Mixed Convection Opposing Flow in a Vertical Porous Annulus-Two Temperature Model
NASA Astrophysics Data System (ADS)
Al-Rashed, Abdullah A. AA; J, Salman Ahmed N.; Khaleed, H. M. T.; Yunus Khan, T. M.; NazimAhamed, K. S.
2016-09-01
The opposing flow in a porous medium refers to a condition when the forcing velocity flows in opposite direction to thermal buoyancy obstructing the buoyant force. The present research refers to the effect of opposing flow in a vertical porous annulus embedded with fluid saturated porous medium. The thermal non-equilibrium approach with Darcy modal is considered. The boundary conditions are such that the inner radius is heated with constant temperature Tw the outer radius is maintained at constant temperature Tc. The coupled nonlinear partial differential equations such as momentum equation, energy equation for fluid and energy equation for solid are solved using the finite element method. The opposing flow variation of average Nusselt number with respect to radius ratio Rr, Aspect ratioAr and Radiation parameter Rd for different values of Peclet number Pe are investigated. It is found that the flow behavior is quite different from that of aiding flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joye, D.D.
1996-07-01
Mixed convection heat transfer in a vertical tube with opposing flow (downflow heating) was studied experimentally for Reynolds numbers ranging from about 1,000 to 30,000 at constant Grashof numbers ranging about 1{1/2} orders of magnitude under constant wall temperature (CWT) conditions. Three correlations developed for opposing mixed convection flows in vertical conduits predicted the data reasonably well, except near and into the asymptote region for which these equations were not designed. A critical Reynolds number is developed here, above which these equations can be used for design purposes regardless of the boundary condition. Below Re{sub crit}, the correlations, the asymptotemore » equation should be used for the CWT boundary condition, which is more prevalent in process situations than the uniform heat flux (UHF) boundary condition.« less
Design principle for improved three-dimensional ac electro-osmotic pumps
NASA Astrophysics Data System (ADS)
Burch, Damian; Bazant, Martin Z.
2008-05-01
Three-dimensional (3D) ac electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a “fluid conveyor belt” by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions—rather than the geometry—and predict that flow rates can be further doubled by fabricating 3D features with nonpolarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities that drive the flow.
Design principle for improved three-dimensional ac electro-osmotic pumps.
Burch, Damian; Bazant, Martin Z
2008-05-01
Three-dimensional (3D) ac electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a "fluid conveyor belt" by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions-rather than the geometry-and predict that flow rates can be further doubled by fabricating 3D features with nonpolarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities that drive the flow.
NASA Astrophysics Data System (ADS)
Rushi Kumar, B.; Jayakar, R.; Vijay Kumar, A. G.
2017-11-01
An exact analysis of the problem of free convection flow of a viscous incompressible chemically reacting fluid past an infinite vertical plate with the flow due to impulsive motion of the plate with Newtonian heating in the presence of thermal radiation and variable mass diffusion is performed. The resulting governing equations were tackled by Laplace transform technique. Finally the effects of pertinent flow parameters such as the radiation parameter, chemical reaction parameter, buoyancy ratio parameter, thermal Grashof number, Schmidt number, Prandtl number and time on the velocity, temperature, concentration and skin friction for both aiding and opposing flows were examined in detail when Pr=0.71(conducting air) and Pr=7.0(water).
Turbulent mixing induced by Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Krivets, V. V.; Ferguson, K. J.; Jacobs, J. W.
2017-01-01
Richtmyer-Meshkov instability is studied in shock tube experiments with an Atwood number of 0.7. The interface is formed in a vertical shock tube using opposed gas flows, and three-dimensional random initial interface perturbations are generated by the vertical oscillation of gas column producing Faraday waves. Planar Laser Mie scattering is used for flow visualization and for measurements of the mixing process. Experimental image sequences are recorded at 6 kHz frequency and processed to obtain the time dependent variation of the integral mixing layer width. Measurements of the mixing layer width are compared with Mikaelian's [1] model in order to extract the growth exponent θ where a fairly wide range of values is found varying from θ ≈ 0.2 to 0.6.
Solution of mixed convection heat transfer from isothermal in-line fins
NASA Technical Reports Server (NTRS)
Khalilollahi, Amir
1993-01-01
Transient and steady state combined natural and forced convective flows over two in-line finite thickness fins (louvers) in a vertical channel are numerically solved using two methods. The first method of solution is based on the 'Simple Arbitrary Lagrangian Eulerian' (SALE) technique which incorporates mainly two computational phases: (1) a Lagrangian phase in which the velocity field is updated by the effects of all forces, and (2) an Eulerian phase that executes all advective fluxes of mass, momentum and energy. The second method of solution uses the finite element code entitled FIDAP. In the first part, comparison of the results by FIDAP, SALE, and available experimental work were done and discussed for steady state forced convection over louvered fins. Good agreements were deduced between the three sets of results especially for the flow over a single fin. In the second part and in the absence of experimental literature, the numerical predictions were extended to the transient transports and to the opposing flow where pressure drop is reversed. Results are presented and discussed for heat transfer and pressure drop in assisting and opposing mixed convection flows.
NASA Astrophysics Data System (ADS)
Anzai, Yosuke; Fukagata, Koji; Meliga, Philippe; Boujo, Edouard; Gallaire, François
2017-04-01
Flow around a square cylinder controlled using plasma actuators (PAs) is numerically investigated by direct numerical simulation in order to clarify the most effective location of actuator installation and to elucidate the mechanism of control effect. The Reynolds number based on the cylinder diameter and the free-stream velocity is set to be 100 to study the fundamental effect of PAs on two-dimensional vortex shedding, and three different locations of PAs are considered. The mean drag and the root-mean-square of lift fluctuations are found to be reduced by 51% and 99% in the case where two opposing PAs are aligned vertically on the rear surface. In that case, a jet flow similar to a base jet is generated by the collision of the streaming flows induced by the two opposing PAs, and the vortex shedding is completely suppressed. The simulation results are ultimately revisited in the frame of linear sensitivity analysis, whose computational cost is much lower than that of performing the full simulation. A good agreement is reported for low control amplitudes, which allows further discussion of the linear optimal arrangement for any number of PAs.
NASA Astrophysics Data System (ADS)
Martínez-Suástegui, Lorenzo; Salcedo, Erick; Cajas, Juan; Treviño, César
2015-11-01
Transient mixed convection in a laminar cross-flow from two isothermal cylinders in tandem arrangement confined inside a vertical channel is studied numerically using the vorticity-stream function formulation of the unsteady two-dimensional Navier-Stokes and energy equations. Numerical experiments are performed for a Reynolds number based on cylinder diameter of Re = 200, Prandtl number of Pr = 7, blockage ratio of D/H = 0.2, a pitch-to-diameter ratio of L/D = 2, and several values of buoyancy strength or Richardson number Ri = Gr/Re2. The results reported herein demonstrate how the wall confinement, interference effects and opposing buoyancy affect the flow structure and heat transfer characteristics of the cylinder array. This research was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Grant number 167474 and by the Secretaría de Investigación y Posgrado del IPN, Grant number SIP 20141309.
Two opposed lateral jets injected into swirling crossflow
NASA Technical Reports Server (NTRS)
Lilley, D. G.; Mcmurry, C. B.; Ong, L. H.
1987-01-01
Experiments have been conducted to obtain the time-mean and turbulent quantities of opposed lateral jets in a low speed, nonreacting flowfield. A jet-to-crossflow velocity ratio of R = 4 was used throughout the experiments, with swirl vane angles of 0 (swirler removed), 45 and 70 degrees used with the crossflow. Flow visualization techniques used were neutrally-buoyant helium-filled soap bubbles and multispark photography in order to obtain the gross flowfield characteristics. Measurements of time-mean and turbulent quantities were obtained utilizing a six-orientation single hot-wire technique. For the nonswirling case, the jets were found not to penetrate past the test-section centerline, in contrast to the single lateral jet with the same jet-to-crossflow velocity ratio. In the swirling cases, the crossflow remains in a narrow region near the wall of the test section. The opposed jets are swept from their vertical courses into spiral trajectories close to the confining walls. Extensive results are presented in r-x plane plots.
Dynamic Infrared Thermography Study of Blood Flow Relative to Lower Limp Position
NASA Astrophysics Data System (ADS)
Stathopoulos, I.; Skouroliakou, K.; Michail, C.; Valais, I.
2015-09-01
Thermography is an established method for studying skin temperature distribution. Temperature distribution on body surface is influenced by a variety of physiological mechanisms and has been proven a reliable indicator of various physiological disorders. Blood flow is an important factor that influences body heat diffusion and skin temperature. In an attempt to validate and further elucidate thermal models characterizing the human skin, dynamic thermography of the lower limp in horizontal and vertical position was performed, using a FLIR T460 thermographic camera. Temporal variation of temperature was recorded on five distinct points of the limp. Specific points were initially cooled by the means of an ice cube and measurements of the skin temperature were obtained every 30 seconds as the skin temperature was locally reduced and afterwards restored at its initial value. The return to thermal balance followed roughly the same pattern for all points of measurement, although the heating rate was faster when the foot was in horizontal position. Thermal balance was achieved faster at the spots that were positioned on a vein passage. Our results confirm the influence of blood flow on the thermal regulation of the skin. Spots located over veins exhibit different thermal behaviour due to thermal convection through blood flow. Changing the position of the foot from vertical to horizontal, effectively affects blood perfusion as in the vertical position blood circulation is opposed by gravity.
Harte, Philip T.
2017-01-01
A common assumption with groundwater sampling is that low (<0.5 L/min) pumping rates during well purging and sampling captures primarily lateral flow from the formation through the well-screened interval at a depth coincident with the pump intake. However, if the intake is adjacent to a low hydraulic conductivity part of the screened formation, this scenario will induce vertical groundwater flow to the pump intake from parts of the screened interval with high hydraulic conductivity. Because less formation water will initially be captured during pumping, a substantial volume of water already in the well (preexisting screen water or screen storage) will be captured during this initial time until inflow from the high hydraulic conductivity part of the screened formation can travel vertically in the well to the pump intake. Therefore, the length of the time needed for adequate purging prior to sample collection (called optimal purge duration) is controlled by the in-well, vertical travel times. A preliminary, simple analytical model was used to provide information on the relation between purge duration and capture of formation water for different gross levels of heterogeneity (contrast between low and high hydraulic conductivity layers). The model was then used to compare these time–volume relations to purge data (pumping rates and drawdown) collected at several representative monitoring wells from multiple sites. Results showed that computation of time-dependent capture of formation water (as opposed to capture of preexisting screen water), which were based on vertical travel times in the well, compares favorably with the time required to achieve field parameter stabilization. If field parameter stabilization is an indicator of arrival time of formation water, which has been postulated, then in-well, vertical flow may be an important factor at wells where low-flow sampling is the sample method of choice.
Experiments on opposed lateral jets injected into swirling crossflow. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Mcmurry, C. B.; Lilley, D. G.
1986-01-01
Experiments have been conducted to obtain the time-mean and turbulent quantities of opposed lateral jets in a low speed, nonreacting flowfield. A jet-to-crossflow velocity ratio of R = v sub J/u sub 0 = 4 was used throughout the experiments, with swirl vane angles of d = 0 (swirler removed), 45 and 70 deg used with the crossflow. Flow visualization techniques used were neutrally-buoyant helium-filled soap bubbles and multispark photography in order to obtain the gross flowfield characteristics. Measurements of time-mean and turbulent quantities were obtained utilizing a six-orientation single hot-wire technique. For the nonswirling case, the jets were found not to penetrate past the test-section centerline, in contrast to the single lateral jet with the same jet-to-crossflow velocity ratio. In the swirling cases, the crossflow remains in a narrow region near the wall of the test section. The opposed jets are swept from their vertical courses into spiral trajectories close to the confining walls. Extensive results are presented in r-x plane plots.
1994-10-10
Baroclinic Vortex Shedding from Hydrothermal Plumes ", J. Geophys. Res. 96, (C7), 12,511-12,518. Jirka, G.H. (1982), "Turbulent Buoyant Jets in Shallow...boundary layers and transport boundary current - 251 processes effected by buoyancy - 239 D. Obaton, G. Chaben’ dHibres; E. I. Nikitorovich, N . F . Yurchenko...assumed at angle 0 to the vertical, is N 2h cos 0 per unit -iass; which, in opposing the acceleration of fluid (02h/Ot2 )sec 0, gives rise to
NASA Astrophysics Data System (ADS)
Gutierrez, Benjamin T.; Voulgaris, George; Work, Paul A.
2006-03-01
The cross-shore structure of subtidal flows on the inner shelf (7 to 12 m water depth) of Long Bay, South Carolina, a concave-shaped bay, is examined through the analysis of nearly 80 days of near-bed (1.7-2.2 m above bottom) current observations acquired during the spring and fall of 2001. In the spring and under northeastward winds (upwelling favorable) a two-layered flow was observed at depths greater than 10 m, while closer to the shore the currents were aligned with the wind. The two-layered flow is attributed to the presence of stratification, which has been observed under similar conditions in the South Atlantic Bight. When the wind stress was southwestward (downwelling favorable) and exceeded 0.1 N/m2, vertical mixing occurred, the two-layered flow pattern disappeared, and currents were directed alongshore with the wind at all sites and throughout the water column. In the fall, near-bed flows close to the shore (water depth <7 m) were often reduced compared to or opposed those measured farther offshore under southwestward winds. A simplified analysis of the depth-averaged, alongshore momentum balance illustrates that the alongshore pressure gradient approached or exceeded the magnitude of the alongshore wind stress at the same time that the nearshore alongshore current opposed the wind stress and alongshore currents farther offshore. In addition, the analysis suggests that the wind stress is reduced closer to shore so that the alongshore pressure gradient is large enough to drive the flow against the wind.
Flame Spread and Extinction Over a Thick Solid Fuel in Low-Velocity Opposed and Concurrent Flows
NASA Astrophysics Data System (ADS)
Zhu, Feng; Lu, Zhanbin; Wang, Shuangfeng
2016-05-01
Flame spread and extinction phenomena over a thick PMMA in purely opposed and concurrent flows are investigated by conducting systematical experiments in a narrow channel apparatus. The present tests focus on low-velocity flow regime and hence complement experimental data previously reported for high and moderate velocity regimes. In the flow velocity range tested, the opposed flame is found to spread much faster than the concurrent flame at a given flow velocity. The measured spread rates for opposed and concurrent flames can be correlated by corresponding theoretical models of flame spread, indicating that existing models capture the main mechanisms controlling the flame spread. In low-velocity gas flows, however, the experimental results are observed to deviate from theoretical predictions. This may be attributed to the neglect of radiative heat loss in the theoretical models, whereas radiation becomes important for low-intensity flame spread. Flammability limits using oxygen concentration and flow velocity as coordinates are presented for both opposed and concurrent flame spread configurations. It is found that concurrent spread has a wider flammable range than opposed case. Beyond the flammability boundary of opposed spread, there is an additional flammable area for concurrent spread, where the spreading flame is sustainable in concurrent mode only. The lowest oxygen concentration allowing concurrent flame spread in forced flow is estimated to be approximately 14 % O2, substantially below that for opposed spread (18.5 % O2).
Lambert, Rebecca B.; Hunt, Andrew G.; Stanton, Gregory P.; Nyman, Michael B.
2010-01-01
The freshwater zone of the San Antonio segment of the Edwards aquifer in south-central Texas (hereinafter, the Edwards aquifer) is bounded to the south and southeast by a zone of transition from freshwater to saline water (hereinafter, the transition zone). The boundary between the two zones is the freshwater/saline-water interface (hereinafter, the interface), defined as the 1,000-milligrams per liter dissolved solids concentration threshold. This report presents the findings of a study, done by the U.S. Geological Survey in cooperation with the San Antonio Water System, to obtain lithologic properties (rock properties associated with known stratigraphic units) and physicochemical properties (fluid conductivity and temperature) and to analyze the hydraulics of flow in and near the transition zone of the Edwards aquifer on the basis of water-level and borehole geophysical log data collected from 15 monitoring wells in four transects during 1999-2007. No identifiable relation between conductivity values from geophysical logs in monitoring wells in all transects and equivalent freshwater heads in the wells at the times the logs were run is evident; and no identifiable relation between conductivity values and vertical flow in the boreholes concurrent with the times the logs were run is evident. The direction of the lateral equivalent freshwater head gradient and thus the potential lateral flow at the interface in the vicinity of the East Uvalde transect fluctuates between into and out of the freshwater zone, depending on recharge and withdrawals. Whether the prevailing direction on average is into or out of the freshwater zone is not clearly indicated. Equivalent freshwater head data do not indicate a prevailing direction of the lateral gradient at the interface in the vicinity of the Tri-County transect. The prevailing direction on average of the lateral gradient and thus potential lateral flow at the interface in the vicinity of the Kyle transect likely is from the transition zone into the freshwater zone. The hypothesis regarding the vertical gradient at the East Uvalde transect, and thus the potential for vertical flow near an interface conceptualized as a surface sloping upward in the direction of the dip of the stratigraphic units, is that the potential for vertical flow fluctuates between into and out of the freshwater zone, depending on recharge and withdrawals. At the Tri-County transect, a downward gradient on the fresh-water side of the interface and an upward gradient on the saline-water side are evidence of opposing potentials that appear to have stabilized the position of the interface over the range of hydrologic conditions that occurred at the times the logs were run. At the Fish Hatchery transect, an upward gradient on the saline-water side of the interface, coupled with the assumption of a sloping interface, implies a vertical gradient from the transition zone into the freshwater zone. This potential for vertical movement of the interface apparently was opposed by the potential (head) on the freshwater side of the interface that kept the interface relatively stable over the range of hydrologic conditions during which the logs were run. The five flow logs for Kyle transect freshwater well KY1 all indicate upward flow that originates from the Glen Rose Limestone, the uppermost unit of the Trinity aquifer; and one log for well KY2 shows upward flow entering the borehole from the Trinity aquifer. These flow data constitute evidence of the potential for flow from the Trinity aquifer into the Edwards aquifer in the vicinity of the Kyle transect. Subsurface temperature data indicate that flow on average is more active, or vigorous, on the freshwater side of the interface than on the saline-water side. A hydraulic connection between the transition zone and the freshwater zone is indicated by similar patterns in the hydrographs of the 15 transect monitoring wells in and near the transition zone and three county index wel
NASA Technical Reports Server (NTRS)
Tesch, W. A.; Steenken, W. G.
1976-01-01
The results are presented of a one-dimensional dynamic digital blade row compressor model study of a J85-13 engine operating with uniform and with circumferentially distorted inlet flow. Details of the geometry and the derived blade row characteristics used to simulate the clean inlet performance are given. A stability criterion based upon the self developing unsteady internal flows near surge provided an accurate determination of the clean inlet surge line. The basic model was modified to include an arbitrary extent multi-sector parallel compressor configuration for investigating 180 deg 1/rev total pressure, total temperature, and combined total pressure and total temperature distortions. The combined distortions included opposed, coincident, and 90 deg overlapped patterns. The predicted losses in surge pressure ratio matched the measured data trends at all speeds and gave accurate predictions at high corrected speeds where the slope of the speed lines approached the vertical.
NASA Technical Reports Server (NTRS)
Weaver, J. A.; Viskanta, Raymond
1992-01-01
An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model.
Airflows and turbulent flux measurements in mountainous terrain: Part 1. Canopy and local effects
Turnipseed, Andrew A.; Anderson, Dean E.; Blanken, Peter D.; Baugh, William M.; Monson, Russell K.
2003-01-01
We have studied the effects of local topography and canopy structure on turbulent flux measurements at a site located in mountainous terrain within a subalpine, coniferous forest. Our primary aim was to determine whether the complex terrain of the site affects the accuracy of eddy flux measurements from a practical perspective. We observed displacement heights, roughness lengths, spectral peaks, turbulent length scales, and profiles of turbulent intensities that were comparable in magnitude and pattern to those reported for forest canopies in simpler terrain. We conclude that in many of these statistical measures, the local canopy exerts considerably more influence than does topographical complexity. Lack of vertical flux divergence and modeling suggests that the flux footprints for the site are within the standards acceptable for the application of flux statistics. We investigated three different methods of coordinate rotation: double rotation (DR), triple rotation (TR), and planar-fit rotation (PF). Significant variability in rotation angles at low wind speeds was encountered with the commonly used DR and TR methods, as opposed to the PF method, causing some overestimation of the fluxes. However, these differences in fluxes were small when applied to large datasets involving sensible heat and CO2 fluxes. We observed evidence of frequent drainage flows near the ground during stable, stratified conditions at night. Concurrent with the appearance of these flows, we observed a positive bias in the mean vertical wind speed, presumably due to subtle topographic variations inducing a flow convergence below the measurement sensors. In the presence of such drainage flows, advection of scalars and non-zero bias in the mean vertical wind speed can complicate closure of the mass conservation budget at the site.
NASA Astrophysics Data System (ADS)
Huq, Sadiq; De Roo, Frederik; Foken, Thomas; Mauder, Matthias
2017-10-01
The Campbell CSAT3 sonic anemometer is one of the most popular instruments for turbulence measurements in basic micrometeorological research and ecological applications. While measurement uncertainty has been characterized by field experiments and wind-tunnel studies in the past, there are conflicting estimates, which motivated us to conduct a numerical experiment using large-eddy simulation to evaluate the probe-induced flow distortion of the CSAT3 anemometer under controlled conditions, and with exact knowledge of the undisturbed flow. As opposed to wind-tunnel studies, we imposed oscillations in both the vertical and horizontal velocity components at the distinct frequencies and amplitudes found in typical turbulence spectra in the surface layer. The resulting flow-distortion errors for the standard deviations of the vertical velocity component range from 3 to 7%, and from 1 to 3% for the horizontal velocity component, depending on the azimuth angle. The magnitude of these errors is almost independent of the frequency of wind speed fluctuations, provided the amplitude is typical for surface-layer turbulence. A comparison of the corrections for transducer shadowing proposed by both Kaimal et al. (Proc Dyn Flow Conf, 551-565, 1978) and Horst et al. (Boundary-Layer Meteorol 155:371-395, 2015) show that both methods compensate for a larger part of the observed error, but do not sufficiently account for the azimuth dependency. Further numerical simulations could be conducted in the future to characterize the flow distortion induced by other existing types of sonic anemometers for the purposes of optimizing their geometry.
Opposed-flow virtual cyclone for particle concentration
Rader, Daniel J.; Torczynski, John R.
2000-12-05
An opposed-flow virtual cyclone for aerosol collation which can accurately collect, classify, and concentrate (enrich) particles in a specific size range. The opposed-flow virtual cyclone is a variation on the virtual cyclone and has its inherent advantages (no-impact particle separation in a simple geometry), while providing a more robust design for concentrating particles in a flow-through type system. The opposed-flow virtual cyclone consists of two geometrically similar virtual cyclones arranged such that their inlet jets are inwardly directed and symmetrically opposed relative to a plane of symmetry located between the two inlet slits. A top plate bounds both jets on the "top" side of the inlets, while the other or lower wall curves "down" and away from each inlet jet. Each inlet jet will follow the adjacent lower wall as it turns away, and that particles will be transferred away from the wall and towards the symmetry plane by centrifugal action. After turning, the two jets merge smoothly along the symmetry line and flow parallel to it through the throat. Particles are transferred from the main flows, across a dividing streamline, and into a central recirculating region, where particle concentrations become greatly increased relative to the main stream.
Experiments on the Richtmyer–Meshkov instability with an imposed, random initial perturbation
Jacobs, J. W.; Krivets, V. V.; Tsiklashvili, V.; ...
2013-03-16
A vertical shock tube is used to perform experiments on the Richtmyer–Meshkov instability with a three-dimensional random initial perturbation. A membraneless flat interface is formed by opposed gas flows in which the light and heavy gases enter the shock tube from the top and from the bottom of the shock tube driven section. An air/SF6 gas combination is used and a Mach number M = 1.2 incident shock wave impulsively accelerates the interface. Initial perturbations on the interface are created by vertically oscillating the gas column within the shock tube to produce Faraday waves on the interface resulting in amore » short wavelength, three-dimensional perturbation. Planar Mie scattering is used to visualize the flow in which light from a laser sheet is scattered by smoke seeded in the air, and image sequences are captured using three high-speed video cameras. Measurements of the integral penetration depth prior to reshock show two growth behaviors, both having power law growth with growth exponents in the range found in previous experiments and simulations. Following reshock, all experiments showvery consistent linear growth with a growth rate in good agreement with those found in previous studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koster, J.N.; Sani, R.L.
1990-01-01
Various papers on low-gravity fluid dynamics and transport phenomena are presented. Individual topics addressed include: fluid management in low gravity, nucleate pool boiling in variable gravity, application of energy-stability theory to problems in crystal growth, thermosolutal convection in liquid HgCdTe near the liquidus temperature, capillary surfaces in microgravity, thermohydrodynamic instabilities and capillary flows, interfacial oscillators, effects of gravity jitter on typical fluid science experiments and on natural convection in a vertical cylinder. Also discussed are: double-diffusive convection and its effects under reduced gravity, segregation and convection in dendritic alloys, fluid flow and microstructure development, analysis of convective situations with themore » Soret effect, complex natural convection in low Prandtl number metals, separation physics, phase partitioning in reduced gravity, separation of binary alloys with miscibility gap in the melt, Ostwald ripening in liquids, particle cloud combustion in reduced gravity, opposed-flow flame spread with implications for combustion at microgravity.« less
Hopper apparatuses for processing a bulk solid, and related systems and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westover, Tyler Lott; Ryan, John Chadron Benjamin; Matthews, Austin Colter
A hopper apparatus comprises a movable wall comprising opposing walls movably connected to a support assembly and oriented at acute angles relative to a central vertical axis of the support assembly, and movement control devices configured and positioned to move the opposing walls along the support assembly to control dimensions of a discharge outlet at least partially defined by converging ends of the opposing walls; a liner assembly comprising liner structures at least partially overlying inner surfaces of the opposing walls and configured to remain at least partially stationary relative to the opposing walls during movement of the opposing walls;more » and pressure sensors between the inner surfaces of opposing walls and portions of the liner structures thereover. A bulk solids processing system and a method of processing a bulk solid are also described.« less
NASA Astrophysics Data System (ADS)
Salibindla, Ashwanth; Masuk, Ashik Ullah Mohammad; Ni, Rui
2017-11-01
We have designed and constructed a new vertical water tunnel, V-ONSET, to investigate interfacial mass, momentum and energy transfer between two phases in a Lagrangian frame. This system features an independent control of mean flow and turbulence level. The mean flow opposes the rising/falling velocity of the second phase, ``suspending'' the particles and increasing tracking time in the view area. Strong turbulence is generated by shooting 88 digitally-controlled water jets into the test section. The second phase, either bubbles or oil droplets, can be introduced into the test section through a capillary island. In addition to this flow control system, V-ONSET comes with a 3D two-phase visualization system, consisting of high-speed cameras, two-colored LED system, and in-house Lagrangian particle tracking algorithm. This enables us to acquire the Lagrangian evolution of both phases and the interfacial transfer dynamics in between, paving the way for new closure models for two-phase simulations. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.
Muniak, John E.
2001-01-01
A gripper that is designed to incorporate the functions of gripping, supporting and pressure tongs into one device. The gripper has two opposing finger sections with interlocking fingers that incline and taper to form a wedge. The interlocking fingers are vertically off-set so that the opposing finger sections may close together allowing the inclined, tapered tips of the fingers to extend beyond the plane defined by the opposing finger section's engagement surface. The range of motion defined by the interlocking relationship of the finger sections allows the gripper to grab, lift and support objects of varying size and shape. The gripper has one stationary and one moveable finger section. Power is provided to the moveable finger section by an actuating device enabling the gripper to close around an object to be lifted. A lifting bail is attached to the gripper and is supported by a crane that provides vertical lift.
NASA Astrophysics Data System (ADS)
Singh, Anant Bir
This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the serpentine channel with similar conditions. Simulations for mass transfer show that recombining of the flow streams generate more uniform current density unlike the serpentine configuration where the current density was concentrated at the entrance of the flow stream. The background section provides a brief overview of the governing equations, the theory of flow field operation and previous bodies of work on flow field design. Recommendations are made for further verification of the design using a real working cell based on the results.
NASA Astrophysics Data System (ADS)
Martínez-Suástegui, Lorenzo; Barreto, Enrique; Treviño, César
2015-11-01
Transient laminar opposing mixed convection is studied experimentally in an open vertical rectangular channel with two discrete protruded heat sources subjected to uniform heat flux simulating electronic components. Experiments are performed for a Reynolds number of Re = 700, Prandtl number of Pr = 7, inclination angles with respect to the horizontal of γ =0o , 45o and 90o, and different values of buoyancy strength or modified Richardson number, Ri* =Gr* /Re2 . From the experimental measurements, the space averaged surface temperatures, overall Nusselt number of each simulated electronic chip, phase-space plots of the self-oscillatory system, characteristic times of temperature oscillations and spectral distribution of the fluctuating energy have been obtained. Results show that when a threshold in the buoyancy parameter is reached, strong three-dimensional secondary flow oscillations develop in the axial and spanwise directions. This research was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Grant number 167474 and by the Secretaría de Investigación y Posgrado del IPN, Grant number SIP 20141309.
Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity
NASA Astrophysics Data System (ADS)
Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui
Flame spread over solid surface is critical in combustion science due to its importance in fire safety in both ground and manned spacecraft. Eliminating potential fuels from materials is the basic method to protect spacecraft from fire. The criterion of material screening is its flamma-bility [1]. Since gas flow speed has strong effect on flame spread, the combustion behaviors of materials in normal and microgravity will be different due to their different natural convec-tion. To evaluate the flammability of materials used in the manned spacecraft, tests should be performed under microgravity. Nevertheless, the cost is high, so apparatus to simulate mi-crogravity combustion under normal gravity was developed. The narrow channel is such an apparatus in which the buoyant flow is restricted effectively [2, 3]. The experimental results of the horizontal narrow channel are consistent qualitatively with those of Mir Space Station. Quantitatively, there still are obvious differences. However, the effect of the channel size on flame spread has only attracted little attention, in which concurrent-flow flame spread over thin solid in microgravity is numerically studied[4], while the similarity of flame spread in different gravity is still an open question. In addition, the flame spread experiments under microgravity are generally carried out in large wind tunnels without considering the effects of the tunnel size [5]. Actually, the materials are always used in finite space. Therefore, the flammability given by experiments using large wind tunnels will not correctly predict the flammability of materials in the real environment. In the present paper, the effect of the channel size on opposed-flow flame spread over thin solid fuels in both normal and microgravity was investigated and compared. In the horizontal narrow channel, the flame spread rate increased before decreased as forced flow speed increased. In low speed gas flows, flame spread appeared the same trend as that in microgravity. This showed that the horizontal narrow channel can restrict natural convection effectively. In the vertical narrow channel, flame spread became slower as the forced gas flow speed increased. In low speed gas flows, flame spread was not near quench limit. Instead, the spread rate got its maximum value. This was entirely different from the result of microgravity and showed that the vertical narrow channel can not restrict natural convection. For the horizontal narrow channel, when the channel height lowered to 1 cm (The Grashof number was 149 using the half height as a characteristic length), the natural convection was restricted. For vertical narrow channel, a lower height was needed to restrict natural convection. References 1. NASA Technical Standard, "Flammability, Odor, Offgassing, and Compatibility Require-ments and Test Procedures for Materials in Environments That Support Combustion", NASA STD-6001, 1998. 2. Ivanov, A. V., Balashov, Ye. V., Andreeva, T. V., and et al., "Experimental Verification of Material Flammability in Space", NASA CR-1999-209405, 1999. 3. Melikhov, A. S., Bolodyan, I. A., Potyakin, V. I., and et al., "The study of polymer material combustion in simulated microgravity by physical modeling method", In: Sacksteder K, ed, "Fifth Int Microgravity Comb Workshop", NASA CP-1999-208917, 1999, 361. 4. T'ien, J. S., Shih, H.-Y., Jiang, C.-B., and et al., "Mechanisms of flame spread and smol-der wave propagation", In: Ross, H. D., ed, "Microgravity Combustion: Fire in Free Fall", Academic Press, 2001. 299. 5. Olson, S. L., Comb Sci Tech, 76, 233, 1991.
Low temperature aluminum reduction cell using hollow cathode
Brown, Craig W.; Frizzle, Patrick B.
2002-08-20
A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.
Jet Engine Exhaust Nozzle Flow Effector
NASA Technical Reports Server (NTRS)
Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)
2014-01-01
A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.
Jet Engine Exhaust Nozzle Flow Effector
NASA Technical Reports Server (NTRS)
Turner, Travis L. (Inventor); Buehrle, Ralph D. (Inventor); Silcox, Richard J. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor); Cano, Roberto J. (Inventor)
2011-01-01
A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.
Arkelyan, A.M.; Rickard, C.L.
1962-04-17
A gate valve for controlling the flow of fluid in separate concentric ducts or channels by means of a single valve is described. In one position, the valve sealing discs engage opposed sets of concentric ducts leading to the concentric pipes defining the flow channels to block flow therethrough. In another position, the discs are withdrawn from engagement with the opposed ducts and at the same time a bridging section is interposed therebetween to define concentric paths coextensive with and connecting the opposed ducts to facilitate flow therebetween. A wedge block arrangement is employed with each sealing disc to enable it to engage the ducts. The wedge block arrangement also facilitates unobstructcd withdrawal of the discs out of the intervening space between the sets of ducts. (AEC)
Orienting numbers in mental space: horizontal organization trumps vertical.
Holmes, Kevin J; Lourenco, Stella F
2012-01-01
While research on the spatial representation of number has provided substantial evidence for a horizontally oriented mental number line, recent studies suggest vertical organization as well. Directly comparing the relative strength of horizontal and vertical organization, however, we found no evidence of spontaneous vertical orientation (upward or downward), and horizontal trumped vertical when pitted against each other (Experiment 1). Only when numbers were conceptualized as magnitudes (as opposed to nonmagnitude ordinal sequences) did reliable vertical organization emerge, with upward orientation preferred (Experiment 2). Altogether, these findings suggest that horizontal representations predominate, and that vertical representations, when elicited, may be relatively inflexible. Implications for spatial organization beyond number, and its ontogenetic basis, are discussed.
NASA Astrophysics Data System (ADS)
Lieske, Mike; Schlurmann, Torsten
2016-04-01
INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common 3D wave analysis method, the Bayesian Directional Spectrum method (BDM). BDM was presented by Hashimoto et al. (1988). Lastly, identification of the wave-current interaction, the results from experiment with simultaneous waves and currents are compared with results for only-currents and only-waves in order to identify and exemplify the significance of nonlinear interaction processes. RESULTS The first results of the wave-current interaction show, as expected, a reduction in the wave height in the direction of flow and an increase in wave heights against the flow with unidirectional monochromatic waves. The superposition of current and orbital velocities cannot be conducted linearly. Furthermore, the results show a current domination for low wave periods and wave domination for larger wave periods. The criterion of a current or wave domination will be presented in the presentation. ACKNOWLEDGEMENT The support of the KFKI research project "Seegangsbelastungen (Seele)" (Contract No. 03KIS107) by the German "Federal Ministry of Education and Research (BMBF)" is gratefully acknowledged.
Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.
2001-01-01
Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.
Flammability Aspects of a Cotton-Fiberglass Fabric in Opposed and Concurrent Airflow in Microgravity
NASA Technical Reports Server (NTRS)
Ferkul, Paul V.; Olson, Sandra; Johnston, Michael C.; T'ien, James
2012-01-01
Microgravity combustion tests burning fabric samples were performed aboard the International Space Station. The cotton-fiberglass blend samples were mounted inside a small wind tunnel which could impose air flow speeds up to 40 cm/s. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed on flame appearance, flame growth, and spread rates were determined in both the opposed and concurrent flow configuration. For the opposed flow configuration, the flame quickly reached steady spread for each flow speed, and the spread rate was fastest at an intermediate value of flow speed. These tests show the enhanced flammability in microgravity for this geometry, since, in normal gravity air, a flame self-extinguishes in the opposed flow geometry (downward flame spread). In the concurrent flow configuration, flame size grew with time during the tests. A limiting length and steady spread rate were obtained only in low flow speeds ( 10 cm/s) for the short-length samples that fit in the small wind tunnel. For these conditions, flame spread rate increased linearly with increasing flow. This is the first time that detailed transient flame growth data was obtained in purely forced flows in microgravity. In addition, by decreasing flow speed to a very low value (around 1 cm/s), quenching extinction was observed. The valuable results from these long-duration experiments validate a number of theoretical predictions and also provide the data for a transient flame growth model under development.
POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)
The effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...
PIV measurements of the single-mode Richtmyer-Meshkov instability.
NASA Astrophysics Data System (ADS)
Aure, Roger; Jacobs, Jeff
2006-11-01
Experiments will be presented where a system of two gases of different densities (A = 0.66) is impulsively accelerated to produce Richtmeyer-Meshkov (RM) instability. An interface is created by filling the driven section of a 9.8 meter long vertical shock tube with opposing gas flows of air and Sulfur Hexafluoride (SF6). The interface forms in the top of the Plexiglas test section where the two gasses meet and exit through two slots. The gases are seeded with 0.3 μm polystyrene Latex spheres. An initial 2-D perturbation in the form of a standing wave of sinusoidal shape is created by oscillating the driven section in the horizontal direction. The interface between the gases is impulsively accelerated by an M=1.2 shockwave. One image per experiment is captured with a cooled CCD camera. The image is doubly exposed by a double-pulsed ND-YAG laser and is analyzed using autocorrelation PIV techniques. Results will be presented showing velocity and vorticity distribution in the RM flow.
Pleural mechanics and fluid exchange.
Lai-Fook, Stephen J
2004-04-01
The pleural space separating the lung and chest wall of mammals contains a small amount of liquid that lubricates the pleural surfaces during breathing. Recent studies have pointed to a conceptual understanding of the pleural space that is different from the one advocated some 30 years ago in this journal. The fundamental concept is that pleural surface pressure, the result of the opposing recoils of the lung and chest wall, is the major determinant of the pressure in the pleural liquid. Pleural liquid is not in hydrostatic equilibrium because the vertical gradient in pleural liquid pressure, determined by the vertical gradient in pleural surface pressure, does not equal the hydrostatic gradient. As a result, a viscous flow of pleural liquid occurs in the pleural space. Ventilatory and cardiogenic motions serve to redistribute pleural liquid and minimize contact between the pleural surfaces. Pleural liquid is a microvascular filtrate from parietal pleural capillaries in the chest wall. Homeostasis in pleural liquid volume is achieved by an adjustment of the pleural liquid thickness to the filtration rate that is matched by an outflow via lymphatic stomata.
Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295
Sea Ice Flows, Sea of Okhotsk, CIS
1991-05-06
STS039-84-29AL (28 April-6 May 1991) --- This nearly vertical photograph of the North Atlantic, taken outside of the sunglint pattern, illustrates the extreme contrast between highly reflective ice, having a large percentage of between-crystal air space, and the low-reflectance water, which absorbs most of the light that propagates into it from the air. The ice drifts along with the surface currents and wind and may therefore be used as a natural Langranian* tracer. Photographs such as this, taken several times over the course of a mission, may be used to investigate near-surface circulation in high-latitude oceans. *A Langranian tracer is anything that can be tracked as it drifts along with the water, as opposed to staying in one position and measuring how fast the water goes by.
Opposed slant tube diabatic sorber
Erickson, Donald C.
2004-01-20
A sorber comprised of at least three concentric coils of tubing contained in a shell with a flow path for liquid sorbent in one direction, a flow path for heat transfer fluid which is in counter-current heat exchange relationship with sorbent flow, a sorbate vapor port in communication with at least one of sorbent inlet or exit ports, wherein each coil is coiled in opposite direction to those coils adjoining it, whereby the opposed slant tube configuration is achieved, with structure for flow modification in the core space inside the innermost coil.
Instabilities of mixed convection flows adjacent to inclined plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Mulaweh, H.I.; Armaly, B.F.; Chen, T.S.
1987-11-01
The measurements by Sparrow and Husar and by Lloyd and Sparrow established that the onset of instability (transition from laminar to turbulent) in free convection boundary layer flow above an inclined heated plate is predominated by the wave mode of instability for inclination angles less than 14 deg, as measured from the vertical, and by the vortex mode of instability for angles greater than 17 deg. The transition Grashof number deceased as the angle of inclination increased. The predictions of Chen and Tzuoo for this flow provide trends that are similar to measured values, but the predicted critical Grashof numbersmore » deviate significantly (three orders of magnitude smaller) from measured values. The instability of mixed convection boundary layer flow adjacent to inclined heated plates have also been treated numerically by Chen and Mucoglu for wave instability and by Chen et al. for vortex instability. Comparisons with measurements of instability in mixed convection flow adjacent to inclined plates were not available in the literature. It is anticipated, however, that these predictions will underestimate the actual onset of instability, as in the free convection case. The lack of measurements in this flow domain for this geometry has motivated the present study. The onset of instability in mixed convection flow adjacent to an isothermally heated inclined plate was determined in this study through flow visualization. The buoyancy-assisting and buoyancy-opposing flow cases were examined for the flow both above and below the heated plate. The critical Grashof-Reynolds number relationships for the onset of instability in this flow domain are reported in this paper.« less
Classifying Particles By Acoustic Levitation
NASA Technical Reports Server (NTRS)
Barmatz, Martin B.; Stoneburner, James D.
1983-01-01
Separation technique well suited to material processing. Apparatus with rectangular-cross-section chamber used to measure equilibrium positions of low-density spheres in gravitational field. Vertical acoustic forces generated by two opposing compression drivers exciting fundamental plane-wave mode at 1.2 kHz. Additional horizontal drivers centered samples along vertical axis. Applications in fusion-target separation, biological separation, and manufacturing processes in liquid or gas media.
Applicability of a diffusion model to lateral transport in the terrestrial and lunar exospheres.
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1972-01-01
Kinetic theory is used to determine a series expansion of the vertical flux of particles in an exosphere in terms of time and space derivatives of particle concentration, exobase velocity, and temperature. For sufficiently large scale variations of these parameters in time and space, the series can be truncated to a form that is similar to a diffusion equation. Owing to this analogy, it is possible to unite the mathematical description of molecular diffusion, which governs thermospheric flow, and the corresponding exospheric equation by using effective transport coefficients which change smoothly with altitude through the transition from thermosphere to exosphere. A new definition of the exobase for lateral flow emerges from the analogy of exospheric and thermospheric diffusion, as the altitude where the horizontal mean free path length equals the mean horizontal extent of ballistic trajectories of the transported gas, as opposed to the scale height of the dominant gas which determines the exobase for escape. It is shown that the approximation of exospheric lateral flow as a diffusion process is applicable to global scale problems concerning terrestrial helium and heavier gases, and lunar gases heavier than helium.
NASA Astrophysics Data System (ADS)
Mirbaha, Babak; Saffarzadeh, Mahmoud; AmirHossein Beheshty, Seyed; Aniran, MirMoosa; Yazdani, Mirbahador; Shirini, Bahram
2017-10-01
Analysis of vehicle speed with different weather condition and traffic characteristics is very effective in traffic planning. Since the weather condition and traffic characteristics vary every day, the prediction of average speed can be useful in traffic management plans. In this study, traffic and weather data for a two-lane highway located in Northwest of Iran were selected for analysis. After merging traffic and weather data, the linear regression model was calibrated for speed prediction using STATA12.1 Statistical and Data Analysis software. Variables like vehicle flow, percentage of heavy vehicles, vehicle flow in opposing lane, percentage of heavy vehicles in opposing lane, rainfall (mm), snowfall and maximum daily wind speed more than 13m/s were found to be significant variables in the model. Results showed that variables of vehicle flow and heavy vehicle percent acquired the positive coefficient that shows, by increasing these variables the average vehicle speed in every weather condition will also increase. Vehicle flow in opposing lane, percentage of heavy vehicle in opposing lane, rainfall amount (mm), snowfall and maximum daily wind speed more than 13m/s acquired the negative coefficient that shows by increasing these variables, the average vehicle speed will decrease.
Extinction Criteria for Opposed-Flow Flame Spread in a Microgravity Environment
NASA Technical Reports Server (NTRS)
Bhattacharjee, Subrata; Paolini, Chris; Wakai, Kazunori; Takahashi, Shuhei
2003-01-01
A simplified analysis is presented to extend a previous work on flame extinction in a quiescent microgravity environment to a more likely situation of a mild opposing flow. The energy balance equation, that includes surface re-radiation, is solved to yield a closed form spread rate expression in terms of its thermal limit, and a radiation number that can be evaluated from the known parameters of the problem. Based on this spread rate expression, extinction criterions for a flame over solid fuels, both thin and thick, have been developed that are qualitatively verified with experiments conducted at the MGLAB in Japan. Flammability maps with oxygen level, opposing flow velocity and fuel thickness as independent variables are extracted from the theory that explains the well-established trends in the existing experimental data.
NASA Astrophysics Data System (ADS)
Piscopo, V.; Armiento, G.; Baiocchi, A.; Mazzuoli, M.; Nardi, E.; Piacentini, S. M.; Proposito, M.; Spaziani, F.
2018-01-01
Origin, yield and quality of the groundwater flows at high elevation in the Cimino volcano (central Italy) were examined. In this area, groundwater is geogenically contaminated by arsenic and fluoride, yet supplies drinking water for approximately 170,000 inhabitants. The origin of the high-elevation groundwater flows is strictly related to vertical and horizontal variability of the rock types (lava flows, lava domes and ignimbrite) in an area of limited size. In some cases, groundwater circuits are related to perched aquifers above noncontinuous aquitards; in other cases, they are due to flows in the highly fractured dome carapace, limited at the bottom by a low-permeability dome core. The high-elevation groundwater outflow represents about 30% of the total recharge of Cimino's hydrogeological system, which has been estimated at 9.8 L/s/km2. Bicarbonate alkaline-earth, cold, neutral waters with low salinity, and notably with low arsenic and fluoride content, distinguish the high-elevation groundwaters from those of the basal aquifer. Given the quantity and quality of these resources, approaches in the capture and management of groundwater in this hydrogeological environment should be reconsidered. Appropriate tapping methods such as horizontal drains, could more efficiently capture the high-elevation groundwater resources, as opposed to the waters currently pumped from the basal aquifer which often require dearsenification treatments.
NASA Astrophysics Data System (ADS)
Piscopo, V.; Armiento, G.; Baiocchi, A.; Mazzuoli, M.; Nardi, E.; Piacentini, S. M.; Proposito, M.; Spaziani, F.
2018-06-01
Origin, yield and quality of the groundwater flows at high elevation in the Cimino volcano (central Italy) were examined. In this area, groundwater is geogenically contaminated by arsenic and fluoride, yet supplies drinking water for approximately 170,000 inhabitants. The origin of the high-elevation groundwater flows is strictly related to vertical and horizontal variability of the rock types (lava flows, lava domes and ignimbrite) in an area of limited size. In some cases, groundwater circuits are related to perched aquifers above noncontinuous aquitards; in other cases, they are due to flows in the highly fractured dome carapace, limited at the bottom by a low-permeability dome core. The high-elevation groundwater outflow represents about 30% of the total recharge of Cimino's hydrogeological system, which has been estimated at 9.8 L/s/km2. Bicarbonate alkaline-earth, cold, neutral waters with low salinity, and notably with low arsenic and fluoride content, distinguish the high-elevation groundwaters from those of the basal aquifer. Given the quantity and quality of these resources, approaches in the capture and management of groundwater in this hydrogeological environment should be reconsidered. Appropriate tapping methods such as horizontal drains, could more efficiently capture the high-elevation groundwater resources, as opposed to the waters currently pumped from the basal aquifer which often require dearsenification treatments.
Estimating Vertical Stress on Soil Subjected to Vehicular Loading
2009-02-01
specified surface area of the tire . The silt and sand samples were both estimated to be 23.7-in. thick over a base of much harder soil. The pressures...study in which highway tread tires were used as opposed to the all-terrain tread currently on the vehicle. If the pressure pads are functioning...Vertical force versus time (front right CIV tire )....................................................................... 14 Tables Table 1. Testing
NASA Astrophysics Data System (ADS)
Patil, Nitin; Venkataraman, Chandra; Muduchuru, Kaushik; Ghosh, Subimal; Mondal, Arpita
2018-05-01
Recent studies point to combined effects of changes in regional land-use, anthropogenic aerosol forcing and sea surface temperature (SST) gradient on declining trends in the South Asian monsoon (SAM). This study attempted disentangling the effects produced by changes in SST gradient from those by aerosol levels in an atmospheric general circulation model. Two pairs of transient ensemble simulations were made, for a 40-year period from 1971 to 2010, with evolving versus climatological SSTs and with anthropogenic aerosol emissions fixed at 1971 versus 2010, in each case with evolution of the other forcing element, as well as GHGs. Evolving SST was linked to a widespread feedback on increased surface temperature, reduced land-sea thermal contrast and a weakened Hadley circulation, with weakening of cross-equatorial transport of moisture transport towards South Asia. Increases in anthropogenic aerosol levels (1971 versus 2010), led to an intensification of drying in the peninsular Indian region, through several regional pathways. Aerosol forcing induced north-south asymmetries in temperature and sea-level pressure response, and a cyclonic circulation in the Bay of Bengal, leading to an easterly flow, which opposes the monsoon flow, suppressing moisture transport over peninsular India. Further, aerosol induced decreases in convection, vertically integrated moisture flux convergence, evaporation flux and cloud fraction, in the peninsular region, were spatially congruent with reduced convective and stratiform rainfall. Overall, evolution of SST acted through a weakening of cross-equatorial moisture flow, while increases in aerosol levels acted through suppression of Arabian Sea moisture transport, as well as, of convection and vertical moisture transport, to influence the suppression of SAM rainfall.
Fluidic Oscillator Array for Synchronized Oscillating Jet Generation
NASA Technical Reports Server (NTRS)
Koklu, Mehti (Inventor)
2017-01-01
A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.
Fluidic Oscillator Array for Synchronized Oscillating Jet Generation
NASA Technical Reports Server (NTRS)
Koklu, Mehti (Inventor)
2016-01-01
A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.
