem described above for the time-mean flow is expected to follow. Various models of turbulence are being evaluated for adoption throughout the study and comparisons would be made with experimental data where they exist. Assessment of diffuser performance based on the dissipated mechanical energy would also be made. The result of the investigations are expected to indicate that more cost effective component design of such devices as diffusers which normally contain complex flows can still be achieved.

  19. Dynamics of comb-of-comb-network polymers in random layered flows

    NASA Astrophysics Data System (ADS)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν =2 -α /2 . Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t-α /2. We show that the network with greater total mass moves faster.

  20. Radial mixing in turbomachines

    NASA Astrophysics Data System (ADS)

    Segaert, P.; Hirsch, Ch.; Deruyck, J.

    1991-03-01

    A method for computing the effects of radial mixing in a turbomachinery blade row has been developed. The method fits in the framework of a quasi-3D flow computation and hence is applied in a corrective fashion to through flow distributions. The method takes into account both secondary flows and turbulent diffusion as possible sources of mixing. Secondary flow velocities determine the magnitude of the convection terms in the energy redistribution equation while a turbulent diffusion coefficient determines the magnitude of the diffusion terms. Secondary flows are computed by solving a Poisson equation for a secondary streamfunction on a transversal S3-plane, whereby the right-hand side axial vorticity is composed of different contributions, each associated to a particular flow region: inviscid core flow, end-wall boundary layers, profile boundary layers and wakes. The turbulent mixing coefficient is estimated by a semi-empirical correlation. Secondary flow theory is applied to the VUB cascade testcase and comparisons are made between the computational results and the extensive experimental data available for this testcase. This comparison shows that the secondary flow computations yield reliable predictions of the secondary flow pattern, both qualitatively and quantitatively, taking into account the limitations of the model. However, the computations show that use of a uniform mixing coefficient has to be replaced by a more sophisticated approach.

  1. Orbital Transfer Vehicle Engine Technology High Velocity Ratio Diffusing Crossover

    NASA Technical Reports Server (NTRS)

    Lariviere, Brian W.

    1992-01-01

    High speed, high efficiency head rise multistage pumps require continuous passage diffusing crossovers to effectively convey the pumped fluid from the exit of one impeller to the inlet of the next impeller. On Rocketdyne's Orbital Transfer Vehicle (OTV), the MK49-F, a three stage high pressure liquid hydrogen turbopump, utilizes a 6.23 velocity ratio diffusing crossover. This velocity ratio approaches the diffusion limits for stable and efficient flow over the operating conditions required by the OTV system. The design of the high velocity ratio diffusing crossover was based on advanced analytical techniques anchored by previous tests of stationary two-dimensional diffusers with steady flow. To secure the design and the analytical techniques, tests were required with the unsteady whirling characteristics produced by an impeller. A tester was designed and fabricated using a 2.85 times scale model of the MK49-F turbopumps first stage, including the inducer, impeller, and the diffusing crossover. Water and air tests were completed to evaluate the large scale turbulence, non-uniform velocity, and non-steady velocity on the pump and crossover head and efficiency. Suction performance tests from 80 percent to 124 percent of design flow were completed in water to assess these pump characteristics. Pump and diffuser performance from the water and air tests were compared with the actual MK49-F test data in liquid hydrogen.

  2. Buoyancy and blockage effects on transient laminar opposing mixed convection heat transfer from two horizontal confined isothermal cylinder in tandem

    NASA Astrophysics Data System (ADS)

    Martínez-Suástegui, Lorenzo; Salcedo, Erick; Cajas, Juan; Treviño, César

    2015-11-01

    Transient mixed convection in a laminar cross-flow from two isothermal cylinders in tandem arrangement confined inside a vertical channel is studied numerically using the vorticity-stream function formulation of the unsteady two-dimensional Navier-Stokes and energy equations. Numerical experiments are performed for a Reynolds number based on cylinder diameter of Re = 200, Prandtl number of Pr = 7, blockage ratio of D/H = 0.2, a pitch-to-diameter ratio of L/D = 2, and several values of buoyancy strength or Richardson number Ri = Gr/Re2. The results reported herein demonstrate how the wall confinement, interference effects and opposing buoyancy affect the flow structure and heat transfer characteristics of the cylinder array. This research was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Grant number 167474 and by the Secretaría de Investigación y Posgrado del IPN, Grant number SIP 20141309.

  3. Experiments in dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Berenfeld, A.

    1983-01-01

    Experimental results are given on the mixing of a single row of jets with an isothermal mainstream in a straight duct, to include flow and geometric variations typical of combustion chambers in gas turbine engines. The principal conclusions reached from these experiments were: at constant momentum ratio, variations in density ratio have only a second-order effect on the profiles; a first-order approximation to the mixing of jets with a variable temperature mainstream can be obtained by superimposing the jets-in-an isothermal-crossflow and mainstream profiles; flow area convergence, especially injection-wall convergence, significantly improves the mixing; for opposed rows of jets, with the orifice centerlines in-line, the optimum ratio of orifice spacing to duct height is one half of the optimum value for single side injection at the same momentum ratio; and for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single side injection at the same momentum ratio.

  4. High performance internal reforming unit for high temperature fuel cells

    DOEpatents

    Ma, Zhiwen [Sandy Hook, CT; Venkataraman, Ramakrishnan [New Milford, CT; Novacco, Lawrence J [Brookfield, CT

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  5. Fluid Registration of Diffusion Tensor Images Using Information Theory

    PubMed Central

    Chiang, Ming-Chang; Leow, Alex D.; Klunder, Andrea D.; Dutton, Rebecca A.; Barysheva, Marina; Rose, Stephen E.; McMahon, Katie L.; de Zubicaray, Greig I.; Toga, Arthur W.; Thompson, Paul M.

    2008-01-01

    We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data. PMID:18390342

  6. Experimental investigation of concentration and stable isotopes signals during organic contaminants back diffusion

    NASA Astrophysics Data System (ADS)

    Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo

    2017-04-01

    Back diffusion of organic contaminants is often the cause of groundwater plumes' persistence and can significantly hinder cleanup interventions [1, 2]. In this study we perform a high-resolution investigation of back diffusion in a well-controlled flow-through laboratory setup. We considered cis-dichloroethene (cis-DCE) as model contaminant and we investigated its back diffusion from an impermeable source into a permeable saturated layer, in which advection-dominated flow conditions were established. We used concentration and stable chlorine isotope measurements to investigate the plumes originated by cis-DCE back diffusion in a series of flow-through experiments, performed in porous media with different hydraulic conductivity and at different seepage velocities (i.e., 0.4, 0.8 and 1.2 m/day). A two-centimeter thick agarose gel layer was placed at the bottom of the setup to simulate the source of cis-DCE back diffusion from an impervious layer. Intensive sampling (>1000 measurements) was carried out, including the withdrawal of aqueous samples at closely spaced (1 cm) outlet ports, as well as the high-resolution sampling of the source zone (agarose gel) at the end of each experiment. The transient behavior of the plumes originated by back diffusion was investigated by sampling the outlet ports at regular intervals in the experiments, each run for a total time corresponding to 15 pore volumes. The high-resolution sampling allowed us to resolve the spatial and temporal evolution of concentration and stable isotope gradients in the flow-through setup. In particular, steep concentration and stable isotope gradients were observed at the outlet. Lateral isotope gradients corresponding to chlorine isotope fractionation up to 20‰ were induced by cis-DCE back diffusion and subsequent advection-dominated transport in all flow-through experiments. A numerical modeling approach, tracking individually all chlorine isotopologues, based on the accurate parameterization of local dispersion, as well as on the values of aqueous diffusion coefficients and diffusion-induced isotope fractionation from a previous study [3], provided a good agreement with the experimental data. References [1] Mackay, D. M.; Cherry, J. A. Groundwater contamination: Pumpand-treat remediation. Environ. Sci. Technol. 1989, 23, 630-636. [2] Parker, B. L.; Chapman, S. W.; Guilbeault, M. A. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. J. Contam. Hydrol. 2008, 102, 19-19. [3] Jin, B., Rolle, M., Li, T., Haderlein, S.B., 2014. Diffusive fractionation of BTEX and chlorinated ethenes in aqueous solution: quantification of spatial isotope gradients. Environ. Sci. Technol. 48, 6141-6150.

  7. Experimental performance of a 16.10-centimeter-tip-diameter sweptback centrifugal compressor designed for a 6:1 pressure ratio

    NASA Technical Reports Server (NTRS)

    Klassen, H. A.; Wood, J. R.; Schumann, L. F.

    1977-01-01

    A backswept impeller with design mass flow rate of 1.033 kg/sec was tested with both a vaned diffuser and a vaneless diffuser to establish stage and impeller characteristics. Design stage pressure ratio of 5.9:1 was attained at a flow slightly lower than the design value. Flow range at design speed was 6 percent of choking flow. Impeller axial tip clearance at design speed was varied to determine effect on stage and impeller performance.

  8. Gas turbine engine with radial diffuser and shortened mid section

    DOEpatents

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.

  9. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is synchronized to the laser pulse rate; this allows it to capture images of seed particle position that are separated by a small increment in time. A crosscorrelation of a particle's position in two consecutive images provides an estimate of flow velocity and direction. Multiple image pairs obtained in rapid succession at a particular flow condition provide enough measurements for statistical significance. PIV provides simultaneous velocity measurements over the entire plane that is illuminated by the light sheet instead of at a single point, as is the case when LDV is used. PIV has a further advantage in that the laser light pulse can be triggered by an external source such as a high-response pressure transducer. This feature will allow PIV to synchronize flow imaging to physical phenomena such as rotating stall or stall precursor waves. We hope that this technique can be used to obtain images of the flow field during and just prior to stall.

  10. Coupled Control of Flow Separation and Streamwise Vortical Structures

    NASA Astrophysics Data System (ADS)

    Burrows, Travis; Vukasinovic, Bojan; Glezer, Ari

    2017-11-01

    The flow in offset diffusers of modern propulsion systems are dominated by streamwise vorticity concentrations that advect of low-momentum fluid from the flow boundaries into the core flow and give rise to flow distortion and losses at the engine inlet. Because the formation of these vortices is strongly coupled to trapped vorticity concentrations within locally-separated flow domains over concave surfaces of the diffuser bends, this coupling is exploited for controlling the streamwise evolution of the vortices and thereby significantly reduce the flow distortion and losses. The scale and topology of the trapped vorticity are manipulated at an operating throat Mach number of 0.64 by using a spanwise array of fluidic oscillating jets that are placed upstream of the separation domain. The present investigations demonstrate that the actuation alters the structure of both the trapped and streamwise vortices. In particular, the distribution of the streamwise vortices is altered and their strength is diminished by actuation-induced streamwise vorticity concentrations of opposite sense. As a result, the actuation leads to significant suppression of pressure distortion at the engine inlet (by as much as 60%) at an actuation level that utilizes less than 0.4% of the diffuser's mass flow rate. Supported by ONR.

  11. Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load

    NASA Astrophysics Data System (ADS)

    Prunières, R.; Inoue, Y.; Nagahara, T.

    2016-11-01

    Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.

  12. Enhancement of diffusive transport in oscillatory flows

    NASA Technical Reports Server (NTRS)

    Knobloch, E.; Merryfield, W. J.

    1992-01-01

    The theory of transport of passive scalars in oscillatory flows is reexamined. The differences between transport in standing and traveling waves are emphasized. Both Lagrangian and Eulerian diffusivities are calculated, and the conditions for their applicability are discussed. Numerical simulations are conducted to understand the expulsion of gradients from time-dependent eddies and the resulting transport. The results indicate that it is the Eulerian diffusivity that is of primary relevance for describing enhanced transport on spatial scales larger than that of the eddies.

  13. Self-Diffusion of Drops in a Dilute Sheared Emulsion

    NASA Technical Reports Server (NTRS)

    Loewenberg, Michael; Hinch, E. J.

    1996-01-01

    Self-diffusion coefficients that describe cross-flow migration of non-Brownian drops in a dilute sheared emulsion were obtained by trajectory calculations. A boundary integral formulation was used to describe pairwise interactions between deformable drops; interactions between undeformed drops were described with mobility functions for spherical drops. The results indicate that drops have large anisotropic self-diffusivities which depend strongly on the drop viscosity and modestly on the shear-rate. Pairwise interactions between drops in shear-flow do not appreciably promote drop breakup.

  14. Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut

    2006-02-01

    Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.

  15. Utilizing Diffusion Theory to predict carbon dioxide concentration in an indoor environment

    NASA Astrophysics Data System (ADS)

    Kramer, Andrew R.

    This research details a new method of relating sources of carbon dioxide to carbon dioxide concentration in a room operating in a reduced ventilation mode by utilizing Diffusion Theory. The theoretical basis of this research involved solving Fick's Second Law of Diffusion in spherical coordinates for a source of carbon dioxide flowing at a constant rate and located in the center of an impermeable spherical boundary. The solution was developed using a Laplace Transformation. A spherical diffusion test chamber was constructed and used to validate and benchmark the developed theory. The method was benchmarked by using Dispersion Coefficients for large carbon dioxide flow rates due to diffusion induced convection. The theoretical model was adapted to model a room operating with restricted ventilation in the presence of a known, constant source of carbon dioxide. The room was modeled as a sphere of volume equal to the room and utilized a Dispersion Coefficient that is consistent with published values. The developed Diffusion Model successfully predicted the spatial concentration of carbon dioxide in a room operating in a reduced ventilation mode in the presence of a source of carbon dioxide. The flow rates of carbon dioxide that were used in the room are comparable to the average flow rate of carbon dioxide from a person during quiet breathing, also known as the Tidal Breathing. This indicates the Diffusion Model developed from this research has the potential to correlate carbon dioxide concentration with static occupancy levels which can lead to energy savings through a reduction in air exchange rates when low occupancy is detected.

  16. Visualization of gas flow and diffusion in porous media

    PubMed Central

    Kaiser, Lana G.; Meersmann, Thomas; Logan, John W.; Pines, Alexander

    2000-01-01

    The transport of gases in porous materials is a crucial component of many important processes in science and technology. In the present work, we demonstrate how magnetic resonance microscopy with continuous flow laser-polarized noble gases makes it possible to “light up” and thereby visualize, with unprecedented sensitivity and resolution, the dynamics of gases in samples of silica aerogels and zeolite molecular sieve particles. The “polarization-weighted” images of gas transport in aerogel fragments are correlated to the diffusion coefficient of xenon obtained from NMR pulsed-field gradient experiments. The technique provides a unique means of studying the combined effects of flow and diffusion in systems with macroscopic dimensions and microscopic internal pore structure. PMID:10706617

  17. Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy

    PubMed Central

    Ramirez, Gabriel; Proctor, Ashley R.; Jung, Ki Won; Wu, Tong Tong; Han, Songfeng; Adams, Russell R.; Ren, Jingxuan; Byun, Daniel K.; Madden, Kelley S.; Brown, Edward B.; Foster, Thomas H.; Farzam, Parisa; Durduran, Turgut; Choe, Regine

    2016-01-01

    The non-invasive, in vivo measurement of microvascular blood flow has the potential to enhance breast cancer therapy monitoring. Here, longitudinal blood flow of 4T1 murine breast cancer (N=125) under chemotherapy was quantified with diffuse correlation spectroscopy based on layer models. Six different treatment regimens involving doxorubicin, cyclophosphamide, and paclitaxel at clinically relevant doses were investigated. Treatments with cyclophosphamide increased blood flow as early as 3 days after administration, whereas paclitaxel induced a transient blood flow decrease at 1 day after administration. Early blood flow changes correlated strongly with the treatment outcome and distinguished treated from untreated mice individually for effective treatments. PMID:27699124

  18. Design and performance of an 0.8 hub-tip ratio axial flow pump rotor with a blade tip diffusion factor of 0.55

    NASA Technical Reports Server (NTRS)

    Urasek, D. C.

    1972-01-01

    A 22.9-centimeter diameter axial flow rotor with a 0.8 hub-tip radius ratio, a design flow coefficient of 0.466, and a blade tip design diffusion factor of 0.55 was tested in cold water under both cavitating and noncavitating conditions. Radial surveys of the flow conditions at the rotor inlet and outlet were made. At design flow, the rotor produced an overall headrise coefficient of 0.360 with an overall efficiency of 95.0 percent. The efficiency remained greater than 88 percent over the entire flow coefficient range which varied from 0.350 to 0.615.

  19. Cattaneo-Christov double-diffusion theory for three-dimensional flow of viscoelastic nanofluid with the effect of heat generation/absorption

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    The present research article focuses on three-dimensional flow of viscoelastic(second grade) nanofluid in the presence of Cattaneo-Christov double-diffusion theory. Flow caused is due to stretching sheet. Characteristics of heat transfer are interpreted by considering the heat generation/absorption. Nanofluid theory comprises of Brownian motion and thermophoresis. Cattaneo-Christov double-diffusion theory is introduced in the energy and concentration expressions. Such diffusions are developed as a part of formulating the thermal and solutal relaxation times framework. Suitable variables are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been explored through homotopic algorithm. Behavior of sundry variables on the velocities, temperature and concentration are scrutinized graphically. Numerical values of skin friction coefficients are also calculated and examined. Here thermal field enhances for heat generation parameter while reverse situation is noticed for heat absorption parameter.

  20. Dynamical tunneling versus fast diffusion for a non-convex Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittman, S. M.; Tannenbaum, E.; Heller, E. J.

