Science.gov

Sample records for optic nanoceramics ftoridnaya

  1. Micromechanics of fracturing in nanoceramics

    PubMed Central

    Ovid'ko, I. A.

    2015-01-01

    An overview of key experimental data and theoretical representations on fracture processes in nanoceramics is presented. The focuses are placed on crack growth in nanoceramics and their toughening micromechanics. Conventional toughening micromechanisms are discussed which effectively operate in both microcrystalline-matrix ceramics containing nanoinclusions and nanocrystalline-matrix ceramics. Particular attention is devoted to description of special (new) toughening micromechanisms related to nanoscale deformation occurring near crack tips in nanocrystalline-matrix ceramics. In addition, a new strategy for pronounced improvement of fracture toughness of ceramic materials through fabrication of ceramic–graphene nanocomposites is considered. Toughening micromechanisms are discussed which operate in such nanocomposites containing graphene platelets and/or few-layer sheets. PMID:25713442

  2. Micromechanics of fracturing in nanoceramics.

    PubMed

    Ovid'ko, I A

    2015-03-28

    An overview of key experimental data and theoretical representations on fracture processes in nanoceramics is presented. The focuses are placed on crack growth in nanoceramics and their toughening micromechanics. Conventional toughening micromechanisms are discussed which effectively operate in both microcrystalline-matrix ceramics containing nanoinclusions and nanocrystalline-matrix ceramics. Particular attention is devoted to description of special (new) toughening micromechanisms related to nanoscale deformation occurring near crack tips in nanocrystalline-matrix ceramics. In addition, a new strategy for pronounced improvement of fracture toughness of ceramic materials through fabrication of ceramic-graphene nanocomposites is considered. Toughening micromechanisms are discussed which operate in such nanocomposites containing graphene platelets and/or few-layer sheets.

  3. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  4. Hierarchical Nanoceramics for Industrial Process Sensors

    SciTech Connect

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  5. Effect of yttrium on microstructure, dielectric, ferroelectric and optical properties of BaZr0.10Ti0.90O3 nanoceramics

    NASA Astrophysics Data System (ADS)

    Kumar Patel, Piyush; Yadav, K. L.

    2014-06-01

    Y3+ doped barium zirconium titanate Ba(1-3x/2)Yx(Zr0.10Ti0.90)O3 ceramics were synthesized by the sol-gel method. Single phase compounds were confirmed by X-ray diffraction. Morphological analysis shows that the addition of Y3+ content inhibits the grain growth and remarkably changes the dielectric and ferroelectric properties. The temperature dependence of dielectric constant shows a change due to the material's diffuse phase transition, with a shift of the Curie temperature towards room temperature. High dielectric constant (~7937) with low dielectric loss (~0.05) was found for x=0.01 composition at Curie temperature. The diffusivity parameter was calculated as a function of Y3+ content and diffuseness was found to increase with increasing Y3+ content. The remnant polarization shows a slight increase up to x=0.01 composition and then decreases with increasing Y3+ content. The UV-visible optical absorption spectra show that the band gap increases from 3.71 eV to 3.96 eV with increasing Y3+ content.

  6. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering.

    PubMed

    S, Sai Nievethitha; N, Subhapradha; D, Saravanan; N, Selvamurugan; Tsai, Wei-Bor; N, Srinivasan; R, Murugesan; A, Moorthi

    2017-05-01

    Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO4 (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues. Various bioceramics used in BTE can be bioactive (like glass ceramics and hydroxyapatite bioactive glass), bioresorbable (like tricalcium phosphates) or bioinert (like zirconia and alumina). Limiting the size of these materials to nano-scale has resulted in a higher surface area to volume ratio thereby improving multi-functionality, solubility, surface catalytic activity, high heat and electrical conductivity. Nanoceramics have been found to induce osteoconduction, osteointegration, osteogenesis and osteoinduction. The present review aims at summarizing the interactions of nanoceramics and osteoblast/stem cells for promoting the proliferation and differentiation of the osteoblast cells by nanoceramics as superior bone substitutes in bone tissue engineering applications.

  7. Radiation endurance in Al2O3 nanoceramics

    PubMed Central

    García Ferré, F.; Mairov, A.; Ceseracciu, L.; Serruys, Y.; Trocellier, P.; Baumier, C.; Kaïtasov, O.; Brescia, R.; Gastaldi, D.; Vena, P.; Beghi, M. G.; Beck, L.; Sridharan, K.; Di Fonzo, F.

    2016-01-01

    The lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments. Here, using thin films as a model system, we provide new insights into the radiation tolerance of oxide nanoceramics exposed to increasing damage levels at 600 °C –namely 20, 40 and 150 displacements per atom. Specifically, we investigate the evolution of the structural features, the mechanical properties, and the response to impact loading of Al2O3 thin films. Initially, the thin films contain a homogeneous dispersion of nanocrystals in an amorphous matrix. Irradiation induces crystallization of the amorphous phase, followed by grain growth. Crystallization brings along an enhancement of hardness, while grain growth induces softening according to the Hall-Petch effect. During grain growth, the excess mechanical energy is dissipated by twinning. The main energy dissipation mechanisms available upon impact loading are lattice plasticity and localized amorphization. These mechanisms are available in the irradiated material, but not in the as-deposited films. PMID:27653832

  8. Radiation endurance in Al2O3 nanoceramics

    NASA Astrophysics Data System (ADS)

    García Ferré, F.; Mairov, A.; Ceseracciu, L.; Serruys, Y.; Trocellier, P.; Baumier, C.; Kaïtasov, O.; Brescia, R.; Gastaldi, D.; Vena, P.; Beghi, M. G.; Beck, L.; Sridharan, K.; di Fonzo, F.

    2016-09-01

    The lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments. Here, using thin films as a model system, we provide new insights into the radiation tolerance of oxide nanoceramics exposed to increasing damage levels at 600 °C –namely 20, 40 and 150 displacements per atom. Specifically, we investigate the evolution of the structural features, the mechanical properties, and the response to impact loading of Al2O3 thin films. Initially, the thin films contain a homogeneous dispersion of nanocrystals in an amorphous matrix. Irradiation induces crystallization of the amorphous phase, followed by grain growth. Crystallization brings along an enhancement of hardness, while grain growth induces softening according to the Hall-Petch effect. During grain growth, the excess mechanical energy is dissipated by twinning. The main energy dissipation mechanisms available upon impact loading are lattice plasticity and localized amorphization. These mechanisms are available in the irradiated material, but not in the as-deposited films.

  9. Production of nano-ceramic coatings on titanium implants

    NASA Astrophysics Data System (ADS)

    Fomin, A. A.; Rodionov, I. V.; Fomina, M. A.; Petrova, N. V.

    2015-03-01

    Composite titania coatings modified with hydroxyapatite nanoparticles were obtained on intraosseous implants fabricated from commercially pure titanium and titanium alloy Ti-2.5Al-5Mo-5V. The present study aims to identify consistency changes of morphological characteristics and physico-mechanical properties of titanium items coatings obtained by oxidation during induction heat treatment and modification with colloidal hydroxyapatite nanoparticles. The influence of temperature between 600 and 1200 °C and duration of thermal modification from 1 to 300 s was studied. It was established that high hardness about 6.7±1.9 GPa for nanocrystalline TiO2 coatings and 19.2±0.6 GPa for nanoceramic "TiO2+HAp" coatings is reached at 1000 °C and 120 s.

  10. Resin Nanoceramic CAD/CAM Restoration of the Primary Molar: 3-Year Follow-Up Study

    PubMed Central

    Bezgin, Tuğba; Akaltan, Funda

    2017-01-01

    This case report presents the clinical use of a resin nanoceramic CAD/CAM restoration of a primary second molar without successor in the form of a permanent second premolar tooth in a patient. Three-year follow-up of the case revealed that resin nanoceramic CAD/CAM restoration of the primary molar without successor achieved both aesthetics and function. Despite the high cost of treatment, this type of restoration should be considered if the retained tooth is expected to maintain functionality over the long term. PMID:28713601

  11. Nano-ceramic support materials for low temperature fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Lv, Haifeng; Mu, Shichun

    2014-04-01

    Low temperature fuel cells (LTFCs) have received broad attention due to their low operating temperature, virtually zero emissions, high power density and efficiency. However, the limited stability of the catalysts is a critical limitation to the large scale commercialization of LTFCs. State of the art carbon supports undergo corrosion under harsh chemical and electrochemical oxidation conditions, which results in performance degradation of catalysts. Therefore, non-carbon materials which are highly oxidation resistant under strongly oxidizing conditions of LTFCs are ideal alternative supports. This minireview highlights the advances and scenarios in using nano-ceramics as supports to enhance the stability of catalysts, the solutions to improve electrical conductivity of nano-ceramic materials, and the synergistic effects between metal catalyst and support to help improve the catalytic activity and CO/SO2 tolerance of catalysts.

  12. Nano-ceramic support materials for low temperature fuel cell catalysts.

    PubMed

    Lv, Haifeng; Mu, Shichun

    2014-05-21

    Low temperature fuel cells (LTFCs) have received broad attention due to their low operating temperature, virtually zero emissions, high power density and efficiency. However, the limited stability of the catalysts is a critical limitation to the large scale commercialization of LTFCs. State of the art carbon supports undergo corrosion under harsh chemical and electrochemical oxidation conditions, which results in performance degradation of catalysts. Therefore, non-carbon materials which are highly oxidation resistant under strongly oxidizing conditions of LTFCs are ideal alternative supports. This minireview highlights the advances and scenarios in using nano-ceramics as supports to enhance the stability of catalysts, the solutions to improve electrical conductivity of nano-ceramic materials, and the synergistic effects between metal catalyst and support to help improve the catalytic activity and CO/SO2 tolerance of catalysts.

  13. The influence of nano-ceramic modifier on the structure and properties of polyolefin composites

    NASA Astrophysics Data System (ADS)

    Sudnik, L.; Dubkova, V.; Galinovsky, A.; Osipkov, A.

    2016-10-01

    It has been shown, that the nano-ceramic modifier boehmite, with specific surface area of up to 400 m2/g and dispersion degree of less than100 nm, is a structurally active filler of an ultra-high-molecular-weight polyethylene. The boehmite influences the polymer crystalline and supra-molecular structure, during crystallization of the polymer from the melt under uniaxial plastic deformation conditions. It results in the production of nano-composites with an improved complex of properties.

  14. Geopolymer Porous Nanoceramics for Structural, for Smart and Thermal Shock Resistant Applications

    DTIC Science & Technology

    2011-02-02

    1 FINAL REPORT for GEOPOLYMER POROUS NANOCERAMICS FOR STRUCTURAL, FOR SMART AND THERMAL SHOCK RESISTANT APPLICATIONS AFOSR - Grant No. (FA9550...Potential applications were explored in the area of refractory adhesives between metal, corrosion resistant coatings on steel, glass and ceramics...STRUCTURAL, FOR SMART AND THERMAL SHOCK RESISTANT APPLICATIONS 5a. CONTRACT NUMBER FA9550-06-1-0221 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  15. Geopolymer Porous Nanoceramics for Structural Smart and Thermal Shock Resistant Applications

    DTIC Science & Technology

    2011-02-02

    1 FINAL REPORT for GEOPOLYMER POROUS NANOCERAMICS FOR STRUCTURAL, FOR SMART AND THERMAL SHOCK RESISTANT APPLICATIONS AFOSR - Grant No. (FA9550... THERMAL SHOCK RESISTANT APPLICATIONS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Waltraud Kriven 5d. PROJECT NUMBER... Thermal Conversion and Microstructural Evaluation of Geopolymers or “Alkali Bonded Ceramics” (ABCs),” M. Gordon, J. Bell and W. M. Kriven. Ceramic

  16. BiScO3 -PbTiO3 Nanoceramics Prepared by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui

    2015-11-01

    Highly dense 0.37 BiScO3 -0.63 PbTiO3 (BS-PT) ceramics with nano-sized grains were prepared by combination of Spark Plasma Sintering and two-step sintering method. The microstructures, phase and piezoelectric behaviors of BS-PT nanoceramics were investigated. TEM observations clearly showed that the average grain sizes of the ceramic samples were 23, 33 and 70 nm respectively. The contrasting morphologies of grain boundary region under different magnifications were caused by different contrast and imaging mechanisms. HRTEM image confirmed that the samples had dense and thin grain boundary regions. Perovskite phase was demonstrated for all the samples by XRD and SAED data. Local SPM measurements recorded well-formed butterfly and piezoelectric hysteresis loops for all the samples, suggesting that BS-PT nanoceramics retained a ferroelectric state and the polarizations were switchable with the average grain size as fine as 23 nm. There was a comparatively large fluctuation of local piezoelectric responses. A significant difference between local and macro piezoelectric coefficients was observed. The grain boundary regions with complex internal stress and charges/defects were the key factor to understand these unusual properties in ferroelectric nanoceramics.

  17. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    NASA Astrophysics Data System (ADS)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  18. Probability of survival of implant-supported metal ceramic and CAD/CAM resin nanoceramic crowns.

    PubMed

    Bonfante, Estevam A; Suzuki, Marcelo; Lorenzoni, Fábio C; Sena, Lídia A; Hirata, Ronaldo; Bonfante, Gerson; Coelho, Paulo G

    2015-08-01

    To evaluate the probability of survival and failure modes of implant-supported resin nanoceramic relative to metal-ceramic crowns. Resin nanoceramic molar crowns (LU) (Lava Ultimate, 3M ESPE, USA) were milled and metal-ceramic (MC) (Co-Cr alloy, Wirobond C+, Bego, USA) with identical anatomy were fabricated (n=21). The metal coping and a burnout-resin veneer were created by CAD/CAM, using an abutment (Stealth-abutment, Bicon LLC, USA) and a milled crown from the LU group as models for porcelain hot-pressing (GC-Initial IQ-Press, GC, USA). Crowns were cemented, the implants (n=42, Bicon) embedded in acrylic-resin for mechanical testing, and subjected to single-load to fracture (SLF, n=3 each) for determination of step-stress profiles for accelerated-life testing in water (n=18 each). Weibull curves (50,000 cycles at 200N, 90% CI) were plotted. Weibull modulus (m) and characteristic strength (η) were calculated and a contour plot used (m versus η) for determining differences between groups. Fractography was performed in SEM and polarized-light microscopy. SLF mean values were 1871N (±54.03) for MC and 1748N (±50.71) for LU. Beta values were 0.11 for MC and 0.49 for LU. Weibull modulus was 9.56 and η=1038.8N for LU, and m=4.57 and η=945.42N for MC (p>0.10). Probability of survival (50,000 and 100,000 cycles at 200 and 300N) was 100% for LU and 99% for MC. Failures were cohesive within LU. In MC crowns, porcelain veneer fractures frequently extended to the supporting metal coping. Probability of survival was not different between crown materials, but failure modes differed. In load bearing regions, similar reliability should be expected for metal ceramics, known as the gold standard, and resin nanoceramic crowns over implants. Failure modes involving porcelain veneer fracture and delamination in MC crowns are less likely to be successfully repaired compared to cohesive failures in resin nanoceramic material. Copyright © 2015 Academy of Dental Materials

  19. Comparative study of the luminescence of Y3Al5O12 nanoceramics and single crystals under excitation by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Voznyak, T.; Gorbenko, V. V.; Doroshenko, A.; Tolmachev, A.; Yavetskiy, R.; Petrusha, I.; Turkevich, V.

    2013-10-01

    Comparative investigation of the luminescent properties of Y3Al5O12 (YAG) nanoceramics with the properties of single crystals counterpart is performed under excitation by synchrotron radiation in the exciton range of YAG host. Analysis of the luminescent properties of such different crystalline forms of YAG allows us to conclude that the behavior of YAG nanoceramics is close to the properties of single crystal analogue with large content of YAl antisite defects (ADs). We also have found that the relative intensity of F+-AD coupled centers is significantly higher in YAG nanoceramics than that for single crystal counterpart. This presupposes the strong coupling of the antisite defects and oxygen vacancy-related centers in YAG nanoceramics, mainly at the boundaries of grains.

  20. Corrosion and wear behaviours of a reactive-sputter-deposited Ta2O5 nanoceramic coating

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Xu, Jiang; Lu, Xiaolin; Hu, Dongsheng; Tao, Hongliang; Munroe, Paul; Xie, Zong-Han

    2016-04-01

    In order to improve the wear and corrosion resistance of Ti-6Al-4V, a novel β-Ta2O5 nanoceramic coating was synthesised using reactive sputter deposition enabled by double glow discharge plasma technique. The surface topography, chemical composition, and microstructure of the newly developed coating were characterised by a variety of surface analytical techniques. The coating microstructure was found to exhibit a compact striated pattern extending in a direction perpendicular to coating surface, which is composed of equiaxed β-Ta2O5 grains with an average grain size of ∼20 nm, well adhered to the Ti-6A1-4V substrate. The hardness and the Young's modulus of the as-deposited coating were obtained by nanoindentation, and the adhesion strength between the coating and substrate was determined by a scratch tester. The dry sliding wear behaviours of the coating were investigated at room temperature against Si3N4 ceramic balls at room temperature under applied loads ranging from 2.3 N to 5.3 N using a ball-on-disc tribometer. The specific wear rates of the coating exhibited only a slight increase with applied normal load, and were shown to be two orders of magnitude lower than that for Ti-6Al-4V under the same loading condition. Furthermore, the electrochemical behaviour of the coating immersed in 3.5 wt.% NaCl solution was systematically examined by using a range of complementary electrochemical techniques including potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis as well as potential of zero charge (PZC). The results showed that the corrosion resistance of the β-Ta2O5 nanoceramic coating was better than that of Ti-6Al-4V alloy in 3.5 wt.% NaCl solution. Hence, by possessing higher mechanical properties and good wear and corrosion resistance, the β-Ta2O5 nanoceramic coating is considered to be a promising candidate for protection of engineering components operating under harsh conditions.

  1. Synergistic effect between nano-ceramic lubricating additives and electroless deposited Ni-W-P coating

    NASA Astrophysics Data System (ADS)

    Chen, Min; Cheng, Wushan; Zhao, Zuxin; Huang, Xiaobo

    2013-01-01

    The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.

  2. Effect of Aging Regimens on Resin Nanoceramic Chairside CAD/CAM Material.

    PubMed

    Al-Harbi, Fahad A; Ayad, Neveen M; ArRejaie, Aws S; Bahgat, Hala A; Baba, Nadim Z

    2017-07-01

    To evaluate the effect of cyclic mechanical loading, thermal cycling, and storage in water on a resin nanoceramic chairside computer-aided designed/computer-aided manufactured (CAD/CAM) material compared to a control leucite-reinforced glass-ceramic material. One hundred twenty specimens (18 × 4 × 3 mm) were milled from two chairside CAD/CAM materials' blocks (Lava Ultimate: LU; Vitablock Mark II: VM). Each group included four subgroups (A: n = 20 control; B: n = 20 cyclic loading [105 cycles, 80 N]; C: n = 20 thermal cycling [5 to 55°C]; D: n = 60 water storage [20: 3 months; 20: 6 months; 20: 9 months at 37°C]). Each subgroup included 10 specimens tested for flexure strength using three-point bending in a universal testing machine. The other 10 specimens were tested for surface roughness using an automated profiler followed by testing for surface hardness using a microhardness tester. LU displayed higher flexure strength than VM before and after all the aging conditions. The surface roughness for VM was lower than LU for the control, but both materials showed comparable values and significant increases after 9 months storage in water. After cyclic loading, only VM displayed a significant increase in the surface roughness value (p < 0.05). The surface hardness of VM was higher than LU for the control. VM did not show significant changes in hardness after any aging condition. LU showed significant reduction in surface hardness value only after storage in water (p < 0.05). The resin nanoceramic Lava Ultimate can be used as a durable substitute for glass-ceramic chairside CAD/CAM material. © 2015 by the American College of Prosthodontists.

  3. Yield Strength of Transparent MgAl2O4 Nano-Ceramic at High Pressure and Temperature.

    PubMed

    Zhang, Jie; Lu, Tiecheng; Chang, Xianghui; Jiang, Shengli; Wei, Nian; Qi, Jianqi

    2010-05-23

    We report here experimental results of yield strength and stress relaxation measurements of transparent MgAl2O4 nano-ceramics at high pressure and temperature. During compression at ambient temperature, the differential strain deduced from peak broadening increased significantly with pressure up to 2 GPa, with no clear indication of strain saturation. However, by then, warming the sample above 400°C under 4 GPa, stress relaxation was obviously observed, and all subsequent plastic deformation cycles are characterized again by peak broadening. Our results reveal a remarkable reduction in yield strength as the sintering temperature increases from 400 to 900°C. The low temperature for the onset of stress relaxation has attracted attention regarding the performance of transparent MgAl2O4 nano-ceramics as an engineering material.

  4. Yield Strength of Transparent MgAl2O4 Nano-Ceramic at High Pressure and Temperature

    PubMed Central

    2010-01-01

    We report here experimental results of yield strength and stress relaxation measurements of transparent MgAl2O4 nano-ceramics at high pressure and temperature. During compression at ambient temperature, the differential strain deduced from peak broadening increased significantly with pressure up to 2 GPa, with no clear indication of strain saturation. However, by then, warming the sample above 400°C under 4 GPa, stress relaxation was obviously observed, and all subsequent plastic deformation cycles are characterized again by peak broadening. Our results reveal a remarkable reduction in yield strength as the sintering temperature increases from 400 to 900°C. The low temperature for the onset of stress relaxation has attracted attention regarding the performance of transparent MgAl2O4 nano-ceramics as an engineering material. PMID:20676198

  5. Formation of Mn-Co-Ni-O Nanoceramic Microspheres Using In Situ Ink-Jet Printing: Sintering Process Effect on the Microstructure and Electrical Properties.

    PubMed

    Chen, Long; Zhang, Qinan; Yao, Jincheng; Wang, Junhua; Kong, Wenwen; Jiang, Chunping; Chang, Aimin

    2016-09-01

    Mn-Co-Ni-O nanoceramic microspheres with high density, uniformity, and size tunability are successfully fabricated using in situ ink-jet printing and two step sintering (TSS) techniques. The microspheres, synthesized by an effective and facile reverse microemulsion method, consist of uncalcined Mn-Co-Ni-O nanocrystallines that show a well formed single tetragonal spinel phase and an average particle size distribution of ≈20 nm. The sintering behavior, microstructure, and electrical properties of the Mn-Co-Ni-O nanoceramic microspheres are systematically investigated and characterized. The results indicate that the sintered Mn-Co-Ni-O nanoceramic microspheres show high density and improved electrical properties. The highest R25 , B25/50 , Ea , and α25 values achieved at sintering temperature of 1150 °C are 4846.7 KΩ, 4320 K, 0.401 eV, and -5.24% K(-1) , respectively for these Mn-Co-Ni-O nanoceramic microspheres. Furthermore, the formation mechanism of uncalcined Mn-Co-Ni-O nanocrystallines and an analysis of the TSS procedure of the nanoceramic microspheres are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics

    PubMed Central

    Park, Joon-Ho

    2016-01-01

    PURPOSE The aim of this study was to evaluate the influence of different surface treatment methods on the microtensile bond strength of resin cement to resin nanoceramic (RNC). MATERIALS AND METHODS RNC onlays (Lava Ultimate) (n=30) were treated using air abrasion with and without a universal adhesive, or HF etching followed by a universal adhesive with and without a silane coupling agent, or tribological silica coating with and without a universal adhesive, and divided into 6 groups. Onlays were luted with resin cement to dentin surfaces. A microtensile bond strength test was performed and evaluated by one-way ANOVA and Tukey HSD test (α=.05). A nanoscratch test, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy were used for micromorphologic analysis (α=.05). The roughness and elemental proportion were evaluated by Kruskal–Wallis test and Mann–Whitney U test. RESULTS Tribological silica coating showed the highest roughness, followed by air abrasion and HF etching. After HF etching, the RNC surface presented a decrease in oxygen, silicon, and zirconium ratio with increasing carbon ratio. Air abrasion with universal adhesive showed the highest bond strength followed by tribological silica coating with universal adhesive. HF etching with universal adhesive showed the lowest bond strength. CONCLUSION An improved understanding of the effect of surface treatment of RNC could enhance the durability of resin bonding when used for indirect restorations. When using RNC for restoration, effective and systemic surface roughening methods and an appropriate adhesive are required. PMID:27555896

  7. Structural, Raman spectroscopy and dielectric relaxation study of nanoceramics NdFeO3

    NASA Astrophysics Data System (ADS)

    Chanda, Sadhan; Das, Indrani; Saha, Sujoy; Sinha, T. P.

    2013-02-01

    The nanoceramic NdFeO3 was synthesized by the sol-gel citrate method. The Rietveld refinement of X-ray diffraction pattern at room temperature (30°C) shows the orthorhombic Pnma phase of the perovskite type with lattice parameters a = 5.576 Å, b = 7.756 Å, c = 5.447 Å. The TEM image shows that the sample is made of nano-sized crystallites ranging from 45 to 75 nm. The room temperature Raman spectrum is fitted with the sum of 18 Lorentzian peaks. Eigen frequencies of vibrational modes are calculated by density functional theory in its generalized gradient approximation as implemented in Vienna Ab-initio Simulation Package (VASP). Dielectric spectroscopy (ACIS) study of NdFeO3 has been performed in the frequency range from 50 Hz to 1 MHz and in the temperature range from 50° C to 240° C. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole-Cole equation.

  8. Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics.

    PubMed

    Park, Joon-Ho; Choi, Yu-Sung

    2016-08-01

    The aim of this study was to evaluate the influence of different surface treatment methods on the microtensile bond strength of resin cement to resin nanoceramic (RNC). RNC onlays (Lava Ultimate) (n=30) were treated using air abrasion with and without a universal adhesive, or HF etching followed by a universal adhesive with and without a silane coupling agent, or tribological silica coating with and without a universal adhesive, and divided into 6 groups. Onlays were luted with resin cement to dentin surfaces. A microtensile bond strength test was performed and evaluated by one-way ANOVA and Tukey HSD test (α=.05). A nanoscratch test, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy were used for micromorphologic analysis (α=.05). The roughness and elemental proportion were evaluated by Kruskal-Wallis test and Mann-Whitney U test. Tribological silica coating showed the highest roughness, followed by air abrasion and HF etching. After HF etching, the RNC surface presented a decrease in oxygen, silicon, and zirconium ratio with increasing carbon ratio. Air abrasion with universal adhesive showed the highest bond strength followed by tribological silica coating with universal adhesive. HF etching with universal adhesive showed the lowest bond strength. An improved understanding of the effect of surface treatment of RNC could enhance the durability of resin bonding when used for indirect restorations. When using RNC for restoration, effective and systemic surface roughening methods and an appropriate adhesive are required.

  9. Synthesis, characterization and color performance of novel Co²+-doped alumina/titania nanoceramic pigments.

    PubMed

    Hafez, Hoda S; El-Fadaly, E

    2012-09-01

    Blue-green nanoceramic pigments from Co(2+)-doped alumina-titania (xCo(2+)-Al(2)O(3)/TiO(2)) have been synthesized by alkoxide sol-gel route from a mixture of titania and boehmite sols that derived from titanium isopropoxide and aluminum nitrate precursors. The composition of the alumina/titania (AT) matrix is 3:1M ratio. A series of xCo(2+):3TiO(2):1Al(2)O(3) mixed oxides with different Co(2+)-dopant ion concentration has been prepared. The molar ratio of the Co(2+)-dopant ion in the Al(2)O(3)/TiO(2) matrix is from x=0 to 0.5M ratio relative to the titania composition. Characterizations of Co(2+)-doped alumina/titania nanocomposites are carried out using reflectance spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM-EDS), thermo-gravimetric analysis (TGA) and X-ray diffractometer (XRD). The experimental results demonstrated that the prepared Co(2+)-doped alumina-titania nanocomposites fulfill the current technological requirements for ceramic pigment applications that exhibit a high physico-chemical and thermal stabilities at high firing temperatures.

  10. High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram.

    PubMed

    Weng, Xiaole; Cockcroft, Jeremy K; Hyett, Geoffrey; Vickers, Martin; Boldrin, Paul; Tang, Chiu C; Thompson, Stephen P; Parker, Julia E; Knowles, Jonathan C; Rehman, Ihtesham; Parkin, Ivan; Evans, Julian R G; Darr, Jawwad A

    2009-01-01

    A novel High-Throughput Continuous Hydrothermal (HiTCH) flow synthesis reactor was used to make directly and rapidly a 66-sample nanoparticle library (entire phase diagram) of nanocrystalline Ce(x)Zr(y)Y(z)O(2-delta) in less than 12 h. High resolution PXRD data were obtained for the entire heat-treated library (at 1000 degrees C/1 h) in less than a day using the new robotic beamline I11, located at Diamond Light Source (DLS). This allowed Rietveld-quality powder X-ray diffraction (PXRD) data collection of the entire 66-sample library in <1 day. Consequently, the authors rapidly mapped out phase behavior and sintering behaviors for the entire library. Out of the entire 66-sample heat-treated library, the PXRD data suggests that 43 possess the fluorite structure, of which 30 (out of 36) are ternary compositions. The speed, quantity and quality of data obtained by our new approach, offers an exciting new development which will allow structure-property relationships to be accessed for nanoceramics in much shorter time periods.

  11. Lithium ionic conduction and relaxation dynamics of spark plasma sintered Li5La3Ta2O12 garnet nanoceramics.

    PubMed

    Ahmad, Mohamad M

    2015-01-01

    In the present work, nanoceramics of Li5La3Ta2O12 (LLT) lithium ion conductors with the garnet-like structure are fabricated by spark plasma sintering (SPS) technique at different temperatures of 850°C, 875°C, and 900°C (SPS-850, SPS-875, and SPS-900). The grain size of the SPS nanoceramics is in the 50 to 100 nm range, indicating minimal grain growth during the SPS experiments. The ionic conduction and relaxation properties of the current garnets are studied by impedance spectroscopy (IS) measurements. The SPS-875 garnets exhibit the highest total Li ionic conductivity of 1.25 × 10(-6) S/cm at RT, which is in the same range as the LLT garnets prepared by conventional sintering technique. The high conductivity of SPS-875 sample is due to the enhanced mobility of Li ions by one order of magnitude compared to SPS-850 and SPS-900 ceramics. The concentration of mobile Li(+) ions, n c, and their mobility are estimated from the analysis of the conductivity spectra at different temperatures. n c is found to be independent of temperature for the SPS nanoceramics, which implies that the conduction process is controlled by the Li(+) mobility. Interestingly, we found that only a small fraction of lithium ions of 3.9% out of the total lithium content are mobile and contribute to the conduction process. Moreover, the relaxation dynamics in the investigated materials have been studied through the electric modulus formalism.

  12. Chairside treatment of amelogenesis imperfecta, including establishment of a new vertical dimension with resin nanoceramic and intraoral scanning.

    PubMed

    Zimmermann, Moritz; Koller, Christina; Hickel, Reinhard; Kühnisch, Jan

    2016-09-01

    Amelogenesis imperfecta is a hereditary disease affecting the structural development of tooth substance. This clinical report describes a 1-visit chairside treatment of an 8-year-old patient with amelogenesis imperfecta, using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Intraoral scanning was performed using the Cerec Omnicam. Thirteen resin nanoceramic crowns (Lava Ultimate) were fabricated chairside by using a Cerec MCXL milling unit and seated adhesively. The patient's treatment included establishing a new occlusal vertical dimension and new centric relationship. Reevaluation after 6 months showed a stable situation.

  13. Electrochemical Corrosion Behavior of Ta2N Nanoceramic Coating in Simulated Body Fluid

    PubMed Central

    Cheng, Jian; Xu, Jiang; Liu, Lin Lin; Jiang, Shuyun

    2016-01-01

    In order to improve the corrosion and wear resistance of biomedical Ti-6Al-4V implants, a Ta2N nanoceramic coating was synthesized on a Ti-6Al-4V substrate by the double glow discharge plasma process. The Ta2N coating, composed of fine nanocrystals, with an average grain size of 12.8 nm, improved the surface hardness of Ti-6Al-4V and showed good contact damage tolerance and good adhesion strength to the substrate. The corrosion resistance of the Ta2N coating in Ringer’s physiological solution at 37 °C was evaluated by different electrochemical techniques: potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), potentiostatic polarization and capacitance measurements (Mott-Schottky approach). The evolution of the surface composition of the passive films at different applied potentials was determined by X-ray photoelectron spectroscopy (XPS). The results indicated that the Ta2N coating showed higher corrosion resistance than both commercially pure Ta and uncoated Ti-6Al-4V in this solution, because of the formed oxide film on the Ta2N coating having a smaller carrier density (Nd) and diffusivity (Do) of point defects. The composition of the surface passive film formed on the Ta2N coating changed with the applied potential. At low applied potentials, the oxidation of the Ta2N coating led to the formation of tantalum oxynitride (TaOxNy) but, subsequently, the tantalum oxynitride (TaOxNy) could be chemically converted to Ta2O5 at higher applied potentials. PMID:28773893

  14. Edge chipping resistance and flexural strength of polymer infiltrated ceramic network and resin nanoceramic restorative materials.

    PubMed

    Argyrou, Renos; Thompson, Geoffrey A; Cho, Seok-Hwan; Berzins, David W

    2016-09-01

    Two novel restorative materials, a polymer infiltrated ceramic network (PICN) and a resin nanoceramic (RNC), for computer-assisted design and computer-assisted manufacturing (CAD-CAM) applications have recently become commercially available. Little independent evidence regarding their mechanical properties exists to facilitate material selection. The purpose of this in vitro study was to measure the edge chipping resistance and flexural strength of the PICN and RNC materials and compare them with 2 commonly used feldspathic ceramic (FC) and leucite reinforced glass-ceramic (LRGC) CAD-CAM materials that share the same clinical indications. PICN, RNC, FC, and LRGC material specimens were obtained by sectioning commercially available CAD-CAM blocks. Edge chipping test specimens (n=20/material) were adhesively attached to a resin substrate before testing. Edge chips were produced using a 120-degree, sharp, conical diamond indenter mounted on a universal testing machine and positioned 0.1 to 0.7 mm horizontally from the specimen's edge. The chipping force was plotted against distance to the edge, and the data were fitted to linear and quadratic equations. One-way ANOVA determined intergroup differences (α=.05) in edge chipping toughness. Beam specimens (n=22/material) were tested for determining flexural strength using a 3-point bend test. Weibull statistics determined intergroup differences (α=.05). Flexural modulus and work of fracture were also calculated, and 1-way ANOVA determined intergroup differences (α=.05) RESULTS: Significant (P<.05) differences were found among the 4 CAD-CAM materials for the 4 mechanical properties. Specifically, the material rankings were edge chipping toughness: RNC>LRGC=FC>PICN; flexural strength: RNC=LRGC>PICN>FC; flexural modulus: RNCLRGC=PICN>FC. The RNC material demonstrated superior performance for the mechanical properties tested compared with the other 3 materials. Copyright © 2016

  15. Grain size effect on the giant dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} nanoceramics prepared by mechanosynthesis and spark plasma sintering

    SciTech Connect

    Ahmad, Mohamad M.; Yamada, Koji

    2014-04-21

    In the present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80 nm to ∼200 nm for the ceramics sintered at 800 °C and 975 °C, respectively. Further increase of SPS temperature to 1050 °C leads to micro-sized ceramics of 2–3 μm. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed in CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3 × 10{sup 3}, 2.4 × 10{sup 4}, and 3.2 × 10{sup 4} for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14 × 10{sup 4}. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.