Computational And Experimental Studies Of Three-Dimensional Flame Spread Over Liquid Fuel Pools
NASA Technical Reports Server (NTRS)
Ross, Howard D. (Technical Monitor); Cai, Jinsheng; Liu, Feng; Sirignano, William A.; Miller, Fletcher J.
2003-01-01
Schiller, Ross, and Sirignano (1996) studied ignition and flame spread above liquid fuels initially below the flashpoint temperature by using a two-dimensional computational fluid dynamics code that solves the coupled equations of both the gas and the liquid phases. Pulsating flame spread was attributed to the establishment of a gas-phase recirculation cell that forms just ahead of the flame leading edge because of the opposing effect of buoyancy-driven flow in the gas phase and the thermocapillary-driven flow in the liquid phase. Schiller and Sirignano (1996) extended the same study to include flame spread with forced opposed flow in the gas phase. A transitional flow velocity was found above which an originally uniform spreading flame pulsates. The same type of gas-phase recirculation cell caused by the combination of forced opposed flow, buoyancy-driven flow, and thermocapillary-driven concurrent flow was responsible for the pulsating flame spread. Ross and Miller (1998) and Miller and Ross (1998) performed experimental work that corroborates the computational findings of Schiller, Ross, and Sirignano (1996) and Schiller and Sirignano (1996). Cai, Liu, and Sirignano (2002) developed a more comprehensive three-dimensional model and computer code for the flame spread problem. Many improvements in modeling and numerical algorithms were incorporated in the three-dimensional model. Pools of finite width and length were studied in air channels of prescribed height and width. Significant three-dimensional effects around and along the pool edge were observed. The same three-dimensional code is used to study the detailed effects of pool depth, pool width, opposed air flow velocity, and different levels of air oxygen concentration (Cai, Liu, and Sirignano, 2003). Significant three-dimensional effects showing an unsteady wavy flame front for cases of wide pool width are found for the first time in computation, after being noted previously by experimental observers (Ross and Miller, 1999). Regions of uniform and pulsating flame spread are mapped for the flow conditions of pool depth, opposed flow velocity, initial pool temperature, and air oxygen concentration under both normal and microgravity conditions. Details can be found in Cai et al. (2002, 2003). Experimental results recently performed at NASA Glenn of flame spread across a wide, shallow pool as a function of liquid temperature are also presented here.
Numerical investigation on properties of attack angle for an opposing jet thermal protection system
NASA Astrophysics Data System (ADS)
Lu, Hai-Bo; Liu, Wei-Qiang
2012-08-01
The three-dimensional Navier—Stokes equation and the k-in viscous model are used to simulate the attack angle characteristics of a hemisphere nose-tip with an opposing jet thermal protection system in supersonic flow conditions. The numerical method is validated by the relevant experiment. The flow field parameters, aerodynamic forces, and surface heat flux distributions for attack angles of 0°, 2°, 5°, 7°, and 10° are obtained. The detailed numerical results show that the cruise attack angle has a great influence on the flow field parameters, aerodynamic force, and surface heat flux distribution of the supersonic vehicle nose-tip with an opposing jet thermal protection system. When the attack angle reaches 10°, the heat flux on the windward generatrix is close to the maximal heat flux on the wall surface of the nose-tip without thermal protection system, thus the thermal protection has failed.
Opposing flow in square porous annulus: Influence of Dufour effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athani, Abdulgaphur, E-mail: abbu.bec@gmail.com; Al-Rashed, Abdullah A. A. A., E-mail: aa.alrashed@paaet.edu.kw; Khaleed, H. M. T., E-mail: khalid-tan@yahoo.com
Heat and mass transfer in porous medium is very important area of research which is also termed as double diffusive convection or thermo-solutal convection. The buoyancy ratio which is the ratio of thermal to concentration buoyancy can have negative values thus leading to opposing flow. This article is aimed to study the influence of Dufour effect on the opposing flow in a square porous annulus. The partial differential equations that govern the heat and mass transfer behavior inside porous medium are solved using finite element method. A three node triangular element is used to divide the porous domain into smallermore » elements. Results are presented with respect to geometric and physical parameters such as duct diameter ratio, Rayleigh number, radiation parameter etc. It is found that the heat transfer increase with increase in Rayleigh number and radiation parameter. It is observed that Dufour coefficient has more influence on velocity profile.« less
Ion Escape from the Ionosphere of Titan
NASA Technical Reports Server (NTRS)
Hartle, R.; Sittler, E.; Lipatov, A.
2008-01-01
Ions have been observed to flow away from Titan along its induced magnetic tail by the Plasma Science Instrument (PLS) on Voyager 1 and the Cassini Plasma Spectrometer (CAPS) on Cassini. In both cases, the ions have been inferred to be of ionospheric origin. Recent plasma measurements made at another unmagnetized body, Venus, have also observed similar flow in its magnetic tail. Much earlier, the possibility of such flow was inferred when ionospheric measurements made from the Pioneer Venus Orbiter (PVO) were used to derive upward flow and acceleration of H(+), D(+) and O(+) within the nightside ionosphere of Venus. The measurements revealed that the polarization electric field in the ionosphere produced the principal upward force on these light ions. The resulting vertical flow of H(+) and D(+) was found to be the dominant escape mechanism of hydrogen and deuterium, corresponding to loss rates consistent with large oceans in early Venus. Other electrodynamic forces were unimportant because the plasma beta in the nightside ionosphere of Venus is much greater than one. Although the plasma beta is also greater than one on Titan, ion acceleration is expected to be more complex, especially because the subsolar point and the subflow points can be 180 degrees apart. Following what we learned at Venus, upward acceleration of light ions by the polarization electric field opposing gravity in the ionosphere of Titan will be described. Additional electrodynamic forces resulting from the interaction of Saturn's magnetosphere with Titan's ionosphere will be examined using a recent hybrid model.
Characterization of vertical mixing in oscillatory vegetated flows
NASA Astrophysics Data System (ADS)
Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.
2016-02-01
Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy-flow interactions.
Impacts of Realistic Urban Heating. Part II: Air Quality and City Breathability
NASA Astrophysics Data System (ADS)
Nazarian, Negin; Martilli, Alberto; Norford, Leslie; Kleissl, Jan
2018-03-01
Urban morphology and inter-building shadowing result in a non-uniform distribution of surface heating in urban areas, which can significantly modify the urban flow and thermal field. In Part I, we found that in an idealized three-dimensional urban array, the spatial distribution of the thermal field is correlated with the orientation of surface heating with respect to the wind direction (i.e. leeward or windward heating), while the dispersion field changes more strongly with the vertical temperature gradient in the street canyon. Here, we evaluate these results more closely and translate them into metrics of "city breathability," with large-eddy simulations coupled with an urban energy-balance model employed for this purpose. First, we quantify breathability by, (i) calculating the pollutant concentration at the pedestrian level (horizontal plane at z≈ 1.5 -2 m) and averaged over the canopy, and (ii) examining the air exchange rate at the horizontal and vertical ventilating faces of the canyon, such that the in-canopy pollutant advection is distinguished from the vertical removal of pollution. Next, we quantify the change in breathability metrics as a function of previously defined buoyancy parameters, horizontal and vertical Richardson numbers (Ri_h and Ri_v , respectively), which characterize realistic surface heating. We find that, unlike the analysis of airflow and thermal fields, consideration of the realistic heating distribution is not crucial in the analysis of city breathability, as the pollutant concentration is mainly correlated with the vertical temperature gradient (Ri_v ) as opposed to the horizontal (Ri_h ) or bulk (Ri_b ) thermal forcing. Additionally, we observe that, due to the formation of the primary vortex, the air exchange rate at the roof level (the horizontal ventilating faces of the building canyon) is dominated by the mean flow. Lastly, since Ri_h and Ri_v depend on the meteorological factors (ambient air temperature, wind speed, and wind direction) as well as urban design parameters (such as surface albedo), we propose a methodology for mapping overall outdoor ventilation and city breathability using this characterization method. This methodology helps identify the effects of design on urban microclimate, and ultimately informs urban designers and architects of the impact of their design on air quality, human health, and comfort.
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Hegde, U.; Bhattacharjee, S.; Deering, J. L.; Tang, L.; Altenkirch, R. A.
2003-01-01
A series of 6-minute microgravity combustion experiments of opposed flow flame spread over thermally-thick PMMA has been conducted to extend data previously reported at high opposed flows to almost two decades lower in flow. The effect of flow velocity on flame spread shows a square root power law dependence rather than the linear dependence predicted by thermal theory. The experiments demonstrate that opposed flow flame spread is viable to very low velocities and more robust than expected from the numerical model, which predicts that at very low velocities (less than 5 centimeters per second), flame spread rates fall off more rapidly as flow is reduced. It is hypothesized that the enhanced flame spread observed in the experiments may be due to three- dimensional hydrodynamic effects, which are not included in the zero-gravity, two-dimensional hydrodynamic model. The effect of external irradiation was found to be more complex that the model predicted over the 0-2 Watts per square centimeter range. In the experiments, the flame compensated for the increased irradiation by stabilizing farther from the surface. A surface energy balance reveals that the imposed flux was at least partially offset by a reduced conductive flux from the increased standoff distance, so that the effect on flame spread was weaker than anticipated.
NASA Technical Reports Server (NTRS)
Fujita, O.; Nishizawa, K.; Ito, K.; Olson, S. L.; Kashigawa, T.
2001-01-01
The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.
NASA Astrophysics Data System (ADS)
Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.
2003-12-01
The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.
The boundary condition for vertical velocity and its interdependence with surface gas exchange
NASA Astrophysics Data System (ADS)
Kowalski, Andrew S.
2017-07-01
The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w =
Climate reconstruction from borehole temperatures influenced by groundwater flow
NASA Astrophysics Data System (ADS)
Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.
2017-12-01
Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.
Hughes, J.D.; Vacher, H. Leonard; Sanford, W.E.
2007-01-01
Kohout convection is the name given to the circulation of saline groundwater deep within carbonate platforms, first proposed by F.A. Kohout in the 1960s for south Florida. It is now seen as an Mg pump for dolomitization by seawater. As proposed by Kohout, cold seawater is drawn into the Florida platform from the deep Straits of Florida as part of a geothermally driven circulation in which the seawater then rises in the interior of the platform to mix and exit with the discharging meteoric water of the Floridan aquifer system. Simulation of the asymmetrically emergent Florida platform with the new three-dimensional (3-D), finite-element groundwater flow and transport model SUTRA-MS, which couples salinity- and temperature-dependent density variations, allows analysis of how much of the cyclic flow is due to geothermal heating (free convection) as opposed to mixing with meteoric water discharging to the shoreline (forced convection). Simulation of the system with and without geothermal heating reveals that the inflow of seawater from the Straits of Florida would be similar without the heat flow, but the distribution would differ significantly. The addition of heat flow reduces the asymmetry of the circulation: it decreases seawater inflows on the Atlantic side by 8% and on the Guff of Mexico side by half. The study illustrates the complex interplay of freshwater-saltwater mixing, geothermal heat flow, and projected dolomitization in complicated 3-D settings with asymmetric boundary conditions and realistic horizontal and vertical variations in hydraulic properties. ?? 2007 The Geological Society of America.
The role of the winter residual circulation in the summer mesopause regions in WACCM
NASA Astrophysics Data System (ADS)
Sanne Kuilman, Maartje; Karlsson, Bodil
2018-03-01
High winter planetary wave activity warms the summer polar mesopause via a link between the two hemispheres. Complex wave-mean-flow interactions take place on a global scale, involving sharpening and weakening of the summer zonal flow. Changes in the wind shear occasionally generate flow instabilities. Additionally, an altering zonal wind modifies the breaking of vertically propagating gravity waves. A crucial component for changes in the summer zonal flow is the equatorial temperature, as it modifies latitudinal gradients. Since several mechanisms drive variability in the summer zonal flow, it can be hard to distinguish which one is dominant. In the mechanism coined interhemispheric coupling, the mesospheric zonal flow is suggested to be a key player for how the summer polar mesosphere responds to planetary wave activity in the winter hemisphere. We here use the Whole Atmosphere Community Climate Model (WACCM) to investigate the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. Using composite analyses, we show that in the absence of an anomalous summer mesospheric temperature gradient between the equator and the polar region, weak planetary wave forcing in the winter would lead to a warming of the summer mesosphere region instead of a cooling, and vice versa. This is opposing the temperature signal of the interhemispheric coupling that takes place in the mesosphere, in which a cold and calm winter stratosphere goes together with a cold summer mesopause. We hereby strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.
NASA Astrophysics Data System (ADS)
Mi, Ye
1998-12-01
The major objective of this thesis is focused on theoretical and experimental investigations of identifying and characterizing vertical and horizontal flow regimes in two-phase flows. A methodology of flow regime identification with impedance-based neural network systems and a comprehensive model of vertical slug flow have been developed. Vertical slug flow has been extensively investigated and characterized with geometric, kinematic and hydrodynamic parameters. A multi-sensor impedance void-meter and a multi-sensor magnetic flowmeter were developed. The impedance void-meter was cross-calibrated with other reliable techniques for void fraction measurements. The performance of the impedance void-meter to measure the void propagation velocity was evaluated by the drift flux model. It was proved that the magnetic flowmeter was applicable to vertical slug flow measurements. Separable signals from these instruments allow us to unearth most characteristics of vertical slug flow. A methodology of vertical flow regime identification was developed. Supervised neural network and self-organizing neural network systems were employed. First, they were trained with results from an idealized simulation of impedance in a two-phase mixture. The simulation was mainly based on Mishima and Ishii's flow regime map, the drift flux model, and the newly developed model of slug flow. Then, these trained systems were tested with impedance signals. The results showed that the neural network systems were appropriate classifiers of vertical flow regimes. The theoretical models and experimental databases used in the simulation were reliable. Furthermore, this approach was applied successfully to horizontal flow identification. A comprehensive model was developed to predict important characteristics of vertical slug flow. It was realized that the void fraction of the liquid slug is determined by the relative liquid motion between the Taylor bubble tail and the Taylor bubble wake. Relying on this understanding and experimental results, a special relationship was built for the void fraction of the liquid slug. The prediction of the void fraction of the liquid slug was considerably improved. Experimental characterization of vertical slug flows was performed extensively with the impedance void-meter and the magnetic flowmeter. The theoretical predictions were compared with the experimental results. The agreements between them are very satisfactory.
Shallow velocity structure across the Mariana arc
NASA Astrophysics Data System (ADS)
Tait, S.; Kaminski, E. C.; Carazzo, G.; Limare, A.
2016-12-01
Atmospheric injection of volcanic ash during explosive eruptions is controlled by the dynamics of a volcanic column and associated umbrella cloud, which are subject to a wind field, and are connected by a turbulent fountain which initiates horizontal spreading at the neutral buoyancy level. We present a new theoretical and experimental study of an axisymmetric turbulent umbrella cloud intruding horizontally at its neutral buoyancy level into a static environment linearly stratified in density. The intrusion is fed by a constant horizontal volume flux (Q0) at a finite radius (R0), where it has a constant thickness (2H0). The characteristics of the fountain (R0, H0, Q0) derive from a vertical forced plume (source momentum and buoyancy fluxes Mi , Fi) and environmental stratification N. Buoyancy drives horizontal flow but, despite high Reynolds number, impedes entrainment of ambient fluid into the umbrella cloud. Turbulent stresses are nevertheless crucial in the momentum balance. Our theory highlights the vertical profiles of density and velocity within the current of which we present experimental measurements. Initially, current buoyancy is opposed by the inertia of the ambient fluid, and current radius (RN(t)) grows linearly in time. Subsequently, turbulent drag opposes buoyancy, and the current breaks down into two parts: i) between the source and a transition radius (R0T(t)), a steady region where current thickness (2H) and mean velocity (U) are time-independent and decreasing functions of r ; ii), a contiguous unsteady « frontal » region, between the transition radius and the front (RTN), in which the current thickens. The theory predicts current shape and an asymptotic spreading behaviour (RN t^5/9) which agree well with experimental data. Our analysis of satellite observations of several sustained plinian events including the Pinatubo 1991 climactic eruption shows that both the initial and asymptotic spreading regimes predicted by the model are present.
The Dynamics of Volcanic Umbrella Clouds
NASA Astrophysics Data System (ADS)
Tait, S.; Kaminski, E. C.; Carazzo, G.; Limare, A.
2017-12-01
Atmospheric injection of volcanic ash during explosive eruptions is controlled by the dynamics of a volcanic column and associated umbrella cloud, which are subject to a wind field, and are connected by a turbulent fountain which initiates horizontal spreading at the neutral buoyancy level. We present a new theoretical and experimental study of an axisymmetric turbulent umbrella cloud intruding horizontally at its neutral buoyancy level into a static environment linearly stratified in density. The intrusion is fed by a constant horizontal volume flux (Q0) at a finite radius (R0), where it has a constant thickness (2H0). The characteristics of the fountain (R0, H0, Q0) derive from a vertical forced plume (source momentum and buoyancy fluxes Mi , Fi) and environmental stratification N. Buoyancy drives horizontal flow but, despite high Reynolds number, impedes entrainment of ambient fluid into the umbrella cloud. Turbulent stresses are nevertheless crucial in the momentum balance. Our theory highlights the vertical profiles of density and velocity within the current of which we present experimental measurements. Initially, current buoyancy is opposed by the inertia of the ambient fluid, and current radius (RN(t)) grows linearly in time. Subsequently, turbulent drag opposes buoyancy, and the current breaks down into two parts: i) between the source and a transition radius (R0T(t)), a steady region where current thickness (2H) and mean velocity (U) are time-independent and decreasing functions of r ; ii), a contiguous unsteady « frontal » region, between the transition radius and the front (RTN), in which the current thickens. The theory predicts current shape and an asymptotic spreading behaviour (RN t^5/9) which agree well with experimental data. Our analysis of satellite observations of several sustained plinian events including the Pinatubo 1991 climactic eruption shows that both the initial and asymptotic spreading regimes predicted by the model are present.
The vertical variability of hyporheic fluxes inferred from riverbed temperature data
NASA Astrophysics Data System (ADS)
Cranswick, Roger H.; Cook, Peter G.; Shanafield, Margaret; Lamontagne, Sebastien
2014-05-01
We present detailed profiles of vertical water flux from the surface to 1.2 m beneath the Haughton River in the tropical northeast of Australia. A 1-D numerical model is used to estimate vertical flux based on raw temperature time series observations from within downwelling, upwelling, neutral, and convergent sections of the hyporheic zone. A Monte Carlo analysis is used to derive error bounds for the fluxes based on temperature measurement error and uncertainty in effective thermal diffusivity. Vertical fluxes ranged from 5.7 m d-1 (downward) to -0.2 m d-1 (upward) with the lowest relative errors for values between 0.3 and 6 m d-1. Our 1-D approach provides a useful alternative to 1-D analytical and other solutions because it does not incorporate errors associated with simplified boundary conditions or assumptions of purely vertical flow, hydraulic parameter values, or hydraulic conditions. To validate the ability of this 1-D approach to represent the vertical fluxes of 2-D flow fields, we compare our model with two simple 2-D flow fields using a commercial numerical model. These comparisons showed that: (1) the 1-D vertical flux was equivalent to the mean vertical component of flux irrespective of a changing horizontal flux; and (2) the subsurface temperature data inherently has a "spatial footprint" when the vertical flux profiles vary spatially. Thus, the mean vertical flux within a 2-D flow field can be estimated accurately without requiring the flow to be purely vertical. The temperature-derived 1-D vertical flux represents the integrated vertical component of flux along the flow path intersecting the observation point. This article was corrected on 6 JUN 2014. See the end of the full text for details.
OH and CH luminescence in opposed flow methane oxy-flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Leo, Maurizio; Saveliev, Alexei; Kennedy, Lawrence A.
Emission spectroscopy is a 2-D nonintrusive diagnostic technique that offers spatially resolved data for combustion optimization and control. The UV and visible chemiluminescence of the excited radicals CH(A{sup 2}{delta},B{sup 2}{sigma}{sup -}) and OH(A{sup 2}{sigma}{sup +}) is studied experimentally and numerically in opposed-flow diffusion flames of methane and oxygen-enriched air. The oxidized oxygen content is varied from 21 to 100% while the range of the studied strain rates spans from 20 to 40 s{sup -1}. The spectrally resolved imaging is obtained by two different methods: scattering through a grating monochromator and interposition of interference filters along the optical path. Absolute measuredmore » chemiluminescence intensities, coupled with a numerical model based on the opposed flow flame code, are used to evaluate the chemical kinetics of the excited species. The predictions of the selected model are in good agreement with the experimental data over the range of the studied flame conditions. (author)« less
Jubin, Robert T.; Randolph, John D.
1991-01-01
The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.
The FM-007: An advanced jet commuter for HUB to spoke transportation
NASA Technical Reports Server (NTRS)
Blouke, Peter Scott; Engel, George Bryan; Fordham, Kari Suzanne; Layne, Steven James; Moore, Joel David; Shaver, Frederick Martin; Thornton, Douglas Hershal, Jr.
1991-01-01
Due to the increasing need for new commuter aircraft, the FM-007 is proposed, a technologically advanced jet propelled short takeoff and landing (STOL) airplane. The proposed commuter is designed for hub to spoke air travel. In order to reduce drag, natural laminar flow technology is integrated into the design using the natural laminar flow airfoil section for the wing. A three lifting surface configuration provides for more efficient cruise flight. This unique design includes a small forward wing (canard), a rear mounted high aspect ratio main wing, and a small horizontal stabilizer high atop the vertical tail. These three surfaces act together to reduce drag by minimizing the downward force the horizontal stabilizer has to account for due to the nose down pitching moment. Commuter aircraft must also incorporate passenger comfort. This is achieved by providing a spacious pressurized cabin with a large galley and reduced cabin noise due to incorporation of noise reduction gear. A basic oval design is adopted, as opposed to a circular design in order to allow for the seating of five passengers abreast. To get STOL capability, an over the wing blown flap is used using a Rolls Royce Tay series engine.
What triggers the continuous muscle activity during upright standing?
Masani, Kei; Sayenko, Dimitry G; Vette, Albert H
2013-01-01
The ankle extensors play a dominant role in controlling the equilibrium during bipedal quiet standing. Their primary role is to resist the gravity toppling torque that pulls the body forward. The purpose of this study was to investigate whether the continuous muscle activity of the anti-gravity muscles during standing is triggered by the joint torque requirement for opposing the gravity toppling torque, rather than by the vertical load on the lower limbs. Healthy adults subjects stood on a force plate. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the posture from the free standing one. During the supported condition, which eliminates the ankle torque requirement while maintaining both the vertical load on the lower limbs and the natural upright standing posture, the plantarflexor activity was attenuated to the resting level. Also, this attenuated plantarflexor activity was found only in one side when the ipsilateral leg was supported. Our results suggest that the vertical load on the lower limb is not determinant for inducing the continuous muscle activity in the anti-gravity muscles, but that it depends on the required joint torque to oppose the gravity toppling torque. Copyright © 2012 Elsevier B.V. All rights reserved.
Visual exploration during locomotion limited by fear of heights.
Kugler, Günter; Huppert, Doreen; Eckl, Maria; Schneider, Erich; Brandt, Thomas
2014-01-01
Visual exploration of the surroundings during locomotion at heights has not yet been investigated in subjects suffering from fear of heights. Eye and head movements were recorded separately in 16 subjects susceptible to fear of heights and in 16 non-susceptible controls while walking on an emergency escape balcony 20 meters above ground level. Participants wore mobile infrared eye-tracking goggles with a head-fixed scene camera and integrated 6-degrees-of-freedom inertial sensors for recording head movements. Video recordings of the subjects were simultaneously made to correlate gaze and gait behavior. Susceptibles exhibited a limited visual exploration of the surroundings, particularly the depth. Head movements were significantly reduced in all three planes (yaw, pitch, and roll) with less vertical head oscillations, whereas total eye movements (saccade amplitudes, frequencies, fixation durations) did not differ from those of controls. However, there was an anisotropy, with a preference for the vertical as opposed to the horizontal direction of saccades. Comparison of eye and head movement histograms and the resulting gaze-in-space revealed a smaller total area of visual exploration, which was mainly directed straight ahead and covered vertically an area from the horizon to the ground in front of the feet. This gaze behavior was associated with a slow, cautious gait. The visual exploration of the surroundings by susceptibles to fear of heights differs during locomotion at heights from the earlier investigated behavior of standing still and looking from a balcony. During locomotion, anisotropy of gaze-in-space shows a preference for the vertical as opposed to the horizontal direction during stance. Avoiding looking into the abyss may reduce anxiety in both conditions; exploration of the "vertical strip" in the heading direction is beneficial for visual control of balance and avoidance of obstacles during locomotion.
Dual-keel electrodynamic maglev system
He, Jianliang; Wang, Zian; Rote, Donald M.; Coffey, Howard T.; Hull, John R.; Mulcahy, Thomas M.; Cal, Yigang
1996-01-01
A propulsion and stabilization system with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle.
Heat and mass transfer in vertical porous medium due to partial heating
NASA Astrophysics Data System (ADS)
Salman Ahmed N., J.; Khan, T. M. Yunus; Ahamad, N. Ameer; Kamangar, Sarfaraz
2018-05-01
The investigation of heat and mass transfer adjacent to vertical plate subjected to partial heating of plate in multiple segments is carried out. A section of the plate is heated with isothermal temperature Th and the far away condition is maintained at ambient temperature T∞.. The vertical plate is maintained at constant concentration Ch as opposed to lowest concentration at far away condition. Finite element method is used and governing equations are converted into simple form of equations using Galerkin approach. The results are discussed in terms of contour plots. Study is carried out with respect to various physical parameters. The heat and mass transfer rate found to increase with increase in Rayleigh number.
DOT National Transportation Integrated Search
2006-06-01
For roadside work-zones in areas that have opposing traffic flow, safety is enhanced if the temporary barriers incorporate a "glare-shield" that blocks headlight glare from opposing traffic. Currently-available 32-inch portable concrete barriers requ...
Lu, Ning; Ge, Shemin
1996-01-01
By including the constant flow of heat and fluid in the horizontal direction, we develop an analytical solution for the vertical temperature distribution within the semiconfining layer of a typical aquifer system. The solution is an extension of the previous one-dimensional theory by Bredehoeft and Papadopulos [1965]. It provides a quantitative tool for analyzing the uncertainty of the horizontal heat and fluid flow. The analytical results demonstrate that horizontal flow of heat and fluid, if at values much smaller than those of the vertical, has a negligible effect on the vertical temperature distribution but becomes significant when it is comparable to the vertical.
Flow tilt angle measurements using lidar anemometry
NASA Astrophysics Data System (ADS)
Dellwik, Ebba; Mann, Jakob
2010-05-01
A new way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 minute mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175m above ground level, (2) a reference site in flat agricultural terrain and (3) a second reference site in very complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by comparing tilt estimates at various heights. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. However, the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical, the measurement height and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2 degrees. Other possibilities for utilizing lidars for flow tilt angle and mean vertical velocities are discussed.
Flow path oscillations in transient ground-water simulations of large peatland systems
Reeve, A.S.; Evensen, R.; Glaser, P.H.; Siegel, D.I.; Rosenberry, D.
2006-01-01
Transient numerical simulations of the Glacial Lake Agassiz Peatland near the Red Lakes in Northern Minnesota were constructed to evaluate observed reversals in vertical ground-water flow. Seasonal weather changes were introduced to a ground-water flow model by varying evapotranspiration and recharge over time. Vertical hydraulic reversals, driven by changes in recharge and evapotranspiration were produced in the simulated peat layer. These simulations indicate that the high specific storage associated with the peat is an important control on hydraulic reversals. Seasonally driven vertical flow is on the order of centimeters in the deep peat, suggesting that seasonal vertical advective fluxes are not significant and that ground-water flow into the deep peat likely occurs on decadal or longer time scales. Particles tracked within the ground-water flow model oscillate over time, suggesting that seasonal flow reversals will enhance vertical mixing in the peat column. The amplitude of flow path oscillations increased with increasing peat storativity, with amplitudes of about 5 cm occurring when peat specific storativity was set to about 0.05 m-1. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Hai-Bo; Liu, Wei-Qiang
2014-04-01
Validated by the correlated experiments, a nose-tip with forward-facing cavity/opposing jet/the combinatorial configuration of forward-facing cavity and opposing jet thermal protection system (TPS) are investigated numerically. The physical mechanism of these TPS is discussed, and the cooling efficiency of them is compared. The combinatorial system is more suitable to be the TPS for the high speed vehicles which need fly under various flow conditions with long-range and long time.
Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey
NASA Astrophysics Data System (ADS)
Wang, Zhen-guo; Sun, Xi-wan; Huang, Wei; Li, Shi-bin; Yan, Li
2016-12-01
The drag and heat reduction problem of hypersonic vehicles has always attracted the attention worldwide, and the experimental test approach is the basis of theoretical analysis and numerical simulation. In the current study, research progress of experimental investigations on drag and heat reduction are summarized by several kinds of mechanism, namely the forward-facing cavity, the opposing jet, the aerospike, the energy deposition and their combinational configurations, and the combinational configurations include the combinational opposing jet and forward-facing cavity concept and the combinational opposing jet and aerospike concept. The geometric models and flow conditions are emphasized, especially for the basic principle for the drag and heat flux reduction of each device. The measurement results of aerodynamic and aerothermodynamic are compared and analyzed as well, which can be a reference for assessing the accuracy of numerical results.
NASA Technical Reports Server (NTRS)
Holdeman, James D.
2016-01-01
The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanford, G.A.
1980-02-12
An oil well pump drive is disclosed including a drive unit that is hydraulically actuated by a double-acting hydraulic cylinder to reciprocate vertically. An endless chain is entrained over vertically spaced sprockets carried by the unit, with one flight of the chain anchored against vertical movement and the other flight is secured to the pump polish rod so that the vertical motion imparted to the polish rod is double that hydraulically imparted to the drive unit. The polish rod load on the chain is opposed by a counterweight connected thereto by a chain extending over an elevated pulley. The outputmore » of the hydraulic pump supplying the hydraulic cylinder is cam controlled so that the motion of the drive unit is smoothly decelerated and accelerated as the unit approaches and moves from the upper and lower limits of its movement.« less
Wire Insulation Flammability Experiment: USML-1 One Year Post Mission Summary
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.; Sacksteder, Kurt R.; Kashiwagi, Takashi
1994-01-01
Herein we report the results from the Wire Insulation Flammability (WIF) Experiment performed in the Glovebox Facility on the USML-1 mission. This experiment explored various aspects of electrically induced fire scenarios in a reduced gravity environment. Under quiescent microgravity conditions, heat and mass transfer are dominated by diffusive and radiative transport; while in normal-gravity buoyancy induced convection often dominates. Of considerable scientific and practical interest is the intermediate situation of combustion occurring in the presence of imposed gas flows, with lower characteristic velocities than those induced by buoyancy in noma1 gravity. Two distinct cases naturally arise: flow direction opposed to, or concurrent with, the flame spread direction. Two tests of each kind were conducted in the WIF experiment, providing the first controlled demonstration of flame spreading in forced convection ever conducted in space. Four test modules were flown. The wire insulation, 1.5 mm in diameter, was polyethylene, extruded onto nichrome wire. Temperatures of the wh3 cores and insulation heated in quiescent and flowing environments were measured. Video and still-camera images of the samples, burning in air flowing at approximately 10 cm/sec, were recorded to obtain flame characteristics including spread rate, structure and temperature. Flame spread rates in concurrent flow were approximately twice those in opposed flow. In concurrent and opposed flow regimes, the spreading flames stabilized around a bead of molten insulation material, within which bubble nucleation was observed. An ignition attempt without flow mated a quiescent cloud of vaporized fuel which ignited dramatically yet failed to sustain normal flame spread. Finally, all tests produced substantial soot agglomerates, particularly the concurrent flow tests; and the collected soot has a morphology very distinct from soot formed in normal gravity flames. Several unexpected and unique microgravity combustion phenomena were observed.
Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.
Vitale, Sarah A; Robbins, Gary A
2017-07-01
Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%. © 2017, National Ground Water Association.
Dip and anisotropy effects on flow using a vertically skewed model grid.
Hoaglund, John R; Pollard, David
2003-01-01
Darcy flow equations relating vertical and bedding-parallel flow to vertical and bedding-parallel gradient components are derived for a skewed Cartesian grid in a vertical plane, correcting for structural dip given the principal hydraulic conductivities in bedding-parallel and bedding-orthogonal directions. Incorrect-minus-correct flow error results are presented for ranges of structural dip (0 < or = theta < or = 90) and gradient directions (0 < or = phi < or = 360). The equations can be coded into ground water models (e.g., MODFLOW) that can use a skewed Cartesian coordinate system to simulate flow in structural terrain with deformed bedding planes. Models modified with these equations will require input arrays of strike and dip, and a solver that can handle off-diagonal hydraulic conductivity terms.
Dual-keel electrodynamic maglev system
He, J.L.; Wang, Z.; Rote, D.M.; Coffey, H.T.; Hull, J.R.; Mulcahy, T.M.; Cal, Y.
1996-12-24
A propulsion and stabilization system is disclosed with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle. 6 figs.
Flow tilt angles near forest edges - Part 2: Lidar anemometry
NASA Astrophysics Data System (ADS)
Dellwik, E.; Mann, J.; Bingöl, F.
2010-05-01
A novel way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 min mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175 m a.g.l. (above ground level), (2) a reference site in flat agricultural terrain and (3) a second reference site in complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by assuming zero tilt angle at high altitudes. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are potentially slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct, and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. It is demonstrated that the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2°. The results of the vertical conical scans were promising, and yielded positive flow angles for a sector where the forest is fetch-limited. However, more data and analysis are needed for a complete evaluation of the lidar technique.
Thermal protection performance of opposing jet generating with solid fuel
NASA Astrophysics Data System (ADS)
Shen, Binxian; Liu, Weiqiang
2018-03-01
A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.
Sediment Vertical Flux in Unsteady Sheet Flows
NASA Astrophysics Data System (ADS)
Hsu, T.; Jenkins, J. T.; Liu, P. L.
2002-12-01
In models for sediment suspension, two different boundary conditions have been employed at the sediment bed. Either the sediment concentration is given or the vertical flux of sediment is specified. The specification of the latter is usually called the pick-up function. Recently, several developments towards a better understanding of the sediment bed boundary condition have been reported. Nielson et al (Coastal Engineering 2002, 45, p61-68) have indicated a better performance using the sediment vertical flux as the bed boundary condition in comparisons with experimental data. Also, Drake and Calantoni (Journal of Geophysical Research 2001, 106, C9, p19859-19868) have suggested that in the nearshore environment with its various unsteady flow conditions, the appropriate sediment boundary conditions of a large-scale morphology model must consider both the magnitude the free stream velocity and the acceleration of the flow. In this research, a small-scale sheet flow model based on the two-phase theory is implemented to further study these issues. Averaged two-phase continuum equations are presented for concentrated flows of sediment that are driven by strong, fully developed, unsteady turbulent shear flows over a mobile bed. The particle inter-granular stress is modeled using collisional granular flow theory and a two-equation closure for the fluid turbulence is adopted. In the context of the two-phase theory, sediment is transported through the sediment vertical velocity. Using the fully developed sediment phase continuity equation, it can be shown that the vertical velocity of the sediment must vanish when the flow reaches a steady state. In other words, in fully developed conditions, it is the unsteadiness of the flow that induces the vertical motion of the sediment and that changes the sediment concentration profile. Therefore, implementing a boundary condition based on sediment vertical flux is consistent with both the two-phase theory and with the observation that the flow acceleration is an important parameter. In this paper, the vertical flux of sediment is studied under various combinations of free stream velocity, acceleration, and sediment material properties using the two-phase sheet flow model. Some interesting features of sediment dynamics within the sheet, such as time history of sediment vertical velocity, collisional and turbulent suspension mechanisms are presented.
Viability of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft
2012-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited VIABILITY OF CROSS...FLOW FAN FOR VERTICAL TAKE-OFF AND LANDING AIRCRAFT by Christopher T. Delagrange June 2012 Thesis Advisor: Garth V. Hobson Second...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Viability of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft 5. FUNDING
NASA Technical Reports Server (NTRS)
Parness, Aaron
2012-01-01
Three robots that extend microspine technology to enable advanced mobility are presented. First, the Durable Reconnaissance and Observation Platform (DROP) and the ReconRobotics Scout platform use a new rotary configuration of microspines to provide improved soldier-portable reconnaissance by moving rapidly over curbs and obstacles, transitioning from horizontal to vertical surfaces, climbing rough walls and surviving impacts. Next, the four-legged LEMUR robot uses new configurations of opposed microspines to anchor to both manmade and natural rough surfaces. Using these anchors as feet enables mobility in unstructured environments, from urban disaster areas to deserts and caves.
Repeatability and oblique flow response characteristics of current meters
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,
1993-01-01
Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.
Localized structures in vibrated emulsions
NASA Astrophysics Data System (ADS)
Falcón, Claudio; Bruggeman, Jake; Pasquali, Matteo; Deegan, Robert D.
2012-04-01
We report our observations of localized structures in a thin layer of an emulsion subjected to vertical oscillations. We observe persistent holes, which are voids that span the layer depth, and kinks, which are fronts between regions with and without fluid. These structures form in response to a finite amplitude perturbation. Combining experimental and rheological measurements, we argue that the ability of these structures to withstand the hydrostatic pressure of the surrounding fluid is due to convection within their rim. For persistent holes the oscillatory component of the convection generates a normal stress which opposes contraction, while for kinks the steady component of the convection generates a shear stress which opposes the hydrostatic stress of the surrounding fluid.
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Hanasoge, S. M.
2012-01-01
As large-distance rays (say, 10-24 deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large separation travel times associated with upergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations,reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel time difference in the separation range 10-24 deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity for the average supergranule, 5.1 s, is constant over the distance range. This magnitude of signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 m/s extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 m/s at a depth of 2.3 Mm and a peak horizontal flow of 700 m/s at a depth of 1.6 Mm.
NASA Astrophysics Data System (ADS)
Zhao, Fa-Ming; Wang, Jiang-Feng; Li, Long-Fei
2018-05-01
The air chemical non-equilibrium effect (ACNEE) on hydrogen-air combustion flow fields at Mach number of 10 is numerically analyzed for a semi-sphere with a sonic opposing-hydrogen jet. The 2D axisymmetric multi-components N-S equations are solved by using the central scheme with artificial dissipation and the S-A turbulence model. Numerical results show that as compared to the result without ACNEE, the ACNEE has little influence on the structure of flow field, but has a considerable impact on fluid characteristics which reduces the maximum value of mass fraction of water in the flow field and increases the maximum value of mass fraction of water on solid surface, as well as the maximum surface temperature.
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Ruff, Gary A.; Fletcher, J. Miller
2008-01-01
Microgravity tests of flammability and flame spread were performed in a low-speed flow tunnel to simulate spacecraft ventilation flows. Three thin fuels were tested for flammability (Ultem 1000 (General Electric Company), 10 mil film, Nomex (Dupont) HT90-40, and Mylar G (Dupont) and one fuel for flame spread testing (Kimwipes (Kimberly-Clark Worldwide, Inc.). The 1g Upward Limiting Oxygen Index (ULOI) and 1g Maximum Oxygen Concentration (MOC) are found to be greater than those in 0g, by up to 4% oxygen mole fraction, meaning that the fuels burned in 0g at lower oxygen concentrations than they did using the NASA Standard 6001 Test 1 protocol. Flame spread tests with Kimwipes were used to develop correlations that capture the effects of flow velocity, oxygen concentration, and pressure on flame spread rate. These correlations were used to determine that over virtually the entire range of spacecraft atmospheres and flow conditions, the opposed spread is faster, especially for normoxic atmospheres. The correlations were also compared with 1g MOC for various materials as a function of pressure and oxygen. The lines of constant opposed flow agreed best with the 1g MOC trends, which indicates that Test 1 limits are essentially dictated by the critical heat flux for ignition. Further evaluation of these and other materials is continuing to better understand the 0g flammability of materials and its effect on the oxygen margin of safety.
Simulations of the Richtmyer-Meshkov Instability in a two-shock vertical shock tube
NASA Astrophysics Data System (ADS)
Ferguson, Kevin; Olson, Britton; Jacobs, Jeffrey
2017-11-01
Simulations of the Richtmyer-Meshkov Instability (RMI) in a new two-shock vertical shock tube configuration are presented. The simulations are performed using the ARES code at Lawrence-Livermore National Laboratory (LLNL). Two M=1.2 shock waves travel in opposing directions and impact an initially stationary interface formed by sulfur hexaflouride (SF6) and air. The delay between the two shocks is controlled to achieve a prescribed temporal separation in shock wave arrival time. Initial interface perturbations and diffusion profiles are generated in keeping with previously gathered experimental data. The effect of varying the inter-shock delay and initial perturbation structure on instability growth and mixing parameters is examined. Information on the design, construction, and testing of a new two-shock vertical shock tube are also presented.
Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Geller, Marvin A.
1994-01-01
The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.
Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces
NASA Astrophysics Data System (ADS)
Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng
2015-09-01
Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.
Method of separating organic contaminants from fluid feedstreams with polyphosphazene membranes
McCaffrey, Robert R.; Cummings, Daniel G.
1991-01-01
A method is provided for separating halogenated hydrocarbons from a fluid feedstream. The fluid feedstream is flowed across a first surface of a polyphosphazene semipermeable membrane. At least one halogenated hydrocarbon from the fluid feedstream permeates through the polyphosphazene semipermeable membrane to a second opposed surface of the semipermeable membrane. Then the permeated polar hydrocarbon is removed from the second opposed surface of the polyphosphazene semipermeable membrane. Outstanding and unexpected separation selectivities on the order of 10,000 were obtained for methylene chloride when a methylene chloride in water feedstream was flowed across the polyphosphazene semipermeable membrane in the invented method.
NASA Technical Reports Server (NTRS)
Duvall, Thomas L., Jr.; Hanasoge, S. M.
2012-01-01
As large-distance rays (say, 10 - 24deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large-separation travel times associated with supergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations, reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel-time difference [outward-going time minus inward-going time] in the separation range delta= 10 - 24deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity, 5.1+/-0.1 seconds, is constant over the distance range. This magnitude of the signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 ms(exp-1) extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 ms(exp-1) at a depth of 2.3 Mm and a peak horizontal flow of 700 ms(exp-1) at a depth of 1.6 Mm.
NASA Technical Reports Server (NTRS)
Re, Richard J.; Carson, George T., Jr.
1991-01-01
The internal performance of two exhaust system concepts applicable to single-engine short-take-off and vertical-landing tactical fighter configurations was investigated. These concepts involved blocking (or partially blocking) tailpipe flow to the rear (cruise) nozzle and diverting it through an opening to a ventral nozzle exit for vertical thrust. A set of variable angle vanes at the ventral nozzle exit were used to vary ventral nozzle thrust angle between 45 and 110 deg relative to the positive axial force direction. In the vertical flight mode the rear nozzle (or tailpipe flow to it) was completely blocked. In the transition flight mode flow in the tailpipe was split between the rear and ventral nozzles and the flow was vectored at both exits for aircraft control purposes through this flight regime. In the cruise flight mode the ventral nozzle was sealed and all flow exited through the rear nozzle.
Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.
Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho
2009-07-01
A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.
Observations of flow and dispersion in urban areas with tall buildings have revealed a phenomenon whereby contaminants can be transported vertically up the lee sides of tall buildings due to the vertical flow in the wake of the building. This phenomenon, which contributes to w...
Fischer, Helen; Gonzalez, Cleotilde
2016-03-01
Stocks and flows (SF) are building blocks of dynamic systems: Stocks change through inflows and outflows, such as our bank balance changing with withdrawals and deposits, or atmospheric CO2 with absorptions and emissions. However, people make systematic errors when trying to infer the behavior of dynamic systems, termed SF failure, whose cognitive explanations are yet unknown. We argue that SF failure appears when people focus on specific system elements (local processing), rather than on the system structure and gestalt (global processing). Using a standard SF task (n = 148), SF failure decreased by (a) a global as opposed to local task format; (b) individual global as opposed to local processing styles; and (c) global as opposed to local perceptual priming. These results converge toward local processing as an explanation for SF failure. We discuss theoretical and practical implications on the connections between the scope of attention and understanding of dynamic systems. Copyright © 2015 Cognitive Science Society, Inc.
Flow motifs reveal limitations of the static framework to represent human interactions
NASA Astrophysics Data System (ADS)
Rocha, Luis E. C.; Blondel, Vincent D.
2013-04-01
Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies have shown that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site and of a sexual network, the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices containing only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices.
The role of thermal stratification in tidal exchange at the mouth of San Diego Bay
Chadwick, D. B.; Largier, J. L.; Cheng, R.T.; Aubrey, D.G.; Friedrichs, C.T.; Aubrey, D.G.; Friedrichs, C.T.
1996-01-01
We have examined, from an observational viewpoint, the role of thermal stratification in the tidal exchange process at the mouth of San Diego Bay. In this region, we found that both horizontal and vertical exchange processes appear to be active. The vertical exchange in this case was apparently due to the temperature difference between the'bay water and ocean water. We found that the structure of the outflow and the nature of the tidal exchange process both appear to be influenced by thermal stratification. The tidal outflow was found to lift-off tan the bottom during the initial and later stages of the ebb flow when barotropic forcing was weak. During the peak ebb flow, the mouth section was flooded, and the outflow extended to the bottom. As the ebb flow weakened, a period of two-way exchange occurred, with the surface layer flowing seaward, and the deep layer flowing into the bay. The structure of the tidal-residual flow and the residual transport of a measured tracer were strongly influenced by this vertical exchange. Exchange appeared to occur laterally as well, in a manner consistent with the tidal-pumping mechanism described by Stommel and Farmer [1952]. Tidal cycle variations in shear and stratification were characterized by strong vertical shear and breakdown of stratification during the ebb, and weak vertical shear and build-up of stratification on the flood. Evaluation of multiple tidal-cycles from time-series records of flow and temperature indicated that the vertical variations of the flow and stratification observed during the cross-sectional measurements are a general phenomenon during the summer. Together, these observations suggest that thermal stratification can play an important role in regulating the tidal exchange of low-inflow estuaries.
Harte, Philip T.
1994-01-01
Proper discretization of a ground-water-flow field is necessary for the accurate simulation of ground-water flow by models. Although discretiza- tion guidelines are available to ensure numerical stability, current guidelines arc flexible enough (particularly in vertical discretization) to allow for some ambiguity of model results. Testing of two common types of vertical-discretization schemes (horizontal and nonhorizontal-model-layer approach) were done to simulate sloping hydrogeologic units characteristic of New England. Differences of results of model simulations using these two approaches are small. Numerical errors associated with use of nonhorizontal model layers are small (4 percent). even though this discretization technique does not adhere to the strict formulation of the finite-difference method. It was concluded that vertical discretization by means of the nonhorizontal layer approach has advantages in representing the hydrogeologic units tested and in simplicity of model-data input. In addition, vertical distortion of model cells by this approach may improve the representation of shallow flow processes.
Buoyancy effects in steeply inclined air-water bubbly shear flow in a rectangular channel
NASA Astrophysics Data System (ADS)
Sanaullah, K.; Arshad, M.; Khan, A.; Chughtai, I. R.
2015-07-01
We report measurements of two-dimensional ( B/ D = 5) fully turbulent and developed duct flows (overall length/depth, L/ D = 60; D-based Reynolds number Re > 104) for inclinations to 30° from vertical at low voidages (< 5 % sectional average) representative of disperse regime using tap water bubbles (4-6 mm) and smaller bubbles (2 mm) stabilised in ionic solution. Pitot and static probe instrumentation, primitive but validated, provided adequate (10 % local value) discrimination of main aspects of the mean velocity and voidage profiles at representative streamwise station i.e L/ D = 40. Our results can be divided into three categories of behaviour. For vertical flow (0°) the evidence is inconclusive as to whether bubbles are preferentially trapped within the wall-layer as found in some, may be most earlier experimental works. Thus, the 4-mm bubbles showed indication of voidage retention but the 2-mm bubbles did not. For nearly vertical flow (5°) there was pronounced profiling of voidage especially with 4-mm bubbles but the transverse transport was not suppressed sufficiently to induce any obvious layering. In this context, we also refer to similarities with previous work on one-phase vertical and nearly vertical mixed convection flows displaying buoyancy inhibited mean shear turbulence. However, with inclined flow (10+ degrees) a distinctively layered pattern was invariably manifested in which voidage confinement increased with increasing inclination. In this paper we address flow behavior at near vertical conditions. Eulerian, mixed and VOF models were used to compute voidage and mean velocity profiles.
NASA Technical Reports Server (NTRS)
Drummond, J. P.
1980-01-01
A computer program has been developed that numerically solves the two-dimensional Navier-Stokes and species equations near one or more transverse hydrogen fuel injectors in a scramjet engine. The program currently computes the turbulent mixing and reaction of hydrogen fuel and air, and allows the study of separated regions of the flow immediately preceding and following the injectors. The complex shock-expansion structure produced by the injectors in this region of the engine can also be represented. Results are presented that describe the flow field near two opposing transverse fuel injectors and two opposing staged (multiple) injectors, and comparisons between the two configurations are made to assess their mixing and flameholding qualities.
Conway, Lucian Gideon; Bongard, Kate; Plaut, Victoria; Gornick, Laura Janelle; Dodds, Daniel P; Giresi, Thomas; Tweed, Roger G; Repke, Meredith A; Houck, Shannon C
2017-10-01
What kinds of physical environments make for free societies? The present research investigates the effect of three different types of ecological stressors (climate stress, pathogen stress, and frontier topography) on two measurements of governmental restriction: Vertical restriction involves select persons imposing asymmetrical laws on others, while horizontal restriction involves laws that restrict most members of a society equally. Investigation 1 validates our measurements of vertical and horizontal restriction. Investigation 2 demonstrates that, across both U.S. states and a sample of nations, ecological stressors tend to cause more vertically restrictive societies but less horizontally restrictive societies. Investigation 3 demonstrates that assortative sociality partially mediates ecological stress→restriction relationships across nations, but not in U.S. states. Although some stressor-specific effects emerged (most notably, cold stress consistently showed effects in the opposite direction), these results in the main suggest that ecological stress simultaneously creates opposing pressures that push freedom in two different directions.