    This paper attempts to resolve the issue of the nature of the 0.01-0.1 cm{sup −1} peak splittings observed in high-resolution IR spectra of polyatomic molecules. One hypothesis is that these splittings are caused by dynamical tunneling, a quantum-mechanical phenomenon whereby energy flows between two disconnected regions of phase-space across dynamical barriers. However, a competing classical mechanism for energy flow is Arnol’d diffusion, which connects different regions of phase-space by a resonance network known as the Arnol’d web. The speed of diffusion is bounded by the Nekhoroshev theorem, which guarantees stability on exponentially long time scales if the Hamiltonian is steep.more » Here we consider a non-convex Hamiltonian that contains the characteristics of a molecular Hamiltonian, but does not satisfy the Nekhoroshev theorem. The diffusion along the Arnol’d web is expected to be fast for a non-convex Hamiltonian. While fast diffusion is an unlikely competitor for longtime energy flow in molecules, we show how dynamical tunneling dominates compared to fast diffusion in the nearly integrable regime for a non-convex Hamiltonian, as well as present a new kind of dynamical tunneling.« less

  1. Construction of Fluid - solid Coupling Model with Improved Richards - BP & Its Engineering Application

    NASA Astrophysics Data System (ADS)

    Xie, Chengyu; Jia, Nan; Shi, Dongping; Lu, Hao

    2017-10-01

    In order to study the slurry diffusion law during grouting, Richards unsaturated-saturated model was introduced, the definition of the grouting model is clear, the Richards model control equation was established, And the BP neural network was introduced, the improved fluid-solid coupling model was constructed, Through the use of saturated - unsaturated seepage flow model, As well as the overflow boundary iterative solution of the mixed boundary conditions, the free surface is calculated. Engineering practice for an example, with the aid of multi - field coupling analysis software, the diffusion law of slurry was simulated numerically. The results show that the slurry diffusion rule is affected by grouting material, initial pressure and other factors. When the slurry starts, it flows in the cracks along the upper side of the grouting hole, when the pressure gradient is reduced to the critical pressure, that is, to the lower side of the flow, when the slurry diffusion stability, and ultimately its shape like an 8. The slurry is spread evenly from the overall point of view, from the grouting mouth toward the surrounding evenly spread, it gradually reaches saturation by non-saturation, and it is not a purely saturated flow, when the slurry spread and reach a saturated state, the diffusion time is the engineering grouting time.

  2. Effects of Lewis Number on Temperatures of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Sun, Z.; Chao, B. H.; Sunderland, P. B.; Axelbaum, R. I.; Urban, D. L.; Stocker, D. P.

    2007-01-01

    Spherical diffusion flames supported on a porous sphere were studied numerically and experimentally. Experiments were performed in 2.2 s and 5.2 s microgravity facilities. Numerical results were obtained from a Chemkin-based program. The program simulates flow from a porous sphere into a quiescent environment, yields both steady-state and transient results, and accounts for optically thick gas-phase radiation. The low flow velocities and long residence times in these diffusion flames lead to enhanced radiative and diffusive effects. Despite similar adiabatic flame temperatures, the measured and predicted temperatures varied by as much as 700 K. The temperature reduction correlates with flame size but characteristic flow times and, importantly, Lewis number also influence temperature. The numerical results show that the ambient gas Lewis number would have a strong effect on flame temperature if the flames were steady and nonradiating. For example, a 10% decrease in Lewis number would increase the steady-state flame temperature by 200 K. However, for these transient, radiating flames the effect of Lewis number is small. Transient predictions of flame sizes are larger than those observed in microgravity experiments. Close agreement could not be obtained without either increasing the model s thermal and mass diffusion properties by 30% or reducing mass flow rate by 25%.

  3. Lamination and mixing in laminar flows driven by Lorentz body forces

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Doorly, D.; Kustrin, D.

    2012-01-01

    We present a new approach to the design of mixers. This approach relies on a sequence of tailored flows coupled with a new procedure to quantify the local degree of striation, called lamination. Lamination translates to the distance over which the molecular diffusion needs to act to finalise mixing. A novel in situ mixing is achieved by the tailored sequence of flows. This sequence is shown with the property that material lines and lamination grow exponentially, according to processes akin to the well-known baker's map. The degree of mixing (stirring coefficient) likewise shows exponential growth before the saturation of the stirring rate. Such saturation happens when the typical striations' thickness is smaller than the diffusion's length scale. Moreover, without molecular diffusion, the predicted striations' thickness would be smaller than the size of an atom of hydrogen within 40 flow turnover times. In fact, we conclude that about 3 minutes, i.e. 15 turnover times, are sufficient to mix species with very low diffusivities, e.g. suspensions of virus, bacteria, human cells, and DNA.

  4. Eddy diffusivity of quasi-neutrally-buoyant inertial particles

    NASA Astrophysics Data System (ADS)

    Martins Afonso, Marco; Muratore-Ginanneschi, Paolo; Gama, Sílvio M. A.; Mazzino, Andrea

    2018-04-01

    We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show how to compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.

  5. Model of turnover kinetics in the lamellipodium: implications of slow- and fast- diffusing capping protein and Arp2/3 complex

    NASA Astrophysics Data System (ADS)

    McMillen, Laura M.; Vavylonis, Dimitrios

    2016-12-01

    Cell protrusion through polymerization of actin filaments at the leading edge of motile cells may be influenced by spatial gradients of diffuse actin and regulators. Here we study the distribution of two of the most important regulators, capping protein and Arp2/3 complex, which regulate actin polymerization in the lamellipodium through capping and nucleation of free barbed ends. We modeled their kinetics using data from prior single molecule microscopy experiments on XTC cells. These experiments have provided evidence for a broad distribution of diffusion coefficients of both capping protein and Arp2/3 complex. The slowly diffusing proteins appear as extended ‘clouds’ while proteins bound to the actin filament network appear as speckles that undergo retrograde flow. Speckle appearance and disappearance events correspond to assembly and dissociation from the actin filament network and speckle lifetimes correspond to the dissociation rate. The slowly diffusing capping protein could represent severed capped actin filament fragments or membrane-bound capping protein. Prior evidence suggests that slowly diffusing Apr2/3 complex associates with the membrane. We use the measured rates and estimates of diffusion coefficients of capping protein and Arp2/3 complex in a Monte Carlo simulation that includes particles in association with a filament network and diffuse in the cytoplasm. We consider two separate pools of diffuse proteins, representing fast and slowly diffusing species. We find a steady state with concentration gradients involving a balance of diffusive flow of fast and slow species with retrograde flow. We show that simulations of FRAP are consistent with prior experiments performed on different cell types. We provide estimates for the ratio of bound to diffuse complexes and calculate conditions where Arp2/3 complex recycling by diffusion may become limiting. We discuss the implications of slowly diffusing populations and suggest experiments to distinguish among mechanisms that influence long range transport.

  6. Flow and diffusion in channel-guided cell migration.

    PubMed

    Marel, Anna-Kristina; Zorn, Matthias; Klingner, Christoph; Wedlich-Söldner, Roland; Frey, Erwin; Rädler, Joachim O

    2014-09-02

    Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Method for producing components with internal architectures, such as micro-channel reactors, via diffusion bonding sheets

    DOEpatents

    Alman, David E [Corvallis, OR; Wilson, Rick D [Corvallis, OR; Davis, Daniel L [Albany, OR

    2011-03-08

    This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.

  8. Scaling Relations for Viscous and Gravitational Flow Instabilities in Multiphase Multicomponent Compressible Flow

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Amooie, M. A.; Soltanian, M. R.

    2016-12-01

    Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows transitions between advective, diffusive, ballistic, sub-diffusive, and non-Fickian diffusive behavior. These scaling relations can be used to improve the predictive powers of field-scale reservoir simulations that cannot resolve the complexities of unstable flow and transport at cm-m scales.

  9. Kinetics of Supercritical Water Oxidation. SERDP Compliance Technical Thrust Area

    DTIC Science & Technology

    1996-01-01

    main stream velocity ratio (vj/ Vrx ) and jet-to-main stream diameter ratio) were different for the two tees. As a result, the "fast" tee was providing...Opposed-Flow Tee with no Inserts: Organic/Water Oxidant/Water Feed Feed Flow Conditions: vj (cm/s) 20-64 vj/ Vrx = 0.2-0.25 _ Rej =905-2920 To Reactor...Oxidant/Water Feed New Side-Entry Tee with 0.01" ID inserts: Organic/Water Feed Flow Conditions: vi (cm/s) 775-2,500 vj/ Vrx = 7.5-9.3 Rej =5,700-18,000

  10. Development of a J-T Micro Compressor

    NASA Astrophysics Data System (ADS)

    Champagne, P.; Olson, J. R.; Nast, T.; Roth, E.; Collaco, A.; Kaldas, G.; Saito, E.; Loung, V.

    2015-12-01

    Lockheed Martin has developed and tested a space-quality compressor capable of delivering closed-loop gas flow with a high pressure ratio, suitable for driving a Joule- Thomson cold head. The compressor is based on a traditional “Oxford style” dual-opposed piston compressor with linear drive motors and flexure-bearing clearance-seal technology for high reliability and long life. This J-T compressor retains the approximate size, weight, and cost of the ultra-compact, 200 gram Lockheed Martin Pulse Tube Micro Compressor, despite the addition of a flow-rectifying system to convert the AC pressure wave into a steady flow.

  11. Current balancing for battery strings

    DOEpatents

    Galloway, James H.

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  12. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  13. Linear model describing three components of flow in karst aquifers using 18O data

    USGS Publications Warehouse

    Long, Andrew J.; Putnam, L.D.

    2004-01-01

    The stable isotope of oxygen, 18O, is used as a naturally occurring ground-water tracer. Time-series data for ??18O are analyzed to model the distinct responses and relative proportions of the conduit, intermediate, and diffuse flow components in karst aquifers. This analysis also describes mathematically the dynamics of the transient fluid interchange between conduits and diffusive networks. Conduit and intermediate flow are described by linear-systems methods, whereas diffuse flow is described by mass-balance methods. An automated optimization process estimates parameters of lognormal, Pearson type III, and gamma distributions, which are used as transfer functions in linear-systems analysis. Diffuse flow and mixing parameters also are estimated by these optimization methods. Results indicate the relative proximity of a well to a main conduit flowpath and can help to predict the movement and residence times of potential contaminants. The three-component linear model is applied to five wells, which respond to changes in the isotopic composition of point recharge water from a sinking stream in the Madison aquifer in the Black Hills of South Dakota. Flow velocities as much as 540 m/d and system memories of as much as 71 years are estimated by this method. Also, the mean, median, and standard deviation of traveltimes; time to peak response; and the relative fraction of flow for each of the three components are determined for these wells. This analysis infers that flow may branch apart and rejoin as a result of an anastomotic (or channeled) karst network.

  14. A novel model for smectic liquid crystals: Elastic anisotropy and response to a steady-state flow.

    PubMed

    Püschel-Schlotthauer, Sergej; Meiwes Turrión, Victor; Stieger, Tillmann; Grotjahn, Robin; Hall, Carol K; Mazza, Marco G; Schoen, Martin

    2016-10-28

    By means of a combination of equilibrium Monte Carlo and molecular dynamics simulations and nonequilibrium molecular dynamics we investigate the ordered, uniaxial phases (i.e., nematic and smectic A) of a model liquid crystal. We characterize equilibrium behavior through their diffusive behavior and elastic properties. As one approaches the equilibrium isotropic-nematic phase transition, diffusion becomes anisotropic in that self-diffusion D ⊥ in the direction orthogonal to a molecule's long axis is more hindered than self-diffusion D ∥ in the direction parallel to that axis. Close to nematic-smectic A phase transition the opposite is true, D ∥ < D ⊥ . The Frank elastic constants K 1 , K 2 , and K 3 for the respective splay, twist, and bend deformations of the director field n̂ are no longer equal and exhibit a temperature dependence observed experimentally for cyanobiphenyls. Under nonequilibrium conditions, a pressure gradient applied to the smectic A phase generates Poiseuille-like or plug flow depending on whether the convective velocity is parallel or orthogonal to the plane of smectic layers. We find that in Poiseuille-like flow the viscosity of the smectic A phase is higher than in plug flow. This can be rationalized via the velocity-field component in the direction of the flow. In a sufficiently strong flow these smectic layers are not destroyed but significantly bent.

  15. Continuum modelling of segregating tridisperse granular chute flow

    NASA Astrophysics Data System (ADS)

    Deng, Zhekai; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2018-03-01

    Segregation and mixing of size multidisperse granular materials remain challenging problems in many industrial applications. In this paper, we apply a continuum-based model that captures the effects of segregation, diffusion and advection for size tridisperse granular flow in quasi-two-dimensional chute flow. The model uses the kinematics of the flow and other physical parameters such as the diffusion coefficient and the percolation length scale, quantities that can be determined directly from experiment, simulation or theory and that are not arbitrarily adjustable. The predictions from the model are consistent with experimentally validated discrete element method (DEM) simulations over a wide range of flow conditions and particle sizes. The degree of segregation depends on the Péclet number, Pe, defined as the ratio of the segregation rate to the diffusion rate, the relative segregation strength κij between particle species i and j, and a characteristic length L, which is determined by the strength of segregation between smallest and largest particles. A parametric study of particle size, κij, Pe and L demonstrates how particle segregation patterns depend on the interplay of advection, segregation and diffusion. Finally, the segregation pattern is also affected by the velocity profile and the degree of basal slip at the chute surface. The model is applicable to different flow geometries, and should be easily adapted to segregation driven by other particle properties such as density and shape.

  16. Determination of the diffusivity, dispersion, skewness and kurtosis in heterogeneous porous flow. Part I: Analytical solutions with the extended method of moments.

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Vikhansky, Alexander

    2018-05-01

    The extended method of moments (EMM) is elaborated in recursive algorithmic form for the prediction of the effective diffusivity, the Taylor dispersion dyadic and the associated longitudinal high-order coefficients in mean-concentration profiles and residence-time distributions. The method applies in any streamwise-periodic stationary d-dimensional velocity field resolved in the piecewise continuous heterogeneous porosity field. It is demonstrated that EMM reduces to the method of moments and the volume-averaging formulation in microscopic velocity field and homogeneous soil, respectively. The EMM simultaneously constructs two systems of moments, the spatial and the temporal, without resorting to solving of the high-order upscaled PDE. At the same time, the EMM is supported with the reconstruction of distribution from its moments, allowing to visualize the deviation from the classical ADE solution. The EMM can be handled by any linear advection-diffusion solver with explicit mass-source and diffusive-flux jump condition on the solid boundary and permeable interface. The prediction of the first four moments is decisive in the optimization of the dispersion, asymmetry, peakedness and heavy-tails of the solute distributions, through an adequate design of the composite materials, wetlands, chemical devices or oil recovery. The symbolic solutions for dispersion, skewness and kurtosis are constructed in basic configurations: diffusion process and Darcy flow through two porous blocks in "series", straight and radial Poiseuille flow, porous flow governed by the Stokes-Brinkman-Darcy channel equation and a fracture surrounded by penetrable diffusive matrix or embedded in porous flow. We examine the moments dependency upon porosity contrast, aspect ratio, Péclet and Darcy numbers, but also for their response on the effective Brinkman viscosity applied in flow modeling. Two numerical Lattice Boltzmann algorithms, a direct solver of the microscopic ADE in heterogeneous structure and a novel scheme for EMM numerical formulation, are called for validation of the constructed analytical predictions.

  17. Present-day stress field in subduction zones: Insights from 3D viscoelastic models and data

    NASA Astrophysics Data System (ADS)

    Petricca, Patrizio; Carminati, Eugenio

    2016-01-01

    3D viscoelastic FE models were performed to investigate the impact of geometry and kinematics on the lithospheric stress in convergent margins. Generic geometries were designed in order to resemble natural subduction. Our model predictions mirror the results of previous 2D models concerning the effects of lithosphere-mantle relative flow on stress regimes, and allow a better understanding of the lateral variability of the stress field. In particular, in both upper and lower plates, stress axes orientations depend on the adopted geometry and axes rotations occur following the trench shape. Generally stress axes are oriented perpendicular or parallel to the trench, with the exception of the slab lateral tips where rotations occur. Overall compression results in the upper plate when convergence rate is faster than mantle flow rate, suggesting a major role for convergence. In the slab, along-strike tension occurs at intermediate and deeper depths (> 100 km) in case of mantle flow sustaining the sinking lithosphere and slab convex geometry facing mantle flow or in case of opposing mantle flow and slab concave geometry facing mantle flow. Along-strike compression is predicted in case of sustaining mantle flow and concave slabs or in case of opposing mantle flow and convex slabs. The slab stress field is thus controlled by the direction of impact of mantle flow onto the slab and by slab longitudinal curvature. Slab pull produces not only tension in the bending region of subducted plate but also compression where upper and lower plates are coupled. A qualitative comparison between results and data in selected subductions indicates good match for South America, Mariana and Tonga-Kermadec subductions. Discrepancies, as for Sumatra-Java, emerge due to missing geometric (e.g., occurrence of fault systems and local changes in the orientation of plate boundaries) and rheological (e.g., plasticity associated with slab bending, anisotropy) complexities in the models.

  18. Relativistic theory of particles in a scattering flow III: photon transport.

    NASA Astrophysics Data System (ADS)

    Achterberg, A.; Norman, C. A.

    2018-06-01

    We use the theory developed in Achterberg & Norman (2018a) and Achterberg & Norman (2018b) to calculate the stress due to photons that are scattered elastically by a relativistic flow. We show that the energy-momentum tensor of the radiation takes the form proposed by Eckart (1940). In particular we show that no terms associated with a bulk viscosity appear if one makes the diffusion approximation for radiation transport and treats the radiation as a separate fluid. We find only shear (dynamic) viscosity terms and heat flow terms in our expression for the energy-momentum tensor. This conclusion holds quite generally for different forms of scattering: Krook-type integral scattering, diffusive (Fokker-Planck) scattering and Thomson scattering. We also derive the transport equation in the diffusion approximation that shows the effects of the flow on the photon gas in the form of a combination of adiabatic heating and an irreversible heating term. We find no diffusive changes to the comoving number density and energy density of the scattered photons, in contrast with some published results in Radiation Hydrodynamics. It is demonstrated that these diffusive corrections to the number- and energy density of the photons are in fact higher-order terms that can (and should) be neglected in the diffusion approximation. Our approach eliminates these terms at the root of the expansion that yields the anisotropic terms in the phase-space density of particles and photons, the terms responsible for the photon viscosity.

  19. A numerical solution for the diffusion equation in hydrogeologic systems

    USGS Publications Warehouse

    Ishii, A.L.; Healy, R.W.; Striegl, Robert G.

    1989-01-01

    The documentation of a computer code for the numerical solution of the linear diffusion equation in one or two dimensions in Cartesian or cylindrical coordinates is presented. Applications of the program include molecular diffusion, heat conduction, and fluid flow in confined systems. The flow media may be anisotropic and heterogeneous. The model is formulated by replacing the continuous linear diffusion equation by discrete finite-difference approximations at each node in a block-centered grid. The resulting matrix equation is solved by the method of preconditioned conjugate gradients. The conjugate gradient method does not require the estimation of iteration parameters and is guaranteed convergent in the absence of rounding error. The matrixes are preconditioned to decrease the steps to convergence. The model allows the specification of any number of boundary conditions for any number of stress periods, and the output of a summary table for selected nodes showing flux and the concentration of the flux quantity for each time step. The model is written in a modular format for ease of modification. The model was verified by comparison of numerical and analytical solutions for cases of molecular diffusion, two-dimensional heat transfer, and axisymmetric radial saturated fluid flow. Application of the model to a hypothetical two-dimensional field situation of gas diffusion in the unsaturated zone is demonstrated. The input and output files are included as a check on program installation. The definition of variables, input requirements, flow chart, and program listing are included in the attachments. (USGS)

  20. The structure of the solution obtained with Reynolds-stress-transport models at the free-stream edges of turbulent flows

    NASA Astrophysics Data System (ADS)

    Cazalbou, J.-B.; Chassaing, P.