  16. Magnetic phases in EuMnO3 nanoceramics probed using ultraviolet excited opto-impedance

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Srinivasan; Rangarajan, Jagannathan; Baerner, Klaus

    2014-01-01

    EuMnO nanocrystals (Φav˜5 nm) synthesized using sol-gel thermolysis exhibit significant difference in magnetic structure in comparison to their bulk-counterpart (Φav˜3 μm). Opto- and magneto-impedance techniques are successful local probes to bring out the difference between the bulk, nano-manganites with the latter manifesting in multiplicity of spin-defect ensembles attributed to pronounced difference between surface and core states. Electron paramagnetic resonance spectra also confirm the variety of spin-defect ensembles arising from pronounced surface states. Upon optical perturbation, there is significant drop in resistivity (approximately four orders) at room temperature observed for the bulk EuMnO, an otherwise insulating system, which suggests an interesting scope for possible application.

  17. Preliminary investigation on the thermal conversion of automotive shredder residue into value-added products: Graphitic carbon and nano-ceramics.

    PubMed

    Mayyas, Mohannad; Pahlevani, Farshid; Handoko, Wilson; Sahajwalla, Veena

    2016-04-01

    Large increasing production volumes of automotive shredder residue (ASR) and its hazardous content have raised concerns worldwide. ASR has a desirable calorific value, making its pyrolysis a possible, environmentally friendly and economically viable solution. The present work focuses on the pyrolysis of ASR at temperatures between 950 and 1550°C. Despite the high temperatures, the energy consumption can be minimized as the decomposition of ASR can be completed within a short time. In this study, the composition of ASR was investigated. ASR was found to contain about 3% Ti and plastics of high calorific value such as polypropylene, polyethylene, polycarbonate and polyurethane. Based on thermogravimetric analysis (TGA) of ASR, the non-isothermal degradation kinetic parameters were determined using Coats-Redfern's and Freeman and Carroll methods. The evolved gas analysis indicated that the CH4 was consumed by the reduction of some oxides in ASR. The reduction reactions and the presence of Ti, silicates, C and N in ASR at 1550°C favor the formation of specific ceramics such as TiN and SiC. The presence of nano-ceramics along with a highly-crystalline graphitic carbon in the pyrolysis residues obtained at 1550°C was confirmed by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Raman imaging microscope (RIM) analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Computer Aided Multi-scale Design of SiC-Si3N4 Nanoceramic Composites for High-Temperature Structural Applications

    SciTech Connect

    Vikas Tomer; John Renaud

    2010-08-31

    It is estimated that by using better and improved high temperature structural materials, the power generation efficiency of the power plants can be increased by 15% resulting in significant cost savings. One such promising material system for future high-temperature structural applications in power plants is Silicon Carbide-Silicon Nitride (SiC-Si{sub 3}N{sub 4}) nanoceramic matrix composites. The described research work focuses on multiscale simulation-based design of these SiC-Si{sub 3}N{sub 4} nanoceramic matrix composites. There were two primary objectives of the research: (1) Development of a multiscale simulation tool and corresponding multiscale analyses of the high-temperature creep and fracture resistance properties of the SiC-Si{sub 3}N{sub 4} nanocomposites at nano-, meso- and continuum length- and timescales; and (2) Development of a simulation-based robust design optimization methodology for application to the multiscale simulations to predict the range of the most suitable phase morphologies for the desired high-temperature properties of the SiC-Si{sub 3}N{sub 4} nanocomposites. The multiscale simulation tool is based on a combination of molecular dynamics (MD), cohesive finite element method (CFEM), and continuum level modeling for characterizing time-dependent material deformation behavior. The material simulation tool is incorporated in a variable fidelity model management based design optimization framework. Material modeling includes development of an experimental verification framework. Using material models based on multiscaling, it was found using molecular simulations that clustering of the SiC particles near Si{sub 3}N{sub 4} grain boundaries leads to significant nanocomposite strengthening and significant rise in fracture resistance. It was found that a control of grain boundary thicknesses by dispersing non-stoichiometric carbide or nitride phases can lead to reduction in strength however significant rise in fracture strength. The

  19. Utilizing maleic acid as a novel fuel for synthesis of PbFe{sub 12}O{sub 19} nanoceramics via sol–gel auto-combustion route

    SciTech Connect

    Ansari, Fatemeh; Soofivand, Faezeh; Salavati-Niasari, Masoud

    2015-05-15

    PbFe{sub 12}O{sub 19} nanostructures were prepared in an aqueous solution by the sol–gel auto-combustion method using Pb(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} as starting materials and various carboxylic acids, including oxalic acid, malonic acid, succinic acid and maleic acid as fuel and reducing and capping agents. The as-synthesized products were characterized by X- ray diffraction, scanning electron microscopy, and X-ray energy dispersive spectroscopy. The effect of carboxylic acid type, Pb{sup +} {sup 2} to carboxylic acid molar ratio, and calcination temperature was investigated on the morphology of the products and several experiments were carried out to obtain the optimal reaction conditions. It was found that the phase and the morphology of the products are influenced by the investigated parameters. Furthermore, vibrating sample magnetometer (VSM) was used to study the magnetic properties of PbFe{sub 12}O{sub 19} samples. - Graphical abstract: Display Omitted - Highlights: • PbFe{sub 12}O{sub 19} nanoceramics were synthesized from Fe(NO{sub 3}){sub 3} and Pb(NO{sub 3}){sub 2} via the sol–gel auto combustion method. • The maleic acid can be instead of common capping agent and fuel in auto-combustion sol–gel. • The synthesized PbFe{sub 12}O{sub 19} is a hard magnetic material. • The specific saturation magnetization and coercivity are 27 emu/g and 1900 Oe, respectively.

  20. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin

    PubMed Central

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    Background: The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. Materials and Methods: In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Results: Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion. PMID:27076822

  1. Quasi-intrinsic colossal permittivity in Nb and In co-doped rutile TiO2 nanoceramics synthesized through a oxalate chemical-solution route combined with spark plasma sintering.

    PubMed

    Han, HyukSu; Dufour, Pascal; Mhin, Sungwook; Ryu, Jeong Ho; Tenailleau, Christophe; Guillemet-Fritsch, Sophie

    2015-07-14

    Nb and In co-doped rutile TiO2 nanoceramics (n-NITO) were successfully synthesized through a chemical-solution route combined with a low temperature spark plasma sintering (SPS) technique. The particle morphology and the microstructure of n-NITO compounds were nanometric in size. Various techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG)/differential thermal analysis (DTA), Fourier transform infrared (FTIR), and Raman spectroscopy were used for the structural and compositional characterization of the synthesized compound. The results indicated that the as-synthesized n-NITO oxalate as well as sintered ceramic have a co-doped single phase of titanyl oxalate and rutile TiO2, respectively. Broadband impedance spectroscopy revealed that novel colossal permittivity (CP) was achieved in n-NITO ceramics exhibiting excellent temperature-frequency stable CP (up to 10(4)) as well as low dielectric loss (∼5%). Most importantly, detailed impedance data analyses of n-NITO compared to microcrystalline NITO (μ-NITO) demonstrated that the origin of CP in NITO bulk nanoceramics might be related with the pinned electrons in defect clusters and not to extrinsic interfacial effects.

  2. Influence of no-ferrule and no-post buildup design on the fatigue resistance of endodontically treated molars restored with resin nanoceramic CAD/CAM crowns.

    PubMed

    Magne, P; Carvalho, A O; Bruzi, G; Anderson, R E; Maia, H P; Giannini, M

    2014-01-01

    To evaluate the influence of adhesive core buildup designs-4-mm buildup, 2-mm buildup, and no buildup (endocrown)-on the fatigue resistance and failure mode of endodontically treated molar teeth restored with resin nanoceramic (RNC) CAD/CAM complete crowns placed with self-adhesive resin cement. Forty-five extracted molars were decoronated at the level of the cementoenamel junction, and the roots were endodontically treated. Specimens received different Filtek Z100 adhesive core buildups (4-mm buildup, 2-mm buildup, and no buildup, endocrown preparation) and were restored with Cerec 3 CAD/CAM RNC crowns (Lava Ultimate). Restorations (n=15) and prepared teeth were treated with airborne-particle abrasion, followed by cementation with RelyX Unicem 2 Automix. Specimens were then subjected to cyclic isometric loading at 10 Hz, beginning with a load of 200 N (for 5000 cycles), followed by stages of 400, 600, 800, 1000, 1200, and 1400 N at a maximum of 30,000 cycles each. Specimens were loaded until failure or to a maximum of 185,000 cycles (10-mm-diameter composite resin sphere antagonist). The failure mode was assessed: "catastrophic" (tooth/root fracture that would require tooth extraction), "possibly reparable" (cohesive/adhesive failure with fragment and minor damage, chip or crack, of underlying tooth structure), or "reparable" fracture (cohesive or cohesive/adhesive fracture of restoration only). Groups were compared using the life table survival analysis. Intact specimens were loaded to failure and compared with one-way analysis of variance. All specimens survived the fatigue test until the 800 N-step. The survival rates for 4-mm, 2-mm, and no buildup (endocrown) were 53%, 87%, and 87%, respectively, and were not statistically different even though crowns with 2-mm buildups only started to fail at 1200 N. Minor cohesive chips were detected in many samples despite having survived all 185,000 cycles. Postfatigue load-to-failure ranged from 2969 N with 4-mm buildup

  3. Structural, vibrational and dielectric studies of (0.95)Pb(Zr{sub x}Ti{sub 1−x})O{sub 3}-(0.05)BiFeO{sub 3} nanoceramics

    SciTech Connect

    Sharma, Subhash Singh, Vikash Dwivedi, R. K.

    2014-04-24

    (0.95)Pb(Zr{sub x}Ti{sub 1−x})O{sub 3}-(0.05)BiFeO{sub 3} nanoceramics with x=0.51, 0.53 and 0.55 were synthesized by sol-gel route. Rietveld refined X-ray powder diffraction pattern of the samples confirm the single phase formation of compounds with tetragonal structure (P4mm). FT-IR studies revealed that slight shift of phonon modes towards the lower wave number and increase in the bond length with increasing Zr{sup 4+} concentration. Room temperature dielectric properties of system revealed that relaxor characteristics of these samples. Ferroelectric hysteresis curve shows the decrease in polarization values with Zr concentration.

  4. Cement Thickness of Inlay Restorations Made of Lithium Disilicate, Polymer-Infiltrated Ceramic and Nano-Ceramic CAD/CAM Materials Evaluated Using 3D X-Ray Micro-Computed Tomography.

    PubMed

    Uzgur, Recep; Ercan, Ertuğrul; Uzgur, Zeynep; Çolak, Hakan; Yalçın, Muhammet; Özcan, Mutlu

    2016-08-12

    To evaluate the marginal and internal cement thicknesses of inlay restorations made of various CAD/CAM materials using 3D X-ray micro-computed tomography (micro-CT) technique. Caries-free extracted mandibular molars (N = 30) with similar size were randomly assigned to three groups (N = 10 per group). Mesio-occlusal-distal (MOD) cavities were prepared, and inlay restorations were obtained by milling out CAD/CAM materials namely, (a) IPS: monolithic lithium disilicate (control), (b) VE: polymer-infiltrated ceramic, and (c) CS: nano-ceramic using a CAM unit. Marginal and internal cement thicknesses were measured using 3D micro-CT. Data were analyzed using 1-way ANOVA and Tukey's tests (alpha = 0.05). The mean marginal and internal cement thickness were not significant in all inlay materials (p > 0.05). Mean marginal cement thickness (μm) was the lowest for the IPS group (67.54 ± 10.16) followed by VE (84.09 ± 3.94) and CS (95.18 ± 10.58) (p > 0.05). The internal cement thickness (μm) was the lowest in the CS group (54.85 ± 6.94) followed by IPS (60.58 ± 9.22) and VE (77.53 ± 12.13) (p > 0.05). Marginal and internal cement thicknesses of MOD inlays made of monolithic lithium disilicate, polymer-infiltrated ceramic, and nano-ceramic CAD/CAM materials were similar and all less than 100 μm, which could be considered clinically acceptable. MOD inlays made of different CAD/CAM materials presented similar cement thickness, less than 100 μm. © 2016 by the American College of Prosthodontists.

  5. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration

    SciTech Connect

    Cardillo, Dean; Konstantinov, Konstantin; Devers, Thierry

    2013-11-15

    Highlights: • Possible application of cerium-doped α-hematite as ultraviolet filter. • Nanoparticles obtained through co-precipitation technique using various cerium doping levels followed by annealing. • Comprehensive materials characterisation utilizing XRD, DSC/TGA, STEM, UV–vis spectroscopy. • Increasing cerium content reduces particle sizing and alters morphology. • Solubility of cerium in hematite seen between 5 and 10% doping, 10% cerium doping greatly enhances attenuation in ultraviolet region and increases optical bandgap. - Abstract: Metal oxide nanoparticles have potential use in energy storage, electrode materials, as catalysts and in the emerging field of nanomedicine. Being able to accurately tailor the desirable properties of these nanoceramic materials, such as particle size, morphology and optical bandgap (E{sub g}) is integral in the feasibility of their use. In this study we investigate the altering of both the structure and physical properties through the doping of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with cerium at a range of concentrations, synthesised using a one-pot co-precipitation method. This extremely simple synthesis followed by thermal treatment results in stable Fe{sub 2−x}Ce{sub x}O{sub y} nanoceramics resulting from the burning of any unreacted precursors and transformation of goethite-cerium doped nanoparticle intermediate. The inclusion of Ce into the crystal lattice of these α-Fe{sub 2}O{sub 3} nanoparticles causes a significantly large reduction in mean crystalline size and alteration in particle morphology with increasing cerium content. Finally we report an increase optical semiconductor bandgap, along with a substantial increase in the ultraviolet attenuation found for a 10% Ce-doping concentration which shows the potential application of cerium-doped hematite nanocrystals to be used as a pigmented ultraviolet filter for cosmetic products.

  6. An Extended Hardness Limit in Bulk Nanoceramics

    DTIC Science & Technology

    2014-01-01

    pressure processing are dried/ calcined and remain in an inert, moisture-free environment throughout the subsequent processing. Mechanical and...procedure to ensure a pristine surface during sintering. All powders were dried and calcined in a flowing oxygen envi- ronment in a quartz container at

  7. Final Report: Energetics of Radiation Tolerant Nanoceramics

    SciTech Connect

    Castro, Ricardo

    2016-12-20

    The report describes in details the achievements of the project addressing the performance of nanomaterials in radioactive environments. The project addresses the fundamentals of the role of interface features on the defect dynamics during irradiation and present models to predict behavior based on thermodynamic properties. Papers and products, including formation of students in this strategic area, are presented in details as well.

  8. Nano-ceramics and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Gash, Alex; Simpson, Randall; Landingham, Richard; Reibold, Robert A.

    2006-08-08

    Disclosed herein is a method to produce ceramic materials utilizing the sol-gel process. The methods enable the preparation of intimate homogeneous dispersions of materials while offering the ability to control the size of one component within another. The method also enables the preparation of materials that will densify at reduced temperature.

  9. Optic glioma

    MedlinePlus

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  10. Optic neuritis

    MedlinePlus

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  11. Optical processing

    NASA Astrophysics Data System (ADS)

    Gustafson, S. C.

    1985-12-01

    The technical contributions were as follows: (1) Optical parallel 2-D neighborhood processor and optical processor assessment technique; (2) High accuracy with moderately accurate components and optical fredkin gate architectures; (3) Integrated optical threshold computing, pipelined polynomial processor, and all optical analog/digital converter; (4) Adaptive optical associative memory model with attention; (5) Effectiveness of parallelism and connectivity in optical computers; (6) Optical systolic array processing using an integrated acoustooptic module; (7) Optical threshold elements and networks, holographic threshold processors, adaptive matched spatial filtering, and coherence theory in optical computing; (8) Time-varying optical processing for sub-pixel targets, optical Kalman filtering, and adaptive matched filtering; (9) Optical degrees of freedom, ultra short optical pulses, number representations, content-addressable-memory processors, and integrated optical Givens rotation devices; (10) Optical J-K flip flop analysis and interfacing for optical computers; (11) Matrix multiplication algorithms and limits of incoherent optical computers; (12) Architecture for machine vision with sensor fusion, pattern recognition functions, and neural net implementations; (13) Optical computing algorithms, architectures, and components; and (14) Dynamic optical interconnections, advantages and architectures.

  12. Holographic optics

    SciTech Connect

    Cindrich, I

    1988-01-01

    These proceeding collect paper on holographic optics. Topics include: holographic helmet displays; optical performance of holographic kinoforms; lR, visible, UV and XUV Bragg holograms; diffractive optics; holographic laser-protective eyewear; interferometry; and hologon deflectors.

  13. Nonlinear optics

    SciTech Connect

    Boyd, R.W. . Inst. of Optics)

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics.

  14. Optical microspectrometer

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2004-05-25

    An optical microspectrometer comprises a grism to disperse the spectra in a line object. A single optical microspectrometer can be used to sequentially scan a planar object, such as a dye-tagged microchip. Because the optical microspectrometer is very compact, multiple optical microspectrometers can be arrayed to provide simultaneous readout across the width of the planar object The optical microspectrometer can be fabricated with lithographic process, such as deep X-ray lithography (DXRL), with as few as two perpendicular exposures.

  15. Optically tunable optical filter

    NASA Astrophysics Data System (ADS)

    James, Robert T. B.; Wah, Christopher; Iizuka, Keigo; Shimotahira, Hiroshi

    1995-12-01

    We experimentally demonstrate an optically tunable optical filter that uses photorefractive barium titanate. With our filter we implement a spectrum analyzer at 632.8 nm with a resolution of 1.2 nm. We simulate a wavelength-division multiplexing system by separating two semiconductor laser diodes, at 1560 nm and 1578 nm, with the same filter. The filter has a bandwidth of 6.9 nm. We also use the same filter to take 2.5-nm-wide slices out of a 20-nm-wide superluminescent diode centered at 840 nm. As a result, we experimentally demonstrate a phenomenal tuning range from 632.8 to 1578 nm with a single filtering device.

  16. Optical Communications

    ERIC Educational Resources Information Center

    Young, Matt

    1973-01-01

    Describes the characteristics and operational problems of optical waveguides, and concludes that the wide use of optical communications can be expected if difficulties in commercial production of components can be eliminated. (CC)

  17. Optical Communications

    ERIC Educational Resources Information Center

    Young, Matt

    1973-01-01

    Describes the characteristics and operational problems of optical waveguides, and concludes that the wide use of optical communications can be expected if difficulties in commercial production of components can be eliminated. (CC)

  18. Optical Solitons

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    2005-08-01

    1. Optical solitons in fibres: theoretical review A. Hasegawa; 2. Solitons in optical fibres: an experimental account L. F. Mollenauer; 3. All-optical long-distance soliton-based transmission systems K. Smith and L. F. Mollenauer; 4. Nonlinear propagation effects in optical fibres: numerical studies K. J. Blow and N. J. Doran; 5. Soliton-soliton interactions C. Desem and P. L. Chu; 6. Soliton amplification in erbium-doped fibre amplifiers and its application to soliton communication M. Nakazawa; 7. Nonlinear transformation of laser radiation and generation of Raman solitons in optical fibres E. M. Dianov, A. B. Grudinin, A. M. Prokhorov and V. N. Serkin; 8. Generation and compression of femtosecond solitons in optical fibers P. V. Mamyshev; 9. Optical fibre solitons in the presence of higher order dispersion and birefringence C. R. Menyuk and Ping-Kong A. Wai; 10. Dark optical solitons A. M. Weiner; 11. Soliton Raman effects J. R. Taylor; Bibliography; Index.

  19. Optical Solitons

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1992-04-01

    1. Optical solitons in fibres: theoretical review A. Hasegawa; 2. Solitons in optical fibres: an experimental account L. F. Mollenauer; 3. All-optical long-distance soliton-based transmission systems K. Smith and L. F. Mollenauer; 4. Nonlinear propagation effects in optical fibres: numerical studies K. J. Blow and N. J. Doran; 5. Soliton-soliton interactions C. Desem and P. L. Chu; 6. Soliton amplification in erbium-doped fibre amplifiers and its application to soliton communication M. Nakazawa; 7. Nonlinear transformation of laser radiation and generation of Raman solitons in optical fibres E. M. Dianov, A. B. Grudinin, A. M. Prokhorov and V. N. Serkin; 8. Generation and compression of femtosecond solitons in optical fibers P. V. Mamyshev; 9. Optical fibre solitons in the presence of higher order dispersion and birefringence C. R. Menyuk and Ping-Kong A. Wai; 10. Dark optical solitons A. M. Weiner; 11. Soliton Raman effects J. R. Taylor; Bibliography; Index.

  20. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  1. Optical keyboard

    DOEpatents

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  2. Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Jones, Philip H.; Maragò, Onofrio M.; Volpe, Giovanni

    2015-12-01

    1. Introduction; Part I. Theory: 2. Ray optics; 3. Dipole approximation; 4. Optical beams and focusing; 5. Electromagnetic theory; 6. Computational methods; 7. Brownian motion; Part II. Practice: 8. Building an optical tweezers; 9. Data acquisition and optical tweezers calibration; 10. Photonic force microscope; 11. Wavefront engineering and holographic optical tweezers; 12. Advanced techniques; Part III. Applications: 13. Single molecule biophysics; 14. Cell biology; 15. Spectroscopy; 16. Optofluidics and lab on a chip; 17. Colloid science; 18. Microchemistry; 19. Aerosol science; 20. Statistical physics; 21. Nanothermodynamics; 22. Plasmonics; 23. Nanostructures; 24. Laser cooling and trapping of atoms; 25. Towards the quantum regime at the mesoscale; Index.

  3. Fluidic optics

    NASA Astrophysics Data System (ADS)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  4. Optical Micromachining

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research) with Marshall Space Flight Center, Potomac Photonics, Inc., constructed and demonstrated a unique tool that fills a need in the area of diffractive and refractive micro-optics. It is an integrated computer-aided design and computer-aided micro-machining workstation that will extend the benefits of diffractive and micro-optic technology to optical designers. Applications of diffractive optics include sensors and monitoring equipment, analytical instruments, and fiber optic distribution and communication. The company has been making diffractive elements with the system as a commercial service for the last year.

  5. Optic Nerve.

    PubMed

    Gordon, Lynn K

    2016-10-28

    Optic nerve diseases arise from many different etiologies including inflammatory, neoplastic, genetic, infectious, ischemic, and idiopathic. Understanding some of the characteristics of the most common optic neuropathies along with therapeutic approaches to these diseases is helpful in designing recommendations for individual patients. Although many optic neuropathies have no specific treatment, some do, and it is those potentially treatable or preventable conditions which need to be recognized in order to help patients regain their sight or develop a better understanding of their own prognosis. In this chapter several diseases are discussed including idiopathic intracranial hypertension, optic neuritis, ischemic optic neuropathies, hereditary optic neuropathies, trauma, and primary tumors of the optic nerve. For each condition there is a presentation of the signs and symptoms of the disease, in some conditions the evaluation and diagnostic criteria are highlighted, and where possible, current therapy or past trials are discussed.

  6. Optical computing.

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.

    1972-01-01

    Applications of the optical computer include an approach for increasing the sharpness of images obtained from the most powerful electron microscopes and fingerprint/credit card identification. The information-handling capability of the various optical computing processes is very great. Modern synthetic-aperture radars scan upward of 100,000 resolvable elements per second. Fields which have assumed major importance on the basis of optical computing principles are optical image deblurring, coherent side-looking synthetic-aperture radar, and correlative pattern recognition. Some examples of the most dramatic image deblurring results are shown.

  7. Optical trapping

    PubMed Central

    Neuman, Keir C.; Block, Steven M.

    2006-01-01

    Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180

  8. Optical computing.

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.

    1972-01-01

    Applications of the optical computer include an approach for increasing the sharpness of images obtained from the most powerful electron microscopes and fingerprint/credit card identification. The information-handling capability of the various optical computing processes is very great. Modern synthetic-aperture radars scan upward of 100,000 resolvable elements per second. Fields which have assumed major importance on the basis of optical computing principles are optical image deblurring, coherent side-looking synthetic-aperture radar, and correlative pattern recognition. Some examples of the most dramatic image deblurring results are shown.

  9. Optical Metacages

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2015-11-01

    We suggest a novel strategy for spectrally selective optical shielding of arbitrary shaped volumes by arranging specifically designed two- or three-layer nanowires around an area that needs to be protected. We show that such nanowire shields preserve their functionality for almost arbitrary geometry, and we term such structures optical metacages. We analyze several designs of such optical metacages made from either metallic or dielectric materials with experimentally measured parameters. We employ a semianalytical approach and also verify our results by numerical simulations. We further study optical properties of the introduced metacages in both near- and far-field regions, as well as analyze their frequency selectivity and the vanishing backscattering regime.

  10. Optical engineering

    SciTech Connect

    Saito, T T

    1998-01-01

    The Optical Engineering thrust area at Lawrence Livermore National Laboratory (LLNL) was created in the summer of 1996 with the following main objectives: (1) to foster and stimulate leading edge optical engineering research and efforts key to carrying out LLNL's mission and enabling major new programs; (2) to bring together LLNL's broad spectrum of high level optical engineering expertise to support its programs. Optical engineering has become a pervasive and key discipline, with applications across an extremely wide range of technologies, spanning the initial conception through the engineering refinements to enhance revolutionary application. It overlaps other technologies and LLNL engineering thrust areas.

  11. Optically controlled integrated optical switch

    NASA Astrophysics Data System (ADS)

    Soref, R. A.

    1986-02-01

    This invention relates to an optically controlled integrated optical switch having a body made up of entirely crystalline silicon. More specifically, the body has a pair of channel waveguides intersecting at an X-like configuration forming therein an intersection crossover region. An electrically controlled optical source is positioned over the crossover region to shine intense, short-wave light on the crossover region in order to generate numerous electron-hole pairs in the waveguide material. These charge carriers alter the refractive index of the intersection region. A controllable current source is used to adjust the optical output power of the optical source. This, in turn, changes the amount of optical cross coupling of light between the intersecting waveguides.

  12. Optical interconnection of optical modules

    NASA Astrophysics Data System (ADS)

    Schamschula, Marius P.; Caulfield, H. J.; Shamir, Joseph

    1990-12-01

    The most plausible possible uses of nonlinear optics as the bases for interconnections among complex optical modules are evaluated, with a view to such applications as neural networks that entail large numbers of interconnections and numerous stages. Optical interconnection allows such a system to be composed of many modules as well as to incorporate switching- and amplification-function optical nonlinearities. While it is possible to achieve a pixel-by-pixel, diffraction-limited flat-field relay with nonlinearity, where the interconnect allows for cascadability, the wave-particle duality is destroyed between stages.

  13. Optical Disks.

    ERIC Educational Resources Information Center

    Gale, John C.; And Others

    1985-01-01

    This four-article section focuses on information storage capacity of the optical disk covering the information workstation (uses microcomputer, optical disk, compact disc to provide reference information, information content, work product support); use of laser videodisc technology for dissemination of agricultural information; encoding databases…

  14. Camera Optics.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1982-01-01

    The camera presents an excellent way to illustrate principles of geometrical optics. Basic camera optics of the single-lens reflex camera are discussed, including interchangeable lenses and accessories available to most owners. Several experiments are described and results compared with theoretical predictions or manufacturer specifications.…

  15. Optical testing

    NASA Technical Reports Server (NTRS)

    Wyant, James; Hochberg, Eric; Breault, Robert; Greivenkamp, John; Hunt, Gary; Mason, Pete; Mcguire, James; Meinel, Aden; Morris, Mike; Scherr, Larry

    1992-01-01

    Optical testing is one of the most vital elements in the process of preparing an optical instrument for launch. Without well understood, well controlled, and well documented test procedures, current and future mission goals will be jeopardized. We should keep in mind that the reason we test is to provide an opportunity to catch errors, oversights, and problems on the ground, where solutions are possible and difficulties can be rectified. Consequently, it is necessary to create tractable test procedures that truly provide a measure of the performance of all optical elements and systems under conditions which are close to those expected in space. Where testing is not feasible, accurate experiments are required in order to perfect models that can exactly predict the optical performance. As we stretch the boundaries of technology to perform more complex space and planetary investigations, we must expand the technology required to test the optical components and systems which we send into space. As we expand the observational wavelength ranges, so must we expand our range of optical sources and detectors. As we increase resolution and sensitivity, our understanding of optical surfaces to accommodate more stringent figure and scatter requirements must expand. Only with research and development in these areas can we hope to achieve success in the ever increasing demands made on optical testing by the highly sophisticated missions anticipated over the next two decades. Technology assessment and development plan for surface figure, surface roughness, alignment, image quality, radiometric quantities, and stray light measurement are presented.

  16. Camera Optics.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1982-01-01

    The camera presents an excellent way to illustrate principles of geometrical optics. Basic camera optics of the single-lens reflex camera are discussed, including interchangeable lenses and accessories available to most owners. Several experiments are described and results compared with theoretical predictions or manufacturer specifications.…

  17. Optical biosensors.

    PubMed

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Optical biosensors

    PubMed Central

    Damborský, Pavel; Švitel, Juraj

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  19. GREAT optics

    NASA Astrophysics Data System (ADS)

    Wagner-Gentner, Armin; Graf, Urs U.; Philipp, Martin; Rabanus, David; Stutzki, Jürgen

    2004-10-01

    The German REceiver for Astronomy at Terahertz frequencies (GREAT) is a first generation PI instrument for the SOFIA telescope, developed by a collaboration between the MPIfR, KOSMA, DLR, and the MPAe. The first three institutes each contribute one heterodyne receiver channel to operate at 1.9, 2.7 and 4.7 THz, respectively. A later addition of a e.g. 1.4 THz channel is planned. The GREAT instrument is developed to carry two cryostats at once. That means that any two of the three frequencies can be observed simultaneously. Therefore, we need to be able to quickly exchange the optics benches, the local oscillator (LO) subsystems, and the cryostats containing the mixer devices. This demands a high modularity and flexibility of our receiver concept. Our aim is to avoid the need for realignment when swapping receiver channels. After an overview of the common GREAT optics, a detailed description of several parts (optics benches, calibration units, diplexer, focal plane imager) is given. Special emphasis is given to the LO optics of the KOSMA 1.9 THz channel, because its backward wave oscillator has an astigmatic output beam profile, which has to be corrected for. We developed astigmatic off-axis mirrors to compensate this astigmatism. The mirrors are manufactured in-house on a 5 axis CNC milling machine. We use this milling machine to obtain optical components with highest surface accuracy (about 5 microns) appropriate for these wavelengths. Based on the CNC machining capabilities we present our concept of integrated optics, which means to manufacture optical subsystems monolithically. The optics benches are located on three point mounts, which in conjunction with the integrated optics concept ensure the required adjustment free optics setup.

  20. Dielectric and magnetic properties of some gadolinium silica nanoceramics

    SciTech Connect

    Coroiu, I. Pascuta, P. Bosca, M. Culea, E.

    2013-11-13

    Some nanostructure gadolinium silica glass-ceramics were obtained undergoing a sol gel method and a heat-treatment at 1000°C about two hours. The magnetic and dielectric properties of these samples were studied. The magnetic properties were evidenced performing susceptibility measurements in the 80-300K temperature range. A Curie-Weiss behavior has acquired. The values estimated for paramagnetic Curie temperature being small and positive suggest the presence of weak ferromagnetic interactions between Gd{sup 3+} ions. The dielectric properties were evaluated from dielectric permittivity (ε{sub r}) and dielectric loss (tanδ) measurements at the frequency 1 kHz, 10 kHz and 100 kHz, in the 25-225°C temperature range and dielectric dispersion at room temperature for 79.5 kHz - 1GHz frequency area. The dielectric properties suggest that the main polarization mechanism corresponds to interfacial polarization, characteristic for polycrystalline-structured dielectrics. The polycrystalline structure of the samples is due to the polymorphous transformations of the nanostructure silica crystallites in the presence of gadolinium oxide. They were highlighted by SEM micrographs.

  1. Molecular modeling of cracks at interfaces in nanoceramic composites

    NASA Astrophysics Data System (ADS)

    Pavia, F.; Curtin, W. A.

    2013-10-01

    Toughness in Ceramic Matrix Composites (CMCs) is achieved if crack deflection can occur at the fiber/matrix interface, preventing crack penetration into the fiber and enabling energy-dissipating fiber pullout. To investigate toughening in nanoscale CMCs, direct atomistic models are used to study how matrix cracks behave as a function of the degree of interfacial bonding/sliding, as controlled by the density of C interstitial atoms, at the interface between carbon nanotubes (CNTs) and a diamond matrix. Under all interface conditions studied, incident matrix cracks do not penetrate into the nanotube. Under increased loading, weaker interfaces fail in shear while stronger interfaces do not fail and, instead, the CNT fails once the stress on the CNT reaches its tensile strength. An analytic shear lag model captures all of the micromechanical details as a function of loading and material parameters. Interface deflection versus fiber penetration is found to depend on the relative bond strengths of the interface and the CNT, with CNT failure occurring well below the prediction of the toughness-based continuum He-Hutchinson model. The shear lag model, in contrast, predicts the CNT failure point and shows that the nanoscale embrittlement transition occurs at an interface shear strength scaling as τs~ɛσ rather than τs~σ typically prevailing for micron scale composites, where ɛ and σ are the CNT failure strain and stress, respectively. Interface bonding also lowers the effective fracture strength in SWCNTs, due to formation of defects, but does not play a role in DWCNTs having interwall coupling, which are weaker than SWCNTs but less prone to damage in the outerwall.

  2. Fiber optic coupled optical sensor

    DOEpatents

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  3. Optic Neuritis

    MedlinePlus

    ... vision. The Eye MD also examines the optic nerve with ophthalmoscopy for swelling and dilated blood vessels. Other tests performed may include an MRI, a spinal tap (lumbar puncture), and blood tests. What is the prognosis ...

  4. Optical disks

    NASA Technical Reports Server (NTRS)

    Lopez-Swafford, B.