Vroblesky, Don A.; Peterson, J.E.
2004-01-01
Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that little or no vertical flow was measured in most of the tested wells in August 2002. Two of the wells (10-MW-03 and 06-MW-01) had slightly greater vertical concentration variation for some constituents. In these wells, the contaminant depth probably is lithologically influenced. The close match between concentrations measured in polyethylene diffusion bag and low-flow samples indicates that the bag samples accurately represent the distribution of volatile organic compounds in the wells. It is unclear, however, whether the distribution of volatile organic compounds in the wells, as indicated by the bag samplers, represents contaminant distributions in the aquifer or transient movement within the wells. The probable change in well hydraulics between August and late September to October indicates that the relatively uniform vertical distribution of volatile organic compounds in some of the wells may represent in-well mixing. This uncertainty could be clarified by the installation and sampling of well clusters at various times of the year. Additional insight into the vertical distribution of contamination and flow possibly could be obtained by conducting flow-meter tests and collecting polyethylene diffusion bag samples from selected wells at different times of the year. The westernmost contaminant plume at Million Gallon Hill appears to be surrounded by sufficient monitoring wells to detect changes in the plume extent; however, the installation of additional wells at Galena Airport has the potential to provide additional information on the extent of ground-water contamination in the remaining plumes. The additional information to be gained includes better definition of the vertical and lateral extents of the plumes and better definition of the ground-water flow directions.
Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer
NASA Astrophysics Data System (ADS)
Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles
2012-11-01
For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).
Demonstration of a shape memory alloy torque tube-based morphing radiator
NASA Astrophysics Data System (ADS)
Chong, Jorge B.; Walgren, Patrick; Hartl, Darren J.
2018-03-01
Long-distance crewed space exploration will require advanced thermal control systems (TCS) with the ability to handle a wide range of thermal loads. The ability of a TCS to adapt to the thermal environment is described by the turndown ratio. Developing radiators with high turndown ratios is critical for improving TCS technology. This paper describes a novel morphing radiator designed to achieve a high turndown ratio by varying its own radiative view factor and effective emissivity through the use of shape memory alloys (SMAs). This radiator features two SMA torque tubes cantilevered to a rigid fixture. The working fluid is transported within the SMA tubes through an annular flow system. In a cold environment, radiator panels fixed to the free ends of the tubes are oriented vertically in a parallel-plate fashion, where the high-emissivity interior faces have restricted views to the environment and heat rejection is minimized. When the system heats up, the tubes actuate by twisting in opposing directions, bringing the panels to a horizontal position with the interior faces exposed to maximize heat rejection. When the system cools down, the tubes twist in reverse, restoring the panels to the vertical orientation where heat rejection is again minimized. This variable heat rejection system has the potential for achieving higher turndown ratios than those of current state-of-the-art systems. A benchtop prototype has been designed and tested to demonstrate actuation and to explore internal heat transfer effects. Prototype design, testing, and results are herein described.
Microgravity flame spread over thick solids in low velocity opposed flow
NASA Astrophysics Data System (ADS)
Wang, Shuangfeng; Zhu, Feng
2016-07-01
Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1988-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1989-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Electrokinetic transport in unsteady flow through peristaltic microchannel
NASA Astrophysics Data System (ADS)
Tripathi, Dharmendra; Mulchandani, Janak; Jhalani, Shubham
2016-04-01
We analyze the electrokinetic transport of aqueous electrolyte fluids with Newtonian model in presence of peristalsis through microchannel. Debye-Hückel linearization is employed to simplify the problem. Low Reynolds number and large wavelength approximations are taken into account subjected to microfluidics applications. Electrical double layer (EDL) is considered very thin and electroosmotic slip velocity (i.e. Helmholtz-Smoluchowski velocity) at the wall is subjected to study the effect of applied electrical field. The solutions for axial velocity and pressure difference along the channel length are obtained analytically and the effects of adding and opposing the flow by applied electric field have been discussed. It is revealed that the axial velocity and pressure gradient enhances with adding electric field and an opposite behavior is found in the flow direction on opposing the electric field. These results may also help towards designing organ-on-a-chip like devices for better drug design.
Fuel cell generator with fuel electrodes that control on-cell fuel reformation
Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA
2011-10-25
A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.
The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe
NASA Astrophysics Data System (ADS)
Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde
2017-08-01
The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.
Numerical Generation of Dense Plume Fingers in Unsaturated Homogeneous Porous Media
NASA Astrophysics Data System (ADS)
Cremer, C.; Graf, T.
2012-04-01
In nature, the migration of dense plumes typically results in the formation of vertical plume fingers. Flow direction in fingers is downwards, which is counterbalanced by upwards flow of less dense fluid between fingers. In heterogeneous media, heterogeneity itself is known to trigger the formation of fingers. In homogeneous media, however, fingers are also created even if all grains had the same diameter. The reason is that pore-scale heterogeneity leading to different flow velocities also exists in homogeneous media due to two effects: (i) Grains of identical size may randomly arrange differently, e.g. forming tetrahedrons, hexahedrons or octahedrons. Each arrangement creates pores of varying diameter, thus resulting in different average flow velocities. (ii) Random variations of solute concentration lead to varying buoyancy effects, thus also resulting in different velocities. As a continuation of previously made efforts to incorporate pore-scale heterogeneity into fully saturated soil such that dense fingers are realistically generated (Cremer and Graf, EGU Assembly, 2011), the current paper extends the research scope from saturated to unsaturated soil. Perturbation methods are evaluated by numerically re-simulating a laboratory-scale experiment of plume transport in homogeneous unsaturated sand (Simmons et al., Transp. Porous Media, 2002). The following 5 methods are being discussed: (i) homogeneous sand, (ii) initial perturbation of solute concentration, (iii) spatially random, time-constant perturbation of solute source, (iv) spatially and temporally random noise of simulated solute concentration, and (v) random K-field that introduces physically insignificant but numerically significant heterogeneity. Results demonstrate that, as opposed to saturated flow, perturbing the solute source will not result in plume fingering. This is because the location of the perturbed source (domain top) and the location of finger generation (groundwater surface) do not coincide. Alternatively, similar to saturated flow, applying either a random concentration noise (iv) or a random K-field (v) generates realistic plume fingering. Future work will focus on the generation mechanisms of plume finger splitting.
Seismic Barrier Protection of Critical Infrastructure from Earthquakes
2017-05-01
structure composed of opposing boreholes or trenches to mitigate seismic waves from diffracting and traveling in the vertical plane. Computational...dams, etc., pose significant risk to civilians while adding tremendous cost and recovery time to regain their functionality. Lower energy earthquakes...the most destructive are surface waves (Rayleigh, Love, shear) which can travel great distances in the far field from the earthquake hypocenter and
A vertical perspective of Santa Ana winds in a canyon
Bill C. Ryan
1969-01-01
The cross-section analyses of the 3 days of weak Santa Ana conditions reveal how rapid changes in windspeed and direction may occur under these conditions. The analyses indicate the significant dip of the wind field down the lee side of the range even under relatively light wind conditions, and show how opposing wind systems interact on the lee side to allow rapidly...
Natural convection in melt crystal growth - The influence of flow pattern on solute segregation
NASA Technical Reports Server (NTRS)
Brown, R. A.; Yamaguchi, Y.; Chang, C. J.
1982-01-01
The results of two lines of research aimed at calculating the structure of the flows driven by buoyancy in small-scale crystal growth systems and at understanding the coupling between these flows, the shape of the solidification interface, and dopant segregation in the crystal are reviewed. First, finite-element methods are combined with computer-aided methods for detecting multiple steady solutions to analyze the structure of the buoyancy-driven axisymmetric flows in a vertical cylinder heated from below. This system exhibits onset of convection, multiple steady flows, and loss of the primary stable flow beyond a critical value of the Rayleigh number. Second, results are presented for calculations of convection, melt/solid interface shape, and dopant segregation within a vertical ampoule with thermal boundary conditions that represent a prototype of the vertical Bridgman growth system.
Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii
NASA Astrophysics Data System (ADS)
Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.
2010-12-01
Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.
Computational fluid dynamics characterization of a novel mixed cell raceway design
USDA-ARS?s Scientific Manuscript database
Computational fluid dynamics (CFD) analysis was performed on a new type of mixed cell raceway (MCR) that incorporates longitudinal plug flow using inlet and outlet weirs for the primary fraction of the total flow. As opposed to regular MCR wherein vortices are entirely characterized by the boundary ...
Observations of Lake-Breeze Events During the Toronto 2015 Pan-American Games
NASA Astrophysics Data System (ADS)
Mariani, Zen; Dehghan, Armin; Joe, Paul; Sills, David
2018-01-01
Enhanced meteorological observations were made during the 2015 Pan and Parapan American Games in Toronto in order to measure the vertical and horizontal structure of lake-breeze events. Two scanning Doppler lidars (one fixed and one mobile), a C-band radar, and a network including 53 surface meteorological stations (mesonet) provided pressure, temperature, humidity, and wind speed and direction measurements over Lake Ontario and urban areas. These observations captured the full evolution (prior, during, and after) of 27 lake-breeze events (73% of observation days) in order to characterize the convective and dynamic processes driving lake breezes at the local scale and mesoscale. The dominant signal of a passing lake-breeze front (LBF) was an increase in dew-point temperature of 2.3 ± 0.3°C, coinciding with a 180° shift in wind direction and a decrease in air temperature of 2.1 ± 0.2°C. Doppler lidar observations over the lake detected lake breezes 1 hour (on average) before detection by radar and mesonet. On days with the synoptic flow in the offshore direction, the lidars observed wedge-shaped LBFs with shallow depths, which inhibited the radar's ability to detect the lake breeze. The LBF's ground speed and inland penetration distance were found to be well-correlated (r = 0.78), with larger inland penetration distances occurring on days with non-opposing (non-offshore) synoptic flow. The observed enhanced vertical motion ({>} 1 m s^{-1}) at the LBF, observed by the lidar on 54% of lake-breeze days, was greater (at times {>} 2.5 m s^{-1}) than that observed in previous studies and longer-lasting over the lake than over land. The weaker and less pronounced lake-breeze structure over land is illustrated in two case studies highlighting the lifetime of the lake-breeze circulation and the impact of propagation distance on lake-breeze intensity.
Simulation of 2D Granular Hopper Flow
NASA Astrophysics Data System (ADS)
Li, Zhusong; Shattuck, Mark
2012-02-01
Jamming and intermittent granular flow are big problems in industry, and the vertical hopper is a canonical example of these difficulties. We simulate gravity driven flow and jamming of 2D disks in a vertical hopper and compare with identical companion experiments presented in this session. We measure and compare the flow rate and probability for jamming as a function of particle properties and geometry. We evaluate the ability of standard Hertz-Mindlin contact mode to quantitatively predict the experimental flow.
Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells
Hanson, Lindsey; Zhao, Wenting; Lou, Hsin-Ya; Lin, Ziliang Carter; Lee, Seok Woo; Chowdary, Praveen; Cui, Yi; Cui, Bianxiao
2016-01-01
The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells. PMID:25984833
Low velocity opposed-flow frame spread in a transport-controlled environment DARTFire
NASA Technical Reports Server (NTRS)
West, Jeff; Thomas, Pete; Chao, Ruian; Bhattacharjee, Subrata; Tang, TI; Altenkirch, Robert A.; Olson, Sandra L.
1995-01-01
The overall objectives of the DARTFire project are to uncover the underlying physics and increase understanding of the mechanisms that cause flames to propagate over solid fuels against a low velocity of oxidizer flow in a low-gravity environment. Specific objectives are (1) to analyze experimentally observed flame shapes, measured gas-phase field variables, spread rates, radiative characteristics, and solid-phase regression rates for comparison with previously developed model prediction capability that will be continually extended, and (2) to investigate the transition from ignition to either flame propagation or extinction in order to determine the characteristics of those environments that lead to flame evolution. To meet the objectives, a series of sounding rocket experiments has been designed to exercise several of the dimensional, controllable variables that affect the flame spread process over PMMA in microgravity, i.e., the opposing flow velocity (1-20 cm/s), the external radiant flux directed to the fuel surface (0-2 W/cm(exp 2)), and the oxygen concentration of the environment (35-70%). Because radiative heat transfer is critical to these microgravity flame spread experiments, radiant heating is imposed, and radiant heat loss will be measured. These are the first attempts at such an experimental control and measurement in microgravity. Other firsts associated with the experiment are (1) the control of the low velocity, opposed flow, which is of the same order as diffusive velocities and Stefan flows; (2) state-of-the-art quantitative flame imaging for species-specific emissions (both infrared and ultraviolet) in addition to novel intensified array imaging to obtain a color image of the very dim, low-gravity flames.
Lapham, Wayne W.
1989-01-01
The use of temperature profiles beneath streams to determine rates of vertical ground-water flow and effective vertical hydraulic conductivity of sediments was evaluated at three field sites by use of a model that numerically solves the partial differential equation governing simultaneous vertical flow of fluid and heat in the Earth. The field sites are located in Hardwick and New Braintree, Mass., and in Dover, N.J. In New England, stream temperature varies from about 0 to 25 ?C (degrees Celsius) during the year. This stream-temperature fluctuation causes ground-water temperatures beneath streams to fluctuate by more than 0.1 ?C during a year to a depth of about 35 ft (feet) in fine-grained sediments and to a depth of about 50 ft in coarse-grained sediments, if ground-water velocity is 0 ft/d (foot per day). Upward flow decreases the depth affected by stream-temperature fluctuation, and downward flow increases the depth. At the site in Hardwick, Mass., ground-water flow was upward at a rate of less than 0.01 ft/d. The maximum effective vertical hydraulic conductivity of the sediments underlying this site is 0.1 ft/d. Ground-water velocities determined at three locations at the site in New Braintree, Mass., where ground water discharges naturally from the underlying aquifer to the Ware River, ranged from 0.10 to 0.20 ft/d upward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.4 to 17.1 ft/d. Ground-water velocities determined at three locations at the Dover, N.J., site, where infiltration from the Rockaway River into the underlying sediments occurs because of pumping, were 1.5 ft/d downward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.2 to 2.5 ft/d. Independent estimates of velocity at two of the three sites are in general agreement with the velocities determined using temperature profiles. The estimates of velocities and conductivities derived from the temperature measurements generally fall within the ranges of expected rates of flow in, and conductivities of, the sediments encountered at the test sites. Application of the method at the three test sites demonstrates the feasibility of using the method to determine the rate of ground-water flow between a stream and underlying sediments and the effective vertical hydraulic conductivity of the sediments.
NASA Astrophysics Data System (ADS)
Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li
2017-02-01
The drag reduction and thermal protection system applied to hypersonic re-entry vehicles have attracted an increasing attention, and several novel concepts have been proposed by researchers. In the current study, the influences of performance parameters on drag and heat reduction efficiency of combinational novel cavity and opposing jet concept has been investigated numerically. The Reynolds-average Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flowfields, and the first-order spatially accurate upwind scheme appears to be more suitable for three-dimensional flowfields after grid independent analysis. Different cases of performance parameters, namely jet operating conditions, freestream angle of attack and physical dimensions, are simulated based on the verification of numerical method, and the effects on shock stand-off distance, drag force coefficient, surface pressure and heat flux distributions have been analyzed. This is the basic study for drag reduction and thermal protection by multi-objective optimization of the combinational novel cavity and opposing jet concept in hypersonic flows in the future.
Horiuchi, Tsutomu; Hayashi, Katsuyoshi; Seyama, Michiko; Inoue, Suzuyo; Tamechika, Emi
2012-10-18
A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.
NASA Astrophysics Data System (ADS)
Lan, C. W.; Lee, I. F.; Yeh, B. C.
2003-07-01
Three-dimensional simulation, both pseudo-steady and time-dependent states, is carried out to illustrate the effects of magnetic fields on the flow and segregation in a vertical Bridgman crystal growth. With an axial magnetic field in a perfectly vertical growth, the calculated results are in good agreement with those obtained by a two-dimensional axisymmetric model. The asymptotic scaling of flow damping is also consistent with the boundary layer approximation regardless to the magnetic orientation. Radial and axial segregations are further discussed concluding that radial segregation could be severe if the flow damping is not adequate. Moreover, there is a regime of enhanced global dopant mixing due to the flow stretching by the axial field. Accordingly, the transversal field is more effective in pushing the growth to the diffusion-controlled limit and suppressing the asymmetric global flow due to ampule tilting.
Hydraulic Performance of Shallow Foundations for the Support of Vertical-Wall Bridge Abutments
DOT National Transportation Integrated Search
2017-02-01
This study combined abutment flume experiments with numerical modeling using computational fluid dynamics (CFD) to investigate flow fields and scour at vertical-wall abutments with shallow foundations. The focus was situations dominated by flow contr...
Thermal convection currents in NMR: flow profiles and implications for coherence pathway selection
Jerschow
2000-07-01
Rayleigh-Benard convection currents are visualized in a vertical cylindrical tube by means of magnetic resonance imaging. Axially antisymmetric flow, multiple vertical rolls, and twisted node planes are observed. The flow can also be induced by strong RF irradiation. Its effects on the coherence pathways in NMR experiments employing field gradients are discussed. Copyright 2000 Academic Press.
Bohling, Geoffrey C.; Butler, J.J.
2001-01-01
We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.
Wavy flow cooling concept for turbine airfoils
Liang, George
2010-08-31
An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.
ERIC Educational Resources Information Center
Paniagua, Angel
2009-01-01
This paper provides theoretical and methodological arguments to study the politics of space in small marginal and depopulated areas of Spain. The case for research is the Riaza river valley in the province of Segovia. Usually the analysis of rural space (and the geographical space in general) provides opposing presentations: vertical, between…
Geometry: A Flow Proof Approach.
ERIC Educational Resources Information Center
McMurray, Robert
The inspiration for this text was provided by an exposure to the flow proof approach to a proof format as opposed to the conventional two-column approach. Historical background is included, to provide a frame of reference to give the student an appreciation of the subject. The basic constructions are introduced early and briefly, to aid the…
Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens
NASA Astrophysics Data System (ADS)
Xiong, Xiaoyan; Niu, Linkai; Gu, Chengxiang; Wang, Yinhua
2017-12-01
A banana flip-flow screen is an effective solution for the screening of high-viscosity, high-water and fine materials. As one of the key components, the vibration characteristics of the inclined flip-flow screen panel largely affects the screen performance and the processing capacity. In this paper, a mathematical model for the vibration characteristic of the inclined flip-flow screen panel is proposed based on Catenary theory. The reasonability of Catenary theory in analyzing the vibration characteristic of flip-flow screen panels is verified by a published experiment. Moreover, the effects of the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen on the vertical deflection, the vertical velocity and the vertical acceleration of the screen panel are investigated parametrically. The results show that the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen have significant effects on the vibrations of an inclined flip-flow screen panel, and these parameters should be optimized.
Russell, G.M.; Goodwin, C.R.
1987-01-01
Results of a two-dimensional, vertically averaged, computer simulation model of the Loxahatchee River estuary show that under typical low freshwater inflow and vertically well mixed conditions, water circulation is dominated by freshwater inflow rather than by tidal influence. The model can simulate tidal flow and circulation in the Loxahatchee River estuary under typical low freshwater inflow and vertically well mixed conditions, but is limited, however, to low-flow and well mixed conditions. Computed patterns of residual water transport show a consistent seaward flow from the northwest fork through the central embayment and out Jupiter Inlet to the Atlantic Ocean. A large residual seaward flow was computed from the North Intracoastal Waterway to the inlet channel. Although the tide produces large flood and ebb flows in the estuary, tide-induced residual transport rates are low in comparison with freshwater-induced residual transport. Model investigations of partly mixed or stratified conditions in the estuary need to await development of systems capable of simulating three-dimensional flow patterns. (Author 's abstract)
Opposed-flow flame spread and extinction in mixed-convection boundary layers
NASA Technical Reports Server (NTRS)
Altenkirch, R. A.; Wedha-Nayagam, M.
1989-01-01
Experimental data for flame spread down thin fuel samples in an opposing, mixed-convection, boundary-layer flow are analyzed to determine the gas-phase velocity that characterizes how the flame reacts as it spreads toward the leading edge of the fuel sample into a thinning boundary layer. In the forced-flow limit where the cube of the Reynolds number divided by the Grashof number, Re exp 3/Gr, is large, L(q)/L(e), where L(q) is a theoretical flame standoff distance at extinction and L(e) is the measured distance from the leading edge of the sample where extinction occurs, is found to be proportional to Re exp n with n = -0.874 and Re based on L(e). The value of n is established by the character of the flow field near the leading edge of the flame. The Re dependence is used, along with a correction for the mixed-convection situation where Re exp 3/Gr is not large, to construct a Damkohler number with which the measured spread rates correlate for all values of Re exp 3/Gr.
Fluidic Oscillator Having Decoupled Frequency and Amplitude Control
NASA Technical Reports Server (NTRS)
Koklu, Mehti (Inventor)
2017-01-01
A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.
Fluidic Oscillator Having Decoupled Frequency and Amplitude Control
NASA Technical Reports Server (NTRS)
Koklu, Mehti (Inventor)
2016-01-01
A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.
NASA Astrophysics Data System (ADS)
Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; MST Team
2014-10-01
The MST operates two Ion Doppler Spectrometers (IDS) for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometers record data within 0.3 nm of the line of interest, and commercial calibration lamps do not produce lines in this narrow range . Four calibration methods were investigated. First, emission along the chord bisecting the poloidal plane was measured as it should have no time-averaged Doppler shift. Second, a calibrated CCD spectrometer and the IDSII were used to observe the same plasma from opposing sides so as to measure opposite Doppler shifts. The unshifted line is located halfway between the two opposing measurements. Third, the two fibers of the IDSI were positioned to take absolute flow measurements using opposing views. Substituting the IDSII for one of the IDSI fibers, absolute measurements of flow from the IDSI were used to calibrate the IDSII. Finally, an optical system was designed to filter an ultraviolet LED, providing a known wavelength source within the spectral range covered by the IDSII. The optical train is composed of an air-gapped etalon and fused silica lenses. The quality of calibration for each of these methods is analyzed and their results compared. Preliminary impurity ion velocity measurements are shown. This work has been supported by the US DOE and the NSF.
Vertical load capacities of roof truss cross members.
Gearhart, David F; Morsy, Mohamed Khaled
2016-05-01
Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cross member is vertical, which is transverse to the longitudinal axis, and therefore the cross member is loaded in the weakest direction. Laboratory tests were conducted to determine the vertical load capacity and deflection of three different types of cross members. Single-point load tests, with the load applied in the center of the specimen and double-point load tests, with a span of 2.4 m, were conducted. For the single-point load configuration, the yield of the 25 mm solid bar cross member was nominally 98 kN of vertical load, achieved at 42 cm of deflection. For cable cross members, yield was not achieved even after 45 cm of deflection. Peak vertical loads were about 89 kN for 17 mm cables and 67 kN for the 15 mm cables. For the double-point load configurations, the 25 mm solid bar cross members yielded at 150 kN of vertical load and 25 cm of deflection. At 25 cm of deflection individual cable strands started breaking at 133 and 111 kN of vertical load for the 17 and 15 mm cable cross members respectively.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2007-01-01
A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1993-01-01
Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.
An experimental study of geyser-like flows induced by a pressurized air pocket
NASA Astrophysics Data System (ADS)
Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.
2015-12-01
Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.
Yi, C.; Monson, Russell K.; Zhai, Z.; Anderson, D.E.; Lamb, B.; Allwine, G.; Turnipseed, A.A.; Burns, Sean P.
2005-01-01
The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Yi, Chuixiang; Monson, Russell K.; Zhai, Zhiqiang; Anderson, Dean E.; Lamb, Brian; Allwine, Gene; Turnipseed, Andrew A.; Burns, Sean P.
2005-11-01
The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain.
Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu
2003-01-01
Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Munir, Asif
In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphicallymore » for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case.« less
Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects
NASA Technical Reports Server (NTRS)
Olson, S. L.
1991-01-01
Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.
Actin Filament Elasticity and Retrograde Flow Shape the Force-Velocity Relation of Motile Cells
Zimmermann, Juliane; Brunner, Claudia; Enculescu, Mihaela; Goegler, Michael; Ehrlicher, Allen; Käs, Josef; Falcke, Martin
2012-01-01
Cells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude. At larger opposing forces, the retrograde flow of the actin network accelerates until it compensates for polymerization, and cell motion stalls. Subsequently, the lamellipodium adapts to the stalled state. We present a mechanism quantitatively explaining the cell's force-velocity relation and its changes upon application of drugs that hinder actin polymerization or actomyosin-based contractility. Elastic properties of filaments, close to the lamellipodium leading edge, and retrograde flow shape the force-velocity relation. To our knowledge, our results shed new light on how these migratory responses are regulated, and on the mechanics and structure of the lamellipodium. PMID:22339865
Effect of gravitational and inertial forces on vertical distribution of pulmonary blood flow
NASA Technical Reports Server (NTRS)
Chevalier, P. A.; Reed, J. H., Jr.; Vandenberg, R. A.; Wood, E. H.
1978-01-01
Vertical distribution of pulmonary blood flow (VDPBF) was studied, using radioactive microsphere emboli, in dogs without thoracotomy in the right decubitus position during exposure to lateral accelerations of 1, 2, 4, and 6 G. At all levels of force environment studied, an inverse linear relationship was observed between vertical height in the thorax and pulmonary blood flow (ml/min/ml lung tissue) with a decrease in flow to the most dependent region of the lung despite large increases in intravascular pressures at this site. Changes in blood flow were smallest at the mid-lung level, the hydrostatic 'balance point' for vascular and pleural pressures. These force environment-dependent changes in VDPBF are not readily explainable by the Starling resistor analog. Gravity-dependent regional differences in pleural and associated interstitial pressures, plus possible changes in vascular tone resulting from inadequate aeration of blood in the most dependent regions of the lung, probably also affect VDPBF.
The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow
NASA Astrophysics Data System (ADS)
Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.
2018-02-01
In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.
Film flow and heat transfer during condensation of steam on inclined and vertical nonround tubes
NASA Astrophysics Data System (ADS)
Nikitin, N. N.; Semenov, V. P.
2008-03-01
We describe a mathematical model for calculating heat transfer during film condensation of stagnant steam on inclined and vertical smooth tubes with cross sections of arbitrary shape that takes into account the action of surface tension forces. The heat-transfer coefficients are calculated, and the hydrodynamic pattern is presented in which a condensate film flows over the surface of nonround inclined and vertical tubes with cross-section of different shapes.
NASA Astrophysics Data System (ADS)
Klepikova, M.; Le Borgne, T.; Bour, O.; Lavenant, N.
2011-12-01
In fractured aquifers flow generally takes place in a few fractured zones. The identification of these main flow paths is critical as it controls the transfer of fluids in the subsurface. For realistic modeling of the flow the knowledge about the spatial variability of hydraulic properties is required. Inverse problems based on hydraulic head data are generally strongly underconstrained. A possible way of reducing the uncertainty is to combine different type of data, such as flow measurements, temperature profiles or tracer test data. Here, we focus on the use of temperature, which can be seen as a natural tracer of ground water flow. Previous studies used temperature anomalies to quantify vertical or horizontal regional groundwater flow velocities. Most of these studies assume that water in the borehole is stagnant, and, thus, the temperature profile in the well is representative of the temperature in the aquifer. In fractured media, differences in hydraulic head between flow paths connected to a borehole generally create ambient vertical flow within the borehole. These differences in hydraulic head are in general due to regional flow conditions. Estimation of borehole vertical flow is of interest as it can be used to derive large scale hydraulic connections. Under a single-borehole configuration, the estimation of vertical flow can be used to estimate the local transimissivities and the hydraulic head differences driving the flow through the borehole. Under a cross-borehole set up, it can be used to characterize hydraulic connections and estimate their hydraulic properties. Using a flow and heat transfer numerical model, we find that the slope of the temperature profile is related directly to vertical borehole flow velocity. Thus, we propose a method to invert temperature measurements to derive borehole flow velocities and subsequently the fracture zone hydraulic and connectivity properties. The advantage of temperature measurements compared to flowmeter measurements is that temperature can be measured easily and very accurately, continuously in space and time. To test the methodology, we have performed a field experiment at a crystalline rocks field site, located in Ploemeur, Brittany (France). The site is composed of three 100 meters deep boreholes, located at 6-10 m distances from each other. The experiment consisted in measuring the borehole temperature profiles under all possible pumping configurations. Hence, the pumping and monitoring wells were successively changed. The thermal response in observation well induced by changes in pumping conditions is related to changes in vertical flow velocities and thus to the inter-borehole fracture connectivity. Based on this dataset, we propose a methodology to include temperature profiles in inverse problem for characterizing the spatial distribution of fracture zone hydraulic properties.
Wilson, John T.; Mandell, Wayne A.; Paillet, Frederick L.; Bayless, E. Randall; Hanson, Randall T.; Kearl, Peter M.; Kerfoot, William B.; Newhouse, Mark W.; Pedler, William H.
2001-01-01
Three borehole flowmeters and hydrophysical logging were used to measure ground-water flow in carbonate bedrock at sites in southeastern Indiana and on the westcentral border of Kentucky and Tennessee. The three flowmeters make point measurements of the direction and magnitude of horizontal flow, and hydrophysical logging measures the magnitude of horizontal flowover an interval. The directional flowmeters evaluated include a horizontal heat-pulse flowmeter, an acoustic Doppler velocimeter, and a colloidal borescope flowmeter. Each method was used to measure flow in selected zones where previous geophysical logging had indicated water-producing beds, bedding planes, or other permeable features that made conditions favorable for horizontal-flow measurements. Background geophysical logging indicated that ground-water production from the Indiana test wells was characterized by inflow from a single, 20-foot-thick limestone bed. The Kentucky/Tennessee test wells produced water from one or more bedding planes where geophysical logs indicated the bedding planes had been enlarged by dissolution. Two of the three test wells at the latter site contained measurable vertical flow between two or more bedding planes under ambient hydraulic head conditions. Field measurements and data analyses for each flow-measurement technique were completed by a developer of the technology or by a contractor with extensive experience in the application of that specific technology. Comparison of the horizontal-flow measurements indicated that the three point-measurement techniques rarely measured the same velocities and flow directions at the same measurement stations. Repeat measurements at selected depth stations also failed to consistently reproduce either flow direction, flow magnitude, or both. At a few test stations, two of the techniques provided similar flow magnitude or direction but usually not both. Some of this variability may be attributed to naturally occurring changes in hydraulic conditions during the 1-month study period in August and September 1999. The actual velocities and flow directions are unknown; therefore, it is uncertain which technique provided the most accurate measurements of horizontal flow in the boreholes and which measurements were most representative of flow in the aquifers. The horizontal heat-pulse flowmeter consistently yielded flow magnitudes considerably less than those provided by the acoustic Doppler velocimeter and colloidal borescope. The design of the horizontal heat-pulse flowmeter compensates for the local acceleration of ground-water velocity in the open borehole. The magnitude of the velocities estimated from the hydrophysical logging were comparable to those of the horizontal heat-pulse flowmeter, presumably because the hydrophysical logging also effectively compensates for the effect of the borehole on the flow field and averages velocity over a length of borehole rather than at a point. The acoustic Doppler velocimeter and colloidal borescope have discrete sampling points that allow for measuring preferential flow velocities that can be substantially higher than the average velocity through a length of borehole. The acoustic Doppler velocimeter and colloidal borescope also measure flow at the center of the borehole where the acceleration of the flow field should be greatest. Of the three techniques capable of measuring direction and magnitude of horizontal flow, only the acoustic Doppler velocimeter measured vertical flow. The acoustic Doppler velocimeter consistently measured downward velocity in all test wells. This apparent downward flow was attributed, in part, to particles falling through the water column as a result of mechanical disturbance during logging. Hydrophysical logging yielded estimates of vertical flow in the Kentucky/Tennessee test wells. In two of the test wells, the hydrophysical logging involved deliberate isolation of water-producing bedding planes with a packer to ensure that small horizontal flow could be quantified without the presence of vertical flow. The presence of vertical flow in the Kentucky/Tennessee test wells may preclude the definitive measurement of horizontal flow without the use of effective packer devices. None of the point-measurement techniques used a packer, but each technique used baffle devices to help suppress the vertical flow. The effectiveness of these baffle devices is not known; therefore, the effect of vertical flow on the measurements cannot be quantified. The general lack of agreement among the point-measurement techniques in this study highlights the difficulty of using measurements at a single depth point in a borehole to characterize the average horizontal flow in a heterogeneous aquifer. The effective measurement of horizontal flow may depend on the precise depth at which measurements are made, and the measurements at a given depth may vary over time as hydraulic head conditions change. The various measurements also demonstrate that the magnitude and possibly the direction of horizontal flow are affected by the presence of the open borehole. Although there is a lack of agreement among the measurement techniques, these results could mean that effective characterization of horizontal flow in heterogeneous aquifers might be possible if data from many depth stations and from repeat measurements can be averaged over an extended time period. Complications related to vertical flow in the borehole highlights the importance of using background logging methods like vertical flowmeters or hydrophysical logging to characterize the borehole environment before horizontal-flow measurements are attempted. If vertical flow is present, a packer device may be needed to acquire definitive measurements of horizontal flow. Because hydrophysical logging provides a complete depth profile of the borehole, a strength of this technique is in identifying horizontal- and vertical-flow zones in a well. Hydrophysical logging may be most applicable as a screening method. Horizontal- flow zones identified with the hydrophysical logging then could be evaluated with one of the point-measurement techniques for quantifying preferential flow zones and flow directions. Additional research is needed to determine how measurements of flow in boreholes relate to flow in bedrock aquifers. The flowmeters may need to be evaluated under controlled laboratory conditions to determine which of the methods accurately measure ground-water velocities and flow directions. Additional research also is needed to investigate variations in flow direction with time, daily changes in velocity, velocity corrections for fractured bedrock aquifers and unconsolidated aquifers, and directional differences in individual wells for hydraulically separated flow zones.
Forte, A.M.; Woodward, R.L.
1997-01-01
Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.
Analysis of Delayed Sea Breeze Onset for Fort Ord Prescribed Burning Operations
2015-12-01
Gahmberg et al. (2009) provided additional detail to the synoptic flow through the Coriolis effect . All directions are as seen from the sea with...ambient flows left of the offshore direction providing the strongest opposing winds as Coriolis effects provide additional support in the offshore...support the development of the sea breeze due to Coriolis effects , the mesoscale flow at the surface is quite different. The 1600 UTC through 1900
CFD Analysis of a T-38 Wing Fence
2007-06-01
or making major adjustments to the existing airframe. The answer lies in flow control. Flow control devices like vortex generators, winglets , and wing...proposed by the Air Force Test Pilot School. The driving force for considering a wing fence as opposed to vane vortex generators or winglets 3 was a row of...devices are vortex generators, fences, high lift flaps, and winglets . Active flow control injects the boundary layer with energy from small jets of
Turbulent Kinetic Energy (TKE) Budgets Using 5-beam Doppler Profilers
NASA Astrophysics Data System (ADS)
Guerra, M. A.; Thomson, J. M.
2016-12-01
Field observations of turbulence parameters are important for the development of hydrodynamic models, understanding contaminant mixing, and predicting sediment transport. The turbulent kinetic energy (TKE) budget quantifies where turbulence is being produced, dissipated or transported at a specific site. The Nortek Signature 5-beam AD2CP was used to measure velocities at high sampling rates (up to 8 Hz) at Admiralty Inlet and Rich Passage in Puget Sound, WA, USA. Raw along-beam velocity data is quality controlled and is used to estimate TKE spectra, spatial structure functions, and Reynolds stress tensors. Exceptionally low Doppler noise in the data enables clear observations of the inertial sub-range of isotropic turbulence in both the frequency TKE spectra and the spatial structure functions. From these, TKE dissipation rates are estimated following Kolmogorov's theory of turbulence. The TKE production rates are estimated using Reynolds stress tensors together with the vertical shear in the mean flow. The Reynolds stress tensors are estimated following the methodology of Dewey and Stinger (2007), which is significantly improved by inclusion of the 5th beam (as opposed to the conventional 4). These turbulence parameters are used to study the TKE budget along the water column at the two sites. Ebb and flood production and dissipation rates are compared through the water column at both sites. At Admiralty Inlet, dissipation exceeds production during ebb while the opposite occurs during flood because the proximity to a lateral headland. At Rich Passage, production exceeds dissipation through the water column for all tidal conditions due to a vertical sill in the vicinity of the measurement site.
VERTICAL INTEGRATION OF THREE-PHASE FLOW EQUATIONS FOR ANALYSIS OF LIGHT HYDROCARBON PLUME MOVEMENT
A mathematical model is derived for areal flow of water and light hydrocarbon in the presence of gas at atmospheric pressure. Closed-form expressions for the vertically integrated constitutive relations are derived based on a three-phase extension of the Brooks-Corey saturation-...
USDA-ARS?s Scientific Manuscript database
Vertical flow constructed wetland (VFCW) is a promising engineering technique for removal of excess nutrients and certain pollutants from wastewater and stormwater. The aim of this study was to develop a STELLA (Structural Thinking, Experiential Learning Laboratory with Animation) model for estimati...
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
Abutment tooth loss in patients with overdentures.
Ettinger, Ronald L; Qian, Fang
2004-06-01
Since the 1960s, the use of natural teeth as overdenture abutments has become part of accepted clinical practice. Several longitudinal studies have been conducted, but tooth loss has not been reported to be a significant problem. The aim of this study was to identify the incidence and causes of tooth loss in a prospective cohort study of subjects wearing overdentures. The study, conducted between 1973 and 1994, evaluated 273 subjects (62.3 percent male) with a mean age of 59.6 years. Of the 273 subjects with 666 abutments, 74 lost 133 abutments. The most common cause of tooth loss was periodontal disease (29.3 percent) followed by periapical lesions (18.8 percent) and caries (16.5 percent). Through logistic regression, the authors found that subjects who lost teeth were more likely to have medical problems that could cause soft-tissue lesions of the oral mucosa, were less likely to use fluoride daily and were less likely to return for yearly recall visits. The authors found 22 vertical fractures in 17 subjects. Chi2 analysis revealed that overdenture teeth in the maxillary arch that were opposed by natural teeth were more likely to experience vertical fractures. In a study that followed up some patients for as long as 22 years, the rate of tooth loss was 20.0 percent. Many of these failures could have been prevented if patients had practiced better oral hygiene. The findings suggest that if a dentist recommends overdenture therapy, the patient needs to be examined regularly to reduce the risk of experiencing caries and periodontal disease. Also, if the abutments are in the maxilla and are opposed by natural teeth, the dentist should consider using thimble crowns to reduce the risk of vertical fractures.
NASA Astrophysics Data System (ADS)
Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.
2018-05-01
Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.
Hydrodynamic implications of textural trends in sand deposits of the 2004 tsunami in Sri Lanka
Morton, R.A.; Goff, J.R.; Nichol, S.L.
2008-01-01
Field observations and sediment samples at a coastal-plain setting in southeastern Sri Lanka were used to document the erosional and depositional impacts of the 2004 Indian Ocean tsunami and to interpret the hydrodynamic processes that produced an extensive sand-sheet deposit. Tsunami deposit thicknesses ranged from 6 to 22??cm with thickness being controlled partly by antecedent topography. The deposit was composed of coarse to medium sand organized into plane-parallel laminae and a few laminasets. Vertical textural trends showed an overall but non-systematic upward fining and upward thinning of depositional units with an upward increase in heavy-mineral laminations at some locations. Repeated patterns in the vertical textural trends (upward fining, upward coarsening, uniform) were used to subdivide and correlate the deposit into five hydro-textural stratigraphic units. The depositional units were linked to hydrodynamic processes and upcurrent conditions, such as rates of sediment supply and composition of the sediment sources. Vertical changes in grain-size distributions recorded the depositional phases associated with flow acceleration, initial unsteady pulsating flow, relatively stable and uniform flow, flow deceleration, slack water, and return flow or flow redirection. Study results suggest that vertical textural trends from multiple cross-shore sections can be used to interpret complex tsunami flow histories, but at the location examined, interpretation of the lateral textural trends did not provide a basis for identifying the correct sediment transport pathways because flow near the landward boundary was multidirectional.
NASA Astrophysics Data System (ADS)
Clifford, Corey; Kimber, Mark
2017-11-01
Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.
PATTERNS OF FLOWS IN AN INTERMEDIATE PROMINENCE OBSERVED BY HINODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kwangsu; Chae, Jongchul; Cao Wenda
2010-09-20
The investigation of plasma flows in filaments/prominences gives us clues to understanding their magnetic structures. We studied the patterns of flows in an intermediate prominence observed by Hinode/SOT. By examining a time series of H{alpha} images and Ca II H images, we have found horizontal flows in the spine and vertical flows in the barb. Both of these flows have a characteristic speed of 10-20 km s{sup -1}. The horizontal flows displayed counterstreaming. Our detailed investigation revealed that most of the moving fragments in fact reversed direction at the end point of the spine near a footpoint close to themore » associated active region. These returning flows may be one possible explanation of the well-known counterstreaming flows in prominences. In contrast, we have found vertical flows-downward and upward-in the barb. Most of the horizontal flows in the spine seem to switch into vertical flows when they approach the barb, and vice versa. We propose that the net force resulting from a small deviation from magnetohydrostatic equilibrium, where magnetic fields are predominantly horizontal, may drive these patterns of flow. In the prominence studied here, the supposed magnetohydrostatic configuration is characterized by magnetic field lines sagging with angles of 13{sup 0} and 39{sup 0} in the spine and the barb, respectively.« less
Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones
NASA Astrophysics Data System (ADS)
Lee, J. L.; Lee, W. C.; MacDonald, A. E.
2006-01-01
The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Liscinsky, D. S.; Bain, D. B.
1999-01-01
This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex three-dimensional flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the orifices investigated were often very large (jet-to-mainstream mass-flow ratio > 1 and the ratio of orifices-area-to-mainstream- cross-sectional-area up to 0.5, respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.
NASA Technical Reports Server (NTRS)
Holdeman, James D.; Liscinsky, David S.; Bain, Daniel B.
1997-01-01
This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex 3-D flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the offices investigated were often very large (jet-to-mainstream mass-flow ratio greater than 1 and the ratio of orifices-area-to-mainstream-cross-sectional-area up to 0.5 respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.
NASA Astrophysics Data System (ADS)
Xu, Bin; Shi, Yumei; Chen, Dongsheng
2014-03-01
This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.
Movable anode x-ray source with enhanced anode cooling
Bird, C.R.; Rockett, P.D.
1987-08-04
An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.
Movable anode x-ray source with enhanced anode cooling
Bird, Charles R.; Rockett, Paul D.
1987-01-01
An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.
Experiments and modeling of dilution jet flow fields
NASA Technical Reports Server (NTRS)
Holdeman, James D.
1986-01-01
Experimental and analytical results of the mixing of single, double, and opposed rows of jets with an isothermal or variable-temperature main stream in a straight duct are presented. This study was performed to investigate flow and geometric variations typical of the complex, three-dimensional flow field in the dilution zone of gas-turbine-engine combustion chambers. The principal results, shown experimentally and analytically, were the following: (1) variations in orifice size and spacing can have a significant effect on the temperature profiles; (2) similar distributions can be obtained, independent of orifice diameter, if momentum-flux ratio and orifice spacing are coupled; (3) a first-order approximation of the mixing of jets with a variable-temperature main stream can be obtained by superimposing the main-stream and jets-in-an-isothermal-crossflow profiles; (4) the penetration of jets issuing mixing is slower and is asymmetric with respect to the jet centerplanes, which shift laterally with increasing downstream distance; (5) double rows of jets give temperature distributions similar to those from a single row of equally spaced, equal-area circular holes; (6) for opposed rows of jets, with the orifice centerlines in line, the optimum ratio of orifice spacing to duct height is one-half the optimum value for single-side injection at the same momentum-flux ratiol and (7) for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single-side injection at the same momentum-flux ratio.
Methods to quantify seepage beneath Levee 30, Miami-Dade County, Florida
Sonenshein, R.S.
2001-01-01
A two-dimensional, cross-sectional, finite-difference, ground-water flow model and a simple application of Darcy?s law were used to quantify ground-water flow (from a wetlands) beneath Levee 30 in Miami-Dade County, Florida. Geologic and geophysical data, vertical seepage data from the wetlands, canal discharge data, ground-water-level data, and surface-water-stage data collected during 1995 and 1996 were used as boundary conditions and calibration data for the ground-water flow model and as input for the analytical model. Vertical seepage data indicated that water from the wetlands infiltrated the subsurface, near Levee 30, at rates ranging from 0.033 to 0.266 foot per day when the gates at the control structures along Levee 30 canal were closed. During the same period, stage differences between the wetlands (Water Conservation Area 3B) and Levee 30 canal ranged from 0.11 to 1.27 feet. A layer of low-permeability limestone, located 7 to 10 feet below land surface, restricts vertical flow between the surface water in the wetlands and the ground water. Based on measured water-level data, ground-water flow appears to be generally horizontal, except in the direct vicinity of the canal. The increase in discharge rate along a 2-mile reach of the Levee 30 canal ranged from 9 to 30 cubic feet per second per mile and can be attributed primarily to ground-water inflow. Flow rates in Levee 30 canal were greatest when the gates at the control structures were open. The ground-water flow model data were compared with the measured ground-water heads and vertical seepage from the wetlands. Estimating the horizontal ground-water flow rate beneath Levee 30 was difficult owing to the uncertainty in the horizontal hydraulic conductivity of the main flow zone of the Biscayne aquifer. Measurements of ground-water flows into Levee 30 canal, a substantial component of the water budget, were also uncertain, which lessened the ability to validate the model results. Because of vertical flows near Levee 30 canal and a very low hydraulic gradient east of the canal, a simplified Darcian approach simulated with the ground-water flow model does not accurately estimate the horizontal ground-water flow rate. Horizontal ground-water flow rates simulated with the ground-water flow model (for a 60-foot-deep by 1-foot-wide section of the Biscayne aquifer) ranged from 150 to 450 cubic feet per day west of Levee 30 and from 15 to 170 cubic feet per day east of Levee 30 canal. Vertical seepage from the wetlands, within 500 feet of Levee 30, generally accounted for 10 to 15 percent of the total horizontal flow beneath the levee. Simulated horizontal ground-water flow was highest during the wet season and when the gates at the control structures were open.
Vertical pump with free floating check valve
Lindsay, Malcolm
1980-01-01
A vertical pump with a bottom discharge having a free floating check valve isposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions.
Hua, Guofen; Chen, Qiuwen; Kong, Jun; Li, Man
2017-08-01
Clogging is the most significant challenge limiting the application of constructed wetlands. Application of a forced resting period is a practical way to relieve clogging, particularly bioclogging. To reveal the alleviation mechanisms behind such a resting operation, evapotranspiration and oxygen flux were studied during a resting period in a laboratory vertical-flow constructed wetland model through physical simulation and numerical model analysis. In addition, the optimum theoretical resting duration was determined based on the time required for oxygen to completely fill the pores, i.e., formation of a sufficiently thick and completely dry layer. The results indicated that (1) evapotranspiration was not the key factor, but was a driving force in the alleviation of bioclogging; (2) the rate of oxygen diffusion into the pores was sufficient to oxidize and disperse the flocculant biofilm, which was essential to alleviate bioclogging. This study provides important insights into understanding how clogging/bioclogging can be alleviated in vertical-flow constructed wetlands. Graphical abstract Evapotranspiration versus oxygen intrusion in alleviating bioclogging in vertical flow constructed wetlands.
In-situ Measurement of Reversed Flow Event in the Cusp Ionosphere
NASA Astrophysics Data System (ADS)
Jin, Y.; Moen, J.; Miloch, W. J.; Spicher, A.; Clausen, L. B. N.
2017-12-01
The Reversed Flow Events (RFEs) are a new category of flow channel that frequently occur in the cusp ionosphere. The RFEs are 100-200 km wide and east-west elongated flow channels, in which plasma flow opposes to the background convection direction. The RFEs are thought to be an important source for the rapid development of the ionospheric irregularities. We present an overview of the ionospheric conditions during the launch of the Investigation of Cusp Irregularities 3 (ICI-3) sounding rockets. The ICI-3 was launched from Ny-Ålesund, Svalbard at 7:21.31 UT on December 3, 2011. The objective of the ICI-3 was to target a RFE. The IMF was characterized by strongly negative Bz and weakly negative By during the time period of interest. The EISCAT Svalbard Radar (ESR) 32m beam was operating in a fast azimuth sweep mode between 180° (south) and 300° (northwest) at an elevation angle of 30°. The ESR observed a series of RFEs as westward flow channels opposing to the eastward normal plasma flow in the prenoon sector. The ICI-3 was shot to cross the first observed RFE in the ESR field of view. The ICI-3 observed flow structures that were consistent with the ESR. Furthermore, the ICI-3 reveals fine-scale of the flow structures inside the RFE observed by the ESR. The high resolution electron density data show intense fluctuations at all scales throughout the RFE region. The GPS TEC and scintillation data inside the same RFE region are used to compare with the in-situ measurements.
Graham, Eric A; Andrade, Jose Luis
2004-05-01
Vertical stratification of epiphytes generally has not been reported for dry forests. For two epiphytic Crassulacean acid metabolism bromeliads that segregate vertically, it was hypothesized that different potentials for photoprotection or shade tolerance rather than drought tolerance is responsible for the observed stratification. The light environment, capacity for photoprotection, germination response to light quality, and responses to light and drought were thus examined for Tillandsia brachycaulos and T. elongata. Vertical and light-environment distributions differed for the two species but photoprotection and photodamage did not where they occurred at similar field locations; T. brachycaulos had a higher pigment acclimation to light. Tillandsia brachycaulos had higher acid accumulation under low light as opposed to T. elongata, which responded similarly to all but the highest light treatment. Tillandsia brachycaulos maintained positive total daily net CO(2) uptake through 30 d of drought; T. elongata had a total daily net CO(2) loss after 7 d of drought. The vertical stratification was most likely the result of the sensitivity to drought of T. elongata rather than differences in photoprotection or shade tolerance between the two species. Tillandsia elongata occurs in more exposed locations, which may be advantageous for rainfall interception and dew formation.