    2002-02-01

    The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is investigated. Current turbulent-diffusion models are found to produce propagative (possibly weak) solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bradshaw [Phys. Fluids 6, 1797 (1994)] for two-equation models. As in the latter study, an analysis is presented that provides qualitative information on the flow structure predicted near the edge if a condition on the values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive to the residual free-stream turbulence levels needed with conventional numerical methods. The main specific result is that, depending on the diffusion model, the propagative solution can force turbulence toward definite and rather extreme anisotropy states at the edge (one- or two-component limit). This is not the case with the model of Daly and Harlow [Phys. Fluids 13, 2634 (1970)]; it may be one of the reasons why this "old" scheme is still the most widely used, even in recent Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties encountered in computing even very simple flows with Lumley's pressure-diffusion model [Adv. Appl. Mech. 18, 123 (1978)]. A new realizability condition, according to which the diffusion model should not globally become "anti-diffusive," is introduced, and a recalibration of Lumley's model satisfying this condition is performed using information drawn from the analysis.

  1. Control of flow separation and mixing by aerodynamic excitation

    NASA Technical Reports Server (NTRS)

    Rice, Edward J.; Abbott, John M.

    1990-01-01

    The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

  2. Effects of obliquely opposing and following currents on wave propagation in a new 3D wave-current basin

    NASA Astrophysics Data System (ADS)

    Lieske, Mike; Schlurmann, Torsten

    2016-04-01

    INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common 3D wave analysis method, the Bayesian Directional Spectrum method (BDM). BDM was presented by Hashimoto et al. (1988). Lastly, identification of the wave-current interaction, the results from experiment with simultaneous waves and currents are compared with results for only-currents and only-waves in order to identify and exemplify the significance of nonlinear interaction processes. RESULTS The first results of the wave-current interaction show, as expected, a reduction in the wave height in the direction of flow and an increase in wave heights against the flow with unidirectional monochromatic waves. The superposition of current and orbital velocities cannot be conducted linearly. Furthermore, the results show a current domination for low wave periods and wave domination for larger wave periods. The criterion of a current or wave domination will be presented in the presentation. ACKNOWLEDGEMENT The support of the KFKI research project "Seegangsbelastungen (Seele)" (Contract No. 03KIS107) by the German "Federal Ministry of Education and Research (BMBF)" is gratefully acknowledged.

  3. Regression rate study of porous axial-injection, endburning hybrid fuel grains

    NASA Astrophysics Data System (ADS)

    Hitt, Matthew A.

    This experimental and theoretical work examines the effects of gaseous oxidizer flow rates and pressure on the regression rates of porous fuels for hybrid rocket applications. Testing was conducted using polyethylene as the porous fuel and both gaseous oxygen and nitrous oxide as the oxidizer. Nominal test articles were tested using 200, 100, 50, and 15 micron fuel pore sizes. Pressures tested ranged from atmospheric to 1160 kPa for the gaseous oxygen tests and from 207 kPa to 1054 kPa for the nitrous oxide tests, and oxidizer injection velocities ranged from 35 m/s to 80 m/s for the gaseous oxygen tests and from 7.5 m/s to 16.8 m/s for the nitrous oxide tests. Regression rates were determined using pretest and posttest length measurements of the solid fuel. Experimental results demonstrated that the regression rate of the porous axial-injection, end-burning hybrid was a function of the chamber pressure, as opposed to the oxidizer mass flux typical in conventional hybrids. Regression rates ranged from approximately 0.75 mm/s at atmospheric pressure to 8.89 mm/s at 1160 kPa for the gaseous oxygen tests and 0.21 mm/s at 207 kPa to 1.44 mm/s at 1054 kPa for the nitrous oxide tests. The analytical model was developed based on a standard ablative model modified to include oxidizer flow through the grain. The heat transfer from the flame was primarily modeled using an empirically determined flame coefficient that included all heat transfer mechanisms in one term. An exploratory flame model based on the Granular Diffusion Flame model used for solid rocket motors was also adapted for comparison with the empirical flame coefficient. This model was then evaluated quantitatively using the experimental results of the gaseous oxygen tests as well as qualitatively using the experimental results of the nitrous oxide tests. The model showed agreement with the experimental results indicating it has potential for giving insight into the flame structure in this motor configuration. Results from the model suggested that both kinetic and diffusion processes could be relevant to the combustion depending on the chamber pressure.

  4. Impact of blood flow on diffusion coefficients of the human kidney: a time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3T.

    PubMed

    Heusch, Philipp; Wittsack, Hans-Jörg; Kröpil, Patric; Blondin, Dirk; Quentin, Michael; Klasen, Janina; Pentang, Gael; Antoch, Gerald; Lanzman, Rotem S

    2013-01-01

    To evaluate the impact of renal blood flow on apparent diffusion coefficients (ADC) and fractional anisotropy (FA) using time-resolved electrocardiogram (ECG)-triggered diffusion-tensor imaging (DTI) of the human kidneys. DTI was performed in eight healthy volunteers (mean age 29.1 ± 3.2) using a single slice coronal echoplanar imaging (EPI) sequence (3 b-values: 0, 50, and 300 s/mm(2)) at the timepoint of minimum (20 msec after R wave) and maximum renal blood flow (200 msec after R wave) at 3T. Following 2D motion correction, region of interest (ROI)-based analysis of cortical and medullary ADC- and FA-values was performed. ADC-values of the renal cortex at maximum blood flow (2.6 ± 0.19 × 10(-3) mm(2)/s) were significantly higher than at minimum blood flow (2.2 ± 0.11 × 10(-3) mm(2)/s) (P < 0.001), while medullary ADC-values did not differ significantly (maximum blood flow: 2.2 ± 0.18 × 10(-3) mm(2)/s; minimum blood flow: 2.15 ± 0.14 × 10(-3) mm(2)/s). FA-values of the renal medulla were significantly greater at maximal blood (0.53 ± 0.05) than at minimal blood flow (0.47 ± 0.05) (P < 0.01). In contrast, cortical FA-values were comparable at different timepoints of the cardiac cycle. ADC-values in the renal cortex as well as FA-values in the renal medulla are influenced by renal blood flow. This impact has to be considered when interpreting renal ADC- and FA-values. Copyright © 2012 Wiley Periodicals, Inc.

  5. Turbo fluid machinery and diffusers

    NASA Technical Reports Server (NTRS)

    Sakurai, T.

    1984-01-01

    The general theory behind turbo devices and diffusers is explained. Problems and the state of research on basic equations of flow and experimental and measuring methods are discussed. Conventional centrifugation-type compressor and fan diffusers are considered in detail.

  6. Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Mukai, T.; Kohzu, M.

    1999-10-26

    The effect of temperature and grain size on superplastic flow was investigated using a relatively coarse-grained ({approximately}20 {micro}m) Mg-Al-Zn alloy for the inclusive understanding of the dominant diffusion process. Tensile tests revealed that the strain rate was inversely proportional to the square of the grain size and to the second power of stress. The activation energy was close to that for grain boundary diffusion at 523--573 K, and was close to that for lattice diffusion at 598--673 K. From the analysis of the stress exponent, the grain size exponent and activation energy, it was suggested that the dominant diffusion processmore » was influenced by temperature and grain size. It was demonstrated that the notion of effective diffusivity explained the experimental results.« less

  7. Modeling of information flows in natural gas storage facility

    NASA Astrophysics Data System (ADS)

    Ranjbari, Leyla; Bahar, Arifah; Aziz, Zainal Abdul

    2013-09-01

    The paper considers the natural-gas storage valuation based on the information-based pricing framework of Brody-Hughston-Macrina (BHM). As opposed to many studies which the associated filtration is considered pre-specified, this work tries to construct the filtration in terms of the information provided to the market. The value of the storage is given by the sum of the discounted expectations of the cash flows under risk-neutral measure, conditional to the constructed filtration with the Brownian bridge noise term. In order to model the flow of information about the cash flows, we assume the existence of a fixed pricing kernel with liquid, homogenous and incomplete market without arbitrage.

  8. NLS clutching bearing cavity flow analysis

    NASA Technical Reports Server (NTRS)

    Tran, Ken; Chan, Daniel C.; Darian, Armen

    1992-01-01

    A flow model of the NLS clutching bearing cavity was built for 2-D axisymmetric viscous analysis. From the computational fluid dynamics (CFD) approach, the tangential force exerted on the surfaces of the inner race was integrated to calculate the dividing torque which, in conjunction with the resistance torque, was used to predict the operating speed of the inner race. In order to further reduce the inner race rotation, the swirling flow at the cavity inlet was partially redirected to generate an opposing torque. Thirty six slanted slots were incorporated into the anti-vortex rib to achieve this goal. A 3-D flow analysis performed on this configuration indicates a drastic reduction of the driving torque and inner race RPM.

  9. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  10. Noncontact diffuse correlation tomography of human breast tumor

    PubMed Central

    He, Lian; Lin, Yu; Huang, Chong; Irwin, Daniel; Szabunio, Margaret M.; Yu, Guoqiang

    2015-01-01

    Abstract. Our first step to adapt our recently developed noncontact diffuse correlation tomography (ncDCT) system for three-dimensional (3-D) imaging of blood flow distribution in human breast tumors is reported. A commercial 3-D camera was used to obtain breast surface geometry, which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the mesh surface and the measured boundary data were combined with a finite element framework for 3-D image reconstruction of blood flow distribution. This technique was tested in computer simulations and in vivo human breasts with low-grade carcinoma. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor is within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor blood flow contrasts. In vivo imaging results from two breast carcinomas show higher average blood flow contrasts (5.9- and 10.9-fold) in the tumor regions compared to the surrounding tissues, which are comparable with previous findings using diffuse correlation spectroscopy. The ncDCT system has the potential to image blood flow distributions in soft and vulnerable tissues without distorting tissue hemodynamics. PMID:26259706

  11. Development of Tokamak Transport Solvers for Stiff Confinement Systems

    NASA Astrophysics Data System (ADS)

    St. John, H. E.; Lao, L. L.; Murakami, M.; Park, J. M.

    2006-10-01

    Leading transport models such as GLF23 [1] and MM95 [2] describe turbulent plasma energy, momentum and particle flows. In order to accommodate existing transport codes and associated solution methods effective diffusivities have to be derived from these turbulent flow models. This can cause significant problems in predicting unique solutions. We have developed a parallel transport code solver, GCNMP, that can accommodate both flow based and diffusivity based confinement models by solving the discretized nonlinear equations using modern Newton, trust region, steepest descent and homotopy methods. We present our latest development efforts, including multiple dynamic grids, application of two-level parallel schemes, and operator splitting techniques that allow us to combine flow based and diffusivity based models in tokamk simulations. 6pt [1] R.E. Waltz, et al., Phys. Plasmas 4, 7 (1997). [2] G. Bateman, et al., Phys. Plasmas 5, 1793 (1998).

  12. Clinical Applications of Near-infrared Diffuse Correlation Spectroscopy and Tomography for Tissue Blood Flow Monitoring and Imaging

    PubMed Central

    Shang, Yu; Li, Ting; Yu, Guoqiang

    2017-01-01

    Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring. PMID:28199219

  13. Effect of shroud geometry on the effectiveness of a short mixing stack gas eductor model

    NASA Astrophysics Data System (ADS)

    Kavalis, A. E.

    1983-06-01

    An existing apparatus for testing models of gas eductor systems using high temperature primary flow was modified to provide improved control and performance over a wide range of gas temperature and flow rates. Secondary flow pumping, temperature and pressure data were recorded for two gas eductor system models. The first, previously tested under hot flow conditions, consists of a primary plate with four tilted-angled nozzles and a slotted, shrouded mixing stack with two diffuser rings (overall L/D = 1.5). A portable pyrometer with a surface probe was used for the second model in order to identify any hot spots at the external surface of the mixing stack, shroud and diffuser rings. The second model is shown to have almost the same mixing and pumping performance with the first one but to exhibit much lower shroud and diffuser surface temperatures.

  14. Turbulent patterns in wall-bounded flows: A Turing instability?

    NASA Astrophysics Data System (ADS)

    Manneville, Paul

    2012-06-01

    In their way to/from turbulence, plane wall-bounded flows display an interesting transitional regime where laminar and turbulent oblique bands alternate, the origin of which is still mysterious. In line with Barkley's recent work about the pipe flow transition involving reaction-diffusion concepts, we consider plane Couette flow in the same perspective and transform Waleffe's classical four-variable model of self-sustaining process into a reaction-diffusion model. We show that, upon fulfillment of a condition on the relative diffusivities of its variables, the featureless turbulent regime becomes unstable against patterning as the result of a Turing instability. A reduced two-variable model helps us to delineate the appropriate region of parameter space. An intrinsic status is therefore given to the pattern's wavelength for the first time. Virtues and limitations of the model are discussed, calling for a microscopic support of the phenomenological approach.

  15. The operational stability of a centrifugal compressor and its dependence on the characteristics of the subcomponents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunziker, R.; Gyarmathy, G.

    1994-04-01

    A centrifugal compressor was tested with three different diffusers with circular-arc vanes. The vane inlet angle was varied from 15 to 30 deg. Detailed static wall pressure measurements show that the pressure field in the diffuser inlet is very sensitive to flow rate. The stability limit regularly occurred at the flow rate giving the maximum pressure rise for the overall stage. Mild surge arises as a dynamic instability of the compression system. The analysis of the pressure rise characteristic of each individual subcomponent (impeller, diffuser inlet, diffuser channel,...) reveals their contribution to the overall pressure rise. The diffuser channels playmore » an inherently destabilizing role while the impeller and the diffuser inlet are typically stabilizing. The stability limit was mainly determined by a change in the characteristic of the diffuser inlet. Further, the stability limit was found to be independent of the development of inducer-tip recirculation.« less

  16. Design and Fabrication of a Hele-Shaw Apparatus for Observing Instabilities of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Wichman, I. S.; Oravecz-Simpkins, L.; Olson, S.

    2001-01-01

    Examinations of flame fronts spreading over solid fuels in an opposed flow of oxidizer have shown that the flame front fragments into smaller (cellular) flames. These 'flamelets' will oscillate, recombine, or extinguish, indicating that they are in the near extinction limit regime (i.e., to one side of the quenching branch of the flammability map). Onset of unstable cellular flamelet formation for flame spread over thin fuels occurs when a heat-sink substrate is placed a small distance from the underside of the fuel. This heat-sink substrate (or backing) displaces the quenching branch of the flammability map in a direction that causes the instabilities to occur at higher air velocities. Similar near-limit behavior has been observed in other works using different fuels, thus suggesting that these dynamic mechanisms are fuel-independent and therefore fundamental attributes of flames in this near-limit flame spread regime. The objective of this project is to determine the contributions of the hydrodynamic and thermodiffusive mechanisms to the observed formation of flame instabilities. From this, a model of diffusion flame instabilities shall be generated. Previously, experiments were conducted in NASA drop towers, thereby limiting observation time to O(1-5 sec). The NASA tests exhibited flamelet survival for the entire drop time, suggesting that flamelets (i.e., small cellular flames) might exist, if permitted, for longer time periods. By necessity, experiments were limited to thermally thin cellulose fuels (approximately 0.001 in thick): instabilities could form by virtue of faster spread rates over thin fuels. Unstable behavior was unlikely in the short drop time for thicker fuels. In the International Space Station (ISS), microgravity time is unlimited, so both thin and thick fuels can be tested.

  17. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling.

    PubMed

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. Copyright © 2015 the American Physiological Society.

  18. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

    PubMed Central

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143

  19. Two opposed lateral jets injected into swirling crossflow

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Mcmurry, C. B.; Ong, L. H.

    1987-01-01

    Experiments have been conducted to obtain the time-mean and turbulent quantities of opposed lateral jets in a low speed, nonreacting flowfield. A jet-to-crossflow velocity ratio of R = 4 was used throughout the experiments, with swirl vane angles of 0 (swirler removed), 45 and 70 degrees used with the crossflow. Flow visualization techniques used were neutrally-buoyant helium-filled soap bubbles and multispark photography in order to obtain the gross flowfield characteristics. Measurements of time-mean and turbulent quantities were obtained utilizing a six-orientation single hot-wire technique. For the nonswirling case, the jets were found not to penetrate past the test-section centerline, in contrast to the single lateral jet with the same jet-to-crossflow velocity ratio. In the swirling cases, the crossflow remains in a narrow region near the wall of the test section. The opposed jets are swept from their vertical courses into spiral trajectories close to the confining walls. Extensive results are presented in r-x plane plots.

  20. Spreadsheet Calculation of Jets in Crossflow: Opposed Rows of Slots Slanted at 45 Degrees

    NASA Technical Reports Server (NTRS)

    Holderman, James D.; Clisset, James R.; Moder, Jeffrey P.

    2011-01-01

    The purpose of this study was to extend a baseline empirical model to the case of jets entering the mainstream flow from opposed rows of 45 degrees slanted slots. The results in this report were obtained using a spreadsheet modified from the one posted with NASA/TM--2010-216100. The primary conclusion in this report is that the best mixing configuration for opposed rows of 45 degrees slanted slots at any down stream distance is a parallel staggered configuration where the slots are angled in the same direction on top and bottom walls and one side is shifted by half the orifice spacing. Although distributions from perpendicular slanted slots are similar to those from parallel staggered configurations at some downstream locations, results for perpendicular slots are highly dependent on downstream distance and are no better than parallel staggered slots at locations where they are similar and are worse than parallel ones at other distances.

  1. EFFECT OF OXYGEN ADDITION ON POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN 1,3 BUTADIENE COUNTER-FLOW DIFFUSION FLAMES. (R828193)

    EPA Science Inventory

    The effect of 3% O2 addition to the fuel on detailed chemical structure of a 1,3 butadiene counter-flow diffusion flame has been investigated by using heated microprobe sampling and online gas chromatography mass spectrometry. Centerline gas temperature and species ...