    1986-01-01

    A comprehensive overview of the different types of optical storage technology is presented. Research efforts to integrate this technology into the VAX/VMS environment are discussed. In addition, plans for future applications of optical disk technology are described. The applications should prove to be beneficial to the NSSDC user community as a whole. Of particular interest is the concentration on the collaboration with the Dynamics Explorer project.

  5. Optical Firmware

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.

    1989-01-01

    Data-processing system exploits high speeds inherent in optical elements. Instruction sets for different computer operations reside on different external memory chips. Laser diodes activated for each operation generate light, reflected by holographic optical element to designated receptors in arithmetic and logic unit. Pattern of light beams embodies instruction set at given instant. With potential ability to reprogram in real time, conceptual system applicable to task-driven programming or artificial intelligence.

  6. Ocean optics

    SciTech Connect

    Spinard, R.W.; Carder, K.L.; Perry, M.J.

    1994-12-31

    This volume is the twenty fifth in the series of Oxford Monographs in Geology and Geophysics. The propagation off light in the hydra-atmosphere systems is governed by the integral-differential Radiative Transfer Equation (RTE). Closure and inversion are the most common techniques in optical oceanography to understand the most basic principles of natural variability. Three types of closure are dealt with: scale closure, experimental closure, and instrument closure. The subject is well introduced by Spinard et al. in the Preface while Howard Gordon in Chapter 1 provides an in-depth introduction to the RTE and its inherent problems. Inherent and apparent optical properties are dealt with in Chapter 2 by John Kirk and the realities of optical closure are presented in the following chapter by Ronald Zaneveld. The balance of the papers in this volume is quite varied. The early papers deal in a very mathematical manner with the basics of radiative transfer and the relationship between inherent and optical properties. Polarization of sea water is discussed in a chapter that contains a chronological listing of discoveries in polarization, starting at about 1000 AD with the discovery of dichroic properties of crystals by the Vikings and ending with the demonstration of polarotaxis in certain marine organisms by Waterman in 1972. Chapter 12 on Raman scattering in pure water and the pattern recognition techniques presented in Chapter 13 on the optical effects of large particles may be of relevance to fields outside ocean optics.

  7. Optical Coherence and Quantum Optics

    NASA Astrophysics Data System (ADS)

    Mandel, Leonard; Wolf, Emil

    1995-09-01

    The advent of lasers in the 1960s led to the development of many new fields in optical physics. This book is a systematic treatment of one of these fields--the broad area that deals with the coherence and fluctuation of light. The authors begin with a review of probability theory and random processes, and follow this with a thorough discussion of optical coherence theory within the framework of classical optics. They next treat the theory of photoelectric detection of light and photoelectric correlation. They then discuss in some detail quantum systems and effects. The book closes with two chapters devoted to laser theory and one on the quantum theory of nonlinear optics. The sound introduction to coherence theory and the quantum nature of light and the chapter-end exercises will appeal to graduate students and newcomers to the field. Researchers will find much of interest in the new results on coherence-induced spectral line shifts, nonclassical states of light, higher-order squeezing, and quantum effects of down-conversion. Written by two of the world's most highly regarded optical physicists, this book is required reading of all physicists and engineers working in optics.

  8. EDITORIAL: Transformation optics Transformation optics

    NASA Astrophysics Data System (ADS)

    Shalaev, Vladimir M.; Pendry, John

    2011-02-01

    Metamaterials are artificial materials with versatile properties that can be tailored to fit almost any practical need and thus go well beyond what can be obtained with `natural' materials. Recent progress in developing optical metamaterials allows unprecedented extreme control over the flow of light at both the nano- and macroscopic scales. The innovative field of transformation optics, which is enabled by metamaterials, inspired researchers to take a fresh look at the very foundations of optics and helped to create a new paradigm for the science of light. Similar to general relativity, where time and space are curved, transformation optics shows that the space for light can also be bent in an almost arbitrary way. Most importantly, the optical space can be designed and engineered, opening up the fascinating possibility of controlling the flow of light with nanometer spatial precision. This new paradigm enables a number of novel optical devices guiding how, using metamaterials, the space for light can be curved in a pre-designed and well-controlled way. Metamaterials which incorporate the innovative theories of transformation optics are pertinent to the important areas of optical cloaking, optical black holes, super-resolution imaging, and other sci-fi-like devices. One such exciting device is an electromagnetic cloak that can bend light around itself, similar to the flow of water around a stone, making invisible both the cloak and the object hidden inside. Another important application is a flat hyperlens that can magnify the nanometer-scale features of an object that cannot be resolved with conventional optics. This could revolutionize the field of optical imaging, for instance, because such a meta-lens could become a standard add-on tool for microscopes. By enabling nanoscale resolution in optical microscopy, metamaterial-based transformation optics could allow one to literally see extremely small objects with the eye, including biological cells, viruses, and

  9. Optical DNA

    NASA Astrophysics Data System (ADS)

    Vijaywargi, Deepak; Lewis, Dave; Kirovski, Darko

    A certificate of authenticity (COA) is an inexpensive physical object with a random and unique structure S which is hard to near-exactly replicate. An inexpensive device should be able to scan object’s physical “fingerprint,” a set of features that represents S. In this paper, we explore one set of requirements that optical media such as DVDs should satisfy, to be considered as COAs. As manufacturing of such media produces inevitable errors, we use the locations and count of these errors as a “fingerprint” for each optical disc: its optical DNA. The “fingerprint” is signed using publisher’s private-key and the resulting signature is stored onto the optical medium using a post-production process. Standard DVD players with altered firmware that includes publisher’s public-key, should be able to verify the authenticity of DVDs protected with optical DNA. Our key finding is that for the proposed protocol, only DVDs with exceptional wear-and-tear characteristics would result in an inexpensive and viable anti-counterfeiting technology.

  10. Optical Correlation

    NASA Technical Reports Server (NTRS)

    Cotariu, Steven S.

    1991-01-01

    Pattern recognition may supplement or replace certain navigational aids on spacecraft in docking or landing activities. The need to correctly identify terrain features remains critical in preparation of autonomous planetary landing. One technique that may solve this problem is optical correlation. Correlation has been successfully demonstrated under ideal conditions; however, noise significantly affects the ability of the correlator to accurately identify input signals. Optical correlation in the presence of noise must be successfully demonstrated before this technology can be incorporated into system design. An optical correlator is designed and constructed using a modified 2f configuration. Liquid crystal televisions (LCTV) are used as the spatial light modulators (SLM) for both the input and filter devices. The filter LCTV is characterized and an operating curve is developed. Determination of this operating curve is critical for reduction of input noise. Correlation of live input with a programmable filter is demonstrated.

  11. Optical memory

    DOEpatents

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  12. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  13. Optical coupler

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.

    2004-06-15

    In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.

  14. Optical analyzer

    DOEpatents

    Hansen, A.D.

    1987-09-28

    An optical analyzer wherein a sample of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter is placed in a combustion tube, and light from a light source is passed through the sample. The temperature of the sample is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample is detected as the temperature is raised. A data processor, differentiator and a two pen recorder provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample. These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample. Additional information is obtained by repeating the run in different atmospheres and/or different rates or heating with other samples of the same particulate material collected on other filters. 7 figs.

  15. CODEX optics

    NASA Astrophysics Data System (ADS)

    Delabre, Bernard; Manescau, Antonio

    2010-07-01

    CODEX is a high resolution spectrograph for the ESO E-ELT. A classical spectrograph can only achieve a resolution of about 120.000 on a 42 m telescope with extremely large echelle gratings and cameras. This paper describes in detail the optical concept of CODEX, which uses only optical elements size similar to those in current high resolution spectrographs. This design is based on slicers, anamorphic beams and slanted VPHG as cross dispersers. In this new version of the CODEX design, no special expensive materials as calcium fluoride or abnormal dispersion glasses are needed. The optical quality is excellent and compatible with 10K x 10K detectors with 10 μm pixels.

  16. Kindergarten' optics

    NASA Astrophysics Data System (ADS)

    M. Costa, Manuel F.; Campos, Júlia; Lira, Madalena; Franco, Sandra

    2009-06-01

    The introduction to our school' students of the wonders of light and optics and its understanding can and should be made as extensively as possible. As soon as at kindergarten level! A hands-on approach leading the students to observe experiment and discover themselves in a critical committed and active way the different aspects of light and optics should be employed at all school levels and must be the main driving pedagogical practice of all learning process of science and technology. In this communication we present a series of experiments and support material designed in this hands-on perspective to be used to introduce the study of optics to kindergarten and early basic school students. A critical evaluation of the first results of the application of these material with students aged 4 to 10 years will be presented.

  17. Optical switch

    DOEpatents

    Reedy, Robert P.

    1987-01-01

    An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

  18. Optical switch

    DOEpatents

    Reedy, R.P.

    1987-11-10

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.

  19. Optical switch

    DOEpatents

    Reedy, R.P.

    1985-01-18

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching.

  20. Optical chaos

    SciTech Connect

    Milonni, P.W.

    1989-01-01

    The theoretical and experimental status of chaos in nonlinear optics and laser physics will be reviewed. Attention will then be focused on the possibility of chaotic behavior in individual atoms and molecules driven by intense radiation fields. 46 refs., 7 figs.

  1. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  2. Pulsed Optics

    NASA Astrophysics Data System (ADS)

    Hirlimann, C.

    Optics is the field of physics which comprises knowledge on the interaction between light and matter. When the superposition principle can be applied to electromagnetic waves or when the properties of matter do not depend on the intensity of light, one speaks of linear optics. This situation occurs with regular light sources such as light bulbs, low-intensity light-emitting diodes and the sun. With such low-intensity sources the reaction of matter to light can be characterized by a set of parameters such as the index of refraction, the absorption and reflection coefficients and the orientation of the medium with respect to the polarization of the light. These parameters depend only on the nature of the medium. The situation changed dramatically after the development of lasers in the early sixties, which allowed the generation of light intensities larger than a kilowatt per square centimeter. Actual large-scale short-pulse lasers can generate peak powers in the petawatt regime. In that large-intensity regime the optical parameters of a material become functions of the intensity of the impinging light. In 1818 Fresnel wrote a letter to the French Academy of Sciences in which he noted that the proportionality between the vibration of the light and the subsequent vibration of matter was only true because no high intensities were available. The intensity dependence of the material response is what usually defines nonlinear optics.

  3. Optical electronics

    NASA Technical Reports Server (NTRS)

    Javan, A.

    1976-01-01

    The development of an optical diode consisting of a metal-dielectric-metal junction in which the high-speed electric conduction process occurs due to quantum mechanical electron tunneling across the dielectric barrier is briefly reviewed. Potential applications of the diode are discussed.

  4. Optical pantograph

    NASA Technical Reports Server (NTRS)

    Belew, Robert R. (Inventor); Davis, Donald E. (Inventor)

    1976-01-01

    An optical pantograph for directing light beams and the like from a source to a receiver according to the movement of a pointer. The device can be used for, among other things, directing a laser beam and the like to a target for etching patterns on a target according to the movement of a pointer relative to a pattern trace.

  5. Optical profilometer

    NASA Astrophysics Data System (ADS)

    Wieloszyńska, Aleksandra; StrÄ kowski, Marcin

    2016-09-01

    The profilometry plays a huge role in the most fields of science and technology. It allows to measure the profile of the surface with high-resolution. This technique is used in the fields like optic, electronic, medicine, automotive, and much more. The aim of the current work was to design and build optical profilometer based on the interference phenomena. The developed device has been working with He-Ne laser (632.8 nm). The optical parts have been chosen in order to reach the sized 2.0 mm x 1.6 mm of scanning area. The setup of the profilometer is based on Twyman-Green interferometer. Therefore, the phase distribution of the backreflected light from measured surface is recorded. The measurements are carried out with the aid of multiframe algorithms. In this approach we have used the Hariharan algorithm to obtain the exact value of the recorded phase. During tests, which have been carried out in order to check the functionality of the device, the interference patterns have been recoded and processed in order to obtain the 3D profile of measured surface. In this contribution the setup of the optical system, as well as signal processing methods are going to be presented. The brief discussion about the advantages and disadvantages, and usefulness of this approach will be carried out.

  6. Diophantine Optics

    NASA Astrophysics Data System (ADS)

    Rouan, D.

    2016-09-01

    What I call Diophantine optics is the exploitation in optics of some remarkable algebraic relations between powers of integers. The name comes from Diophantus of Alexandria, a greek mathematician, known as the father of algebra. He studied polynomial equations with integer coefficients and integer solutions, called diophantine equations. Since constructive or destructive interferences are playing with optical path differences which are multiple integer (odd or even) of λ/2 and that the complex amplitude is a highly non-linear function of the optical path difference (or equivalently of the phase), one can understand that any Taylor development of this amplitude implies powers of integers. This is the link with Diophantine equations. We show how, especially in the field of interferometry, remarkable relations between powers of integers can help to solve several problems, such as achromatization of a phase shifter or deep nulling efficiency. It appears that all the research that was conducted in this frame of thinking, relates to the field of detection of exoplanets, a very active domain of astrophysics today.

  7. Skin optics

    SciTech Connect

    van Gemert, M.J.; Jacques, S.L.; Sterenborg, H.J.; Star, W.M.

    1989-12-01

    Quantitative dosimetry in the treatment of skin disorders with (laser) light requires information on propagation of light in the skin related to the optical properties of the individual skin layers. This involves the solution of the integro-differential equation of radiative transfer in a model representing skin geometry, as well as experimental methods to determine the optical properties of each skin layer. These activities are unified under the name skin optics. This paper first reviews the current status of tissue optics, distinguishing between the cases of: dominant absorption, dominant scattering, and scattering about equal to absorption. Then, previously published data as well as some current unpublished data on (human) stratum corneum, epidermis and dermis, have been collected and/or (re)analyzed in terms of absorption coefficient, scattering coefficient, and anisotropy factor of scattering. The results are that the individual skin layers show strongly forward scattering (anisotropy factors between 0.7 and 0.9). The absorption and scattering data show that for all wavelengths considered scattering is much more important than absorption. Under such circumstances, solutions to the transport equation for a multilayer skin model and finite beam laser irradiation are currently not yet available. Hence, any quantitative dosimetry for skin treated with (laser) light is currently lacking.

  8. Optical Crystals

    ERIC Educational Resources Information Center

    Bergsten, Ronald

    1974-01-01

    Discusses the production and structure of a sequence of optical crystals which can serve as one-, two-, and three-dimensional diffraction plates to illustrate diffraction patterns by using light rather than x-rays or particles. Applications to qualitative presentations of Laue theory at the secondary and college levels are recommended. (CC)

  9. Optical Interconnect

    NASA Astrophysics Data System (ADS)

    Gaburro, Zeno

    The progress of silicon electronic industry is based on scaling down the minimum feature size of integrated circuits. Speed, density and costs of devices improve with scaling, but unfortunately the performance of interconnect worsens, both in terms of speed and power consumption. This issue -- the ``interconnect bottleneck'' -- is envisioned as a critical showstopper of electronic industry in the near future. The physical reason behind the interconnect bottleneck is the resistive nature of metals. The introduction of copper in place of aluminum has temporarily improved the interconnect performance, but on the other hand in a few years a more disruptive solution will be required in order to keep the current pace of progress. Optical interconnect is an intriguing alternative to metallic wires, because light can travel in dielectrics, and even in vacuum. At present, optical technology in silicon is not mature for industrial implementation. For this very same reason, however, it is also rich of research opportunities with large potential payoff. The rationale of this chapter has been to trace a snapshot of the current interconnect limitations; to point out the basic differences between the electrical and optical interconnect from different perspectives, ranging from basic physics up to system layouts; and to give a flavor of suggested practical realization of optical solutions. Any of these goals would be too ambitious for a book chapter without a hopefully rich and up-to-date bibliography.

  10. Optical Crystals

    ERIC Educational Resources Information Center

    Bergsten, Ronald

    1974-01-01

    Discusses the production and structure of a sequence of optical crystals which can serve as one-, two-, and three-dimensional diffraction plates to illustrate diffraction patterns by using light rather than x-rays or particles. Applications to qualitative presentations of Laue theory at the secondary and college levels are recommended. (CC)

  11. Optical Magnetometry

    NASA Astrophysics Data System (ADS)

    Budker, Dmitry; Kimball, Derek F. Jackson

    2013-03-01

    Part I. Principles and Techniques: 1. General principles and characteristics of optical magnetometers D. F. Jackson Kimball, E. B. Alexandrov and D. Budker; 2. Quantum noise in atomic magnetometers M. V. Romalis; 3. Quantum noise, squeezing, and entanglement in radio-frequency optical magnetometers K. Jensen and E. S. Polzik; 4. Mx and Mz magnetometers E. B. Alexandrov and A. K. Vershovskiy; 5. Spin-exchange-relaxation-free (serf) magnetometers I. Savukov and S. J. Seltzer; 6. Optical magnetometry with modulated light D. F. Jackson Kimball, S. Pustelny, V. V. Yashchuk and D. Budker; 7. Microfabricated atomic magnetometers S. Knappe and J. Kitching; 8. Optical magnetometry with nitrogen-vacancy centers in diamond V. M. Acosta, D. Budker, P. R. Hemmer, J. R. Maze and R. L. Walsworth; 9. Magnetometry with cold atoms W. Gawlik and J. M. Higbie; 10. Helium magnetometers R. E. Slocum, D. D. McGregor and A. W. Brown; 11. Surface coatings for atomic magnetometry S. J. Seltzer, M.-A. Bouchiat and M. V. Balabas; 12. Magnetic shielding V. V. Yashchuk, S.-K. Lee and E. Paperno; Part II. Applications: 13. Remote detection magnetometry S. M. Rochester, J. M. Higbie, B. Patton, D. Budker, R. Holzlöhner and D. Bonaccini Calia; 14. Detection of nuclear magnetic resonance with atomic magnetometers M. P. Ledbetter, I. Savukov, S. J. Seltzer and D. Budker; 15. Space magnetometry B. Patton, A. W. Brown, R. E. Slocum and E. J. Smith; 16. Detection of biomagnetic fields A. Ben-Amar Baranga, T. G. Walker and R. T. Wakai; 17. Geophysical applications M. D. Prouty, R. Johnson, I. Hrvoic and A. K. Vershovskiy; Part III. Broader Impact: 18. Tests of fundamental physics with optical magnetometers D. F. Jackson Kimball, S. K. Lamoreaux and T. E. Chupp; 19. Nuclear magnetic resonance gyroscopes E. A. Donley and J. Kitching; 20. Commercial magnetometers and their application D. C. Hovde, M. D. Prouty, I. Hrvoic and R. E. Slocum; Index.

  12. Soft optics in intelligent optical networks

    NASA Astrophysics Data System (ADS)

    Shue, Chikong; Cao, Yang

    2001-10-01

    In addition to the recent advances in Hard-optics that pushes the optical transmission speed, distance, wave density and optical switching capacity, Soft-optics provides the necessary intelligence and control software that reduces operational costs, increase efficiency, and enhances revenue generating services by automating optimal optical circuit placement and restoration, and enabling value-added new services like Optical VPN. This paper describes the advances in 1) Overall Hard-optics and Soft-optics 2) Layered hierarchy of Soft-optics 3) Component of Soft-optics, including hard-optics drivers, Management Soft-optics, Routing Soft-optics and System Soft-optics 4) Key component of Routing and System Soft-optics, namely optical routing and signaling (including UNI/NNI and GMPLS signaling). In summary, the soft-optics on a new generation of OXC's enables Intelligent Optical Networks to provide just-in-time service delivery and fast restoration, and real-time capacity management that eliminates stranded bandwidth. It reduces operational costs and provides new revenue opportunities.

  13. Biphoton optics

    NASA Astrophysics Data System (ADS)

    Strekalov, Dmitry Vladimirovich

    1997-10-01

    The subject of this dissertation is the study of the two- photon entanglement. This phenomenon has been paid a great deal of attention since 1935, when A. Einstein, B. Podolsky and N. Rosen asked their famous question, 'Can quantum-mechanical description of physical reality be considered complete?' An entangled system behavior is inconsistent with many classical concepts. Therefore, the understanding of two-photon entanglement is important for the foundations of quantum theory. A two-photon entangled sate represents a two-photon, or a biphoton, rather than two photons. The concept of biphoton as a single nonlocal quantum object is fundamentally different from the concept of a photon pair, as has been experimentally demonstrated in the present dissertation. Two-photon entanglement gives rise to unusual 'ghost' interference and diffraction, nonlocal geometrical phase, and other quantum phenomena originally studied in the present dissertation. The variety of available results calls for bringing them into a general system which we call Biphoton Optics. This is the main goal of this dissertation. Biphoton optics operate with two-photon wave packets, or with an equivalent concept of advanced wave. We show that in the framework of the advanced wave concept two-photon phenomena can be effectively described in terms of classical optics. Therefore the biphoton optics has the same structure as the classical optics. It includes two- photon geometrical optics, dispersion and frequency beating, polarization effects, interference, diffraction, and geometrical phase. All these two-photon effects are represented by experiments included in this dissertation. Our approach does not make two-photon quantum effects 'classical', however. It should be understood that the advanced wave model operates with counter-propagation in time which does not correspond to any real physical process. Therefore it is just a model, but it is clearly a great advantage to have such a model that is both

  14. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-09-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. Scope of Submission The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities To submit to this special issue, follow the normal procedure for submission to JON, indicating "Optical Ethernet feature" in the "Comments" field of the online submission form. For all other questions

  15. Optic nerve atrophy

    MedlinePlus

    Optic atrophy; Optic neuropathy ... There are many causes of optic atrophy. The most common is poor blood flow. This is called ischemic optic neuropathy. The problem most often affects older adults. ...

  16. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  17. Integrated Optics.

    DTIC Science & Technology

    1974-10-01

    the attractive option of varying the bandgap F.S well as the refractive index. The crystal growth equipment was modified to grow epitaxial layers...loss .or1 us6 in optical integrated circuits. The limited melt slidebar method is most useful for growing double layers of Gan xiAlyAs...limited melt graphite slide bar, and infinite melt. We were able to grow GaAs layers on (GaADAs substrates using the vapor growth method and

  18. Optical Limiting.

    DTIC Science & Technology

    1992-05-22

    AGENCY USE ONLY (Leave EPO RT D A TE 3. REPORT TYPE AND DATES COVERED 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Optical Limiting 6. AUTHOR(S) , 1 oS...to nanoseconds and find that, since the excited state absorption is cummulative, that the dyes can limit well for nanosecond pulses but not for...over which the device limits . In addition, we find that the dynamic range of limiting devices can be substantially increased using two elements without

  19. Optical Processing.

    DTIC Science & Technology

    1986-06-01

    general applications with average performance and certain numer- ical applications with very high per- formance. MIMD computers Support general ...Optical Processing I% FINAL REPORT June 1986 Heriot-Watt University University of Dayton Research Institute Subcontract Order No. RI-43109 ONR Main...apart, or a decoupled geometry in which the bias beamlet array, generated by the HOEs, is imaged by an intermediate, longer focal-length, high N.A. lens

  20. Optical gyroscope

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Goss, W. C.

    1978-01-01

    Instrument uses phase difference between two beams of light to measure rotation. It is considerably simpler and more reliable than conventional spinning-mass gyroscopes used for inertial guidance and is more compact, lighter, and potentially less expensive. Moreover, optical gyroscope requires no warmup period. Although conceived for spacecraft and satellite stabilization, gyroscope should also find applications in flight instruments for private, commercial, and military aircraft.

  1. Optical Refrigeration

    DTIC Science & Technology

    2007-12-01

    1Optical Science and Engineering, Department of Physics & Astronomy, University of New Mexico , Albuquerque, New Mexico 87131, USA 2Los Alamos National...Laboratory, Los Alamos, New Mexico 87545, USA *e-mail: msb@unm.edu The term ‘laser cooling’ is most often associated with cooling dilute gases of...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of New Mexico ,Department of Physics & Astronomy

  2. Ocean Optics

    DTIC Science & Technology

    2014-05-01

    sensing and lidar , through measurements and models. 15. SUBJECT TERMS Remote sensing , ocean optics, lidar , underwater imaging, underwater turbulence...scanning system taking advantage of compressive sensing imaging techniques (B. O^ang et al.). Modeling is key in system design and performance...effect has been simulated using a fvlonte Carlo method (Z. Xu and D. K. P. Yue). Active sensing by the means of lidar eliminates many of the issues

  3. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-04-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  4. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-05-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  5. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-07-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  6. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-06-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  7. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-08-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  8. Optical aeronomy

    SciTech Connect

    Solomon, S.C. )

    1991-01-01

    Optical measurements of thermospheric and ionospheric processes and their interpretation are reviewed and the chemical reactions and their effects on emissions are discussed. Also included are the phenomena which excite the airglow and aurora, i.e., the solar UV/EUV flux and auroral particle precipitation. Consideration is given to solar flux, atomic emissions, molecular emissions, hydrogen geocorona, and molecular oxygen and the green line nightglow.

  9. Foveated optics

    NASA Astrophysics Data System (ADS)

    Bryant, Kyle R.

    2016-05-01

    Foveated imaging can deliver two different resolutions on a single focal plane, which might inexpensively allow more capability for military systems. The following design study results provide starting examples, lessons learned, and helpful setup equations and pointers to aid the lens designer in any foveated lens design effort. Our goal is to put robust sensor in a small package with no moving parts, but still be able to perform some of the functions of a sensor in a moving gimbal. All of the elegant solutions are out (for various reasons). This study is an attempt to see if lens designs can solve this problem and realize some gains in performance versus cost for airborne sensors. We determined a series of design concepts to simultaneously deliver wide field of view and high foveal resolution without scanning or gimbals. Separate sensors for each field of view are easy and relatively inexpensive, but lead to bulky detectors and electronics. Folding and beam-combining of separate optical channels reduces sensor footprint, but induces image inversions and reduced transmission. Entirely common optics provide good resolution, but cannot provide a significant magnification increase in the foveal region. Offsetting the foveal region from the wide field center may not be physically realizable, but may be required for some applications. The design study revealed good general guidance for foveated optics designs with a cold stop. Key lessons learned involve managing distortion, telecentric imagers, matching image inversions and numerical apertures between channels, reimaging lenses, and creating clean resolution zone splits near internal focal planes.

  10. Optical analyzer

    DOEpatents

    Hansen, Anthony D.

    1989-01-01

    An optical analyzer (10) wherein a sample (19) of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter (20) is placed in a combustion tube (11), and light from a light source (14) is passed through the sample (19). The temperature of the sample (19) is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample (19) is detected (18) as the temperature is raised. A data processor (23), differentiator (28) and a two pen recorder (24) provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample (19). These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample (19). Additional information is obtained by repeating the run in different atmospheres and/or different rates of heating with other samples of the same particulate material collected on other filters.

  11. Optical analyzer

    DOEpatents

    Hansen, Anthony D.

    1989-02-07

    An optical analyzer (10) wherein a sample (19) of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter (20) is placed in a combustion tube (11), and light from a light source (14) is passed through the sample (19). The temperature of the sample (19) is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample (19) is detected (18) as the temperature is raised. A data processor (23), differentiator (28) and a two pen recorder (24) provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample (19). These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample (19). Additional information is obtained by repeating the run in different atmospheres and/or different rates of heating with other samples of the same particulate material collected on other filters.

  12. Optical gyroscope

    NASA Astrophysics Data System (ADS)

    Seifollahi, Alireza

    It is said that future of the world is based on space exploration which leads us to think more about low cost and light weight instruments. Cheap and sensitive instruments should be de-signed and replace the expensive ones. One of the required instruments in space ships is gyroscope controls the direction of space ship. In this article I am going to give an idea to use optical properties in a new gyroscope which will be cheaper as well as more sensitive in com-pare with most of the being used normal gyroscope nowadays. This instrument uses an optical system to measure the angular changes in the direction of a space craft movements in any of the three axels. Any movement, even very small one, will move a crystal bulb which is lashed by some narrow elastic bands in a fixed box surrounded by three optical sources and light meters. Light meters measure the attitude and the angel of changes in the light beams going through the bulb which is related to the amount of changes in the space craft directions. The system will be very sensitive even against movement around its access. As an electro digital device in connection to a Main Process Unit (MPU) it can be used in Stability Augmentation System (SAS) in a space ship. The sensitivity rate of the instrument will be based on the quality and sensitivity of the light meters.

  13. Power optics

    SciTech Connect

    Apollonov, V V

    2014-02-28

    By using the theory we developed in the early 1970s, a broad range of phenomena is considered for an optical surface of a solid body that is exposed to radiation arbitrarily varying in time and producing temperature fields, thermoelastic stresses and thermal deformations on the surface layer. The examination is based on the relations (which are similar to Duhamel's integral formula from the theory of heat conduction) between the quantities characterising the thermal stress state in any nonstationary regimes of energy input into a solid. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that this relation comprises time as a parameter, which in turn is a consequence of incoherence of the quasi-stationary problem of thermoelasticity. This phenomenon is particularly important for the optics of high-power, high-pulse repetition rate lasers, which are being actively developed. In the review, we have recently published in Laser Physics, the thermal stress state of a solid is analysed. In this state, time is treated as an independent variable used in differentiation. Such an approach greatly reduces the applicability of the method. The review published contains data on the use of capillary porous structures made of various materials with different degrees of the surface development. Moreover, such structures can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. In the present review we discuss the dependences of the limiting laser intensities on the duration of a pulse or a pulse train, corresponding to the three stages of the state of the reflecting surface and leading to unacceptable elastic deformations of the surface, to the plastic yield of the material accompanied by the formation of residual stresses and to the melting of the surface layer. We also analyse the problem of heat exchange in the surface layer with a liquid metal coolant pumped through it. The

  14. Parallel optical sampler

    DOEpatents

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  15. Optical interconnect assembly

    DOEpatents

    Laughlin, Daric; Abel, Philip

    2015-06-09

    An optical assembly includes a substrate with a first row of apertures and a second row of apertures. A first optical die includes a first plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each transducer element is aligned with an aperture of the first row of optical apertures. A second optical die includes a second plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each of the second plurality of optical transducer elements is aligned with an aperture of the second row of optical apertures. A connector configured to mate with the optical assembly supports a plurality of optical fibers. A terminal end of each optical fiber protrudes from the connector and extends into one of the apertures when the connector is coupled with the optical assembly.

  16. Optical microphone

    DOEpatents

    Veligdan, James T.

    2000-01-11

    An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.

  17. Optical devices

    DOEpatents

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-07-13

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  18. Optical Processing.

    DTIC Science & Technology

    1985-12-31

    34 Optics Letters, 2 (1), 1-3 (1978). 7. Grossberg, S., "Adaptive Resonance in Development, Perception and Cognition ," SIAM-AMS Proc., 13, 107-156...Illusions," Biol. Cybernetics, 23, 187-202, (1976b). 11. Grossberg, S., "How Does A Brain Build a Cognitive Code?", Psychol. Review, 87 (1), 1-51 (1980...34perceptron" (F. Rosenblatt, Principles of Neurodynamics ), workers in the neural network field have been seeking to understand how neural networks can perform

  19. Optical instruments

    NASA Technical Reports Server (NTRS)

    Abel, I. R. (Inventor)

    1974-01-01

    A wide angle, low focal ratio, high resolution, catoptric, image plane scanner is described. The scanner includes the following features: (1) a reflective improvement on the Schmidt principle, (2) a polar line scanner in which all field elements are brought to and corrected on axis, and (3) a scanner arrangement in which the aperture stop of the system is imaged at the center of curvature of a spherical primary mirror. The system scans are a large radial angle and an extremely high rate of speed with relatively small scanning mirrors. Because the system is symmetrical about the optical axis, the obscuration is independent of the scan angle.

  20. Optical Limiting

    DTIC Science & Technology

    1992-05-22

    Organic Materials’, M.J. Soileau, T.H. Wei, M. Sheik- Bahae , D.J. Hagan, Martine Sence, and E.W. Van Stryland, I International Topical Meeting on Optics...Coulter and Joe Perry of the Jet Propulsion Laboratory for providing samples and their expertise on materials. I . M. Sheik- bahae , A.A. Said, and E.W...Form Approved AD A 5 1 INPAGE I OPml No. 0704-0188 lillill l I I ll (ll it1111 1 ~ ~ ae ’ Do e or .ewove. *MIraong the teffe ’Of re.-owng

  1. Optical microfluidics

    SciTech Connect

    Kotz, K.T.; Noble, K.A.; Faris, G.W.

    2004-09-27

    We present a method for the control of small droplets based on the thermal Marangoni effect using laser heating. With this approach, droplets covering five orders of magnitude in volume ({approx}1.7 {mu}L to 14 pL), immersed in decanol, were moved on an unmodified polystyrene surface, with speeds of up to 3 mm/s. When two droplets were brought into contact, they spontaneously fused and rapidly mixed in less than 33 ms. This optically addressed microfluidic approach has many advantages for microfluidic transport, including exceptional reconfigurability, low intersample contamination, large volume range, extremely simple substrates, no electrical connections, and ready scaling to large arrays.

  2. EDITORIAL: Optical orientation Optical orientation

    NASA Astrophysics Data System (ADS)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  3. Optical Fiber Communications

    NASA Astrophysics Data System (ADS)

    Singal, T. L.

    2017-01-01

    Preface; Dedication; List of figures; List of tables; Acknowledgements; 1. Introduction; 2. Basics of optical fibers; 3. Optical sources and transmitters; 4. Optical receivers; 5. Optical amplifiers; 6. Dispersion management techniques; 7. WDM concepts and components; 8. Optical measurements; Appendix A. Fiber optic sensors; Appendix B. Radio over fiber; Appendix C. Wireless optics; Appendix D. Model test papers; Appendix E. Abbreviations and acronyms; References; Index.

  4. Optical Instruments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Precision Lapping and Optical Co. has developed a wide variety of hollow retroreflector systems for applications involving the entire optical spectrum; they are, according to company literature, cheaper, more accurate, lighter and capable of greater size than solid prisms. Precision Lapping's major customers are aerospace and defense companies, government organizations, R&D and commercial instrument companies. For example, Precision Lapping supplies hollow retroreflectors for the laser fire control system of the Army's Abrams tank, and retroreflectors have been and are being used in a number of space tests relative to the Air Force's Strategic Defense Initiative research program. An example of a customer/user is Chesapeake Laser Systems, producer of the Laser Tracker System CMS-2000, which has applications in SDI research and industrial robotics. Another customer is MDA Scientific, Inc., manufacturer of a line of toxic gas detection systems used to monitor hazardous gases present in oil fields, refineries, offshore platforms, chemical plants, waste storage sites and other locations where gases are released into the environment.