Ortega, Jason M.; Sabari, Kambiz
2006-03-07
An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.
WRF simulation of a severe hailstorm over Baramati: a study into the space-time evolution
NASA Astrophysics Data System (ADS)
Murthy, B. S.; Latha, R.; Madhuparna, H.
2018-04-01
Space-time evolution of a severe hailstorm occurred over the western India as revealed by WRF-ARW simulations are presented. We simulated a specific event centered over Baramati (18.15°N, 74.58°E, 537 m AMSL) on March 9, 2014. A physical mechanism, proposed as a conceptual model, signifies the role of multiple convective cells organizing through outflows leading to a cold frontal type flow, in the presence of a low over the northern Arabian Sea, propagates from NW to SE triggering deep convection and precipitation. A `U' shaped cold pool encircled by a converging boundary forms to the north of Baramati due to precipitation behind the moisture convergence line with strong updrafts ( 15 ms-1) leading to convective clouds extending up to 8 km in a narrow region of 30 km. The outflows from the convective clouds merge with the opposing southerly or southwesterly winds from the Arabian Sea and southerly or southeasterly winds from the Bay of Bengal resulting in moisture convergence (maximum 80 × 10-3 g kg-1 s-1). The vertical profile of the area-averaged moisture convergence over the cold pool shows strong convergence above 850 hPa and divergence near the surface indicating elevated convection. Radar reflectivity (50-60 dBZ) and vertical component of vorticity maximum ( 0.01-0.14 s-1) are observed along the convergence zone. Stratiform clouds ahead of the squall line and parallel wind flow at 850 hPa and nearly perpendicular flow at higher levels relative to squall line as evidenced by relatively low and wide-spread reflectivity suggests that organizational mode of squall line may be categorized as `Mixed Mode' type where northern part can be a parallel stratiform while the southern part resembles with a leading stratiform. Simulated rainfall (grid scale 27 km) leads the observed rainfall by 1 h while its magnitude is 2 times of the observed rainfall (grid scale 100 km) derived from Kalpana-1. Thus, this study indicates that under synoptically favorable conditions, WRF-ARW could simulate thunderstorm evolution reasonably well although there is some space-time error which might, perhaps, be the reason for lower CAPE (observed by upper air sounding) on the simulation day.
Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach
NASA Astrophysics Data System (ADS)
Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.
2017-08-01
Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a realistic coastal region.
Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry
NASA Astrophysics Data System (ADS)
Parsons, Daniel R.; Walker, Ian J.; Wiggs, Giles F. S.
2004-04-01
A Computational Fluid Dynamics (CFD) model (PHOENICS™ 3.5) previously validated for wind tunnel measurements is used to simulate the streamwise and vertical velocity flow fields over idealized transverse dunes of varying height ( h) and stoss slope basal length ( L). The model accurately reproduced patterns of: flow deceleration at the dune toe; stoss flow acceleration; vertical lift in the crest region; lee-side flow separation, re-attachment and reversal; and flow recovery distance. Results indicate that the flow field over transverse dunes is particularly sensitive to changes in dune height, with an increase in height resulting in flow deceleration at the toe, streamwise acceleration and vertical lift at the crest, and an increase in the extent of, and strength of reversed flows within, the lee-side separation cell. In general, the length of the separation zone varied from 3 to 15 h from the crest and increased over taller, steeper dunes. Similarly, the flow recovery distance ranged from 45 to >75 h and was more sensitive to changes in dune height. For the range of dune shapes investigated in this study, the differing effects of height and stoss slope length raise questions regarding the applicability of dune aspect ratio as a parameter for explaining airflow over transverse dunes. Evidence is also provided to support existing research on: streamline curvature and the maintenance of sand transport in the toe region; vertical lift in the crest region and its effect on grainfall delivery; relations between the turbulent shear layer and downward forcing of flow re-attachment; and extended flow recovery distances beyond the separation cell. Field validation is required to test these findings in natural settings. Future applications of the model will characterize turbulence and shear stress fields, examine the effects of more complex isolated dune forms and investigate flow over multiple dunes.
Transient well flow in layered aquifer systems: the uniform well-face drawdown solution
NASA Astrophysics Data System (ADS)
Hemker, C. J.
1999-11-01
Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.
NASA Astrophysics Data System (ADS)
Levchenya, A. M.; Smirnov, E. M.; Zhukovskaya, V. D.
2018-05-01
The present contribution covers RANS-based simulation of 3D flow near a cylinder introduced into turbulent vertical-plate free-convection boundary layer. Numerical solutions were obtained with a finite-volume Navier-Stokes code of second-order accuracy using refined grids. Peculiarities of the flow disturbed by the obstacle are analyzed. Cylinder-diameter effect on the horseshoe vortex size and its position is evaluated.
STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS
This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...
A Computer Program for Flow-Log Analysis of Single Holes (FLASH)
Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.
2011-01-01
A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.
Observations and a model of undertow over the inner continental shelf
Lentz, Steven J.; Fewings, Melanie; Howd, Peter; Fredericks, Janet; Hathaway, Kent
2008-01-01
Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth.During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.
Symmetry Analysis of Gauge-Invariant Field Equations via a Generalized Harrison-Estabrook Formalism.
NASA Astrophysics Data System (ADS)
Papachristou, Costas J.
The Harrison-Estabrook formalism for the study of invariance groups of partial differential equations is generalized and extended to equations that define, through their solutions, sections on vector bundles of various kinds. Applications include the Dirac, Yang-Mills, and self-dual Yang-Mills (SDYM) equations. The latter case exhibits interesting connections between the internal symmetries of SDYM and the existence of integrability characteristics such as a linear ("inverse scattering") system and Backlund transformations (BT's). By "verticalizing" the generators of coordinate point transformations of SDYM, nine nonlocal, generalized (as opposed to local, point) symmetries are constructed. The observation is made that the prolongations of these symmetries are parametric BT's for SDYM. It is thus concluded that the entire point group of SDYM contributes, upon verticalization, BT's to the system.
Flow behaviour and transitions in surfactant-laden gas-liquid vertical flows
NASA Astrophysics Data System (ADS)
Zadrazil, Ivan; Chakraborty, Sourojeet; Matar, Omar; Markides, Christos
2016-11-01
The aim of this work is to elucidate the effect of surfactant additives on vertical gas-liquid counter-current pipe flows. Two experimental campaigns were undertaken, one with water and one with a light oil (Exxsol D80) as the liquid phase; in both cases air was used as the gaseous phase. Suitable surfactants were added to the liquid phase up to the critical micelle concentration (CMC); measurements in the absence of additives were also taken, for benchmarking. The experiments were performed in a 32-mm bore and 5-m long vertical pipe, over a range of superficial velocities (liquid: 1 to 7 m/s, gas: 1 to 44 m/s). High-speed axial- and side-view imaging was performed at different lengths along the pipe, together with pressure drop measurements. Flow regime maps were then obtained describing the observed flow behaviour and related phenomena, i.e., downwards/upwards annular flow, flooding, bridging, gas/liquid entrainment, oscillatory film flow, standing waves, climbing films, churn flow and dryout. Comparisons of the air-water and oil-water results will be presented and discussed, along with the role of the surfactants in affecting overall and detailed flow behaviour and transitions; in particular, a possible mechanism underlying the phenomenon of flooding will be presented. EPSRC UK Programme Grant EP/K003976/1.
A Numerical Study of Non-hydrostatic Shallow Flows in Open Channels
NASA Astrophysics Data System (ADS)
Zerihun, Yebegaeshet T.
2017-06-01
The flow field of many practical open channel flow problems, e.g. flow over natural bed forms or hydraulic structures, is characterised by curved streamlines that result in a non-hydrostatic pressure distribution. The essential vertical details of such a flow field need to be accounted for, so as to be able to treat the complex transition between hydrostatic and non-hydrostatic flow regimes. Apparently, the shallow-water equations, which assume a mild longitudinal slope and negligible vertical acceleration, are inappropriate to analyse these types of problems. Besides, most of the current Boussinesq-type models do not consider the effects of turbulence. A novel approach, stemming from the vertical integration of the Reynolds-averaged Navier-Stokes equations, is applied herein to develop a non-hydrostatic model which includes terms accounting for the effective stresses arising from the turbulent characteristics of the flow. The feasibility of the proposed model is examined by simulating flow situations that involve non-hydrostatic pressure and/or nonuniform velocity distributions. The computational results for free-surface and bed pressure profiles exhibit good correlations with experimental data, demonstrating that the present model is capable of simulating the salient features of free-surface flows over sharply-curved overflow structures and rigid-bed dunes.
Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser
NASA Astrophysics Data System (ADS)
Havlík, Jan; Dlouhý, Tomáš
2018-06-01
This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.
Rotation of melting ice disks due to melt fluid flow.
Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B
2016-03-01
We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.
Flow regimes of adiabatic gas-liquid two-phase under rolling conditions
NASA Astrophysics Data System (ADS)
Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui
2013-07-01
Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.
An analysis of river bank slope and unsaturated flow effects on bank storage.
Doble, Rebecca; Brunner, Philip; McCallum, James; Cook, Peter G
2012-01-01
Recognizing the underlying mechanisms of bank storage and return flow is important for understanding streamflow hydrographs. Analytical models have been widely used to estimate the impacts of bank storage, but are often based on assumptions of conditions that are rarely found in the field, such as vertical river banks and saturated flow. Numerical simulations of bank storage and return flow in river-aquifer cross sections with vertical and sloping banks were undertaken using a fully-coupled, surface-subsurface flow model. Sloping river banks were found to increase the bank infiltration rates by 98% and storage volume by 40% for a bank slope of 3.4° from horizontal, and for a slope of 8.5°, delay bank return flow by more than four times compared with vertical river banks and saturated flow. The results suggested that conventional analytical approximations cannot adequately be used to quantify bank storage when bank slope is less than 60° from horizontal. Additionally, in the unconfined aquifers modeled, the analytical solutions did not accurately model bank storage and return flow even in rivers with vertical banks due to a violation of the dupuit assumption. Bank storage and return flow were also modeled for more realistic cross sections and river hydrograph from the Fitzroy River, Western Australia, to indicate the importance of accurately modeling sloping river banks at a field scale. Following a single wet season flood event of 12 m, results showed that it may take over 3.5 years for 50% of the bank storage volume to return to the river. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Effect of settling particles on the stability of a particle-laden flow in a vertical plane channel
NASA Astrophysics Data System (ADS)
Boronin, S. A.; Osiptsov, A. N.
2018-03-01
The stability of a viscous particle-laden flow in a vertical plane channel in the presence of the gravity force is studied. The flow is described using a two-fluid "dusty-gas" model with negligibly small volume fraction of fines and two-way coupling of the phases. Two different profiles of the particle number density in the main flow are considered: homogeneous and non-homogeneous in the form of two layers symmetric about the channel axis. The novel element of the linear-stability problem formulation is a particle velocity slip in the main flow caused by the gravity-induced settling of the dispersed phase. The eigenvalue problem for a linearized system of governing equations is solved using the orthonormalization and QZ algorithms. For a uniform particle number density distribution, it is found that there exists a domain in the plane of Froude and Stokes numbers, in which the two-phase flow in a vertical channel is stable for an arbitrary Reynolds number. This stability domain corresponds to relatively small-inertia particles and large velocity-slip in the main flow. In contrast to the flow with a uniform particle number density distribution, the stratified dusty-gas flow in a vertical channel is unstable over a wide range of governing parameters. The instability at small Reynolds numbers is determined by the gravitational mode characterized by small wavenumbers (long-wave instability), while at larger Reynolds numbers the instability is dominated by the shear mode with the time-amplification factor larger than that of the gravitational mode. The results of the study can be used for optimization of a large number of technological processes, including those in riser reactors, pneumatic conveying in pipeline systems, hydraulic fracturing, and well cementing.
NASA Technical Reports Server (NTRS)
Revelle, D. O.
1987-01-01
A mechanistic one dimensional numerical (iteration) model was developed which can be used to simulate specific types of mesoscale atmospheric density (and pressure) variability in the mesosphere and the thermosphere, namely those due to waves and those due to vertical flow accelerations. The model was developed with the idea that it could be used as a supplement to the TGCMs (thermospheric general circulation models) since such models have a very limited ability to model phenomena on small spatial scales. The simplest case to consider was the integration upward through a time averaged, height independent, horizontally divergent flow field. Vertical winds were initialized at the lower boundary using the Ekman pumping theory over flat terrain. The results of the computations are summarized.
Paillet, Frederick L.; Hess, A.E.; Cheng, C.H.; Hardin, E.
1987-01-01
The distribution of fracture permeability in granitic rocks was investigated by measuring the distribution of vertical flow in boreholes during periods of steady pumping. Pumping tests were conducted at two sites chosen to provide examples of moderately fractured rocks near Mirror Lake, New Hampshire and intensely fractured rocks near Oracle, Arizona. A sensitive heat-pulse flowmeter was used for accurate measurements of vertical flow as low as 0.2 liter per minute. Results indicate zones of fracture permeability in crystalline rocks are composed of irregular conduits that cannot be approximated by planar fractures of uniform aperture, and that the orientation of permeability zones may be unrelated to the orientation of individual fractures within those zones.-Authors
Elevator mode convection in flows with strong magnetic fields
NASA Astrophysics Data System (ADS)
Liu, Li; Zikanov, Oleg
2015-04-01
Instability modes in the form of axially uniform vertical jets, also called "elevator modes," are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.
Elevator mode convection in flows with strong magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Li; Zikanov, Oleg, E-mail: zikanov@umich.edu
2015-04-15
Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that anmore » analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.« less
Mini MAX-DOAS Measurements of Air Pollutants over China
NASA Astrophysics Data System (ADS)
Staadt, Steffen; Hao, Nan; Trautmann, Thomas
2016-08-01
This study continues the work of Clémer et al., (2010) and is aimed to improve trace gas retrievals with mini MAX-DOAS measurements in Nanjing. Based on that work, aerosol extinction vertical profiles are retrieved using the bePRO inversion algorithm developed by the Royal Belgian Institute for Space Aeronomy (BIRA- IASB). Afterwards, the tropospheric trace gas vertical profiles and vertical column densities (VCDs) are retrieved by applying the optimal estimation method to the O4 MAX-DOAS measurements. The Profiles for N O2 , S O2 , glyoxal, formaldehyde and nitrous acid are obtained with different results and different settings for the DOAS measurement. The AODs show small positive correlation against the AERONET values. For NO2, the retrieval shows reasonable concentrations in winter as opposed to summer and has small positive correlations with GOME-2 data. The SO2 VCDs are not correlated with the GOME-2 data, due to high uncertainties from MAX-DOAS and satellite retrievals, while the vertical mixing ratios (VMR) show good agreement with in-situ data (SORPES) at Nanjing. Nitrous acid shows a maximum in winter and a minimum in summer, while glyoxal has its maximum in August and September.
Combined Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow
NASA Astrophysics Data System (ADS)
Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg
2017-11-01
We report experimental studies on turbulent vertical convection flow in the liquid metal alloy gallium-indium-tin. Flow measurements were conducted by a combined use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry (UDV). It is known that the forced convection flow in a duct generates a force on the LLFV magnet system, that grows proportional to the flow velocity. We show that for the slower flow of natural convection LLFV retains this linear dependence in the range of micronewtons. Furthermore experimental results on the scaling of heat and momentum transport with the thermal driving are presented. The results cover a range of Rayleigh numbers 3 ×105 < Ra < 3 ×107 at a Prandtl number Pr 0.032 . The Nusselt number Nu is found to scale as Nu Ra0.31 . A Reynolds number Rez based on the vertical velocities close the heated and cooled side walls scales with Rez Ra0.45 . Additionally a Reynolds number based on the horizontal flow component is scaling as Rex Ra0.67 . These results agree well with numerical simulations and theoretical predictions. This work is funded by the Deutsche Forschungsgemeinschaft under Grant No. GRK 1567.
Stanton, Gregory P.; Thomas, Jonathan V.; Stoval, Jeffery
2009-01-01
Logs collected in monitoring well PTX06–1068 during ambient conditions indicate a static environment with no flow. During pumping there was upward vertical flow at rates ranging from 0.4 to 4.8 gallons per minute. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed. Estimated total transmissivity for four production zones identified from Flow–B numerical model results taken together was calculated to be about 200 feet squared per day.
NASA Technical Reports Server (NTRS)
Paegle, J.; Kalnay, E.; Baker, W. E.
1981-01-01
The global scale structure of atmospheric flow is best documented on time scales longer than a few days. Theoretical and observational studies of ultralong waves have emphasized forcing due to global scale variations of topography and surface heat flux, possibly interacting with baroclinically unstable or vertically refracting basic flows. Analyses of SOP-1 data in terms of global scale spherical harmonics is documented with emphasis upon weekly transitions.
Cyber Capability Development Centre (CCDC) Private Cloud Design
2014-11-01
68 8.4 Shared Services Canada (SSC) Controlled Firewall .......................................................... 69 9 Cloud...opposed to east-west traffic (VM to VM). With North-South traffic, Shared Services Canada will want to ensure that the lab environment is contained. One...way traffic flow into the lab should be acceptable, Shared Services Canada will need to ensure that traffic doesn’t flow north or out of the CCDC
Thermosolutal convection in high-aspect-ratio enclosures
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chen, C. T.
1988-01-01
Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.
NASA Technical Reports Server (NTRS)
Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.
2001-01-01
The elimination of convection is essential in experimental investigations of diffusive transport (of heat and matter) during solidification. One classical approach to damping convection in a conducting liquid is the application of a magnetic field. The damping phenomenon is the induction, by the motion of a conductor in a magnetic field, of currents which interact with the field to produce Lorentz forces that oppose the flow. However, there are many liquids which are not sufficiently conducting to exploit this phenomenon; examples include the transparent liquids (such as succinonitrile-acetone) that are used as "model alloys" in fundamental solidification studies. There have been several investigations of the solidification of these liquids that have been carried out in orbiting laboratories to eliminate natural convection. The paper describes an investigation of an alternative approach whereby a magnetic field gradient is applied to the liquid. A magnetic body force then arises which is dependent on the susceptibility of the liquid and thereby on the temperature and or concentration. With the field gradient aligned vertically and of correct magnitude, the variation of gravitational body force due to temperature/concentration dependent density can be counterbalanced by a variation in magnetic body force. Experiments have been carried out in a super-conducting magnet at Marshall Space Flight Center to measure velocities in an aqueous manganese chloride solution. The solution was contained in a chamber with temperature controlled end walls and glass side walls. Velocities were measured by particle image velocimetry. Starting from zero current in the magnet (zero field gradient) flow driven by the temperature difference between the end walls was measured. At a critical current the flow was halted. At higher currents the normal convection was reversed. The experiments included ones where the solution was solidified and were accompanied by solution of the flow/transport equations using the software package FLUENT.
NASA Technical Reports Server (NTRS)
Luneva, M. V.; Clayson, C. A.; Dubovikov, Mikhail
2015-01-01
In eddy resolving simulations, we test a mixed layer mesoscale parametrisation, developed recently by Canuto and Dubovikov [Ocean Model., 2011, 39, 200-207]. With no adjustable parameters, the parametrisation yields the horizontal and vertical mesoscale fluxes in terms of coarse-resolution fields and eddy kinetic energy (EKE). We compare terms of the parametrisation diagnosed from coarse-grained fields with the eddy mesoscale fluxes diagnosed directly from the high resolution model. An expression for the EKE in terms of mean fields has also been found to get a closed parametrisation in terms of the mean fields only. In 40 numerical experiments we simulated two types of flows: idealised flows driven by baroclinic instabilities only, and more realistic flows, driven by wind and surface fluxes as well as by inflow-outflow. The diagnosed quasi-instantaneous horizontal and vertical mesoscale buoyancy fluxes (averaged over 1-2 degrees and 10 days) demonstrate a strong scatter typical for turbulent flows, however, the fluxes are positively correlated with the parametrisation with higher (0.5-0.74) correlations at the experiments with larger baroclinic radius Rossby. After being averaged over 3-4 months, diffusivities diagnosed from the eddy resolving simulations are consistent with the parametrisation for a broad range of parameters. Diagnosed vertical mesoscale fluxes restratify mixed layer and are in a good agreement with the parametrisation unless vertical turbulent mixing in the upper layer becomes strong enough in comparison with mesoscale advection. In the latter case, numerical simulations demonstrate that the deviation of the fluxes from the parametrisation is controlled by dimensionless parameter estimating the ratio of vertical turbulent mixing term to mesoscale advection. An analysis using a modified omega-equation reveals that the effects of the vertical mixing of vorticity is responsible for the two-three fold amplification of vertical mesoscale flux. Possible physical mechanisms, responsible for the amplification of vertical mesoscale flux are discussed.
Method for noninvasive determination of acoustic properties of fluids inside pipes
None
2016-08-02
A method for determining the composition of fluids flowing through pipes from noninvasive measurements of acoustic properties of the fluid is described. The method includes exciting a first transducer located on the external surface of the pipe through which the fluid under investigation is flowing, to generate an ultrasound chirp signal, as opposed to conventional pulses. The chirp signal is received by a second transducer disposed on the external surface of the pipe opposing the location of the first transducer, from which the transit time through the fluid is determined and the sound speed of the ultrasound in the fluid is calculated. The composition of a fluid is calculated from the sound speed therein. The fluid density may also be derived from measurements of sound attenuation. Several signal processing approaches are described for extracting the transit time information from the data with the effects of the pipe wall having been subtracted.
Book, J.W.; Signell, R.P.; Perkins, H.
2007-01-01
Fifteen bottom-mounted Acoustic Doppler Current Profilers were deployed from October 2002 through April 2003 in the northern Adriatic Sea. Average transport from the portion of the Western Adriatic Current (WAC) along the Italian slope was 0.1470 ?? 0.0043 Sv, punctuated by bursts of more than twice that amount during storm events. Monthly means were calculated with times of strong wind-driven circulation excluded. These suggest a 2002/2003 seasonal separation consisting of October, December through February, and March through April. An extreme Po River flood influenced November conditions making seasonal categorization difficult. October generally had more kinetic energy and more vertical structure than other months, and near-inertial waves were more frequent in April and October. The Eastern Adriatic Current (EAC)/WAC (i.e. inflow/outflow) system was clearly present in the means for all months. The cyclonic gyre north of the Po River was present October through February. Generally, in the WAC, over 50% of kinetic energy came from vertically uniform monthly mean flows. Elsewhere, eddy kinetic energy was stronger than mean kinetic energy with 10-40% contributions for vertically uniform monthly mean flows, 40-60% for vertically uniform monthly varying flows, and 10-30% for vertically varying monthly varying flows. Mean currents for bora storms indicate enhancement of the EAC/WAC and the cyclonic northern gyre, a shift toward Kvarner Bay in EAC direction, a circulation null point south of the Po, and double-gyre bifurcation of flow at Istria. Strengthening of both the EAC and WAC also occurs during sirocco storms. Copyright 2007 by the American Geophysical Union.
Centrifugal and Coriolis Effects on Thermal Convection in a Rotating Vertical Cylinder
NASA Astrophysics Data System (ADS)
Lee, Hanjie; Pearlstein, Arne J.
1997-11-01
For a rotating vertical circular cylinder, we compute steady axisymmetric flows driven by heating from below, accounting for both centrifugal and Coriolis effects. We discuss the dependence of the flow and heat transfer on Rayleigh number and Ekman number for selected values of the Prandtl number and aspect ratio. For the case where the sidewall temperature varies linearly, the computed solutions include single- and multi-cell flows. We pay particular attention to deviations from rigid-body rotation, with emphasis on topological division of the flow by surfaces on which the azimuthal velocity is equal to the product of the angular velocity and the radius, or by surfaces on which the meridional flow vanishes.
On the Motion of an Annular Film in Microgravity Gas-Liquid Flow
NASA Technical Reports Server (NTRS)
McQuillen, John B.
2002-01-01
Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.
Ying Ouyang; Lihua Cui; Gary Feng; John Read
2015-01-01
Vertical flow constructed wetland (VFCW) is a promising technique for removal of excess nutrients and certain pollutants from wastewaters. The aim of this study was to develop a STELLA (structural thinking, experiential learning laboratory with animation) model for estimating phosphorus (P) removal in an artificial VFCW (i.e., a substrate column with six zones) grown...
NASA Astrophysics Data System (ADS)
Astuti, A. D.; Lindu, M.; Yanidar, R.; Faruq, M.
2018-01-01
As environmental regulation has become stricter in recent years, there is an increasing concern about the issue of wastewater treatment in urban areas. Senior High School as center of student activity has a potential source to generated domestic wastewater from toilet, bathroom and canteen. Canteen wastewater contains high-organic content that to be treated before discharged. Based on previous research the subsurface constructed wetland-multilayer filtration with vertical flow is an attractive alternative to provide efficient treatment of canteen wastewater. The effluent concentration complied with regulation according to [9]. Due to limited land, addition of preliminary treatment such as the presence of biofilter was found to improve the performance. The aim of this study was to design combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using vetiveria zizanioides (akar wangi) treating canteen wastewater. Vetiveria zizanioides (akar wangi) is used because from previous research, subsurface constructed wetland-multilayer filtration (SCW-MLF) with vertical flow type using vetiveria zizanioides (akar wangi) can be an alternative canteen wastewater treatment that is uncomplicated in technology, low cost in operational and have a beautiful landscape view, besides no odors or insects were presented during the operation.
A boussinesq model of natural convection in the human eye and the formation of Krukenberg's spindle.
Heys, Jeffrey J; Barocas, Victor H
2002-03-01
The cornea of the human eye is cooled by the surrounding air and by evaporation of the tear film. The temperature difference between the cornea and the iris (at core body temperature) causes circulation of the aqueous humor in the anterior chamber of the eye. Others have suggested that the circulation pattern governs the shape of the Krukenberg spindle, a distinctive vertical band of pigment on the posterior cornea surface in some pathologies. We modeled aqueous humor flow the human eye, treating the humor as a Boussinesq fluid and setting the corneal temperature based on infrared surface temperature measurements. The model predicts convection currents in the anterior chamber with velocities comparable to those resulting from forced flow through the gap between the iris and lens. When paths of pigment particles are calculated based on the predicted flow field, the particles circulate throughout the anterior chamber but tend to be near the vertical centerline of the eye for a greatest period of time. Further, the particles are usually in close proximity to the cornea only when they are near the vertical centerline. We conclude that the convective flow pattern of aqueous humor is consistent with a vertical pigment spindle.
An efficient, self-orienting, vertical-array, sand trap
NASA Astrophysics Data System (ADS)
Hilton, Michael; Nickling, Bill; Wakes, Sarah; Sherman, Douglas; Konlechner, Teresa; Jermy, Mark; Geoghegan, Patrick
2017-04-01
There remains a need for an efficient, low-cost, portable, passive sand trap, which can provide estimates of vertical sand flux over topography and within vegetation and which self-orients into the wind. We present a design for a stacked vertical trap that has been modelled (computational fluid dynamics, CFD) and evaluated in the field and in the wind tunnel. The 'swinging' trap orients to within 10° of the flow in the wind tunnel at 8 m s-1, and more rapidly in the field, where natural variability in wind direction accelerates orientation. The CFD analysis indicates flow is steered into the trap during incident wind flow. The trap has a low profile and there is only a small decrease in mass flow rate for multiple traps, poles and rows of poles. The efficiency of the trap was evaluated against an isokinetic sampler and found to be greater than 95%. The centre pole is a key element of the design, minimally decreasing trap efficiency. Finally, field comparisons with the trap of Sherman et al. (2014) yielded comparable estimates of vertical sand flux. The trap described in this paper provides accurate estimates of sand transport in a wide range of field conditions.
Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia
2014-09-01
A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.
NASA Astrophysics Data System (ADS)
Huang, Lihao; Li, Gang; Tao, Leren
2016-07-01
Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.
Grubbs, J.W.; Pittman, J.R.
1997-01-01
Water flow and quality data were collected from December 1994 to September 1995 to evaluate variations in discharge, water quality, and chemical fluxes (loads) through Perdido Bay, Florida. Data were collected at a cross section parallel to the U.S. Highway 98 bridge. Discharges measured with an acoustic Doppler current profiler (ADCP) and computed from stage-area and velocity ratings varied roughly between + or - 10,000 cubic feet per second during a typical tidal cycle. Large reversals in flow direction occurred rapidly (less than 1 hour), and complete reversals (resulting in near peak net-upstream or downstream discharges) occurred within a few hours of slack water. Observations of simultaneous upstream and downstream flow (bidirectional flow) were quite common in the ADCP measurements, with opposing directions of flow occurring predominantly in vertical layers. Continuous (every 15 minutes) discharge data were computed for the period from August 18, 1995, to September 28, 1995, and filtered daily mean discharge values were computed for the period from August 19 to September 26, 1995. Data were not computed prior to August 18, 1995, either because of missing data or because the velocity rating was poorly defined (because of insufficient data) for the period prior to landfall of hurricane Erin (August 3, 1995). The results of the study indicate that acoustical techniques can yield useful estimates of continuous (instantaneous) discharge in Perdido Bay. Useful estimates of average daily net flow rates can also be obtained, but the accuracy of these estimates will be limited by small rating shifts that introduce bias into the instantaneous values that are used to compute the net flows. Instantaneous loads of total nitrogen ranged from -180 to 220 grams per second for the samples collected during the study, and instantaneous loads of total phosphorous ranged from -10 to 11 grams per second (negative loads indicate net upstream transport). The chloride concentrations from the water samples collected from Perdido Bay indicated a significant amount of mixing of saltwater and freshwater. Mixing effects could greatly reduce the accuracy of estimates of net loads of nutrients or other substances. The study results indicate that acoustical techniques can yield acceptable estimates of instantaneous loads in Perdido Bay. However, estimates of net loads should be interpreted with great caution and may have unacceptably large errors, especially when saltwater and freshwater concentrations differ greatly.
Natural ventilation of buildings: opposing wind and buoyancy
NASA Astrophysics Data System (ADS)
Linden, Paul; Hunt, Gary
1998-11-01
The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.
The effect of vocal fold vertical stiffness gradient on sound production
NASA Astrophysics Data System (ADS)
Geng, Biao; Xue, Qian; Zheng, Xudong
2015-11-01
It is observed in some experimental studies on canine vocal folds (VFs) that the inferior aspect of the vocal fold (VF) is much stiffer than the superior aspect under relatively large strain. Such vertical difference is supposed to promote the convergent-divergent shape during VF vibration and consequently facilitate the production of sound. In this study, we investigate the effect of vertical variation of VF stiffness on sound production using a numerical model. The vertical variation of stiffness is produced by linearly increasing the Young's modulus and shear modulus from the superior to inferior aspects in the cover layer, and its effect on phonation is examined in terms of aerodynamic and acoustic quantities such as flow rate, open quotient, skewness of flow wave form, sound intensity and vocal efficiency. The flow-induced vibration of the VF is solved with a finite element solver coupled with 1D Bernoulli equation, which is further coupled with a digital waveguide model. This study is designed to find out whether it's beneficial to artificially induce the vertical stiffness gradient by certain implanting material in VF restoring surgery, and if it is beneficial, what gradient is the most favorable.
NASA Technical Reports Server (NTRS)
Wu, Jian; Blanc, Michel; Alcayde, Denis; Barakat, Abdullah R.; Fontanari, Jean; Blelly, Pierre-Louis; Kofman, Wlodek
1992-01-01
EISCAT VHF radar was used to investigate the vertical flows of H(+) and O(+) ions in the topside high-latitude ionosphere. The radar transmitted a single long pulse to probe the ionosphere from 300 to 1200 km altitude. A calculation scheme is developed to deduce the H(+) drift velocity from the coupled momentum equations of H(+), O(+), and the electrons, using the radar data and a neutral atmosphere model. The H(+) vertical drift velocity was expressed as a linear combination of the different forces acting on the plasma. Two nights, one very quiet, one with moderate magnetic activity, were used to test the technique and to provide a first study of the morphology and orders of magnitudes of ion outflow fluxes over Tromso. O(+) vertical flows were found to be downward or close to zero most of the time in the topside ionosphere; they appeared to be strongly correlated with magnetic activity during the disturbed night. H(+) topside ion fluxes were always directed upward, with velocity reaching 500-1000 m/s. A permanent outflow of H(+) ions is inferred.
Interface instabilities during displacements of two miscible fluids in a vertical pipe
NASA Astrophysics Data System (ADS)
Scoffoni, J.; Lajeunesse, E.; Homsy, G. M.
2001-03-01
We study experimentally the downward vertical displacement of one miscible fluid by another in a vertical pipe at sufficiently high velocities for diffusive effects to be negligible. For certain viscosity ratios and flow rates, the interface between the two fluids can destabilize. We determine the dimensionless flow rate Uc above which the instability is triggered and its dependence on the viscous ratio M, resulting in a stability map Uc=Uc(M). Two different instability modes have been observed: an asymmetric "corkscrew" mode and an axisymmetric one. We remark that the latter is always eventually disturbed by "corkscrew" type instabilities. We speculate that these instabilities are driven by the viscosity stratification and are analogous to those already observed in core annular flows of immiscible fluids.
Rotzoll, Kolja
2012-01-01
The Pearl Harbor aquifer in southern O‘ahu is one of the most important sources of freshwater in Hawai‘i. A thick freshwater lens overlays brackish and saltwater in this coastal aquifer. Salinity profiles collected from uncased deep monitor wells (DMWs) commonly are used to monitor freshwater-lens thickness. However, vertical flow in DMWs can cause the measured salinity to differ from salinity in the adjacent aquifer or in an aquifer without a DWM. Substantial borehole flow and displacement of salinity in DMWs over several hundred feet have been observed in the Pearl Harbor aquifer. The objective of this study was to evaluate the effects of borehole flow on measured salinity profiles from DMWs. A numerical modeling approach incorporated aquifer hydraulic characteristics and recharge and withdrawal rates representative of the Pearl Harbor aquifer. Borehole flow caused by vertical hydraulic gradients associated with both the natural regional flow system and groundwater withdrawals was simulated. Model results indicate that, with all other factors being equal, greater withdrawal rates, closer withdrawal locations, or higher hydraulic conductivities of the well cause greater borehole flow and displacement of salinity in the well. Borehole flow caused by the natural groundwater-flow system is five orders of magnitude greater than vertical flow in a homogeneous aquifer, and borehole-flow directions are consistent with the regional flow system: downward flow in inland recharge areas and upward flow in coastal discharge areas. Displacement of salinity inside the DMWs associated with the regional groundwater-flow system ranges from less than 1 to 220 ft, depending on the location and assumed hydraulic conductivity of the well. For example, upward displacements of the 2 percent and 50 percent salinity depths in a well in the coastal discharge part of the flow system are 17 and 4.4 ft, respectively, and the average salinity difference between aquifer and borehole is 0.65 percent seawater salinity. Groundwater withdrawals and drawdowns generally occur at shallow depths in the freshwater system with respect to the depth of the DMW and cause upward flow in the DMW. Simulated groundwater withdrawal of 4.3 million gallons per day that is 100 ft from a DMW causes thirty times more borehole flow than borehole flow that is induced by the regional flow field alone. The displacement of the 2 percent borehole salinity depth increases from 17 to 33 ft, and the average salinity difference between aquifer and borehole is 0.85 percent seawater salinity. Peak borehole flow caused by local groundwater withdrawal near DMWs is directly proportional to the pumping rate in the nearby production well. Increasing groundwater withdrawal to 16.7 million gallons per day increases upward displacement of the 50 percent salinity depth (midpoint of the transition zone) from 4.6 to 77 ft, and the average salinity difference between aquifer and borehole is 1.4 percent seawater salinity. Simulated groundwater withdrawal that is 3,000 ft away from DMWs causes less borehole flow and salinity displacements than nearby withdrawal. Simulated effects of groundwater withdrawal from a horizontal shaft and withdrawal from a vertical well in a homogeneous aquifer were similar. Generally, the 50 percent salinity depths are less affected by borehole flow than the 2 percent salinity depths. Hence, measured salinity profiles are useful for calibration of regional numerical models despite borehole-flow effects. Commonly, a 1 percent error in salinity is acceptable in numerical modeling studies. Incorporation of heterogeneity in the model is necessary to simulate long vertical steps observed in salinity profiles in southern O‘ahu. A thick zone of low aquifer hydraulic conductivity limits exchange of water between aquifer and well and creates a long vertical step in the salinity profile. A heterogeneous basalt-aquifer scenario simulates observed vertical salinity steps and borehole flow that is consistent with measured borehole flow from DMWs in southern O‘ahu. However, inclusion of local-scale heterogeneities in regional models generally is not warranted.
Quasi-biennial oscillations of ozone and diabatic circulation in the equatorial stratosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasebe, F.
1994-03-01
The quasi-biennial oscillation (QBO) in ozone in the equatorial stratosphere is obtained by analyzing the Stratospheric Aerosol and Gas Experiment (SAGE) data from 1984 to 1989. The phase of the ozone QBO in the lower stratosphere is found to precede the zonal wind QBO by several months as opposed to the theoretically expected in-phase relationship between the two. A mechanistic model is developed; to explore possible reasons for this disagreement. The model is capable of simulating the actual time evolution of the ozone QBO by introducing the observed zonal wind profile as input. The modeled results confirm the conventional viewmore » that the ozone QBO is generated by the vertical ozone advection that is driven to maintain the temperature structure against radiative damping. However, a series of experiments emphasizes the importance of the feedback of the ozone QBO to the diabatic heating through the absorption of solar radiation. Due to this effect, the phase of the ozone QBO shifts up to a quarter cycle ahead and approaches that of the temperature QBO. Because of this in-phase relationship, the feedback of the ozone QBO to the diabatic heating acts to compensate for the radiative damping of the temperature structure, thus reducing the magnitude of the induced diabatic circulation. Because the reduction of the magnitude of the vertical motion facilitates downward transport of easterly momentum by the mean flow, this feedback process can help to resolve the insufficiency of the easterly momentum in driving the dynamical QBO in GCMs. It should be emphasized that more sophisticated models that allow for full interaction between the chemical species and radiative and dynamical processes should be developed to improve the understanding of both dynamical and ozone QBOs. 48 refs., 13 figs., 2 tabs.« less
Quasi-biennial oscillations of ozone and diabatic circulation in the equatorial stratosphere
NASA Technical Reports Server (NTRS)
Hasebe, Fumio
1994-01-01
The quasi-biennial oscillation (QBO) in ozone in the equatorial stratosphere is obtained by analyzing the Stratospheric Aerosol and Gas Experiment (SAGE) data from 1984 to 1989. The phase of the ozone QBO in the lower stratosphere is found to precede the zonal wind QBO by several months as opposed to the theoretically expected in-phase relationship between the two. A mechanistic model is developed to explore possible reasons for this disagreement. The model is capable of simulating the actual time evolution of the ozone QBO by introducing the observed zonal wind profile as input. The modeled results confirm the conventional view that the ozone QBO is generated by the vertical ozone advection that is driven to maintain the temperature structure against radiative damping. However, a series of experiments emphasizes the importance of the feedback of the ozone QBO to the diabatic heating through the absorption of solar radiation. Due to this effect, the phase of the ozone QBO shifts up to a quarter cycle ahead and approaches that of the temperature QBO. Because of this inphase relationship, the feedback of the ozone QBO to the diabatic heating acts to compensate for the radiative damping of the temperature structure, thus reducing the magnitude of the induced diabatic circulation. Because the reduction of the magnitude of the vertical motion facilitates downward transport of easterly momentum by the mean flow, this feedback process can help to resolve the insufficiency of the easterly momentum in driving the dynamical QBO in general circulation models (GCMs). It should be emphasized that more sophisticated models that allow for full interaction between the chemical species and radiative and dynamical processes should be developed to improve our understanding of both dynamical and ozone QBOs.
Forward-facing cavity and opposing jet combined thermal protection system
NASA Astrophysics Data System (ADS)
Lu, H. B.; Liu, W. Q.
2012-12-01
This paper focuses on the design of a forward-facing cavity and opposing jet combined configuration for thermal protection system (TPS) of hypersonic vehicles. The cooling efficiency of the combined TPS was investigated numerically, and the numerical method was validated by the related experiment in the open literature. The flow field parameters, aerodynamic force, and surface heat flux distribution were obtained. The detailed numerical results show that this kind of combined TPS has an excellent impact on cooling the nose-tip, and it is suitable for the thermal protection of hypersonic vehicles which require long-range and time to cruise.
NASA Technical Reports Server (NTRS)
Notardonato, J. J.; Burkhardt, L. A.; Cochran, T. H.
1974-01-01
Experiments were conducted in which the burning of cylindrical materials in a flowing oxidant stream was studied. Plexiglas, Nylon, and Teflon fuel specimens were oriented such that the flames spread along the surface in a direction opposed to flowing gas. Correlations of flame spread rate were obtained that were power law relations in terms of pressure, oxygen concentration, and gas velocity.
Crash reduction following installation of centerline rumble strips on rural two-lane roads.
Persaud, Bhagwant N; Retting, Richard A; Lyon, Craig A
2004-11-01
Rural two-lane roads generally lack physical measures such as wide medians or barriers to separate opposing traffic flows. As a result, a major crash problem on these roads involves vehicles crossing the centerline and either sideswiping or striking the front ends of opposing vehicles. These types of opposing-direction crashes account for about 20% all fatal crashes on rural two-lane roads and result in about 4,500 fatalities annually in the US. The present study evaluated a potential engineering countermeasure for such crashes-installation of rumble strips along the centerlines of undivided rural two-lane roads to alert distracted, fatigued, or speeding motorists whose vehicles are about to cross the centerlines and encroach into opposing traffic lanes. Data were analyzed for approximately 210 miles of treated roads in seven states before and after installation of centerline rumble strips. An empirical Bayes before-after procedure was employed to properly account for regression to the mean while normalizing for differences in traffic volume and other factors between the before and after periods. Overall results indicated significant reductions for all injury crashes combined (14%, 95% confidence interval (95% CI) = 5-23%) as well as for frontal and opposing-direction sideswipe injury crashes (25%, 95% CI = 6-44%)--the primary target of centerline rumble strips. In light of their effectiveness and relatively low installation costs, consideration should be given to installing centerline rumble strips more widely on rural two-lane roads to reduce the risk of frontal and opposing-direction sideswipe crashes.
NASA Technical Reports Server (NTRS)
Cornish, C. R.
1988-01-01
The first clear-air observations of vertical velocities in the tropical upper troposphere and lower stratosphere (8-22 km) using the Arecibo 430-MHz radar are presented. Oscillations in the vertical velocity near the Brunt-Vaisala period are observed in the lower stratosphere during the 12-hour observation period. Frequency power spectra from the vertical velocity time series show a slope between -0.5 and -1.0. Vertical wave number spectra computed from the height profiles of vertical velocities have slopes between -1.0 and -1.5. These observed slopes do not agree well with the slopes of +1/3 and -2.5 for frequency and vertical wave number spectra, respectively, predicted by a universal gravity-wave spectrum model. The spectral power of wave number spectra of a radial beam directed 15 deg off-zenith is enhanced by an order of magnitude over the spectral power levels of the vertical beam. This enhancement suggests that other geophysical processes besides gravity waves are present in the horizontal flow. The steepening of the wave number spectrum of the off-vertical beam in the lower stratosphere to near -2.0 is attributed to a quasi-inertial period wave, which was present in the horizontal flow during the observation period.
PHYSICAL MODELING OF CONTRACTED FLOW.
Lee, Jonathan K.
1987-01-01
Experiments on steady flow over uniform grass roughness through centered single-opening contractions were conducted in the Flood Plain Simulation Facility at the U. S. Geological Survey's Gulf Coast Hydroscience Center near Bay St. Louis, Miss. The experimental series was designed to provide data for calibrating and verifying two-dimensional, vertically averaged surface-water flow models used to simulate flow through openings in highway embankments across inundated flood plains. Water-surface elevations, point velocities, and vertical velocity profiles were obtained at selected locations for design discharges ranging from 50 to 210 cfs. Examples of observed water-surface elevations and velocity magnitudes at basin cross-sections are presented.
Flow effects in a vertical CVD reactor
NASA Technical Reports Server (NTRS)
Young, G. W.; Hariharan, S. I.; Carnahan, R.
1992-01-01
A model is presented to simulate the non-Boussinesq flow in a vertical, two-dimensional, chemical vapor deposition reactor under atmospheric pressure. Temperature-dependent conductivity, mass diffusivity, viscosity models, and reactive species mass transfer to the substrate are incorporated. In the limits of small Mach number and small aspect ratio, asymptotic expressions for the flow, temperature, and species fields are developed. Soret diffusion effects are also investigated. Analytical solutions predict an inverse relationship between temperature field and concentration field due to Soret effects. This finding is consistent with numerical simulations, assisting in the understanding of the complex interactions amongst the flow, thermal, and species fields in a chemically reacting system.
Viscous dissipation impact on MHD free convection radiating fluid flow past a vertical porous plate
NASA Astrophysics Data System (ADS)
Raju, R. Srinivasa; Reddy, G. Jithender; Kumar, M. Anil
2018-05-01
An attempt has been made to study the radiation effects on unsteady MHD free convective flow of an incompressible fluid past an infinite vertical porous plate in the presence of viscous dissipation. The governing partial differential equations are solved numerically by using Galerkin finite element method. Computations were performed for a wide range of governing flow parameters viz., Magnetic Parameter, Schmidt number, Thermal radiation, Prandtl number, Eckert number and Permeability parameter. The effects of these flow parameters on velocity, temperature are shown graphically. In addition the local values of the Skin friction coefficient are shown in tabular form.
Dependence of energy characteristics of ascending swirling air flow on velocity of vertical blowing
NASA Astrophysics Data System (ADS)
Volkov, R. E.; Obukhov, A. G.; Kutrunov, V. N.
2018-05-01
In the model of a compressible continuous medium, for the complete Navier-Stokes system of equations, an initial boundary problem is proposed that corresponds to the conducted and planned experiments and describes complex three-dimensional flows of a viscous compressible heat-conducting gas in ascending swirling flows that are initiated by a vertical cold blowing. Using parallelization methods, three-dimensional nonstationary flows of a polytropic viscous compressible heat-conducting gas are constructed numerically in different scaled ascending swirling flows under the condition when gravity and Coriolis forces act. With the help of explicit difference schemes and the proposed initial boundary conditions, approximate solutions of the complete system of Navier-Stokes equations are constructed as well as the velocity and energy characteristics of three-dimensional nonstationary gas flows in ascending swirling flows are determined.
NASA Astrophysics Data System (ADS)
Zhao, An; Jin, Ning-de; Ren, Ying-yu; Zhu, Lei; Yang, Xia
2016-01-01
In this article we apply an approach to identify the oil-gas-water three-phase flow patterns in vertical upwards 20 mm inner-diameter pipe based on the conductance fluctuating signals. We use the approach to analyse the signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and extracting their scaling properties. We find that the magnitude series relates to nonlinear properties of the original time series, whereas the sign series relates to the linear properties. The research shows that the oil-gas-water three-phase flows (slug flow, churn flow, bubble flow) can be classified by a combination of scaling exponents of magnitude and sign series. This study provides a new way of characterising linear and nonlinear properties embedded in oil-gas-water three-phase flows.
NASA Astrophysics Data System (ADS)
JøRgensen, Peter R.; Hoffmann, Martin; Kistrup, Jens P.; Bryde, Claus; Bossi, Rossana; Villholth, Karen G.
2002-11-01
This study investigates vertical flow and pesticide transport along fractures in water saturated unoxidized clayey till. From two experimental fields, each 40 m2, 96% and 98%, respectively, of total vertical flow was conducted along fractures in the till, while the remaining 2-4% of flow occurred in the clay matrix at very slow flow rate. An applied dye tracer was observed only along 10-26% of the total fracture length measured on the horizontal surface of the experimental fields. In vertical sections the dyed fracture portions constituted root channels, which penetrated the till vertically along the fractures into the local aquifer at 5 m depth. No dye tracer was observed in the fractures without root channels or in the unfractured clay matrix, suggesting that root growth along the fracture surfaces was the principal agent of fracture aperture enhancement. Using hydraulic fracture aperture values determined from large undisturbed column (LUC) collected from one of the experimental fields, it was estimated that 94% of flow in the fractures was conducted along the fracture root channels, while only 6% of flow was conducted along the fracture sections without root channels. For natural vertical hydraulic gradients (0.8-2.3 at the site), flow rates of 0.8-2 km/d were determined for a fracture root channel, while fracture sections without root channels revealed flow rates of 9-22 m/d. Corresponding flow rates in the unfractured matrix were 7-19 mm/yr. For infiltrated bromide (nonreactive tracer) and mobile pesticides mecoprop (MCPP) and metsulfuron, very rapid migration (0.28-0.5 m/d) and high relative breakthrough concentrations (30-60%) into the aquifer were observed to occur along the fracture root channels using a constant hydraulic gradient of 1. Only traces were measured from infiltration of the strongly sorbed pesticide prochloraz. The concentrations of the bromide and pesticides in the monitoring wells were modeled with a discrete fracture matrix diffusion (DFDM) model coupled with a single porosity model (SP) for the till and aquifer, respectively. Using effective fracture spacings and mean fracture apertures for the fracture channel sections as modeling input parameters for the till, the concentrations observed in the wells of the aquifer could be reasonably approximated.
Velocity of mist droplets and suspending gas imaged separately
NASA Astrophysics Data System (ADS)
Kuethe, Dean O.; McBride, Amber; Altobelli, Stephen A.
2012-03-01
Nuclear Magnetic Resonance Images (MRIs) of the velocity of water droplets and velocity of the suspending gas, hexafluoroethane, are presented for a vertical and horizontal mist pipe flow. In the vertical flow, the upward velocity of the droplets is clearly slower than the upward velocity of the gas. The average droplet size calculated from the average falling velocity in the upward flow is larger than the average droplet size of mist drawn from the top of the pipe measured with a multi-stage aerosol impactor. Vertical flow concentrates larger particles because they have a longer transit time through the pipe. In the horizontal flow there is a gravity-driven circulation with high-velocity mist in the lower portion of the pipe and low-velocity gas in the upper portion. MRI has the advantages that it can image both phases and that it is unperturbed by optical opacity. A drawback is that the droplet phase of mist is difficult to image because of low average spin density and because the signal from water coalesced on the pipe walls is high. To our knowledge these are the first NMR images of mist.