  2. Heat of transport of air in clay.

    PubMed

    Minkin, Leonid; Shapovalov, Alexander S

    2007-01-01

    By measuring the thermomolecular pressure difference and using principles of irreversible thermodynamics, heat of transport of air in clay and its coefficient of diffusion are found. A comparison of thermotranspiration and pressure driven gas fluxes through concrete slab in homes is examined. It is shown that thermotranspiration air/radon flow may greatly exceed diffusion (pressure driven) flow in homes.

  3. The validity of flow approximations when simulating catchment-integrated flash floods

    NASA Astrophysics Data System (ADS)

    Bout, B.; Jetten, V. G.

    2018-01-01

    Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity and the spatial resolution of the model. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement both these flow approximations and channel flooding based on dynamic flow. The flow approximations are used to recreate measured discharge in three catchments, among which is the hydrograph of the 2003 flood event in the Fella river basin. Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 m. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, in the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration since pressure forces are removed, leading to significant errors.

  4. Flow Through a Rectangular-to-Semiannular Diffusing Transition Duct

    NASA Technical Reports Server (NTRS)

    Foster, Jeff; Wendt, Bruce J.; Reichert, Bruce A.; Okiishi, Theodore H.

    1997-01-01

    Rectangular-to-semiannular diffusing transition ducts are critical inlet components on supersonic airplanes having bifucated engine inlets. This paper documents measured details of the flow through a rectangular-to-semiannular transition duct having an expansion area ratio of 1.53. Three-dimensional velocity vectors and total pressures at the exit plane of the diffuser are presented. Surface oil-flow visualization and surface static pressure data are shown. The tests were conducted with an inlet Mach number of 0.786 and a Reynolds number based on the inlet centerline velocity and exit diameter of 3.2 x 10(exp 6). The measured data are compared with previously published computational results. The ability of vortex generators to reduce circumferential total pressure distortion is demonstrated.

  5. Flow injection analysis simulations and diffusion coefficient determination by stochastic and deterministic optimization methods.

    PubMed

    Kucza, Witold

    2013-07-25

    Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.

  6. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    PubMed

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Wake orientation and its influence on the performance of diffusers with inlet distortion

    NASA Astrophysics Data System (ADS)

    Coffman, Jesse M.

    Distortion at the inlet to diffusers is very common in internal flow applications. Inlet velocity distortion influences the pressure recovery and flow regimes of diffusers. This work introduced a centerline wake at the square inlet of a plane wall diffuser in two orthogonal orientations to investigate its influence on the diffuser performance. Two different wakes were generated. One was from a mesh strip which produced a velocity deficit with low turbulence intensity and two shear layers. The other wake generator was a D-shaped cylinder which produced a wake with high turbulence intensity and large length scales. These inlet conditions were generated for a diffuser with a diffusion angle of 3° and 6°. A pair of RANS simulations were used to investigate the influence of the orthogonal inlet orientations on the solution. The inlet conditions were taken from the inlet velocity field measured for the mesh strip. The flow development and exit conditions showed some similarities and some differences with the experimental results. The performance of a diffuser is typically measured through the static pressure recovery coefficient and the total pressure losses. The definition of these metrics commonly found in the literature were insufficient to discern differences between the wake orientations. New metrics were derived using the momentum flux profile parameter which related the static pressure recovery, the total pressure losses, and the velocity uniformity at the inlet and exit of the diffuser. These metrics revealed a trade-off between the total pressure losses and the uniformity of the velocity field.

  8. Development of fluorescent glucose bioprobes and their application on real-time and quantitative monitoring of glucose uptake in living cells.

    PubMed

    Lee, Hyang Yeon; Lee, Jae Jeong; Park, Jongmin; Park, Seung Bum

    2011-01-03

    We developed a novel fluorescent glucose bioprobe, GB2-Cy3, for the real-time and quantitative monitoring of glucose uptake in living cells. We synthesized a series of fluorescent glucose analogues by adding Cy3 fluorophores to the α-anomeric position of D-glucose through various linkers. Systematic and quantitative analysis of these Cy3-labeled glucose analogues revealed that GB2-Cy3 was the ideal fluorescent glucose bioprobe. The cellular uptake of this probe competed with the cellular uptake of D-glucose in the media and was mediated by a glucose-specific transport system, and not by passive diffusion. Flow cytometry and fluorescence microscopy analyses revealed that GB2-Cy3 is ten times more sensitive than 2-NBDG, a leading fluorescent glucose bioprobe. GB2-Cy3 can also be utilized for the quantitative flow cytometry monitoring of glucose uptake in metabolically active C2C12 myocytes under various treatment conditions. As opposed to a glucose uptake assay performed by using radioisotope-labeled deoxy-D-glucose and a scintillation counter, GB2-Cy3 allows the real-time monitoring of glucose uptake in living cells under various experimental conditions by using fluorescence microscopy or confocal laser scanning microscopy (CLSM). Therefore, we believe that GB2-Cy3 can be utilized in high-content screening (HCS) for the discovery of novel therapeutic agents and for making significant advances in biomedical studies and diagnosis of various diseases, especially metabolic diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Perspectives on dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1986-01-01

    A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.

  10. An Investigation of the Aerodynamics and Cooling of a Horizontally-Opposed Engine Installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.

    1977-01-01

    A research program to investigate the aerodynamics of reciprocating aircraft engine cooling installations is discussed. Current results from a flight test program are presented concerning installation flow measurement methods. The influence of different inlet designs on installation cooling effectiveness and efficiency are described.

  11. Interactive computer graphics applications for compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.

  12. Quantifying residual, eddy, and mean flow effects on mixing in an idealized circumpolar current

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.

    2017-07-13

    Meridional diffusivity is assessed in this paper for a baroclinically unstable jet in a high-latitudeIdealized Circumpolar Current (ICC) using the Model for Prediction Across Scales-Ocean (MPAS-O) and the online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) diagnostic via space-time dispersion of particle clusters over 120 monthly realizations of O(10 6) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000 m 2 s -1) and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100 m 2 s -1) due tomore » the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥ 80% of the total diffusivity relative to mean shear [O(100 m 2 s -1)], linear waves [O(1000 m 2 s -1)], and undecomposed full diffusivity [O(6000 m 2 s -1)]. Finally, diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.« less

  13. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    DOT National Transportation Integrated Search

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  14. 3D-CFD analysis of diffusion and emission of VOCs in a FLEC cavity.

    PubMed

    Zhu, Q; Kato, S; Murakami, S; Ito, K

    2007-06-01

    This study is performed as a part of research that examines the emission and diffusion characteristics of volatile organic compounds (VOCs) from indoor building materials. In this paper, the flow field and the emission field of VOCs from the surface of building materials in a Field and Laboratory Emission Cell (FLEC) cavity are examined by 3D Computational Fluid Dynamics (CFD) analysis. The flow field within the FLEC cavity is laminar. With a total flow of 250 ml/min, the air velocity near the test material surface ranges from 0.1 to 4.5 cm/s. Three types of emission from building materials are studied here: (i) emission phenomena controlled by internal diffusion, (ii) emission phenomena controlled by external diffusion, and (iii) emission phenomena controlled by mixed diffusion (internal + external diffusion). In the case of internal diffusion material, with respect to the concentration distribution in the cavity, the local VOC emission rate becomes uniform and the FLEC works well. However, in the case of evaporation type (external diffusion) material, or mixed type materials (internal + external diffusion) when the resistance to transporting VOCs in the material is small, the FLEC is not suitable for emission testing because of the thin FLEC cavity. In this case, the mean emission rate is restricted to a small value, since the VOC concentration in the cavity rises to the same value as the surface concentration through molecular diffusion within the thin cavity, and the concentration gradient normal to the surface becomes small. The diffusion field and emission rate depend on the cavity concentration and on the Loading Factor. That is, when the testing material surface in the cavity is partially sealed to decrease the Loading Factor, the emission rate become higher with the decrease in the exposed area of the testing material. The flow field and diffusion field within the FLEC cavity are investigated by CFD method. After presenting a summary of the velocity distributed over the surface of test material and the emission properties of different type materials in FLEC, the paper pointed out that there is a bias in the airflow inside the FLEC cavity but do not influence the result of test emission rate, and the FLEC method is unsuitable for evaporation type materials in which the mass transfer of the surface controls the emission rate.

  15. Numerical investigations of hybrid rocket engines

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.

    2018-03-01

    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  16. The Development of an 8-inch by 8-inch Slotted Tunnel for Mach Numbers up to 1.28

    NASA Technical Reports Server (NTRS)

    Little, B. H., Jr.; Cubbage, James J., Jr.

    1961-01-01

    An 8-inch by 8-inch transonic tunnel model with test section slotted on two opposite walls was constructed in which particular emphasis -was given to the development of slot geometry, slot-flow reentry section, and short-diffuser configurations for good test-region flow and minimum total-pressure losses. Center-line static pressures through the test section, wall static pressures through the other parts of the tunnel, and total-pressure distributions at the inlet and exit stations of the diffuser were measured- With a slot length equal to two tunnel heights and 1/14 open-area-ratio slotted walls) a test region one tunnel height in length was obtained in which the deviation from the mean Mach number was less than +/- 0.01 up to Mach number 1.15. With 1/7 open-area-ratio slotted walls, a test region 0.84 tunnel heights in length with deviation less than +/- O.01 was obtained up to Mach number 1.26. Increasing the tunnel diffuser angle from 6.4 to 10 deg. increased pressure loss through the tunnel at Mach number 1.20 from 15 percent to 20 percent of the total pressure. The use of other diffusers with equivalent angles of 10 deg. but contoured so that the initial diffusion angle was less than 10 deg. and the final angle was 200 reduced the losses to as low as 16 percent. A method for changing the test-section Mach number rapidly by controlling the flow through a bypass line from the tunnel settling chamber to the slot-flow plenum chamber of the test section was very effective. The test-section Mach number was reduced approximately 5 percent in 1/8 second by bleeding into the test section a flow of air equal to 2 percent of the mainstream flow and 30 percent in 1/4 second with bleed flow equal to 10 percent of the mainstream flow. The rate of reduction was largely determined by the opening rate of the bleed-flow-control valve.

  17. Innovative model-based flow rate optimization for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2016-11-01

    In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.

  18. Observatory enabled discovery of diffuse discharge temperature structure

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Lee, R.; Ivakin, A. N.

    2016-12-01

    Underwater cabled observatories provide long term but short time and spatial scale measurements of hydrothermal discharge properties. For the first time, an intricate picture of diffuse discharge has been captured at both Axial Volcano (Axial) and the Main Endeavour Field (MEF) on the Juan de Fuca Ridge. This study combines thermistor (3D array, 2D array and spot) and acoustic data to compare the statistical and distribution characteristics of diffuse discharge for narrow crack flow (at ASHES field on Axial) and distributive flow out of a sulfide structure (at Grotto vent in MEF). Two surprising observations seem to apply to both styles of diffuse discharge: (1) thermal variance scales with the mean temperature suggesting coherent flow structures exist in the form of plumes, wakes or boundary layers, and (2) thermal hot spots are persistently localized in space, despite tidal current disruption. Thermal variance was measured at ASHES using a 3D thermistor array (TMPSF) with 10 s sampling over two years and at Grotto using 2D thermistor arrays with 1 hr sampling over several years and a ROV-held CTD (Seabird 39plus) with 0.5 second sampling over several minutes. For locations with temperatures greater than ambient, the variance in temperature scales with the mean temperature. This unusual statistical property is characteristic of self-similar flows like plumes, wakes, and boundary layers and arises from the bounded mixing of a cooling high temperature fluid with a cold ambient fluid. Thus this observation implies an underlying coherence to the diffuse discharge that has not yet been adequately captured or described. A coherent flow like a plume should have a discoverable spatial pattern, albeit one that may vary with the influence of tides. Acoustic observations ( 1m diameter footprint) of the Grotto sulfide edifice found stable local hot spots of diffuse discharge that sway with tides. In contrast, the 3D thermistor array at ASHES sees very localized (single thermistor) hot spots that persist for months. Is this a fundamental difference between two styles of diffuse discharge? Alternate conceptual models of diffuse discharge are used to place localized observations in a spatial context and develop a rigorous understanding of the spatial and temporal pattern of diffuse discharge for both crack and distributive styles.

  19. Turbulent shear layers in confining channels

    NASA Astrophysics Data System (ADS)

    Benham, Graham P.; Castrejon-Pita, Alfonso A.; Hewitt, Ian J.; Please, Colin P.; Style, Rob W.; Bird, Paul A. D.

    2018-06-01

    We present a simple model for the development of shear layers between parallel flows in confining channels. Such flows are important across a wide range of topics from diffusers, nozzles and ducts to urban air flow and geophysical fluid dynamics. The model approximates the flow in the shear layer as a linear profile separating uniform-velocity streams. Both the channel geometry and wall drag affect the development of the flow. The model shows good agreement with both particle image velocimetry experiments and computational turbulence modelling. The simplicity and low computational cost of the model allows it to be used for benchmark predictions and design purposes, which we demonstrate by investigating optimal pressure recovery in diffusers with non-uniform inflow.

  20. An Experimental Study of n-Heptane and JP-7 Extinction Limits in an Opposed Jet Burner

    NASA Technical Reports Server (NTRS)

    Convery, Janet L.; Pellett, Gerald L.; O'Brien, Walter F., Jr.; Wilson, Lloyd G.; Williams, John

    2005-01-01

    Propulsion engine combustor design and analysis requires experimentally verified data on the chemical kinetics of fuel. Among the important data is the combustion extinction limit as measured by observed maximum flame strain rate. The extinction limit relates to the ability to maintain a flame in a combustor during operation. Extinction limit data can be obtained for a given fuel by means of a laminar flame experiment using an opposed jet burner (OJB). Laminar extinction limit data can be applied to the turbulent application of a combustor via laminar flamelet modeling. The OJB consists of two axi-symmetric tubes (one for fuel and one for oxidizer), which produce a flat, disk-like counter-flow diffusion flame. This paper presents results of experiments to measure extinction limits for n-heptane and the military specification fuel JP-7, obtained from an OJB. JP-7 is an Air Force-developed fuel that continues to be important in the area of hypersonics. Because of its distinct properties it is currently the hydrocarbon fuel of choice for use in Scramjet engines. This study provides much-desired data for JP-7, for which very little information previously existed. The interest in n-heptane is twofold. First, there has been a significant amount of previous extinction limit study and resulting data with this fuel. Second, n-heptane (C7H16) is a pure substance, and therefore does not vary in composition as does JP-7, which is a mixture of several different hydrocarbons. These two facts allow for a baseline to be established by comparing the new OJB results to those previously taken. Additionally, the data set for n-heptane, which previously existed for mixtures up to 26 mole percent in nitrogen, is completed up to 100% n-heptane. The extinction limit data for the two fuels are compared, and complete experimental results are included.

  1. Numerical simulation of double‐diffusive finger convection

    USGS Publications Warehouse

    Hughes, Joseph D.; Sanford, Ward E.; Vacher, H. Leonard

    2005-01-01

    A hybrid finite element, integrated finite difference numerical model is developed for the simulation of double‐diffusive and multicomponent flow in two and three dimensions. The model is based on a multidimensional, density‐dependent, saturated‐unsaturated transport model (SUTRA), which uses one governing equation for fluid flow and another for solute transport. The solute‐transport equation is applied sequentially to each simulated species. Density coupling of the flow and solute‐transport equations is accounted for and handled using a sequential implicit Picard iterative scheme. High‐resolution data from a double‐diffusive Hele‐Shaw experiment, initially in a density‐stable configuration, is used to verify the numerical model. The temporal and spatial evolution of simulated double‐diffusive convection is in good agreement with experimental results. Numerical results are very sensitive to discretization and correspond closest to experimental results when element sizes adequately define the spatial resolution of observed fingering. Numerical results also indicate that differences in the molecular diffusivity of sodium chloride and the dye used to visualize experimental sodium chloride concentrations are significant and cause inaccurate mapping of sodium chloride concentrations by the dye, especially at late times. As a result of reduced diffusion, simulated dye fingers are better defined than simulated sodium chloride fingers and exhibit more vertical mass transfer.

  2. Effective diffusion coefficient including the Marangoni effect

    NASA Astrophysics Data System (ADS)

    Kitahata, Hiroyuki; Yoshinaga, Natsuhiko

    2018-04-01

    Surface-active molecules supplied from a particle fixed at the water surface create a spatial gradient of the molecule concentration, resulting in Marangoni convection. Convective flow transports the molecules far from the particle, enhancing diffusion. We analytically derive the effective diffusion coefficient associated with the Marangoni convection rolls. The resulting estimated effective diffusion coefficient is consistent with our numerical results and the apparent diffusion coefficient measured in experiments.

  3. A Theory for Stability and Buzz Pulsation Amplitude in Ram Jets and an Experimental Investigation Including Scale Effects

    NASA Technical Reports Server (NTRS)

    Trimpi, Robert L

    1956-01-01

    From a theory developed on a quasi-one-dimensional-flow basis, it is found that the stability of the ram jet is dependent upon the instantaneous values of mass flow and total pressure recovery of the supersonic diffuser and immediate neighboring subsonic diffuser. Conditions for stable and unstable flow are presented. The theory developed in the report is in agreement with the experimental data of NACA-TN-3506 and NACA-RM-L50K30. A simple theory for predicting the approximate amplitude of small pressure pulsation in terms of mass-flow decrement from minimum-stable mass flow is developed and found to agree with experiments. Cold-flow tests at a Mach number of 1.94 of ram-jet models having scale factors of 3.15:1 and Reynolds number ratios of 4.75:1 with several supersonic diffuser configurations showed only small variations in performance between geometrically similar models. The predominant variation in steady-flow performance resulted from the larger boundary layer in the combustion chamber of the low Reynolds number models. The conditions at which buzz originated were nearly the same for the same supersonic diffuser (cowling-position angle) configurations in both large and small diameter models. There was no appreciable variation in stability limits of any of the models when the combustion-chamber length was increased by a factor of three. The unsteady-flow performance and wave patterns were also similar when considered on a reduced-frequency basis determined from the relative lengths of the model. The negligible effect of Reynolds number on stability of the off-design configurations was not anticipated in view of the importance of boundary layer to stability, and this result should not be construed to be generally applicable. (author)

  4. The Influence of Preferential Flow on Pressure Propagation and Landslide Triggering of the Rocca Pitigliana Landslide

    NASA Astrophysics Data System (ADS)

    Shao, W.; Bogaard, T.; Bakker, M.; Berti, M.; Savenije, H. H. G.