  5. Optical diffractometry.

    PubMed

    Tavassoly, M Taghi; Amiri, Mohammad; Darudi, Ahmad; Aalipour, Rasoul; Saber, Ahad; Moradi, Ali-Reza

    2009-03-01

    Interference of light has numerous metrological applications because the optical path difference (OPD) can be varied at will between the interfering waves in the interferometers. We show how one can desirably change the optical path difference in diffraction. This leads to many novel and interesting metrological applications including high-precision measurements of displacement, phase change, refractive index profile, temperature gradient, diffusion coefficient, and coherence parameters, to name only a few. The subject fundamentally differs from interferometry in the sense that in the latter the measurement criterion is the change in intensity or fringe location, while in the former the criterion is the change in the visibility of fringes with an already known intensity profile. The visibility can vary from zero to one as the OPD changes by a half-wave. Therefore, measurements with the accuracy of a few nanometers are quite feasible. Also, the possibility of changing the OPD in diffraction allows us to use Fresnel diffraction in Fourier spectrometry, to enhance or suppress diffracted fields, and to build phase singularities that have many novel and useful applications.

  6. Optical Nanodozers

    NASA Astrophysics Data System (ADS)

    Khorshid, Ahmed; Reisner, Walter; Sakaue, Takahiro

    2015-03-01

    Experiment, simulation and scaling analytics are converging on a comprehensive picture regarding the equilibrium behaviour of nanochannel confined semiflexible, self-avoiding chains. Yet, strongly non-equilibrium behaviour of confined polymers is largely unexplored from either an experimental or theoretical point of view. Combining optical trapping and nanofluidics, we have developed a ``nanodozer'' assay for quantifying confined polymer dynamics. An optical trap is used to slide a nanosphere at a fixed velocity along a nanochannel. The trapped bead acts as a permeable gasket, letting fluid escape but preventing the polymer from passing. As the sliding bead comes in contact with a nanochannel extended DNA, the molecule is dynamically compressed, undergoing transient dynamics characterized by a traveling concentration ``shockwave'' before reaching a final steady state with a ramp-like concentration profile. Remarkably, these strongly non-equilibrium measurements can be quantified via a simple nonlinear convective-diffusion formalism and yield insights into the local blob statistics, allowing us to conclude that the compressed nanochannel confined chain exhibits mean-field behaviour.

  7. Congenital optic tract hypoplasia.

    PubMed

    Hatsukawa, Yoshikazu; Fujio, Takahiro; Nishikawa, Masanori; Taylor, David

    2015-08-01

    We report a case of isolated unilateral optic tract hypoplasia, described only twice previously. Bilateral optic disk hypoplasia was seen ophthalmoscopically and visual field studies showed an incongruous right homonymous hemianopia. Magnetic resonance imaging showed bilateral hypoplasia of both optic nerves and the left optic tract. Spectral domain optical coherence tomography mapping correlated well with the visual field studies.

  8. Integrated optics for fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Minford, W. J.; Depaula, R. P.

    1991-01-01

    Recent progress achieved in the field of fiber-optic sensor applications is discussed with emphasis placed on LiNbO3-based integrated optics (IO). Particular consideration is given to advanced electromagnetic-field sensors, an integrated laser vibrometer system, and a fiber-optic gyroscope system. It is shown that the multifunction IO chips have enabled high perforamance fiber-optic sensors (e.g., fiber-optic gyros), provided advanced and unique signal processing capabilities and advanced architectures, and have a potential of making fiber-optic sensors at low cost.

  9. Integrated optics for fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Minford, W. J.; Depaula, R. P.

    1991-01-01

    Recent progress achieved in the field of fiber-optic sensor applications is discussed with emphasis placed on LiNbO3-based integrated optics (IO). Particular consideration is given to advanced electromagnetic-field sensors, an integrated laser vibrometer system, and a fiber-optic gyroscope system. It is shown that the multifunction IO chips have enabled high perforamance fiber-optic sensors (e.g., fiber-optic gyros), provided advanced and unique signal processing capabilities and advanced architectures, and have a potential of making fiber-optic sensors at low cost.

  10. Optical manifold

    SciTech Connect

    Falicoff, Waqidi; Chaves, Julio C.; Minano, Juan Carlos; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-02-23

    Optical systems are described that have at least one source of a beam of blue light with divergence under 15.degree.. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15.degree.. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15.degree., 22.degree., and 45.degree.. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.

  11. Optical Tools

    NASA Astrophysics Data System (ADS)

    Roncali, E.; Tavitian, B.; Texier, I. E.; Peltié, P.; Perraut, F.; Boutet, J.; Cognet, L.; Lounis, B.; Marguet, D.; Thoumine, O.; Tramier, M.

    Fluorescence is a physical phenomenon described for the first time in 1852 by the British scientist George G. Stokes, famous for his work in mathematics and hydrodynamics. He observed the light emitted by a mineral after excitation (absorption of light by the mineral) by UV light. He then formulated what has become known as Stokes’ law, which says that the wavelength of fluorescence emission is longer than the excitation wavelength used to generate it. Some phenomena departing from this rule were later discovered, but do not in fact invalidate it. The possibility of visible excitation was subsequently developed, with the discovery of many fluorescing aromaticmolecules, called fluorophores. The identification of these compounds and improved control over the physical phenomenon meant that by 1930 research tools had been developed in biology, e.g., labeling certain tissues and bacteria so as to observe them by fluorescence. The optical microscope as it had existed since the nineteenth century thus gave rise to the fluorescence microscope: a reflection system to supply the light required to excite the fluorophores was added to the standard microscope, together with a suitable filtering system. Fluorescence microscopy soon became an important tool for biological analysis both in vitro and ex vivo, and other applications of light emission were also devised (light-emission phenomena of which fluorescence is a special case, described further in Sect. 7.2). It became possible to study phenomena that could not be observed by standard optical microscopy. Among other things, the location of molecules inside cells, monitoring of intracellular processes, and detection of single molecules all become feasible by means of fluorescence microscopy.

  12. Optics at westinghouse.

    PubMed

    Ivey, H F

    1972-05-01

    Past and present work in optics at the Westinghouse Electric Corporation is surveyed. The areas discussed include lamps and illumination, industrial optical applications, television and imaging systems, and lasers and coherent optics.

  13. Optical data latch

    DOEpatents

    Vawter, G Allen [Corrales, NM

    2010-08-31

    An optical data latch is formed on a substrate from a pair of optical logic gates in a cross-coupled arrangement in which optical waveguides are used to couple an output of each gate to an photodetector input of the other gate. This provides an optical bi-stability which can be used to store a bit of optical information in the latch. Each optical logic gate, which can be an optical NOT gate (i.e. an optical inverter) or an optical NOR gate, includes a waveguide photodetector electrically connected in series with a waveguide electroabsorption modulator. The optical data latch can be formed on a III-V compound semiconductor substrate (e.g. an InP or GaAs substrate) from III-V compound semiconductor layers. A number of optical data latches can be cascaded to form a clocked optical data shift register.

  14. Fiber optic multiplex optical transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1977-01-01

    A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.

  15. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  16. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.; Findakly, T.; Innarella, R.

    1982-01-01

    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.

  17. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  18. Optic Nerve Decompression

    MedlinePlus

    ... Nerve Decompression Dacryocystorhinostomy (DCR) Disclosure Statement Printer Friendly Optic Nerve Decompression John Lee, MD Introduction Optic nerve decompression is a surgical procedure aimed at ...

  19. Fiber optic monitoring device

    SciTech Connect

    Samborsky, J.K.

    1992-12-31

    This invention is comprised of a device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  20. Optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Bleha, W. P.; Miller, L.; Grinberg, J.; Fraas, L.; Margerum, D.

    1975-01-01

    An investigation was conducted to develop an optical-to-optical interface device capable of performing real-time incoherent-to-incoherent optical image conversion. The photoactivated liquid crystal light valve developed earlier represented a prototype liquid crystal light valve device capable of performing these functions. A device was developed which had high performance and extended lifetime.

  1. FIBER OPTICS: Fibre optics: Forty years later

    NASA Astrophysics Data System (ADS)

    Dianov, Evgenii M.

    2010-01-01

    This paper presents a brief overview of the state of the art in fibre optics and its main applications: optical fibre communications, fibre lasers and fibre sensors for various physical property measurements. The future of fibre optics and the status of this important area of the modern technology in Russia are discussed.

  2. CCAT optics

    NASA Astrophysics Data System (ADS)

    Padin, S.; Hollister, M.; Radford, S.; Sayers, J.; Woody, D.; Zmuidzinas, J.; Cortes-Medellin, G.; Sebring, T.; Stacey, G.

    2010-07-01

    CCAT will be a 25 m diameter, submillimeter-wave telescope. It will be located on Cerro Chajnantor in the Atacama Desert, near ALMA. CCAT will be an on-axis, Ritchey-Chrétien design with an active primary to compensate gravitational deformations. The primary mirror will have 162 segments, each with ~0.5 × 0.5 m reflecting tiles on a ~2×2 m, insulated, carbon-fiber-reinforced-plastic subframe. CCAT will be equipped with wide-field, multi-color cameras and multi-object spectrometers at its Nasmyth foci. These instruments will cover all the atmospheric windows in the λ = 0.2 to 2 mm range. The field of view at the Nasmyth foci will be 1°, so CCAT will be able to support cameras with a few ×104 detectors (spaced 2 beamwidths) at λ = 1 mm to a few ×106 detectors (spaced half a beamwidth) at λ = 350 μm. Single instruments of this size are probably impractical, so we will break the field into smaller pieces, with a separate sub-field camera for each piece. The cameras will require some relay optics to couple the fairly slow beam from the telescope to the detectors. A reflective relay for 1° field of view is too large to be practical, so we plan to use a compact, cold, refractive relay in each sub-field camera.

  3. Optical extensometer

    DOEpatents

    Walker, Ray A.; Reich, Fred R.; Russell, James T.

    1978-01-01

    An optical extensometer is described using sequentially pulsed light beams for measuring the dimensions of objects by detecting two opposite edges of the object without contacting the object. The light beams may be of different distinguishable light characteristics, such as polarization or wave length, and are time modulated in an alternating manner at a reference frequency. The light characteristics are of substantially the same total light energy and are distributed symmetrically. In the preferred embodiment two light beam segments of one characteristic are on opposite sides of a middle segment of another characteristic. As a result, when the beam segments are scanned sequentially across two opposite edges of the object, they produce a readout signal at the output of a photoelectric detector that is compared with the reference signal by a phase comparator to produce a measurement signal with a binary level transition when the light beams cross an edge. The light beams may be of different cross sectional geometries, including two superimposed and concentric circular beam cross sections of different diameter, or two rectangular cross sections which intersect with each other substantially perpendicular so only their central portions are superimposed. Alternately, a row of three light beams can be used including two outer beams on opposite sides and separate from a middle beam. The three beams may all be of the same light characteristic. However it is preferable that the middle beam be of a different characteristic but of the same total energy as the two outer beams.

  4. Illusion optics

    NASA Astrophysics Data System (ADS)

    Lai, Yun; Ng, Jack; Chen, Huan-Yang; Zhang, Zhao-Qing; Chan, C. T.

    2010-09-01

    The technique of “transformation optics” establishes a correspondence between coordinate transformation and material constitutive parameters. Most of the transformation optics mappings give metamaterials that have graded positive refractive indices that can steer light in curves defined by the coordinate transformation. We will focus on those “folded-geometry mappings” that give negative refractive index materials that have special wave scattering properties. One interesting example is a kind of remote illusion device that can transform the stereoscopic image of an object into the illusion of some other object of our choice. The conceptual device can create the illusion without touching or encircling the object. For any incident wave, the device transforms the scattered waves of the original object into that of the object chosen for illusion outside a virtual boundary. We will illustrate some possible applications of this type of metamaterial remote device, including “cloaking at a distance,” partial cloaking, cloaking from an embedded device, revealing a hidden object inside a container, turning the image of one object into that of another object, and seeing through a wall. The feasibility of building this remote illusion device by metamaterials will also be discussed.

  5. Optical NAND gate

    DOEpatents

    Skogen, Erik J.; Raring, James; Tauke-Pedretti, Anna

    2011-08-09

    An optical NAND gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator and a photodetector. One pair of the optical waveguide devices is electrically connected in parallel to operate as an optical AND gate; and the other pair of the optical waveguide devices is connected in series to operate as an optical NOT gate (i.e. an optical inverter). The optical NAND gate utilizes two digital optical inputs and a continuous light input to provide a NAND function output. The optical NAND gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  6. Peptide Optical waveguides.

    PubMed

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil

    2017-02-01

    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  7. Light Optics for Optical Stochastic Cooling

    SciTech Connect

    Andorf, Matthew; Lebedev, Valeri; Piot, Philippe; Ruan, Jinhao

    2016-06-01

    In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.

  8. Optically Tunable Gratings for Optical Interconnects

    DTIC Science & Technology

    1989-10-30

    OPTICALLY TUNABLE GRATINGS FOR OPTICAL INTERCONNECTS Final Report SELECTED JAN 2 31990 D ~ Submitted...such as acousto - optic or electro- optic deflectors . Using the strengths of our research program, we investigated optically tuneable gratings in...are those ~!,f~~ a~Sh~;~~L~~ d ~~9~H ~~t.:~~!-r~~~’~IU! 2 ~’h!~ ~H~~!~g:rtment of the Army position, 17. COSATI CODES 1 I. SUBJECT TERMS (Continut on

  9. Subsea downhole optical sensing

    NASA Astrophysics Data System (ADS)

    McStay, D.; Shiach, G.; McAvoy, S.

    2009-07-01

    The potential for subsea downhole optical fibre sensing to optimize hydrocarbon production and hence contribute to enhanced oil recovery is described. The components of susbea downhole optical sensing systems are reviewed and the performance of a new subsea optical fibre feed-through for downhole optical fibre sensing reported.

  10. Introduction to ocean optics

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Smith, R. C.; Zaneveld, J. R. V.

    1984-01-01

    In this introductory survey of optical oceanography, the fundamental inherent and apparent optical properties of natural waters are presented. Relationships between these inherent and apparent optical properties, as related through the radiative transfer equation, are then examined. Following the first three theoretical sections, brief discussions describing the application of ocean optics to geophysics, biological oceanography, and ocean remote sensing are then presented.

  11. Transformation optics and metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Huanyang; Chan, C. T.; Sheng, Ping

    2010-05-01

    Underpinned by the advent of metamaterials, transformation optics offers great versatility for controlling electromagnetic waves to create materials with specially designed properties. Here we review the potential of transformation optics to create functionalities in which the optical properties can be designed almost at will. This approach can be used to engineer various optical illusion effects, such as the invisibility cloak.

  12. Optical monitoring system

    NASA Technical Reports Server (NTRS)

    Nev, J. T.; Wrench, E. H.; Fox, M. G.; Lave, H.

    1973-01-01

    Instrument can measure optical transmission, reflectance, and scattering. This information can be used to identify changes in optical properties or deviations from required optical standards. Device consists of monochromatic source, photo detector, transfer mirror, and hemiellipsoid. System might be used to measure optical properties of thin film.

  13. Optical NOR gate

    DOEpatents

    Skogen, Erik J.; Tauke-Pedretti, Anna

    2011-09-06

    An optical NOR gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical NOR gate utilizes two digital optical inputs and a continuous light input to provide a NOR function digital optical output. The optical NOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  14. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  15. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  16. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  17. Optical XOR gate

    SciTech Connect

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  18. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  19. Optical computing research

    NASA Astrophysics Data System (ADS)

    Goodman, Joseph W.

    1987-10-01

    Work Accomplished: OPTICAL INTERCONNECTIONS - the powerful interconnect abilities of optical beams have led much optimism about the possible roles for optics in solving interconnect problems at various levels of computer architecture. Examined were the powerful requirements of optical interconnects at the gate-to-gate and chip-to-chip levels. OPTICAL NEUTRAL NETWORKS - basic studies of the convergence properties on the Holfield model, based on mathematical approach - graph theory. OPTICS AND ARTIFICIAL INTELLIGENCE - review the field of optical processing and artificial intelligence, with the aim of finding areas that might be particularly attractive for future investigation(s).

  20. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.

    1982-01-01

    The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.

  1. Optical rotary connector.

    PubMed

    Machida, H; Kobayashi, H; Akedo, J; Sawada, K; Yasukawa, T; Lino, R

    1988-08-01

    As optical fiber usage widens, a new kind of optical fiber connector becomes necessary. This connector would be connecting two optical fiber bundles with different speeds around an axis without interruption. It is difficult to make such a connector, especially one with a hollow axis used for mechanical power transmissions. Using an optical fiber bundle for an image inversion and a differential gear system, we have developed an optical rotary connector with a hollow axis that can be used for a multichannel connection.

  2. Optical Neural Interfaces

    PubMed Central

    Warden, Melissa R.; Cardin, Jessica A.; Deisseroth, Karl

    2014-01-01

    Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals. PMID:25014785

  3. Optical computing for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Huo, Tiancheng; Wang, Chengming; Liao, Wenchao; Chen, Tianyuan; Ai, Shengnan; Zhang, Wenxin; Hsieh, Jui-Cheng; Xue, Ping

    2016-11-01

    We propose an all-optical Fourier transformation system for real-time massive data processing in high speed optical coherence tomography (OCT). In the so-called optical computing OCT, fast Fourier transformation (FFT) of A-scan signal is optically processed in real time before being detected by photoelectric detector. Therefore, the processing time for interpolation and FFT in traditional Fourier domain OCT can be dramatically eliminated. A processing rate of 10 mega-A-scans/second was experimentally achieved, which is, to our knowledge, the highest speed for OCT imaging. Due to its fiber based all-optical configuration, this optical computing OCT system is ideal for ultrahigh speed volumetric OCT imaging in clinical application.

  4. Wireless optical energy transmission using optical beamforming

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Man; Kim, Seong-Min

    2013-04-01

    We propose and demonstrate a wireless optical energy transmission using optical beamforming with a spatial light modulator. We demonstrate an optical beamforming technology to focus the light of an optical source on a desired target, which can be used in various applications. Our experiment shows a wireless energy transmission efficiency of 1.3% with a white light-emitting diode light source. Although the transmission efficiency is currently low in our experimental result, we expect that the transmission efficiency can be improved up to 30% with highly efficient devices. We also propose an algorithm based on the optical beamforming to detect the location of the target device automatically. The proposed wireless optical energy transmission has several advantages over the previous wireless energy transmission methods.

  5. Optical computing for optical coherence tomography

    PubMed Central

    Zhang, Xiao; Huo, Tiancheng; Wang, Chengming; Liao, Wenchao; Chen, Tianyuan; Ai, Shengnan; Zhang, Wenxin; Hsieh, Jui-Cheng; Xue, Ping

    2016-01-01

    We propose an all-optical Fourier transformation system for real-time massive data processing in high speed optical coherence tomography (OCT). In the so-called optical computing OCT, fast Fourier transformation (FFT) of A-scan signal is optically processed in real time before being detected by photoelectric detector. Therefore, the processing time for interpolation and FFT in traditional Fourier domain OCT can be dramatically eliminated. A processing rate of 10 mega-A-scans/second was experimentally achieved, which is, to our knowledge, the highest speed for OCT imaging. Due to its fiber based all-optical configuration, this optical computing OCT system is ideal for ultrahigh speed volumetric OCT imaging in clinical application. PMID:27869131

  6. Design of optical switches by illusion optics

    NASA Astrophysics Data System (ADS)

    Shoorian, H. R.; Abrishamian, M. S.

    2013-05-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device.

  7. Optical microfibers and nanofibers

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqin; Tong, Limin

    2013-12-01

    As a combination of fiber optics and nanotechnology, optical microfibers and nanofibers (MNFs) have been emerging as a novel platform for exploring fiber-optic technology on the micro/nanoscale. Typically, MNFs taper drawn from glass optical fibers or bulk glasses show excellent surface smoothness, high homogeneity in diameter and integrity, which bestows these tiny optical fibers with low waveguiding losses and outstanding mechanical properties. Benefitting from their wavelength- or sub-wavelength-scale transverse dimensions, waveguiding MNFs exhibit a number of interesting properties, including tight optical confinement, strong evanescent fields, evident surface field enhancement and large and abnormal waveguide dispersion, which makes them ideal nanowaveguides for coherently manipulating light, and connecting fiber optics with near-field optics, nonlinear optics, plasmonics, quantum optics and optomechanics on the wavelength- or sub-wavelength scale. Based on optical MNFs, a variety of technological applications, ranging from passive micro-couplers and resonators, to active devices such as lasers and optical sensors, have been reported in recent years. This review is intended to provide an up-to-date introduction to the fabrication, characterization and applications of optical MNFs, with emphasis on recent progress in our research group. Starting from a brief introduction of fabrication techniques for physical drawing glass MNFs in Section 2, we summarize MNF optics including waveguiding modes, evanescent coupling, and bending loss of MNFs in Section 3. In Section 4, starting from a "MNF tree" that summarizes the applications of MNFs into 5 categories (waveguide & near field optics, nonlinear optics, plasmonics, quantum & atom optics, optomechanics), we go to details of typical technological applications of MNFs, including optical couplers, interferometers, gratings, resonators, lasers and sensors. Finally in Section 5 we present a brief summary of optical MNFs

  8. Remote optical fiber dosimetry

    NASA Astrophysics Data System (ADS)

    Huston, A. L.; Justus, B. L.; Falkenstein, P. L.; Miller, R. W.; Ning, H.; Altemus, R.

    2001-09-01

    Optical fibers offer a unique capability for remote monitoring of radiation in difficult-to-access and/or hazardous locations. Optical fiber sensors can be located in radiation hazardous areas and optically interrogated from a safe distance. A variety of remote optical fiber radiation dosimetry methods have been developed. All of the methods take advantage of some form of radiation-induced change in the optical properties of materials such as: radiation-induced darkening due to defect formation in glasses, luminescence from native defects or radiation-induced defects, or population of metastable charge trapping centers. Optical attenuation techniques are used to measure radiation-induced darkening in fibers. Luminescence techniques include the direct measurement of scintillation or optical excitation of radiation-induced luminescent defects. Optical fiber radiation dosimeters have also been constructed using charge trapping materials that exhibit thermoluminescence or optically stimulated luminescence (OSL).

  9. Nonlinear Optics and Applications

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  10. Latching micro optical switch

    DOEpatents

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  11. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  12. Organic nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  13. Resonant optical antennas.

    PubMed

    Mühlschlegel, P; Eisler, H-J; Martin, O J F; Hecht, B; Pohl, D W

    2005-06-10

    We have fabricated nanometer-scale gold dipole antennas designed to be resonant at optical frequencies. On resonance, strong field enhancement in the antenna feed gap leads to white-light supercontinuum generation. The antenna length at resonance is considerably shorter than one-half the wavelength of the incident light. This is in contradiction to classical antenna theory but in qualitative accordance with computer simulations that take into account the finite metallic conductivity at optical frequencies. Because optical antennas link propagating radiation and confined/enhanced optical fields, they should find applications in optical characterization, manipulation of nanostructures, and optical information processing.

  14. Optical subcarrier multiplexing for multigigabit optical communication

    NASA Astrophysics Data System (ADS)

    Donkor, Eric

    1998-07-01

    Future broadband fiber communication networks for commercial and/or military application will require tens to hundreds of communication channels, each channel transporting multigigabit data resulting in an aggregate throughput upwards of 100 Gb/s. Optical-based systems have the potential for realizing such networks because of the inherent speed of optical signals, and the large optical (30-terahertz) bandwidth that can be exploited for communication. Optical signal multiplexing in the spectral and temporal domains provides means of interconnecting and transporting large user data through a network. One approach to achieving multigigabit data transport via time division multiplexed requires the development of femtosecond mode-locked lasers or soliton lasers of high repetition rates. Such lasers are bulky making them impractical for systems applications. Furthermore their performance can be severely affected by optical nonlinearities. WDM offers another approach to multigigabit data transport. Typically WDM systems utilize a separate single frequency laser for each channel. Stabilizing and controlling each individual wavelength of a high density WDM system is difficult and costly. Furthermore cross-talk and cross-phase modulation limit the channel capacity in WDM systems. In this paper we propose a subcarrier multiplexing scheme as an alternative to multigigabit fiber optics data communication. In this approach, a comb of optical RF subcarriers are generated in a matched-pair of optical traveling-wave amplifiers (TWA). Each subcarrier serves as a transmission channel. The most important aspect of this approach is that optical processing of the subcarriers are done via the main optical carrier. Thus amplification of the main carrier translates into a direct amplification of the subcarriers. We present theoretical framework and simulation results for optical RF subcarrier generation.

  15. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  16. Standardization in optics characterization

    NASA Astrophysics Data System (ADS)

    Ristau, Detlev

    2000-11-01

    In many advanced fields of optical technology, progresses are extremely dependent on reliable characterization procedures employed for quality assessment in volume manufacturing as well as for the optimization of high performance optical components. With the rapid development of laser technology and modern optics, especially optical metrology gained of importance for the quality management in the industrial production environment and also for research in optical components. Besides absorption and scatter losses, the spectral characteristics and laser induced damage thresholds are considered nowadays as common quality factors, which are often indicated in optics catalogues and are considered by the customers for the design of optical systems. As a consequence of this trend, standardization of measurement procedures for the characterization of optical components became a crucial point for the optics industry and for critical applications of optical components in laser systems as well as conventional optical devices. During the last decade, adapted standard measurement techniques have been elaborated and discussed in the Technical Committee ISO/TC 172 of the International Organization for Standardization (ISO) resulting in practical International Standards or Draft Standards for the measurement of optical absorption, scattering, reflectance and laser induced damage thresholds. In this paper, the current state of standardized characterization techniques for optical components is summarized. Selected standards for the measurement of absorption (ISO 11551), scattering (ISO/DIS 13696) and laser induced damage thresholds (ISO/DIS 11254, Parts 1 and 2) will be described and discussed in view of recent trends in laser technology and its applications in semiconductor lithography.

  17. Binary optics at Hughes Danbury Optical Systems

    NASA Technical Reports Server (NTRS)

    Logue, James; Power, Michael

    1993-01-01

    An overview of binary optics development at Hughes Danbury Optical Systems is presented. Design software used for mask design is presented. A brief discussion of fabrication follows. Two examples of actual projects are used to highlight the discussion: (1) a large aspheric lens; and (2) a set of grating and lenslet arrays.

  18. Optical Filter Assembly for Interplanetary Optical Communications

    NASA Technical Reports Server (NTRS)

    Chen, Yijiang; Hemmati, Hamid

    2013-01-01

    Ground-based, narrow-band, high throughput optical filters are required for optical links from deep space. We report on the development of a tunable filter assembly that operates at telecommunication window of 1550 nanometers. Low insertion loss of 0.5 decibels and bandwidth of 90 picometers over a 2000 nanometers operational range of detectors has been achieved.

  19. Acousto-optic laser optical feedback imaging.

    PubMed

    Jacquin, O; Glastre, W; Lacot, E; Hugon, O; Guillet de Chatellus, H; Ramaz, F

    2012-07-01

    We present a photon noise and diffraction-limited imaging method combining an imaging laser and ultrasonic waves. The laser optical feedback imaging (LOFI) technique is an ultrasensitive imaging method for imaging objects through or embedded within a scattering medium. However, LOFI performances are dramatically limited by parasitic optical feedback occurring in the experimental setup. In this Letter, we have tagged the ballistic photons by an acousto-optic effect in order to filter the parasitic feedback effect and to reach the theoretical and ultimate sensitivity of the LOFI technique. We present the principle and the experimental setup of the acousto-optic laser optical feedback imaging technique, and we demonstrate the suppression of the parasitic feedback.

  20. Optic Nerve Disorders

    MedlinePlus

    ... There are many different types of optic nerve disorders, including: Glaucoma is a group of diseases that ... are having vision problems. Tests for optic nerve disorders may include eye exams, ophthalmoscopy (an examination of ...

  1. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  2. Fiber optic communications

    NASA Astrophysics Data System (ADS)

    Palais, J. C.

    A description of fiber optic communications systems and an optics review are provided, taking into account the historical perspective, the basic communications system, the nature of light, advantages of fibers, the applicatins of fiber optic communications, ray theory and applications, lenses, imaging, numerical aperture, and diffraction. Other subjects examined are related to integrated optic waveguides, lightwave fundamentals, optic fiber waveguides, light sources, light detectors, couplers and connectors, distribution systems, modulation, noise and detection, and system design. Attention is given to electromagnetic waves, dispersion, pulse distortion, polarization, integrated optic networks, the step-index fiber, the graded-index fiber, optic fiber cables, light-emitting diodes, laser principles, laser diodes, splices, source coupling, distribution networks, directional couplers, star couplers, switches, analog and digital modulation formats, optic heterodyne receives, thermal and shot noise, error rates, receiver circuit design, and analog and digital system design.

  3. Optical devices: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Technological developments in the field of optics devices which have potential utility outside the aerospace community are described. Optical instrumentation, light generation and transmission, and laser techniques are among the topics covered. Patent information is given.

  4. Optics for natural lighting

    NASA Technical Reports Server (NTRS)

    Edwards, H. B.

    1978-01-01

    Energy-saving optics utilize sky and sun for lighting. Innovative optical arrangements for transmitting outdoor light into building interiors are decribed using flat white and mirrored surfaces for converging and diverging light pipes.

  5. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  6. Introduction to ocean optics

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Smith, R. C.; Zaneveld, J. R. V.

    1980-01-01

    The fundamental inherent and apparent optical properties of natural waves are reviewed and relationships between these properties, as related through the radiative transfer equation, are examined. Applications of ocean optics to geophysics, biological oceanography, and ocean remote sensing are discussed.

  7. Optical signal processing

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1978-01-01

    The article discusses several optical configurations used for signal processing. Electronic-to-optical transducers are outlined, noting fixed window transducers and moving window acousto-optic transducers. Folded spectrum techniques are considered, with reference to wideband RF signal analysis, fetal electroencephalogram analysis, engine vibration analysis, signal buried in noise, and spatial filtering. Various methods for radar signal processing are described, such as phased-array antennas, the optical processing of phased-array data, pulsed Doppler and FM radar systems, a multichannel one-dimensional optical correlator, correlations with long coded waveforms, and Doppler signal processing. Means for noncoherent optical signal processing are noted, including an optical correlator for speech recognition and a noncoherent optical correlator.

  8. High bandwidth optical mount

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas

    1994-01-01

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.

  9. High bandwidth optical mount

    DOEpatents

    Bender, D.A.; Kuklo, T.

    1994-11-08

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.

  10. The Scanning Optical Microscope.

    ERIC Educational Resources Information Center

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  11. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  12. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  13. ''Atomic Optics'': Nonimaging Optics on the Nanoscale

    SciTech Connect

    Roland Winston Joseph O'Gallagher

    2005-01-15

    This is the final report for a one year close out extension of our basic research program that was established at the University of Chicago more than sixteen years ago to explore and develop the optical sub-discipline that has come to be known as ''nonimaging optics''. This program has been extremely fruitful, having both broadened the range of formalism available for workers in this field and led to the discovery of many new families of optical devices. These devices and techniques have applications wherever the efficient transport and transformation of light distributions are important, in particular in illumination, fiber optics, collection and concentration of sunlight, and the detection of faint light signals in physics and astrophysics. Over the past thirty years, Nonimaging Optics (Welford and Winston, 1989) has brought a fresh approach to the analysis of many problems in classical macro-scale optics. Through the application of phase-space concepts, statistical methods, thermodynamic arguments, etc., many previously established performance limits were able to be broken and many technical surprises with exciting practical applications were discovered. The most recent three-year phase of our long-term continuing program ended in late 2002 and emphasized extending our work in geometrical optics and expanding it to include some interesting questions in physical optics as well as in the new field of statistical optics. This report presents a survey of the basic history and concepts of nonimaging optics and reviews highlights and significant accomplishments over the past fifteen years. This is followed by a more detailed summary of recent research directions and accomplishments during the last three years. This most recent phase was marked by the broadening in scope to include a separate project involving a collaboration with an industrial partner, Science Applications International Corporation (SAIC). This effort was proposed and approved in 1998 and was

  14. Current developments in optical engineering and commercial optics

    SciTech Connect

    Fischer, R.E.; Pollicove, H.M.; Smith, W.J.

    1989-01-01

    This book is covered under the following topics: Commercial Optics Techniques; Optical Design and Engineering; Special Systems Requirements; Micro-Optics and Related Technologies; and Micro-Optics and Other Technologies.

  15. Optical Inference Machines

    DTIC Science & Technology

    1988-06-27

    de olf nessse end Id e ;-tl Sb ieeI smleo) ,Optical Artificial Intellegence ; Optical inference engines; Optical logic; Optical informationprocessing...common. They arise in areas such as expert systems and other artificial intelligence systems. In recent years, the computer science language PROLOG has...cal processors should in principle be well suited for : I artificial intelligence applications. In recent years, symbolic logic processing. , the

  16. Acousto-Optic Interactions.

    DTIC Science & Technology

    The document reports the results of the experimental and theoretical investigation of acousto - optic interactions in guided wave structure for optical...waves and acoustic surface waves and experimental results of isotropic and anisotropic diffraction in LiNbO3 and quartz. A simple acousto - optic plate...CVD ZnO films on sapphire, which may be needed for the acousto - optic devices in thin films are also included. (Author)

  17. Fiber optic micro accelerometer

    DOEpatents

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  18. Giant optical manipulation.

    PubMed

    Shvedov, Vladlen G; Rode, Andrei V; Izdebskaya, Yana V; Desyatnikov, Anton S; Krolikowski, Wieslaw; Kivshar, Yuri S

    2010-09-10

    We demonstrate a new principle of optical trapping and manipulation increasing more than 1000 times the manipulation distance by harnessing strong thermal forces while suppressing their stochastic nature with optical vortex beams. Our approach expands optical manipulation of particles into a gas media and provides a full control over trapped particles, including the optical transport and pinpoint positioning of ∼100  μm objects over a meter-scale distance with ±10  μm accuracy.

  19. Reflective optical imaging system

    DOEpatents

    Shafer, David R.

    2000-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  20. Optical Circuitry Cooperative

    NASA Astrophysics Data System (ADS)

    Gibbs, H. M.; Gibson, U.; Peyghambarian, N.; Sarid, D.; Stegeman, G.

    1985-01-01

    An Optical Circuitry Cooperative (OCC) has been formed as an NSF cooperative research center in which six or more companies contribute financial support; NSF provides support which declines to zero in five years. Companies benefit from a center by early access to research results, leverage for their research dollars, participation in research selection, and improved relations with faculty and students. The university receives support for a major research program that increases its research capability, provides reasonably stable funding, and opens more opportunities for graduate students. The potential of optical circuitry has been discussed for many years, but the excitement is growing rapidly on the strength of the success of optical fibers for optical transmission, the generation of subpicosecond opitcal pulses, and the development of promising optical logic elements, such as optical bistable devices. And yet, much research remains to be done to discover the best nonlinear optical materials and fabrication techniques. OCC will perform research to provide a data base to allow the development of optical circuitry devices. The areas encompassed by OCC include all-optical logic, picosecond decision-making, guided-wave preprocessors, opti-cal interconnects within computers (both fiber and whole-array imaging), optical storage, and optical computer architecture and devices.