Measuring mixing efficiency in experiments of strongly stratified turbulence
NASA Astrophysics Data System (ADS)
Augier, P.; Campagne, A.; Valran, T.; Calpe Linares, M.; Mohanan, A. V.; Micard, D.; Viboud, S.; Segalini, A.; Mordant, N.; Sommeria, J.; Lindborg, E.
2017-12-01
Oceanic and atmospheric models need better parameterization of the mixing efficiency. Therefore, we need to measure this quantity for flows representative of geophysical flows, both in terms of types of flows (with vortices and/or waves) and of dynamical regimes. In order to reach sufficiently large Reynolds number for strongly stratified flows, experiments for which salt is used to produce the stratification have to be carried out in a large rotating platform of at least 10-meter diameter.We present new experiments done in summer 2017 to study experimentally strongly stratified turbulence and mixing efficiency in the Coriolis platform. The flow is forced by a slow periodic movement of an array of large vertical or horizontal cylinders. The velocity field is measured by 3D-2C scanned horizontal particles image velocimetry (PIV) and 2D vertical PIV. Six density-temperature probes are used to measure vertical and horizontal profiles and signals at fixed positions.We will show how we rely heavily on open-science methods for this study. Our new results on the mixing efficiency will be presented and discussed in terms of mixing parameterization.
NASA Astrophysics Data System (ADS)
Gutierrez, B. T.; Voulgaris, G.; Work, P. A.; Seim, H.; Warner, J. C.
2004-12-01
Cross-shelf variations of near-bed currents and variations in vertical flow were investigated on the inner shelf of Long Bay, South Carolina during the spring and fall of 2001. Current meters sampled near-bed currents at six locations as well as vertical current profiles at three of the sites. The observations showed that the tides accounted for approximately 45-66% of the flow variability. The dominant tidal component, the semi-diurnal constituent M2, exhibited tidal ellipse orientations that are increasingly aligned with the coast closer to the shore. The largest M2 current magnitudes were identified closest to shore and over the top of a sand shoal located 5.5 km offshore of Myrtle Beach. The remaining flow variability was associated with sub-tidal flows which respond to the passage of low-pressure systems across the region. These weather systems were characterized by periods of southwesterly winds in advance of low-pressure centers followed by northeasterly winds as the systems passed over the study area. When strong southwesterly winds persisted, surface flow was oriented approximately in the direction of the wind. At the same time near-bottom flows were also directed to the northeast in the direction of the wind except during periods of stratification when vertical current profiles suggest near-bed onshore flow. The stratified flows were observed mainly during the spring deployment. For periods of strong northeasterly winds, currents were directed alongshore to the southwest and exhibited little variation throughout the water column. These observations are consistent with recent field and modeling studies for the inner-shelf. Comparison of the near-bed flow measurements during the fall deployment revealed a cross-shore gradient in alongshore flow during periods of strong northeasterly winds. During these episodes flows at the offshore measurement stations were oriented in the direction of the wind, while flows closest to shore occurred in the opposite direction. These observations reveal 1) conditions which contribute to cross-shore transport and 2) the presence of an alongshore flow gradient which may affect sediment transport patterns during certain meteorological conditions.
Effect of TurboSwirl Structure on an Uphill Teeming Ingot Casting Process
NASA Astrophysics Data System (ADS)
Bai, Haitong; Ersson, Mikael; Jönsson, Pär
2015-12-01
To produce high-quality ingot cast steel with a better surface quality, it would be beneficial for the uphill teeming process if a much more stable flow pattern could be achieved in the runners. Several techniques have been utilized in the industry to try to obtain a stable flow of liquid steel, such as a swirling flow. Some research has indicated that a swirl blade inserted in the horizontal and vertical runners, or some other additional devices and physics could generate a swirling flow in order to give a lower hump height, avoid mold flux entrapment, and improve the quality of the ingot products, and a new swirling flow generation component, TurboSwirl, was introduced to improve the flow pattern. It has recently been demonstrated that the TurboSwirl method can effectively reduce the risk of mold flux entrapment, lower the maximum wall shear stress, and decrease velocity fluctuations. The TurboSwirl is built at the elbow of the runners as a connection between the horizontal and vertical runners. It is located near the mold and it generates a tangential flow that can be used with a divergent nozzle in order to decrease the axial velocity of the vertical flow into the mold. This stabilizes flow before the fluid enters the mold. However, high wall shear stresses develop at the walls due to the fierce rotation in the TurboSwirl. In order to achieve a calmer flow and to protect the refractory wall, some structural improvements have been made. It was found that by changing the flaring angle of the divergent nozzle, it was possible to lower the axial velocity and wall shear stress. Moreover, when the vertical runner and the divergent nozzle were not placed at the center of the TurboSwirl, quite different flow patterns could be obtained to meet to different requirements. In addition, the swirl numbers of all the cases mentioned above were calculated to ensure that the swirling flow was strong enough to generate a swirling flow of the liquid steel in the TurboSwirl.
NASA Astrophysics Data System (ADS)
Wunder, Tobias; Ehrnsperger, Laura; Thomas, Christoph
2017-04-01
In the last decades much attention has been devoted to improving our understanding of organized motions in plant canopies. Particularly the impact of coherent structures on turbulent flows and vertical mixing in near-neutral conditions has been the focus of many experimental and modeling studies. Despite this progress, the weak-wind subcanopy airflow in concert with stable or weak-wind above-canopy conditions remains poorly understood. In these conditions, evidence is mounting that larger-scale motions, so called sub-meso motions which occupy time scales from minutes to hours and spatial scales from tens of meters to kilometers, dominate transport and turbulent mixing particularly in the subcanopy, because of generally weaker background flow as a result of the enhanced friction due to the plant material. We collected observations from a network of fast-response sensor across the vertical and horizontal dimensions during the INTRAMIX experiment at the Fluxnet site Waldstein/ Weidenbrunnen (DE-Bay) in a moderately dense Norway spruce (Picea Abies) forest over a period of ten weeks. Its main goal was to investigate the role of the submeso-structures on the turbulent wind field and the mixing mechanisms including coherent structures. In a first step, coupling regimes differentiating between weak and strong flows and day- and nighttime-conditions are determined. Subsequently, each of the regimes is analyzed for its dominant flow dynamics identified by wavelet analysis. It is hypothesized that strong vertical wind directional shear does not necessarily indicate a decoupling of vertical layers, but on the contrary may create situations of significant coupling of the sub-canopy with the canopy layers above. Moreover, rapid changes of wind direction or even reversals may generate substantial turbulence and induce intermittent coupling on a variety of time scales. The overarching goal is to improve diagnostics for vertical mixing in plant canopies incorporating turbulence and submeso-motions and to develop a classification of flow modes capable of representing the main driving mechanisms of mixing in forest canopies.
Magnetic reconnection launcher
Cowan, Maynard
1989-01-01
An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.
Apparatus for controlling nuclear core debris
Jones, Robert D.
1978-01-01
Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.
Modeling lateral circulation and its influence on the along-channel flow in a branched estuary
NASA Astrophysics Data System (ADS)
Zhu, Lei; He, Qing; Shen, Jian
2018-02-01
A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.
NASA Technical Reports Server (NTRS)
Schefer, R. W.; Sawyer, R. F.
1976-01-01
An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.
System and method for continuous solids slurry depressurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William
A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a differencemore » between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.« less
Particle dispersion in a stably stratified channel flow
NASA Astrophysics Data System (ADS)
Pasquero, C.; Armenio, V.
2003-04-01
The motion of particles in a stably stratified channel flow is relevant in geophysic and environmental applications. In the present research this problem has been studied numerically using a mixed Lagrangian-Eulerian technique (Lagrangian motion of an ensemble of particles in an Eulerian field) by means of large eddy simulation. A stratified channel flows can be decomposed into a buoyancy affected region, with a strong turbulent activity, close to the walls, and into a buoyancy dominated region, where turbulence is strongly inhibited, in the center of the channel. For strong stratifications, counter gradient heat fluxes steepen the density gradient moving hot fluid up and cold fluid down. The stratification in the central region of the channel becomes extremely stable. However, the vertical turbulent energy, defined as the difference between the total vertical kinetic energy and its temporal average, is very strong. Particle statistics have shown that this can be related to the presence of high frequency internal waves, that do not contribute to dispersion because of their highly coherent behavior. Vertical stratification is shown to reduce or increase the decorrelation time for vertical motion, depending on the Richardson number. When stratification is increased there are two competing effects: Structures have a smaller vertical scale (acting to reduce the decorrelation time) and vertical velocities are smaller (acting to increase the decorrelation time, since particles stay for a longer time into a given structure in the flow). It has been shown that for low stratification the first mechanism dominates, while for large stratification the second effect is more important. The research is in progress and results for both fluid and inertial particles will be presented at the conference.
NASA Astrophysics Data System (ADS)
Ibrahim, Ahmad; Steffler, Peter; She, Yuntong
2018-02-01
The interaction between surface water and groundwater through the hyporheic zone is recognized to be important as it impacts the water quantity and quality in both flow systems. Three-dimensional (3D) modeling is the most complete representation of a real-world hyporheic zone. However, 3D modeling requires extreme computational power and efforts; the sophistication is often significantly compromised by not being able to obtain the required input data accurately. Simplifications are therefore often needed. The objective of this study was to assess the accuracy of the vertically-averaged approximation compared to a more complete vertically-resolved model of the hyporheic zone. The groundwater flow was modeled by either a simple one-dimensional (1D) Dupuit approach or a two-dimensional (2D) horizontal/vertical model in boundary fitted coordinates, with the latter considered as a reference model. Both groundwater models were coupled with a 1D surface water model via the surface water depth. Applying the two models to an idealized pool-riffle sequence showed that the 1D Dupuit approximation gave comparable results in determining the characteristics of the hyporheic zone to the reference model when the stratum thickness is not very large compared to the surface water depth. Conditions under which the 1D model can provide reliable estimate of the seepage discharge, upwelling/downwelling discharges and locations, the hyporheic flow, and the residence time were determined.
Magnetic flux concentration and zonal flows in magnetorotational instability turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu
2014-11-20
Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few diskmore » scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.« less
Growth and characterization of III-V epitaxial films
NASA Astrophysics Data System (ADS)
Tripathi, A.; Adamski, J.
1991-11-01
Investigations were conducted on the growth of epitaxial layers using an Organo Metallic Chemical Vapor Deposition technique of selected III-V materials which are potentially useful for photonics and microwave devices. RL/ERX's MOCVD machine was leak checked for safety. The whole gas handling plumbing system has been leak checked and the problems were reported to the manufacturer, CVD Equipment Corporation of Dear Park, NY. CVD Equipment Corporation is making an effort to correct these problems and also supply the part according to our redesign specifications. One of the main emphasis during this contract period was understanding the operating procedure and writing an operating manual for this MOCVD machine. To study the dynamic fluid flow in the vertical reactor of this MOCVD machine, an experimental apparatus was designed, tested, and put together. This study gave very important information on the turbulent gas flow patterns in this vertical reactor. The turbulent flow affects the epitaxial growth adversely. This study will also help in redesigning a vertical reactor so that the turbulent gas flow can be eliminated.
A semi-analytical solution for slug tests in an unconfined aquifer considering unsaturated flow
NASA Astrophysics Data System (ADS)
Sun, Hongbing
2016-01-01
A semi-analytical solution considering the vertical unsaturated flow is developed for groundwater flow in response to a slug test in an unconfined aquifer in Laplace space. The new solution incorporates the effects of partial penetrating, anisotropy, vertical unsaturated flow, and a moving water table boundary. Compared to the Kansas Geological Survey (KGS) model, the new solution can significantly improve the fittings of the modeled to the measured hydraulic heads at the late stage of slug tests in an unconfined aquifer, particularly when the slug well has a partially submerged screen and moisture drainage above the water table is significant. The radial hydraulic conductivities estimated with the new solution are comparable to those from the KGS, Bouwer and Rice, and Hvorslev methods. In addition, the new solution also can be used to examine the vertical conductivity, specific storage, specific yield, and the moisture retention parameters in an unconfined aquifer based on slug test data.
Low-latitude zonal and vertical ion drifts seen by DE 2
NASA Technical Reports Server (NTRS)
Coley, W. R.; Heelis, R. A.
1989-01-01
Horizontal and vertical ion drift data from the DE 2 spacecraft have been used to determine average zonal and vertical plasma flow (electric field) characteristics in the +/- 26-deg dip latitude region during a time of high solar activity. The 'average data' local time profile for an apex height bin centered at 400 km indicates westward plasma flow from 0600 to 1900 solar local time ((SLT) with a maximum westward velocity of 80 m/s in the early afternoon. There is a sharp change to eastward flow at approximately 1900 hours with an early evening peak of 170 m/s. A secondary nighttime maximum exists at 0430 SLT preceeding the reversal to westward flow. This profile is in good agreement with Jicamarca, Peru, radar measurements made under similar solar maximum conditions. Haramonic analysis indicates a net superrotation which is strongest at lower apex altitudes. The diurnal term is dominant, but higher order terms through the quatradiurnal are significant.
Three-Dimensional Ageostrophic Motion and Water Mass Subduction in the Southern Ocean
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, B.; Mulet, S.; Iudicone, D.
2018-02-01
Vertical velocities at the ocean mesoscale are several orders of magnitude smaller than corresponding horizontal flows, making their direct monitoring a still unsolved challenge. Vertical motion is generally retrieved indirectly by applying diagnostic equations to observation-based fields. The most common approach relies on the solution of an adiabatic version of the Omega equation, neglecting the ageostrophic secondary circulation driven by frictional effects and turbulent mixing in the boundary layers. Here we apply a diabatic semigeostrophic diagnostic model to two different 3-D reconstructions covering the Southern Ocean during the period 2010-2012. We incorporate the effect of vertical mixing through a modified K-profile parameterization and using ERA-interim data, and perform an indirect validation of the ageostrophic circulation with independent drifter observations. Even if horizontal gradients and associated vertical flow are likely underestimated at 1/4° × 1/4° resolution, the exercise provides an unprecedented relative quantification of the contribution of vertical mixing and adiabatic internal dynamics on the vertical exchanges along the Antarctic Circumpolar Current. Kinematic estimates of subduction rates show the destruction of poleward flowing waters lighter than 26.6 kg/m3 (14 ÷ 15 Sv) and two main positive bands associated with the Antarctic Intermediate Water (7 ÷ 11 Sv) and Sub-Antarctic Mode Waters (4 ÷ 7 Sv) formation, while Circumpolar Deep Water upwelling attains around 3 ÷ 6 Sv. Diabatic and adiabatic terms force distinct spatial responses and vertical velocity magnitudes along the water column and the restratifying effect of adiabatic internal dynamics due to mesoscale eddies is shown to at least partly compensate the contribution of wind-driven vertical exchanges to net subduction.
NASA Astrophysics Data System (ADS)
Meinen, Christopher S.; Luther, Douglas S.
2016-06-01
Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.
NASA Astrophysics Data System (ADS)
Meinen, Christopher S.; Luther, Douglas S.
2016-05-01
Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.
River-induced flow dynamics in long-screen wells and impact on aqueous samples.
Vermeul, Vince R; McKinley, James P; Newcomer, Darrell R; Mackley, Robert D; Zachara, J M
2011-01-01
Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. This article builds on the existing body of literature by (1) demonstrating the utility of continuous (i.e., hourly measurements for ∼1 month) ambient wellbore flow monitoring and (2) presenting results from a field experiment where relatively large wellbore flows (up to 4 L/min) were induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an electromagnetic borehole flowmeter allowed these effects to be evaluated in concert with continuously monitored river-stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multilevel well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. Copyright © 2010 Battelle Memorial Institute. Journal compilation © 2010 National Ground Water Association.
Electric analog of three-dimensional flow to wells and its application to unconfined aquifers
Stallman, Robert W.
1963-01-01
Electric-analog design criteria are established from the differential equations of ground-water flow for analyzing pumping-test data. A convenient analog design was obtained by transforming the cylindrical equation of flow to a rectilinear form. The design criteria were applied in the construction of an electric analog, which was used for studying pumping-test data collected near Grand Island, Nebr. Data analysis indicated (1) vertical flow components near pumping wells in unconfined aquifers may be much more significant in the control of water-table decline than radial flow components for as much as a day of pumping; (2) the specific yield during the first few minutes of pumping appears to be a very small fraction of that observed after pumping for more than 1 day; and (3) estimates of specific yield made from model studies seem much more sensitive to variations in assumed flow conditions than are estimates of permeability. Analysis of pumping-test data where vertical flow components are important requires that the degree of anisotropy be known. A procedure for computing anisotropy directly from drawdowns observed at five points was developed. Results obtained in the analog study emphasize the futility of calculating unconfined aquifer properties from pumping tests of short duration by means of equations based on the assumptions that vertical flow components are negligible and specific yield is constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Jorge Luiz Goes; Passos, Julio Cesar; Verschaeren, Ruud
Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi platemore » is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)« less
Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V
2016-03-01
The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined. Copyright © 2015 Elsevier B.V. All rights reserved.
Getting coal to go with the flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumbaugh, G.D.
1984-01-01
There are three accepted methods of recovering storage piles. They are surface reclaiming, sub-grade hopper sections or bins, and flat surface storage with ground level ports. In general, the decision to use either approach is a matter of economics, reliability, labor intensity, and other related practical factors. The concept of induced vertical flow of bulk solids was initiated in 1962 with the birth of the bin activator. Its performance was at times questionable until the elusive cycle type operation was finally discovered. This solved the problems of coupling induced vertical flow units with feeders. Surprisingly, an operator in a cementmore » plant was the first to demonstrate this principle of operation in 1965, but it needed at least five more years for it to be fully understood. The storage pile discharger with its drawdown skirt and unique stroke action was developed out of sheer necessity in 1964. However, it was not until 1979 that the railcar discharger was introduced. Frankly, it took that long to recognize a railcar could be temporarily converted to a huge rectangular shaped activated binexclamation Significantly, all induced vertical flow units are designed and operated for the sole purpose of bulk solid storage withdrawal. They have no other function. For many reasons, the successful evolution of the concept of induced vertical flow of bulk solids has been one of more perspiration than of meditation. Armed with time proven application guidelines and cycle type operation to minimize the effects of feeder flow streams, bin activators, activated bins, storage pile dischargers, and railcar dischargers can be applied confidently and predictably.« less
Numerical flow simulation of a reusable sounding rocket during nose-up rotation
NASA Astrophysics Data System (ADS)
Kuzuu, Kazuto; Kitamura, Keiichi; Fujimoto, Keiichiro; Shima, Eiji
2010-11-01
Flow around a reusable sounding rocket during nose-up rotation is simulated using unstructured compressible CFD code. While a reusable sounding rocket is expected to reduce the cost of the flight management, it is demanded that this rocket has good performance for wide range of flight conditions from vertical take-off to vertical landing. A rotating body, which corresponds to a vehicle's motion just before vertical landing, is one of flight environments that largely affect its aerodynamic design. Unlike landing of the space shuttle, this vehicle must rotate from gliding position to vertical landing position in nose-up direction. During this rotation, the vehicle generates massive separations in the wake. As a result, induced flow becomes unsteady and could have influence on aerodynamic characteristics of the vehicle. In this study, we focus on the analysis of such dynamic characteristics of the rotating vehicle. An employed numerical code is based on a cell-centered finite volume compressible flow solver applied to a moving grid system. The moving grid is introduced for the analysis of rotating motion. Furthermore, in order to estimate an unsteady turbulence, we employed DDES method as a turbulence model. In this simulation, flight velocity is subsonic. Through this simulation, we discuss the effect on aerodynamic characteristics of a vehicle's shape and motion.
Use of sinkhole and specific capacity distributions to assess vertical gradients in a karst aquifer
McCoy, K.J.; Kozar, M.D.
2008-01-01
The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing. ?? 2007 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin
2018-02-01
The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.
NASA Technical Reports Server (NTRS)
Hathaway, D. H.; Fowlis, W. W.
1986-01-01
Experimental flow regime diagrams are determined for a new rotating cylindrical annulus configuration which permits a measure of control over the internal vertical temperature gradient. The new annulus has radial temperature gradients imposed on plane horizontal thermally conducting endwalls (with the cylindrical sidewalls as insulators) and is considered to be more relevant to atmospheric dynamics studies than the classical cylindrical annulus. Observations have revealed that, in addition to the axisymmetric flow and nonaxisymmetric baroclinic wave flow which occur in the classical annulus, two additional nonaxisymmetric flow types occur in the new annulus: boundary-layer thermal convection and deep thermal convection. Flow regime diagrams for three different values of the imposed vertical temperature difference are presented, and explanations for the flow transitions are offered. The new annulus provides scientific backup for the proposed Atmospheric General Circulation Experiment for Spacelab. The apparatus diagram is included.
Method and apparatus for continuous electrophoresis
Watson, Jack S.
1992-01-01
A method and apparatus for conducting continuous separation of substances by electrophoresis are disclosed. The process involves electrophoretic separation combined with couette flow in a thin volume defined by opposing surfaces. By alternating the polarity of the applied potential and producing reciprocating short rotations of at least one of the surfaces relative to the other, small increments of separation accumulate to cause substantial, useful segregation of electrophoretically separable components in a continuous flow system.
A Test of Maxwell's Z Model Using Inverse Modeling
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, T.
2003-01-01
In modeling impact craters a small region of energy and momentum deposition, commonly called a "point source", is often assumed. This assumption implies that an impact is the same as an explosion at some depth below the surface. Maxwell's Z Model, an empirical point-source model derived from explosion cratering, has previously been compared with numerical impact craters with vertical incidence angles, leading to two main inferences. First, the flowfield center of the Z Model must be placed below the target surface in order to replicate numerical impact craters. Second, for vertical impacts, the flow-field center cannot be stationary if the value of Z is held constant; rather, the flow-field center migrates downward as the crater grows. The work presented here evaluates the utility of the Z Model for reproducing both vertical and oblique experimental impact data obtained at the NASA Ames Vertical Gun Range (AVGR). Specifically, ejection angle data obtained through Three-Dimensional Particle Image Velocimetry (3D PIV) are used to constrain the parameters of Maxwell's Z Model, including the value of Z and the depth and position of the flow-field center via inverse modeling.
The effect of intra-wellbore head losses in a vertical well
NASA Astrophysics Data System (ADS)
Wang, Quanrong; Zhan, Hongbin
2017-05-01
Flow to a partially penetrating vertical well is made more complex by intra-wellbore losses. These are caused not only by the frictional effect, but also by the kinematic effect, which consists of the accelerational and fluid inflow effects inside a wellbore. Existing models of flow to a partially penetrating vertical well assume either a uniform-flux boundary condition (UFBC) or a uniform-head boundary condition (UHBC) for treating the flow into the wellbore. Neither approach considers intra-wellbore losses. In this study a new general solution, named the mixed-type boundary condition (MTBC) solution, is introduced to include intra-wellbore losses. It is developed from the existing solutions using a hybrid analytical-numerical method. The MTBC solution is capable of modeling various types of aquifer tests (constant-head tests, constant-rate tests, and slug tests) for partially or fully penetrating vertical wells in confined aquifers. Results show that intra-wellbore losses (both frictional and kinematic) can be significant in the early pumping stage. At later pumping times the UHBC solution is adequate because the difference between the MTBC and UHBC solutions becomes negligible.
A laboratory study of mean flow generation in rotating fluids by Reynolds stress gradients
NASA Astrophysics Data System (ADS)
McGuinness, D. S.; Boyer, D. L.; Fernando, H. J. S.
2001-06-01
Laboratory experiments were conducted that demonstrate that a mean azimuthal flow can be produced by introducing Reynolds stress gradients to a rotating fluid with zero initial mean flow. This mechanism may play a role in the generation of mean currents in coastal regions. The experiments entail the establishment of turbulence in a thin annular-shaped region centered within a cylindrical test cell through the use of a vertically oscillating grid. This region rests in a horizontal plane perpendicular to the vertical axis of the tank, and the entire system is placed on a turntable to simulate background rotation. Flow visualization techniques are used to depict qualitative features of the resulting flow field. Measurements of the mean and turbulent velocity fields are performed using a two-component laser-Doppler velocimeter. The results show how rectified currents (mean flows) can be generated via Reynolds stress gradients induced by periodic forcing of the grid. In the absence of background rotation, rectified flow is observed in the radial and vertical directions only. The presence of background rotation tends to organize these motions in that the flow tends to move parallel to the turbulent source, i.e., in the azimuthal direction, with the source (strong turbulence) located to the right, facing downstream. The influence of rotation on the Reynolds stresses and their gradients as well as on the ensuing mean flow is evaluated, and the observations are examined by considering individual contributions of the terms in the Reynolds-averaged momentum equations.
Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides
Serrano, Xaymara M.; Baums, Iliana B.; Smith, Tyler B.; Jones, Ross J.; Shearer, Tonya L.; Baker, Andrew C.
2016-01-01
To date, most assessments of coral connectivity have emphasized long-distance horizontal dispersal of propagules from one shallow reef to another. The extent of vertical connectivity, however, remains largely understudied. Here, we used newly-developed and existing DNA microsatellite loci for the brooding coral Porites astreoides to assess patterns of horizontal and vertical connectivity in 590 colonies collected from three depth zones (≤10 m, 15–20 m and ≥25 m) at sites in Florida, Bermuda and the U.S. Virgin Islands (USVI). We also tested whether maternal transmission of algal symbionts (Symbiodinium spp.) might limit effective vertical connectivity. Overall, shallow P. astreoides exhibited high gene flow between Florida and USVI, but limited gene flow between these locations and Bermuda. In contrast, there was significant genetic differentiation by depth in Florida (Upper Keys, Lower Keys and Dry Tortugas), but not in Bermuda or USVI, despite strong patterns of depth zonation in algal symbionts at two of these locations. Together, these findings suggest that P. astreoides is effective at dispersing both horizontally and vertically despite its brooding reproductive mode and maternal transmission of algal symbionts. In addition, these findings might help explain the ecological success reported for P. astreoides in the Caribbean in recent decades. PMID:26899614
Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh
Michael, H.A.; Voss, C.I.
2009-01-01
Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system. ?? US Government 2009.
Characteristics of dilute gas-solids suspensions in drag reducing flow
NASA Technical Reports Server (NTRS)
Kane, R. S.; Pfeffer, R.
1973-01-01
Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.
A study of the vortex structures around circular cylinder mounted on vertical heated plate
NASA Astrophysics Data System (ADS)
Malah, Hamid; Chumakov, Yurii S.; Levchenya, Alexander M.
2018-05-01
In recent years, studies of natural convection boundary layer interacting with obstacles draw much of attention, because of its practical applications. Pressure gradient resulting from this interaction leads to separation of the boundary layer. The formation of vortex structure around obstacle is characteristic to any kind of convection flow. In this paper, we describe the formation of three-dimensional vortex structure for the case of natural convection flow around the circular cylinder mounted on vertical heated plate. Navier-Stokes equations were used for numerical computations. The results proved the presence of a horseshoe vortex system in the case of natural convection flow as in the forced convection flow.
NASA Technical Reports Server (NTRS)
Leonard, A.
1980-01-01
Three recent simulations of tubulent shear flow bounded by a wall using the Illiac computer are reported. These are: (1) vibrating-ribbon experiments; (2) study of the evolution of a spot-like disturbance in a laminar boundary layer; and (3) investigation of turbulent channel flow. A number of persistent flow structures were observed, including streamwise and vertical vorticity distributions near the wall, low-speed and high-speed streaks, and local regions of intense vertical velocity. The role of these structures in, for example, the growth or maintenance of turbulence is discussed. The problem of representing the large range of turbulent scales in a computer simulation is also discussed.
Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth
NASA Technical Reports Server (NTRS)
Kim, Inchul; Sirignano, William A.
1999-01-01
This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.
Application of composite flow laws to grain size distributions derived from polar ice cores
NASA Astrophysics Data System (ADS)
Binder, Tobias; de Bresser, Hans; Jansen, Daniela; Weikusat, Ilka; Garbe, Christoph; Kipfstuhl, Sepp
2014-05-01
Apart from evaluating the crystallographic orientation, focus of microstructural analysis of natural ice during the last decades has been to create depth-profiles of mean grain size. Several ice flow models incorporated mean grain size as a variable. Although such a mean value may coincide well with the size of a large proportion of the grains, smaller/larger grains are effectively ignored. These smaller/larger grains, however, may affect the ice flow modeling. Variability in grain size is observed on centimeter, meter and kilometer scale along deep polar ice cores. Composite flow laws allow considering the effect of this variability on rheology, by weighing the contribution of grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep mechanisms taking the full grain size distribution into account [1]. Extraction of hundreds of grain size distributions for different depths along an ice core has become relatively easy by automatic image processing techniques [2]. The shallow ice approximation is widely adopted in ice sheet modeling and approaches the full-Stokes solution for small ratios of vertical to horizontal characteristic dimensions. In this approximation shear stress in the vertical plain dominates the strain. This assumption is not applicable at ice divides or dome structures, where most deep ice core drilling sites are located. Within the upper two thirds of the ice column longitudinal stresses are not negligible and ice deformation is dominated by vertical strain. The Dansgaard-Johnsen model [3] predicts a dominating, constant vertical strain rate for the upper two thirds of the ice sheet, whereas in the lower ice column vertical shear becomes the main driver for ice deformation. We derived vertical strain rates from the upper NEEM ice core (North-West Greenland) and compared them to classical estimates of strain rates at the NEEM site. Assuming intervals of constant accumulation rates, we found a variation of vertical strain rates by a factor 2-3 in the upper ice column. We discuss the current applicability of composite flow laws to grain size distributions extracted from ice cores drilled at sites where the flow direction rotates by 90 degrees with depth (i.e. ice divide). An interesting finding is that a transition to a glacial period in future would be associated with a decrease in vertical strain rate (due to a reduced accumulation rate) and an increase of the frequency of small grains (due to an enhanced impurity content). Composite flow laws assign an enhanced contribution of GSS creep to this transition. It is currently unclear which factor would have a greater influence. [1] Herwegh et al., 2005, J. Struct. Geol., 27, 503-521 [2] T. Binder et al., 2013, J. Microsc., 250, 130-141 [3] W. Dansgaard & S.J. Johnsen, 1969, J. Glaciol., 8, 215-223
Esthetic restorative materials and opposing enamel wear.
Olivera, Anna Belsuzarri; Marques, Márcia Martins
2008-01-01
This in vitro study compared the effects of a gold alloy (Degulor M), four dental ceramics (IPS Empress, IPS Empress 2, Duceram Plus, Duceram LFC) and a laboratory-processed composite (Targis) on the wear of human enamel. The amount of wear of the enamel (dental cusps) and restorative materials (disks) were tested in water at 37 degrees C under standard load (20 N), with a chewing rate of 1.3 Hz and was determined after 150,000 and 300,000 cycles. Before the test, the average surface roughness of the restorative materials was analyzed using the Ra parameter. The results of this study indicate that Targis caused enamel wear similar to Degulor M and resulted in significantly less wear than all the ceramics tested. IPS Empress provoked the greatest amount of enamel wear and Degulor M caused less vertical dimension loss. Targis could be an appropriate alternative material to ceramic, because it is esthetic and produces opposing enamel wear comparable to gold alloy.
A workstation based simulator for teaching compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
A workstation-based interactive flow simulator has been developed to aid in the teaching of undergraduate compressible aerodynamics. By solving the equations found in NACA 1135, the simulator models three basic fluids problems encountered in supersonic flow: flow past a compression corner, flow past two wedges in series, and flow past two opposed wedges. The study can vary the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the results of the flow calculations to the student. The simulator includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use.
Preliminary interpretation of thermal data from the Nevada Test Site
Sass, John Harvey; Lachenbruch, Arthur H.
1982-01-01
Analysis of data from 60 wells in and around the Nevada Test Site, including 16 in the Yucca Mountain area, indicates a thermal regime characterized by large vertical and lateral gradients in heat flow. Estimates of heat flow indicate considerable variation on both regional and local scales. The variations are attributable primarily to hydrologic processes involving interbasin flow with a vertical component of (seepage) velocity (volume flux) of a few mm/yr. Apart from indicating a general downward movement of water at a few mm/yr, the results from Yucca Mountain are as yet inconclusive.
Combined effects on MHD flow of Newtonian fluid past infinite vertical porous plate
NASA Astrophysics Data System (ADS)
Subbanna, K.; Mohiddin, S. Gouse; Vijaya, R. Bhuvana
2018-05-01
In this paper, we discussed free convective flow of a viscous fluid past an infinite vertical porous plate under the influence of uniform transverse magnetic field. Time dependent permeability and oscillatory suction is considered. The equations of the flow field are solved by a routine perturbation method for small amplitude of the permeability. The solutions for the velocity, temperature and concentration have been derived analytically and also its behavior is computationally discussed with the help of profiles. The shear stress, the Nusselt number and Sherwood number are also obtained and their behavior discussed computationally
The use of magnetic fields in vertical Bridgman/Gradient Freeze-type crystal growth
NASA Astrophysics Data System (ADS)
Pätzold, Olf; Niemietz, Kathrin; Lantzsch, Ronny; Galindo, Vladimir; Grants, Ilmars; Bellmann, Martin; Gerbeth, Gunter
2013-03-01
This paper outlines advanced vertical Bridgman/Gradient Freeze techniques with flow control using magnetic fields developed for the growth of semiconductor crystals. Low-temperature flow modelling, as well as laboratory-scaled crystal growth under the influence of rotating, travelling, and static magnetic fields are presented. Experimental and numerical flow modelling demonstrate the potential of the magnetic fields to establish a well-defined flow for tailoring heat and mass transfer in the melt during growth. The results of the growth experiments are discussed with a focus on the influence of a rotating field on the segregation of dopants, the influence of a travelling field on the temperature field and thermal stresses, and the potential of rotating and static fields for a stabilization of the melt flow.
NASA Astrophysics Data System (ADS)
Gnaneswara Reddy, Machireddy
2017-12-01
The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.
Clark, Robert A.
2015-01-01
Vertical fusional vergence (VFV) normally compensates for slight vertical heterophorias. We employed magnetic resonance imaging to clarify extraocular muscle contributions to VFV induced by monocular two-prism diopter (1.15°) base-up prism in 14 normal adults. Fusion during prism viewing requires monocular infraduction. Scans were repeated without prism, and with prism shifted contralaterally. Contractility indicated by morphometric indexes was separately analyzed in medial and lateral vertical rectus and superior oblique (SO) putative compartments, and superior and inferior horizontal rectus extraocular muscle putative compartments, but in the whole inferior oblique (IO). Images confirmed appropriate VFV that was implemented by the inferior rectus (IR) medial compartment contracting ipsilateral and relaxing contralateral to prism. There was no significant contractility in the IR lateral compartment. The superior but not inferior lateral rectus (LR) compartment contracted significantly in the prism viewing eye, but not contralateral to prism. The IO contracted ipsilateral but not contralateral to the prism. In the infraducting eye, the SO medial compartment relaxed significantly, while the lateral compartment was unchanged; contralateral to prism, the SO lateral compartment contracted, while the medial compartment was unchanged. There was no contractility in the superior or medial rectus muscles in either eye. There was no globe retraction. We conclude that the vertical component of VFV is primarily implemented by IR medial compartment contraction. Since appropriate vertical rotation is not directly implemented, or is opposed, by associated differential LR and SO compartmental activity, and IO contraction, these actions probably implement a torsional component of VFV. PMID:25589593
NASA Technical Reports Server (NTRS)
Rottger, J.
1983-01-01
Mesospheric echoes are strongly influenced by the electron density profile of the ionospheric D region. These echoes therefore are only observed during daylight hours or high energy particle precipitation. The turbulence occurs in layers, which often confines the radar echoes to rather thin regions of several 100 m vertical extent, although layers as thick as several kilometers are also observed. Evaluable echoes are not observed through the entire altitude region of the mesosphere for the given power aperture product. The echoes indicate temporal variation.
NASA Technical Reports Server (NTRS)
Spanogle, J A; Foster, H H
1930-01-01
This report presents test results obtained at the Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics during an investigation to determine the relative performance of a single-cylinder, high-speed, compression-ignition engine when using fuel injection valve nozzles with different numbers, sizes, and directions of round orifices. A spring-loaded, automatic injection valve was used, centrally located at the top of a vertical disk-type combustion chamber formed between horizontally opposed inlet and exhaust valves of a 5 inch by 7 inch engine.
Precise Relative Earthquake Magnitudes from Cross Correlation
Cleveland, K. Michael; Ammon, Charles J.
2015-04-21
We present a method to estimate precise relative magnitudes using cross correlation of seismic waveforms. Our method incorporates the intercorrelation of all events in a group of earthquakes, as opposed to individual event pairings relative to a reference event. This method works well when a reliable reference event does not exist. We illustrate the method using vertical strike-slip earthquakes located in the northeast Pacific and Panama fracture zone regions. Our results are generally consistent with the Global Centroid Moment Tensor catalog, which we use to establish a baseline for the relative event sizes.
Space Shuttle Orbiter SILTS Pod Flow Angularity and Aerodynamic Heating Tests (OH-102A and OH-400).
1979-11-01
fabricated from 17 - 4PH stainless steel and instrumented with tnermocouples. A photograph or the 9L-p model with the U.UJZJ scale vertical tail installed is...DISTRIBUTION STATE=MENT (of this ’Report) Approved for public release; distribution unlimited. 17 . DISTRIBUTION STATEMENT (of the abstract entered In...Model Installation ....... .................. . 17 3. Vertical Tail for Flow Angularity ..... .............. ... 18 4. Photograph of 56-) Model
Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model
NASA Astrophysics Data System (ADS)
Monastero, Marianne; Lindstrom, Annika; Beyar, Michael; Amitay, Michael
2015-11-01
Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.
Nonlinear Dynamics of Turbulent Thermals in Shear Flow
NASA Astrophysics Data System (ADS)
Ingel, L. Kh.
2018-03-01
The nonlinear integral model of a turbulent thermal is extended to the case of the horizontal component of its motion relative to the medium (e.g., thermal floating-up in shear flow). In contrast to traditional models, the possibility of a heat source in the thermal is taken into account. For a piecewise constant vertical profile of the horizontal velocity of the medium and a constant vertical velocity shear, analytical solutions are obtained which describe different modes of dynamics of thermals. The nonlinear interaction between the horizontal and vertical components of thermal motion is studied because each of the components influences the rate of entrainment of the surrounding medium, i.e., the growth rate of the thermal size and, hence, its mobility. It is shown that the enhancement of the entrainment of the medium due to the interaction between the thermal and the cross flow can lead to a significant decrease in the mobility of the thermal.
Contaminant transport from point source on water surface in open channel flow with bed absorption
NASA Astrophysics Data System (ADS)
Guo, Jinlan; Wu, Xudong; Jiang, Weiquan; Chen, Guoqian
2018-06-01
Studying solute dispersion in channel flows is of significance for environmental and industrial applications. Two-dimensional concentration distribution for a most typical case of a point source release on the free water surface in a channel flow with bed absorption is presented by means of Chatwin's long-time asymptotic technique. Five basic characteristics of Taylor dispersion and vertical mean concentration distribution with skewness and kurtosis modifications are also analyzed. The results reveal that bed absorption affects both the longitudinal and vertical concentration distributions and causes the contaminant cloud to concentrate in the upper layer. Additionally, the cross-sectional concentration distribution shows an asymptotic Gaussian distribution at large time which is unaffected by the bed absorption. The vertical concentration distribution is found to be nonuniform even at large time. The obtained results are essential for practical implements with strict environmental standards.
Experiments in dilution jet mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Srinivasan, R.; Berenfeld, A.
1983-01-01
Experimental results are given on the mixing of a single row of jets with an isothermal mainstream in a straight duct, to include flow and geometric variations typical of combustion chambers in gas turbine engines. The principal conclusions reached from these experiments were: at constant momentum ratio, variations in density ratio have only a second-order effect on the profiles; a first-order approximation to the mixing of jets with a variable temperature mainstream can be obtained by superimposing the jets-in-an isothermal-crossflow and mainstream profiles; flow area convergence, especially injection-wall convergence, significantly improves the mixing; for opposed rows of jets, with the orifice centerlines in-line, the optimum ratio of orifice spacing to duct height is one half of the optimum value for single side injection at the same momentum ratio; and for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single side injection at the same momentum ratio.
High performance internal reforming unit for high temperature fuel cells
Ma, Zhiwen [Sandy Hook, CT; Venkataraman, Ramakrishnan [New Milford, CT; Novacco, Lawrence J [Brookfield, CT
2008-10-07
A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.
Wall-ablative laser-driven in-tube accelerator
NASA Astrophysics Data System (ADS)
Sasoh, Akihiro; Suzuki, Shingo; Matsuda, Atsushi
2008-05-01
The laser-driven in-tube accelerator in which the propellant is supplied from laser-ablated gas from the tube wall was developed. Proof-of concept demonstrations of vertical launch were successfully done. The device had a 25mm X 25mm square cross-section; two opposing walls were made of polyacetal and acted as the propellant, the other two acrylic window with guide grooves to the projectile. The upper end of the launch tube was connected to a vacuum chamber of an inner volume of 0.8 m2, in which the initial pressure was set to lower than 20 Pa. With plugging the bottom end of the launch tube, a momentum coupling coefficient exceeding 2.5 mN/W was obtained. Even with the bottom end connected to the same vacuum chamber through a different duct, the projectile was vertical launched successfully, obtaining 0.14 mN/W.
Modeling injection molding of net-shape active ceramic components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Tomas; Cote, Raymond O.; Grillet, Anne Mary
2006-11-01
To reduce costs and hazardous wastes associated with the production of lead-based active ceramic components, an injection molding process is being investigated to replace the current machining process. Here, lead zirconate titanate (PZT) ceramic particles are suspended in a thermoplastic resin and are injected into a mold and allowed to cool. The part is then bisque fired and sintered to complete the densification process. To help design this new process we use a finite element model to describe the injection molding of the ceramic paste. Flow solutions are obtained using a coupled, finite-element based, Newton-Raphson numerical method based on themore » GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. Thermal, rheological, and wetting properties of the PZT paste are measured for use as input to the model. The viscosity of the PZT is highly dependent both on temperature and shear rate. One challenge in modeling the injection process is coming up with appropriate constitutive equations that capture relevant phenomenology without being too computationally complex. For this reason we model the material as a Carreau fluid and a WLF temperature dependence. Two-dimensional (2D) modeling is performed to explore the effects of the shear in isothermal conditions. Results indicate that very low viscosity regions exist near walls and that these results look similar in terms of meniscus shape and fill times to a simple Newtonian constitutive equation at the shear-thinned viscosity for the paste. These results allow us to pick a representative viscosity to use in fully three-dimensional (3D) simulation, which because of numerical complexities are restricted to using a Newtonian constitutive equation. Further 2D modeling at nonisothermal conditions shows that the choice of representative Newtonian viscosity is dependent on the amount of heating of the initially room temperature mold. An early 3D transient model shows that the initial design of the distributor is sub-optimal. However, these simulations take several months to run on 4 processors of an HP workstation using a preconditioner/solver combination of ILUT/GMRES with fill factors of 3 and PSPG stabilization. Therefore, several modifications to the distributor geometry and orientations of the vents and molds have been investigated using much faster 3D steady-state simulations. The pressure distribution for these steady-state calculations is examined for three different distributor designs to see if this can indicate which geometry has the superior design. The second modification, with a longer distributor, is shown to have flatter, more monotonic isobars perpendicular to the flow direction indicating a better filling process. The effects of the distributor modifications, as well as effects of the mold orientation, have also been examined with laboratory experiments in which the flow of a viscous Newtonian oil entering transparent molds is recorded visually. Here, the flow front is flatter and voids are reduced for the second geometry compared to the original geometry. A horizontal orientation, as opposed to the planned vertical orientation, results in fewer voids. Recently, the Navier-Stokes equations have been stabilized with the Dohrman-Bochev PSPP stabilization method, allowing us to calculate transient 3D simulations with computational times on the order of days instead of months. Validation simulations are performed and compared to the experiments. Many of the trends of the experiments are captured by the level set modeling, though quantitative agreement is lacking mainly due to the high value of the gas phase viscosity necessary for numerical stability, though physically unrealistic. More correct trends are predicted for the vertical model than the horizontal model, which is serendipitous as the actual mold is held in a vertical geometry. The full, transient mold filling calculations indicate that the flow front is flatter and voids may be reduced for the second geometry compared to the original geometry. The validated model is used to predict mold filling for the actual process with the material properties for the PZT paste, the original distributor geometry, and the mold in a vertical orientation. This calculation shows that voids may be trapped at the four corners of the mold opposite the distributor.« less
NASA Astrophysics Data System (ADS)
Poussou, Stephane B.; Mazumdar, Sagnik; Plesniak, Michael W.; Sojka, Paul E.; Chen, Qingyan
2010-08-01
The effects of a moving human body on flow and contaminant transport inside an aircraft cabin were investigated. Experiments were performed in a one-tenth scale, water-based model. The flow field and contaminant transport were measured using the Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques, respectively. Measurements were obtained with (ventilation case) and without (baseline case) the cabin environmental control system (ECS). The PIV measurements show strong intermittency in the instantaneous near-wake flow. A symmetric downwash flow was observed along the vertical centerline of the moving body in the baseline case. The evolution of this flow pattern is profoundly perturbed by the flow from the ECS. Furthermore, a contaminant originating from the moving body is observed to convect to higher vertical locations in the presence of ventilation. These experimental data were used to validate a Computational Fluid Dynamic (CFD) model. The CFD model can effectively capture the characteristic flow features and contaminant transport observed in the small-scale model.
Vertical integration increases opportunities for patient flow.
Radoccia, R A; Benvenuto, J A; Blancett, L
1991-08-01
New sources of patients will become more and more important in the next decade as hospitals continue to feel the squeeze of a competitive marketplace. Vertical integration, a distribution tool used in other industries, will be a significant tool for health care administrators. In the following article, the authors explain the vertical integration model that shows promise for other institutions.
Fracture control of ground water flow and water chemistry in a rock aquitard.
Eaton, Timothy T; Anderson, Mary P; Bradbury, Kenneth R
2007-01-01
There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.
Fracture control of ground water flow and water chemistry in a rock aquitard
Eaton, T.T.; Anderson, M.P.; Bradbury, K.R.
2007-01-01
There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/Ss) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies. ?? 2007 National Ground Water Association.
NASA Astrophysics Data System (ADS)
Sonda, Paul Julio
This thesis presents a comprehensive examination of the modeling, simulation, and control of axisymmetric flows occurring in a vertical Bridgman crystal growth system with the melt underlying the crystal. The significant complexity and duration of the manufacturing process make experimental optimization a prohibitive task. Numerical simulation has emerged as a powerful tool in understanding the processing issues still prevalent in industry. A first-principles model is developed to better understand the transport phenomena within a representative vertical Bridgman system. The set of conservation equations for momentum, energy, and species concentration are discretized using the Galerkin finite element method and simulated using accurate time-marching schemes. Simulation results detail the occurrence of fascinating nonlinear dynamics, in the form of stable, time-varying behavior for sufficiently large melt regimes and multiple steady flow states. This discovery of time-periodic flows for high intensity flows is qualitatively consistent with experimental observations. Transient simulations demonstrate that process operating conditions have a marked effect on the hydrodynamic behavior within the melt, which consequently affects the dopant concentration profile within the crystal. The existence of nonlinear dynamical behavior within this system motivates the need for feedback control algorithms which can provide superior crystal quality. This work studies the feasibility of using crucible rotation to control flows in the vertical Bridgman system. Simulations show that crucible rotation acts to suppress the axisymmetric flows. However, for the case when the melt lies below the crystal, crucible rotation also acts to accelerate the onset of time-periodic behavior. This result is attributed to coupling between the centrifugal force and the intense, buoyancy-driven flows. Proportional, proportional-integral, and input-output linearizing controllers are applied to vertical Bridgman systems in stabilizing (crystal below the melt) and destabilizing (melt below the crystal) configurations. The spatially-averaged, axisymmetric kinetic energy is the controlled output. The flows are controlled via rotation of the crucible containing the molten material. Simulation results show that feedback controllers using crucible rotation effectively attenuate flow oscillations in a stabilizing configuration with time-varying disturbance. Crucible rotation is not an optimal choice for suppressing inherent flow oscillations in the destabilizing configuration.
NASA Astrophysics Data System (ADS)
Lang, Jörg; Winsemann, Jutta
2013-10-01
The preservation of bedforms related to supercritical flows and hydraulic jumps is commonly considered to be rare in the geologic record, although these bedforms are known from a variety of depositional environments. This field-based study presents a detailed analysis of the sedimentary facies and stacking pattern of deposits of cyclic steps, chutes-and-pools, antidunes and humpback dunes from three-dimensional outcrops. The well exposed Middle Pleistocene successions from northern Germany comprise glacilacustrine ice-contact subaqueous fan and glacial lake-outburst flood deposits. The studied successions give new insights into the depositional architecture of bedforms related to supercritical flows and may serve as an analogue for other high-energy depositional environments such as fluvial settings, coarse-grained deltas or turbidite systems. Deposits of cyclic steps occur within the glacial lake-outburst flood succession and are characterised by lenticular scours infilled by gently to steeply dipping backsets. Cyclic steps formed due to acceleration and flow thinning when the glacial lake-outburst flood spilled over a push-moraine ridge. These bedforms are commonly laterally and vertically truncated and alternate with deposits of chutes-and-pools and antidunes. The subaqueous fan successions are dominated by laterally extensive sinusoidal waveforms, which are interpreted as deposits of aggrading stationary antidunes, which require quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by downflow divergent cross-stratification, displaying differentiation into topsets, foresets and bottomsets, and are interpreted as deposited at the transition from subcritical to supercritical flow conditions or vice versa. Gradual lateral and vertical transitions between humpback dunes and antidune deposits are very common. The absence of planar-parallel stratification in all studied successions suggests that the formation of these bedforms is suppressed in flows characterised by hydraulic jumps under highly aggradational conditions. The large-scale lateral and vertical successions of bedforms are interpreted as representing the temporal and spatial evolution of the initial supercritical flows, which was strongly affected by the occurrence of hydraulic jumps. Small-scale facies changes and the formation of individual bedforms are interpreted as controlled by fluctuating discharge, bed topography and pulsating unstable flows.