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately.

  5. LATERAL HEAT FLOW INFRARED THERMOGRAPHY FOR THICKNESS INDEPENDENT DETERMINATION OF THERMAL DIFFUSIVITY IN CFRP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tralshawala, Nilesh; Howard, Don; Knight, Bryon

    2008-02-28

    In conventional infrared thermography, determination of thermal diffusivity requires thickness information. Recently GE has been experimenting with the use of lateral heat flow to determine thermal diffusivity without thickness information. This work builds on previous work at NASA Langley and Wayne State University but we incorporate thermal time of flight (tof) analysis rather than curve fitting to obtain quantitative information. We have developed appropriate theoretical models and a tof based data analysis framework to experimentally determine all components of thermal diffusivity from the time-temperature measurements. Initial validation was carried out using finite difference simulations. Experimental validation was done using anisotropicmore » carbon fiber reinforced polymer (CFRP) composites. We found that in the CFRP samples used, the in-plane component of diffusivity is about eight times larger than the through-thickness component.« less

  6. Planar laser imaging of differential molecular diffusion in gas-phase turbulent jets

    NASA Astrophysics Data System (ADS)

    Brownell, C. J.; Su, L. K.

    2008-03-01

    Planar laser Rayleigh scattering yields quantitative, two-dimensional measurements of differential diffusion in a turbulent propane-helium jet issuing into air. The jet exit Reynolds number ranges from 1000 to 3000, corresponding to estimated outer-scale Reynolds numbers from 4300 to 13 000. Using a technique originally proposed by Bilger and Dibble [Combust. Sci. Technol. 28, 161 (1982)], the imaging measurements allow direct determination of a normalized scalar difference quantity ξ. For the lower Re, significant differential diffusion develops in the pretransitional portion of the flow. Downstream of the turbulent transition, radial profiles of mean ξ take on a characteristic form, with an excess of the less-diffusive propane on the jet boundary. This characteristic form is independent of Reynolds number, and is thus apparently independent of the degree of differential diffusion in the pretransition range. Evolution of the ξ fields in the turbulent part of the flow is surprisingly consistent with the mixing of conventional scalar quantities. Fluctuation profiles of ξ have a self-similar, bimodal shape for each Re, and power spectra of ξ are monotonically decreasing, with a distinct k-5/3 inertial range. This spectral form is at odds with prior analytical and computational results in isotropic turbulence, which predicted that the spectrum would show a peak intermediate between the diffusive cutoffs of the individual scalars. The discrepancy appears to be due to the forcing applied in the simulations; the differential diffusion in the experiments preferentially develops in the jet near field, so the resulting evolution is more akin to a decay process. This is further emphasized by the observation that the thickness of ξ structures in the jet decreases with downstream distance. The present results indicate that consideration of differential diffusion must account for the details of the flow configuration, particularly the uniformity of turbulence levels. This has important implications for reacting flows, where local laminarization by heat release can be significant.

  7. Influence of molecular shape, conformability, net surface charge, and tissue interaction on transscleral macromolecular diffusion.

    PubMed

    Srikantha, Nishanthan; Mourad, Fatma; Suhling, Klaus; Elsaid, Naba; Levitt, James; Chung, Pei Hua; Somavarapu, Satyanarayana; Jackson, Timothy L

    2012-09-01

    The purpose of this study was to investigate the influence of molecular shape, conformability, net surface charge and tissue interaction on transscleral diffusion. Unfixed, porcine sclera was clamped in an Ussing chamber. Fluorophore-labelled neutral albumin, neutral dextran, or neutral ficoll were placed in one hemi-chamber and the rate of transscleral diffusion was measured over 24 h using a spectrophotometer. Experiments were repeated using dextrans and ficoll with positive or negative net surface charges. Fluorescence recovery after photobleaching (FRAP) was undertaken to compare transscleral diffusion with diffusion through a solution. All molecules were 70 kDa. With FRAP, the diffusion coefficient (D) of neutral molecules was highest for albumin, followed by ficoll, then dextran (p < 0.0001). Positive dextrans diffused fastest, followed by negative, then neutral dextrans (p = 0.0004). Neutral ficoll diffused the fastest, followed by positive then negative ficoll (p = 0.5865). For the neutral molecules, transscleral D was highest for albumin, followed by dextran, then ficoll (p < 0.0001). D was highest for negative ficoll, followed by neutral, then positive ficoll (p < 0.0001). By contrast, D was highest for positive dextran, followed by neutral, then negative dextran (p = 0.0021). In conclusion, diffusion in free solution does not predict transscleral diffusion and the molecular-tissue interaction is important. Molecular size, shape, and charge may all markedly influence transscleral diffusion, as may conformability to a lesser degree, but their effects may be diametrically opposed in different molecules, and their influence on diffusion is more complex than previously thought. Each variable cannot be considered in isolation, and the interplay of all these variables needs to be tested, when selecting or designing drugs for transscleral delivery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Wetter for fine dry powder

    DOEpatents

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  9. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack

    Treesearch

    D. R. Bowling; W. J. Massman

    2011-01-01

    Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...

  10. A new solar cycle model including meridional circulation

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.

    1991-01-01

    A kinematic model is presented for the solar cycle which includes not only the transport of magnetic flux by supergranular diffusion and a poleward bulk flow at the sun's surface, but also the effects of turbulent diffusion and an equatorward 'return flow' beneath the surface. As in the earlier models of Babcock and Leighton, the rotational shearing of a subsurface poloidal field generates toroidal flux that erupts at the surface in the form of bipolar magnetic regions. However, such eruptions do not result in any net loss of toroidal flux from the sun (as assumed by Babcock and Leighton); instead, the large-scale toroidal field is destroyed both by 'unwinding' as the local poloidal field reverses its polarity, and by diffusion as the toroidal flux is transported equatorward by the subsurface flow and merged with its opposite hemisphere counterpart. The inclusion of meridional circulation allows stable oscillations of the magnetic field, accompanied by the equatorward progression of flux eruptions, to be achieved even in the absence of a radial gradient in the angular velocity. An illustrative case in which a subsurface flow speed of order 1 m/s and subsurface diffusion rate of order 10 sq km/s yield 22-yr oscillations in qualitative agreement with observations.

  11. Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup; Pakela, Julia M.; Helton, Michael C.; Vishwanath, Karthik; Chung, Yooree G.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2017-12-01

    In reconstructive surgery, the ability to detect blood flow interruptions to grafted tissue represents a critical step in preventing postsurgical complications. We have developed and pilot tested a compact, fiber-based device that combines two complimentary modalities-diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy-to quantitatively monitor blood perfusion. We present a proof-of-concept study on an in vivo porcine model (n=8). With a controllable arterial blood flow supply, occlusion studies (n=4) were performed on surgically isolated free flaps while the device simultaneously monitored blood flow through the supplying artery as well as flap perfusion from three orientations: the distal side of the flap and two transdermal channels. Further studies featuring long-term monitoring, arterial failure simulations, and venous failure simulations were performed on flaps that had undergone an anastomosis procedure (n=4). Additionally, benchtop verification of the DCS system was performed on liquid flow phantoms. Data revealed relationships between diffuse optical measures and state of occlusion as well as the ability to detect arterial and venous compromise. The compact construction of the device, along with its noninvasive and quantitative nature, would make this technology suitable for clinical translation.

  12. Dual control of flow field heterogeneity and immobile porosity on non-Fickian transport in Berea sandstone

    NASA Astrophysics Data System (ADS)

    Gjetvaj, Filip; Russian, Anna; Gouze, Philippe; Dentz, Marco

    2015-10-01

    Both flow field heterogeneity and mass transfer between mobile and immobile domains have been studied separately for explaining observed anomalous transport. Here we investigate non-Fickian transport using high-resolution 3-D X-ray microtomographic images of Berea sandstone containing microporous cement with pore size below the setup resolution. Transport is computed for a set of representative elementary volumes and results from advection and diffusion in the resolved macroporosity (mobile domain) and diffusion in the microporous phase (immobile domain) where the effective diffusion coefficient is calculated from the measured local porosity using a phenomenological model that includes a porosity threshold (ϕθ) below which diffusion is null and the exponent n that characterizes tortuosity-porosity power-law relationship. We show that both flow field heterogeneity and microporosity trigger anomalous transport. Breakthrough curve (BTC) tailing is positively correlated to microporosity volume and mobile-immobile interface area. The sensitivity analysis showed that the BTC tailing increases with the value of ϕθ, due to the increase of the diffusion path tortuosity until the volume of the microporosity becomes negligible. Furthermore, increasing the value of n leads to an increase in the standard deviation of the distribution of effective diffusion coefficients, which in turn results in an increase of the BTC tailing. Finally, we propose a continuous time random walk upscaled model where the transition time is the sum of independently distributed random variables characterized by specific distributions. It allows modeling a 1-D equivalent macroscopic transport honoring both the control of the flow field heterogeneity and the multirate mass transfer between mobile and immobile domains.

  13. Self-regulating fuel staging port for turbine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Nieuwenhuizen, William F.; Fox, Timothy A.; Williams, Steven

    2014-07-08

    A port (60) for axially staging fuel and air into a combustion gas flow path 28 of a turbine combustor (10A). A port enclosure (63) forms an air path through a combustor wall (30). Fuel injectors (64) in the enclosure provide convergent fuel streams (72) that oppose each other, thus converting velocity pressure to static pressure. This forms a flow stagnation zone (74) that acts as a valve on airflow (40, 41) through the port, in which the air outflow (41) is inversely proportion to the fuel flow (25). The fuel flow rate is controlled (65) in proportion to enginemore » load. At high loads, more fuel and less air flow through the port, making more air available to the premixing assemblies (36).« less

  14. Rarefied gas flows through a curved channel: Application of a diffusion-type equation

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuo; Takata, Shigeru; Tatsumi, Eri; Yoshida, Hiroaki

    2010-11-01

    Rarefied gas flows through a curved two-dimensional channel, caused by a pressure or a temperature gradient, are investigated numerically by using a macroscopic equation of convection-diffusion type. The equation, which was derived systematically from the Bhatnagar-Gross-Krook model of the Boltzmann equation and diffuse-reflection boundary condition in a previous paper [K. Aoki et al., "A diffusion model for rarefied flows in curved channels," Multiscale Model. Simul. 6, 1281 (2008)], is valid irrespective of the degree of gas rarefaction when the channel width is much shorter than the scale of variations of physical quantities and curvature along the channel. Attention is also paid to a variant of the Knudsen compressor that can produce a pressure raise by the effect of the change of channel curvature and periodic temperature distributions without any help of moving parts. In the process of analysis, the macroscopic equation is (partially) extended to the case of the ellipsoidal-statistical model of the Boltzmann equation.

  15. Solutions for Reacting and Nonreacting Viscous Shock Layers with Multicomponent Diffusion and Mass Injection. Ph.D. Thesis - Virginia Polytechnic Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Moss, J. N.

    1971-01-01

    Numerical solutions are presented for the viscous shocklayer equations where the chemistry is treated as being either frozen, equilibrium, or nonequilibrium. Also the effects of the diffusion model, surface catalyticity, and mass injection on surface transport and flow parameters are considered. The equilibrium calculations for air species using multicomponent: diffusion provide solutions previously unavailable. The viscous shock-layer equations are solved by using an implicit finite-difference scheme. The flow is treated as a mixture of inert and thermally perfect species. Also the flow is assumed to be in vibrational equilibrium. All calculations are for a 45 deg hyperboloid. The flight conditions are those for various altitudes and velocities in the earth's atmosphere. Data are presented showing the effects of the chemical models; diffusion models; surface catalyticity; and mass injection of air, water, and ablation products on heat transfer; skin friction; shock stand-off distance; wall pressure distribution; and tangential velocity, temperature, and species profiles.

  16. Pore-scale modeling of phase change in porous media

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Cueto-Felgueroso, Luis; Fu, Xiaojing

    2017-11-01

    One of the main open challenges in pore-scale modeling is the direct simulation of flows involving multicomponent mixtures with complex phase behavior. Reservoir fluid mixtures are often described through cubic equations of state, which makes diffuse interface, or phase field theories, particularly appealing as a modeling framework. What is still unclear is whether equation-of-state-driven diffuse-interface models can adequately describe processes where surface tension and wetting phenomena play an important role. Here we present a diffuse interface model of single-component, two-phase flow (a van der Waals fluid) in a porous medium under different wetting conditions. We propose a simplified Darcy-Korteweg model that is appropriate to describe flow in a Hele-Shaw cell or a micromodel, with a gap-averaged velocity. We study the ability of the diffuse-interface model to capture capillary pressure and the dynamics of vaporization/condensation fronts, and show that the model reproduces pressure fluctuations that emerge from abrupt interface displacements (Haines jumps) and from the break-up of wetting films.

  17. Viscous analyses for flow through subsonic and supersonic intakes

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Towne, Charles E.

    1986-01-01

    A parabolized Navier-Stokes code was used to analyze a number of diffusers typical of a modern inlet design. The effect of curvature of the diffuser centerline and transitioning cross sections was evaluated to determine the primary cause of the flow distortion in the duct. Results are presented for S-shaped intakes with circular and transitioning cross sections. Special emphasis is placed on verification of the analysis to accurately predict distorted flow fields resulting from pressure-driven secondary flows. The effect of vortex generators on reducing the distortion of intakes is presented. Comparisons of the experimental and analytical total pressure contours at the exit of the intake exhibit good agreement. In the case of supersonic inlets, computations of the inlet flow field reveal that large secondary flow regions may be generated just inside of the intake. These strong flows may lead to separated flow regions and cause pronounced distortions upstream of the compressor.

  18. Imaging of optically diffusive media by use of opto-elastography

    NASA Astrophysics Data System (ADS)

    Bossy, Emmanuel; Funke, Arik R.; Daoudi, Khalid; Tanter, Mickael; Fink, Mathias; Boccara, Claude

    2007-02-01

    We present a camera-based optical detection scheme designed to detect the transient motion created by the acoustic radiation force in elastic media. An optically diffusive tissue mimicking phantom was illuminated with coherent laser light, and a high speed camera (2 kHz frame rate) was used to acquire and cross-correlate consecutive speckle patterns. Time-resolved transient decorrelations of the optical speckle were measured as the results of localised motion induced in the medium by the radiation force and subsequent propagating shear waves. As opposed to classical acousto-optic techniques which are sensitive to vibrations induced by compressional waves at ultrasonic frequencies, the proposed technique is sensitive only to the low frequency transient motion induced in the medium by the radiation force. It therefore provides a way to assess both optical and shear mechanical properties.

  19. Analysis of Heat Transfer Phenomenon in Magnetohydrodynamic Casson Fluid Flow Through Cattaneo-Christov Heat Diffusion Theory

    NASA Astrophysics Data System (ADS)

    Ramesh, G. K.; Gireesha, B. J.; Shehzad, S. A.; Abbasi, F. M.

    2017-07-01

    Heat transport phenomenon of two-dimensional magnetohydrodynamic Casson fluid flow by employing Cattaneo-Christov heat diffusion theory is described in this work. The term of heat absorption/generation is incorporated in the mathematical modeling of present flow problem. The governing mathematical expressions are solved for velocity and temperature profiles using RKF 45 method along with shooting technique. The importance of arising nonlinear quantities namely velocity, temperature, skin-friction and temperature gradient are elaborated via plots. It is explored that the Casson parameter retarded the liquid velocity while it enhances the fluid temperature. Further, we noted that temperature and thickness of temperature boundary layer are weaker in case of Cattaneo-Christov heat diffusion model when matched with the profiles obtained for Fourier’s theory of heat flux.

  20. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  1. Changes in the microarchitecture of the pancreatic cancer stroma are linked to neutrophil-dependent reprogramming of stellate cells and reflected by diffusion-weighted magnetic resonance imaging

    PubMed Central

    Mayer, Philipp; Dinkic, Christine; Jesenofsky, Ralf; Klauss, Miriam; Schirmacher, Peter; Dapunt, Ulrike; Hackert, Thilo; Uhle, Florian; Hänsch, G. Maria; Gaida, Matthias M.

    2018-01-01

    In pancreatic cancer (PDAC) intratumor infiltration of polymorphonuclear neutrophils (PMN) is associated with histologically apparent alterations of the tumor growth pattern. The aim of this study was to examine possible associations between PMN infiltration, tumor microarchitecture, and water diffusivity in diffusion-weighted magnetic resonance imaging (DW-MRI), and to further asses the underlying mechanisms. Methods: DW-MRI was performed in 33 PDAC patients prior to surgery. In parallel, tissue specimen were examined histologically for growth pattern, azurocidin-positive PMN infiltrates, and the presence of alpha-smooth muscle actin (α-SMA) and metalloproteinase 9 (MMP9)-positive myofibroblastic cells. For confirmation of the histological findings, a tissue microarray of a second cohort of patients (n=109) was prepared and examined similarly. For in vitro studies, the pancreatic stellate cell line RLT was co-cultivated either with isolated PMN, PMN-lysates, or recombinant azurocidin and characterized by Western blot, flow cytometry, and proteome profiler arrays. Results: Tumors with high PMN density showed restricted water diffusion in DW-MRI and histologic apparent alterations of the tumor microarchitecture (microglandular, micropapillary, or overall poorly differentiated growth pattern) as opposed to tumors with scattered PMN. Areas with altered growth pattern lacked α-SMA-positive myofibroblastic cells. Tissue microarrays confirmed a close association of high PMN density with alterations of the tumor microarchitecture and revealed a significant association of high PMN density with poor histologic grade of differentiation (G3). In vitro experiments provided evidence for direct effects of PMN on stellate cells, where a change to a spindle shaped cell morphology in response to PMN and to PMN-derived azurocidin was seen. Azurocidin incorporated into stellate cells, where it associated with F-actin. Down-regulation of α-SMA was seen within hours, as was activation of the p38-cofilin axis, up-regulation of MMP9, and acquisition of intracellular lipid droplets, which together indicate a phenotype switch of the stellate cells. Conclusion: In PDAC, PMN infiltrates are associated with alterations of the tumor microarchitecture. As a causal relationship, we propose a reprogramming of stellate cells by PMN-derived azurocidin towards a phenotype, which affects the microarchitecture of the tumor. PMID:29290790

  2. Gene Transfer Corrects Acute GM2 Gangliosidosis—Potential Therapeutic Contribution of Perivascular Enzyme Flow

    PubMed Central

    Cachón-González, M Begoña; Wang, Susan Z; McNair, Rosamund; Bradley, Josephine; Lunn, David; Ziegler, Robin; Cheng, Seng H; Cox, Timothy M

    2012-01-01

    The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of β-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay–Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human β-hexosaminidase α (HEXA) and β (HEXB) subunits into 1-month-old Sandhoff mice gave unprecedented survival to 2 years and prevented disease throughout the brain and spinal cord. Classical manifestations of disease, including spasticity—as opposed to tremor-ataxia—were resolved by localized gene transfer to the striatum or cerebellum, respectively. Abundant biosynthesis of β-hexosaminidase isozymes and their global distribution via axonal, perivascular, and cerebrospinal fluid (CSF) spaces, as well as diffusion, account for the sustained phenotypic rescue—long-term protein expression by transduced brain parenchyma, choroid plexus epithelium, and dorsal root ganglia neurons supplies the corrective enzyme. Prolonged survival permitted expression of cryptic disease in organs not accessed by intracranial vector delivery. We contend that infusion of rAAV into CSF space and intraparenchymal administration by convection-enhanced delivery at a few strategic sites will optimally treat neurodegeneration in many diseases affecting the nervous system. PMID:22453766

  3. Gene transfer corrects acute GM2 gangliosidosis--potential therapeutic contribution of perivascular enzyme flow.

    PubMed

    Cachón-González, M Begoña; Wang, Susan Z; McNair, Rosamund; Bradley, Josephine; Lunn, David; Ziegler, Robin; Cheng, Seng H; Cox, Timothy M

    2012-08-01

    The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of β-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay-Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human β-hexosaminidase α (HEXA) and β (HEXB) subunits into 1-month-old Sandhoff mice gave unprecedented survival to 2 years and prevented disease throughout the brain and spinal cord. Classical manifestations of disease, including spasticity-as opposed to tremor-ataxia-were resolved by localized gene transfer to the striatum or cerebellum, respectively. Abundant biosynthesis of β-hexosaminidase isozymes and their global distribution via axonal, perivascular, and cerebrospinal fluid (CSF) spaces, as well as diffusion, account for the sustained phenotypic rescue-long-term protein expression by transduced brain parenchyma, choroid plexus epithelium, and dorsal root ganglia neurons supplies the corrective enzyme. Prolonged survival permitted expression of cryptic disease in organs not accessed by intracranial vector delivery. We contend that infusion of rAAV into CSF space and intraparenchymal administration by convection-enhanced delivery at a few strategic sites will optimally treat neurodegeneration in many diseases affecting the nervous system.