  1. Adaptive optical zoom sensor.

    SciTech Connect

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  2. Automated Optical Target Recognition.

    DTIC Science & Technology

    1994-12-01

    A multi-resolution signal processing approach to object recognition is presented using an optical correlator for generating a wavelet transform . The...This report presents an overview of continuous and discrete wavelet transforms. Both digital and optical implementations of the discrete wavelet ... transform are discussed. Examples of typical wavelet basis functions are compared and the constraints imposed by optical implementations are discussed

  3. Optical Disk Technology.

    ERIC Educational Resources Information Center

    Abbott, George L.; And Others

    1987-01-01

    This special feature focuses on recent developments in optical disk technology. Nine articles discuss current trends, large scale image processing, data structures for optical disks, the use of computer simulators to create optical disks, videodisk use in training, interactive audio video systems, impacts on federal information policy, and…

  4. Optical Interconnections For WSI

    NASA Astrophysics Data System (ADS)

    Friedrich, E.; Valette, S.; Gidon, P.

    1989-02-01

    Optical interconnections may be an alternative to metallic lines in very large and fast circuits. In this field, integrated optics could be very attractive because the basic approach is similar to the one of microelectronics. From this point of view, the silicon based integrated optics technology developed at LETI is described and expected performances are analysed.

  5. Integrated Optical Information Processing

    DTIC Science & Technology

    1988-08-01

    dimensional processing to be performed with inherently one-dimensional signal processing devices. This permits the monolithic or hybrid integration of...effective time delays; 5. Selective partial waveguide outcoupling of channelized light from an integrated optical chip; 6. Potential monolithic ... integrated optical chip; 6. Potential monolithic integration of optical waveguides with two-dimensional opto- electronic detector technology. The integrated

  6. Metamaterials and Transformation Optics

    DTIC Science & Technology

    2011-07-01

    Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches Yaroslav A Urzhumov, Nathan B Kundtz ...B82, 205109, (2010). 9. Electromagnetic design with transformation optics Nathan B. Kundtz , David R. Smith, and John B. Pendry Proceedings of the

  7. Fun with optical fibres

    NASA Astrophysics Data System (ADS)

    Alti, Kamlesh

    2017-07-01

    Optical fibres play a very crucial role in today’s technologies. Academic courses in optical fibres start at the undergraduate level. Nevertheless, student’s curiosity towards optical fibres starts from the school level. In this paper, some fun experiments have been designed for both school and college students, which have some concrete implications at the research level also.

  8. What Is Optical Imaging?

    ERIC Educational Resources Information Center

    Hespos, Susan J.

    2010-01-01

    This article introduces a promising new methodology called optical imaging. Optical imaging is used for measuring changes in cortical blood flow due to functional activation. The article outlines the pros and cons of using optical imaging for studying the brain correlates of perceptual, cognitive, and language development in infants and young…

  9. Fun with Optical Fibres

    ERIC Educational Resources Information Center

    Alti, Kamlesh

    2017-01-01

    Optical fibres play a very crucial role in today's technologies. Academic courses in optical fibres start at the undergraduate level. Nevertheless, student's curiosity towards optical fibres starts from the school level. In this paper, some fun experiments have been designed for both school and college students, which have some concrete…

  10. Optical Computing and Nonlinear Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Peyghambarian, N.

    1987-01-01

    Employment of optical techniques in signal processing and communication and computing systems has become a major research and development effort at many industrial, government, and university laboratories across the nation and in Europe and Japan. implementation of optical computing concepts and the use of bistable etalons and non-linear logic devices in computing have gained a lot of support and enthusiasm from the optics community in recent years. The significance Iof this field and its potential importance in future technologies is evidenced by the large number of conferences, workshops, and special issues on the subject.

  11. Near perfect optics

    SciTech Connect

    Goeke, R.; Farnsworth, A.V.; Neumann, C.C.; Sweatt, W.C.; Warren, M.E.; Weed, J.W.

    1996-06-01

    This report discusses a novel fabrication process to produce nearly perfect optics. The process utilizes vacuum deposition techniques to optimally modify polished optical substrate surfaces. The surface figure, i.e. contour of a polished optical element, is improved by differentially filling in the low spots on the surface using flux from a physical vapor deposition source through an appropriate mask. The process is expected to enable the manufacture of diffraction-limited optical systems for the UV, extreme UV, and soft X-ray spectral regions, which would have great impact on photolithography and astronomy. This same technique may also reduce the fabrication cost of visible region optics with aspheric surfaces.

  12. Automation in optics manufacturing

    NASA Astrophysics Data System (ADS)

    Pollicove, Harvey M.; Moore, Duncan T.

    1991-01-01

    The optics industry has not followed the lead of the machining and electronics industries in applying advances in computer aided engineering (CAE), computer assisted manufacturing (CAM), automation or quality management techniques. Automation based on computer integrated manufacturing (CIM) and flexible machining systems (FMS) has been widely implemented in these industries. Optics continues to rely on standalone equipment that preserves the highly skilled, labor intensive optical fabrication systems developed in the 1940's. This paper describes development initiatives at the Center for Optics Manufacturing that will create computer integrated manufacturing technology and support processes for the optical industry.

  13. Automation for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Pollicove, Harvey M.; Moore, Duncan T.

    1990-11-01

    The optics industry has not followed the lead of the machining and electronics industries in applying advances In computer aided engineering (CAE), computer assisted manufacturing (CAM), automation or quality management techniques. Automationbased on computer integrated manufacturing (CIM) and flexible machining systems (FMS) has been widely implemented In these industries. Optics continues to rely on standalone equipment that preserves the highly skilled, labor intensive optical fabrication systems developed in the 1940's. This paper describes development initiatives at the Center for Optics Manufacturing that will create computer integrated manufacturing technology and support processes for the optical industry.

  14. [Adaptive optics for ophthalmology].

    PubMed

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Paraxial ray optics cloaking.

    PubMed

    Choi, Joseph S; Howell, John C

    2014-12-01

    Despite much interest and progress in optical spatial cloaking, a three-dimensional (3D), transmitting, continuously multidirectional cloak in the visible regime has not yet been demonstrated. Here we experimentally demonstrate such a cloak using ray optics, albeit with some edge effects. Our device requires no new materials, uses isotropic off-the-shelf optics, scales easily to cloak arbitrarily large objects, and is as broadband as the choice of optical material, all of which have been challenges for current cloaking schemes. In addition, we provide a concise formalism that quantifies and produces perfect optical cloaks in the small-angle ('paraxial') limit.

  16. Ostrich ocular optics.

    PubMed

    Martin, G R; Ashash, U; Katzir, G

    2001-01-01

    The optical structure of the eyes of ostriches (Struthio camelus; Struthionidae; Struthioniformes) was determined by the construction of a schematic eye model for paraxial optics. The eye is large (axial length = 38 mm) and of globose shape with an anterior focal length (posterior nodal distance) of 21.8 mm. The optical design of the eye is such that the lens and cornea contribute equally to its total optical power. Interspecific comparison shows that optically the ostrich eye is a larger scaled version of the eyes of common starlings (Sturnus vulgaris) and an owl (Strix aluco).

  17. Optics in aircraft engines

    NASA Astrophysics Data System (ADS)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  18. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  19. Optical Sidebands Multiplier

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan

    2010-01-01

    Optical sidebands have been generated with relative frequency tens to hundreds of GHz by using optical sidebands that are generated in a cascade process in high-quality optical resonators with Kerr nonlinearity, such as whispering gallery mode (WGM) resonators. For this purpose, the WGM resonator needs to be optically pumped at two frequencies matching its resonances. These two optical components can be one or several free spectral ranges (FSRs), equal to approximately 12 GHz, in this example, apart from each other, and can be easily derived from a monochromatic pump with an ordinary EOM (electro-optic modulation) operating at half the FSR frequency. With sufficient nonlinearity, an optical cascade process will convert the two pump frequencies into a comb-like structure extending many FSRs around the carrier frequency. This has a demonstratively efficient frequency conversion of this type with only a few milliwatt optical pump power. The concept of using Kerr nonlinearity in a resonator for non-degenerate wave mixing has been discussed before, but it was a common belief that this was a weak process requiring very high peak powers to be observable. It was not thought possible for this approach to compete with electro-optical modulators in CW applications, especially those at lower optical powers. By using the high-Q WGM resonators, the effective Kerr nonlinearity can be made so high that, using even weak seeding bands available from a conventional EOM, one can effectively multiply the optical sidebands, extending them into an otherwise inaccessible frequency range.

  20. Optical Circuit Switched Protocol

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    2000-01-01

    The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.

  1. Automated optical assembly

    NASA Astrophysics Data System (ADS)

    Bala, John L.

    1995-08-01

    Automation and polymer science represent fundamental new technologies which can be directed toward realizing the goal of establishing a domestic, world-class, commercial optics business. Use of innovative optical designs using precision polymer optics will enable the US to play a vital role in the next generation of commercial optical products. The increased cost savings inherent in the utilization of optical-grade polymers outweighs almost every advantage of using glass for high volume situations. Optical designers must gain experience with combined refractive/diffractive designs and broaden their knowledge base regarding polymer technology beyond a cursory intellectual exercise. Implementation of a fully automated assembly system, combined with utilization of polymer optics, constitutes the type of integrated manufacturing process which will enable the US to successfully compete with the low-cost labor employed in the Far East, as well as to produce an equivalent product.

  2. Optical vortex beam based optical fan for high-precision optical measurements and optical switching.

    PubMed

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen

    2014-09-01

    The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high-precision optical measurements and high-capacity and high-speed optical communications. Here we show a method for the construction of a simple and robust scheme to rotate a light beam such as a fan, which is based on a combination of these two properties and using the thermal-dispersion and electro-optical effect of birefringent crystals. Using a computer-based digital image-processing technique, we determine the temperature and thermal-dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science, and optical communication networks.

  3. Optically-selected AGN

    NASA Astrophysics Data System (ADS)

    Richard, Gordon

    2016-08-01

    will discuss the selection and properties of optically-selected AGN as contrasted with other multi-wavelength investigations. While optical surveys are able to identify *more* AGNs than other wavelengths, this size comes with a bias towards brighter, unobscured sources. Although optical surveys are not ideal for probing obscured AGNs, I will discuss how they can guide our search for them. The bias towards unobscured sources in the optical is partially mitigated, however, by an increase in information content for the sources that *are* identified---in the form of physics probed by the combination of optical continuum, absorption, and emission. An example is the ability to estimate the mass of AGNs based on the optical/UV emission lines. I will discuss the range of mass (and accretion rate) probed by the optical in addition to serious biases in the black hole mass scaling relations that corrupt these estimates at high redshift.

  4. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  5. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  6. Optical clock networks

    NASA Astrophysics Data System (ADS)

    Riehle, Fritz

    2017-01-01

    Within the last decade, optical atomic clocks have surpassed the best cesium clocks, which are used to realize the unit of time and frequency, in terms of accuracy and stability by about two orders of magnitude. When remote optical atomic clocks are connected by links without degradation in the clock signals, an optical clock network is formed, with distinct advantages for the dissemination of time, geodesy, astronomy and basic and applied research. Different approaches for time and frequency transfer in the microwave and optical regime, via satellites and free-space links, optical fibre links, or transportable optical atomic clocks, can be used to form a hybrid clock network that may allow a future redefinition of the unit of time based on an optical reference transition.

  7. Optic Nerve Elongation

    PubMed Central

    Alvi, Aijaz; Janecka, Ivo P.; Kapadia, Silloo; Johnson, Bruce L.; McVay, William

    1996-01-01

    The length of the optic nerves is a reflection of normal postnatal cranio-orbital development. Unilateral elongation of an optic nerve has been observed in two patients with orbital and skull base neoplasms. In the first case as compared to the patient's opposite, normal optic nerve, an elongated length of the involved optic nerve of 45 mm was present. The involved optic nerve in the second patient was 10 mm longer than the normal opposite optic nerve. The visual and extraocular function was preserved in the second patient. The first patient had only light perception in the affected eye. In this paper, the embryology, anatomy, and physiology of the optic nerve and its mechanisms of stretch and repair are discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9Figure 10Figure 11Figure 13 PMID:17170975

  8. Omnidirectional fiber optic tiltmeter

    DOEpatents

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  9. Modular Optical PDV System

    SciTech Connect

    Araceli Rutkowski, David Esquibel

    2008-12-11

    A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

  10. Fiber optic crossbar switch for automatically patching optical signals

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1983-01-01

    A system for automatically optically switching fiber optic data signals between a plurality of input optical fibers and selective ones of a plurality of output fibers is described. The system includes optical detectors which are connected to each of the input fibers for converting the optic data signals appearing at the respective input fibers to an RF signal. A plurality of RF to optical signal converters are arranged in rows and columns. The output of each of the optical detectors are each applied to a respective row of optical signal converted for being converters back to an optical signal when the particular optical signal converter is selectively activated by a dc voltage.

  11. Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro-Optic Devices

    DTIC Science & Technology

    1992-01-07

    COVERED 4. TITLE AND SUBTITLE Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro - Optic Devices 5a. CONTRACT NUMBER 5b. GRANT...generators, computational devices and the like. 15. SUBJECT TERMS optical devices, electro - optical devices, optical signal processing...THEREOF IN OPTICAL AND ELECTRO - OPTIC DEVICES [75] Inventors: Le*lie H. Sperling, Bethlehem; Clarence J. Murphy, Stroudsburg; Warren A. Rosen

  12. Fiber optic to integrated optical chip coupler

    NASA Technical Reports Server (NTRS)

    Pikulski, Joseph I. (Inventor); Ramer, O. Glenn (Inventor)

    1987-01-01

    Optical fibers are clamped by a block onto a substrate. Thereupon, metal is plated over the fibers to hold them in place upon the substrate. The clamp block is removed and the opening, resulting from the clamp block's presence, is then plated in. The built-up metallic body is a coupling which holds the fibers in position so that the ends can be polished for coupling to an integrated optical chip upon a coupling fixture.

  13. Accuracies Of Optical Processors For Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1992-01-01

    Paper presents analysis of accuracies and requirements concerning accuracies of optical linear-algebra processors (OLAP's) in adaptive-optics imaging systems. Much faster than digital electronic processor and eliminate some residual distortion. Question whether errors introduced by analog processing of OLAP overcome advantage of greater speed. Paper addresses issue by presenting estimate of accuracy required in general OLAP that yields smaller average residual aberration of wave front than digital electronic processor computing at given speed.

  14. Femtosecond Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Peng, Jiahui; Wang, Lei; Sokolov, Alexei

    2004-10-01

    Optical tweezers has drawn much attention of people since recent years, which shows great advantages on biological applications due to quite straightforward ideas and simple configurations. Optical tweezers rely upon the extremely high gradient in the electric field produced near the beam waist of a tightly focused laser beam, which creates a force sufficient to trap micron-sized dielectric particles in three dimensions.(J.E. Molloy and M.J. Padgett, Light, Action: Optical Tweezers, Contemporary P)hysics, 43 241 (2002). We applied a femtosecond laser on optical tweezers as light source and got successfully ``optical trapping'' and ``optical tweezers.'' Further, due to the characters of short pulse width and extremely high intensity of laser, femtosecond optical tweezers may direct us to new optics field. Under such strong intensity many non-linear optical phenomena could be observable, such like optical Kerr effect, stimulated Raman effect and so on. Our work will shows that it may be applied into the recently proposed FAST CAR (Femtosecond Adaptive Spectroscopic Techniques for Coherent Anti-Stokes Raman Spectroscopy) by M. Scully et. al.(M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, ``FAST CARS: Engineering a Laser Spectroscopic Technique for Rapid Identification of Bacterial Spores,'' Proceedings of NASE (2002).)

  15. Fibre-optical microendoscopy.

    PubMed

    Gu, M; Bao, H; Kang, H

    2014-04-01

    Microendoscopy has been an essential tool in exploring micro/nano mechanisms in vivo due to high-quality imaging performance, compact size and flexible movement. The investigations into optical fibres, micro-scanners and miniature lens have boosted efficiencies of remote light delivery to sample site and signal collection. Given the light interaction with materials in the fluorescence imaging regime, this paper reviews two classes of compact microendoscopy based on a single fibre: linear optical microendoscopy and nonlinear optical microendoscopy. Due to the fact that fluorescence occurs only in the focal volume, nonlinear optical microendoscopy can provide stronger optical sectioning ability than linear optical microendoscopy, and is a good candidate for deep tissue imaging. Moreover, one-photon excited fluorescence microendoscopy as the linear optical microendoscopy suffers from severe photobleaching owing to the linear dependence of photobleaching rate on excitation laser power. On the contrary, nonlinear optical microendoscopy, including two-photon excited fluorescence microendoscopy and second harmonic generation microendoscopy, has the capability to minimize or avoid the photobleaching effect at a high excitation power and generate high image contrast. The combination of various nonlinear signals gained by the nonlinear optical microendoscopy provides a comprehensive insight into biophenomena in internal organs. Fibre-optical microendoscopy overcomes physical limitations of traditional microscopy and opens up a new path to achieve early cancer diagnosis and microsurgery in a minimally invasive and localized manner.

  16. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1987-01-01

    The challenge of those involved in control-system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is the area of fiber optics for controls. The primary advantages of employing optical fibers, passive optical sensors, and optically controlled actuators are weight and volume reduction, immunity from electromagnetic effects, superior bandwidth capabilities, and freedom from short circuits and sparking contacts. Since 1975, NASA Lewis has performed in-house, contract, and grant research in fiber optic sensors, high-temperature electro-optic switches, and fly-by-light control-system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control-system technology, known as the Fiber-Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber-optic integrated propulsion/flight control system. Phase 2, yet to be initiated, will provide subcomponent and system development, and a system engine test. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program will be discussed.

  17. Direct optical to microwave conversion

    NASA Astrophysics Data System (ADS)

    Taylor, Henry F.

    1990-09-01

    Support of high frequency fiber optic links through development of innovative higher efficiency techniques to convert optical energy directly to RF Energy. Control of Phases Arrays by optical means in an area of expanding technology development. Fiber optics and other forms of optical waveguide can provide greater accuracy and true time delay in a phase delay network. Methods of improvement in transfer of optical energy to RF Energy are determined. Development of Direct Optical-to-RF-Direct Amplifiers will result in higher efficiency, low noise, optical receivers for fiber optic links with improved performance. This results in longer fiber optic links without repeaters and improved BER or shorter links.

  18. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  19. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  20. Compressive optical image encryption.

    PubMed

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-05-20

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume.

  1. Transpiration purged optical probe

    DOEpatents

    VanOsdol, John; Woodruff, Steven

    2004-01-06

    An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

  2. Optical Communications at JPL

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.

    1999-01-01

    This presentation reviews JPL's optical communications program, This program has (1) Demonstrated optical communications to spacecraft at deep space and geostationary ranges, (2) Demonstrated advantages of multi-beam transmissions in ground-to-ground and ground-to space experiments, (3)Developed an optical communications terminal that is readily converted from deep space to Earth-orbiting applications (4) Developed laboratory and field capabilities to evaluate optical a communications terminal performance. The program is supporting:(1) Construction of an optical communications laboratory at its TMF to support future demonstrations (ground-to-ground to space-to-ground), (2) Continuing development of visibility models from statistics acquired from autonomous monitoring stations in the southwestern US, (3)Development of optical com terminal for space-to-ground link form ISS in 2002

  3. Compressive Optical Image Encryption

    PubMed Central

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-01-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946

  4. PRISM Spectrograph Optical Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1995-01-01

    The objective of this contract is to explore optical design concepts for the PRISM spectrograph and produce a preliminary optical design. An exciting optical configuration has been developed which will allow both wavelength bands to be imaged onto the same detector array. At present the optical design is only partially complete because PRISM will require a fairly elaborate optical system to meet its specification for throughput (area*solid angle). The most complex part of the design, the spectrograph camera, is complete, providing proof of principle that a feasible design is attainable. This camera requires 3 aspheric mirrors to fit inside the 20x60 cm cross-section package. A complete design with reduced throughput (1/9th) has been prepared. The design documents the optical configuration concept. A suitable dispersing prism material, CdTe, has been identified for the prism spectrograph, after a comparison of many materials.

  5. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  6. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  7. Scanning holographic optical tweezers.

    PubMed

    Shaw, L A; Panas, Robert M; Spadaccini, C M; Hopkins, J B

    2017-08-01

    The aim of this Letter is to introduce a new optical tweezers approach, called scanning holographic optical tweezers (SHOT), which drastically increases the working area (WA) of the holographic-optical tweezers (HOT) approach, while maintaining tightly focused laser traps. A 12-fold increase in the WA is demonstrated. The SHOT approach achieves its utility by combining the large WA of the scanning optical tweezers (SOT) approach with the flexibility of the HOT approach for simultaneously moving differently structured optical traps in and out of the focal plane. This Letter also demonstrates a new heuristic control algorithm for combining the functionality of the SOT and HOT approaches to efficiently allocate the available laser power among a large number of traps. The proposed approach shows promise for substantially increasing the number of particles that can be handled simultaneously, which would enable optical tweezers additive fabrication technologies to rapidly assemble microgranular materials and structures in reasonable build times.

  8. Silicon Optical Modulator Simulation

    NASA Astrophysics Data System (ADS)

    LIM, Soon; Sun, Min Jie; Png, Ching

    2015-04-01

    We developed a way of predicting and analyzing high speed optical modulator. Our research adopted a bottom-up approach to consider high-speed optical links using an eye diagram. Our method leverages on modular “mapping” of electrical characteristics to optical characteristics, while attaining the required accuracy necessary for device footprint approaching sub-micron scales where electrical data distribution varies drastically. We calculate for the bias dependent phase shift (2pi/mm) and loss (dB/mm) for the optical modulator based on the real and imaginary part of complex effective indices. Subsequently, combine effectively both the electrical and optical profiles to construct the optical eye diagram which is the essential gist of signal integrity of such devices.

  9. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    1998-06-01

    This book provides a comprehensive review of optical pattern recognition, covering theoretical aspects as well as details of practical implementations and signal processing techniques. The first chapter is devoted to pattern recognition performed with optical correlators. Later chapters discuss new approaches based on neural networks, wavelet transforms, and the fractional Fourier transform. The book also covers nonlinear filter methods and optical-electronic hybrid systems. The final part deals with the devices and materials employed in modern systems, such as photorefractive crystals, microlasers, and liquid crystal spatial light modulators. The volume gives many examples of working systems that integrate optics, electronics, and computers, and it covers a range of new developments from mathematical theories to novel optical materials. It will be of great interest to graduate students and researchers in optical engineering and machine vision.

  10. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  11. Evolution of optical links toward full-optical transparency

    NASA Astrophysics Data System (ADS)

    Opoka, Tomasz; Szczot, Feliks

    2003-10-01

    In this paper we review issues of evolution of optical networks towards their full optical transparency and present sequence of eliminating non-transparent elements out of optical links (networks). Architectures of optical commutators with electrical and optical cores have been presented, as well as a structure of OMO (optical-millimeter wave-optical) switching fabric. An example of pure al-optical switch, made by Luxcore, utilizing dispersion compensating elements, wavelength converters and and variable optical attenuators (VOA) operating entirely in optical domain without optical-electrical-optical (OEO) conversions, was quoted. We brought up an issue of all-optical 3R signal regeneration for long-haul networks and reviewed two different approaches: a regeneration of a single channel and simultaneous regeneration of four channels without converting WDM signal to basic channels.

  12. Polymer optical motherboard technology

    NASA Astrophysics Data System (ADS)

    Keil, N.; Yao, H.; Zawadzki, C.; Grote, N.; Schell, M.

    2008-02-01

    In this paper, different hybridly integrated optical devices including optical multiplexer/ demultiplexer and optical transceivers are described. The devices were made using polymer planar light wave circuit (P2LC) technology. Laser diodes, photodiodes, and thin-film filters have been integrated. Key issues involved in this technology, in particular the coupling between laser diodes and polymer waveguides, and between waveguides and photodiodes and also fibers are discussed.

  13. Optical atomic magnetometer

    DOEpatents

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  14. Infrared fiber optic materials

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The development of IR fiber optics for use in astronomical and other space applications is summarized. Candidate materials were sought for use in the 1 to 200 micron and the 200 to 1000 micron wavelength range. Synthesis and optical characterization were carried out on several of these materials in bulk form. And the fabrication of a few materials in single crystal fiber optic form were studied.

  15. NGST Optical Testing

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva

    1999-01-01

    An Integrated Product Team (IPT) was formed to develop a detailed optical test methodology for testing of the Next Generation Space Telescope (NGST) mirrors and the optical system on the ground. Optical testing is a significant cost driver therefore the testing has to be planned in detailed fashion early. This paper will discuss the preliminary metrology test plan at the mirror component and telescope system level. Instrumentation, facilities and schedule will also be addressed.

  16. Optical Computing Research.

    DTIC Science & Technology

    1985-06-01

    D i No 24 15 December 1984 • . .A AD-A162 272 OPTICAL COMPUTING RESEARCH(U) STANFORD UNIV CA 2 / 2 INFORMATION SYSTEMS... 2 - .. reconstruction is quite general, independent of chemical d , processing and film type. Fig. 9. Generalized optical Fourier transform geometry...I I Bearn / Expander B n R2{ Laser Fig. 9. Optical system for recording A- ’. produces its Fourier transform, a 2 - D sinc function, on (a) the

  17. Optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Ludlow, Andrew D.; Boyd, Martin M.; Ye, Jun; Peik, E.; Schmidt, P. O.

    2015-04-01

    Optical atomic clocks represent the state of the art in the frontier of modern measurement science. In this article a detailed review on the development of optical atomic clocks that are based on trapped single ions and many neutral atoms is provided. Important technical ingredients for optical clocks are discussed and measurement precision and systematic uncertainty associated with some of the best clocks to date are presented. An outlook on the exciting prospect for clock applications is given in conclusion.

  18. Fiber Optic Feed

    DTIC Science & Technology

    1990-11-06

    Naval Research Laboratory IIK Washington, DC,20375 5000 NRL Memorandum Report 6741 0 N Fiber Optic Feed DENZIL STILWELL, MARK PARENT AND LEw GOLDBERG...SUBTITLE S. FUNDING NUMBERS Fiber Optic Feed 53-0611-A0 6. AUTHOR(S) P. D. Stilwell, M. G. Parent, L. Goldberg 7. PERFORMING ORGANIZATION NAME(S) AND...DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) This report details a Fiber Optic Feeding

  19. Optics and Symbolic Computing

    DTIC Science & Technology

    1988-03-31

    28, No. 10, 795 "- 979v 5. 6. A. Huang and S. Knauer, Starlite : A Wideband Digital Switch, Proc. IEEE Global Telecommunications Conference, Atlanta...4 31 : .-. I ?4 2A 8. A. Huang, The Relationship Between STARLITE , a Wideband Digital Switch and Optics, Proc. International Conference on...34 Applied Optics, voL 27, No. 2, pp. 202-203 (1988). [10] A. Huang. "The relationship between STARLITE . a wideband digital switch and optics". Proceedings of

  20. Electro-Optic Propagation

    DTIC Science & Technology

    2002-09-30

    Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...OBJECTIVES The electro - optical propagation objectives are: 1) The acquisition and analysis of mid-wave and long-wave infrared transmission and...elements to the electro - optical propagation model development. The first element is the design and execution of field experiments to generate useful

  1. Electro-Optic Propagation

    DTIC Science & Technology

    2003-09-30

    Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...scenarios to extend the capabilities of TAWS to surface and low altitude situations. OBJECTIVES The electro - optical propagation objectives are: 1...development of a new propagation assessment tool called EOSTAR ( Electro - Optical Signal Transmission and Ranging). The goal of the EOSTAR project is to

  2. Multifacet holographic optical elements

    NASA Technical Reports Server (NTRS)

    Case, S. K.; Haugen, P. R.

    1981-01-01

    New types of holographic optical elements, combining the flexibility of computer generated holograms with the large space bandwidth product and high diffraction efficiency of interferometrically recorded volume phase holograms, are demonstrated. The optical elements are recorded by subdividing a volume hologram film surface into numerous small areas (facets), each of which is individually exposed under computer control. Each facet is used to produce a portion of the desired final wavefront. Three different optical elements are demonstrated.

  3. [Progress in optical imaging].

    PubMed

    Bremer, C; Ntziachristos, V; Mahmood, U; Tung, C H; Weissleder, R

    2001-02-01

    Different optical imaging technologies have significantly progressed over the last years. Besides advances in imaging techniques and image reconstruction, new "smart" optical contrast agents have been developed which can be used to detect molecular targets (such as endogenous enzymes) in vivo. The combination of novel imaging technologies coupled with smart agents bears great diagnostic potential both clinically and experimentally. This overview outlines the basic principles of optical imaging and summarizes the current state of the art.

  4. Multiaperture optical system research

    NASA Astrophysics Data System (ADS)

    Schneider, Richard T.

    1987-11-01

    A basic and applied research program concerned with multiaperture optics is described. The intent is to explore to what extent the principles of the insect eye can be incorporated into the design of optical instruments. The advantages and disadvantages of multiaperture optics are investigated in the basic part of the program. The applied part of the program was devoted to the design and construction of prototype instruments based on the design information generated during the basic part of the program.

  5. Computer Generated Holographic Optics.

    DTIC Science & Technology

    1980-05-01

    with a conventional optical processor for synthetic aperture radar Imaging,these phase plates would allow for the compensation of several wavelengths...of phase error in the radar signal history. This task is current- ly very difficult to perform in a dynamic manner using conventional optics...R.C. Fairchild and J.R. Fienup Radar and Optics Division Environmental Research Institute of Michigan P.O. Box 8618, Ann Arbor, Michigan 48107 Abstract

  6. Optical processing and computing

    SciTech Connect

    Arsenault, H.H. . Dept. de Physique); Szoplik, T. ); Macukow, B. )

    1989-01-01

    The authors report on the fundamental limitations and capabilities of optics in relation to interconnections, switching, computing, materials, and devices. Others deal with architectures, technology, and applications. The topics covered in this book range from new and promising areas in the early stages of development, such as nonlinear effects in fibers, to new development is areas ripe for technology, such as the production of optical kinoforms, an important type of computer-generated optical component.

  7. Beam optics test stand

    NASA Astrophysics Data System (ADS)

    Humphries, S., Jr.; Hess, G.

    1988-04-01

    The design and construction of the Beam Optics Test Stand (BOTS) is presented. A variety of computer compatible diagnostics has been developed to facilitate experiments. Extensive theoretical work is presented leading to the identification of two potential methods to correct aberrations in magnetic optics: biased grid arrays and space charge corrected solenoidal lenses. A series of experiments is presented which demonstrates, for the first time, the feasibility of space charge corrected optics.

  8. Optically measuring interior cavities

    SciTech Connect

    Stone, Gary Franklin

    2008-12-21

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  9. PILOT optical alignment

    NASA Astrophysics Data System (ADS)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  10. Rules for Optical Testing

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task: Fully Understand the Task, Develop an Error Budget, Continuous Metrology Coverage, Know where you are, Test like you fly, Independent Cross-Checks, Understand All Anomalies. These rules have been applied with great success to the inprocess optical testing and final specification compliance testing of the JWST mirrors.

  11. Optical encryption interface

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J. (Inventor)

    1998-01-01

    An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.

  12. Optical force stamping lithography

    PubMed Central

    Nedev, Spas; Urban, Alexander S.; Lutich, Andrey A.; Feldmann, Jochen

    2013-01-01

    Here we introduce a new paradigm of far-field optical lithography, optical force stamping lithography. The approach employs optical forces exerted by a spatially modulated light field on colloidal nanoparticles to rapidly stamp large arbitrary patterns comprised of single nanoparticles onto a substrate with a single-nanoparticle positioning accuracy well beyond the diffraction limit. Because the process is all-optical, the stamping pattern can be changed almost instantly and there is no constraint on the type of nanoparticle or substrates used. PMID:21992538

  13. LISA Optical Bench Testing

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; d'Arcio, L.; Barke, S.; Bogenstahl, J.; Diekmann, C.; Fitzsimons, E. D.; Gerberding, O.; Hennig, J.; Hey, F. G.; Hogenhuis, H.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Taylor, A.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.

    2013-01-01

    Each LISA satellite carries optical benches, one for each test mass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. Currently, an elegant bread board of the optical bench is developed for the European Space Agency (ESA) by EADS Astrium, TNO Science and Technology, University of Glasgow and the Albert Einstein Institute. To test the optical bench the two interferometers mentioned above must be completed by an external simulator, the test mass and telescope simulator. We give an overview of the simulator layout and performance predictions.

  14. Grain optical properties

    NASA Technical Reports Server (NTRS)

    Hanner, Martha

    1988-01-01

    The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.

  15. Optical contact micrometer

    DOEpatents

    Jacobson, Steven D.

    2014-08-19

    Certain examples provide optical contact micrometers and methods of use. An example optical contact micrometer includes a pair of opposable lenses to receive an object and immobilize the object in a position. The example optical contact micrometer includes a pair of opposable mirrors positioned with respect to the pair of lenses to facilitate viewing of the object through the lenses. The example optical contact micrometer includes a microscope to facilitate viewing of the object through the lenses via the mirrors; and an interferometer to obtain one or more measurements of the object.

  16. Deformable Nanolaminate Optics

    SciTech Connect

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  17. Digital Optical Circuit Technology

    NASA Technical Reports Server (NTRS)

    Dove, B. L. (Editor)

    1985-01-01

    The Proceedings for the 48th Meeting of the AGARD Avionics Panel contain the 18 papers presented a Technical Evaluation Report, and discussions that followed the presentations of papers. Seven papers were presented in the session devoted to optical bistability. Optical logic was addressed by three papers. The session on sources, modulators and demodulators presented three papers. Five papers were given in the final session on all optical systems. The purpose of this Specialists' Meeting was to present the research and development status of digital optical circuit technology and to examine its relevance in the broad context of digital processing, communication, radar, avionics and flight control systems implementation.

  18. Optical network democratization.

    PubMed

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation.

  19. Innovative Solar Optical Materials

    NASA Astrophysics Data System (ADS)

    Lampert, Carl M.

    1984-02-01

    A variety of optical coatings are discussed in the context of solar energy utilization. Well-known coatings such as transparent conductors (heat mirrors), selective absorbers, and reflective films are surveyed briefly. Emphasis is placed on the materials' limitations and on use of lesser-known optical coatings and materials. Physical and optical properties are detailed for protective antireflection films, cold mirrors, fluorescent concentrator materials, radiative cooling surfaces, and optical switching films including electrochromic, thermochromic, photochromic, and liquid crystal types. For many of these materials, research has only recently been considered, so various design and durability issues need to be addressed.