Experimental Characterization of Soot Formation in Diffusion Flames and Explosive Fireballs
2012-04-01
49 Figure 48. A side view of the elevated pressure-opposed flow rig on the test stand. The IR cutoff filter is shown in front of the...turbulent flows of mixed gasses in excited states. To perform this measurement, we have built and characterized a sensitive, selective infrared ( IR ...tool for TDLAS (Kosterev and Tittel, 2002). The QCL operates near room temperature and provides a powerful (~10 mW), stable, single-mode, mid- IR
Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling Xu
2013-01-01
In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...
Documentation of the seawater intrusion (SWI2) package for MODFLOW
Bakker, Mark; Schaars, Frans; Hughes, Joseph D.; Langevin, Christian D.; Dausman, Alyssa M.
2013-01-01
The SWI2 Package is the latest release of the Seawater Intrusion (SWI) Package for MODFLOW. The SWI2 Package allows three-dimensional vertically integrated variable-density groundwater flow and seawater intrusion in coastal multiaquifer systems to be simulated using MODFLOW-2005. Vertically integrated variable-density groundwater flow is based on the Dupuit approximation in which an aquifer is vertically discretized into zones of differing densities, separated from each other by defined surfaces representing interfaces or density isosurfaces. The numerical approach used in the SWI2 Package does not account for diffusion and dispersion and should not be used where these processes are important. The resulting differential equations are equivalent in form to the groundwater flow equation for uniform-density flow. The approach implemented in the SWI2 Package allows density effects to be incorporated into MODFLOW-2005 through the addition of pseudo-source terms to the groundwater flow equation without the need to solve a separate advective-dispersive transport equation. Vertical and horizontal movement of defined density surfaces is calculated separately using a combination of fluxes calculated through solution of the groundwater flow equation and a simple tip and toe tracking algorithm. Use of the SWI2 Package in MODFLOW-2005 only requires the addition of a single additional input file and modification of boundary heads to freshwater heads referenced to the top of the aquifer. Fluid density within model layers can be represented using zones of constant density (stratified flow) or continuously varying density (piecewise linear in the vertical direction) in the SWI2 Package. The main advantage of using the SWI2 Package instead of variable-density groundwater flow and dispersive solute transport codes, such as SEAWAT and SUTRA, is that fewer model cells are required for simulations using the SWI2 Package because every aquifer can be represented by a single layer of cells. This reduction in number of required model cells and the elimination of the need to solve the advective-dispersive transport equation results in substantial model run-time savings, which can be large for regional aquifers. The accuracy and use of the SWI2 Package is demonstrated through comparison with existing exact solutions and numerical solutions with SEAWAT. Results for an unconfined aquifer are also presented to demonstrate application of the SWI2 Package to a large-scale regional problem.
NASA Astrophysics Data System (ADS)
Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Liu, Jin
2017-03-01
Conventional models of pumping tests in unconfined aquifers often neglect the unsaturated flow process. This study concerns the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells positioned in an unconfined aquifer. A mathematical model is established with special consideration of the coupled unsaturated-saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace-finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W) during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant) in unconfined aquifers affected from above by the unsaturated flow process.
NASA Astrophysics Data System (ADS)
Lin, L. M.; Zhong, X. F.; Wu, Y. X.
2018-04-01
In order to find the intrinsic physical mechanism of the original Kármán vortex wavily distorted across the span due to the introduction of three-dimensional (3-D) geometric disturbances, a flow past a peak-perforated conic shroud is numerically simulated at a Reynolds number of 100. Based on previous work by Meiburg and Lasheras (1988), the streamwise and vertical interactions with spanwise vortices are introduced and analyzed. Then vortex-shedding patterns in the near wake for different flow regimes are reinspected and illustrated from the view of these two interactions. Generally, in regime I, spanwise vortices are a little distorted due to the weak interaction. Then in regime II, spanwise vortices, even though curved obviously, are still shed synchronously with moderate streamwise and vertical interactions. But in regime III, violently wavy spanwise vortices in some vortex-shedding patterns, typically an Ω -type vortex, are mainly attributed to the strong vertical interactions, while other cases, such as multiple vortex-shedding patterns in sub-regime III-D, are resulted from complex streamwise and vertical interactions. A special phenomenon, spacial distribution of streamwise and vertical components of vorticity with specific signs in the near wake, is analyzed based on two models of streamwise and vertical vortices in explaining physical reasons of top and bottom shear layers wavily varied across the span. Then these two models and above two interactions are unified. Finally two sign laws are summarized: the first sign law for streamwise and vertical components of vorticity is positive in the upper shear layer, but negative in the lower shear layer, while the second sign law for three vorticity components is always negative in the wake.
Vertical mass transfer in open channel flow
Jobson, Harvey E.
1968-01-01
The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.
Cultural Values in Intergroup and Single-Group Social Dilemmas.
Probst; Carnevale; Triandis
1999-03-01
Do cultural values influence the manner in which people cooperate with one another? This study assessed cultural characteristics of individuals and then related these characteristics to cooperative behavior in social dilemmas. Participants were assessed for their degree of vertical and horizontal individualism and collectivism, cultural values identified by Triandis (1995). They made choices in either a single-group or an intergroup social dilemma. The single-group dilemma entailed a three-person dilemma; the intergroup dilemma was identical but added subgroup competition, i.e., an opposing three-person group. The results indicated an interaction between cultural characteristics and type of dilemma for cooperation. The single-group versus intergroup effect reported by Bornstein and Ben-Yossef (1994) was replicated, but only for vertical individualists. The vertical individualists were least cooperative in the single-group dilemma but were more cooperative in the intergroup dilemma-where cooperation with the group maximized personal outcomes. The vertical collectivists were most cooperative in the single-group dilemma but were less cooperative in the intergroup dilemma- where group defection resulted in maximum group outcomes. The horizontal individualists and collectivists exhibited an intermediate level of cooperation, with no differences in cooperation between the single-group and intergroup dilemmas. Taken together, the results suggest that the relationship between cultural values and cooperation, in particular with reference to vertical and horizontal components of individualism and collectivism, is more complex than has been suggested in past research. Copyright 1999 Academic Press.
Advanced high performance vertical hybrid synthetic jet actuator
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)
2011-01-01
The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.
Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: evidence for cavity flow
Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.
2017-01-01
Pockmark flow circulation patterns were investigated through current measurements along the rim and center of two pockmarks in Belfast Bay, Maine. Observed time-varying current profiles have a complex vertical and directional structure that rotates significantly with depth and is strongly dependent on the phase of the tide. Observations of the vertical profiles of horizontal velocities in relation to relative geometric parameters of the pockmark are consistent with circulation patterns described qualitatively by cavity flow models (Ashcroft and Zhang 2005). The time-mean behavior of the shear layer is typically used to characterize cavity flow, and was estimated using vorticity thickness to quantify the growth rate of the shear layer horizontally across the pockmark. Estimated positive vorticity thickness spreading rates are consistent with cavity flow predictions, and occur at largely different rates between the two pockmarks. Previously modeled flow (Brothers et al. 2011) and laboratory measurements (Pau et al. 2014) over pockmarks of similar geometry to those examined herein are also qualitatively consistent with cavity flow circulation, suggesting that cavity flow may be a good first-order flow model for pockmarks in general.
NASA Astrophysics Data System (ADS)
Wang, Da-Yang; Jin, Ning-De; Zhuang, Lian-Xin; Zhai, Lu-Sheng; Ren, Ying-Yu
2018-07-01
Three types of rotating electric field conductance sensors (REFCSs) with four, six, and eight electrodes are designed and optimized in this paper to measure the water holdup of oil–gas–water three-phase flow in vertical upward 20 mm inner diameter pipe. The geometric parameters of the REFCSs are optimized using finite element method to access highly sensitive and homogeneous detection fields. The performance of the REFCSs in the water holdup measurement of three-phase flows is experimentally evaluated by generalizing the Maxwell equation. Based on the measured water holdup from the REFCSs, the slippage behaviors in oil–gas–water are uncovered and the superficial velocity of the water phase is determined. The results show that the REFCSs present a high resolution in the water holdup measurement. The REFCS with eight electrodes has better performance than those with four- and six-electrodes, which indicates that its configuration and geometric parameters are more suitable for vertical oil–gas–water three-phase flow measurement in 20 mm inner diameter pipe.
NASA Astrophysics Data System (ADS)
Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang
2017-06-01
In this work, proton exchange membrane fuel cells (PEMFCs) with transparent windows are designed to study the gas-liquid two-phase flow behaviors inside flow channels and the performance of a PEMFC with vertical channels and a PEMFC with horizontal channels in a normal gravity environment and a 3.6 s short-term microgravity environment. Experiments are conducted under high external circuit load and low external circuit load at low temperature where is 35 °C. The results of the present experimental work demonstrate that the performance and the gas-liquid two-phase flow behaviors of the PEMFC with vertical channels exhibits obvious changes when the PEMFCs enter the 3.6 s short-term microgravity environment from the normal gravity environment. Meanwhile, the performance of the PEMFC with vertical channels increases after the PEMFC enters the 3.6 s short-term microgravity environment under high external circuit load, while under low external circuit load, the PEMFC with horizontal channels exhibits better performance in both the normal gravity environment and the 3.6 s short-term microgravity environment.
Kinetics of Supercritical Water Oxidation. SERDP Compliance Technical Thrust Area
1996-01-01
main stream velocity ratio (vj/ Vrx ) and jet-to-main stream diameter ratio) were different for the two tees. As a result, the "fast" tee was providing...Opposed-Flow Tee with no Inserts: Organic/Water Oxidant/Water Feed Feed Flow Conditions: vj (cm/s) 20-64 vj/ Vrx = 0.2-0.25 _ Rej =905-2920 To Reactor...Oxidant/Water Feed New Side-Entry Tee with 0.01" ID inserts: Organic/Water Feed Flow Conditions: vi (cm/s) 775-2,500 vj/ Vrx = 7.5-9.3 Rej =5,700-18,000
Development of a J-T Micro Compressor
NASA Astrophysics Data System (ADS)
Champagne, P.; Olson, J. R.; Nast, T.; Roth, E.; Collaco, A.; Kaldas, G.; Saito, E.; Loung, V.
2015-12-01
Lockheed Martin has developed and tested a space-quality compressor capable of delivering closed-loop gas flow with a high pressure ratio, suitable for driving a Joule- Thomson cold head. The compressor is based on a traditional “Oxford style” dual-opposed piston compressor with linear drive motors and flexure-bearing clearance-seal technology for high reliability and long life. This J-T compressor retains the approximate size, weight, and cost of the ultra-compact, 200 gram Lockheed Martin Pulse Tube Micro Compressor, despite the addition of a flow-rectifying system to convert the AC pressure wave into a steady flow.
Current balancing for battery strings
Galloway, James H.
1985-01-01
A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.
Vertical resolution of baroclinic modes in global ocean models
NASA Astrophysics Data System (ADS)
Stewart, K. D.; Hogg, A. McC.; Griffies, S. M.; Heerdegen, A. P.; Ward, M. L.; Spence, P.; England, M. H.
2017-05-01
Improvements in the horizontal resolution of global ocean models, motivated by the horizontal resolution requirements for specific flow features, has advanced modelling capabilities into the dynamical regime dominated by mesoscale variability. In contrast, the choice of the vertical grid remains a subjective choice, and it is not clear that efforts to improve vertical resolution adequately support their horizontal counterparts. Indeed, considering that the bulk of the vertical ocean dynamics (including convection) are parameterized, it is not immediately obvious what the vertical grid is supposed to resolve. Here, we propose that the primary purpose of the vertical grid in a hydrostatic ocean model is to resolve the vertical structure of horizontal flows, rather than to resolve vertical motion. With this principle we construct vertical grids based on their abilities to represent baroclinic modal structures commensurate with the theoretical capabilities of a given horizontal grid. This approach is designed to ensure that the vertical grids of global ocean models complement (and, importantly, to not undermine) the resolution capabilities of the horizontal grid. We find that for z-coordinate global ocean models, at least 50 well-positioned vertical levels are required to resolve the first baroclinic mode, with an additional 25 levels per subsequent mode. High-resolution ocean-sea ice simulations are used to illustrate some of the dynamical enhancements gained by improving the vertical resolution of a 1/10° global ocean model. These enhancements include substantial increases in the sea surface height variance (∼30% increase south of 40°S), the barotropic and baroclinic eddy kinetic energies (up to 200% increase on and surrounding the Antarctic continental shelf and slopes), and the overturning streamfunction in potential density space (near-tripling of the Antarctic Bottom Water cell at 65°S).
Khuder, Tameem; Yunus, Norsiah; Sulaiman, Eshamsul; Dabbagh, Ali
2017-11-01
Denture fracture is a common clinical complication caused by improper material selection, design, or fabrication technique. This study aimed to investigate the effect of two attachment systems on fracture risk of the implant-overdentures (IOD) via finite element analysis (FEA), using the force distributions obtained from patients' occlusal analyses and to compare the obtained results with the clinical complications associated with these attachments. A three-dimensional jaw model comprised of the edentulous bones was constructed. Three types of mandibular prostheses including complete denture (CD) (model LCD), IOD with Locator attachment (model LID-L), and IOD with telescopic attachment (model LID-T), as well as a maxillary CD (model UCD) were assembled. The vertical occlusal forces at anterior and posterior quadrants were obtained from the patients wearing mandibular CDs or IODs. The FEA results were further compared with the mechanical failures of different prostheses observed at patient recalls. In overall, the fracture risk of mandibular prostheses was lower than the maxillary compartments. The UCD opposing LCD underwent higher strains than that opposing LID-L and LID-T, which was mostly concentrated at the anterior mid-palatal polished surface. On the other hand, LID-L showed the lowest strain, followed by LID-T, and LCD. The obtained results were consistent with the clinical complications observed in the patient recalls. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flow visualization studies of VTOL aircraft models during Hover in ground effect
NASA Technical Reports Server (NTRS)
Mourtos, Nikos J.; Couillaud, Stephane; Carter, Dale; Hange, Craig; Wardwell, Doug; Margason, Richard J.
1995-01-01
A flow visualization study of several configurations of a jet-powered vertical takeoff and landing (VTOL) aircraft model during hover in ground effect was conducted. A surface oil flow technique was used to observe the flow patterns on the lower surfaces of the model. There were significant configuration effects. Wing height with respect to fuselage, the presence of an engine inlet duct beside the fuselage, and nozzle pressure ratio are seen to have strong effects on the surface flow angles on the lower surface of the wing. This test was part of a program to improve the methods for predicting the hot gas ingestion (HGI) for jet-powered vertical/short takeoff and landing (V/STOL) aircraft. The tests were performed at the Jet Calibration and Hover Test (JCAHT) Facility at Ames Research Center.
Present-day stress field in subduction zones: Insights from 3D viscoelastic models and data
NASA Astrophysics Data System (ADS)
Petricca, Patrizio; Carminati, Eugenio
2016-01-01
3D viscoelastic FE models were performed to investigate the impact of geometry and kinematics on the lithospheric stress in convergent margins. Generic geometries were designed in order to resemble natural subduction. Our model predictions mirror the results of previous 2D models concerning the effects of lithosphere-mantle relative flow on stress regimes, and allow a better understanding of the lateral variability of the stress field. In particular, in both upper and lower plates, stress axes orientations depend on the adopted geometry and axes rotations occur following the trench shape. Generally stress axes are oriented perpendicular or parallel to the trench, with the exception of the slab lateral tips where rotations occur. Overall compression results in the upper plate when convergence rate is faster than mantle flow rate, suggesting a major role for convergence. In the slab, along-strike tension occurs at intermediate and deeper depths (> 100 km) in case of mantle flow sustaining the sinking lithosphere and slab convex geometry facing mantle flow or in case of opposing mantle flow and slab concave geometry facing mantle flow. Along-strike compression is predicted in case of sustaining mantle flow and concave slabs or in case of opposing mantle flow and convex slabs. The slab stress field is thus controlled by the direction of impact of mantle flow onto the slab and by slab longitudinal curvature. Slab pull produces not only tension in the bending region of subducted plate but also compression where upper and lower plates are coupled. A qualitative comparison between results and data in selected subductions indicates good match for South America, Mariana and Tonga-Kermadec subductions. Discrepancies, as for Sumatra-Java, emerge due to missing geometric (e.g., occurrence of fault systems and local changes in the orientation of plate boundaries) and rheological (e.g., plasticity associated with slab bending, anisotropy) complexities in the models.
Performance Enhancement of a Full-Scale Vertical Tail Model Equipped with Active Flow Control
NASA Technical Reports Server (NTRS)
Whalen, Edward A.; Lacy, Douglas; Lin, John C.; Andino, Marlyn Y.; Washburn, Anthony E.; Graff, Emilio; Wygnanski, Israel J.
2015-01-01
This paper describes wind tunnel test results from a joint NASA/Boeing research effort to advance active flow control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jet actuators was tested at the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The model was tested at a nominal airspeed of 100 knots and across rudder deflections and sideslip angles that covered the vertical tail flight envelope. A successful demonstration of AFC-enhanced vertical tail technology was achieved. A 31- actuator configuration significantly increased side force (by greater than 20%) at a maximum rudder deflection of 30deg. The successful demonstration of this application has cleared the way for a flight demonstration on the Boeing 757 ecoDemonstrator in 2015.
NASA Astrophysics Data System (ADS)
García-Díaz, Y.; Quiñones-Bolaños, E.; Bustos-Blanco, C.; Vives-Pérez, L.; Bustillo-Lecompte, C.; Saba, M.
2017-12-01
The energy potential of the osmotic pressure gradient of cyanide waters is evaluated using two membrane modules, horizontal and vertical, operated under dead-end flow. The membrane was characterized using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The membrane is mainly composed of carbon, oxygen, and sulphur. The properties of the membrane were unchanged and had no pore clogging after exposure to the cyanide waters. Potentials of 1.78×10-4 and 6.36×10-5Wm-2 were found for the horizontal and vertical modules, respectively, using the Van’t Hoff equation. Likewise, the permeability coefficient of the membrane was higher in the vertical module. Although the energy potential is low under the studied conditions the vertical configuration has a greater potential due to the action of gravity and the homogenous contact of the fluid with the membrane.
NASA Astrophysics Data System (ADS)
Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.
2017-01-01
To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.
Device for passive flow control around vertical axis marine turbine
NASA Astrophysics Data System (ADS)
Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.
2012-11-01
The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.
Convective Flow Induced by Localized Traveling Magnetic Fields
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Rose, M. Franklin (Technical Monitor)
2001-01-01
An axisymmetric traveling magnetic field induces a meridional base flow in a cylindrical zone of an electrically conducting liquid. This remotely induced flow can be conveniently controlled, in magnitude and direction, and can have benefits for crystal growth applications. In particular, it can be used to offset natural convection. For long vertical cylinders, non-uniform and localized in the propagating direction, magnetic fields are required for this purpose. Here we investigate a particular form of this field, namely that induced by a set of a few electric current coils. An order of magnitude reduction of buoyancy convection is theoretically demonstrated for a vertical Bridgman crystal growth configuration.
New numerical solutions of three-dimensional compressible hydrodynamic convection. [in stars
NASA Technical Reports Server (NTRS)
Hossain, Murshed; Mullan, D. J.
1990-01-01
Numerical solutions of three-dimensional compressible hydrodynamics (including sound waves) in a stratified medium with open boundaries are presented. Convergent/divergent points play a controlling role in the flows, which are dominated by a single frequency related to the mean sound crossing time. Superposed on these rapid compressive flows, slower eddy-like flows eventually create convective transport. The solutions contain small structures stacked on top of larger ones, with vertical scales equal to the local pressure scale heights, H sub p. Although convective transport starts later in the evolution, vertical scales of H sub p are apparently selected at much earlier times by nonlinear compressive effects.
Lindgren, R.J.
1995-01-01
Model simulations indicate that vertical ground-water flow from the drift aquifers and from the Platteville aquifer to underlying bedrock aquifers is greatest through bedrock valleys. The convergence of flow paths near bedrock valleys and the greater volume of water moving through the valleys would likely result in both increased concentrations and greater vertical movement of contaminants in areas underlain by bedrock valleys as compared to areas not underlain by bedrock valleys. Model results also indicate that field measurements of hydraulic head might not help locate discontinuities in confining units and additional test drilling to locate discontinuities might be necessary.
NASA Astrophysics Data System (ADS)
Kassem, M.
2006-03-01
The problem of heat and mass transfer in an unsteady free-convection flow over a continuous moving vertical sheet in an ambient fluid is investigated for constant heat flux using the group theoretical method. The nonlinear coupled partial differential equation governing the flow and the boundary conditions are transformed to a system of ordinary differential equations with appropriate boundary conditions. The obtained ordinary differential equations are solved numerically using the shooting method. The effect of Prandlt number on the velocity and temperature of the boundary-layer is plotted in curves. A comparison with previous work is presented.
The hydrodynamics of the Big Horn Basin: a study of the role of faults
Bredehoeft, J.D.; Belitz, K.; Sharp-Hansen, S.
1992-01-01
A three-dimensional mathematical model simulates groundwater flow in the Big Horn basin, Wyoming. The hydraulic head at depth over much of the Big Horn basin is near the land surface elevation, a condition usually defined as hydrostatic. This condition indicates a high, regional-scale, vertical conductivity for the sediments in the basin. Our hypothesis to explain the high conductivity is that the faults act as vertical conduits for fluid flow. These same faults can act as either horizontal barriers to flow or nonbarriers, depending upon whether the fault zones are more permeable or less permeable than the adjoining aquifers. -from Authors
Banta, Edward R.; Provost, Alden M.
2008-01-01
This report documents HUFPrint, a computer program that extracts and displays information about model structure and hydraulic properties from the input data for a model built using the Hydrogeologic-Unit Flow (HUF) Package of the U.S. Geological Survey's MODFLOW program for modeling ground-water flow. HUFPrint reads the HUF Package and other MODFLOW input files, processes the data by hydrogeologic unit and by model layer, and generates text and graphics files useful for visualizing the data or for further processing. For hydrogeologic units, HUFPrint outputs such hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, vertical hydraulic conductivity or anisotropy, specific storage, specific yield, and hydraulic-conductivity depth-dependence coefficient. For model layers, HUFPrint outputs such effective hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, specific storage, primary direction of anisotropy, and vertical conductance. Text files tabulating hydraulic properties by hydrogeologic unit, by model layer, or in a specified vertical section may be generated. Graphics showing two-dimensional cross sections and one-dimensional vertical sections at specified locations also may be generated. HUFPrint reads input files designed for MODFLOW-2000 or MODFLOW-2005.
Oxygen profile and clogging in vertical flow sand filters for on-site wastewater treatment.
Petitjean, A; Forquet, N; Boutin, C
2016-04-01
13 million people (about 20% of the population) use on-site wastewater treatment in France. Buried vertical sand filters are often built, especially when the soil permeability is not sufficient for septic tank effluent infiltration in undisturbed soil. Clogging is one of the main problems deteriorating the operation of vertical flow filters for wastewater treatment. The extent of clogging is not easily assessed, especially in buried vertical flow sand filters. We suggest examining two possible ways of detecting early clogging: (1) NH4-N/NO3-N outlet concentration ratio, and (2) oxygen measurement within the porous media. Two pilot-scale filters were equipped with probes for oxygen concentration measurements and samples were taken at different depths for pollutant characterization. Influent and effluent grab-samples were taken three times a week. The systems were operated using batch-feeding of septic tank effluent. Qualitative description of oxygen transfer processes under unclogged and clogged conditions is presented. NH4-N outlet concentration appears to be useless for early clogging detection. However, NO3-N outlet concentration and oxygen content allows us to diagnose the early clogging of the system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evolution of engine cycles for STOVL propulsion concepts
NASA Technical Reports Server (NTRS)
Bucknell, R. L.; Frazier, R. H.; Giulianetti, D. J.
1990-01-01
Short Take-off, Vertical Landing (STOVL) demonstrator concepts using a common ATF engine core are discussed. These concepts include a separate fan and core flow engine cycle, mixed flow STOVL cycles, separate flow cycles convertible to mixed flow, and reaction control system engine air bleed. STOVL propulsion controls are discussed.
Modeling of information flows in natural gas storage facility
NASA Astrophysics Data System (ADS)
Ranjbari, Leyla; Bahar, Arifah; Aziz, Zainal Abdul
2013-09-01
The paper considers the natural-gas storage valuation based on the information-based pricing framework of Brody-Hughston-Macrina (BHM). As opposed to many studies which the associated filtration is considered pre-specified, this work tries to construct the filtration in terms of the information provided to the market. The value of the storage is given by the sum of the discounted expectations of the cash flows under risk-neutral measure, conditional to the constructed filtration with the Brownian bridge noise term. In order to model the flow of information about the cash flows, we assume the existence of a fixed pricing kernel with liquid, homogenous and incomplete market without arbitrage.
NLS clutching bearing cavity flow analysis
NASA Technical Reports Server (NTRS)
Tran, Ken; Chan, Daniel C.; Darian, Armen
1992-01-01
A flow model of the NLS clutching bearing cavity was built for 2-D axisymmetric viscous analysis. From the computational fluid dynamics (CFD) approach, the tangential force exerted on the surfaces of the inner race was integrated to calculate the dividing torque which, in conjunction with the resistance torque, was used to predict the operating speed of the inner race. In order to further reduce the inner race rotation, the swirling flow at the cavity inlet was partially redirected to generate an opposing torque. Thirty six slanted slots were incorporated into the anti-vortex rib to achieve this goal. A 3-D flow analysis performed on this configuration indicates a drastic reduction of the driving torque and inner race RPM.
Kim, Daehyun; Sobel, Adam H.; Del Genio, Anthony; Wu, Jingbo
2017-01-01
Abstract The processes that lead to changes in the propagation and maintenance of the Madden‐Julian Oscillation (MJO) as a response to increasing CO2 are examined by analyzing moist static energy budget of the MJO in a series of NASA GISS model simulations. It is found changes in MJO propagation is dominated by several key processes. Horizontal moisture advection, a key process for MJO propagation, is found to enhance predominantly due to an increase in the mean horizontal moisture gradients. The terms that determine the strength of the advecting wind anomalies, the MJO horizontal scale and the dry static stability, are found to exhibit opposing trends that largely cancel out. Furthermore, reduced sensitivity of precipitation to changes in column moisture, i.e., a lengthening in the convective moisture adjustment time scale, also opposes enhanced propagation. The dispersion relationship of Adames and Kim, which accounts for all these processes, predicts an acceleration of the MJO at a rate of ∼3.5% K−1, which is consistent with the actual phase speed changes in the simulation. For the processes that contribute to MJO maintenance, it is found that damping by vertical MSE advection is reduced due to the increasing vertical moisture gradient. This weaker damping is nearly canceled by weaker maintenance by cloud‐radiative feedbacks, yielding the growth rate from the linear moisture mode theory nearly unchanged with the warming. Furthermore, the estimated growth rates are found to be a small, negative values, suggesting that the MJO in the simulation is a weakly damped mode. PMID:29497477
Excitation of vertical coronal loop oscillations by impulsively driven flows
NASA Astrophysics Data System (ADS)
Kohutova, P.; Verwichte, E.
2018-05-01
Context. Flows of plasma along a coronal loop caused by the pressure difference between loop footpoints are common in the solar corona. Aims: We aim to investigate the possibility of excitation of loop oscillations by an impulsively driven flow triggered by an enhanced pressure in one of the loop footpoints. Methods: We carry out 2.5D magnetohydrodynamic (MHD) simulations of a coronal loop with an impulsively driven flow and investigate the properties and evolution of the resulting oscillatory motion of the loop. Results: The action of the centrifugal force associated with plasma moving at high speeds along the curved axis of the loop is found to excite the fundamental harmonic of a vertically polarised kink mode. We analyse the dependence of the resulting oscillations on the speed and kinetic energy of the flow. Conclusions: We find that flows with realistic speeds of less than 100 km s-1 are sufficient to excite oscillations with observable amplitudes. We therefore propose plasma flows as a possible excitation mechanism for observed transverse loop oscillations.
Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat
2008-01-15
Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, themore » bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)« less
In-flight flow visualization results from the X-29A aircraft at high angles of attack
NASA Technical Reports Server (NTRS)
Delfrate, John H.; Saltzman, John A.
1992-01-01
Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability.
Forces on stationary particles in near-bed turbulent flows
NASA Astrophysics Data System (ADS)
Schmeeckle, Mark W.; Nelson, Jonathan M.; Shreve, Ronald L.
2007-06-01
In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance.
Forces on stationary particles in near-bed turbulent flows
Schmeeckle, M.W.; Nelson, J.M.; Shreve, R.L.
2007-01-01
In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Ferry, John M.; Wing, Boswell A.; Penniston-Dorland, Sarah C.; Rumble, Douglas
2002-03-01
Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux ~5,000 and ~300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.
NASA Astrophysics Data System (ADS)
Ferry, John; Wing, Boswell; Penniston-Dorland, Sarah; Rumble, Douglas
2001-11-01
Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux 5,000 and 300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.
Spreadsheet Calculation of Jets in Crossflow: Opposed Rows of Slots Slanted at 45 Degrees
NASA Technical Reports Server (NTRS)
Holderman, James D.; Clisset, James R.; Moder, Jeffrey P.
2011-01-01
The purpose of this study was to extend a baseline empirical model to the case of jets entering the mainstream flow from opposed rows of 45 degrees slanted slots. The results in this report were obtained using a spreadsheet modified from the one posted with NASA/TM--2010-216100. The primary conclusion in this report is that the best mixing configuration for opposed rows of 45 degrees slanted slots at any down stream distance is a parallel staggered configuration where the slots are angled in the same direction on top and bottom walls and one side is shifted by half the orifice spacing. Although distributions from perpendicular slanted slots are similar to those from parallel staggered configurations at some downstream locations, results for perpendicular slots are highly dependent on downstream distance and are no better than parallel staggered slots at locations where they are similar and are worse than parallel ones at other distances.
TRANSIENT DUPUIT INTERFACE FLOW WITH PARTIALLY PENETRATING FEATURES
A comprehensive potential is presented for Dupuit interface flow in coastal aquifers where both the fresh water and salt water are moving. The resulting potential flow problem may be solved, for incompressible confined aquifers, using analytic functions. The vertical velocity of ...
Tidal asymmetries of velocity and stratification over a bathymetric depression in a tropical inlet
NASA Astrophysics Data System (ADS)
Waterhouse, Amy F.; Valle-Levinson, Arnoldo; Morales Pérez, Rubén A.
2012-10-01
Observations of current velocity, sea surface elevation and vertical profiles of density were obtained in a tropical inlet to determine the effect of a bathymetric depression (hollow) on the tidal flows. Surveys measuring velocity profiles were conducted over a diurnal tidal cycle with mixed spring tides during dry and wet seasons. Depth-averaged tidal velocities during ebb and flood tides behaved according to Bernoulli dynamics, as expected. The dynamic balance of depth-averaged quantities in the along-channel direction was governed by along-channel advection and pressure gradients with baroclinic pressure gradients only being important during the wet season. The vertical structure of the along-channel flow during flood tides exhibited a mid-depth maximum with lateral shear enhanced during the dry season as a result of decreased vertical stratification. During ebb tides, along-channel velocities in the vicinity of the hollow were vertically sheared with a weak return flow at depth due to choking of the flow on the seaward slope of the hollow. The potential energy anomaly, a measure of the amount of energy required to fully mix the water column, showed two peaks in stratification associated with ebb tide and a third peak occurring at the beginning of flood. After the first mid-ebb peak in stratification, ebb flows were constricted on the seaward slope of the hollow resulting in a bottom return flow. The sinking of surface waters and enhanced mixing on the seaward slope of the hollow reduced the potential energy anomaly after maximum ebb. The third peak in stratification during early flood occurred as a result of denser water entering the inlet at mid-depth. This dense water mixed with ambient deep waters increasing the stratification. Lateral shear in the along-channel flow across the hollow allowed trapping of less dense water in the surface layers further increasing stratification.
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Esker, Barbara S.
1993-01-01
Many conceptual designs for advanced short-takeoff, vertical landing (ASTOVL) aircraft need exhaust nozzles that can vector the jet to provide forces and moments for controlling the aircraft's movement or attitude in flight near the ground. A type of nozzle that can both vector the jet and vary the jet flow area is called a vane nozzle. Basically, the nozzle consists of parallel, spaced-apart flow passages formed by pairs of vanes (vanesets) that can be rotated on axes perpendicular to the flow. Two important features of this type of nozzle are the abilities to vector the jet rearward up to 45 degrees and to produce less harsh pressure and velocity footprints during vertical landing than does an equivalent single jet. A one-third-scale model of a generic vane nozzle was tested with unheated air at the NASA Lewis Research Center's Powered Lift Facility. The model had three parallel flow passages. Each passage was formed by a vaneset consisting of a long and a short vane. The longer vanes controlled the jet vector angle, and the shorter controlled the flow area. Nozzle performance for three nominal flow areas (basic and plus or minus 21 percent of basic area), each at nominal jet vector angles from -20 deg (forward of vertical) to +45 deg (rearward of vertical) are presented. The tests were made with the nozzle mounted on a model tailpipe with a blind flange on the end to simulate a closed cruise nozzle, at tailpipe-to-ambient pressure ratios from 1.8 to 4.0. Also included are jet wake data, single-vaneset vector performance for long/short and equal-length vane designs, and pumping capability. The pumping capability arises from the subambient pressure developed in the cavities between the vanesets, which could be used to aspirate flow from a source such as the engine compartment. Some of the performance characteristics are compared with characteristics of a single-jet nozzle previously reported.
Effect of Riblets on Pressure Recovery in a Straight-Walled Diffuser
1990-12-01
in the boundary layer velocity pro - file. As the flow continues to oppose the adverse pressure gradient, the fluid near the wall begins to flow in the...and was 37 inches long. The floor and ceiling of the test section were con - 3 structed of wood and the side panels were made of plexiglass. Both side...the diffuser remained fairly con - stant at 52 percent. The riblet results seem to follow the same trend, providing an approximate 35 percent increase in
Perspectives on dilution jet mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1986-01-01
A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.
An Investigation of the Aerodynamics and Cooling of a Horizontally-Opposed Engine Installation
NASA Technical Reports Server (NTRS)
Miley, S. J.
1977-01-01
A research program to investigate the aerodynamics of reciprocating aircraft engine cooling installations is discussed. Current results from a flight test program are presented concerning installation flow measurement methods. The influence of different inlet designs on installation cooling effectiveness and efficiency are described.
Interactive computer graphics applications for compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.
NASA Astrophysics Data System (ADS)
Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying
2016-11-01
The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.
Bypass Flow Resistance in Prismatic Gas-Cooled Nuclear Reactors
McEligot, Donald M.; Johnson, Richard W.
2016-12-20
Available computational fluid dynamics (CFD) predictions of pressure distributions in the vertical bypass flow between blocks in a prismatic gas-cooled reactor (GCR) have been analyzed to deduce apparent friction factors and loss coefficients for systems and network codes. We performed calculations for vertical gap spacings "s" of 2, 6 and 10 mm, horizontal gaps between the blocks of two mm and two flow rates, giving a range of gap Reynolds numbers Re Dh of about 40 to 5300. Laminar predictions of the fully-developed friction factor f fd were about three to ten per cent lower than the classical infinitely-wide channelmore » In the entry region, the local apparent friction factor was slightly higher than the classic idealized case but the hydraulic entry length L hy was approximately the same. The per cent reduction in flow resistance was greater than the per cent increase in flow area at the vertical corners of the blocks. The standard k-ϵ model was employed for flows expected to be turbulent. Its predictions of f fd and flow resistance were significantly higher than direct numerical simulations for the classic case; the value of L hy was about thirty gap spacings. Initial quantitative information for entry coefficients and loss coefficients for the expansion-contraction junctions between blocks is also presented. Our study demonstrates how CFD predictions can be employed to provide integral quantities needed in systems and network codes.« less
Icebergs Melting in Uniform and Vertically Sheared Flows
NASA Astrophysics Data System (ADS)
Cenedese, Claudia; Fitzmaurice, Anna; Straneo, Fiammetta
2017-11-01
Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg on the melt plumes generated along the iceberg sides is not fully captured by existing melt parameterizations. A series of novel laboratory experiments showed that side melting of icebergs subject to relative velocities is controlled by two distinct regimes, which depend on the melt plume behavior (side-attached or side-detached). These two regimes produce a nonlinear dependence of melt rate on velocity, and different distributions of meltwater in the water column. Iceberg meltwater may either be confined to a thin surface layer, when the melt plumes are side-attached, or mixed down to the iceberg draft, when the melt plumes are side-detached. In a two-layer vertically sheared flow, the average flow speed in existing melt parameterizations gives an underestimate of the submarine melt rate, in part due to the nonlinearity of the dependence of melt rate on flow speed, but also because vertical shear in the velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. Including this nonlinear velocity dependence in melting parameterizations applied to observed icebergs increases iceberg side melt in the side-attached regime, improving agreement with observations of iceberg submarine melt rates. AF was supported by NA14OAR4320106, CC by NSF OCE-1434041 and OCE-1658079, and FS by NSF PLR-1332911 and OCE-1434041.
Bypass Flow Resistance in Prismatic Gas-Cooled Nuclear Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEligot, Donald M.; Johnson, Richard W.
Available computational fluid dynamics (CFD) predictions of pressure distributions in the vertical bypass flow between blocks in a prismatic gas-cooled reactor (GCR) have been analyzed to deduce apparent friction factors and loss coefficients for systems and network codes. We performed calculations for vertical gap spacings "s" of 2, 6 and 10 mm, horizontal gaps between the blocks of two mm and two flow rates, giving a range of gap Reynolds numbers Re Dh of about 40 to 5300. Laminar predictions of the fully-developed friction factor f fd were about three to ten per cent lower than the classical infinitely-wide channelmore » In the entry region, the local apparent friction factor was slightly higher than the classic idealized case but the hydraulic entry length L hy was approximately the same. The per cent reduction in flow resistance was greater than the per cent increase in flow area at the vertical corners of the blocks. The standard k-ϵ model was employed for flows expected to be turbulent. Its predictions of f fd and flow resistance were significantly higher than direct numerical simulations for the classic case; the value of L hy was about thirty gap spacings. Initial quantitative information for entry coefficients and loss coefficients for the expansion-contraction junctions between blocks is also presented. Our study demonstrates how CFD predictions can be employed to provide integral quantities needed in systems and network codes.« less
Explicit solutions of a gravity-induced film flow along a convectively heated vertical wall.
Raees, Ammarah; Xu, Hang
2013-01-01
The gravity-driven film flow has been analyzed along a vertical wall subjected to a convective boundary condition. The Boussinesq approximation is applied to simplify the buoyancy term, and similarity transformations are used on the mathematical model of the problem under consideration, to obtain a set of coupled ordinary differential equations. Then the reduced equations are solved explicitly by using homotopy analysis method (HAM). The resulting solutions are investigated for heat transfer effects on velocity and temperature profiles.
Huffman, Lester H.; Knoke, Gerald S.
1985-08-20
A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.
Sidewall containment of liquid metal with vertical alternating magnetic fields
Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.; Battles, James E.; Hull, John R.; Rote, Donald M.
1990-01-01
An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel.
Flow over bedforms in a large sand-bed river: A field investigation
Holmes, Robert R.; Garcia, Marcelo H.
2008-01-01
An experimental field study of flows over bedforms was conducted on the Missouri River near St. Charles, Missouri. Detailed velocity data were collected under two different flow conditions along bedforms in this sand-bed river. The large river-scale data reflect flow characteristics similar to those of laboratory-scale flows, with flow separation occurring downstream of the bedform crest and flow reattachment on the stoss side of the next downstream bedform. Wave-like responses of the flow to the bedforms were detected, with the velocity decreasing throughout the flow depth over bedform troughs, and the velocity increasing over bedform crests. Local and spatially averaged velocity distributions were logarithmic for both datasets. The reach-wise spatially averaged vertical-velocity profile from the standard velocity-defect model was evaluated. The vertically averaged mean flow velocities for the velocity-defect model were within 5% of the measured values and estimated spatially averaged point velocities were within 10% for the upper 90% of the flow depth. The velocity-defect model, neglecting the wake function, was evaluated and found to estimate thevertically averaged mean velocity within 1% of the measured values.
Slug Flow Analysis in Vertical Large Diameter Pipes
NASA Astrophysics Data System (ADS)
Roullier, David
The existence of slug flow in vertical co-current two-phase flow is studied experimentally and theoretically. The existence of slug flow in vertical direction implies the presence of Taylor bubbles separated by hydraulically sealed liquid slugs. Previous experimental studies such as Ombere-Ayari and Azzopardi (2007) showed the evidence of the non-existence of Taylor bubbles for extensive experimental conditions. Models developed to predict experimental behavior [Kocamustafaogullari et al. (1984), Jayanti and Hewitt. (1990) and Kjoolas et al. (2017)] suggest that Taylor bubbles may disappear at large diameters and high velocities. A 73-ft tall and 101.6-mm internal diameter test facility was used to conduct the experiments allowing holdup and pressure drop measurements at large L/D. Superficial liquid and gas velocities varied from 0.05-m/s to 0.2 m/s and 0.07 m/s to 7.5 m/s, respectively. Test section pressure varied from 38 psia to 84 psia. Gas compressibility effect was greatly reduced at 84 psia. The experimental program allowed to observe the flow patterns for flowing conditions near critical conditions predicted by previous models (air-water, 1016 mm ID, low mixture velocities). Flow patterns were observed in detail using wire-mesh sensor measurements. Slug-flow was observed for a narrow range of experimental conditions at low velocities. Churn-slug and churn-annular flows were observed for most of the experimental data-points. Cap-bubble flow was observed instead of bubbly flow at low vSg. Wire-mesh measurements showed that the liquid has a tendency to remain near to the walls. The standard deviation of radial holdup profile correlates to the flow pattern observed. For churn-slug flow, the profile is convex with a single maximum near the pipe center while it exhibits a concave shape with two symmetric maxima close to the wall for churn-annular flow. The translational velocity was measured by two consecutive wire-mesh sensor crosscorrelation. The results show linear trends at low mixture velocities and non-linear behaviors at high mixture velocities. The translational velocity trends seem to be related to the flow-pattern observed, namely to the ability of the gas to flow through the liquid structures. A simplified Taylor bubble stability model is proposed. The model allows to estimate under which conditions Taylor bubbles disappear, properly accounting for the diameter effect and velocity effect observed experimentally. In addition, annular flow distribution coefficient relating true holdup to centerline holdup in vertical flow is proposed. The proposed coefficient defines the tendency of the liquid to remain near the walls. This coefficient increases linearly with the void fraction.
NASA Astrophysics Data System (ADS)
Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.
2016-02-01
Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.
Different leachate phytotreatment systems using sunflowers.
Garbo, Francesco; Lavagnolo, Maria Cristina; Malagoli, Mario; Schiavon, Michela; Cossu, Raffaello
2017-01-01
The use of energy crops in the treatment of wastewaters is of increasing interest, particularly in view of the widespread scarcity of water in many countries and the possibility of obtaining renewable fuels of vegetable origin. The aim of this study was to evaluate the feasibility of landfill leachate phytotreatment using sunflowers, particularly as seeds from this crop are suitable for use in biodiesel production. Two different irrigation systems were tested: vertical flow and horizontal subsurface flow, with or without effluent recirculation. Plants were grown in 130L rectangular tanks placed in a special climatic chamber. Leachate irrigated units were submitted to increasing nitrogen concentrations up to 372mgN/L. Leachate was successfully tested as an alternative fertilizer for plants and was not found to inhibit biomass development. The experiment revealed good removal efficiencies for COD (η>50%) up until flowering, while phosphorous removal invariably exceeded 60%. Nitrogen removal rates decreased over time in all experimental units, particularly in vertical flow tanks. In general, horizontal flow units showed the best performances in terms of contaminant removal capacity; the effluent recirculation procedure did not improve performance. Significant evapo-transpiration was observed, particularly in vertical flow units, promoting removal of up to 80% of the inlet irrigation volume. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cervania, A.; Knack, I. M. W.
2017-12-01
The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.
Transient pressure analysis of a volume fracturing well in fractured tight oil reservoirs
NASA Astrophysics Data System (ADS)
Lu, Cheng; Wang, Jiahang; Zhang, Cong; Cheng, Minhua; Wang, Xiaodong; Dong, Wenxiu; Zhou, Yingfang
2017-12-01
This paper presents a semi-analytical model to simulate transient pressure curves for a vertical well with a reconstructed fracture network in fractured tight oil reservoirs. In the proposed model, the reservoir is a composite system and contains two regions. The inner region is described as a formation with a finite conductivity hydraulic fracture network and the flow in the fracture is assumed to be linear, while the outer region is modeled using the classical Warren-Root model where radial flow is applied. The transient pressure curves of a vertical well in the proposed reservoir model are calculated semi-analytically using the Laplace transform and Stehfest numerical inversion. As shown in the type curves, the flow is divided into several regimes: (a) linear flow in artificial main fractures; (b) coupled boundary flow; (c) early linear flow in a fractured formation; (d) mid radial flow in the semi-fractures of the formation; (e) mid radial flow or pseudo steady flow; (f) mid cross-flow; (g) closed boundary flow. Based on our newly proposed model, the effects of some sensitive parameters, such as elastic storativity ratio, cross-flow coefficient, fracture conductivity and skin factor, on the type curves were also analyzed extensively. The simulated type curves show that for a vertical fractured well in a tight reservoir, the elastic storativity ratios and crossflow coefficients affect the time and the degree of crossflow respectively. The pressure loss increases with an increase in the fracture conductivity. To a certain extent, the effect of the fracture conductivity is more obvious than that of the half length of the fracture on improving the production effect. With an increase in the wellbore storage coefficient, the fluid compressibility is so large that it might cover the early stage fracturing characteristics. Linear or bilinear flow may not be recognized, and the pressure and pressure derivative gradually shift to the right. With an increase in the skin effect, the pressure loss increases gradually.
Vertical Landing Aerodynamics of Reusable Rocket Vehicle
NASA Astrophysics Data System (ADS)
Nonaka, Satoshi; Nishida, Hiroyuki; Kato, Hiroyuki; Ogawa, Hiroyuki; Inatani, Yoshifumi
The aerodynamic characteristics of a vertical landing rocket are affected by its engine plume in the landing phase. The influences of interaction of the engine plume with the freestream around the vehicle on the aerodynamic characteristics are studied experimentally aiming to realize safe landing of the vertical landing rocket. The aerodynamic forces and surface pressure distributions are measured using a scaled model of a reusable rocket vehicle in low-speed wind tunnels. The flow field around the vehicle model is visualized using the particle image velocimetry (PIV) method. Results show that the aerodynamic characteristics, such as the drag force and pitching moment, are strongly affected by the change in the base pressure distributions and reattachment of a separation flow around the vehicle.
NASA Astrophysics Data System (ADS)
Di Nucci, Carmine
2018-05-01
This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.
NASA Astrophysics Data System (ADS)
Chitra, M.; Suhasini, M.
2018-04-01
In this paper, we investigate the effect of chemical reaction on the unsteady oscillatory MHD flow through porous medium in a porous vertical channel in the presence of suction velocity. The flow is assumed to be incompressible electrically conducting and radiating viscoelastic fluid in the presence of uniform magnetic flied applied perpendicular to the plane of the plates of the channel. The closed forms of analytical solution are obtained for the momentum, energy and concentration equation. The effect of various flow parameters like Schmidt number, chemical radiation parameter, Grashof number, solutal Grashof number on velocity profile, temperature, concentration, wall shear stress, and the rate of heat and mass transfer are obtained and their behaviour are discussed graphically.
Modeled alongshore circulation and morphologic evolution onshore of a large submarine canyon
NASA Astrophysics Data System (ADS)
Hansen, J. E.; Raubenheimer, B.; List, J. H.; Elgar, S.; Guza, R. T.; Lippmann, T. C.
2012-12-01
Alongshore circulation and morphologic evolution observed at an ocean beach during the Nearshore Canyon Experiment, onshore of a large submarine canyon in San Diego, CA (USA), are investigated using a two-dimensional depth-averaged numerical model (Delft3D). The model is forced with waves observed in ~500 m water depth and tidal constituents derived from satellite altimetry. Consistent with field observations, the model indicates that refraction of waves over the canyon results in wave focusing ~500 m upcoast of the canyon and shadowing onshore of the canyon. The spatial variability in the modeled wave field results in a corresponding non-uniform alongshore circulation field. In particular, when waves approach from the northwest the alongshore flow converges near the wave focal zone, while waves that approach from the southwest result in alongshore flow that diverges away from the wave focal zone. The direction and magnitude of alongshore flows are determined by a balance between the (often opposing) radiation stress and alongshore pressure gradients, consistent with observations and previous results. The largest observed morphologic evolution, vertical accretion of about 1.5 m in about 3 m water depth near the wave focal zone, occurred over a one-week period when waves from the northwest reached heights of 1.8 m. The model, with limited tuning, replicates the magnitude and spatial extent of the observed accretion and indicates that net accretion of the cross-shore profile was owing to alongshore transport from converging alongshore flows. The good agreement between the observed and modeled morphology change allows for an in-depth examination of the alongshore force balance that resulted in the sediment convergence. These results indicate that, at least in this case, a depth-averaged hydrodynamic model can replicate observed surfzone morphologic change resulting from forcing that is strongly non-uniform in the alongshore. Funding was provided by the Office of Naval Research, The National Science Foundation, a Woods Hole Oceanographic Institution and United States Geological Survey joint postdoctoral fellowship, and a National Security Science and Engineering Faculty Fellowship.
Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow
NASA Astrophysics Data System (ADS)
Rosier, Sebastian H. R.; Hilmar Gudmundsson, G.
2018-05-01
GPS measurements reveal strong modulation of horizontal ice shelf and ice stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We show how well-known non-linear aspects of ice rheology can give rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.
Numerical simulation of fire vortex
NASA Astrophysics Data System (ADS)
Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.
2018-05-01
The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.