  4. Solutocapillary Convection Effects on Polymeric Membrane Morphology

    NASA Technical Reports Server (NTRS)

    Krantz, William B.; Todd, Paul W.; Kinagurthu, Sanjay

    1996-01-01

    Macro voids are undesirable large pores in membranes used for purification. They form when membranes are cast as thin films on a smooth surface by evaporating solvent (acetone) from a polymer solution. There are two un-tested hypotheses explaining the growth of macro voids. One states that diffusion of the non-solvent (water) is solely responsible, while the other states that solutocapillary convection is the primary cause of macro void growth. Solutocapillary convection is flow-caused by a concentration induced surface-tension gradient. Macrovoid growth in the former hypothesis is gravity independent, while in the latter it is opposed by gravity. To distinguish between these two hypotheses, experiments were designed to cast membranes in zero-gravity. A semi-automated apparatus was designed and built for casting membranes during the 20 secs of zero-g time available in parabolic aircraft flight such as NASA's KC-135. The phase changes were monitored optically, and membrane morphology was evaluated by scanning electron microscopy (SEM). These studies appear to be the first quantitative studies of membrane casting in micro-gravity which incorporate real-time data acquisition. Morphological studies of membranes cast at 0, 1, and 1.8 g revealed the presence of numerous, sparse and no macrovoids respectively. These results are consistent with the predictions of the solutocapillary hypothesis of macrovoid growth.

  5. Flow effects in a vertical CVD reactor

    NASA Technical Reports Server (NTRS)

    Young, G. W.; Hariharan, S. I.; Carnahan, R.

    1992-01-01

    A model is presented to simulate the non-Boussinesq flow in a vertical, two-dimensional, chemical vapor deposition reactor under atmospheric pressure. Temperature-dependent conductivity, mass diffusivity, viscosity models, and reactive species mass transfer to the substrate are incorporated. In the limits of small Mach number and small aspect ratio, asymptotic expressions for the flow, temperature, and species fields are developed. Soret diffusion effects are also investigated. Analytical solutions predict an inverse relationship between temperature field and concentration field due to Soret effects. This finding is consistent with numerical simulations, assisting in the understanding of the complex interactions amongst the flow, thermal, and species fields in a chemically reacting system.

  6. The combined use of MODFLOW and precipitation-runoff modeling to simulate groundwater flow in a diffuse-pollution prone watershed.

    PubMed

    Elçi, A; Karadaş, D; Fistikoğlu, O

    2010-01-01

    A numerical modeling case study of groundwater flow in a diffuse pollution prone area is presented. The study area is located within the metropolitan borders of the city of Izmir, Turkey. This groundwater flow model was unconventional in the application since the groundwater recharge parameter in the model was estimated using a lumped, transient water-budget based precipitation-runoff model that was executed independent of the groundwater flow model. The recharge rate obtained from the calibrated precipitation-runoff model was used as input to the groundwater flow model, which was eventually calibrated to measured water table elevations. Overall, the flow model results were consistent with field observations and model statistics were satisfactory. Water budget results of the model revealed that groundwater recharge comprised about 20% of the total water input for the entire study area. Recharge was the second largest component in the budget after leakage from streams into the subsurface. It was concluded that the modeling results can be further used as input for contaminant transport modeling studies in order to evaluate the vulnerability of water resources of the study area to diffuse pollution.

  7. Diffusion sampler testing at Naval Air Station North Island, San Diego County, California, November 1999 to January 2000

    USGS Publications Warehouse

    Vroblesky, Don A.; Peters, Brian C.

    2000-01-01

    Volatile organic compound concentrations in water from diffusion samplers were compared to concentrations in water obtained by low-flow purging at 15 observation wells at the Naval Air Station North Island, San Diego, California. Multiple diffusion samplers were installed in the wells. In general, comparisons using bladder pumps and diffusion samplers showed similar volatile organic carbon concentrations. In some wells, sharp concentration gradients were observed, such as an increase in cis-1,2-dichloroethene concentration from 100 to 2,600 micrograms per liter over a vertical distance of only 3.4 feet. In areas where such sharp gradients were observed, concentrations in water obtained by low-flow sampling at times reflected an average concentration over the area of influence; however, concentrations obtained by using the diffusion sampler seemed to represent the immediate vicinity of the sampler. When peristaltic pumps were used to collect ground-water samples by low-flow purging, the volatile organic compound concentrations commonly were lower than concentrations obtained by using diffusion samplers. This difference may be due to loss of volatiles by degassing under negative pressures in the sampling lines induced while using the peristaltic pump, mixing in the well screen, or possible short-circuiting of water from an adjacent depth. Diffusion samplers placed in buckets of freephase jet fuel (JP-5) and Stoddard solvent from observation wells did not show evidence of structural integrity loss during the 2 months of equilibration, and volatile organic compounds detected in the free-phase fuel also were detected in the water from the diffusion samplers.

  8. Simulations of eddy kinetic energy transport in barotropic turbulence

    NASA Astrophysics Data System (ADS)

    Grooms, Ian

    2017-11-01

    Eddy energy transport in rotating two-dimensional turbulence is investigated using numerical simulation. Stochastic forcing is used to generate an inhomogeneous field of turbulence and the time-mean energy profile is diagnosed. An advective-diffusive model for the transport is fit to the simulation data by requiring the model to accurately predict the observed time-mean energy distribution. Isotropic harmonic diffusion of energy is found to be an accurate model in the case of uniform, solid-body background rotation (the f plane), with a diffusivity that scales reasonably well with a mixing-length law κ ∝V ℓ , where V and ℓ are characteristic eddy velocity and length scales. Passive tracer dynamics are added and it is found that the energy diffusivity is 75 % of the tracer diffusivity. The addition of a differential background rotation with constant vorticity gradient β leads to significant changes to the energy transport. The eddies generate and interact with a mean flow that advects the eddy energy. Mean advection plus anisotropic diffusion (with reduced diffusivity in the direction of the background vorticity gradient) is moderately accurate for flows with scale separation between the eddies and mean flow, but anisotropic diffusion becomes a much less accurate model of the transport when scale separation breaks down. Finally, it is observed that the time-mean eddy energy does not look like the actual eddy energy distribution at any instant of time. In the future, stochastic models of the eddy energy transport may prove more useful than models of the mean transport for predicting realistic eddy energy distributions.

  9. A numerical method for osmotic water flow and solute diffusion with deformable membrane boundaries in two spatial dimension

    NASA Astrophysics Data System (ADS)

    Yao, Lingxing; Mori, Yoichiro

    2017-12-01

    Osmotic forces and solute diffusion are increasingly seen as playing a fundamental role in cell movement. Here, we present a numerical method that allows for studying the interplay between diffusive, osmotic and mechanical effects. An osmotically active solute obeys a advection-diffusion equation in a region demarcated by a deformable membrane. The interfacial membrane allows transmembrane water flow which is determined by osmotic and mechanical pressure differences across the membrane. The numerical method is based on an immersed boundary method for fluid-structure interaction and a Cartesian grid embedded boundary method for the solute. We demonstrate our numerical algorithm with the test case of an osmotic engine, a recently proposed mechanism for cell propulsion.

  10. Concepts of diffusion theory and a graphic approach to the description of the epidemic flow of contagious disease.

    PubMed Central

    Angulo, J J; Pederneiras, C A; Ebner, W; Kimura, E M; Megale, P

    1980-01-01

    Concepts used to analyze sociological, geographic, and economic processes were adapted to an examination of the diffusion of contagious disease. The example used in applying these concepts was an epidemic of variola minor which continued for 12 months in an area of 1,006 square kilometers centered on the city of Bragança Paulista, Sao Paulo State (Brazil). A graphic procedure is proposed that depicts aspects of the epidemic flow of person-to-person transmission. Spatial, temporal, and sociological characteristics of the epidemic flow are disclosed in sequential diagrams. They represent geographic areas as well as schools and agglomerates of households affected by the epidemic at a given time, the mode of diffusion, and the source of the infection. The procedure yielded indirect evidence of the role of school pupils as introducers of variola minor into households and school classes. All subdivisions of the city, six of the seven rural districts, and four of the five elementary schools were affected through hierarchical (between-areas) diffusion. Subsequently, there was neighborhood (within-area) diffusion, and this resulted in new interactions between areas. PMID:7422812

  11. Effect of permeable flow on cyclic layering in solidifying magma bodies: Insights from an analog experiment of diffusion-precipitation systems

    NASA Astrophysics Data System (ADS)

    Toramaru, A.; Yamauchi, S.

    2012-04-01

    Characteristic structures such as rhythmic layering, cress cumulate, cross bedding, perpendicular feldspar rock etc, are commonly observed in layered intrusion or shallow magmatic intrusions. These structures result from complex processes including thermal and compositional diffusions, crystallization, crystal settling, convection and interaction among three phases (crystals, bubble, melt). In order to understand how the differentiation proceeds in solidifying magma bodies from each characteristic structure together with chemical signatures, it is necessary to evaluate the relative importance among these elemental processes on structures. As an attempt to evaluate the effect of advection on a diffusion-related structure, we carried out an analog experiment of Liesegang system using lead-iodide (PbI2) crystallization in agar media which have been normally used to prohibit convection. In the ordinary Liesegang band formation experiments including only diffusion and crystallization kinetics without any advection and convection, the precipitation bands develop with regular spacing following a geometric progression due to two-component diffusion and reaction with supersaturation. This type of banding structure has been advocated as the same type of cyclic layering or vesicle layering (a sort of rhythmic layering) in dykes or sills. In order to see the effect of one-directional advection on Liesegang band, we apply the electric field (5 V to 25 V for a distance 15 cm) along the concentration gradient in agar media, thereby counteracting flows of lead anion Pb2+ and iodide ion I- are driven at constant velocities. The flows of anions and ions are equivalent to the permeable flows in porous media of crystal mush. The resultant precipitation structures exhibit very curious banding structure in which band spacings do not change with distance, are nearly constant and quite narrow, depending on the voltage, unlike those in ordinary Liesegang bands in which band spacings increase with distance following geometric progression. Further interestingly each band consists of a lot of very tiny irregular-shaped crystal aggregates. From experimental results and scaling arguments, with regard to the effect of one directional permeable flow on band spacing of cyclic layering, we propose a hypothesis of constant Peclet number that Peclet number (ratio of flow velocity to diffusive velocity) is nearly unity. By applying the hypothesis to natural examples, we can estimate a value of permeable flow velocity of interstitial melts in differentiating magma bodies from values of a band spacing and diffusivity data.

  12. Implementation and Validation of a Laminar-to-Turbulent Transition Model in the Wind-US Code

    NASA Technical Reports Server (NTRS)

    Denissen, Nicholas A.; Yoder, Dennis A.; Georgiadis, Nicholas J.

    2008-01-01

    A bypass transition model has been implemented in the Wind-US Reynolds Averaged Navier-Stokes (RANS) solver. The model is based on the Shear Stress Transport (SST) turbulence model and was built starting from a previous SST-based transition model. Several modifications were made to enable (1) consistent solutions regardless of flow field initialization procedure and (2) fully turbulent flow beyond the transition region. This model is intended for flows where bypass transition, in which the transition process is dominated by large freestream disturbances, is the key transition mechanism as opposed to transition dictated by modal growth. Validation of the new transition model is performed for flows ranging from incompressible to hypersonic conditions.

  13. Asymptotic formulae for flow in superhydrophobic channels with longitudinal ridges and protruding menisci

    NASA Astrophysics Data System (ADS)

    Kirk, Toby L.

    2018-03-01

    This paper presents new analytical formulae for flow in a channel with one or both walls patterned with a longitudinal array of ridges and arbitrarily protruding menisci. Derived from a matched asymptotic expansion, they extend results by Crowdy (J. Fluid Mech., vol. 791, 2016, R7) for shear flow, and thus make no restriction on the protrusion into or out of the liquid. The slip length formula is compared against full numerical solutions and, despite the assumption of small ridge period in its derivation, is found to have a very large range of validity; relative errors are small even for periods large enough for the protruding menisci to degrade the flow and touch the opposing wall.

  14. Reflight of the Solid Surface Combustion Experiment: Opposed-Flow Flame Spread Over Cylindrical Fuels

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Subrata; Altenkirch, Robert A.; Worley, Regis; Tang, Lin; Bundy, Matt; Sacksteder, Kurt; Delichatsios, Michael A.

    1997-01-01

    The effort described here is a reflight of the Solid Surface Combustion Experiment (SSCE), with extension of the flight matrix first and then experiment modification. The objectives of the reflight are to extend the understanding of the interplay of the radiative processes that affect the flame spread mechanisms.

  15. Experiments in dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Berenfeld, A.

    1983-01-01

    Experimental results are presented on the mixing of a single row of jets with an isothermal mainstream in a straight duct, with flow and geometric variations typical of combustion chambers in gas turbine engines included. It is found that at a constant momentum ratio, variations in the density ratio have only a second-order effect on the profiles. A first-order approximation to the mixing of jets with a variable temperature mainstream can, it is found, be obtained by superimposing the jets-in-an-isothermal-crossflow and mainstream profiles. Another finding is that the flow area convergence, especially injection-wall convergence, significantly improves the mixing. For opposed rows of jets with the orifice cone centerlines in-line, the optimum ratio of orifice spacing to duct height is determined to be 1/2 of the optimum value for single injection at the same momentum ratio. For opposed rows of jets with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is found to be twice the optimum value for single side injection at the same momentum ratio.

  16. External combustion engine having an asymmetrical CAM

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1994-11-01

    An external combustion engine having an asymmetrical cam is the focus of this patent. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel and an even number of cylinders for receiving sequentially the energized gas through the rotary valve, the gas performing work on a piston disposed within each cylinder. The pistons transfer energy to a drive shaft through a connection to the asymmetrically shaped cam. The cam is shaped having two identical halves, each half having a power and an exhaust stroke. The identical halves provide that opposing cylinders are in thermodynamic balance, thus reducing rocking vibrations and torque pulsations. Having opposing pistons within the same thermodynamic cycle allows piston stroke to be reduced while maintaining displacement comparable to an engine having individual cycle positions. The reduced stroke diminishes gas flow velocity thus reducing flow induced noise. The power and exhaust strokes within each identical half of the cam are asymmetrical in that the power stroke is of greater duration than the exhaust stroke. The shape and length of the power stroke is optimized for increased efficiency.

  17. Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces

    PubMed Central

    Kalpathy, Sreeram K.; Shreyes, Amrita Ravi

    2017-01-01

    The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391

  18. Method and system for gas flow mitigation of molecular contamination of optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, Gildardo; Johnson, Terry; Arienti, Marco

    A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and amore » purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.« less

  19. Accuracy of magnetic resonance imaging in differentiating between benign and malignant vertebral lesions: role of diffusion-weighted imaging, in-phase/opposed-phase imaging and apparent diffusion coefficient.

    PubMed

    Martel Villagrán, J; Bueno Horcajadas, Á; Pérez Fernández, E; Martín Martín, S

    2015-01-01

    To determine the ability of MRI to distinguish between benign and malignant vertebral lesions. We included 85 patients and studied a total of 213 vertebrae (both pathologic and normal). For each vertebra, we determined whether the lesion was hypointense in T1-weighted sequences and whether it was hyperintense in STIR and in diffusion-weighted sequences. We calculated the in-phase/out-of-phase quotient and the apparent diffusion coefficient for each vertebra. We combined parameters from T1-weighted, diffusion-weighted, and STIR sequences to devise a formula to distinguish benign from malignant lesions. The group comprised 60 (70.6%) women and 25 (29.4%) men with a mean age of 67±13.5 years (range, 33-90 y). Of the 85 patients, 26 (30.6%) had a known primary tumor. When the lesion was hypointense on T1-weighted sequences, hyperintense on STIR and diffusion-weighted sequences, and had a signal intensity quotient greater than 0.8, the sensitivity was 97.2%, the specificity was 90%, and the diagnostic accuracy was 91.2%. If the patient had a known primary tumor, these values increased to 97.2%, 99.4%, and 99%, respectively. Benign lesions can be distinguished from malignant lesions if we combine the information from T1-weighted, STIR, and diffusion-weighted sequences together with the in-phase/out-of-phase quotient of the lesion detected in the vertebral body on MRI. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  20. Reactive Orthotropic Lattice Diffuser for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor)

    2016-01-01

    An orthotropic lattice structure interconnects porous surfaces of the flap with internal lattice-structured perforations to equalize the steady pressure field on the flap surfaces adjacent to the end and to reduce the amplitude of the fluctuations in the flow field near the flap end. The global communication that exists within all of the perforations provides the mechanism to lessen the pressure gradients experienced by the end portion of the flap. In addition to having diffusive effects (diffusing the incoming flow), the three-dimensional orthogonal lattice structure is also reactive (acoustic wave phase distortion) due to the interconnection of the perforations.