  20. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  1. Optical signal computing

    NASA Astrophysics Data System (ADS)

    Cathey, Wade Thomas; Schmidt, Rodney A.; Moddel, Garret

    1989-12-01

    Architectures for optical symbolic computing were designed, devices were designed and built that were specifically for the architectures, and test circuits for some of the logic elements were designed, constructed, and operated. The research elements were designed, constructed, and operated. The research led to novel architectures for optical symbolic computing. Devices were developed that are suitable for optical 2-D memory and logic. These devices are pixilated photo-addressed spatial light modulators (SLMs) with a three terminal arrangement so that the threshold can be adjusted. Spinoff non-pixilated devices are useful as high frame rate, high resolution SLMs that can be used for many optical signal processing applications.

  2. Adaptive optics ophthalmoscopy.

    PubMed

    Roorda, A

    2000-01-01

    Retinal images in the human eye are normally degraded because we are forced to use the optical system of the human eye--which is fraught with aberrations--as the objective lens. The recent application of adaptive optics technology to measure and compensate for these aberrations has produced retinal images in human eyes with unprecedented resolution. The adaptive optics ophthalmoscope is used to take pictures of photoreceptors and capillaries and to study spectral and angular tuning properties of individual photoreceptors. Application of adaptive optics technology for ophthalmoscopy promises continued progress toward understanding the basic properties of the living human retina and also for clinical applications.

  3. Replicated Composite Optics Development

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell

    1997-01-01

    Advanced optical systems for applications such as grazing incidence Wolter I x-ray mirror assemblies require extraordinary mirror surfaces in ten-ns of fine surface finish and figure. The impeccable mirror surface is on the inside of the rotational mirror form. One practical method of producing devices with these requirements is to first fabricate an exterior surface for the optical device then replicate that surface to have the inverse component with lightweight characteristics. The replicate optic is not better than the master or mandrel from which it is made. This task is a continuance of previous studies to identify methods and materials for forming these extremely low roughness optical components.

  4. Optical fiber interferometric spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Li, Baosheng; Liu, Yan; Zhai, Yufeng; Wang, An

    2006-02-01

    We design an optical fiber spectrometer based on optical fiber Mach-Zehnder interferometer. In optical fiber Fourier transform spectrometer spectra information is obtained by Fourier transform of interferogram, which recording intensity change vs. optical path difference. Optical path difference is generated by stretching one fiber arm which wound around fiber stretch drive by high power supply. Information from detector is linear with time rather than with optical path difference. In order to obtain high accuracy wavenumber, reference beam is used to control the optical path difference. Optical path difference is measured by reference laser interference fringe. Interferogram vs. optical path difference is resampled by Brault algorithm with information from reference beam and test beam. In the same condition, one-sided interferogram has higher resolution than that of two-sided interferogram. For one-sided interferogram, zero path difference position must be determined as accurately as possible, small shift will result in phase error. For practical experiment in laboratory, position shift is inevitable, so phase error correction must be considered. Zero order fringe is determined by curve fitting. Spectrum of light source is obtained from one-sided interferogram by Fourier cosine transform. A spectral resolution of about ~3.1 cm -1 is achieved. In practice, higher resolution is needed. This compact equipment will be used in emission spectra and absorption spectra, especially in infrared region.

  5. Optical packet switching

    NASA Astrophysics Data System (ADS)

    Shekel, Eyal; Ruschin, Shlomo; Majer, Daniel; Levy, Jeff; Matmon, Guy; Koenigsberg, Lisa; Vecht, Jacob; Geron, Amir; Harlavan, Rotem; Shfaram, Harel; Arbel, Arnon; McDermott, Tom; Brewer, Tony

    2005-02-01

    We report here a scalable, multichassis, 6.3 terabit core router, which utilizes our proprietary optical switch. The router is commercially available and deployed in several customer sites. Our solution combines optical switching with electronic routing. An internal optical packet switching network interconnects the router"s electronic line cards, where routing and buffering functions take place electronically. The system architecture and performance will be described. The optical switch is based on Optical Phased Array (OPA) technology. It is a 64 x 64, fully non-blocking, optical crossbar switch, capable of switching in a fraction of a nanosecond. The basic principles of operation will be explained. Loss and crosstalk results will be presented, as well as the results of BER measurements of a 160 Gbps transmission through one channel. Basic principles of operation and measured results will be presented for the burst-mode-receivers, arbitration algorithm and synchronization. Finally, we will present some of our current research work on a next-generation optical switch. The technological issues we have solved in our internal optical packet network can have broad applicability to any global optical packet network.

  6. LSST Camera Optics Design

    SciTech Connect

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  7. COHERENT OPTICAL SURVEILLANCE DEVICES

    DTIC Science & Technology

    AERIAL RECONNAISSANCE, *INFRARED DETECTORS, *LASERS, *OPTICAL EQUIPMENT, *PHASE SHIFT CIRCUITS, DESIGN, HELIUM, INTERFEROMETERS , MATHEMATICAL ANALYSIS, NEON, PHASE DETECTORS, PHOTOMULTIPLIER TUBES, POWER DIVIDERS

  8. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  9. Optical limiting materials

    DOEpatents

    McBranch, Duncan W.; Mattes, Benjamin R.; Koskelo, Aaron C.; Heeger, Alan J.; Robinson, Jeanne M.; Smilowitz, Laura B.; Klimov, Victor I.; Cha, Myoungsik; Sariciftci, N. Serdar; Hummelen, Jan C.

    1998-01-01

    Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

  10. An optical heterodyne densitometer

    NASA Technical Reports Server (NTRS)

    Migdall, A. L.; Zheng, Ying Cong; Hardis, J.; Snyder, J. J.

    1988-01-01

    Researchers are developing an optical heterodyne densitometer with the potential to measure optical density over an unprecedented dynamic range with high accuracy and sensitivity. This device uses a Mach-Zender interferometer configuration with heterodyne detection to make direct comparisons between optical and RF attenuators. Researchers expect to attain measurements of filter transmittance down to 10 to the minus 12th power with better than 1 percent uncertainty. In addition, they intend to extend the technique to the problem of measuring low levels of light scattering from reflective and transmissive optics.

  11. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  12. Photonic muscles: optically controlled active optics

    NASA Astrophysics Data System (ADS)

    Ritter, Joe; Brozik, Jim; Basame, Solomon; Fallbach, Mike; Bradford, Larry; Douglas, Dennis; Miner, Gilda

    2005-08-01

    Reported is an investigation of a novel approach for producing and correcting active optical mirrors. Photoactive polymers represent a special class of "smart materials" whose electronic and physical properties such as conductivity, charge distribution, and especially shape can be changed in response to the environment (voltage, light, stress). The ability of photoactive polymers to change the structure of a polymer matrix in response to light is being studied to allow active figure control of membranes for optical element use. Photoactive substrates (mirrors) were produced. Incoherent light sources were used to effect shape control. Shack-Hartman Wavefront sensing was used to quantify the initial and optically altered figure of samples. Motion of two classes of samples was measured and is reported here. Proposed is also a new stress control technology as well as new hybrid technology combining two classes of photoactive materials.

  13. Fluorinated polyimides for optical waveguides

    SciTech Connect

    Sasaki, S.

    1996-10-01

    Polymeric optical materials are expected to be used for optical communication components, such as optical waveguides in multichip interconnections, mainly because of their good processability. However, conventional polymeric optical materials, such as poly(methyl methacrylate) and polycarbonate, have poor thermal stability, and conventional thermally stable polyimides do not have the transparency and controllable refractive indices needed in optical materials. A new optical polymer needs to be developed that has both thermal stability and good optical properties. Therefore we have been investigating fluorinated polyimides for optical communication components. This paper reports on properties of our fluorinated polyimides and fabrication of optical waveguides using these polyimides.

  14. Optical modulation goes external

    NASA Astrophysics Data System (ADS)

    Loni, A.

    1995-02-01

    Digital or analog modulation of continuous-wave laser sources forms the basis of encoding and transmitting of information through optical fiber link systems. In digital systems, data are formatted in a simple periodic two-bit configuration, represented by high or low light intensities, whereas in analog systems data are represented by selective portions of a time-varying electronic waveform applied to the optical carrier. High speed optical communications and the distribution of cable television (CATV) signals are just two examples of digital and analog systems, respectively, that involve the transmission of data, voice and video over fiber networks. The basic layout of a fiber-optic link system is presented. The optical source wavelength is determined by the characteristics of the optical fiber. If the optical sources used is a semiconductor laser diode, information can be imprinted on the optical output by directly modulating the laser drive current with a radio frequency (RF) signal. In digital systems, the low (off) state generally corresponds to a position just below the lasing threshold on the characteristic intensity-current curve of the diode. This position is preferred to the zero current locus because the turn-on delays are then minimized. Analog systems require a bias current in addition to the threshold current in order to push the modulation into the linear region of the power-current curve. The main disadvantages associated with the direct modulation approach are discussed. The main disadvantage of the solid-state approach is its inability to modulate directly the laser at the data rates nominally entailed in optical communications. This inability causes further limitations associated with the inherently long excited state lifetime of the lasing species. External modulation overcomes this drawback by modulating the optical output from the laser rather than the material properties of the laser itself, and consequently, is set to play an increasingly

  15. Joint Services Optics Program. Research in the Optical Sciences

    DTIC Science & Technology

    2007-11-02

    the following: Study of magnetoexciton femtosecond spectroscopy, semiconductor microcavities, and periodic structures, ion trapping and quantum ... transport in optical lattices, quantum atom optics, design optimization of circular grating DBR lasers, coherent and incoherent ultrafast nonlinear optical

  16. A Space-Based Optical Communication System Utilizing Fiber Optics

    DTIC Science & Technology

    1989-11-09

    free-space optical communication systems are not widely recognized. The current generation of spaceborne optical communication systems relies on the...Preliminary experimental results of our breadboard fiber-based coherent optical communication system are also presented.

  17. Apollo Ring Optical Switch

    SciTech Connect

    Maestas, J.H.

    1987-03-01

    An optical switch was designed, built, and installed at Sandia National Laboratories in Albuquerque, New Mexico, to facilitate the integration of two Apollo computer networks into a single network. This report presents an overview of the optical switch as well as its layout, switch testing procedure and test data, and installation.

  18. Dual frequency optical cavity

    DOEpatents

    George, E.V.; Schipper, J.F.

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  19. Dual frequency optical cavity

    DOEpatents

    George, E. Victor; Schipper, John F.

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  20. Optical Thermal Ratchet

    NASA Astrophysics Data System (ADS)

    Faucheux, L. P.; Bourdieu, L. S.; Kaplan, P. D.; Libchaber, A. J.

    1995-02-01

    We present an optical realization of a thermal ratchet. Directed motion of Brownian particles in water is induced by modulating in time a spatially periodic but asymmetric optical potential. The net drift shows a maximum as a function of the modulation period. The experimental results agree with a simple theoretical model based on diffusion.

  1. Ultrasound Assisted Optical Imaging

    DTIC Science & Technology

    2003-05-01

    Two new diffusive optical imaging systems have been built for improved portability and shorter data acquisition time. We are conducting clinical... diffusive optical tomography. We have validated the feasibility of such an approach by simulations and experiments. We are planning to use this new

  2. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1990-01-01

    The design, development, and testing of a fiber optic integrated propulsion/flight control system for an advanced supersonic dash aircraft (flies at supersonic speeds for short periods of time) is the goal of the joint NASA/DOD Fiber Optic Control System Integration (FOCSI) program. Phase 1 provided a comparison of electronic and optical control systems, identified the status of current optical sensor technology, defined the aircraft sensor/actuator environment, proposed architectures for fully optical control systems, and provided schedules for development. Overall, it was determined that there are sufficient continued efforts to develop such a system. It was also determined that it is feasible to build a fiber optic control system for the development of a data base for this technology, but that further work is necessary in sensors, actuators, and components to develop an optimum design, fully fiber optic integrated control system compatible with advanced aircraft environments. Phase 2 is to design, construct, and ground test a fly by light control system. Its first task is to provide a detailed design of the electro-optic architecture.

  3. Panoramic Refracting Conical Optic

    NASA Technical Reports Server (NTRS)

    Lindner, Jeffrey L. (Inventor)

    2003-01-01

    An optical device having a semi-spherical or hemispherical field-of-view is provided. A conically-shaped piece of optical material has an annular surface satisfying Snell's Law for total internal reflection with respect to light passing through the piece and incident on the annular surface from within the piece.

  4. Panoramic Refracting Optic

    NASA Technical Reports Server (NTRS)

    Lindner, Jeffrey L. (Inventor)

    2002-01-01

    An optical device having a semi-spherical or hemispherical field-of-view is provided. A conically-shaped piece of optical material has an annular surface satisfying Snell's Law for total internal reflection with respect to light passing through the piece and incident on the annular surface from within the piece.

  5. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  6. Optical cryocooling of diamond

    NASA Astrophysics Data System (ADS)

    Kern, M.; Jeske, J.; Lau, D. W. M.; Greentree, A. D.; Jelezko, F.; Twamley, J.

    2017-06-01

    The cooling of solids by optical means only using anti-Stokes emission has a long history of research and achievements. Such cooling methods have many advantages ranging from no moving parts or fluids through to operation in vacuum and may have applications to cryosurgery. However, achieving large optical cryocooling powers has been difficult to manage except in certain rare-earth crystals but these are mostly toxic and not biocompatible. Through study of the emission and absorption cross sections we find that diamond, containing either nitrogen vacancy (NV) or silicon vacancy defects, shows potential for optical cryocooling and, in particular, NV doping shows promise for optical refrigeration. We study the optical cooling of doped diamond microcrystals ranging 10-250 μ m in diameter trapped either in vacuum or in water. For the vacuum case we find NV-doped microdiamond optical cooling below room temperature could exceed |Δ T |>10 K for irradiation powers of Pin<100 mW. We predict that such temperature changes should be easily observed via large alterations in the diffusion constant for optically cryocooled microdiamonds trapped in water in an optical tweezer or via spectroscopic signatures such as the zero-phonon line width or Raman line.

  7. Optical scanning apparatus

    DOEpatents

    Villarreal, R.A.

    1985-11-06

    An optical scanner employed in a radioactive environment for reading indicia imprinted about a cylindrical surface of an article by means of an optical system including metallic reflective and mirror surfaces resistant to degradation and discoloration otherwise imparted to glass surfaces exposed to radiation is described.

  8. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  9. Retinal Imaging: Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Goncharov, A. S.; Iroshnikov, N. G.; Larichev, Andrey V.

    This chapter describes several factors influencing the performance of ophthalmic diagnostic systems with adaptive optics compensation of human eye aberration. Particular attention is paid to speckle modulation, temporal behavior of aberrations, and anisoplanatic effects. The implementation of a fundus camera with adaptive optics is considered.

  10. Integrated Optical Circuits

    DTIC Science & Technology

    1974-06-30

    with discrete EAP detectors, the electroabsorption effect is particularly promising for integrated waveguide photodetectors and modulators. High...IR-75-103 lloJM. ± Semiannual Technical Summary Integrated Optical Circuits 30 June 1974 Prepared for the Advanced Research Projects Agency und...needed. MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY INTEGRATED OPTICAL CIRCUITS SEMIANNUAL TECHNICAL SUMMARY REPORT TO THE

  11. Progress in physiological optics.

    PubMed

    Boynton, R M

    1967-08-01

    A survey is made of the current state of physiological optics, broadly defined as equated with visual science. After a survey of some historical and definitional matters, recent progress in a number of areas is critically reviewed. Finally, seven examples of important recent discoveries in physiological optics are given.

  12. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  13. The Athena Optics

    NASA Astrophysics Data System (ADS)

    Bavdaz, Marcos

    2015-09-01

    The core enabling technology for the high performance Athena mirror is the Silicon Pore Optics (SPO), a modular X-ray optics technology, which utilises processes and equipment developed for the semiconductor industry. The presentation will provide an overview of the programmatic background, the status of SPO technology and give an outline of the development roadmap and activities undertaken and planned by ESA.

  14. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  15. Flexible optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    A flexible optical panel includes laminated optical waveguides, each including a ribbon core laminated between cladding, with the core being resilient in the plane of the core for elastically accommodating differential movement thereof to permit winding of the panel in a coil.

  16. Nonlinear optical materials.

    PubMed

    Eaton, D F

    1991-07-19

    The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.

  17. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  18. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  19. Fiber optic spanner

    NASA Astrophysics Data System (ADS)

    Black, Bryan; Mohanty, Samarendra

    2011-10-01

    Rotation is a fundamental function in nano/biotechnology and is being useful in a host of applications such as pumping of fluid flow in microfluidic channels for transport of micro/nano samples. Further, controlled rotation of single cell or microscopic object is useful for tomographic imaging. Though conventional microscope objective based laser spanners (based on transfer of spin or orbital angular momentum) have been used in the past, they are limited by the short working distance of the microscope objective. Here, we demonstrate development of a fiber optic spanner for rotation of microscopic objects using single-mode fiber optics. Fiber-optic trapping and simultaneous rotation of pin-wheel structure around axis perpendicular to fiber-optic axis was achieved using the fiber optic spanner. By adjusting the laser beam power, rotation speed of the trapped object and thus the microfluidic flow could be controlled. Since this method does not require special optical or structural properties of the sample to be rotated, three-dimensional rotation of a spherical cell could also be controlled. Further, using the fiber optic spanner, array of red blood cells could be assembled and actuated to generate vortex motion. Fiber optical trapping and spinning will enable physical and spectroscopic analysis of microscopic objects in solution and also find potential applications in lab- on-a-chip devices.

  20. Nutritional optic neuropathy.

    PubMed

    Sawicka-Pierko, Anna; Obuchowska, Iwona; Mariak, Zofia

    2014-01-01

    Nutritional optic neuropathy (aka deficiency optic neuropathy) is a dysfunction of the optic nerve resulting from improper dietary content of certain nutrients essential for normal functioning of the nerve fibers. Most commonly, it results from folic acid and vitamin B complex deficiency associated with malnutrition or poor dietary habits, incorrectly applied vegetarian diet, or chronic alcohol abuse. Obese patients after bariatric surgery constitute another risk group of optic neuropathy. Nutritional optic neuropathy is characterized by painless, gradually progressing, bilateral and symmetrical decrease in visual acuity, which can be accompanied by the color vision dysfunction. Progression of the neuropathy is associated with optic nerve atrophy, manifesting as complete disc pallor. Treatment of nutritional neuropathy includes dietary supplementation, aimed at compensating for the deficient nutrients. The treatment is mostly based on folic acid, vitamin B complex, and protein replacement, as well as eliminating risk factors of neuropathy. Early treatment commencement, prior to irreversible optic nerve atrophy, is a prerequisite of effective treatment. We would like to highlight this problem by presenting the case of a young woman in whom chronic use "water-based" diet resulted in anemia and bilateral nutritional optic neuropathy.

  1. Nanosecond Optical Shutters

    NASA Astrophysics Data System (ADS)

    King, N. S. P.; Yates, G. J.; Jaramillo, S. A.; Pagano, T. S.; Black, J. Paul

    1986-01-01

    A comparison of gated optical shuttering responses for commercially available micro-channel plate image intensifier tubes (MCPTs) with the performance of a new design for improved optical shuttering is presented. Measurements of opacity, photocathode quantum efficiency, and shutter pulse propagation characteristics are discussed.

  2. Multimode optical fiber

    DOEpatents

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  3. GLOSSARY OF OPTICAL PROPERTIES

    DTIC Science & Technology

    A glossary of optical property indexing terms used by the Electronic Property Information Center is presented. Twenty eight primary optical property...descriptors and over 180 related terms are carefully defined. A detailed list of property cross references provides a complete index to the glossary .

  4. Optical aberration compensation in a multiplexed optical trapping system

    NASA Astrophysics Data System (ADS)

    Čižmár, T.; Dalgarno, H. I. C.; Ashok, P. C.; Gunn-Moore, F. J.; Dholakia, K.

    2011-04-01

    In this paper we discuss optical aberrations within a multiplexed optical trapping system. We analyze two of the most powerful methods for optical trap multiplexing: time-shared beam steering and holographic beam shaping in a tandem system with an acousto-optic deflector and spatial light modulator. We show how to isolate and correct for the aberrations introduced by these individual optical components using the spatial light modulator and demonstrate the enhancement this provides to optical trapping.

  5. Optical Coherence Tomography Angiography of the Optic Disc; an Overview

    PubMed Central

    Akil, Handan; Falavarjani, Khalil Ghasemi; Sadda, Srinivas R.; Sadun, Alfredo A.

    2017-01-01

    Different diseases of the optic disc may be caused by or lead to abnormal vasculature at the optic nerve head. Optical coherence tomography angiography (OCTA) is a novel technology that provides high resolution mapping of the retinal and optic disc vessels. Recent studies have shown the ability of OCTA to visualize vascular abnormalities in different optic neuropathies. In addition, quantified OCTA measurements were found promising for differentiating optic neuropathies from healthy eyes. PMID:28299012

  6. Optical probe using eccentric optics for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshiyuki; Iwaya, Mitsuharu; Watanabe, Yuuki; Sato, Manabu

    2007-03-01

    We propose and demonstrate an OCT optical probe using eccentric optics. This probe enabled both forward imaging and side imaging by dividing a circular scanning area into two semicircular scanning areas using an external motor to rotate the flexible tube. The outer diameter of the probe was 2.6 mm, and its rigid portion length was 10 mm. The lateral resolution was 23 μm, and the eccentric radius was 1.1 mm. The circumferential length in scanning was 6.9 mm, and the working distance was 5 mm. OCT images of 1.5 mm × 6.9 mm (in tissue, axial × circumference), including forward image and side image, were measured with the axial resolution of 19 μm in air and a frame rate of one frame per second. The epidermis, dermis, and sweat gland of in vivo human ventral finger tips were observed.

  7. The Optics of Bruising

    NASA Astrophysics Data System (ADS)

    Randeberg, Lise Lyngsnes; Skallerud, Bjørn; Langlois, Neil E. I.; Haugen, Olav Anton; Svaasand, Lars Othar

    Forensic medicine is a field of medicine where technology plays an increasingly important role in securing and evaluating evidence in, for example, child abuse cases and cases of domestic violence. Methods from chemistry and biological sciences have found a wide application within forensic medicine. Optical technologies like microscopy are also widely used. Despite this, in vivo or post mortem optical diagnostics by spectroscopy have traditionally not had an important role in clinical or forensic examinations. Forensic medical optics as a field might include all kinds of optical analysis for use within forensic science. This includes everything from microscopic techniques to methods for examination of evidence from a crime scene. This chapter will, however, focus on the use of optical diagnostics for examining skin, with a focus on identification, characterization and age determination of minor traumatic injuries like skin bruises.

  8. Optical computer switching network

    NASA Technical Reports Server (NTRS)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  9. Optical fuzing technology

    NASA Astrophysics Data System (ADS)

    von der Lippe, Christian M.; Liu, J. Jiang

    2006-05-01

    Advanced optical fuze (OF) technology based on high-performance optoelectronic sensor is developed for munitions applications. The compact and robust design of the OF employed high-power vertical-cavity surface-emitting lasers (VCSELs), the metal-semiconductor-metal photodetectors, SiGe ASIC driver, miniature optics, and the corresponding electronic signal processors. Mounted on the front of the projectile, the laser transmitter sends out a highly collimated beam that is amplitude modulated with a chirped RF signal. The reflected optical signal from the target is picked up by the photoreceiver on the projectile which also has its electrical bias modulated at the same time-dependent operational frequency as the transmitted optical signal. The on-board signal processor heterodynes both transmitted and the delayed optical waveforms and generates an intermediate frequency corresponding to the time delay due to the travel time of the light. Further measurement of the mixed signals yields directly the range information of the target.

  10. Silicon optical modulators

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Mashanovich, G.; Gardes, F. Y.; Thomson, D. J.

    2010-08-01

    Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future.

  11. High speed optical networks

    NASA Astrophysics Data System (ADS)

    Frankel, Michael Y.; Livas, Jeff

    2005-02-01

    This overview will discuss core network technology and cost trade-offs inherent in choosing between "analog" architectures with high optical transparency, and ones heavily dependent on frequent "digital" signal regeneration. The exact balance will be related to the specific technology choices in each area outlined above, as well as the network needs such as node geographic spread, physical connectivity patterns, and demand loading. Over the course of a decade, optical networks have evolved from simple single-channel SONET regenerator-based links to multi-span multi-channel optically amplified ultra-long haul systems, fueled by high demand for bandwidth at reduced cost. In general, the cost of a well-designed high capacity system is dominated by the number of optical to electrical (OE) and electrical to optical (EO) conversions required. As the reach and channel capacity of the transport systems continued to increase, it became necessary to improve the granularity of the demand connections by introducing (optical add/drop multiplexers) OADMs. Thus, if a node requires only small demand connectivity, most of the optical channels are expressed through without regeneration (OEO). The network costs are correspondingly reduced, partially balanced by the increased cost of the OADM nodes. Lately, the industry has been aggressively pursuing a natural extension of this philosophy towards all-optical "analog" core networks, with each demand touching electrical digital circuitry only at the in/egress nodes. This is expected to produce a substantial elimination of OEO costs, increase in network capacity, and a notionally simpler operation and service turn-up. At the same time, such optical "analog" network requires a large amount of complicated hardware and software for monitoring and manipulating high bit rate optical signals. New and more complex modulation formats that provide resiliency to both optical noise and nonlinear propagation effects are important for extended

  12. ``OPTICAL Catalytic Nanomotors''

    NASA Astrophysics Data System (ADS)

    Rosary-Oyong, Se, Glory

    D. Kagan, et.al, 2009:'' a motion-based chemical sensing involving fuel-driven nanomotors is demonstrated. The new protocol relies on the use of an optical microscope for tracking charge in the speed of nanowire motors in the presence of target analyte''. Synthetic nanomotors are propelled by catalytic decomposition of .. they do not require external electric, magnetic or optical fields as energy... Accompanying Fig 2.6(a) of optical micrograph of a partial monolayer of silica microbeads [J.Gibbs, 2011 ] retrieves WF Paxton:''rods were characterized by transmission electron & dark-field optical microscopy..'' & LF Valadares:''dimer due to the limited resolution of optical microscopy, however the result..'. Acknowledged to HE. Mr. Prof. SEDIONO M.P. TJONDRONEGORO.

  13. Transformation optics and cloaking

    NASA Astrophysics Data System (ADS)

    McCall, Martin

    2013-11-01

    Invisibility, a long sought-for speculation in science fiction, has been turned into reality in the laboratory through the use of a theoretical technique called Transformation Optics. The principles of transformation optics show that any desired smooth deformation of the electromagnetic field can be implemented exactly by an appropriately engineered metamaterial. All demonstrations of cloaking to date have had limitations, however, reflecting our technological inability to implement the transformation optics algorithm exactly. However, the scientific principles leading to perfect invisibility are now established, and practical improvements on the initial designs are now occurring very rapidly. Most recently, researchers have re-examined transformation optics to include time as well as space, describing and then implementing the concept of a cloak that hides events, a conceptual breakout that promises many new applications. This review describes the general ideas underlying transformation optics, and how the various types of cloak based on these ideas have been implemented practically to date.

  14. Woven fiber optics.

    PubMed

    Schmidt, A C; Courtney-Pratt, J S; Ross, E A

    1975-02-01

    In this paper we describe how the art of weaving can be applied to fiber optics in order to produce precisely controlled reproducible image guides and image dissectors. As examples of the types of device for which woven fiber optics are applicable, we describe a 3:1 interleaver for use with a cathode-ray tube to produce color images, and a high speed alpha numeric output device. The techniques of weaving fiber optics are discussed in sufficient detail in order to allow for further work. Although, in principle, one might be able to weave glass optical fibers, all the work described here made use of plastic optical fibers 0.25 mm in diameter.

  15. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  16. Optical Computer Switching Network

    NASA Astrophysics Data System (ADS)

    Clymer, B.; Collins, S. A., Jr.

    1985-02-01

    In this paper we present the design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. We first present the basic system, then describe the matrix-based connecting system and review some of the optical components to be used. Finally, the details of the control system are given and illustrated with a discussion of timing.

  17. Optical computer switching network

    NASA Astrophysics Data System (ADS)

    Clymer, B.; Collins, S. A., Jr.

    1985-02-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  18. Optical computer switching network

    NASA Technical Reports Server (NTRS)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  19. Wideband optical storage

    NASA Technical Reports Server (NTRS)

    Heard, H. G.

    1979-01-01

    This paper has five purposes. First, to focus upon the key relationships that bound the technology choices for large, archival, digital storage devices; second, to identify the motivations for selecting the optical technology for a petabit-exabit level storage system (10 to the 15th to 10 to the 18th bits); third, to present a generic example and a specific implementation of a terabit-level optical storage device; fourth, to characterize the global design space constraints that will allow one to build a technology-limited optical store; and fifth, to sketch the outline of the BYTERON concept, a wideband 10 to the 16th to 10 to the 17th bit optical store concept and contrast its performance to that of an optical store that is in operation today

  20. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  1. Digital optical conversion module

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.

    1991-02-26

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

  2. Digital optical conversion module

    DOEpatents

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  3. Python fiber optic seal

    SciTech Connect

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-08-01

    Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  4. Optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.

    2013-12-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  5. Fiber optic attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F. (Inventor)

    1994-01-01

    A fiber optic attenuator of the invention is a mandrel structure through which a bundle of optical fibers is wrapped around in a complete circle. The mandrel structure includes a flexible cylindrical sheath through which the bundle passes. A set screw on the mandrel structure impacts one side of the sheath against two posts on the opposite side of the sheath. By rotating the screw, the sheath is deformed to extend partially between the two posts, bending the fiber optic bundle to a small radius controlled by rotating the set screw. Bending the fiber optic bundle to a small radius causes light in each optical fiber to be lost in the cladding, the amount depending upon the radius about which the bundle is bent.

  6. Teaching of optics in the optics age

    NASA Astrophysics Data System (ADS)

    Parasnis, A. S.

    1995-10-01

    The present Optics Age of science had not been foreseen by curriculum- makers in many countries. The result is that during the last 25 years when activity in science, engineering, technology and industry related to optics and lasers was exploding in the advanced countries optics was being de-emphasized in curricula in these countries. The consequence is that these countries including India have not played good enough a role. It is shown that the changes needed are more in attitude, pedagogic tools, terminology, and teaching methodology than in curricular contents. Examples: (1) The sequence of topics be changed, (2) The concept of coherence be introduced by considering thought experiments with different light sources; it is shown that the Michelson interferometer along with an HeNe laser can be used to introduce spatial as well as temporal coherence, (3) Modern terminology be used, (4) Crystal optics which is difficult be divorced from the concept of polarization which is simple; greater attention be paid to polarization helix than to polarization ellipse so that the confusion in 'handedness' is eliminated, (5) Group velocity be introduced as related to stationary phase approximation, (6) Modern terms like irradiance, temporal, spatial, frequency spectrum, spatial frequency, etc be used extensively, and so on.

  7. Optical Design of an Optical Communications Terminal

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Page, Norman; Hemmati, Hamid

    2005-01-01

    An optical communications terminal (OCT) is being developed to enable transmission of data at a rate as high as 2.5 Gb/s, from an aircraft or spacecraft to a ground station. In addition to transmitting high data rates, OCT will also be capable of bidirectional communications.

  8. Rewritable optical disk technologies

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2000-11-01

    The two mainstream technologies for rewritable optical data storage are based on magneto-optical (MO) and phase-change (PC) media. In both cases a focused laser beam is used to raise the temperature of the medium beyond a certain critical temperature (i.e., melting and crystallization temperatures in the case of PC, and the Curie temperature in the case of MO) for writing, erasure, and overwriting of data. The readout of information from these media relies on the change of reflectivity of the medium (PC), or the effect of the medium on the state of polarization of the laser beam (MO). The performance of these data storage systems is characterized by the storage density of the media, achievable data rates during recording and readout, longevity, reliability, and cost of the finished products. These performance criteria in turn are determined by a host of physical and technological factors, among them: (1) Wavelength of the available semiconductor laser diodes; (2) Type of optics used in shaping the laser beam and confining it to sub-micron regions (i.e., conventional optics, near-field optics, flying lasers, integrated optics, etc.); (3) Availability of one- or two- dimensional arrays of lasers and the corresponding optics; (4) Miniature magnetic heads for thermally-assisted writing (inductive) and magneto-resistive readout; (5) Adaptive optics for beam-shaping and/or polarization control; (6) Availability of low-noise media that can deliver large readout signals; (7) Advanced signal processing techniques (both optical and electronic); (8) Multi-layer recording on stacked layers of media; (9) Novel encoding/decoding schemes for efficient use of available space on the media; (10) Mass-production of flat, rigid, low-noise patterned substrates (plastic or glass); (11) Multi-level recording. We discuss the present state of the art in optical data storage, describe the potentials and pitfalls of the existing technologies, and draw conclusions about the future of this

  9. Optical thin film devices

    NASA Astrophysics Data System (ADS)

    Mao, Shuzheng

    1991-11-01

    Thin film devices are applied to almost all modern scientific instruments, and these devices, especially optical thin film devices, play an essential role in the performances of the instruments, therefore, they are attracting more and more attention. Now there are numerous kinds of thin film devices and their applications are very diversified. The 300-page book, 'Thin Film Device and Applications,' by Prof. K. L. Chopra gives some general ideas, and my paper also outlines the designs, fabrication, and applications of some optical thin film devices made in my laboratory. Optical thin film devices have been greatly developed in the recent decades. Prof. A. Thelan has given a number of papers on the theory and techniques, Prof. H. A. Macleod's book, 'Thin Film Optical Filters,' has concisely concluded the important concepts of optical thin film devices, and Prof. J. A. Dobrowobski has proposed many successful designs for optical thin film devices. Recently, fully-automatic plants make it easier to produce thin film devices with various spectrum requirements, and some companies, such as Balzers, Leybold AG, Satis Vacuum AG, etc., have manufactured such kinds of coating plants for research or mass-production, and the successful example is the production of multilayer antireflection coatings with high stability and reproducibility. Therefore, it could be said that the design of optical thin film devices and coating plants is quite mature. However, we cannot expect that every problem has been solved, the R&D work still continues, the competition still continues, and new design concepts, new techniques, and new film materials are continually developed. Meanwhile, the high-price of fully-automatic coating plants makes unpopular, and automatic design of coating stacks is only the technique for optimizing the manual design according to the physical concepts and experience, in addition, not only the optical system, but also working environment should be taken into account when

  10. Integrated Optical Combinatorial Logic Using Electro-Optic Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Arrathoon, R.; Schroeder, E. R.; Westervelt, F.