Study of the motion and deposition of micro particles in a vertical tube containing uniform gas flow
NASA Astrophysics Data System (ADS)
Abolpour, Bahador; Afsahi, M. Mehdi; Soltani Goharrizi, Ataallah; Azizkarimi, Mehdi
2017-12-01
In this study, effects of a gaseous jet, formed in a vertical tube containing a uniform gas flow, on the injected micro particles have been investigated. A CFD model has been developed to simulate the particle motion in the tube. This simulation is very close to the experimental data. The results show that, increasing the flow rate of carrier gas or decreasing the flow rate of surrounding gas increases the effect of gaseous jet and also increases trapping rate of the particles by the tube wall. The minimum and maximum residence times of particles approach together with increasing the size of solid particles. Particles larger than 60 μm have a certain and fixed residence time at different flow rates of the carrier or surrounding gas. About 40 μm particle size has minimal trapping by the tube wall at various experimental conditions.
Numerical Investigation of Vertical Plunging Jet Using a Hybrid Multifluid–VOF Multiphase CFD Solver
Shonibare, Olabanji Y.; Wardle, Kent E.
2015-06-28
A novel hybrid multiphase flow solver has been used to conduct simulations of a vertical plunging liquid jet. This solver combines a multifluid methodology with selective interface sharpening to enable simulation of both the initial jet impingement and the long-time entrained bubble plume phenomena. Models are implemented for variable bubble size capturing and dynamic switching of interface sharpened regions to capture transitions between the initially fully segregated flow types into the dispersed bubbly flow regime. It was found that the solver was able to capture the salient features of the flow phenomena under study and areas for quantitative improvement havemore » been explored and identified. In particular, a population balance approach is employed and detailed calibration of the underlying models with experimental data is required to enable quantitative prediction of bubble size and distribution to capture the transition between segregated and dispersed flow types with greater fidelity.« less
NASA Astrophysics Data System (ADS)
Klepikova, Maria V.; Le Borgne, Tanguy; Bour, Olivier; Davy, Philippe
2011-09-01
SummaryTemperature profiles in the subsurface are known to be sensitive to groundwater flow. Here we show that they are also strongly related to vertical flow in the boreholes themselves. Based on a numerical model of flow and heat transfer at the borehole scale, we propose a method to invert temperature measurements to derive borehole flow velocities. This method is applied to an experimental site in fractured crystalline rocks. Vertical flow velocities deduced from the inversion of temperature measurements are compared with direct heat-pulse flowmeter measurements showing a good agreement over two orders of magnitudes. Applying this methodology under ambient, single and cross-borehole pumping conditions allows us to estimate fracture hydraulic head and local transmissivity, as well as inter-borehole fracture connectivity. Thus, these results provide new insights on how to include temperature profiles in inverse problems for estimating hydraulic fracture properties.
Bending the law: tidal bending and its effects on ice viscosity and flow
NASA Astrophysics Data System (ADS)
Rosier, S.; Gudmundsson, G. H.
2017-12-01
Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.
Liquid oxygen dicting cleaned by falling film method
NASA Technical Reports Server (NTRS)
Paul, H. I.
1967-01-01
Principle of a vertical falling film is used to clean contaminated large diameter and length liquid oxygen /LOX/ cylindrical ducting. The cleaning cycle is performed by flowing trichloroethylene in a falling film down a vertically mounted duct for approximately one hour.
Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands
Lihu Cui; Ying Ouyang; Weizhi Yang; Zhujian Huang; Qiaoling Xu; Guangwei Yu
2015-01-01
Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs...
Tilting Shear Layers in Coastal Flows
2015-09-30
complex topography, vertical stratification, nonhydrostatic effects , and potentially large horizontal to vertical aspect ratios. The code solves the...dominates the evolution with only weak effects from tilting and for γ >> 1 gravitation slumping dominates and supresses the shear instability. For...number, Ro =∆U/flu, the ratio of the ambient vertical vorticity to the planetary vorticity. Here f is the Coriolis frequency. In this case the sign of
NASA Astrophysics Data System (ADS)
Shad, S.; Gates, I. D.; Maini, B. B.
2009-11-01
The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas-liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio.
Todisco, T; Dottorini, M; Rossi, F; Baldoncini, A; Palumbo, R
1989-01-01
Peripheral airspace epithelial permeability (PAEP) to diethylentriaminopentacetate (DTPA), an index of pulmonary integrity, was measured in 3 groups of subjects for different purposes: (1) to establish vertical regional reference values; (2) to determine the physiological role of acute doubling of total pulmonary blood flow; (3) to quantify the pulmonary epithelial damage in smokers and the possibility of lung protection by an agent stimulating surfactant production. This study broadens previous knowledge of PAEP. First of all, regional reference values are given for young normal nonsmoking subjects and the existence of a vertical gradient of PAEP is confirmed. Furthermore, this study shows that this gradient is independent of the vertical blood flow gradient, since an acute increase of total blood flow in pneumonectomized patients does not modify the regional distribution of PAEP. Finally, it is confirmed that the cigarette smoker's lung is more permeable than the controls and that probably a drug-stimulating surfactant production gives some protection against damage due to chronic smoking.
Hanson, R.T.; Nishikawa, T.
1996-01-01
The vertical distribution of hydraulic conductivity in layered aquifer systems commonly is needed for model simulations of ground-water flow and transport. In previous studies, time-drawdown data or flowmeter data were used individually, but not in combination, to estimate hydraulic conductivity. In this study, flowmeter data and time-drawdown data collected from a long-screened production well and nearby monitoring wells are combined to estimate the vertical distribution of hydraulic conductivity in a complex multilayer coastal aquifer system. Flowmeter measurements recorded as a function of depth delineate nonuniform inflow to the wellbore, and this information is used to better discretize the vertical distribution of hydraulic conductivity using analytical and numerical methods. The time-drawdown data complement the flowmeter data by giving insight into the hydraulic response of aquitards when flow rates within the wellbore are below the detection limit of the flowmeter. The combination of these field data allows for the testing of alternative conceptual models of radial flow to the wellbore.
Hydraulic properties of three types of glacial deposits in Ohio
Strobel, M.L.
1993-01-01
The effects of thickness, grain size, fractures, weathering, and atmosphericconditions on vertical ground-water flow in glacial deposits were studied at three sites that represent ground moraine, end moraine, and lacustrine depositional environments. Vertical hydraulic conductivities computed from pumped-well tests were 3.24 x 10-1 to 6.47 x 10-1 ft/d (feet per day) at the site representing end moraine and 1.17 ft/d at the site representing lacustrine deposits. Analysis of test data for the ground moraine site did not yield estimates of hydraulic conductivities, but did indicate that ground water flows through the total thickness of deposits in response to discharge from a lower gravel unit. Vertical hydraulic conductivities computed from pumped-well tests of nested wells and data from drill-core analyses indicate that fractures affect the migration of ground water downward through the glacial deposits at these sites. Flow through glacial deposits is complex; it is controlled by fractures, gram-size distribution, clay content, thickness, and degree of weathering, and atmospheric conditions.
Determining Near-Bottom Fluxes of Passive Tracers in Aquatic Environments
NASA Astrophysics Data System (ADS)
Bluteau, Cynthia E.; Ivey, Gregory N.; Donis, Daphne; McGinnis, Daniel F.
2018-03-01
In aquatic systems, the eddy correlation method (ECM) provides vertical flux measurements near the sediment-water interface. The ECM independently measures the turbulent vertical velocities w' and the turbulent tracer concentration c' at a high sampling rate (> 1 Hz) to obtain the vertical flux w'c'¯ from their time-averaged covariance. This method requires identifying and resolving all the flow-dependent time (and length) scales contributing to w'c'¯. With increasingly energetic flows, we demonstrate that the ECM's current technology precludes resolving the smallest flux-contributing scales. To avoid these difficulties, we show that for passive tracers such as dissolved oxygen, w'c'¯ can be measured from estimates of two scalar quantities: the rate of turbulent kinetic energy dissipation ɛ and the rate of tracer variance dissipation χc. Applying this approach to both laboratory and field observations demonstrates that w'c'¯ is well resolved by the new method and can provide flux estimates in more energetic flows where the ECM cannot be used.
Molle, Pascal
2014-01-01
French vertical flow constructed wetlands, treating directly raw wastewater, have become the main systems implemented for communities under 2,000 population equivalent in France. Like in sludge drying reed beds, an organic deposit layer is formed over time at the top surface of the filter. This deposit layer is a key factor in the performance of the system as it impacts hydraulic, gas transfers, filtration efficiency and water retention time. The paper discusses the role of this deposit layer on the hydraulic and biological behaviour of the system. It presents results from different studies to highlight the positive role of the layer but, as well, the difficulties in modelling this organic layer. As hydraulic, oxygen transfers, and biological activity are interlinked and impacted by the deposit layer, it seems essential to focus on its role (and its quantification) to find new developments of vertical flow constructed wetlands fed with raw wastewater.
NASA Astrophysics Data System (ADS)
Bense, V. F.; Kurylyk, B. L.
2017-12-01
Sustained ground surface warming on a decadal time scale leads to an inversion of thermal gradients in the upper tens of meters. The magnitude and direction of vertical groundwater flow should influence the propagation of this warming signal, but direct field observations of this phenomenon are rare. Comparison of temperature-depth profiles in boreholes in the Veluwe area, Netherlands, collected in 1978-1982 and 2016 provided such direct measurement. We used these repeated profiles to track the downward propagation rate of the depth at which the thermal gradient is zero. Numerical modeling of the migration of this thermal gradient "inflection point" yielded estimates of downward groundwater flow rates (0-0.24 m a-1) that generally concurred with known hydrogeological conditions in the area. We conclude that analysis of inflection point depths in temperature-depth profiles impacted by surface warming provides a largely untapped opportunity to inform sustainable groundwater management plans that rely on accurate estimates of long-term vertical groundwater fluxes.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
1991-01-01
A wind tunnel experiment was conducted in the David Taylor Research Center 7- by 10-Foot Transonic Tunnel of the wing leading-edge extension (LEX) and forebody vortex flows at subsonic and transonic speeds about a 0.06-scale model of the F/A-18. The primary goal was to improve the understanding and control of the vortical flows, including the phenomena of vortex breakdown and vortex interactions with the vertical tails. Laser vapor screen flow visualizations, LEX, and forebody surface static pressures, and six-component forces and moments were obtained at angles of attack of 10 to 50 degrees, free-stream Mach numbers of 0.20 to 0.90, and Reynolds numbers based on the wing mean aerodynamic chord of 0.96 x 10(exp 6) to 1.75 x 10(exp 6). The wind tunnel results were correlated with in-flight flow visualizations and handling qualities trends obtained by NASA using an F-18 High-Alpha Research Vehicle (HARV) and by the Navy and McDonnell Douglas on F-18 aircraft with LEX fences added to improve the vertical tail buffet environment. Key issues that were addressed include the sensitivity of the vortical flows to the Reynolds number and Mach number; the reduced vertical tail excitation, and the corresponding flow mechanism, in the presence of the LEX fence; the repeatability of data obtained during high angle-of-attack wind tunnel testing of F-18 models; the effects of particle seeding for flow visualization on the quantitative model measurements; and the interpretation of off-body flow visualizations obtained using different illumination and particle seeding techniques.
Niswonger, Richard G.; Prudic, David E.; Regan, R. Steven
2006-01-01
Percolation of precipitation through unsaturated zones is important for recharge of ground water. Rain and snowmelt at land surface are partitioned into different pathways including runoff, infiltration, evapotranspiration, unsaturated-zone storage, and recharge. A new package for MODFLOW-2005 called the Unsaturated-Zone Flow (UZF1) Package was developed to simulate water flow and storage in the unsaturated zone and to partition flow into evapotranspiration and recharge. The package also accounts for land surface runoff to streams and lakes. A kinematic wave approximation to Richards? equation is solved by the method of characteristics to simulate vertical unsaturated flow. The approach assumes that unsaturated flow occurs in response to gravity potential gradients only and ignores negative potential gradients; the approach further assumes uniform hydraulic properties in the unsaturated zone for each vertical column of model cells. The Brooks-Corey function is used to define the relation between unsaturated hydraulic conductivity and water content. Variables used by the UZF1 Package include initial and saturated water contents, saturated vertical hydraulic conductivity, and an exponent in the Brooks-Corey function. Residual water content is calculated internally by the UZF1 Package on the basis of the difference between saturated water content and specific yield. The UZF1 Package is a substitution for the Recharge and Evapotranspiration Packages of MODFLOW-2005. The UZF1 Package differs from the Recharge Package in that an infiltration rate is applied at land surface instead of a specified recharge rate directly to ground water. The applied infiltration rate is further limited by the saturated vertical hydraulic conductivity. The UZF1 Package differs from the Evapotranspiration Package in that evapotranspiration losses are first removed from the unsaturated zone above the evapotranspiration extinction depth, and if the demand is not met, water can be removed directly from ground water whenever the depth to ground water is less than the extinction depth. The UZF1 Package also differs from the Evapotranspiration Package in that water is discharged directly to land surface whenever the altitude of the water table exceeds land surface. Water that is discharged to land surface, as well as applied infiltration in excess of the saturated vertical hydraulic conductivity, may be routed directly as inflow to specified streams or lakes if these packages are active; otherwise, this water is removed from the model. The UZF1 Package was tested against the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model for a vertical unsaturated flow problem that includes evapotranspiration losses. This report also includes an example in which MODFLOW-2005 with the UZF1 Package was used to simulate a realistic surface-water/ground-water flow problem that includes time and space variable infiltration, evapotranspiration, runoff, and ground-water discharge to land surface and to streams. Another simpler problem is presented so that the user may use the input files as templates for new problems and to verify proper code installation.
Hall, James E.; Williams, Everett H.
1977-01-01
A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.
Self-regulating fuel staging port for turbine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Nieuwenhuizen, William F.; Fox, Timothy A.; Williams, Steven
2014-07-08
A port (60) for axially staging fuel and air into a combustion gas flow path 28 of a turbine combustor (10A). A port enclosure (63) forms an air path through a combustor wall (30). Fuel injectors (64) in the enclosure provide convergent fuel streams (72) that oppose each other, thus converting velocity pressure to static pressure. This forms a flow stagnation zone (74) that acts as a valve on airflow (40, 41) through the port, in which the air outflow (41) is inversely proportion to the fuel flow (25). The fuel flow rate is controlled (65) in proportion to enginemore » load. At high loads, more fuel and less air flow through the port, making more air available to the premixing assemblies (36).« less
NASA Astrophysics Data System (ADS)
Delandmeter, Philippe; Lambrechts, Jonathan; Legat, Vincent; Vallaeys, Valentin; Naithani, Jaya; Thiery, Wim; Remacle, Jean-François; Deleersnijder, Eric
2018-03-01
The discontinuous Galerkin (DG) finite element method is well suited for the modelling, with a relatively small number of elements, of three-dimensional flows exhibiting strong velocity or density gradients. Its performance can be highly enhanced by having recourse to r-adaptivity. Here, a vertical adaptive mesh method is developed for DG finite elements. This method, originally designed for finite difference schemes, is based on the vertical diffusion of the mesh nodes, with the diffusivity controlled by the density jumps at the mesh element interfaces. The mesh vertical movement is determined by means of a conservative arbitrary Lagrangian-Eulerian (ALE) formulation. Though conservativity is naturally achieved, tracer consistency is obtained by a suitable construction of the mesh vertical velocity field, which is defined in such a way that it is fully compatible with the tracer and continuity equations at a discrete level. The vertically adaptive mesh approach is implemented in the three-dimensional version of the geophysical and environmental flow Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM 3D; www.climate.be/slim). Idealised benchmarks, aimed at simulating the oscillations of a sharp thermocline, are dealt with. Then, the relevance of the vertical adaptivity technique is assessed by simulating thermocline oscillations of Lake Tanganyika. The results are compared to measured vertical profiles of temperature, showing similar stratification and outcropping events.
Analysis of proposed criteria for human response to vibration
NASA Technical Reports Server (NTRS)
Janeway, R. N.
1975-01-01
The development of criteria for human vibration response is reviewed, including the evolution of the ISO standard 2631. The document is analyzed to show why its application to vehicle ride evaluation is strongly opposed. Alternative vertical horizontal limits for comfort are recommended in the ground vehicle ride frequency range above 1 Hz. These values are derived by correlating the absorbed power findings of Pradko and Lee with other established criteria. Special emphasis is placed on working limits in the frequency range of 1 to 10 Hz since this is the most significant area in ground vehicle ride evaluation.
NASA Astrophysics Data System (ADS)
Vermeul, V.; McKinley, J. P.; Newcomer, D.; Fritz, B. G.; Mackley, R.; Zachara, J. M.
2010-12-01
Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. In this study, simultaneous measurement of 1) wellbore flow using an electromagnetic borehole flowmeter (EBF), 2) depth discrete hydraulic head, and 3) aqueous uranium concentrations were used to quantify wellbore flow and assess the associated impacts on measured aqueous concentrations. Monitoring results demonstrate the utility of continuous (i.e., hourly measurements for ~ one month) ambient wellbore flow monitoring and show that relatively large wellbore flows (up to 4 LPM) can be induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an EBF system allowed these effects to be evaluated in concert with continuously monitored river stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multi-level well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. In addition, observed variability in aqueous concentrations measured during active tracer transport experiments provided additional evidence of wellbore flow impacts and showed that the magnitude and direction of wellbore flow varied spatially across the wellfield. An approach to mitigate these effects based on increasing hydraulic resistance within the wellbore was evaluated. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.
NASA Astrophysics Data System (ADS)
Narsu, Sivakumar; Rushi Kumar, B.
2017-11-01
The main purpose of this work is to investigate the diffusion-thermo effects on unsteady combined convection magneto-hydromagnetic boundary layer flow of viscous electrically conducting and chemically reacting fluid over a vertical permeable radiated plate embedded in a highly porous medium. The slip flow regime is applied at the porous interface a uniform magnetic field is applied normal to the fluid flow direction which absorbs the fluid with suction that varies with time. The dimensionless governing equations are solved analytically using two terms harmonic and non-harmonic functions. The expressions for the fields of velocity, temperature and concentration are obtained. For engineering interest we also calculated the physical quantities the skin friction coefficient, Nusselt and Sherwood number are derived. The effects of various physical parameters on the flow quantities are studied through graphs and tables. For the validity, we have checked our results with previously published work and found good agreement with already existing studies.
NASA Technical Reports Server (NTRS)
Paegle, J.; Kalnay-Rivas, E.; Baker, W. E.
1981-01-01
By examining the vertical structure of the low order spherical harmonics of the divergence and vorticity fields, the relative contribution of tropical and monsoonal circulations upon the global wind fields was estimated. This indicates that the overall flow over North America and the Pacific between January and February is quite distinct both in the lower and upper troposphere. In these longitudes there is a stronger tropical overturning and subtropical jet stream in January than February. The divergent flow reversed between 850 and 200 mb. Poleward rotational flow at upper levels is associated with an equatorward rotational flow at low levels. This suggests that the monsoon and other tropical circulations project more amplitude upon low order (global scale) representations of the flow than do the typical midlatitude circulations and that their structures show conspicuous changes on a time scale of a week or less.
Simulation of air velocity in a vertical perforated air distributor
NASA Astrophysics Data System (ADS)
Ngu, T. N. W.; Chu, C. M.; Janaun, J. A.
2016-06-01
Perforated pipes are utilized to divide a fluid flow into several smaller streams. Uniform flow distribution requirement is of great concern in engineering applications because it has significant influence on the performance of fluidic devices. For industrial applications, it is crucial to provide a uniform velocity distribution through orifices. In this research, flow distribution patterns of a closed-end multiple outlet pipe standing vertically for air delivery in the horizontal direction was simulated. Computational Fluid Dynamics (CFD), a tool of research for enhancing and understanding design was used as the simulator and the drawing software SolidWorks was used for geometry setup. The main purpose of this work is to establish the influence of size of orifices, intervals between outlets, and the length of tube in order to attain uniformity of exit flows through a multi outlet perforated tube. However, due to the gravitational effect, the compactness of paddy increases gradually from top to bottom of dryer, uniform flow pattern was aimed for top orifices and larger flow for bottom orifices.
Thermal non-equilibrium in porous medium adjacent to vertical plate: ANN approach
NASA Astrophysics Data System (ADS)
Ahmed, N. J. Salman; Ahamed, K. S. Nazim; Al-Rashed, Abdullah A. A. A.; Kamangar, Sarfaraz; Athani, Abdulgaphur
2018-05-01
Thermal non-equilibrium in porous medium is a condition that refers to temperature discrepancy in solid matrix and fluid of porous medium. This type of flow is complex flow requiring complex set of partial differential equations that govern the flow behavior. The current work is undertaken to predict the thermal non-equilibrium behavior of porous medium adjacent to vertical plate using artificial neural network. A set of neurons in 3 layers are trained to predict the heat transfer characteristics. It is found that the thermal non-equilibrium heat transfer behavior in terms of Nusselt number of fluid as well as solid phase can be predicted accurately by using well-trained neural network.
Thermocapillary effect on the dynamics of viscous beads on vertical fiber
NASA Astrophysics Data System (ADS)
Liu, Rong; Liu, Qiu Sheng
2014-09-01
The gravity-driven flow of a thin liquid film down a uniformly heated vertical fiber is considered. This is an unstable open flow that exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the variation of surface tension induced by temperature disturbance at the interface. A linear stability analysis and a nonlinear simulation are performed to investigate the dynamic of axisymmetric disturbances. The results showed that the Marangoni instability and the Rayleigh-Plateau instability reinforce each other. With the increase of the thermocapillary effect, the fiber flow has a tendency to break up into smaller droplets.
NASA Astrophysics Data System (ADS)
Sambath, P.; Pullepu, Bapuji; Kannan, R. M.
2018-04-01
The impact of thermal radiation on unsteady laminar free convective MHD flow of a incompressible viscous fluid passes through a vertically inclined plate under the persuade of heat source and sink is presented here.Plate surface is considered to have variable wall temperature. The fluid regarded as gray absorbing / emitting, but non dispersing medium. The periphery layer dimensionless equations that administer the flow are evaluated by a finite difference implicit method called Crank Nicolson method. Numerical solutions are carried out for velocity, temperature, local shear stress, heat transfer rate for various values of the parameters (Pr, λ, Δ M, Rd ) are presented.
NASA Astrophysics Data System (ADS)
Kannan, R. M.; Pullepu, Bapuji; Immanuel, Y.
2018-04-01
A two dimensional mathematical model is formulated for the transient laminar free convective flow with heat transfer over an incompressible viscous fluid past a vertical cone with uniform surface heat flux with combined effects of viscous dissipation and radiation. The dimensionless boundary layer equations of the flow which are transient, coupled and nonlinear Partial differential equations are solved using the Network Simulation Method (NSM), a powerful numerical technique which demonstrates high efficiency and accuracy by employing the network simulator computer code Pspice. The velocity and temperature profiles have been investigated for various factors, namely viscous dissipation parameter ε, Prandtl number Pr and radiation Rd are analyzed graphically.
NASA Astrophysics Data System (ADS)
Jahani, Matin; Sarkardeh, Hamed; Jabbari, Ebrahim
2018-03-01
In the present paper, the effect of guide wall and pier geometry on the flow pattern of a dam spillway was studied. Different scenarios were numerically simulated to optimize the geometry of the guide walls and piers of the spillway in different hydraulic conditions. The RNG and VOF models were used for turbulence and free surface simulations, respectively. Numerical results were validated with experimental data and good agreement was found with an average relative deviation of less than 10%. Results showed that the vertical inclination of the guide wall and pier was the main affecting factor in the approach flow condition through the spillway. A 44% increase in the vertical inclination of the guide wall resulted in a 43% reduction of the turbulence factor and in a 13% increment of the discharge coefficient of the spillway. By increasing the vertical inclination of the piers of the spillway by 28%, the flow behaviour becomes more uniform and the discharge coefficient increases by as much as 11%. Moreover, the results indicate that increasing the straight length of the guide wall leads to a reduction of the depth-averaged velocity and of the turbulence energy in the approach channel.
Wall pressure measurements of flooding in vertical countercurrent annular air–water flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choutapalli, I., Vierow, K.
2010-01-01
An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less
Hotchkiss, W.R.; Levings, J.F.
1986-01-01
The Powder River, Bull Mountains, and Williston basins of Montana and Wyoming were investigated to understand the geohydrology and subsurface water flow. Rocks were separated into: Fox Hills-lower Hell Creek aquifer (layer 1), upper Hell Creek confining layer (layer 2), Tullock aquifer (layer 3), Lebo confining layer (layer 4), and Tongue River aquifer (layer 5). Aquifer transmissivities were estimated from ratios of sand and shale and adjusted for kinematic viscosity and compaction. Vertical hydraulic conductance per unit area between layers was estimated. Potentiometric surface maps were drawn from limited data. A three-dimensional finite-difference model was used for simulation. Five stages of simulation decreased and standard error of estimate for hydraulic head from 135 to 110 feet for 739 observation nodes. The resulting mean transmissivities for layers 1-5 were 443, 191, 374, 217, and 721 sq ft/d. The corresponding mean vertical hydraulic conductances per unit area between the layers were simulated; they ranged from 0.000140 to 0.0000150. Mean annual recharge across the study area was about 0.26 percent of average annual precipitation. Large volumes of interlayer flow indicate the vertical flow may be significant. (USGS)
Vertical variations of coral reef drag forces
NASA Astrophysics Data System (ADS)
Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri; LWI Collaboration; Technion Collaboration
2017-11-01
Corals rely on water flow for the supply of nutrients, particles and energy. Therefore, modeling of processes that take place inside the reef, such as respiration and photosynthesis, relies on models that describe the flow and concentration fields. Due to the high spatial heterogeneity of branched coral reefs, depth average models are usually applied. Such an average approach is insufficient when the flow spatial variation inside the reef is of interest. We report on measurements of vertical variations of drag force that are needed for developing 3D flow models. Coral skeletons were densely arranged along a laboratory flume. Two corals were CT-scanned and replaced with horizontally sliced 3D printed replicates. Drag profiles were measured by connecting the slices to costume drag sensors and velocity profiles were measured using a LDV. The measured drag of whole colonies was in excellent agreement with previous studies; however, these studies never showed how drag varies inside the reef. In addition, these distributions of drag force showed an excellent agreement with momentum balance calculations. Based on the results, we propose a new drag model that includes the dispersive stresses, and consequently displays reduced vertical variations of the drag coefficient.
NASA Astrophysics Data System (ADS)
Lin, Zhe; Zhu, Linhang; Cui, Baoling; Li, Yi; Ruan, Xiaodong
2014-12-01
Gate valve has various placements in the practical usages. Due to the effect of gravity, particle trajectories and erosions are distinct between placements. Thus in this study, gas-solid flow properties and erosion in gate valve for horizontal placement and vertical placement are discussed and compared by using Euler-Lagrange simulation method. The structure of a gate valve and a simplified structure are investigated. The simulation procedure is validated in our published paper by comparing with the experiment data of a pipe and an elbow. The results show that for all investigated open degrees and Stokes numbers (St), there are little difference of gas flow properties and flow coefficients between two placements. It is also found that the trajectories of particles for two placements are mostly identical when St « 1, making the erosion independent of placement. With the increase of St, the distinction of trajectories between placements becomes more obvious, leading to an increasing difference of the erosion distributions. Besides, the total erosion ratio of surface T for horizontal placement is two orders of magnitudes larger than that for vertical placement when the particle diameter is 250μm.
Clay, T W; Grünbaum, D
2010-04-01
Many larvae and other plankton have complex and variable morphologies of unknown functional significance. We experimentally and theoretically investigated the functional consequences of the complex morphologies of larval sand dollars, Dendraster excentricus (Eschscholtz), for hydrodynamic interactions between swimming and turbulent water motion. Vertical shearing flows (horizontal gradients of vertical flow) tilt organisms with simple geometries (e.g. spheres, ellipsoids), causing these organisms to move horizontally towards downwelling water and compromising their abilities to swim upwards. A biomechanical model of corresponding hydrodynamic interactions between turbulence-induced shear and the morphologically complex four-, six- and eight-armed stages of sand dollar larvae suggests that the movements of larval morphologies differ quantitatively and qualitatively across stages and shear intensities: at shear levels typical of calm conditions in estuarine and coastal environments, all modeled larval stages moved upward. However, at higher shears, modeled four- and eight-armed larvae moved towards downwelling, whereas six-armed larvae moved towards upwelling. We also experimentally quantified larval movement by tracking larvae swimming in low-intensity shear while simultaneously mapping the surrounding flow fields. Four- and eight-armed larvae moved into downwelling water, but six-armed larvae did not. Both the model and experiments suggest that stage-dependent changes to larval morphology lead to differences in larval movement: four- and eight-armed stages are more prone than the six-armed stage to moving into downwelling water. Our results suggest a mechanism by which differences can arise in the vertical distribution among larval stages. The ability to mitigate or exploit hydrodynamic interactions with shear is a functional consequence that potentially shapes larval evolution and development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yuandeng; Liu, Yu; Xu, Zhi
We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottommore » of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.« less
Barnier, C; Palmier, C; Atteia, O
2013-01-01
The vertical heterogeneity of contaminant concentrations in aquifers is well known, but obtaining representative samples is still a subject of debate. In this paper, the question arises from sites where numerous fully screened wells exist and there is a need to define the vertical distribution of contaminants. For this purpose, several wells were investigated with different techniques on a site contaminated with chlorinated solvents. A core-bored well shows that a tetrachloroethene (PCE) phase is sitting on and infiltrating a less permeable layer. Downstream of the cored well, the following sampling techniques were compared on fully screened wells: low flow pumping at several depths, pumping between packers and a new multilevel sampler for fully screened wells. Concerning low flow rate pumping, very low gradients were found, which may be due to the existence of vertical flow inside the well or in the gravel pack. Sampling between packers gave results comparable with the cores, separating a layer with PCE and trichloroethene from another one with cis 1,2-dichloroethene and vinyl chloride as major compounds. Detailed sampling according to pumped volume shows that even between packers, cleaning of the inter-packer volume is necessary before each sampling. Lastly, the proposed new multilevel sampler gives results similar to the packers but has the advantages of much faster sampling and a constant vertical positioning, which is fairly important for long-term monitoring in highly stratified aquifers.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Jackisch, Conrad; Blume, Theresa; Haßler, Sibylle; Allroggen, Niklas; Tronicke, Jens
2013-04-01
The CAOS Research Unit recently proposed a hierarchical classification scheme to subdivide a catchment into what we vaguely name classes of functional entities that puts the gradients driving mass and energy flows and their controls on top of the hierarchy and the arrangement of landscape attributes controlling flow resistances along these driving gradients (for instance soil types and apparent preferential pathways) at the second level. We name these functional entities lead topology classes, to highlight that they are characterized by a spatially ordered arrangement of landscape elements along a superordinate driving gradient. Our idea is that these lead topology classes have a distinct way how their structural and textural architecture controls the interplay of storage dynamics and integral response behavior that is typical for all members of a class, but is dissimilar between different classes. This implies that we might gain exemplary understanding of the typical dynamic behavior of the class, when thoroughly studying a few class members. We propose that the main integral catchment functions mass export and drainage, mass redistribution and storage, energy exchange with the atmosphere, as well as energy redistribution and storage - result from spatially organized interactions of processes within lead topologies that operate at different scale levels and partly dominate during different conditions. We distinguish: 1) Lead topologies controlling the land surface energy balance during radiation driven conditions at the plot/pedon scale level. In this case energy fluxes dominate and deplete a vertical temperature gradient that is build up by depleting a gradient in radiation fluxes. Water is a facilitator in this concert due to the high specific heat of vaporization. Slow vertical water fluxes in soil dominate, which are driven by vertical gradients in atmospheric water potential, chemical potential in the plant and in soil hydraulic potentials. 2) Lead topologies controlling fast drainage and generation stream flow during rainfall events at the hillslope scale level: Fast vertical and lateral mass fluxes dominate. They are driven by vertical and lateral gradients in pressure heads which build up by depleting the kinetic energy/velocity gradient of rainfall when it hits the ground or of vertical subsurface flows that "hit" a layer of low permeability. 3) Lead topologies controlling slow drainage and its supply, and thus creating memory at the catchment scale level: These are the groundwater system and the stream including the riparian zone. Permanent lateral water flows dominate that are driven by permanently active lateral gradients in pressure heads. Event scale stream flow generation and energy exchange with the atmospheric boundary layer are organized by the first two types of lead topologies, and their dominance changes with prevailing type of boundary conditions. We furthermore propose that lead topologies at the plot and the hillslope scale levels can be further subdivided into least functional entities we name call classes of elementary functional units. These classes of elementary functional units co-evolved being exposed to similar superordinate vertical gradients in a self-reinforcing manner. Being located either at the hilltop (sediment source area), midslope (sediment transport area) or hillfoot/riparian zone (sediment deposit area) they experienced similar weathering processes (past water, energy and nutrient flows), causing formation of similar soil texture in different horizons. This implies, depending on hillslope position and aspect, formation of distinct niches (with respect to water, nutrient and sun light availability) and thus "similar filters" to select distinct natural communities of animal and vegetation species. This in turn implies similarity with respect to formation of biotic flow networks (ant-, worm-, mole- and whole burrow systems, as well as root systems), which feeds back on vertical and lateral water/mass and thermal energy flows and so on. The idea is that members of EFU classes interact within lead topologies along a hierarchy of driving potential gradients and that these interactions are mediated by a hierarchy of connected flow networks like macropores, root networks or lateral pipe systems. We hypothesize that members of a functional unit class are similar with respect to the time invariant controls of the vertical gradients (soil hydraulic potentials, soil temperature, plant water potential) and the flow resistances in vertical direction (plant and soil albedo, soil hydraulic and thermal conductivity, vertical macropore networks). This implies that members of an EFU class behave functionally similar at least with respect to vertical flows of water and heat: we may gain exemplary understanding of the typical dynamic behavior of the class, by thoroughly studying a few class members. In the following we will thus use the term "elementary functional units, EFUs" and "elementary functional unit class, EFU class" as synonyms. We propose that a thorough understanding of the behavior of a few representatives of the most important EFU classes and of their interactions within a hierarchy of lead topology classes is sufficient for understanding and distributed modeling of event scale stream flow production under rainfall driven conditions and energy exchange with the atmosphere under radiation driven conditions. Good and not surprising news is that lead topologies controlling stream flow contribution, are an interconnected, ordered arrangement of the lead topologies that control energy exchange. We suggests that a combination of the related model approaches which simplified but physical based approaches to simulate dynamics in the saturated zone, riparian zone and the river network results in a structurally more adequate model framework for catchments of organized complexity. The feasibility of this concept is currently tested in the Attert catchment by setting up pseudo replica of field experiments and a distributed monitoring network in several members of first guess EFUs and superordinate lead topology classes. We combine geophysical and soil physical survey, artificial tracer tests and analysis of stable isotopes and ecological survey with distributed sensor clusters that permanently monitor meteorological variables, soil moisture and matric potential, piezometric heads etc. Within the proposed study we will present first results especially from the sensor clusters and geophysical survey. By using geostatistical methods we will work out to which extend members within a candidate EFU class are similar with respect to subsurface structures like depth to bedrock and soil properties as well as with respect to soil moisture/storage dynamics. Secondly, we will work out whether structurally similar hillslopes produce a similar event scale stream flow contribution, which of course is dependent on the degree of similarity of a) the rainfall forcing they receive and b) of their wetness state. To this end we will perform virtual experiments with the physically based model CATFLOW by perturbing behavioral model structures. These have been shown to portray system behavior and its architecture in a sense that they reproduce distributed observations of soil moisture and subsurface storm flow and represent the observed structural and textural signatures of soils, flow networks and vegetation.
NASA Astrophysics Data System (ADS)
Pietri, A.; Capet, X.; d'Ovidio, F.; Le Sommer, J.; Molines, J. M.; Doglioli, A. M.
2016-02-01
Vertical velocities (w) associated with meso and submesoscale processes play an essential role in ocean dynamics and physical-biological coupling due to their impact on the upper ocean vertical exchanges. However, their small intensity (O 1 cm/s) compared to horizontal motions and their important variability in space and time makes them very difficult to measure. Estimations of these velocities are thus usually inferred using a generalized approach based on frontogenesis theories. These estimations are often obtained by solving the diagnostic omega equation. This equation can be expressed in different forms from a simple quasi geostrophic formulation to more complex ones that take into account the ageostrophic advection and the turbulent fluxes. The choice of the method used generally depends on the data available and on the dominant processes in the region of study. Here we aim to provide a statistically robust evaluation of the scales at which the vertical velocity can be resolved with confidence depending on the formulation of the equation and the dynamics of the flow. A high resolution simulation (dx=1-1.5 km) of the North Atlantic was used to compare the calculations of w based on the omega equation to the modelled vertical velocity. The simulation encompasses regions with different atmospheric forcings, mesoscale activity, seasonality and energetic flows, allowing us to explore several different dynamical contexts. In a few years the SWOT mission will provide bi-dimensional images of sea level elevation at a significantly higher resolution than available today. This work helps assess the possible contribution of the SWOT data to the understanding of the submesoscale circulation and the associated vertical fluxes in the upper ocean.
Implementation and Validation of a Laminar-to-Turbulent Transition Model in the Wind-US Code
NASA Technical Reports Server (NTRS)
Denissen, Nicholas A.; Yoder, Dennis A.; Georgiadis, Nicholas J.
2008-01-01
A bypass transition model has been implemented in the Wind-US Reynolds Averaged Navier-Stokes (RANS) solver. The model is based on the Shear Stress Transport (SST) turbulence model and was built starting from a previous SST-based transition model. Several modifications were made to enable (1) consistent solutions regardless of flow field initialization procedure and (2) fully turbulent flow beyond the transition region. This model is intended for flows where bypass transition, in which the transition process is dominated by large freestream disturbances, is the key transition mechanism as opposed to transition dictated by modal growth. Validation of the new transition model is performed for flows ranging from incompressible to hypersonic conditions.
NASA Astrophysics Data System (ADS)
Kirk, Toby L.
2018-03-01
This paper presents new analytical formulae for flow in a channel with one or both walls patterned with a longitudinal array of ridges and arbitrarily protruding menisci. Derived from a matched asymptotic expansion, they extend results by Crowdy (J. Fluid Mech., vol. 791, 2016, R7) for shear flow, and thus make no restriction on the protrusion into or out of the liquid. The slip length formula is compared against full numerical solutions and, despite the assumption of small ridge period in its derivation, is found to have a very large range of validity; relative errors are small even for periods large enough for the protruding menisci to degrade the flow and touch the opposing wall.
NASA Technical Reports Server (NTRS)
Bhattacharjee, Subrata; Altenkirch, Robert A.; Worley, Regis; Tang, Lin; Bundy, Matt; Sacksteder, Kurt; Delichatsios, Michael A.
1997-01-01
The effort described here is a reflight of the Solid Surface Combustion Experiment (SSCE), with extension of the flight matrix first and then experiment modification. The objectives of the reflight are to extend the understanding of the interplay of the radiative processes that affect the flame spread mechanisms.
Clark, Robert M.; Cronin, John C.
1977-01-01
A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.
Experiments in dilution jet mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Srinivasan, R.; Berenfeld, A.
1983-01-01
Experimental results are presented on the mixing of a single row of jets with an isothermal mainstream in a straight duct, with flow and geometric variations typical of combustion chambers in gas turbine engines included. It is found that at a constant momentum ratio, variations in the density ratio have only a second-order effect on the profiles. A first-order approximation to the mixing of jets with a variable temperature mainstream can, it is found, be obtained by superimposing the jets-in-an-isothermal-crossflow and mainstream profiles. Another finding is that the flow area convergence, especially injection-wall convergence, significantly improves the mixing. For opposed rows of jets with the orifice cone centerlines in-line, the optimum ratio of orifice spacing to duct height is determined to be 1/2 of the optimum value for single injection at the same momentum ratio. For opposed rows of jets with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is found to be twice the optimum value for single side injection at the same momentum ratio.
External combustion engine having an asymmetrical CAM
NASA Astrophysics Data System (ADS)
Duva, Anthony W.
1994-11-01
An external combustion engine having an asymmetrical cam is the focus of this patent. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel and an even number of cylinders for receiving sequentially the energized gas through the rotary valve, the gas performing work on a piston disposed within each cylinder. The pistons transfer energy to a drive shaft through a connection to the asymmetrically shaped cam. The cam is shaped having two identical halves, each half having a power and an exhaust stroke. The identical halves provide that opposing cylinders are in thermodynamic balance, thus reducing rocking vibrations and torque pulsations. Having opposing pistons within the same thermodynamic cycle allows piston stroke to be reduced while maintaining displacement comparable to an engine having individual cycle positions. The reduced stroke diminishes gas flow velocity thus reducing flow induced noise. The power and exhaust strokes within each identical half of the cam are asymmetrical in that the power stroke is of greater duration than the exhaust stroke. The shape and length of the power stroke is optimized for increased efficiency.
Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces
Kalpathy, Sreeram K.; Shreyes, Amrita Ravi
2017-01-01
The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Northam, G. Burton; Wilson, L. G.
1991-01-01
Five coaxial tubular opposed jet burners (OJBs) with tube diameter D(T) of 1.8-10 mm and 5 mm conical nozzles were used to form dish-shaped counterflow diffusion flames centered by opposing laminar jets of nitrogen and hydrocarbon-diluted H2 versus air in an argon-purged chamber at 1 atm. Area-averaged air jet velocities at blowoff of the central flame, U(air), characterized extinction of the airside flame as functions of input H2 concentration on the fuelside. A master plot of extensive U(air) data at blowoff versus D(T) shows that U(air) varies linearly with D(T). This and other data sets are used to find that nozzle OJB results for U(air)/diameter average 4.24 + or - 0.28 times larger than tubular OJB results for the same fuel compositions. Critical radial velocity gradients consistent with one-dimensional stagnation point boundary theory and with plug flow inputs are estimated. The results compare favorably with published numerical results based only on potential flow.
The importance of vertical resolution in the free troposphere for modeling intercontinental plumes
NASA Astrophysics Data System (ADS)
Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.
2018-05-01
Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.
Coherence of simulated atmospheric boundary-layer turbulence
NASA Astrophysics Data System (ADS)
Jiadong, Zeng; Zhiguo, Li; Mingshui, Li
2017-12-01
The coherences in a plane perpendicular to incoming flow are measured in wind tunnel simulations of atmospheric turbulent flow. The measured coherences are compared with analytical expressions tailored to field measurements and with theoretical coherence models which assume homogeneous turbulence and the von Kármán’s spectrum. The comparison indicates that the simulated atmospheric boundary layer flow is approximately horizontally homogeneous turbulence. Based on the above assumption and the systematic analysis of lateral coherence, it can be concluded that the lateral coherences of simulated atmospheric boundary turbulence can be determined accurately using the von Kármán spectrum and the turbulence parameters measured by a few measurement points. The measured results also show that the spatial characteristics of vertical coherences are closely related to the dimensionless parameter {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The vertical coherence at two heights can be roughly estimated by the ratio to {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The relationship between the phase angles of u-, v- and w-components and the vertical separation distance and the height from the ground is further analyzed. Finally, the roles of the type of land surface roughness, the height from the ground, the turbulence intensity and the integral length scale in lateral and vertical coherences are also discussed in this study.
Study on cyclic injection gas override in condensate gas reservoir
NASA Astrophysics Data System (ADS)
Sun, Yan; Zhu, Weiyao; Xia, Jing; Li, Baozhu
2018-02-01
Cyclic injection gas override in condensate gas reservoirs for the large density difference between injection gas and condensate gas has been studied, but no relevant mathematical models have been built. In this paper, a mathematical model of cyclic injection gas override in condensate gas reservoir is established, considering density difference between the injected gas and the remaining condensate gas in the formation. The vertical flow ratio and override degree are used to reflect the override law of injected dry gas. Combined with the actual data of Tarim gas condensate reservoir, the parameters of injected dry gas override are calculated and analysed. The results show that the radial pressure rises or falls rapidly and the pressure gradient varies greatly in the near wells. The radial pressure varies slowly and the pressure gradient changes little in the reservoir which is within a certain distance from the wells. In the near injection well, the injected dry gas mainly migrates along the radial direction, and the vertical migration is relatively not obvious. With the distance from the injection well, the vertical flow ratio and override degree of injected dry gas increases, and the vertical flow ratio reaches the maximum in the middle of the injection well and the production well.
Observations of the Space-time Structure of Flow, Vorticity and Stress over Orbital-scale Ripples
NASA Astrophysics Data System (ADS)
Hare, J.; Hay, A. E.; Cheel, R. A.; Zedel, L. J.
2012-12-01
Results are presented from a laboratory investigation of the spatial and temporal structure at turbulence-resolving scales of the flow, vorticity and stress over equilibrium orbital-scale sand ripples. The ripples were created in 0.153 mm median diameter sand, at 10 s period and an excursion of 0.5 m, using the oscillating tray apparatus described in Hay et al. (JGR-Oceans, 2012). Vertical profiles of velocity above the bed were obtained at 40 Hz and 3 mm vertical resolution using a wide-band coherent Doppler profiler (MFDop). Through runs at different positions of the MFDop relative to a particular ripple crest, phase-averaged measures of the flow over a full ripple wavelength were obtained as a function of phase during the forcing cycle. These measurements are used to determine the formation of the lee vortex and the position of the point of reattachment. Estimates of the phase-averaged bottom stress (obtained using the vertical integral of the defect acceleration, the Reynolds stress and the law-of-the-wall) as a function of position along the ripple profile are inter-compared.Phase-averaged horizontal velocity over one ripple where the black line indicates the sediment-water interface. Phase-averaged vertical velocity over one ripple where the black line indicates the sediment-water interface.
NASA Astrophysics Data System (ADS)
Tamm, Gunnar; Jaluria, Yogesh
2003-11-01
An experimental investigation has been carried out on the buoyancy and pressure induced flow of hot gases in vertical shafts, in order to simulate the propagation of combustion products in elevator shafts due to fire in multilevel buildings. Various geometrical configurations are studied, with regard to natural and forced ventilation imposed at the top or bottom of the vertical shaft. The aspect ratio is taken at a fixed value of 6 and the inflow conditions for the hot gases, at a vent near the bottom, are varied in terms of the Reynolds and Grashof numbers. Temperature measurements within the shaft allow a detailed study of the steady state thermal fields, from which optimal means for smoke alleviation in high-rise building fires may be developed. Flow visualization is also used to study the flow characteristics. The results obtained indicate a wall plume as the primary transport mechanism. Flow recirculation dominates at high Grashof number flows, while increased Reynolds numbers gives rise to greater mixing in the shaft. The development and stability of the flow and its effect on the spread of smoke and hot gases are assessed for the different shaft configurations and inlet conditions. It is found that the fastest smoke removal and lowest shaft temperatures occur for a configuration with natural ventilation at the top and forced ventilation up from the shaft bottom. It is also shown that forced ventilation can be used to arrest smoke spread, as well as to dilute the effects of the fire.
Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane
2012-01-01
Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).
NASA Astrophysics Data System (ADS)
Alastruey, Jordi; Siggers, Jennifer H.; Peiffer, Véronique; Doorly, Denis J.; Sherwin, Spencer J.
2012-03-01
Three-dimensional simulations of blood flow usually produce such large quantities of data that they are unlikely to be of clinical use unless methods are available to simplify our understanding of the flow dynamics. We present a new method to investigate the mechanisms by which vascular curvature and torsion affect blood flow, and we apply it to the steady-state flow in single bends, helices, double bends, and a rabbit thoracic aorta based on image data. By calculating forces and accelerations in an orthogonal coordinate system following the centreline of each vessel, we obtain the inertial forces (centrifugal, Coriolis, and torsional) explicitly, which directly depend on vascular curvature and torsion. We then analyse the individual roles of the inertial, pressure gradient, and viscous forces on the patterns of primary and secondary velocities, vortical structures, and wall stresses in each cross section. We also consider cross-sectional averages of the in-plane components of these forces, which can be thought of as reducing the dynamics of secondary flows onto the vessel centreline. At Reynolds numbers between 50 and 500, secondary motions in the directions of the local normals and binormals behave as two underdamped oscillators. These oscillate around the fully developed state and are coupled by torsional forces that break the symmetry of the flow. Secondary flows are driven by the centrifugal and torsional forces, and these are counterbalanced by the in-plane pressure gradients generated by the wall reaction. The viscous force primarily opposes the pressure gradient, rather than the inertial forces. In the axial direction, and depending on the secondary motion, the curvature-dependent Coriolis force can either enhance or oppose the bulk of the axial flow, and this shapes the velocity profile. For bends with little or no torsion, the Coriolis force tends to restore flow axisymmetry. The maximum circumferential and axial wall shear stresses along the centreline correlate well with the averaged in-plane pressure gradient and the radial displacement of the peak axial velocity, respectively. We conclude with a discussion of the physiological implications of these results.
Lift on side by side intruders of various geometries within a granular flow
NASA Astrophysics Data System (ADS)
Acevedo-Escalante, M. F.; Caballero-Robledo, G. A.
2017-06-01
Obstacles within fluids have been widely used in engineering and in physics to study hydrodynamic interactions. In granular matter, objects within a granular flow have helped to understand fundamental features of drag and lift forces. In our group, we have studied numerically the flow mediated interaction between two static disks within a vertical granular flow in a two-dimensional container where the flow velocity and the distance between obstacles were varied. Attractive and repulsive forces were found depending on flow velocity and separation between intruders. The simulations evidenced a relationship between the average flow velocity in a specific section ahead of the obstacles and the attractive-repulsive lift. On the other hand, it was showed that the lift force on an object dragged within a granular medium depends on the shape of the intruder. Here we present experimental results of the interaction between two side-by-side intruders of different shapes within a vertical granular flow. We built a quasi-two-dimensional container in which we placed the intruders and using load cells we measured lift and drag forces during the discharge process for different flow velocities.
Submerged flow bridge scour under clear water conditions
DOT National Transportation Integrated Search
2012-09-01
Prediction of pressure flow (vertical contraction) scour underneath a partially or fully submerged bridge superstructure : in an extreme flood event is crucial for bridge safety. An experimentally and numerically calibrated formulation is : developed...