  1. A new Eulerian model for viscous and heat conducting compressible flows

    NASA Astrophysics Data System (ADS)

    Svärd, Magnus

    2018-09-01

    In this article, a suite of physically inconsistent properties of the Navier-Stokes equations, associated with the lack of mass diffusion and the definition of velocity, is presented. We show that these inconsistencies are consequences of the Lagrangian derivation that models viscous stresses rather than diffusion. A new model for compressible and diffusive (viscous and heat conducting) flows of an ideal gas, is derived in a purely Eulerian framework. We propose that these equations supersede the Navier-Stokes equations. A few numerical experiments demonstrate some differences and similarities between the new system and the Navier-Stokes equations.

  2. Non-kinematic Flux-transport Dynamos Including the Effects of Diffusivity Quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichimura, Chiaki; Yokoyama, Takaaki

    2017-04-10

    Turbulent magnetic diffusivity is quenched when strong magnetic fields suppress turbulent motion in a phenomenon known as diffusivity quenching. Diffusivity quenching can provide a mechanism for amplifying magnetic field and influencing global velocity fields through Lorentz force feedback. To investigate this effect, we conducted mean field flux-transport dynamo simulations that included the effects of diffusivity quenching in a non-kinematic regime. We found that toroidal magnetic field strength is amplified by up to approximately 1.5 times in the convection zone as a result of diffusivity quenching. This amplification is much weaker than that in kinematic cases as a result of Lorentzmore » force feedback on the system’s differential rotation. While amplified toroidal fields lead to the suppression of equatorward meridional flow locally near the base of the convection zone, large-scale equatorward transport of magnetic flux via meridional flow, which is the essential process of the flux-transport dynamo, is sustainable in our calculations.« less

  3. Crystallization, flow and thermal histories of lunar and terrestrial compositions

    NASA Technical Reports Server (NTRS)

    Uhlmann, D. R.

    1979-01-01

    Contents: a kinetic treatment of glass formation; effects of nucleating heterogeneities on glass formation; glass formation under continuous cooling conditions; crystallization statistics; kinetics of crystal nucleation; diffusion controlled crystal growth; crystallization of lunar compositions; crystallization between solidus and liquidus; crystallization on reheating a glass; temperature distributions during crystallization; crystallization of anorthite and anorthite-albite compositions; effect of oxidation state on viscosity; diffusive creep and viscous flow; high temperature flow behavior of glass-forming liquids, a free volume interpretation; viscous flow behavior of lunar compositions; thermal history of orange soil material; breccias formation by viscous sintering; viscous sintering; thermal histories of breccias; solute partitioning and thermal history of lunar rocks; heat flow in impact melts; and thermal histories of olivines.

  4. On the Symmetry of Molecular Flows Through the Pipe of an Arbitrary Shape (I) Diffusive Reflection

    NASA Astrophysics Data System (ADS)

    Kusumoto, Yoshiro

    Molecular gas flows through the pipe of an arbitrary shape is mathematically considered based on a diffusive reflection model. To avoid a perpetual motion, the magnitude of the molecular flow rate must remain invariant under the exchange of inlet and outlet pressures. For this flow symmetry, the cosine law reflection at the pipe wall was found to be sufficient and necessary, on the assumption that the molecular flux is conserved in a collision with the wall. It was also shown that a spontaneous flow occurs in a hemispherical apparatus, if the reflection obeys the n-th power of cosine law with n other than unity. This apparatus could work as a molecular pump with no moving parts.

  5. Random Walk Particle Tracking For Multiphase Heat Transfer

    NASA Astrophysics Data System (ADS)

    Lattanzi, Aaron; Yin, Xiaolong; Hrenya, Christine

    2017-11-01

    As computing capabilities have advanced, direct numerical simulation (DNS) has become a highly effective tool for quantitatively predicting the heat transfer within multiphase flows. Here we utilize a hybrid DNS framework that couples the lattice Boltzmann method (LBM) to the random walk particle tracking (RWPT) algorithm. The main challenge of such a hybrid is that discontinuous fields pose a significant challenge to the RWPT framework and special attention must be given to the handling of interfaces. We derive a method for addressing discontinuities in the diffusivity field, arising at the interface between two phases. Analytical means are utilized to develop an interfacial tracer balance and modify the RWPT algorithm. By expanding the modulus of the stochastic (diffusive) step and only allowing a subset of the tracers within the high diffusivity medium to undergo a diffusive step, the correct equilibrium state can be restored (globally homogeneous tracer distribution). The new RWPT algorithm is implemented within the SUSP3D code and verified against a variety of systems: effective diffusivity of a static gas-solids mixture, hot sphere in unbounded diffusion, cooling sphere in unbounded diffusion, and uniform flow past a hot sphere.

  6. Metamaterial devices for molding the flow of diffuse light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wegener, Martin

    2016-09-01

    Much of optics in the ballistic regime is about designing devices to mold the flow of light. This task is accomplished via specific spatial distributions of the refractive index or the refractive-index tensor. For light propagating in turbid media, a corresponding design approach has not been applied previously. Here, we review our corresponding recent work in which we design spatial distributions of the light diffusivity or the light-diffusivity tensor to accomplish specific tasks. As an application, we realize cloaking of metal contacts on large-area OLEDs, eliminating the contacts' shadows, thereby homogenizing the diffuse light emission. In more detail, metal contacts on large-area organic light-emitting diodes (OLEDs) are mandatory electrically, but they cast optical shadows, leading to unwanted spatially inhomogeneous diffuse light emission. We show that the contacts can be made invisible either by (i) laminate metamaterials designed by coordinate transformations of the diffusion equation or by (ii) triangular-shaped regions with piecewise constant diffusivity, hence constant concentration of scattering centers. These structures are post-optimized in regard to light throughput by Monte-Carlo ray-tracing simulations and successfully validated by model experiments.

  7. Anomalous Diffusion in a Trading Model

    NASA Astrophysics Data System (ADS)

    Khidzir, Sidiq Mohamad; Wan Abdullah, Wan Ahmad Tajuddin

    2009-07-01

    The result of the trading model by Chakrabarti et al. [1] is the wealth distribution with a mixed exponential and power law distribution. Based on the motivation of studying the dynamics behind the flow of money similar to work done by Brockmann [2, 3] we track the flow of money in this trading model to observe anomalous diffusion in the form of long waiting times and Levy Flights.

  8. Reducing the data: Analysis of the role of vascular geometry on blood flow patterns in curved vessels

    NASA Astrophysics Data System (ADS)

    Alastruey, Jordi; Siggers, Jennifer H.; Peiffer, Véronique; Doorly, Denis J.; Sherwin, Spencer J.

    2012-03-01

    Three-dimensional simulations of blood flow usually produce such large quantities of data that they are unlikely to be of clinical use unless methods are available to simplify our understanding of the flow dynamics. We present a new method to investigate the mechanisms by which vascular curvature and torsion affect blood flow, and we apply it to the steady-state flow in single bends, helices, double bends, and a rabbit thoracic aorta based on image data. By calculating forces and accelerations in an orthogonal coordinate system following the centreline of each vessel, we obtain the inertial forces (centrifugal, Coriolis, and torsional) explicitly, which directly depend on vascular curvature and torsion. We then analyse the individual roles of the inertial, pressure gradient, and viscous forces on the patterns of primary and secondary velocities, vortical structures, and wall stresses in each cross section. We also consider cross-sectional averages of the in-plane components of these forces, which can be thought of as reducing the dynamics of secondary flows onto the vessel centreline. At Reynolds numbers between 50 and 500, secondary motions in the directions of the local normals and binormals behave as two underdamped oscillators. These oscillate around the fully developed state and are coupled by torsional forces that break the symmetry of the flow. Secondary flows are driven by the centrifugal and torsional forces, and these are counterbalanced by the in-plane pressure gradients generated by the wall reaction. The viscous force primarily opposes the pressure gradient, rather than the inertial forces. In the axial direction, and depending on the secondary motion, the curvature-dependent Coriolis force can either enhance or oppose the bulk of the axial flow, and this shapes the velocity profile. For bends with little or no torsion, the Coriolis force tends to restore flow axisymmetry. The maximum circumferential and axial wall shear stresses along the centreline correlate well with the averaged in-plane pressure gradient and the radial displacement of the peak axial velocity, respectively. We conclude with a discussion of the physiological implications of these results.

  9. Time-dependent diffusion MRI in cancer: tissue modeling and applications

    NASA Astrophysics Data System (ADS)

    Reynaud, Olivier

    2017-11-01

    In diffusion weighted imaging (DWI), the apparent diffusion coefficient has been recognized as a useful and sensitive surrogate for cell density, paving the way for non-invasive tumor staging, and characterization of treatment efficacy in cancer. However, microstructural parameters, such as cell size, density and/or compartmental diffusivities affect diffusion in various fashions, making of conventional DWI a sensitive but non-specific probe into changes happening at cellular level. Alternatively, tissue complexity can be probed and quantified using the time dependence of diffusion metrics, sometimes also referred to as temporal diffusion spectroscopy when only using oscillating diffusion gradients. Time-dependent diffusion (TDD) is emerging as a strong candidate for specific and non-invasive tumor characterization. Despite the lack of a general analytical solution for all diffusion times / frequencies, TDD can be probed in various regimes where systems simplify in order to extract relevant information about tissue microstructure. The fundamentals of TDD are first reviewed (a) in the short time regime, disentangling structural and diffusive tissue properties, and (b) near the tortuosity limit, assuming weakly heterogeneous media near infinitely long diffusion times. Focusing on cell bodies (as opposed to neuronal tracts), a simple but realistic model for intracellular diffusion can offer precious insight on diffusion inside biological systems, at all times. Based on this approach, the main three geometrical models implemented so far (IMPULSED, POMACE, VERDICT) are reviewed. Their suitability to quantify cell size, intra- and extracellular spaces (ICS and ECS) and diffusivities are assessed. The proper modeling of tissue membrane permeability – hardly a newcomer in the field, but lacking applications - and its impact on microstructural estimates are also considered. After discussing general issues with tissue modeling and microstructural parameter estimation (i.e. fitting), potential solutions are detailed. The in vivo applications of this new, non-invasive, specific approach in cancer are reviewed, ranging from the characterization of gliomas in rodent brains and observation of time-dependence in breast tissue lesions and prostate cancer, to the recent preclinical evaluation of new treatments efficacy. It is expected that clinical applications of TDD will strongly benefit the community in terms of non-invasive cancer screening.

  10. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  11. Elevated-temperature flow strength, creep resistance and diffusion welding characteristics of Ti-gAl-2Nb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Moore, T. J.

    1977-01-01

    A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo was conducted. Two mill-processed forms of this alloy were examined. The forged material was essentially processed above the beta transus while the rolled form was subjected to considerable work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.

  12. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale ratesmore » of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however, not affected by the flow rate because molecular diffusion limits reductant supply to the micropore domain interior. Domain-based macroscopic models were evaluated to scale redox reaction rates from the pore to macroscopic scales. A single domain model, which ignores subgrid transport heterogeneity deviated significantly from the pore-scale results. Further analysis revealed that the rate expression for hematite reduction was not scalable from the pore to porous media using the single domain model. A three-domain model, which effectively considers subgrid reactive diffusion in the micropore and macropore domains, significantly improved model description. Overall this study revealed the importance of subgrid transport heterogeneity in the manifestation of redox reaction rates in porous media and in scaling reactions from the pore to porous media. The research also supported that the domain-based scaling approach can be used to directly scale redox reactions in porous media with subgrid transport heterogeneity.« less

  13. Isotopic fractionation of volatile species during bubble growth in magmas

    NASA Astrophysics Data System (ADS)

    Watson, E. B.

    2016-12-01

    Bubbles grow in decompressing magmas by simple expansion and also by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate isotopes, raising the possibility that the isotopic character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the complete absence of equilibrium vapor/melt isotopic fractionation. None of the foregoing is conceptually new, but recent experimental studies have established the existence of isotope mass effects on diffusion in silicate melts for several elements (Li, Mg, Ca, Fe), and this finding has now been extended to the volatile (anionic) element chlorine (Fortin et al. 2016; this meeting). Knowledge of isotope mass effects on diffusion of volatile species opens the way for quantitative models of diffusive fractionation during bubble growth. Significantly different effects are anticipated for "passive" volatiles (e.g., noble gases and Cl) that are partitioned into existing bubbles but play little role in nucleation and growth, as opposed to "active" volatiles whose limited solubilities lead to bubble nucleation during magma decompression. Numerical solution of the appropriate diffusion/mass-conservation equations reveals that the isotope effect on passive volatiles partitioned into bubbles growing at a constant rate in a static system depends (predictably) upon R/D, Kd and D1/D2 (R = growth rate; D = diffusivity; Kd = bubble/melt partition coefficient; D1/D2 = diffusivity ratio of the isotopes of interest). Constant R is unrealistic, but other scenarios can be explored by including the solubility and EOS of an "active" volatile (e.g., CO2) in numerical simulations of bubble growth. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble.

  14. ON THE ORIGINS OF THE DIFFUSE H{alpha} EMISSION: IONIZED GAS OR DUST-SCATTERED H{alpha} HALOS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seon, Kwang-Il; Witt, Adolf N., E-mail: kiseon@kasi.re.kr

    2012-10-20

    It is known that the diffuse H{alpha} emission outside of bright H II regions not only are very extended, but also can occur in distinct patches or filaments far from H II regions, and the line ratios of [S II] {lambda}6716/H{alpha} and [N II] {lambda}6583/H{alpha} observed far from bright H II regions are generally higher than those in the H II regions. These observations have been regarded as evidence against the dust-scattering origin of the diffuse H{alpha} emission (including other optical lines), and the effect of dust scattering has been neglected in studies on the diffuse H{alpha} emission. In thismore » paper, we reexamine the arguments against dust scattering and find that the dust-scattering origin of the diffuse H{alpha} emission cannot be ruled out. As opposed to the previous contention, the expected dust-scattered H{alpha} halos surrounding H II regions are, in fact, in good agreement with the observed H{alpha} morphology. We calculate an extensive set of photoionization models by varying elemental abundances, ionizing stellar types, and clumpiness of the interstellar medium (ISM) and find that the observed line ratios of [S II]/H{alpha}, [N II]/H{alpha}, and He I {lambda}5876/H{alpha} in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the H{alpha} absorption feature in the underlying continuum from the dust-scattered starlight ({sup d}iffuse galactic light{sup )} and unresolved stars is able to substantially increase the [S II]/H{alpha} and [N II]/H{alpha} line ratios in the diffuse ISM.« less

  15. Analysis of the moisture diffusion transfer through fibrous porous membrane used for waterproof breathable fabrics

    NASA Astrophysics Data System (ADS)

    Zhu, Fanglong; Zhou, Yu; Liu, Suyan

    2013-10-01

    In this paper, we propose a new fractal model to determine the moisture effective diffusivity of porous membrane such as expanded polytetrafluorethylene membrane, by taking account of both parallel and perpendicular channels to diffusion flow direction. With the consideration of both the Knudsen and bulk diffusion effect, a relationship between micro-structural parameters and effective moisture diffusivity is deduced. The effective moisture diffusivities predicted by the present fractal model are compared with moisture diffusion experiment data and calculated values obtained from other theoretical models.

  16. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Wind-Tunnel Modeling of Flow Diffusion over an Urban Complex.

    DTIC Science & Technology

    URBAN AREAS, *ATMOSPHERIC MOTION, *AIR POLLUTION, ATMOSPHERIC MOTION, WIND TUNNEL MODELS, HEAT, DIFFUSION , TURBULENT BOUNDARY LAYER, WIND, SKIN FRICTION, MATHEMATICAL MODELS, URBAN PLANNING, INDIANA.

  18. A Full Navier-Stokes Analysis of Subsonic Diffuser of a Bifurcated 70/30 Supersonic Inlet for High Speed Civil Transport Application

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A full Navier-Stokes analysis was performed to evaluate the performance of the subsonic diffuser of a NASA Lewis Research Center 70/30 mixed-compression bifurcated supersonic inlet for high speed civil transport application. The PARC3D code was used in the present study. The computations were also performed when approximately 2.5 percent of the engine mass flow was allowed to bypass through the engine bypass doors. The computational results were compared with the available experimental data which consisted of detailed Mach number and total pressure distribution along the entire length of the subsonic diffuser. The total pressure recovery, flow distortion, and crossflow velocity at the engine face were also calculated. The computed surface ramp and cowl pressure distributions were compared with experiments. Overall, the computational results compared well with experimental data. The present CFD analysis demonstrated that the bypass flow improves the total pressure recovery and lessens flow distortions at the engine face.

  19. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.

  20. Separation of gases by diffusion

    DOEpatents

    Peieris, R. E.; Simon, F. E.; Arms, H. S.

    1960-12-13

    An apparatus is described for the separation of mixtures of gaseous or vaporous media by diffusion through a permeable membrane. The apparatus consists principally of a housing member having an elongated internal chamber dissected longitudinally by a permeable membrane. Means are provided for producing a pressure difference between opposite sides of the membrane to cause a flow of the media in the chamber therethrough. This pressure difference is alternated between opposite sides of the membrane to produce an oscillating flow through the membrane. Additional means is provided for producing flow parallel to the membrane in opposite directions on the two sides thereof and of the same frequency and in phase wlth the alternating pressure difference. The lighter molecules diffuse through the membrane more readily than the heavier molecules and the parallel flow effects a net transport of the lighter molecules in one direction and the heavier molecules in the opposite direction wlthin the chamber. By these means a concentration gradient along the chamber is established. (auth)

  1. Diffusion tensor optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.

    2018-01-01

    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  2. Validation of a numerical method for interface-resolving simulation of multicomponent gas-liquid mass transfer and evaluation of multicomponent diffusion models

    NASA Astrophysics Data System (ADS)

    Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf

    2018-03-01

    The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.