    1985-09-01

    Three classes of integrated optical devices suitable for implementing general combinatorial logic are discussed. The categories considered are electric-electric-optic (EEO), electric-optic-optic (E00), and optic-optic-optic (000). Existing gate geometries based on electro-optic Bragg gratings are modified to permit the realization of the NOT, NAND, OR, NOR, and inhibition functions. A full-adder based entirely on electro-optic Bragg gratings is developed, and the device is compared to current VLSI technology in terms of size and speed. The use of programmable logic arrays (PLA's)for implementing general combinatorial logic is discussed. The paper concludes with a proposal for using electro-optic Bragg gratings to construct an integrated optical PLA.

  11. Optical design and testing: introduction.

    PubMed

    Fang, Yi Chin; Liang, Chao-Wen; Koshel, John; Sasian, Jose; Yatagai, Toyohiko; Wang, Yongtian; Zavisian, James M

    2015-10-01

    Optical design and testing have numerous applications in industrial, military, consumer, and bio-medical settings. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, displays, and solar energy systems to novel imaging modalities from deep UV to infrared spectral imaging, a systems perspective to imaging, as well as optical measurement. In addition, new concepts and trends for optics and further optical systems will be especially highlighted in this special issue.

  12. Optical electromagnetic radiation detector

    NASA Astrophysics Data System (ADS)

    Miceli, W. J.; Ludman, J. E.

    1985-08-01

    An optical electromagnetic radiation detector is invented having a probe for receiving nearby electromagnetic radiation. The probe includes a loop antenna connected to a pair of transparent electrodes deposited on the end surfaces of an electro-optic Fabry-Perot interferometer. When the loop antenna picks up the presence of electromagnetic radiation, a voltage will be developed across the crystal of the electro-optic Fabry-Perot interferometer thereby changing the optical length of the interferometer. A beam of light from a remote location is transmitted through an optical fiber onto the Fabry-Perot interferometer. The change in optical length of the Fabry-Perot interferometer alters the intensity of the beam of light as its is reflected from the Fabry-Perot interferometer back through the optical fiber to the remote location. A beamsplitter directs this reflected beam of light onto an intensity detector in order to provide an output indicative of the variations in intensity. The variations in intensity are directly related to the strength of the electromagnetic radiation received by the loop antenna.

  13. Optical characteristics of lightning

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.

    1985-01-01

    A study of the optical characteristics of cloud-to-ground dischargers and how they compare with intracloud flashes was completed. Time resolved optical (7774A) and electric field-change waveforms were measured above clouds from a U2 airplane coincident with ground-based measurements of lightning. The optical pulse trains are studied for within and between flash variability. Specifically, for each flash researchers examine the 10, 50 (full width half maximum), and 90 percent pulse widths; the 10-10, 10-50, 10-90, and 10-peak percent amplitude rise times; the radiances (optical power densities); radiant energy densities; and pulse intervals. The optical pulse characteristics of first strokes, subsequent strokes, the intracloud components of cloud-to-ground flashes and intracloud flashes as viewed from above cloud are shown to exhibit very similar waveshapes, radiances and radiant energy densities. Descriptive statistics on these pulse categories were tabulated for 25 visually confirmed cloud-to-ground flashes (229 optical pulses) and 232 intracloud flashes (3126 optical pulses). A companion study of lightning observations above and below cloud in storms, storm complexes, and mesoscale convective systems has also been completed. Researchers compared the mapping of total lightning activity from above clouds with ground-based measurements and storm evolution. Although the total (IC + CG) lightning activity is the more representative indication of thunderstorm growth and decay, the ground strike data can be used to locate, diagnose, and track storm evolution in a number of instances.

  14. Plasmonic optical interference.

    PubMed

    Choi, Dukhyun; Shin, Chang Kyun; Yoon, Daesung; Chung, Deuk Seok; Jin, Yong Wan; Lee, Luke P

    2014-06-11

    Understanding optical interference is of great importance in fundamental and analytical optical design for next-generation personal, industrial, and military applications. So far, various researches have been performed for optical interference phenomena, but there have been no reports on plasmonic optical interference. Here, we report that optical interference could be effectively coupled with surface plasmons, resulting in enhanced optical absorption. We prepared a three-dimensional (3D) plasmonic nanostructure that consists of a plasmonic layer at the top, a nanoporous dielectric layer at the center, and a mirror layer at the bottom. The plasmonic layer mediates strong plasmonic absorption when the constructive interference pattern is matched with the plasmonic component. By tailoring the thickness of the dielectric layer, the strong plasmonic absorption can facilely be controlled and covers the full visible range. The plasmonic interference in the 3D nanostructure thus creates brilliant structural colors. We develop a design equation to determine the thickness of the dielectric layer in a 3D plasmonic nanostructure that could create the maximum absorption at a given wavelength. It is further demonstrated that the 3D plasmonic nanostructure can be realized on a flexible substrate. Our 3D plasmonic nanostructures will have a huge impact on the fields of optoelectronic systems, biochemical optical sensors, and spectral imaging.

  15. Projection optics box

    DOEpatents

    Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.

    2000-01-01

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  16. Future Optical Networks

    NASA Astrophysics Data System (ADS)

    O'Mahony, Michael J.; Politi, Christina; Klonidis, Dimitrios; Nejabati, Reza; Simeonidou, Dimitra

    2006-12-01

    This paper presents views on the future of optical networking. A historical look at the emergence of optical networking is first taken, followed by a discussion on the drivers pushing for a new and pervasive network, which is based on photonics and can satisfy the needs of a broadening base of residential, business, and scientific users. Regional plans and targets for optical networking are reviewed to understand which current approaches are judged important. Today, two thrusts are driving separate optical network infrastructure models, namely 1) the need by nations to provide a ubiquitous network infrastructure to support all the future services and telecommunication needs of residential and business users and 2) increasing demands by the scientific community for networks to support their requirements with respect to large-scale data transport and processing. This paper discusses these network models together with the key enabling technologies currently being considered for future implementation, including optical circuit, burst and packet switching, and optical code-division multiplexing. Critical subsystem functionalities are also reviewed. The discussion considers how these separate models might eventually merge to form a global optical network infrastructure.

  17. Thin Film Optical Coatings

    NASA Astrophysics Data System (ADS)

    Ristau, Detlev; Ehlers, Henrik

    Within the scientific conception of the modern world, thin film optical coatings can be interpreted as one-dimensional photonic crystals. In general, they are composed of a sequence of single layers which consist of different transparent dielectrics with a thickness in the nanometer scale according to the operation wavelength range. The major function of these photonic structures is to adapt the properties of an optical surface to the needs of specific applications. By application of optical thin film coatings with optimized designs, the spectral characteristics of a surface can be modified to practically any required transfer function for a certain wavelength range. For example, the Fresnel reflection of a lens or a laser window can be suppressed for a broad wavelength range by depositing an antireflective coating containing only a few single layers. On the basis of a layer stack with alternating high- and low-refracting materials, high reflectance values up to 99.999% can be achieved for a certain laser wavelength. In addition to these basic functions, optical coatings can realize a broad variety of spectral filter characteristics according to even extremely sophisticated demands in modern precision optics and laser technology. Moreover, recent developments in optical thin film technology provide the means to combine selected optical properties with other features concerning, for instance, the thermal, mechanical or chemical stability of a surface. The latest progress in ophthalmic coatings even includes the integration of self-cleaning, photoactive or anti-fogging functions in antireflective coatings on glass.

  18. Trajectories in parallel optics.

    PubMed

    Klapp, Iftach; Sochen, Nir; Mendlovic, David

    2011-10-01

    In our previous work we showed the ability to improve the optical system's matrix condition by optical design, thereby improving its robustness to noise. It was shown that by using singular value decomposition, a target point-spread function (PSF) matrix can be defined for an auxiliary optical system, which works parallel to the original system to achieve such an improvement. In this paper, after briefly introducing the all optics implementation of the auxiliary system, we show a method to decompose the target PSF matrix. This is done through a series of shifted responses of auxiliary optics (named trajectories), where a complicated hardware filter is replaced by postprocessing. This process manipulates the pixel confined PSF response of simple auxiliary optics, which in turn creates an auxiliary system with the required PSF matrix. This method is simulated on two space variant systems and reduces their system condition number from 18,598 to 197 and from 87,640 to 5.75, respectively. We perform a study of the latter result and show significant improvement in image restoration performance, in comparison to a system without auxiliary optics and to other previously suggested hybrid solutions. Image restoration results show that in a range of low signal-to-noise ratio values, the trajectories method gives a significant advantage over alternative approaches. A third space invariant study case is explored only briefly, and we present a significant improvement in the matrix condition number from 1.9160e+013 to 34,526.

  19. Optic nerve aspergillosis.

    PubMed

    Yuan, Lisi; Prayson, Richard A

    2015-07-01

    We report a 55-year-old woman with optic nerve Aspergillosis. Aspergillus is an ubiquitous airborne saprophytic fungus. Inhaled Aspergillus conidia are normally eliminated in the immunocompetent host by innate immune mechanisms; however, in immunosuppressed patients, they can cause disease. The woman had a past medical history of hypertension and migraines. She presented 1 year prior to death with a new onset headache behind the left eye and later developed blurred vision and scotoma. A left temporal artery biopsy was negative for giant cell arteritis. One month prior to the current admission, she had an MRI showing optic nerve thickening with no other findings. Because of the visual loss and a positive antinuclear antibody test, she was given a trial of high dose steroids and while it significantly improved her headache, her vision did not improve. At autopsy, the left optic nerve at the level of the cavernous sinus and extending into the optic chiasm was enlarged in diameter and there was a 1.3 cm firm nodule surrounding the left optic nerve. Histologically, an abscess surrounded and involved the left optic nerve. Acute angle branching, angioinvasive fungal hyphae were identified on Grocott's methenamine silver stained sections, consistent with Aspergillus spp. No gross or microscopic evidence of systemic vasculitis or infection was identified in the body. The literature on optic nerve Aspergillosis is reviewed.

  20. Automation of optical tweezers

    NASA Astrophysics Data System (ADS)

    Hsieh, Tseng-Ming; Chang, Bo-Jui; Hsu, Long

    2000-07-01

    Optical tweezers is a newly developed instrument, which makes possible the manipulation of micro-optical particles under a microscope. In this paper, we present the automation of an optical tweezers which consists of a modified optical tweezers, equipped with two motorized actuators to deflect a 1 W argon laser beam, and a computer control system including a joystick. The trapping of a single bead and a group of lactoacidofilus was shown, separately. With the aid of the joystick and two auxiliary cursers superimposed on the real-time image of a trapped bead, we demonstrated the simple and convenient operation of the automated optical tweezers. By steering the joystick and then pressing a button on it, we assign a new location for the trapped bead to move to. The increment of the motion 0.04 (mu) m for a 20X objective, is negligible. With a fast computer for image processing, the manipulation of the trapped bead is smooth and accurate. The automation of the optical tweezers is also programmable. This technique may be applied to accelerate the DNA hybridization in a gene chip. The combination of the modified optical tweezers with the computer control system provides a tool for precise manipulation of micro particles in many scientific fields.

  1. Holographic Optical Head

    DTIC Science & Technology

    1990-09-01

    optical path from HOE to focal point can be made (ie same for both rays. We do this for a thin lens; in reality, the condition is obtained by ray...I2 RADC-TR-90-200 Final Technical Report September 1990 uric FILE COPY HOLOGRAPHIC OPTICAL HEAD Holometrix, Inc. P. Gregory DeBaryshe, Charles S. th...aa w 1. REPOA ATE 3. Reoa"rm AND DAS C September 1990 Final Aug 88 - May 90 4. TME AND hTME s. FUMO NUMBERS HOLOGRAPHIC OPTICAL HEAD C - F30602-88-C

  2. Optical data processing study

    NASA Technical Reports Server (NTRS)

    Pinson, L. J.

    1976-01-01

    An onboard coherent optical data processing system was designed to handle large information content of imagery at high speeds, reduce redundancy in picture transmission, and detect specific image features. Theoretically derived Fourier transform characteristics for simple but representative two dimensional images served as a basis for predicting expected features of actual target images. Fourier transformation and spatial filtering of coherent optical images was accomplished theoretically and in the laboratory. The effect of various parameters such as optical aperature, incidence angles, the transparency assumption, the thin lens approximation on resolution, and performance of the system are predicted and tested.

  3. Femtosecond optical pulse amplification

    NASA Astrophysics Data System (ADS)

    Knox, Wayne H.

    1988-02-01

    A number of techniques have been developed for amplification of optical pulses of approximately 100-fs duration. These amplifiers span a wide range of operating parameters from kilowatt to gigawatt peak powers and from 10 Hz to megahertz repetition rates. Amplification of femtosecond pulses has also been demonstrated at several wavelengths including visible, near-infrared, and ultraviolet regions. Several problems arise when amplifying short optical pulses to very high intensities. The problems are discussed and the state of the art of femtosecond optical pulse amplification is reviewed.

  4. The ANTARES optical module

    NASA Astrophysics Data System (ADS)

    ANTARES Collaboration; Amram, P.; Anghinolfi, M.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Bellotti, R.; Benhammou, Y.; Bernard, F.; Berthier, R.; Bertin, V.; Billault, M.; Blaes, R.; Bland, R. W.; Blondeau, F.; de Botton, N.; Boulesteix, J.; Brooks, C. B.; Brunner, J.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carmona, E.; Carr, J.; Carton, P.-H.; Cartwright, S. L.; Cassol, F.; Cecchini, S.; Ciacio, F.; Circella, M.; Compère, C.; Cooper, S.; Coyle, P.; Croquette, J.; Cuneo, S.; Danilov, M.; van Dantzig, R.; De Marzo, C.; DeVita, R.; Deck, P.; Destelle, J.-J.; Dispau, G.; Drougou, J. F.; Druillole, F.; Engelen, J.; Feinstein, F.; Festy, D.; Fopma, J.; Gallone, J.-M.; Giacomelli, G.; Goret, P.; Gosset, L.; Gournay, J.-F.; Heijboer, A.; Hernández-Rey, J. J.; Herrouin, G.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Karolak, M.; Kooijman, P.; Kouchner, A.; Kudryavtsev, V. A.; Lachartre, D.; Lafoux, H.; Lamare, P.; Languillat, J.-C.; Laubier, L.; Laugier, J.-P.; Le Guen, Y.; Le Provost, H.; Le Van Suu, A.; Lemoine, L.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Massol, A.; Masullo, R.; Mazéas, F.; Mazeau, B.; Mazure, A.; McMillan, J. E.; Michel, J. L.; Migneco, E.; Millot, C.; Mols, P.; Montanet, F.; Montaruli, T.; Morel, J. P.; Moscoso, L.; Musumeci, M.; Navas, S.; Nezri, E.; Nooren, G. J.; Oberski, J.; Olivetto, C.; Oppelt-Pohl, A.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Perrin, P.; Petruccetti, M.; Petta, C.; Piattelli, P.; Poinsignon, J.; Potheau, R.; Queinec, Y.; Racca, C.; Raia, G.; Randazzo, N.; Rethore, F.; Riccobene, G.; Ricol, J.-S.; Ripani, M.; Roca-Blay, V.; Rolin, J. F.; Rostovstev, A.; Russo, G. V.; Sacquin, Y.; Salusti, E.; Schuller, J.-P.; Schuster, W.; Soirat, J.-P.; Souvorova, O.; Spooner, N. J. C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Tao, C.; Tayalati, Y.; Thompson, L. F.; Tilav, S.; Triay, R.; Valente, V.; Varlamov, I.; Vaudaine, G.; Vernin, P.; de Witt Huberts, P.; de Wolf, E.; Zakharov, V.; Zavatarelli, S.; de D. Zornoza, J.; Zún~iga, J.

    2002-05-01

    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1km2 and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R&D studies and is reviewed here in detail.

  5. Asymmetric Gaussian optical vortex.

    PubMed

    Kotlyar, Victor V; Kovalev, Alexey A; Porfirev, Alexey P

    2017-01-01

    We theoretically study a Gaussian optical beam with an embedded off-axis optical vortex. We also experimentally generate such an asymmetric Gaussian optical vortex by using an off-axis spiral phase plate. It is shown that depending on the shift distance the laser beam has the form of a crescent, which is rotated upon propagation. An analytical expression is obtained for the orbital angular momentum of such a beam, which appears to be fractional. When the shift increases, the greater the number of spirality of the phase plate or the "fork" hologram, the slower the momentum decreases. The experimental results are in qualitative agreement with the theory.

  6. Optical interferometer testbed

    NASA Astrophysics Data System (ADS)

    Blackwood, Gary H.

    1991-07-01

    Viewgraphs on optical interferometer testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical interferometer; optical metrology; sensors and actuators; real time control hardware; controlled structures technology (CST) design methodology; identification for MIMO control; FEM/ID correlation for the naked truss; disturbance modeling; disturbance source implementation; structure design: passive damping; low authority control; active isolation of lightweight mirrors on flexible structures; open loop transfer function of mirror; and global/high authority control.

  7. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  8. EDITORIAL: Polarization Optics

    NASA Astrophysics Data System (ADS)

    Turunen, Jari; Friesem, Asher A.; Friberg, Ari T.

    2004-03-01

    This special issue on Polarization Optics contains one review article and 23 research papers, many of which are based on presentations at the International Commission for Optics Topical Meeting on Polarization Optics, held in Polvijärvi, Finland, between 30 June and 3 July 2003. While this issue should not in any sense be considered as a `proceedings' of this meeting, the possibility of submitting papers to it was widely advertised during the meeting, which was attended by a large fraction of prominent scientists in the field of polarization optics. Thus the quality of papers in this special issue is high. In announcing both the meeting and this special issue, we emphasized that the concept of `polarization optics' should be understood in a wide sense. In fact, all contributions dealing with the vectorial nature of light were welcome. As a result, the papers included here cover a wide range of different aspects of linear and nonlinear polarization optics. Both theoretical and experimental features are discussed. We are pleased to see that the conference and this special issue both reflect the wide diversity of important and novel polarization phenomena in optics. The papers in this special issue, and other recently published works, demonstrate that even though polarization is a fundamental property of electromagnetic fields, interest in it is rapidly increasing. The fundamental relations between partial coherence and partial polarization are currently under vigorous research in electromagnetic coherence theory. In diffractive optics it has been found that the exploitation of the vectorial nature of light can be of great benefit. Fabrication of sophisticated, spatially variable polarization-control elements is becoming possible with the aid of nanolithography. Polarization singularities and the interplay of bulk properties and topology in nanoscale systems have created much enthusiasm. In nonlinear optics, the second harmonic waves generated on reflection and

  9. Scalable optical quantum computer

    SciTech Connect

    Manykin, E A; Mel'nichenko, E V

    2014-12-31

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  10. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-05-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  11. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan; Jersey Inst Ansari, New; Jersey Inst, New

    2005-04-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  12. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-06-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  13. Optical Recording Media Primer

    NASA Astrophysics Data System (ADS)

    Kenny, Tom

    1987-01-01

    This presentation is intended to provide the listener with a general overview of the optical media market. It deals with the basic questions and concerns expressed by those who are about to become involved in optical storage. Areas touched upon include the various types of optical media available, their storage capacities, how they're made, how they are used, life expectancy of media, states of various standards efforts, current and projected pricing and availability, market trends, and growth projecting for the next five years.

  14. Optical design for SOFIA

    NASA Technical Reports Server (NTRS)

    Davis, Paul K.; Maa, Scott S.; Rajan, N.

    1989-01-01

    A preliminary first-order optical design for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is presented. This is a Cassegrain design with a 3 meter diameter, approximately f/1 primary mirror. Phenomena limiting the image quality of the telescope are divided into 'seeing', optics, and guidance. An error budget is presented for these categories and specific effects contributing to each. The seeing effects from the shear layer between the telescope cavity and the external air are expected to be dominant. Results are presented on the necessary thermal, optical, structural and guidance requirements to maintain contributions of these phenomena below that of the shear-layer seeing.

  15. Theoretical Optics: An Introduction

    NASA Astrophysics Data System (ADS)

    Römer, Hartmann

    2005-02-01

    Starting from basic electrodynamics, this volume provides a solid, yet concise introduction to theoretical optics, containing topics such as nonlinear optics, light-matter interaction, and modern topics in quantum optics, including entanglement, cryptography, and quantum computation. The author, with many years of experience in teaching and research, goes way beyond the scope of traditional lectures, enabling readers to keep up with the current state of knowledge. Both content and presentation make it essential reading for graduate and phD students as well as a valuable reference for researchers.

  16. Fiber optic communication links

    SciTech Connect

    Meyer, R. H.

    1980-01-01

    Fiber optics is a new, emerging technology which offers relief from many of the problems which limited past communications links. Its inherent noise immunity and high bandwidth open the door for new designs with greater capabilities. Being a new technology, certain problems can be encountered in specifying and installing a fiber optic link. A general fiber optic system is discussed with emphasis on the advantages and disadvantages. It is not intended to be technical in nature, but a general discussion. Finally, a general purpose prototype Sandia communications link is presented.

  17. Optical fiber metamagnetics.

    PubMed

    Wang, Xi; Venugopal, Gayatri; Zeng, Jinwei; Chen, Yinnan; Lee, Dong Ho; Litchinitser, Natalia M; Cartwright, Alexander N

    2011-10-10

    To date, magnetic and negative-index metamaterials at optical frequencies were realized on bulk substrates in the form of thin films with thicknesses on the order of, or less than, optical wavelengths. In this work, we design and experimentally demonstrate, for the first time, fiber-coupled magnetic metamaterials integrated on the transverse cross-section of an optical fiber. Such fiber-metamaterials integration may provide fundamentally new solutions for photonic-on-a-chip systems for sensing, subwavelength imaging, image processing, and biomedical applications.

  18. Electro-Optic Modulator.

    DTIC Science & Technology

    An electro - optic modulator is used to modulate coherent light beams by the application of an electric potential. It combines a Fabry-Perot etalon and...a diffraction grating in a single unit. An etalon is constructed with an electro - optic material between reflecting surfaces. A voltage applied...between alternate, spaced-apart electrodes of a metal grid attached to one reflecting surface induces a diffraction grating in the electro optic material. Light entering the etalon is diffracted, reflected and efficiently coupled out.

  19. Thin display optical projector

    DOEpatents

    Veligdan, James T.

    1999-01-01

    An optical system (20) projects light into a planar optical display (10). The display includes laminated optical waveguides (12) defining an inlet face (14) at one end and an outlet screen (16) at an opposite end. A first mirror (26) collimates light from a light source (18) along a first axis, and distributes the light along a second axis. A second mirror (28) collimates the light from the first mirror along the second axis to illuminate the inlet face and produce an image on the screen.

  20. TOPS optical correlation program

    NASA Astrophysics Data System (ADS)

    Lindell, Scott D.

    1993-09-01

    Martin Marietta is conducting a TOPS optical correlation program in which several algorithms and four optical correlators involving two spatial light modulator technologies will be developed and tested. The program will culminate in 1994 with an automatic target recognition flight demonstration using a UH-1 helicopter flying a Fiber Optic Guide Missile (FOG-M) mission profile. The flight demonstration will be conducted by US Army Missile Command (MICOM) and Martin Marietta and will involve detecting, locating and tracking a M60A2 tank positioned among an array of five vehicle types. Current status of the TOPS program will be given.

  1. The ATHENA optics development

    NASA Astrophysics Data System (ADS)

    Bavdaz, Marcos; Wille, Eric; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Barriere, Nicolas; Yanson, Alexei; Vacanti, Giuseppe; Haneveld, Jeroen; van Baren, Coen; Zuknik, Karl-Heinz; Christensen, Finn; Della Monica Ferreira, Desiree; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Spiga, Daniele; Valsecchi, Giuseppe; Vernani, Dervis

    2016-07-01

    ATHENA (Advanced Telescope for High ENergy Astrophysics) is being studied by the European Space Agency (ESA) as the second large science mission, with a launch slot in 2028. System studies and technology preparation activities are on-going. The optics of the telescope is based on the modular Silicon Pore Optics (SPO), a novel X-ray optics technology significantly benefiting from spin-in from the semiconductor industry. Several technology development activities are being implemented by ESA in collaboration with European industry and institutions. The related programmatic background, technology development approach and the associated implementation planning are presented.

  2. Scalable optical quantum computer

    NASA Astrophysics Data System (ADS)

    Manykin, E. A.; Mel'nichenko, E. V.

    2014-12-01

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr3+, regularly located in the lattice of the orthosilicate (Y2SiO5) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications.

  3. Optical controlled keyboard system

    NASA Astrophysics Data System (ADS)

    Budzyński, Łukasz; Długosz, Dariusz; Niewiarowski, Bartosz; Zajkowski, Maciej

    2011-06-01

    Control systems of our computers are common devices, based on the manipulation of keys or a moving ball. Completely healthy people have no problems with the operation of such devices. Human disability makes everyday activities become a challenge and create trouble. When a man can not move his hands, the work becomes difficult or often impossible. Controlled optical keyboard is a modern device that allows to bypass the limitations of disability limbs. The use of wireless optical transmission allows to control computer using a laser beam, which cooperates with the photodetectors. The article presents the construction and operation of non-contact optical keyboard for people with disabilities.

  4. Optical contacting of quartz

    NASA Technical Reports Server (NTRS)

    Payne, L. L.

    1982-01-01

    The strength of the bond between optically contacted quartz surfaces was investigated. The Gravity Probe-B (GP-B) experiment to test the theories of general relativity requires extremely precise measurements. The quartz components of the instruments to make these measurements must be held together in a very stable unit. Optical contacting is suggested as a possible method of joining these components. The fundamental forces involved in optical contacting are reviewed and relates calculations of these forces to the results obtained in experiments.

  5. Holographic optical trapping

    SciTech Connect

    Grier, David G.; Roichman, Yael

    2006-02-10

    Holographic optical tweezers use computer-generated holograms to create arbitrary three-dimensional configurations of single-beam optical traps that are useful for capturing, moving, and transforming mesoscopic objects. Through a combination of beam-splitting, mode-forming, and adaptive wavefront correction, holographic traps can exert precisely specified and characterized forces and torques on objects ranging in size from a few nanometers to hundreds of micrometers. Offering nanometer-scale spatial resolution and real-time reconfigurability, holographic optical traps provide unsurpassed access to the microscopic world and have found applications in fundamental research, manufacturing, and materials processing.

  6. Fibre Optics In Automobiles

    NASA Astrophysics Data System (ADS)

    Harmer, A. L.

    1984-08-01

    Optical fibres are used in three application areas in automobiles. Illumination of the dashboard is done with a single lamp and monofilament fibres or woven tapes which illuminate the front panel. Fibre-optic multiplexing can replace the conventional wiring harness. Different trial systems (two-fibre links, bidirectional transmission, star-coupled architecture) are reviewed. Problems still exist in component performance, high costs and unknown reliability of optoelectronic systems. Fibre-optics are also used in sensors; for headlight monitoring, liquid-level sensing and other applications.

  7. Silicon fiber optic sensors

    DOEpatents

    Pocha, Michael D.; Swierkowski, Steve P.; Wood, Billy E.

    2007-10-02

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  8. Holographic optical trapping.

    PubMed

    Grier, David G; Roichman, Yael

    2006-02-10

    Holographic optical tweezers use computer-generated holograms to create arbitrary three-dimensional configurations of single-beam optical traps that are useful for capturing, moving, and transforming mesoscopic objects. Through a combination of beam-splitting, mode-forming, and adaptive wavefront correction, holographic traps can exert precisely specified and characterized forces and torques on objects ranging in size from a few nanometers to hundreds of micrometers. Offering nanometer-scale spatial resolution and real-time reconfigurability, holographic optical traps provide unsurpassed access to the microscopic world and have found applications in fundamental research, manufacturing, and materials processing.

  9. Tuned optical cavity magnetometer

    DOEpatents

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  10. Optics and children

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.; Ayres de Campos, J.; Lira, Madalena; Franco, Sandra; Vazquez-Dorrio, José B.

    2011-01-01

    Light and Optics are subjects that "naturally" attracts the interest and sympathy of children even from very early ages. In this communication, we present a serie of experiments and support material designed in this hands-on perspective, to be used to introduce the study of light and optics to kindergarten and early basic school students. Our hands-on investigative approach leads the students, aged 4 to 10 years, to observe the experiment and discover themselves, in a critical and active way, different aspects of light and optics. Preparing funny eye catching situations and experiments predispose the children to work, effectively, enjoying themselves while building up their self-confidence.

  11. Solitons in nonlinear optics

    SciTech Connect

    Maimistov, Andrei I

    2010-11-13

    The classic examples of optical phenomena resulting in the appearance of solitons are self-focusing, self-induced transparency, and parametric three-wave interaction. To date, the list of the fields of nonlinear optics and models where solitons play an important role has significantly expanded. Now long-lived or stable solitary waves are called solitons, including, for example, dissipative, gap, parametric, and topological solitons. This review considers nonlinear optics models giving rise to the appearance of solitons in a narrow sense: solitary waves corresponding to the solutions of completely integrable systems of equations basic for the models being discussed. (review)

  12. Gregorian optical system with non-linear optical technology for protection against intense optical transients

    DOEpatents

    Ackermann, Mark R.; Diels, Jean-Claude M.

    2007-06-26

    An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.

  13. Multi-tipped optical component

    SciTech Connect

    D'Urso, Brian R.; Simpson, John T.

    2010-04-13

    An optical component has a plurality of parallel noncontiguous optical conduits of at least one protrusive phase material embedded in a recessive phase material that acts as a support structure. The optical conduits extend from a proximal surface to a distal surface of the optical component. The distal surface has a plurality of spaced apart surface features of the protrusive phase material. Each independent optical conduits act as waveguides for a wavelength or range of wavelengths. The optical component can be formed such that the protruding surface features at the distal end of the component form an ordered array. An optical instrument can include the optical component in conjunction with a light source for illuminating a sample and a detector in optical communication optical component via the optical conduits.

  14. Optical Microangiography Based on Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Reif, Roberto; Wang, Ruikang K.

    Proper homeostasis regulation of in vivo biological systems requires microvascular blood perfusion, which is the process of delivering blood into the tissue's capillary beds. Abnormal tissue vascularization has been associated with various diseases such as cancer, diabetes, neurological disorders, wounds, and inflammation. Understanding the changes in the vascular network or microangiography will have an important role in determining the causes and developing potential treatments for these diseases. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (~10 µm) and without requiring the use of contrast agents. In this chapter we review several techniques for using OCT to determine blood flow velocities and the vessel morphology (optical microangiography). Different techniques will be discussed with a brief explanation of their limitations. Also, methods for quantifying these images are presented, as well as the depiction of several applications.

  15. Methods for globally treating silica optics to reduce optical damage

    DOEpatents

    Miller, Philip Edward; Suratwala, Tayyab Ishaq; Bude, Jeffrey Devin; Shen, Nan; Steele, William Augustus; Laurence, Ted Alfred; Feit, Michael Dennis; Wong, Lana Louie

    2012-11-20

    A method for preventing damage caused by high intensity light sources to optical components includes annealing the optical component for a predetermined period. Another method includes etching the optical component in an etchant including fluoride and bi-fluoride ions. The method also includes ultrasonically agitating the etching solution during the process followed by rinsing of the optical component in a rinse bath.

  16. Optical Time Division Multiplexing Using Terahertz Optical Asymmetric Demultiplexer

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Bhatia, K. S.

    2015-12-01

    In this paper, optical time division multiplexing is demonstrated using TOAD (terahertz optical asymmetric demultiplexer), which employs semiconductor optical amplifier (SOA) as nonlinear switching element. The TOAD device in its original configuration is based on Sagnac interferometer (also referred to as nonlinear optical loop mirror - NOLM).

  17. Adaptive optics optical coherence tomography in glaucoma.

    PubMed

    Dong, Zachary M; Wollstein, Gadi; Wang, Bo; Schuman, Joel S

    2017-03-01

    Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm(3). It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal.

  18. Optical gamma thermometer

    DOEpatents

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  19. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  20. Metasurface optical antireflection coating

    SciTech Connect

    Zhang, Boyang; Hendrickson, Joshua; Nader, Nima; Chen, Hou -Tong; Guo, Junpeng

    2014-12-15

    Light reflection at the boundary of two different media is one of the fundamental phenomena in optics, and reduction of reflection is highly desirable in many optical systems. Traditionally, optical antireflection has been accomplished using single- or multiple-layer dielectric films and graded index surface structures in various wavelength ranges. However, these approaches either impose strict requirements on the refractive index matching and film thickness, or involve complicated fabrication processes and non-planar surfaces that are challenging for device integration. Here, we demonstrate an antireflection coating strategy, both experimentally and numerically, by using metasurfaces with designer optical properties in the mid-wave infrared. Our results show that the metasurface antireflection is capable of eliminating reflection and enhancing transmission over a broad spectral band and a wide incidence angle range. The demonstrated antireflection technique has no requirement on the choice of materials and is scalable to other wavelengths.

  1. Improved Optical Keyboard

    NASA Technical Reports Server (NTRS)

    Jamieson, R. S.

    1985-01-01

    Optical keyboard surfaces used in typewriters, computer terminals, and telephone inexpensively fabricated using stack of printed-circuit cards set in laminate. Internal laminations carry all illuminating and sensing light conductors to keys.

  2. Optical fiber magnetometer

    NASA Astrophysics Data System (ADS)

    Scarzello, John F.; Finkel, Jack

    1991-08-01

    An optical fiber magnetometer having omnidirectional capability is disclosed herein for measuring a total magnetic field independent of its physical orientation or the direction of the field or fields. A relatively long optical fiber defining a sensing arm for exposure to a magnetic field is wound in the form of a spheroid (like rubber bands on a golf ball or yarn threads on a baseball) to provide optical lengths of substantially the same total length in every direction through the spheroid winding. The plane of polarization of light transmitted through the optical fiber winding is caused to rotate (Faraday effect) when the fiber or components thereof is exposed parallel to a magnetic field. The extent of plane rotation is determined, inter alia, by the total magnetic field passing through the spheroid winding.

  3. Fiber Optics: No Illusion.

    ERIC Educational Resources Information Center

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  4. Optical microscopy aims deep

    NASA Astrophysics Data System (ADS)

    Gigan, Sylvain

    2017-01-01

    A new set of imaging techniques that take advantage of scattered light may soon lead to key advances in biomedical optics, providing access to depths well beyond what is currently possible with ballistic light.

  5. Simulating Optical Fibers.

    ERIC Educational Resources Information Center

    Edgar, Dale

    1988-01-01

    Described is a demonstration of Snell's law using a laser beam and an optical fiber. Provided are the set-up method of the demonstration apparatus and some practical suggestions including "index matching" technique using vaseline. (YP)

  6. Stereoscopic optical viewing system

    DOEpatents

    Tallman, C.S.

    1986-05-02

    An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  7. Radiation optic neuropathy

    SciTech Connect

    Kline, L.B.; Kim, J.Y.; Ceballos, R.