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Peters, C. A.; Dobson, P. F.; Doughty, C.
2010-12-01
Understanding the processes involved in large-scale upward flow of CO2 related to Geologic Carbon Sequestration (GCS) is critical to evaluating trapping mechanisms and potential impacts of CO2 leakage over long distances. The Laboratory for Underground CO2 Investigations (LUCI) is being planned to be built at DUSEL to host large-scale vertical CO2 and brine flow experiments. As conceived, LUCI would consist of a 500 m-long vertical raisebore approximately 3 m in diameter which will contain three suspended long-column pressure vessels. The long-column pressure vessels are planned to be 1 m in diameter with thermal control on the outer walls with a centralized inner fiberglass well for accommodating monitoring tools for determining phase saturation, porosity, temperature, and other properties of the flow region. The outer wall of the inner fiberglass well and the inner wall of the main vessel comprise the lateral boundaries of the long vertical annular regions that will be filled with porous media in which experiments investigating flow and transport, geochemical alterations of well cement, and biological processes involving injected CO2 will be performed. The large vertical extent of the column is needed to span the full range of CO2 conditions from supercritical (scCO2, P > 7.4 MPa, T > 31 °C) to gaseous CO2 that is believed to be significant as CO2 flows upwards. Here we consider the CO2-brine flow experiments in which the annular region will be pressurized at the top and bottom and contain brine-filled porous media through which scCO2 introduced at the bottom will flow upward. We are carrying out two-phase flow simulations of the buoyancy- and pressure-driven flow of CO2 and brine upward in the annular porous media region to further design the flow columns, e.g., to determine critical length and diameter requirements, as well as to plan the experiments to be performed. The simulations are carried out using TOUGH2/ECO2N, which models two-phase non-isothermal flow and transport of water, CO2, and NaCl in porous media. To treat important issues of drainage and imbibition at the leading and trailing edges of the CO2 slug, we employ hysteretic relative permeability functions. Simulation results will be presented showing flow rate, saturation, and temperature dependence on permeability, relative permeability parameters, size of initial CO2 slug, imposed upward flow rate, and different side boundary conditions (e.g., fully insulated and temperature equal to a constant geothermal gradient).
NASA Technical Reports Server (NTRS)
Dunkerton, T. J.
1981-01-01
Analytical and numerical solutions are obtained in an approximate quasi-linear model, to describe the way in which vertically propagating waves give rise to mean flow accelerations in an atmosphere due to the effects of wave transience. These effects in turn result from compressibility and vertical group velocity feedback, and culminate in the spontaneous formation and descent of regions of strong mean wind shear. The numerical solutions display mean flow accelerations due to Kelvin waves in the equatorial stratosphere, with wave absorption altering the transience mechanism in such significant respects as causing the upper atmospheric mean flow acceleration to be very sensitive to the precise magnitude and distribution of the damping mechanisms. The numerical simulations of transient equatorial waves in the quasi-biennial oscillation are also considered.
Flowmeter for gas-entrained solids flow
Porges, Karl G.
1990-01-01
An apparatus and method for the measurement of solids feedrate in a gas-entrained solids flow conveyance system. The apparatus and method of the present invention include a vertical duct connecting a source of solids to the gas-entrained flow conveyance system, a control valve positioned in the vertical duct, and a capacitive densitometer positioned along the duct at a location a known distance below the control valved so that the solid feedrate, Q, of the gas entrained flow can be determined by Q=S.rho..phi.V.sub.S where S is the cross sectional area of the duct, .rho. is the density of the solid, .phi. is the solid volume fraction determined by the capacitive densitometer, and v.sub.S is the local solid velocity which can be inferred from the konown distance of the capacitive densitometer below the control valve.
NASA Astrophysics Data System (ADS)
Beneš, Michal; Pažanin, Igor
2018-03-01
This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe's ends. Starting from the dimensionless Darcy-Brinkman-Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman-Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.
NASA Astrophysics Data System (ADS)
Dastagiri Babu, D.; Venkateswarlu, S.; Keshava Reddy, E.
2017-08-01
In this paper, we have considered the unsteady free convective two dimensional flow of a viscous incompressible electrically conducting second grade fluid over an infinite vertical porous plate under the influence of uniform transverse magnetic field with time dependent permeability, oscillatory suction. The governing equations of the flow field are solved by a regular perturbation method for small amplitude of the permeability. The closed form solutions for the velocity, temperature and concentration have been derived analytically and also its behavior is computationally discussed with reference to different flow parameters with the help of profiles. The skin fiction on the boundary, the heat flux in terms of the Nusselt number and rate of mass transfer in terms of Sherwood number are also obtained and their behavior computationally discussed.
NASA Astrophysics Data System (ADS)
Jha, B. K.; Aina, B.; Muhammad, S. A.
2015-03-01
This study investigates analytically the hydrodynamic and thermal behaviour of a fully developed natural convection flow in a vertical micro-porous-annulus (MPA) taking into account the velocity slip and temperature jump at the outer surface of inner porous cylinder and inner surface of outer porous cylinder. A closed — form solution is presented for velocity, temperature, volume flow rate, skin friction and rate of heat transfer expressed as a Nusselt number. The influence of each governing parameter on hydrodynamic and thermal behaviour is discussed with the aid of graphs. During the course of investigation, it is found that as suction/injection on the cylinder walls increases, the fluid velocity and temperature is enhanced. In addition, it is observed that wall surface curvature has a significant effect on flow and thermal characteristics.
Sidewall containment of liquid metal with vertical alternating magnetic fields
Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.
1990-12-04
An apparatus is disclosed for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 9 figs.
Sidewall containment of liquid metal with vertical alternating magnetic fields
Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.
1988-06-17
An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent to the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 8 figs.
Fluid flow analysis and vertical gradient freeze crystal growth in a travelling magnetic field
NASA Astrophysics Data System (ADS)
Lantzsch, R.; Grants, I.; Galindo, V.; Patzold, O.; Gerbeth, G.; Stelter, M.; Croll, A.
2006-12-01
In bulk crystal growth of semiconductors the concept of remote flow control by means of alternating magnetic fields has attracted considerable interest (see, e.g., te{1,2,3,4,5,6}). In this way the melt flow can be tailored for growth under optimised conditions to improve the crystal properties and/or the growth yield. A promising option is to apply an axially travelling magnetic wave to the melt (Travelling Magnetic Field - TMF). It introduces a mainly axial Lorentz force, which leads to meridional flow patterns. In recent numerical studies te{3}, te{6} the TMF has been recognised to be a versatile and efficient tool to control the heat and mass transport in the melt. For the Vertical Bridgman/Vertical Gradient Freeze (VB/VGF) growth, the beneficial effect of an adequately adjusted TMF-induced flow was clearly demonstrated in te{6} in terms of the reduction of thermal shear stress at the solid-liquid interface. In this paper, we present experimental and numerical results on the TMF driven convection in an isothermal model fluid as well as first VGF-TMF crystal growth experiments. The model investigations are focused on the transition from laminar to instationary flow conditions that should be avoided in crystal growth applications. The VGF experiments were aimed at growing Ga doped germanium single crystals under the influence of the travelling field in a newly developed VGF-TMF equipment. Figs 4, Refs 10.
Method and apparatus for flash evaporation of liquids
Bharathan, Desikan
1984-01-01
A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.
Method and apparatus for flash evaporation of liquids
Bharathan, D.
1984-01-01
A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.
Similarity solutions for unsteady free-convection flow from a continuous moving vertical surface
NASA Astrophysics Data System (ADS)
Abd-El-Malek, Mina B.; Kassem, Magda M.; Mekky, Mohammad L.
2004-03-01
The transformation group theoretic approach is applied to present an analysis of the problem of unsteady free convection flow over a continuous moving vertical sheet in an ambient fluid. The thermal boundary layer induced within a vertical semi-infinite layer of Boussinseq fluid by a constant heated bounding plate. The application of two-parameter groups reduces the number of independent variables by two, and consequently the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The obtained ordinary differential equations are solved analytically for the temperature and numerically for the velocity using the shooting method. Effect of Prandtl number on the thermal boundary-layer and velocity boundary-layer are studied and plotted in curves.
Why Gas Hydrate Occurrenced Over Topographic Highs in Shenhu Area Northern South China Sea?
NASA Astrophysics Data System (ADS)
Liao, J.
2015-12-01
Methane gas hydrate has been drilled by China Geological Survey in shenhu area northern south china sea in 2007 .Shenhu area is located in the middle-lower continental slope and 17 submarine canyons are incised into the shelf,gas hydrtae was observed in boreholes over topographic highs,but origin of the hydrate is controversial.Accumulation of gas hydrate is depending on temperature-pressure field and supply quantities of methane and some other factors,in the same depth of the shallow sediments there is the same press,so temperature field and supply quantities of methane become the most important factors.Lachenbruch(1968) calculated the topographic disturbance to geothermal gradients,in shenhu area consistent local variations were observed, notably low heat flow values over prominent topographic highs and high heat flow values over the flanks of the topographic highs. At some localities over a horizontal distance of 2.5 km, heat flow increased by as much as 50%, from typical values of 65 to 100 mW/m2 .Some vertical fractures were observed beneath topographic highs in previous studies.Based on the profile across borehole SH7,we designed four experiments:A,uniform distribution of heat flux with no vertical fractures;B,Uniform distribution of heat flux with vertical fractures beneath geographic highs;C,uneven distribution of heat flux with no vertical fractures;D,uneven distribution of heat flux with vertical fractures beneath geographic highs.According to previous studies,we restored Palaeobathymetry,abundance of organic matters, sandstone-madstone ratio ,porosity and permeability of each,and parameters of vertical fractures.The result of experiment D shows the similar distribution characteristic with the drilling result,so We believe that low heat flux and Vertical fractures are the most important factors . This work was supported by the National Science Foundation of China(grant no. 41406080).
NASA Astrophysics Data System (ADS)
Lan, C. W.
2001-07-01
The effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth with steady ampoule rotation are investigated through numerical simulation. The numerical model is based on the Boussinesq approximation in a rotating frame, and the fluid flow, heat and mass transfer, and the growth interface are solved simultaneously by a robust finite-volume/Newton method. The growth of gallium-doped germanium (GaGe) in the Grenoble furnace is adopted as an example. The calculated results at small Froude number (Fr<<1) are consistent with the previous prediction (Lan, J. Crystal growth 197 (1999) 983). However, at a high rotation speed or in reduced gravity, where the centrifugal acceleration becomes important (Fr˜1), the results are quite different due to the secondary flow induced. Since the direction of the induced flow is different from that of the buoyancy convection due to the concave interface, the flow damping is more effective than that due to the Coriolis force alone. More importantly, radial segregation can be reversed during the flow transition from one to the other.
NASA Astrophysics Data System (ADS)
Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt
2018-01-01
This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.
NASA Astrophysics Data System (ADS)
Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi
2018-01-01
We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.
Estimating Vertical Land Motion in the Chesapeake Bay
NASA Astrophysics Data System (ADS)
Houttuijn Bloemendaal, L.; Hensel, P.
2017-12-01
This study aimed to provide a modern measurement of subsidence in the Chesapeake Bay region and establish a methodology for measuring vertical land motion using static GPS, a cheaper alternative to InSAR or classical leveling. Vertical land motion in this area is of particular concern because tide gages are showing up to 5 mm/yr of local, relative sea level rise. While a component of this rate is the actual eustatic sea level rise itself, part of the trend may also be vertical land motion, in which subsidence exacerbates the effects of actual changes in sea level. Parts of this region are already experiencing an increase in the frequency and magnitude of near-shore coastal flooding, but the last comprehensive study of vertical land motion in this area was conducted by NOAA in 1974 (Holdahl & Morrison) using repeat leveled lines. More recent measures of vertical land motion can help inform efforts on resilience to sea level rise, such as in the Hampton Roads area. This study used measured GPS-derived vertical heights in conjunction with legacy GPS data to calculate rates of vertical motion at several points in time for a selection of benchmarks scattered throughout the region. Seventeen marks in the stable Piedmont area and in the areas suspected of subsidence in the Coastal Plain were selected for the analysis. Results indicate a significant difference between the rates of vertical motion in the Piedmont and Coastal Plain, with a mean rate of -4.10 mm/yr in the Coastal Plain and 0.15 mm/yr in the Piedmont. The rates indicate particularly severe subsidence at the southern Delmarva Peninsula coast and the Hampton-Roads area, with a mean rate of -6.57 mm/yr in that region. By knowing local rates of subsidence as opposed to sea level change itself, coastal managers may make better informed decisions regarding natural resource use, such as deciding whether or not to reduce subsurface fluid withdrawals or to consider injecting treated water back into the aquifer to slow down subsidence.
Computational simulation of laboratory-scale volcanic jets
NASA Astrophysics Data System (ADS)
Solovitz, S.; Van Eaton, A. R.; Mastin, L. G.; Herzog, M.
2017-12-01
Volcanic eruptions produce ash clouds that may travel great distances, significantly impacting aviation and communities downwind. Atmospheric hazard forecasting relies partly on numerical models of the flow physics, which incorporate data from eruption observations and analogue laboratory tests. As numerical tools continue to increase in complexity, they must be validated to fine-tune their effectiveness. Since eruptions are relatively infrequent and challenging to observe in great detail, analogue experiments can provide important insights into expected behavior over a wide range of input conditions. Unfortunately, laboratory-scale jets cannot easily attain the high Reynolds numbers ( 109) of natural volcanic eruption columns. Comparisons between the computational models and analogue experiments can help bridge this gap. In this study, we investigate a 3-D volcanic plume model, the Active Tracer High-resolution Atmospheric Model (ATHAM), which has been used to simulate a variety of eruptions. However, it has not been previously validated using laboratory-scale data. We conducted numerical simulations of three flows that we have studied in the laboratory: a vertical jet in a quiescent environment, a vertical jet in horizontal cross flow, and a particle-laden jet. We considered Reynolds numbers from 10,000 to 50,000, jet-to-cross flow velocity ratios of 2 to 10, and particle mass loadings of up to 25% of the exit mass flow rate. Vertical jet simulations produce Gaussian velocity profiles in the near exit region by 3 diameters downstream, matching the mean experimental profiles. Simulations of air entrainment are of the correct order of magnitude, but they show decreasing entrainment with vertical distance from the vent. Cross flow simulations reproduce experimental trajectories for the jet centerline initially, although confinement appears to impact the response later. Particle-laden simulations display minimal variation in concentration profiles between cases with different mass loadings and size distributions, indicating that differences in particle behavior may not be evident at this laboratory scale.
The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2003-01-01
Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three-dimensional velocities and angles. These data are then used to test the applicability and limitations of Maxwell's Z Model in representing the subsurface evolution of the excavation-stage flow-field center during vertical and oblique impacts.
1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange
Voytek, Emily B.; Drenkelfuss, Anja; Day-Lewis, Frederick D.; Healy, Richard; Lane, John W.; Werkema, Dale D.
2014-01-01
A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known.
Effects of water-contaminated air on blowoff limits of opposed jet hydrogen-air diffusion flames
NASA Technical Reports Server (NTRS)
Pellett, Gerald L.; Jentzen, Marilyn E.; Wilson, Lloyd G.; Northam, G. Burton
1988-01-01
The effects of water-contaminated air on the extinction and flame restoration of the central portion of N2-diluted H2 versus air counterflow diffusion flames are investigated using a coaxial tubular opposed jet burner. The results show that the replacement of N2 contaminant in air by water on a mole for mole basis decreases the maximum sustainable H2 mass flow, just prior to extinction, of the flame. This result contrasts strongly with the analogous substitution of water for N2 in a relatively hot premixed H2-O2-N2 flame, which was shown by Koroll and Mulpuru (1986) to lead to a significant, kinetically controlled increase in laminar burning velocity.
NASA Astrophysics Data System (ADS)
Li, Shi-bin; Wang, Zhen-guo; Barakos, George N.; Huang, Wei; Steijl, Rene
2016-10-01
Waverider will endure the huge aero-heating in the hypersonic flow, thus, it need be blunt for the leading edge. However, the aerodynamic performance will decrease for the blunt waverider because of the drag hoik. How to improve the aerodynamic performance and reduce the drag and aero-heating is very important. The variable blunt radii method will improve the aerodynamic performance, however, the huge aero-heating and bow shock wave at the head is still serious. In the current study, opposing jet is used in the waverider with variable blunt radii to improve its performance. The three-dimensional coupled implicit Reynolds-averaged Navier-Stokes(RANS) equation and the two equation SST k-ω turbulence model have been utilized to obtain the flow field properties. The numerical method has been validated against the available experimental data in the open literature. The obtained results show that the L/D will drop 7-8% when R changes from 2 to 8. The lift coefficient will increase, and the drag coefficient almost keeps the same when the variable blunt radii method is adopted, and the L/D will increase. The variable blunt radii method is very useful to improve the whole characteristics of blunt waverider and the L/D can improve 3%. The combination of the variable blunt radii method and opposing jet is a novel way to improve the whole performance of blunt waverider, and L/D can improve 4-5%. The aperture as a novel way of opposing jet is suitable for blunt waverider and also useful to improve the aerodynamic and aerothermodynamic characteristics of waverider in the hypersonic flow. There is the optimal P0in/P0 that can make the detached shock wave reattach the lower surface again so that the blunt waverider can get the better aerodynamic performance.
NASA Astrophysics Data System (ADS)
Hou, Shuhn-Shyurng; Huang, Wei-Cheng
2015-02-01
This paper investigates the influence of flame parameters including oxygen concentration, fuel composition, and strain rate on the synthesis of carbon nanomaterials in opposed-jet ethylene diffusion flames with or without rigid-body rotation. In the experiments, a mixture of ethylene and nitrogen was introduced from the upper burner; meanwhile, a mixture of oxygen and nitrogen was supplied from the lower burner. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. With non-rotating opposed-jet diffusion flames, carbon nanotubes (CNTs) were successfully produced for oxygen concentrations in the range of 21-50 % at a fixed ethylene concentration of 20 %, and for ethylene concentrations ranging from 14 to 24 % at a constant oxygen concentration of 40 %. With rotating opposed-jet diffusion flames, the strain rate was varied by adjusting the angular velocities of the upper and lower burners. The strain rate governed by flow rotation greatly affects the synthesis of carbon nanomaterials [i.e., CNTs and carbon nano-onions (CNOs)] either through the residence time or carbon sources available. An increase in the angular velocity lengthened the residence time of the flow and thus caused the diffusion flame to experience a decreased strain rate, which in turn produced more carbon sources. The growth of multi-walled CNTs was achieved for the stretched flames experiencing a higher strain rate [i.e., angular velocity was equal to 0 or 1 rotations per second (rps)]. CNOs were synthesized at a lower strain rate (i.e., angular velocity was in the range of 2-5 rps). It is noteworthy that the strain rate controlled by flow rotation greatly influences the fabrication of carbon nanostructures owing to the residence time as well as carbon source. Additionally, more carbon sources and higher temperature are required for the synthesis of CNOs compared with those required for CNTs (i.e., about 605-625 °C for CNTs and 700-800 °C for CNOs).
NASA Astrophysics Data System (ADS)
Pattrick, Paula; Strydom, Nadine
2014-08-01
Recruitment of larvae and early juveniles, against the ebb tide in the shallower, slower-flowing marginal areas of two permanently open estuaries in the Eastern Cape, South Africa was observed. To determine tidal, diel and seasonal variations of larval and juvenile fish recruitment, fyke nets were used during a 24-hour cycle over two years from December 2010 to October 2012. On either side of each estuary bank, two fyke nets with mouth openings facing opposite directions (i.e. one net facing the incoming or outgoing tide and the other facing the opposing direction) were used to sample fishes. The aims of this study were to determine if 1) on the flood tide, were the nets facing the incoming tide collecting more larvae and early juveniles recruiting into the estuarine nursery area, than the nets facing the opposing direction and 2) on the ebb tide, were the nets facing the sea, and hence the opposing direction of the outgoing ebb tide, collecting more fishes recruiting into the nursery against the ebb tide, than the nets facing the outgoing ebb tide? Larval and juvenile fish CPUE, species diversity and richness varied seasonally between estuarine systems and between diel and tidal conditions. Highest catches were recorded on the flood tide, which coincided with sunrise in the Swartkops Estuary. Greatest catches of larvae and early juveniles were observed during the ebb tide at night in the Sundays Estuary. On the ebb tide, higher catches of several dominant species and several commercially important fishery species, occurred in the fyke nets which faced the sea, indicating the early developmental stages of these fish species are not necessarily being lost from the nursery. These larvae and juveniles are actively swimming against the ebb tide in the shallower, slower-flowing marginal areas facilitating recruitment against ebb flow.
Sitters, Holly; York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian
2016-01-01
Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation diversity in wet forest, but positively correlated with vegetation diversity in dry forest. We therefore suggest that protection of older vegetation is important, but controlled application of low-severity fire in dry forest may sustain ecosystem function by enhancing different elements of FD.
York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian
2016-01-01
Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation diversity in wet forest, but positively correlated with vegetation diversity in dry forest. We therefore suggest that protection of older vegetation is important, but controlled application of low-severity fire in dry forest may sustain ecosystem function by enhancing different elements of FD. PMID:27741290
The wire-mesh sensor as a two-phase flow meter
NASA Astrophysics Data System (ADS)
Shaban, H.; Tavoularis, S.
2015-01-01
A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.
Two-phase damping and interface surface area in tubes with vertical internal flow
NASA Astrophysics Data System (ADS)
Béguin, C.; Anscutter, F.; Ross, A.; Pettigrew, M. J.; Mureithi, N. W.
2009-01-01
Two-phase flow is common in the nuclear industry. It is a potential source of vibration in piping systems. In this paper, two-phase damping in the bubbly flow regime is related to the interface surface area and, therefore, to flow configuration. Experiments were performed with a vertical tube clamped at both ends. First, gas bubbles of controlled geometry were simulated with glass spheres let to settle in stagnant water. Second, air was injected in stagnant alcohol to generate a uniform and measurable bubble flow. In both cases, the two-phase damping ratio is correlated to the number of bubbles (or spheres). Two-phase damping is directly related to the interface surface area, based on a spherical bubble model. Further experiments were carried out on tubes with internal two-phase air-water flows. A strong dependence of two-phase damping on flow parameters in the bubbly flow regime is observed. A series of photographs attests to the fact that two-phase damping in bubbly flow increases for a larger number of bubbles, and for smaller bubbles. It is highest immediately prior to the transition from bubbly flow to slug or churn flow regimes. Beyond the transition, damping decreases. It is also shown that two-phase damping increases with the tube diameter.
NASA Astrophysics Data System (ADS)
Ansari, Abtin; Chen, Kevin K.; Burrell, Robert R.; Egolfopoulos, Fokion N.
2018-04-01
The opposed-jet counterflow configuration is widely used to measure fundamental flame properties that are essential targets for validating chemical kinetic models. The main and key assumption of the counterflow configuration in laminar flame experiments is that the flow field is steady and quasi-one-dimensional. In this study, experiments and numerical simulations were carried out to investigate the behavior and controlling parameters of counterflowing isothermal air jets for various nozzle designs, Reynolds numbers, and surrounding geometries. The flow field in the jets' impingement region was analyzed in search of instabilities, asymmetries, and two-dimensional effects that can introduce errors when the data are compared with results of quasi-one-dimensional simulations. The modeling involved transient axisymmetric numerical simulations along with bifurcation analysis, which revealed that when the flow field is confined between walls, local bifurcation occurs, which in turn results in asymmetry, deviation from the one-dimensional assumption, and sensitivity of the flow field structure to boundary conditions and surrounding geometry. Particle image velocimetry was utilized and results revealed that for jets of equal momenta at low Reynolds numbers of the order of 300, the flow field is asymmetric with respect to the middle plane between the nozzles even in the absence of confining walls. The asymmetry was traced to the asymmetric nozzle exit velocity profiles caused by unavoidable imperfections in the nozzle assembly. The asymmetry was not detectable at high Reynolds numbers of the order of 1000 due to the reduced sensitivity of the flow field to boundary conditions. The cases investigated computationally covered a wide range of Reynolds numbers to identify designs that are minimally affected by errors in the experimental procedures or manufacturing imperfections, and the simulations results were used to identify conditions that best conform to the assumptions of quasi-one-dimensional modeling.
The double-opposing buccal flap procedure for palatal lengthening.
Mann, Robert J; Neaman, Keith C; Armstrong, Shannon D; Ebner, Ben; Bajnrauh, Robert; Naum, Steven
2011-06-01
Velopharyngeal dysfunction has been treated with either a pharyngeal flap or sphincteroplasty with varying degrees of success. Both of these entities have their own series of problems, with sleep apnea and nasal mucous flow disruptions at the forefront. The purpose of this study was to review the senior author's (R.J.M.) experience performing the double-opposing buccal flap for palatal lengthening. All patients who were treated with double-opposing buccal flaps between October of 1994 and July of 2007 were reviewed. These patients presented with varying degrees of velopharyngeal dysfunction showing some degree of velar movement at the time of surgery. Preoperative and postoperative speech results were reviewed for comparison. Twenty-seven patients underwent palatal lengthening, with an average length of follow-up of 58 months. Distal flap necrosis occurred in two patients. The level of intelligibility (65.4 percent versus 95.5 percent) and resonance (moderately hypernasal versus normal resonance) improved significantly postoperatively (p < 0.0001). Only one patient required the addition of a pharyngeal flap for persistent velopharyngeal dysfunction, and there were no postoperative issues with sleep apnea. The double-opposing buccal flap is an effective technique for lengthening the palate, improving speech, and decreasing the risks of postoperative sleep apnea. All patients experienced a dramatic improvement in their resonance and intelligibility. This technique appears most effective in patients with intact velar movement who demonstrate a small to moderate posterior velar gap. The double-opposing buccal flap is a useful means of treating velopharyngeal dysfunction, thus serving as an adjunct when improving pharyngeal closure.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Srinivasan, R.
1986-01-01
A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.
The effects of radiative heat loss on microgravity flame spread
NASA Technical Reports Server (NTRS)
Fakheri, Ahmad; Olson, Sandra L.
1989-01-01
The effect of radiative heat loss from the surface of a solid material burning in a zero gravity environment in an opposed flow is studied through the use of a numerical model. Radiative heat loss is found to decrease the flame spread rate, the boundary layer thickness, and pyrolysis lengths. Blowoff extinction is predicted to occur at slower opposesd flow velocities than would occur if the radiative loss is not present. The radiative heat fluxes are comparable to the conduction fluxes, indicating the significance of the surface energy loss.
High Spatial Resolution Observations of Pores and the Formation of a Rudimentary Penumbra
NASA Astrophysics Data System (ADS)
Yang, G.; Xu, Y.; Wang, H.; Denker, C.
2003-11-01
We present high spatial resolution observation of small-scale magnetic activity in solar active region NOAA 9539. The observations were obtained on 2001 July 15 using the 65 cm vacuum reflector and 25 cm refractor of the Big Bear Solar Observatory (BBSO). The data sets include time series of speckle reconstructed continuum images at 5200 Å, Hα filtergrams (blue line wing, line center, and red line wing), and line-of-sight magnetograms. Two pores, separated by a light bridge, were located in the central part of NOAA 9539. The formation of penumbral filaments near the light bridge indicated a sudden change of the local magnetic field topology from almost vertical to strongly inclined magnetic fields, which allowed cool material previously suspended in a filament to stream downward. During the downward motion of the cool material, Hα Dopplergrams revealed twisted streamlines along the filament. Finally, there are several well-defined Hα brightenings, Ellerman bombs (EBs), occurred near the region where the downflow of materials fell in. The EBs reside near a magnetic inversion line and are stationary, as opposed to EBs associated with moving magnetic features. We also found that the horizontal flow field of the white-light images derived from local correlation tracking is different from the previous observations. The horizontal movements in the superpenumbrae of leading sunspot and the following sunspots are opposite.
Fluid flow plate for decreased density of fuel cell assembly
Vitale, Nicholas G.
1999-01-01
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Investigation of air stream from combustor-liner air entry holes, 3
NASA Technical Reports Server (NTRS)
Aiba, T.; Nakano, T.
1979-01-01
Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.
Vertically inhomogeneous models of the upper crust for the seismoactive region of western Bohemia
NASA Astrophysics Data System (ADS)
Malek, J.; Jansky, J.; Novotny, O.; Rossler, D.
2003-04-01
In the framework of the CELEBRATION 2000 seismic refraction experiment, one international profile crossed the region of earthquake swarms in West-Bohemia/Vogtland. In addition to this main profile, two shorter supplementary profiles and a semicircle were proposed to study the epicentral area in greater detail. Moreover, the shots were also recorded at permanent stations in the region. The observed travel times of the first arrivals are used here to derive vertically inhomogeneous velocity models of the upper crust. After a polynomial or rational smoothing of the observed data, the Wiechert-Herglotz method is used to compute the velocity models. Typical features of the derived models, as opposed to many previous models, are low surface velocities and a prominent velocity increase within the uppermost crust to a depth of about one kilometre. The scatter of observed travel times is discussed in terms of lateral inhomogeneities and anisotropy. In particular, significant differences have been revealed between the Saxothuringian (northern) and adjacent southern parts of the studied area.
ERIC Educational Resources Information Center
Papanastasiou, Tasos C.
1989-01-01
Discusses fluid mechanics for undergraduates including the differential Navier-Stokes equations, dimensional analysis and simplified dimensionless numbers, control volume principles, the Reynolds lubrication equation for confined and free surface flows, capillary pressure, and simplified perturbation techniques. Provides a vertical dip coating…
Kadambala, Ravi; Powell, Jon; Singh, Karamjit; Townsend, Timothy G
2016-12-01
Vertical liquids addition systems have been used at municipal landfills as a leachate management method and to enhance biostabilization of waste. Drawbacks of these systems include a limitation on pressurized injection and the occurrence of seepage. A novel vertical well system that employed buried wells constructed below a lift of compacted waste was operated for 153 days at a landfill in Florida, USA. The system included 54 wells installed in six clusters of nine wells connected with a horizontally-oriented manifold system. A cumulative volume of 8430 m 3 of leachate was added intermittently into the well clusters over the duration of the project with no incidence of surface seeps. Achievable average flow rates ranged from 9.3 × 10 -4 m 3 s -1 to 14.2 × 10 -4 m 3 s -1 , which was similar to or greater than flow rates achieved in a previous study using traditional vertical wells at the same landfill site. The results demonstrated that pressurized liquids addition in vertical wells at municipal solid waste landfills can be achieved while avoiding typical operational and maintenance issues associated with seeps. © The Author(s) 2016.
On the Vertical Structure of Seasonal, Interannual and Intraseasonal Flows
1992-12-01
regions. Extensive use is made of a primitive equation (PE) model, as a diagnostic tool, to explore the extent to which tropical heating might influence ...vertical modes, while Wiin-Nielsen (1971a and b) studied the time 2 behaviour of long waves for various vertical structures. More recent investigations...nonlinear three-leve PE model, are used to determine the influence of tropical heating on extratropica wave response. In Chapter 4, the interannual changes
NASA Astrophysics Data System (ADS)
Nirmala, P. H.; Saila Kumari, A.; Raju, C. S. K.
2018-04-01
In the present article, we studied the magnetohydro dynamic flow induced heat transfer from vertical surface embedded in a saturated porous medium in the presence of viscous dissipation. Appropriate similarity transformations are used to transmute the non-linear governing partial differential equations to non-linear ODE. To solve these ordinary differential equations (ODE) we used the well-known integral method of Von Karman type. A comparison has been done and originates to be in suitable agreement with the previous published results. The tabulated and graphical results are given to consider the physical nature of the problem. From this results we found that the magnetic field parameter depreciate the velocity profiles and improves the heat transfer rate of the flow.
Lorentz force effect on mixed convection micropolar flow in a vertical conduit
NASA Astrophysics Data System (ADS)
Abdel-wahed, Mohamed S.
2017-05-01
The present work provides a simulation of control and filtration process of hydromagnetic blood flow with Hall current under the effect of heat source or sink through a vertical conduit (pipe). This work meets other engineering applications, such as nuclear reactors cooled during emergency shutdown, geophysical transport in electrically conducting and heat exchangers at low velocity conditions. The problem is modeled by a system of partial differential equations taking the effect of viscous dissipation, and these equations are simplified and solved analytically as a series solution using the Differential Transformation Method (DTM). The velocities and temperature profiles of the flow are plotted and discussed. Moreover, the conduit wall shear stress and heat flux are deduced and explained.
NASA Astrophysics Data System (ADS)
Florio, L. A.; Harnoy, A.
2011-06-01
In this study, a unique combination of a vibrating plate and a cross-flow passage is proposed as a means of enhancing natural convection cooling. The enhancement potential was estimated based on numerical studies involving a representative model which includes a short, transversely oscillating plate, placed over a transverse cross-flow opening in a uniformly heated vertical channel wall dividing two adjacent vertical channels. The resulting velocity and temperature fields are analyzed, with the focus on the local thermal effects near the opening. The simulation indicates up to a 50% enhancement in the local heat transfer coefficient for vibrating plate amplitudes of at least 30% of the mean clearance space and frequencies of over 82 rad/s.
NASA Astrophysics Data System (ADS)
Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa
2018-05-01
The nature of Casson fluid on MHD free convective flow of over an impulsively started infinite vertically inclined plate in presence of thermal diffusion (Soret), thermal radiation, heat and mass transfer effects is studied. The basic governing nonlinear coupled partial differential equations are solved numerically using finite element method. The relevant physical parameters appearing in velocity, temperature and concentration profiles are analyzed and discussed through graphs. Finally, the results for velocity profiles and the reduced Nusselt and Sherwood numbers are obtained and compared with previous results in the literature and are found to be in excellent agreement. Applications of the present study would be useful in magnetic material processing and chemical engineering systems.
NASA Technical Reports Server (NTRS)
Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.
1979-01-01
The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.
NASA Astrophysics Data System (ADS)
Wilson, Lee Alexander
Vertical Takeoff-and-Landing (VTOL) Micro Air Vehicles (MAVs) provide a versatile operational platform which combines the capabilities of fixed wing and rotary wing MAVs. In order to improve performance of these vehicles, a better understanding of the rapid transition between horizontal and vertical flight is required. This study examines the flow structures around the Mini-Vertigo VTOL MAV using flow visualization techniques. This will gives an understanding of the flow structures which dominate the flight dynamics of rapid pitching maneuvers. This study consists of three objectives: develop an experimental facility, use flow visualization to investigate the flow around the experimental subject during pitching, and analyze the results. The flow around the Mini-Vertigo VTOL MAV is dominated by the slipstream from its propellers. The slipstream delays LE separation and causes drastic deflection in the flow. While the frequency of the vortices shed from the LE and TE varies with flow speed, the non-dimensional frequency does not. It does, however, vary slightly with the pitching rate. These results are applicable across a wide range of flight conditions. The results correlate to previous research done to examine the aerodynamic forces on the MAV.
Winship, I R; Wylie, D R
2001-11-01
The responses of neurons in the medial column of the inferior olive to translational and rotational optic flow were recorded from anaesthetized pigeons. Panoramic translational or rotational flowfields were produced by mechanical devices that projected optic flow patterns onto the walls, ceiling and floor of the room. The axis of rotation/translation could be positioned to any orientation in three-dimensional space such that axis tuning could be determined. Each neuron was assigned a vector representing the axis about/along which the animal would rotate/translate to produce the flowfield that elicited maximal modulation. Both translation-sensitive and rotation-sensitive neurons were found. For neurons responsive to translational optic flow, the preferred axis is described with reference to a standard right-handed coordinate system, where +x, +y and +z represent rightward, upward and forward translation of the animal, respectively (assuming that all recordings were from the right side of the brain). t(+y) neurons were maximally excited in response to a translational optic flowfield that results from self-translation upward along the vertical (y) axis. t(-y) neurons also responded best to translational optic flow along the vertical axis but showed the opposite direction preference. The two remaining groups, t(-x+z) and t(-x-z) neurons, responded best to translational optic flow along horizontal axes that were oriented 45 degrees to the midline. There were two types of neurons responsive to rotational optic flow: rVA neurons preferred rotation about the vertical axis, and rH135c neurons preferred rotation about a horizontal axis at 135 degrees contralateral azimuth. The locations of marking lesions indicated a clear topographical organization of the six response types. In summary, our results reinforce that the olivo-cerebellar system dedicated to the analysis of optic flow is organized according to a reference frame consisting of three approximately orthogonal axes: the vertical axis, and two horizontal axes oriented 45 degrees to either side the midline. Previous research has shown that the eye muscles, vestibular semicircular canals and postural control system all share a similar spatial frame of reference.
NASA Astrophysics Data System (ADS)
Nishi, Yasuyuki; Hatano, Kentaro; Inagaki, Terumi
2017-10-01
Recently, small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels. The authors have evaluated the application of cross-flow water turbines in open channels as an undershot type after removing the casings and guide vanes to substantially simplify these water turbines. However, because undershot cross-flow water turbines are designed on the basis of cross-flow water turbine runners used in typical pipelines, it remains unclear whether the number of blades has an effect on the performance or flow fields. Thus, in this research, experiments and numerical analyses are employed to study the performance and flow fields of undershot cross-flow water turbines with varying number of blades. The findings show that the turbine output and torque are lower, the fluctuation is significantly higher, and the turbine efficiency is higher for runners with 8 blades as opposed to those with 24 blades.
NASA Astrophysics Data System (ADS)
Leung, R. C. K.; So, R. M. C.; Tang, S. K.; Wang, X. Q.
2011-07-01
In-duct devices are commonly installed in flow ducts for various flow management purposes. The structural construction of these devices indispensably creates disruption to smooth flow through duct passages so they exist as structural discontinuities in duct flow. The presence of these discontinuities provides additional possibility of noise generation. In real practice, in-duct devices do not exist alone in any duct system. Even though each in-duct device would generate its own noise, it might be possible that these devices could be properly arranged so as to strengthen the interference between individual noise; thus giving rise to an overall reduction of noise radiation in the in-duct far field. This concept of passive noise control is investigated by considering different configurations of two structural discontinuities of simple form (i.e., a cavity) in tandem in an unconfined flow and in opposing setting within a flow duct. It is known that noise generated by a cavity in unconfined domain (unconfined cavity) is strongly dependent on flow-resonant behavior within the cavity so the interference it produces is merely aeroacoustic. The objective of the present study is to verify the concept of passive noise reduction through enhancement of aeroacoustic interference due to two cavities by considering laminar flow only. A two-dimensional approach is adopted for the direct aeroacoustic calculations using a direct numerical simulation (DNS) technique. The position and geometries of the cavities and the Mach number are varied; the resultant aeroacoustic behavior and acoustic power are calculated. The numerical results are compared with a single cavity case to highlight the effect of introducing additional cavities to the aeroacoustic problem. Resonant flow oscillations occur when two unconfined cavities are very close and the associated acoustic field is very intense with no noise reduction possible. However, for duct aeroacoustics, it is found that a 7.9 db reduction of acoustic power in the downstream side of the duct or a total reduction of ˜6 db is possible with opposing cavities having an offset of half a cavity length. In addition, the reduction is shown to be free from lock-on with trapped modes of the ducts with cavities.
A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model
Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.; ...
2016-09-16
Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less
A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.
Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less
Lundquist, J. K.; Churchfield, M. J.; Lee, S.; ...
2015-02-23
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s -1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s −1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 s -1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Furthermore, measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.« less
NASA Astrophysics Data System (ADS)
Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.
2015-02-01
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 m s-1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.
An Adjustable Buoyancy Balloon Tracer of Atmospheric Motion is a research tool which allows one to follow atmospheric flows in both the horizontal and the vertical, including the weak, sustained vertical motion associated with meso- and synoptic- scale atmospheric disturbances. T...
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin Keshavarz; Layeghi, Mohammad; Hemmati, Mansor
2013-03-01
Forced convective heat transfer from a vertical circular tube conveying deionized (DI) water or very dilute Ag-DI water nanofluids (less than 0.02% volume fraction) in a cross flow of air has been investigated experimentally. Some experiments have been performed in a wind tunnel and heat transfer characteristics such as thermal conductance, effectiveness, and external Nusselt number has been measured at different air speeds, liquid flow rates, and nanoparticle concentrations. The cross flow of air over the tube and the liquid flow in the tube were turbulent in all cases. The experimental results have been compared and it has been found that suspending Ag nanoparticles in the base fluid increases thermal conductance, external Nusselt number, and effectiveness. Furthermore, by increasing the external Reynolds number, the external Nusselt number, effectiveness, and thermal conductance increase. Also, by increasing internal Reynolds number, the thermal conductance and external Nusselt number enhance while the effectiveness decreases.
Axial dispersion of non-Newtonian fluids in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, L.W.; Parker, H.W.
1973-01-01
Mixing of liquids in the direction parallel to flow through porous media, usually termed axial dispersion, is a significant factor in regard to chromatography columns, packed bed reactors, and miscible displacement methods for the recovery of petroleum. For this reason, axial dispersion rates have frequently been investigated, but practically investigations have employed low viscosity Newtonian fluid such as water and light hydrocarbons. In this research, pseudoplastic fluids having a power law exponent as low as 0.6 were employed at very low flow rates to facilitate the observation of non-Newtonian effects on axial dispersion rates. The flow system used in thismore » investigation was a vertically oriented glass bead pack. Glass beads of 470 mu nominal size were packed into the flow cell while vibrating the cell. The studies were conducted by displacing an undyed solution from the bead pack with a dyed solution at a constant rate aor visa versa. Vertical, downward flow was used in all displacements. (10 refs.)« less
Investigation of the Rocket Induced Flow Field in a Rectangular Duct
NASA Technical Reports Server (NTRS)
Landrum, D. Brian; Thames, Mignon; Parkinson, Doug; Gautney, Serena; Hawk, Clark
1999-01-01
Several tests were performed on a one-sixth scale Rocket Based Combined Cycle (RBCC) engine model at the University of Alabama in Huntsville. The UAH RBCC facility consists of a rectangular duct with a vertical strut mounted in the center. The scaled strut consists of two supersonic rocket nozzles with an embedded vertical turbine between the rocket nozzles. The tests included mass flow, flow visualization and horizontal pressure traverses. The mass flow test indicated a c:hoked condition when the rocket chamber pressure is between 200 psi and 300 psi. The flow visualization tests narrowed the rocket chamber pressure range from, 250 psi to 300 psi. Also, from this t.est, an assumption of a minimum
Hsu, Cheng-Ting
1984-01-01
A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.
Turbulent structure of stably stratified inhomogeneous flow
NASA Astrophysics Data System (ADS)
Iida, Oaki
2018-04-01
Effects of buoyancy force stabilizing disturbances are investigated on the inhomogeneous flow where disturbances are dispersed from the turbulent to non-turbulent field in the direction perpendicular to the gravity force. Attaching the fringe region, where disturbances are excited by the artificial body force, a Fourier spectral method is used for the inhomogeneous flow stirred at one side of the cuboid computational box. As a result, it is found that the turbulent kinetic energy is dispersed as layered structures elongated in the streamwise direction through the vibrating motion. A close look at the layered structures shows that they are flanked by colder fluids at the top and hotter fluids at the bottom, and hence vertically compressed and horizontally expanded by the buoyancy related to the countergradient heat flux, though they are punctuated by the vertical expansion of fluids at the forefront of the layered structures, which is related to the downgradient heat flux, indicating that the layered structures are gravity currents. However, the phase between temperature fluctuations and vertical velocity is shifted by π/2 rad, indicating that temperature fluctuations are generated by the propagation of internal gravity waves.
Snyder, G.L.
1995-01-01
Large vertical hydraulic-head gradients are present between the unconfined Evangeline aquifer and confined Fleming aquifers at Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad. These gradients, together with the results of the aquifer test at Naval Air Station Chase Field and assumed characteristics of the confining units, indicate that downward flow of ground water probably occurs from the water-table aquifer to the underlying aquifers. The rate of downward flow between the two confined Fleming aquifers (from A-sand to B-sand) can be approximated using an estimate of vertical hydraulic conductivity of the intervening confining unit obtained from assumed storage characteristics and data from the aquifer test. Under the relatively high vertical hydraulic-head gradient induced by the aquifer test, ground-water movement from the A-sand aquifer to the B-sand aquifer could require about 490 years; and about 730 years under the natural gradient. Future increases in ground-water withdrawals from the B-sand aquifer might increase downward flow in the aquifer system of the study area.
Design of h-Darrieus vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.
2015-05-01
Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.
Effect of shales on tidal response of water level to large earthquakes
NASA Astrophysics Data System (ADS)
Zhang, Y.; Wang, C. Y.; Fu, L. Y.
2017-12-01
Tidal response of water level in wells has been widely used to study properties of aquifers and, in particular, the response of groundwater to earthquakes. The affect of lithology on such response has not received deserved attention. Using data from selected wells in the intermediate and far fields of the 2008 Mw 7.9 Wenchuan and the 2011 Mw 9.1 Tohoku earthquakes, we examine how the presence of shales affects the tidal response of water level. Three categories of responses are recognized: horizontal flow, vertical flow and combined horizontal and vertical flow, with most wells with shales in the last category. We found that wells with shales are significantly influenced by fractures, leading semi-confined condition and vertical drainage, poorer well bore storage and decreased or unchanged co-seismic phase shifts. We also found a strong correlation between the shale content in the aquifer and the amplitude of tidal response, with higher shale content correlated with lower amplitude response, which we attribute to the compact structure (low porosity/low permeability) of shales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Canhai; Xu, Zhijie; Li, Tingwen
In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber’s performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable simulations andmore » manageable computational effort. Previously developed two filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical) on the adsorber’s hydrodynamics and CO2 capture performance are then examined. The simulation result subsequently is compared and contrasted with another predicted by a one-dimensional three-region process model.« less
NASA Astrophysics Data System (ADS)
Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian
2017-04-01
The application of heat as a hydrological tracer has become a standard method for quantifying water fluxes between groundwater and surface water. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. The underlying assumption of a stationary, one-dimensional vertical flow field is frequently violated in natural systems. Here subsurface water flow often has a significant horizontal component. We developed a methodology for identifying the geometry of the subsurface flow field based on the variations of diurnal temperature amplitudes with depths. For instance: Purely vertical heat transport is characterized by an exponential decline of temperature amplitudes with increasing depth. Pure horizontal flow would be indicated by a constant, depth independent vertical amplitude profile. The decline of temperature amplitudes with depths could be fitted by polynomials of different order whereby the best fit was defined by the highest Akaike Information Criterion. The stepwise model optimization and selection, evaluating the shape of vertical amplitude ratio profiles was used to determine the predominant subsurface flow field, which could be systematically categorized in purely vertical and horizontal (hyporheic, parafluvial) components. Analytical solutions to estimate water fluxes from the observed temperatures are restricted to specific boundary conditions such as a sinusoidal upper temperature boundary. In contrast numerical solutions offer higher flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. There are several numerical models that simulate heat transport in porous media (e.g. VS2DH, HydroGeoSphere, FEFLOW) but there can be a steep learning curve to the modelling frameworks and may therefore not readily accessible to routinely infer water fluxes between groundwater and surface water. We developed a user-friendly, straightforeward to use software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB that calculates time variable vertical water fluxes in saturated sediments based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation (FLUX-BOT can be downloaded from the following web site: https://bitbucket.org/flux-bot/flux-bot). We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance. Both, the empirical analysis of temperature amplitudes as well as the numerical inversion of measured temperature time series to estimate the vertical magnitude of water fluxes extent the suite of current heat tracing methods and may provide insight into temperature data from an additional perspective.
NASA Astrophysics Data System (ADS)
Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.
2016-09-01
A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.
Ni, Lixiao; Xu, Jiajun; Chu, Xianglin; Li, Shiyin; Wang, Peifang; Li, Yiping; Li, Yong; Zhu, Liang; Wang, Chao
2016-07-01
Two-stage in situ wetlands (two vertical flow constructed wetlands in parallel and a horizontal flow constructed wetland) were constructed for studying domestic wastewater purification and the correlations between contaminant removal and plant and soil enzyme activities. Results indicated the removal efficiency of NH4 (+) and NO3 (-) were significantly correlated with both urease and protease activity, and the removal of total phosphorus was significantly correlated with phosphatase activity. Chemical oxygen demand removal was not correlated with enzyme activity in constructed wetlands. Plant root enzyme (urease, phosphatase, protease and cellulose) activity correlation was apparent with all contaminant removal in the two vertical flow constructed wetlands. However, the correlation between the plant root enzyme activity and contaminant removal was poor in horizontal flow constructed wetlands. Results indicated that plant roots clearly played a role in the removal of contaminants.
Simplified hydraulic model of French vertical-flow constructed wetlands.
Arias, Luis; Bertrand-Krajewski, Jean-Luc; Molle, Pascal
2014-01-01
Designing vertical-flow constructed wetlands (VFCWs) to treat both rain events and dry weather flow is a complex task due to the stochastic nature of rain events. Dynamic models can help to improve design, but they usually prove difficult to handle for designers. This study focuses on the development of a simplified hydraulic model of French VFCWs using an empirical infiltration coefficient--infiltration capacity parameter (ICP). The model was fitted using 60-second-step data collected on two experimental French VFCW systems and compared with Hydrus 1D software. The model revealed a season-by-season evolution of the ICP that could be explained by the mechanical role of reeds. This simplified model makes it possible to define time-course shifts in ponding time and outlet flows. As ponding time hinders oxygen renewal, thus impacting nitrification and organic matter degradation, ponding time limits can be used to fix a reliable design when treating both dry and rain events.
NASA Astrophysics Data System (ADS)
Guerra, Jorge; Ullrich, Paul
2016-04-01
Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods for a wide range of spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of idealized test cases to validate the performance of the SNFEM applied in the vertical with an emphasis on flow features and dynamic behavior. Internal gravity wave, mountain wave, convective bubble, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.
Lai, Canhai; Xu, Zhijie; Li, Tingwen; ...
2017-08-05
In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber's performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered sub-grid models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable accuracymore » and manageable computational effort. Previously developed filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical tubes) on the adsorber's hydrodynamics and CO 2 capture performance are then examined. A one-dimensional three-region process model is briefly introduced for comparison purpose. The CFD model matches reasonably well with the process model while provides additional information about the flow field that is not available with the process model.« less