  3. Brain microvascular function during cardiopulmonary bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, H.R.; Husum, B.; Waaben, J.

    1987-11-01

    Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracersmore » being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.« less

  4. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide

    NASA Astrophysics Data System (ADS)

    Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.

  5. Research on the drag reduction performance induced by the counterflowing jet for waverider with variable blunt radii

    NASA Astrophysics Data System (ADS)

    Li, Shi-bin; Wang, Zhen-guo; Barakos, George N.; Huang, Wei; Steijl, Rene

    2016-10-01

    Waverider will endure the huge aero-heating in the hypersonic flow, thus, it need be blunt for the leading edge. However, the aerodynamic performance will decrease for the blunt waverider because of the drag hoik. How to improve the aerodynamic performance and reduce the drag and aero-heating is very important. The variable blunt radii method will improve the aerodynamic performance, however, the huge aero-heating and bow shock wave at the head is still serious. In the current study, opposing jet is used in the waverider with variable blunt radii to improve its performance. The three-dimensional coupled implicit Reynolds-averaged Navier-Stokes(RANS) equation and the two equation SST k-ω turbulence model have been utilized to obtain the flow field properties. The numerical method has been validated against the available experimental data in the open literature. The obtained results show that the L/D will drop 7-8% when R changes from 2 to 8. The lift coefficient will increase, and the drag coefficient almost keeps the same when the variable blunt radii method is adopted, and the L/D will increase. The variable blunt radii method is very useful to improve the whole characteristics of blunt waverider and the L/D can improve 3%. The combination of the variable blunt radii method and opposing jet is a novel way to improve the whole performance of blunt waverider, and L/D can improve 4-5%. The aperture as a novel way of opposing jet is suitable for blunt waverider and also useful to improve the aerodynamic and aerothermodynamic characteristics of waverider in the hypersonic flow. There is the optimal P0in/P0 that can make the detached shock wave reattach the lower surface again so that the blunt waverider can get the better aerodynamic performance.

  6. Recruitment of fish larvae and juveniles into two estuarine nursery areas with evidence of ebb tide use

    NASA Astrophysics Data System (ADS)

    Pattrick, Paula; Strydom, Nadine

    2014-08-01

    Recruitment of larvae and early juveniles, against the ebb tide in the shallower, slower-flowing marginal areas of two permanently open estuaries in the Eastern Cape, South Africa was observed. To determine tidal, diel and seasonal variations of larval and juvenile fish recruitment, fyke nets were used during a 24-hour cycle over two years from December 2010 to October 2012. On either side of each estuary bank, two fyke nets with mouth openings facing opposite directions (i.e. one net facing the incoming or outgoing tide and the other facing the opposing direction) were used to sample fishes. The aims of this study were to determine if 1) on the flood tide, were the nets facing the incoming tide collecting more larvae and early juveniles recruiting into the estuarine nursery area, than the nets facing the opposing direction and 2) on the ebb tide, were the nets facing the sea, and hence the opposing direction of the outgoing ebb tide, collecting more fishes recruiting into the nursery against the ebb tide, than the nets facing the outgoing ebb tide? Larval and juvenile fish CPUE, species diversity and richness varied seasonally between estuarine systems and between diel and tidal conditions. Highest catches were recorded on the flood tide, which coincided with sunrise in the Swartkops Estuary. Greatest catches of larvae and early juveniles were observed during the ebb tide at night in the Sundays Estuary. On the ebb tide, higher catches of several dominant species and several commercially important fishery species, occurred in the fyke nets which faced the sea, indicating the early developmental stages of these fish species are not necessarily being lost from the nursery. These larvae and juveniles are actively swimming against the ebb tide in the shallower, slower-flowing marginal areas facilitating recruitment against ebb flow.

  7. Product selectivity control induced by using liquid-liquid parallel laminar flow in a microreactor.

    PubMed

    Amemiya, Fumihiro; Matsumoto, Hideyuki; Fuse, Keishi; Kashiwagi, Tsuneo; Kuroda, Chiaki; Fuchigami, Toshio; Atobe, Mahito

    2011-06-07

    Product selectivity control based on a liquid-liquid parallel laminar flow has been successfully demonstrated by using a microreactor. Our electrochemical microreactor system enables regioselective cross-coupling reaction of aldehyde with allylic chloride via chemoselective cathodic reduction of substrate by the combined use of suitable flow mode and corresponding cathode material. The formation of liquid-liquid parallel laminar flow in the microreactor was supported by the estimation of benzaldehyde diffusion coefficient and computational fluid dynamics simulation. The diffusion coefficient for benzaldehyde in Bu(4)NClO(4)-HMPA medium was determined to be 1.32 × 10(-7) cm(2) s(-1) by electrochemical measurements, and the flow simulation using this value revealed the formation of clear concentration gradient of benzaldehyde in the microreactor channel over a specific channel length. In addition, the necessity of the liquid-liquid parallel laminar flow was confirmed by flow mode experiments.

  8. Quenching and anisotropy of hydromagnetic turbulent transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karak, Bidya Binay; Brandenburg, Axel; Rheinhardt, Matthias

    2014-11-01

    Hydromagnetic turbulence affects the evolution of large-scale magnetic fields through mean-field effects like turbulent diffusion and the α effect. For stronger fields, these effects are usually suppressed or quenched, and additional anisotropies are introduced. Using different variants of the test-field method, we determine the quenching of the turbulent transport coefficients for the forced Roberts flow, isotropically forced non-helical turbulence, and rotating thermal convection. We see significant quenching only when the mean magnetic field is larger than the equipartition value of the turbulence. Expressing the magnetic field in terms of the equipartition value of the quenched flows, we obtain for themore » quenching exponents of the turbulent magnetic diffusivity about 1.3, 1.1, and 1.3 for Roberts flow, forced turbulence, and convection, respectively. However, when the magnetic field is expressed in terms of the equipartition value of the unquenched flows, these quenching exponents become about 4, 1.5, and 2.3, respectively. For the α effect, the exponent is about 1.3 for the Roberts flow and 2 for convection in the first case, but 4 and 3, respectively, in the second. In convection, the quenching of turbulent pumping follows the same power law as turbulent diffusion, while for the coefficient describing the Ω×J effect nearly the same quenching exponent is obtained as for α. For forced turbulence, turbulent diffusion proportional to the second derivative along the mean magnetic field is quenched much less, especially for larger values of the magnetic Reynolds number. However, we find that in corresponding axisymmetric mean-field dynamos with dominant toroidal field the quenched diffusion coefficients are the same for the poloidal and toroidal field constituents.« less

  9. A new formulation of the dispersion tensor in homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Valdés-Parada, Francisco J.; Lasseux, Didier; Bellet, Fabien

    2016-04-01

    Dispersion is the result of two mass transport processes, namely molecular diffusion, which is a pure mixing effect and hydrodynamic dispersion, which combines mixing and spreading. The identification of each contribution is crucial and is often misinterpreted. Traditionally, under a volume averaging framework, a single closure problem is solved and the resulting fields are substituted into diffusive and dispersive filters. However the diffusive filter (that leads to the effective diffusivity) allows passing information from convection, which leads to an incorrect definition of the effective medium coefficients composing the total dispersion tensor. In this work, we revisit the definitions of the effective diffusivity and hydrodynamic dispersion tensors using the method of volume averaging. Our analysis shows that, in the context of laminar flow with or without inertial effects, two closure problems need to be computed in order to correctly define the corresponding effective medium coefficients. The first closure problem is associated to momentum transport and needs to be solved for a prescribed Reynolds number and flow orientation. The second closure problem is related to mass transport and it is solved first with a zero Péclet number and second with the required Péclet number and flow orientation. All the closure problems are written using closure variables only as required by the upscaling method. The total dispersion tensor is shown to depend on the microstructure, macroscopic flow angles, the cell (or pore) Péclet number and the cell (or pore) Reynolds number. It is non-symmetric in the general case. The condition for quasi-symmetry is highlighted. The functionality of the longitudinal and transverse components of this tensor with the flow angle is investigated for a 2D model porous structure obtaining consistent results with previous studies.

  10. Effects of confinement, geometry, inlet velocity profile, and Reynolds number on the asymmetry of opposed-jet flows

    NASA Astrophysics Data System (ADS)

    Ansari, Abtin; Chen, Kevin K.; Burrell, Robert R.; Egolfopoulos, Fokion N.

    2018-04-01

    The opposed-jet counterflow configuration is widely used to measure fundamental flame properties that are essential targets for validating chemical kinetic models. The main and key assumption of the counterflow configuration in laminar flame experiments is that the flow field is steady and quasi-one-dimensional. In this study, experiments and numerical simulations were carried out to investigate the behavior and controlling parameters of counterflowing isothermal air jets for various nozzle designs, Reynolds numbers, and surrounding geometries. The flow field in the jets' impingement region was analyzed in search of instabilities, asymmetries, and two-dimensional effects that can introduce errors when the data are compared with results of quasi-one-dimensional simulations. The modeling involved transient axisymmetric numerical simulations along with bifurcation analysis, which revealed that when the flow field is confined between walls, local bifurcation occurs, which in turn results in asymmetry, deviation from the one-dimensional assumption, and sensitivity of the flow field structure to boundary conditions and surrounding geometry. Particle image velocimetry was utilized and results revealed that for jets of equal momenta at low Reynolds numbers of the order of 300, the flow field is asymmetric with respect to the middle plane between the nozzles even in the absence of confining walls. The asymmetry was traced to the asymmetric nozzle exit velocity profiles caused by unavoidable imperfections in the nozzle assembly. The asymmetry was not detectable at high Reynolds numbers of the order of 1000 due to the reduced sensitivity of the flow field to boundary conditions. The cases investigated computationally covered a wide range of Reynolds numbers to identify designs that are minimally affected by errors in the experimental procedures or manufacturing imperfections, and the simulations results were used to identify conditions that best conform to the assumptions of quasi-one-dimensional modeling.

  11. Preference limits of the visual dynamic range for ultra high quality and aesthetic conveyance

    NASA Astrophysics Data System (ADS)

    Daly, Scott; Kunkel, Timo; Sun, Xing; Farrell, Suzanne; Crum, Poppy

    2013-03-01

    A subjective study was conducted to investigate the preferred maximum and minimum display luminances in order to determine the dynamic ranges for future displays. Two studies address the diffuse reflective regions, and a third study tested preferences of highlight regions. Preferences, as opposed to detection thresholds, were studied to provide results more directly relevant to the viewing of entertainment or art. Test images were specifically designed to test these limits without the perceptual conflicts that usually occur in these types of studies. For the diffuse range, we found a display with a dynamic range having luminances between 0.1 and 650 cd/m2 matches the average preferences. However, to satisfy 90% of the population, a dynamic range from 0.005 and ~3,000 cd/m2 is needed. Since a display should be able to produce values brighter than the diffuse white maximum, as in specular highlights and emissive sources, the highlight study concludes that even the average preferred maximum luminance for highlight reproduction is ~4,000 cd/m2.

  12. The double-opposing buccal flap procedure for palatal lengthening.

    PubMed

    Mann, Robert J; Neaman, Keith C; Armstrong, Shannon D; Ebner, Ben; Bajnrauh, Robert; Naum, Steven

    2011-06-01

    Velopharyngeal dysfunction has been treated with either a pharyngeal flap or sphincteroplasty with varying degrees of success. Both of these entities have their own series of problems, with sleep apnea and nasal mucous flow disruptions at the forefront. The purpose of this study was to review the senior author's (R.J.M.) experience performing the double-opposing buccal flap for palatal lengthening. All patients who were treated with double-opposing buccal flaps between October of 1994 and July of 2007 were reviewed. These patients presented with varying degrees of velopharyngeal dysfunction showing some degree of velar movement at the time of surgery. Preoperative and postoperative speech results were reviewed for comparison. Twenty-seven patients underwent palatal lengthening, with an average length of follow-up of 58 months. Distal flap necrosis occurred in two patients. The level of intelligibility (65.4 percent versus 95.5 percent) and resonance (moderately hypernasal versus normal resonance) improved significantly postoperatively (p < 0.0001). Only one patient required the addition of a pharyngeal flap for persistent velopharyngeal dysfunction, and there were no postoperative issues with sleep apnea. The double-opposing buccal flap is an effective technique for lengthening the palate, improving speech, and decreasing the risks of postoperative sleep apnea. All patients experienced a dramatic improvement in their resonance and intelligibility. This technique appears most effective in patients with intact velar movement who demonstrate a small to moderate posterior velar gap. The double-opposing buccal flap is a useful means of treating velopharyngeal dysfunction, thus serving as an adjunct when improving pharyngeal closure.

  13. The three-zone composite productivity model for a multi-fractured horizontal shale gas well

    NASA Astrophysics Data System (ADS)

    Qi, Qian; Zhu, Weiyao

    2018-02-01

    Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interfere of the fractures.

  14. Atmospheric pressure flow reactor: Gas phase chemical kinetics under tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)

    1991-01-01

    A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.

  15. Perspectives on dilution jet mixing. [in creating temperature patterns at combustor exits in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.

    1986-01-01

    A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.

  16. The effects of radiative heat loss on microgravity flame spread

    NASA Technical Reports Server (NTRS)

    Fakheri, Ahmad; Olson, Sandra L.

    1989-01-01

    The effect of radiative heat loss from the surface of a solid material burning in a zero gravity environment in an opposed flow is studied through the use of a numerical model. Radiative heat loss is found to decrease the flame spread rate, the boundary layer thickness, and pyrolysis lengths. Blowoff extinction is predicted to occur at slower opposesd flow velocities than would occur if the radiative loss is not present. The radiative heat fluxes are comparable to the conduction fluxes, indicating the significance of the surface energy loss.

  17. Multicomponent Gas Diffusion and an Appropriate Momentum Boundary Condition

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1994-01-01

    Multicomponent gas diffusion is reviewed with particular emphasis on gas flows near solid boundaries-the so-called Kramers-Kistemaker effect. The aim is to derive an appropriate momentum boundary condition which governs many gaseous species diffusing together. The many species' generalization of the traditional single gas condition, either as slip or stick (no-slip), is not obvious, particularly for technologically important cases of lower gas pressures and very dissimilar molecular weight gases. No convincing theoretical case exists for why two gases should interact with solid boundaries equally but in opposite flow directions, such that the total gas flow exactly vanishes. ln this way, the multicomponent no-slip boundary requires careful treatment The approaches discussed here generally adopt a microscopic model for gas-solid contact. The method has the advantage that the mathematics remain tractable and hence experimentally testable. Two new proposals are put forward, the first building in some molecular collision physics, the second drawing on a detailed view of surface diffusion which does not unphysically extrapolate bulk gas properties to govern the adsorbed molecules. The outcome is a better accounting of previously anomalous experiments. Models predict novel slip conditions appearing even for the case of equal molecular weight components. These approaches become particularly significant in view of a conceptual contradiction found to arise in previous derivations of the appropriate boundary conditions. The analogous case of three gases, one of which is uniformly distributed and hence non-diffusing, presents a further refinement which gives unexpected flow reversals near solid boundaries. This case is investigated alone and for aggregating gas species near their condensation point. In addition to predicting new physics, this investigation carries practical implications for controlling vapor diffusion in the growth of crystals used in medical diagnosis (e.g. mercuric iodide) and semiconductors.

  18. Numerical and analytical modelling of the MHD buoyancy-driven flow in a Bridgman crystal growth configuration

    NASA Astrophysics Data System (ADS)

    Davoust, L.; Moreau, R.; Cowley, M. D.; Tanguy, P. A.; Bertrand, F.

    1997-10-01

    We present analytical and numerical models of magnetohydrodynamic(MHD) buoyancy-driven flow within the liquid pool of a horizontal Bridgman crystal growth furnace, under the influence of a uniform vertical magnetic field B0. A horizontal differentially heated cylinder, whose aspect ratio (radius to length) is small enough for a fully developed regime to be established in the central core, is considered. With Hartmann layers remaining electrically inactive, a modified Rayleigh number RaG, which is the ration of the ordinary Rayleigh number to the square of the Hartmann number, is found to control the MHD reorganisation of the flow. This modified Rayleigh number is a measure of the importance of thermal convection relative to diffusion if velocity is estimated from the balance between the torques of buoyancy and the Laplace force. When RaG is much smaller than unity (quasi-diffusive regime), an analytical modelling of the flow, based on a power series of RaG, demonstrates that this balance requires secondary vortices within vertical mid-planes of the cylinder, both within the core flow and near the end walls. A 3-D numerical calculation of the flow provides evidence of the transition from a convective MHD flow (when RaG is still of the order of unity) to the quasi-diffusive flow, analytically studied. Indeed, this transition takes the form of a rather complex 3-D MHD organisation of the flow which is due to the nonuniformity of the axial temperature gradient along the cylinder.

  19. A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities

    NASA Astrophysics Data System (ADS)

    Dedè, Luca; Garcke, Harald; Lam, Kei Fong

    2017-07-01

    Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn-Hilliard-Navier-Stokes model introduced by Abels et al. (Math Models Methods Appl Sci 22(3):1150013, 2012), which uses a volume-averaged velocity, we derive a diffuse interface model in a Hele-Shaw geometry, which in the case of non-matched densities, simplifies an earlier model of Lee et al. (Phys Fluids 14(2):514-545, 2002). We recover the classical Hele-Shaw model as a sharp interface limit of the diffuse interface model. Furthermore, we show the existence of weak solutions and present several numerical computations including situations with rising bubbles and fingering instabilities.

  20. Aeroelastic Flutter Behavior of Cantilever within a Nozzle-Diffuser Geometry

    NASA Astrophysics Data System (ADS)

    Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae

    2015-11-01

    Aeroelastic flutter arises when the motion of a structure and its surrounding flowing fluid are coupled in a constructive manner, causing large amplitudes of vibration in the immersed solid. A cantilevered beam in axial flow within a nozzle-diffuser geometry exhibits interesting resonance behavior that presents good prospects for internal flow energy harvesting. Different modes can be excited as a function of throat velocity, nozzle geometry, fluid and cantilever material parameters. This work explores the relationship between the aeroelastic flutter instability boundaries and relevant non-dimensional parameters via experiments. Results suggest that for a linear expansion diffuser geometry, a non-dimensional stiffness, non-dimensional mass, and non-dimensional throat size are the critical parameters in mapping the instability. This map can serve as a guide to future work concerning possible electrical output and failure prediction in energy harvesters.

Top