    1985-08-01

    Following surgery for pituitary adenoma, radiation therapy is an accepted treatment in reducing tumor recurrence. However, a potential therapeutic complication is delayed radionecrosis of perisellar neural structures, including the optic nerves and chiasm. This particular cause of visual loss, radiation optic neuropathy (RON), has not been emphasized in the ophthalmologic literature. Four cases of RON seen in the past five years are reported. Diagnostic criteria include: (1) acute visual loss (monocular or binocular), (2) visual field defects indicating optic nerve or chiasmal dysfunction, (3) absence of optic disc edema, (4) onset usually within three years of therapy (peak: 1-1 1/2 years), and (5) no computed tomographic evidence of visual pathway compression. Pathologic findings, differential diagnosis and therapy will be discussed in outlining the clinical profile of RON.

  8. Optical measurement systems

    NASA Technical Reports Server (NTRS)

    Lesco, Daniel J.

    1990-01-01

    Some of the areas of research conducted at the LeRC on optical measurement techniques for propulsion systems research are described. Most of the optical techniques used to measure gas parameters depend on very inefficient light scattering principles and, therefore, require the high light intensities provided by lasers. Significant advances in laser technology, together with the availability of sensitive photodetection systems, provide much of the impetus for research in optical diagnostics techniques. The goal of the research is to enhance the capabilities of nonintrusive research instrumentation to meet the special needs of aeropropulsion research. Optical techniques are being used to validate analytical codes and to verify the performance of aeropropulsion components and systems.

  9. Optical measurement systems

    NASA Technical Reports Server (NTRS)

    Lesco, Daniel J.

    1987-01-01

    Some of the areas of research conducted at Lewis on optical measurement techniques are described. Two laser anemometer systems developed at Lewis are used to illustrate the special instrumentation needs encountered in aeropropulsion research. Velocity measurements to be made through small viewing ports, close to surfaces within the propulsion system components, and in turbulent or highly-accelerating flows are some of the significant challenges. The application to research facilities of two advanced optical systems, the rainbow schlieren and the combustor viewing system, is presented. The calibration and verification of commercial optical measuring systems, such as droplet sizing systems, are also discussed. Calibration techniques capable of simulating moving droplets for flight-type sizing systems are being developed at Lewis. The presentation concludes with a brief look at the forces driving future research on optical instrumentation.

  10. Optical displacement sensor

    DOEpatents

    Carr, Dustin W.

    2008-04-08

    An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

  11. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  12. Optical quantum computing.

    PubMed

    O'Brien, Jeremy L

    2007-12-07

    In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically reduced this worrying resource overhead, making an all-optical architecture a serious contender for the ultimate goal of a large-scale quantum computer. Key challenges will be the realization of high-efficiency sources of indistinguishable single photons, low-loss, scalable optical circuits, high-efficiency single-photon detectors, and low-loss interfacing of these components.

  13. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  14. Metasurface optical antireflection coating

    DOE PAGES

    Zhang, Boyang; Hendrickson, Joshua; Nader, Nima; ...

    2014-12-15

    Light reflection at the boundary of two different media is one of the fundamental phenomena in optics, and reduction of reflection is highly desirable in many optical systems. Traditionally, optical antireflection has been accomplished using single- or multiple-layer dielectric films and graded index surface structures in various wavelength ranges. However, these approaches either impose strict requirements on the refractive index matching and film thickness, or involve complicated fabrication processes and non-planar surfaces that are challenging for device integration. Here, we demonstrate an antireflection coating strategy, both experimentally and numerically, by using metasurfaces with designer optical properties in the mid-wave infrared.more » Our results show that the metasurface antireflection is capable of eliminating reflection and enhancing transmission over a broad spectral band and a wide incidence angle range. The demonstrated antireflection technique has no requirement on the choice of materials and is scalable to other wavelengths.« less

  15. Problems in Geometrical Optics

    ERIC Educational Resources Information Center

    Joyce, L. S.

    1973-01-01

    Ten laboratory exercises on optics are described to clarify concepts involving point objects and converging lenses producing real images. Mathematical treatment is kept to a minimum to stress concepts involved. (PS)

  16. Optical wear monitoring

    SciTech Connect

    Kidane, Getnet S; Desilva, Upul P.; He, Chengli; Ulerich, Nancy H.

    2016-07-26

    A gas turbine includes first and second parts having outer surfaces located adjacent to each other to create an interface where wear occurs. A wear probe is provided for monitoring wear of the outer surface of the first part, and includes an optical guide having first and second ends, wherein the first end is configured to be located flush with the outer surface of the first part. A fiber bundle includes first and second ends, the first end being located proximate to the second end of the optical guide. The fiber bundle includes a transmit fiber bundle comprising a first plurality of optical fibers coupled to a light source, and a receive fiber bundle coupled to a light detector and configured to detect reflected light. A processor is configured to determine a length of the optical guide based on the detected reflected light.

  17. The solar optical telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Objectives of the Solar Optical Telescope are to study the physics of the Sun on the scale at which many of the important physical processes occur and to attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution. Topics discussed in this overview of the Solar Optical Telescope include: why is the Solar Optical Telescope needed; current picture of the Sun's atmosphere and convection zone; scientific problems for the Solar Optical Telescope; a description of the telescope; the facility - science management, contamination control, and accessibility to the instruments; the scientific instruments - a coordinated instrument package for unlocking the Sun's secrets; parameters of the coordinated instrument package; science operations from the Space Shuttle; and the dynamic solar atmosphere.

  18. Optical Resonators and Filters

    NASA Astrophysics Data System (ADS)

    Haus, Hermann A.; Popović, Miloš A.; Watts, Michael R.; Manolatou, Christina; Little, Brent E.; Chu, Sai T.

    Dielectric optical resonators of small size are considered for densely-integrated optical components. High-index-contrast microresonators of low Q are shown, using microwave design principles, to permit wavelength-sized, low-loss, reflectionless waveguide bends and low-crosstalk waveguide crossings. The analysis and synthesis of high Q high-order microring- and racetrack-resonator channel add/drop filters are reviewed, supplemented by simulation examples. Standing-wave, distributed Bragg resonator filters are also described. The study is unified by a coupled-mode theory approach. Rigorous numerical simulations are justified for the design of high-index-contrast optical "circuits". Integrated-optical components are described within a polarization-diversity scheme that circumvents the inherent polarization dependence of high-index-contrast devices. Filters fabricated in academic and commercial research, and a review of microring resonator technology, advances and applications are presented.

  19. Optic Nerve Imaging

    MedlinePlus

    ... machines can help monitor and detect loss of optic nerve fibers. The Heidelberg Retina Tomograph (HRT) is a special ... keeping organized, you can establish a routine that works for you. Read more » Are You at Risk ...

  20. Spatiotemporal Optical Vortices

    NASA Astrophysics Data System (ADS)

    Jhajj, N.; Larkin, I.; Rosenthal, E. W.; Zahedpour, S.; Wahlstrand, J. K.; Milchberg, H. M.

    2016-07-01

    We present the first experimental evidence, supported by theory and simulation, of spatiotemporal optical vortices (STOVs). A STOV is an optical vortex with phase and energy circulation in a spatiotemporal plane. Depending on the sign of the material dispersion, the local electromagnetic energy flow is saddle or spiral about the STOV. STOVs are a fundamental element of the nonlinear collapse and subsequent propagation of short optical pulses in material media, and conserve topological charge, constraining their birth, evolution, and annihilation. We measure a self-generated STOV consisting of a ring-shaped null in the electromagnetic field about which the phase is spiral, forming a dynamic torus that is concentric with and tracks the propagating pulse. Our results, here obtained for optical pulse collapse and filamentation in air, are generalizable to a broad class of nonlinearly propagating waves.

  1. Optical Long Baseline Interferometry

    NASA Astrophysics Data System (ADS)

    Le Bouquin, Jean-Baptiste

    Optical Long Baseline Interferometry provides unrivalled angular resolution on bright and compact astrophysical sources. The link between the observables (interferometric phase and contrast) and the image of the source is a Fourier transform expressed first by van Cittert and Zernike. Depending on the source size and the amount of information collected, the analysis of these Fourier components allows a measurement of the typical source size, a parametric modelling of its spatial structures, or a model-independent image reconstruction to be carried. In the past decades, optical long baseline interferometry provided fundamental measurements for astronomy (ex. Cepheids distances, surface-brightness relations) as well as iconic results such as the first images of stellar surfaces other than the Sun. Optical long baseline interferometers exist in the Northern and Southern hemisphere and are open to the astronomical community with modern level of support. We provide in this chapter an introduction to the fundamental principles of optical interferometry and introduce the currently available facilities.

  2. Introduction to Optical Tweezers.

    PubMed

    Koch, Matthias D; Shaevitz, Joshua W

    2017-01-01

    Thirty years after their invention by Arthur Ashkin and colleagues at Bell Labs in 1986 [1], optical tweezers (or traps) have become a versatile tool to address numerous biological problems. Put simply, an optical trap is a highly focused laser beam that is capable of holding and applying forces to micron-sized dielectric objects. However, their development over the last few decades has converted these tools from boutique instruments into highly versatile instruments of molecular biophysics. This introductory chapter intends to give a brief overview of the field, highlight some important scientific achievements, and demonstrate why optical traps have become a powerful tool in the biological sciences. We introduce a typical optical setup, describe the basic theoretical concepts of how trapping forces arise, and present the quantitative position and force measurement techniques that are most widely used today.

  3. Optical fiber switch

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  4. Fiber Optics: No Illusion.

    ERIC Educational Resources Information Center

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  5. Problems in Geometrical Optics

    ERIC Educational Resources Information Center

    Joyce, L. S.

    1973-01-01

    Ten laboratory exercises on optics are described to clarify concepts involving point objects and converging lenses producing real images. Mathematical treatment is kept to a minimum to stress concepts involved. (PS)

  6. LDEF space optics handbook

    NASA Astrophysics Data System (ADS)

    Champetier, Robert J.; Atkinson, Dale R.; Kemp, William T.

    1992-06-01

    There is a need to present design guidelines derived from the Long Duration Exposure Facility (LDEF) space optics experiments to hardware designers. In response to this need, a small study program has been started. The objective is to prepare a top level review of available results on the behavior of certain optical components in the LDEF space experiments. The optics interest centers on optical surfaces and coatings, and fabrication processes for laser windows and mirrors. The program has two main parts: the first phase, consists of identifying and acquiring data from appropriate investigators. The second phase, comprises report preparation as well as selected, prioritized, additional characterization of certain samples, coordinated with the principal investigators. This short paper outlines the program under way.

  7. Electro-Optical Characterization

    SciTech Connect

    Not Available

    2006-06-01

    In the Electro-Optical Characterization group, within the National Center for Photovoltaic's Measurements and Characterization Division, we use various electrical and optical experimental techniques to relate photovoltaic device performance to the methods and materials used to produce them. The types of information obtained by these techniques range from small-scale atomic-bonding information to large-scale macroscopic quantities such as optical constants and electron-transport properties. Accurate and timely measurement of the electro-optical properties as a function of device processing provides researchers and manufacturers with the knowledge needed to troubleshoot problems and develop the knowledge base necessary for reducing cost, maximizing efficiency, improving reliability, and enhancing manufacturability. We work collaboratively with you to solve materials- and device-related R&D problems. This sheet summarizes our primary techniques and capabilities.

  8. Optical fiber synaptic sensor

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J. H.; Kazantsev, V. B.

    2011-06-01

    Understanding neuron connections is a great challenge, which is needed to solve many important problems in neurobiology and neuroengineering for recreation of brain functions and efficient biorobotics. In particular, a design of an optical synapse capable to communicate with neuron spike sequences would be crucial to improve the functionality of neuromimmetic networks. In this work we propose an optical synaptic sensor based on an erbium-doped fiber laser driven by a FitzHung-Nagumo electronic neuron, to connect with another electronic neuron. Two possible optical synaptic configurations are analyzed for optoelectronic coupling between neurons: laser cavity loss modulation and pump laser modulation. The control parameters of the proposed optical synapse provide additional degrees of flexibility to the neuron connection traditionally controlled only by coupling strengths in artificial networks.

  9. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  10. Stereoscopic optical viewing system

    DOEpatents

    Tallman, Clifford S.

    1987-01-01

    An improved optical system which provides the operator a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  11. Simulating Optical Fibers.

    ERIC Educational Resources Information Center

    Edgar, Dale

    1988-01-01

    Described is a demonstration of Snell's law using a laser beam and an optical fiber. Provided are the set-up method of the demonstration apparatus and some practical suggestions including "index matching" technique using vaseline. (YP)

  12. Compact optical encoder approach utilizing novel diffractive optics design

    NASA Astrophysics Data System (ADS)

    DeVoe, Catherine E.; Horwitz, Bruce A.; Johnson, Eric G.; Fedor, Adam S.

    1998-04-01

    Diffractive optical encoders have quickly established themselves in the marketplace because of their small seize, high accuracy and relaxed alignment tolerances, but current products are still composed of carefully packages, discrete optical and electro-optical components. MicroE and Digital Optics Corporation have been working together on the next generation of these encoders, which replaces all discrete and refractive elements with DOE's and more completely integrates the requisite optical and electro-optical components. In this paper we describe a monolithic source/optics/detector encoder module we have designed and prototyped for a satellite application under a NASA Phase I SBIR contract.

  13. Roadmap on optical security

    NASA Astrophysics Data System (ADS)

    Javidi, Bahram; Carnicer, Artur; Yamaguchi, Masahiro; Nomura, Takanori; Pérez-Cabré, Elisabet; Millán, María S.; Nishchal, Naveen K.; Torroba, Roberto; Fredy Barrera, John; He, Wenqi; Peng, Xiang; Stern, Adrian; Rivenson, Yair; Alfalou, A.; Brosseau, C.; Guo, Changliang; Sheridan, John T.; Situ, Guohai; Naruse, Makoto; Matsumoto, Tsutomu; Juvells, Ignasi; Tajahuerce, Enrique; Lancis, Jesús; Chen, Wen; Chen, Xudong; Pinkse, Pepijn W. H.; Mosk, Allard P.; Markman, Adam

    2016-08-01

    Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections

  14. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  15. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  16. Fiber optic detector

    SciTech Connect

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  17. Integrated Optical Circuits

    DTIC Science & Technology

    1974-12-31

    are suit- able for use with Si-doped GaAs-AlGaAs integrated lasers and with integrated electroabsorption detectors and modulators. Integrated ...characterized. These structures are quite attractive for use as sources in GaAs-based monolithic integrated opti- cal circuits. Threshold current...optical waveguide is an important element in the fabrication of a monolithic integrated optical circuit. One such structure, which utilizes the "twin

  18. Optical design at APL

    NASA Astrophysics Data System (ADS)

    Harris, Terry J.

    1988-12-01

    An account is given of the sophisticated software tools currently available for the numerical support of increasingly complex optical design and analysis tasks. Such computer-aided engineering resources allow ray-tracing, aberration analyses, and such lens characterizations as modulation-transfer and point-spread functions to be quickly and accurately conducted. Illustrative applications of these techniques are presented for the fields of reflecting telescope, IR optics, and spectrometer design, as well as achromat design and stray-light analysis.

  19. Optical Diagnostics in Medicine

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor

    2003-03-01

    Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at

  20. Metamaterials and Transformation Optics

    DTIC Science & Technology

    2014-01-31

    research is extend the analytical work in transformation optics (relating complex systems to simpler systems with the same spectral properties ) to... optics which via a transformation relates complex systems to simpler systems possessed of the same spectral properties . One good example is to be...mediated by the quantum fluctuations in electron density at the metal surfaces and are the most long ranged forces between nanoparticles . Fig. 1(a

  1. Miniaturised optical encoder

    NASA Astrophysics Data System (ADS)

    Carr, John; Desmulliez, Marc P. Y.; Weston, Nick; McKendrick, David; Cunningham, Graeme; McFarland, Geoff; Meredith, Wyn; McKee, Andrew; Langton, Conrad; Eddie, Iain

    2008-08-01

    Optical encoders are pervasive in many sectors of industry including metrology, motion systems, electronics, medical, scanning/ printing, scientific instruments, space research and specialist machine tools. The precision of automated manufacture and assembly has been revolutionised by the adoption of optical diffractive measurement methods. Today's optical encoders comprise discrete components: light source(s), reference and analyser gratings, and a photodiode array that utilise diffractive optic methods to achieve high resolution. However the critical alignment requirements between the optical gratings and to the photodiode array, the bulky nature of the encoder devices and subsequent packaging mean that optical encoders can be prohibitively expensive for many applications and unsuitable for others. We report here on the design, manufacture and test of a miniaturised optical encoder to be used in precision measurement systems. Microsystems manufacturing techniques facilitate the monolithic integration of the traditional encoder components onto a single compound semiconductor chip, radically reducing the size, cost and set-up time. Fabrication of the gratings at the wafer level, by standard photo-lithography, allows for the simultaneous alignment of many devices in a single process step. This development coupled with a unique photodiode configuration not only provides increased performance but also significantly improves the alignment tolerances in both manufacture and set-up. A National Research and Development Corporation type optical encoder chip has been successfully demonstrated under test conditions on both amplitude and phase scales with pitches of 20 micron, 8 micron and 4 micron, showing significantly relaxed alignment tolerances with signal-to-noise ratios greater than 60:1. Various reference mark schemes have also been investigated. Results are presented here.

  2. Ultra-Precision Optics

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under a Joint Sponsored Research Agreement with Goddard Space Flight Center, SEMATECH, Inc., the Silicon Valley Group, Inc. and Tinsley Laboratories, known as SVG-Tinsley, developed an Ultra-Precision Optics Manufacturing System for space and microlithographic applications. Continuing improvements in optics manufacture will be able to meet unique NASA requirements and the production needs of the lithography industry for many years to come.

  3. Relaying an optical wavefront

    DOEpatents

    Sweatt, William C.; Vawter, G. Allen

    2007-03-06

    A wavefront rely devices samples an incoming optical wavefront at different locations, optically relays the samples while maintaining the relative position of the samples and the relative phase between the samples. The wavefront is reconstructed due to interference of the samples. Devices can be designed for many different wavelengths, including for example the ultraviolet, visible, infrared and even longer wavelengths such as millimeter waves. In one application, the device function as a telescope but with negligible length.

  4. Hybrid Optical Inference Machines

    DTIC Science & Technology

    1991-09-27

    Mitsunaga, and K. Kyuma, "GaAs/AlGaAs Optical Synaptic Interconnection Device for Neural Networks,ŗ Opt. Lett. 14, 844-846 (1989). 8. Y. Nitta, J. Ohta, K...tautologies (step .t above) is computationally chne) using both neural network and symbolic substtution the most significant step of the optical resolution...the-theories of connectionistic ( neural net- Derstine and Guha consider PARLOG, a version of PRO- work) computing offer several opportunities for

  5. Fiber optics welder

    DOEpatents

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  6. Magneto-optical spaser.

    PubMed

    Baranov, D G; Vinogradov, A P; Lisyansky, A A; Strelniker, Yakov M; Bergman, David J

    2013-06-15

    We present an electrodynamical model of a quantum plasmonic device--the magneto-optical (MO) spaser. It is shown that a spherical gain nanoparticle coated with a metallic MO shell can operate as a spaser amplifying circularly polarized surface plasmons. The MO spaser may be used in design of an optical isolator in plasmonic transmission lines as well as in spaser spectrometry of chiral molecules.

  7. Binary Optics Toolkit

    SciTech Connect

    Neal, Daniel

    1996-04-02

    This software is a set of tools for the design and analysis of binary optics. It consists of a series of stand-alone programs written in C and some scripts written in an application-specific language interpreted by a CAD program called DW2000. This software can be used to optimize the design and placement of a complex lens array from input to output and produce contours, mask designs, and data exported for diffractive optic analysis.

  8. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  9. Optical coating in space

    NASA Technical Reports Server (NTRS)

    Bunner, A. N.

    1983-01-01

    A technological appraisal of the steps required to approach the goal of in-situ optical coating, cleaning and re-coating the optical elements of a remote telescope in space is reported. Emphasis is placed on the high ultraviolet throughput that a telescope using bare aluminum mirrors would offer. A preliminary design is suggested for an Orbital Coating Laboratory to answer basic technical questions.

  10. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  11. Optical Logic Gates

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.; Dowler, W. L.

    1985-01-01

    Logic gates for light signals constructed from combinations of prisms, polarizing plates, and quarterwave plates. Optical logic gate performs elementary logic operation on light signals received along two optical fibers. Whether gate performs OR function or exclusive-OR function depends on orientation of analyzer. Nonbinary truth tables also obtained by rotating polarizer or analyzer to other positions or inserting other quarter-wave plates.

  12. Optical Materials Characterization

    DTIC Science & Technology

    1975-01-01

    cannot withstand large stress, we measure the stress- optical effect with a modified Twyman -Green interferometer , which has a sensitivity of about 0.01X...possible for us to detect the shift of 0.01 fringe in a Twyman -Green interferometer . This precision is necessary because the stress-optical effect...polycrystalline ZnSe. In the past, we have obtained the component in by measuring the shift in fringes of Twyman -Green and Fizeau interferometers as a

  13. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  14. Scattering from binary optics

    NASA Technical Reports Server (NTRS)

    Ricks, Douglas W.

    1993-01-01

    There are a number of sources of scattering in binary optics: etch depth errors, line edge errors, quantization errors, roughness, and the binary approximation to the ideal surface. These sources of scattering can be systematic (deterministic) or random. In this paper, scattering formulas for both systematic and random errors are derived using Fourier optics. These formulas can be used to explain the results of scattering measurements and computer simulations.

  15. Optical computer motherboards

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz P.; Xu, Guoda; Bartha, John M.; Gruntman, Michael A.

    1997-09-01

    In this paper, we investigate the application of precision plastic optics into a communication/computer sub-system, such as a hybrid computer motherboard. We believe that using optical waveguides for next-generation computer motherboards can provide a high performance alternative for present multi-layer printed circuit motherboards. In response to this demand, we suggest our novel concept of a hybrid motherboard based on an internal-fiber-coupling (IFC) wavelength-division-multiplexing (WDM) optical backplane. The IFC/WDM backplane provides dedicated Tx/Rx connections, and applies low-cost, high-performance components, including CD LDs, GRIN plastic fibers, molding housing, and nonimaging optics connectors. Preliminary motherboard parameters are: speed 100 MHz/100 m, or 1 GHz/10 m; fiber loss approximately 0.01 dB/m; almost zero fan-out/fan-in optical power loss, and eight standard wavelength channels. The proposed hybrid computer motherboard, based on innovative optical backplane technology, should solve low-speed, low-parallelism bottlenecks in present electric computer motherboards.

  16. Marine Optical Characterizations

    NASA Technical Reports Server (NTRS)

    Clark, Dennis K.

    1996-01-01

    The team's major emphasis during this reporting period has been focused on the completion of the operational versions of the Marine Optical Buoys (MOBY's). Other work areas consisted of designing and testing bio-optical instrumentation, evaluating several of the SeaWiFS bio-optical protocols, processing data collected during field experiments, and reprocessing several of the Marine Optical Characteristics Experiment (MOCE) 2 and 3 bio-optical data sets. The team conducted one trip to the operations site in Honolulu, Hawaii, making necessary preparations for future field experiments. Part of the team also traveled to Moss Landing Marine Laboratories, Salinas, CA, and to American Holographic Co. Fitchburg MA, to assist with the fabrication of the next generation Marine Optical Buoys. Technical memoranda are being written to address the remote sensing reflectance, and instrument self-shading protocols. During the Ocean Color 96 meeting discussions with the Spanish on acquiring research vessel support during the MODIS validation period were conducted. A proposal will be generated towards this purpose for an experiment to be conducted off the North African coast during the summer of 1999.

  17. Laser Rangefinder Optics

    NASA Astrophysics Data System (ADS)

    Roberts, D. Allan

    1986-07-01

    The optics in a laser rangefinder must perform three separate functions: transmitter divergence control, receiver energy collection, and aiming sensor imaging. In addition, boresight may need to be monitored. The design of these optics is driven primarily by the rangefinder packaging constraints, which limit both the external window size and the internal space available. System considerations such as range, target, propagation, package, and safety are used to determine the required optical apertures, fields, divergence, and resolution. Often, the total area of the transmitter, receiver, and sensor apertures cannot be accommodated by the front of the package, in which case functions must be combined. Sensor optics depend somewhat on the specific sensor (eye, TV, FLIR), but usually require the biggest possible aperture with near diffraction-limited performance. Laser beam expanders are usually some form of Galilean telescope, and often present serious Narcissus and damage problems. Receiver optics look simple, but narrow filters and small detectors can make them quite sophisticated. Boresight optics are sometimes required to monitor the alignment of the laser beam to the sensor reticle. Some specific design suggestions are made, with emphasis on those problems which are peculiar to laser range-finders. These designs emphasize high-power pulsed lasers and diffuse targets, since they are the most common and present some of the greatest challenges.

  18. Optic disk drusen.

    PubMed

    Auw-Haedrich, Claudia; Staubach, Flemming; Witschel, Heinrich

    2002-01-01

    Optic disk drusen occur in 3.4 to 24 per 1,000 population and are bilateral in approximately 75%. Disturbance in the axonal metabolism in the presence of a small scleral canal--regardless of eyelength--is considered responsible for the development. The drusen increase in size, becoming more visible with age due to continuing calcium apposition, and they are associated with visual field defects in a considerable number of patients. Patients do not usually notice these defects, despite their progressive nature over the years, and this indicates an insidious course. A correct diagnosis of optic disk drusen is mandatory, although effective treatment is not yet available. It is most important to differentiate optic disk drusen from papilledema in order to avoid unnecessary neurological examinations, but also to avoid overlooking genuine neurologic disorders. Because optic disk drusen can cause severe visual field defects, patients require individual consultation regarding work issues and whether or not to drive. Optic disk drusen can be accompanied by vascular complications as well. In some cases these vascular changes--for example, choroidal neovascularization--are treatable. Patients with optic disk drusen should undergo regular visual field, IOP, and nerve fiber layer examinations. In patients with deteriorating visual field and borderline IOP, we recommend antiglaucomatous therapy.

  19. Pappus in optical space.

    PubMed

    Koenderink, Jan J; van Doorn, Andrea J; Kappers, Astrid M L; Todd, James T

    2002-04-01

    Optical space differs from physical space. The structure of optical space has generally been assumed to be metrical. In contradistinction, we do not assume any metric, but only incidence relations (i.e., we assume that optical points and lines exist and that two points define a unique line, and two lines a unique point). (The incidence relations have generally been assumed implicitly by earlier authors.) The condition that makes such an incidence structure into a projective space is the Pappus condition. The Pappus condition describes a projective relation between three collinear triples of points, whose validity can--in principle--be verified empirically. The Pappus condition is a necessary condition for optical space to be a homogeneous space (Lobatchevski hyperbolic or Riemann elliptic space) as assumed by, for example, the well-known Luneburg theory. We test the Pappus condition in a full-cue situation (open field, broad daylight, distances of up to 20 m, visual fields of up to 160 degrees diameter). We found that although optical space is definitely not veridical, even under full-cue conditions, violations of the Pappus condition are the exception. Apparently optical space is not totally different from a homogeneous space, although it is in no way close to Euclidean.

  20. Fiber Optic Microphone

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  1. Diffuse Optical Tomography

    NASA Astrophysics Data System (ADS)

    Yodh, Arjun

    2000-03-01

    Application of diffuse near-infrared (NIR) optical methods for imaging and spectroscopy of tissues is attractive for several reasons. The techniques utilize non-ionizing radiation, are non-invasive, and are often technologically simple and fast. The optical method also has several unique measurable parameters with potential to enhance tumor sensitivity and specificity. For example, blood dynamics, blood volume, blood oxygen saturation, and water content are often substantially different in the rapidly growing tumor, and will alter tissue optical absorption coefficients. An increase in organelle population, particularly mitochondria, accompanies the higher metabolic activity of the rapidly growing tumor, and leads to an increasing scattering coefficient for the tumor. Similarly the optical absorption, fluorescence, and scattering of contrast agents such as Indocyanine green (ICG) that occupy vascular and extravascular space provide useful forms of sensitization. In this paper I will discuss our work exploring the tumor contrasts accessible to the diffuse optical method, and I will describe how we extract this optical information using state-of-the-art theoretical, computational, and experimental technologies.

  2. Optical pumping in a whispering-mode optical waveguide

    DOEpatents

    Kurnit, N.A.

    1981-08-11

    A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  3. Waveguide Studies for Fiber Optics and Optical Signal Processing Applications.

    DTIC Science & Technology

    1980-04-01

    beam expander is shown in Fig. 2 -i. The beam, which is expanded to approximately 100 Wm, can be deflected acousto - optically to make a spectrum analyzer...3 2 . DBR Lasers for Fiber Optics and Optical Signal Processing Sources ......... ................. 4 4. Studies of LiNbO 3...6 Chapter 1. Wave Beam Expansion ....... ............. 9 Chapter 2 . DBR Lasers for Fiber Optics and Optical Signal Processing Sources

  4. Optical pumping in a whispering mode optical waveguide

    DOEpatents

    Kurnit, Norman A.

    1984-01-01

    A device and method for optical pumping in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction pathlengths which are achieved in a small volume.

  5. Fault location in optical networks

    SciTech Connect

    Stevens, Rick C.; Kryzak, Charles J.; Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Kornrumpf, William P.

    2008-07-01

    One apparatus embodiment includes an optical emitter and a photodetector. At least a portion of the optical emitter extends a radial distance from a center point. The photodetector provided around at least a portion of the optical emitter and positioned outside the radial distance of the portion of the optical emitter.

  6. Embedded fiducials in optical surfaces

    DOEpatents

    Sommargren, Gary E.

    2000-01-01

    Embedded fiducials are provided in optical surfaces and a method for embedding the fiducials. Fiducials, or marks on a surface, are important for optical fabrication and alignment, particularly when individual optical elements are aspheres. Fiducials are used during the course of the polishing process to connect interferometric data, and the equation describing the asphere, to physical points on the optic. By embedding fiducials below the surface of the optic and slightly outside the clear aperture of the optic, the fiducials are not removed by polishing, do not interfere with the polishing process, and do not affect the performance of the finished optic.

  7. Fiber optics: A research paper

    NASA Technical Reports Server (NTRS)

    Drone, Melinda M.

    1987-01-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  8. Fiber optics: A research paper

    NASA Astrophysics Data System (ADS)

    Drone, Melinda M.

    1987-08-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  9. Optical design and testing: introduction.

    PubMed

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  10. Roadmap on optical sensors

    NASA Astrophysics Data System (ADS)

    Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  11. Ischemic optic neuropathy.

    PubMed

    Hayreh, Sohan Singh

    2009-01-01

    Ischemic optic neuropathy is one of the major causes of blindness or seriously impaired vision, yet there is disagreement as to its pathogenesis, clinical features and especially its management. This is because ischemic optic neuropathy is not one disease but a spectrum of several different types, each with its own etiology, pathogenesis, clinical features and management. They cannot be lumped together. Ischemic optic neuropathy is primarily of two types: anterior (AION) and posterior (PION), involving the optic nerve head (ONH) and the rest of the optic nerve respectively. Furthermore, both AION and PION have different subtypes. AION comprises arteritic (A-AION - due to giant cell arteritis) and, non-arteritic (NA-AION - due to causes other than giant cell arteritis); NA-AION can be further classified into classical NA-AION and incipient NA-AION. PION consists of arteritic (A-PION - due to giant cell arteritis), non-arteritic (NA-PION - due to causes other than giant cell arteritis), and surgical (a complication of several systemic surgical procedures). Thus, ischemic optic neuropathy consists of six distinct types of clinical entities. NA-AION is by far the most common type and one of the most prevalent and visually crippling diseases in the middle-aged and elderly. A-AION, though less common, is an ocular emergency and requires early diagnosis and immediate treatment with systemic high dose corticosteroids to prevent further visual loss, which is entirely preventable. Controversy exists regarding the pathogenesis, clinical features and especially management of the various types of ischemic optic neuropathy because there are multiple misconceptions about its many fundamental aspects. Recently emerging information on the various factors that influence the optic nerve circulation, and also the various systemic and local risk factors which play important roles in the development of various types of ischemic optic neuropathy have given us a better understanding of

  12. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-01-01

    Call for Papers: Optical Access Networks

    Guest Editors Jun Zheng, University of Ottawa Nirwan Ansari, New Jersey Institute of Technology

    Submission Deadline: 1 June 2005

    Background

    With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the

  13. Transparent electrode for optical switch

    DOEpatents

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  14. Optical communication components

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2004-03-01

    We review and contrast key technologies developed to address the optical components market for communication applications. We first review the component requirements from a network perspective. We then look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include silica fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin-film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then describe the most commonly used classes of optical device technology and present their pros and cons as well as the functions achieved to date in each of them. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering, Bragg gratings, diffraction gratings, holographic elements, thin-film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto-optics, magneto-optics, electroabsorption, liquid crystals, total internal reflection technologies, and mechanical actuation. The active technologies include heterostructures, quantum wells, rare-earth doping, dye doping, Raman amplification, and semiconductor amplification. We also investigate the use of different material systems and device technologies to achieve building-block functions, including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, isolators, circulators, wavelength converters, chromatic dispersion compensators, and polarization mode dispersion compensators. Some of the technologies presented are well established in the industry and in some cases have reached the commodity stage, others have recently become ready for commercial introduction, while some others

  15. New optical microbarometer

    NASA Astrophysics Data System (ADS)

    Olivier, Nathalie; Olivier, Serge; Hue, Anthony; Le Mallet, Serge

    2017-04-01

    Usually, transducers implemented in infrasound sensor (microbarometer) are mainly composed of two associated elements. The first one converts the external pressure variation into a physical linear displacement. The second one converts this motion into an electrical signal. According to this configuration, MB3, MB2000 and MB2005 microbarometers are using an aneroid capsule for the first one, and an electromagnetic transducer (Magnet-coil or LVDT) for the second one. CEA DAM (designer of MB series) and PROLANN / SEISMO WAVE (manufacturer and seller of MB3) have associated their expertise to design a new optical microbarometer: We aim at thinking that changing the electromagnetic transducer by an interferometer is an interesting solution in order to increase the dynamic and the resolution of the sensor. Currently, we are exploring this way in order to propose a future optical microbarometer which will enlarge the panel of infrasound sensors. First, we will present the new transducer principles, taking into account the aneroid capsule and the interferometer using integrated optics technology. More specifically, we will explain the operation of this optical technology, and discuss on its advantages and drawbacks. Secondly, we will present the optical microbarometer in which the interferometer is positioned inside the aneroid capsule under vacuum. The adjustment of the interferometer position is a challenge we solved. The optical measurement is naturally protected from environmental disturbances. Four prototypes were manufactured in order to compare their performances, and also an optical digitizer specifically designed to record the four channels interferometer. Finally, we will present the results we obtained with this sensor (sensitivity, self-noise, effect of environmental disturbance, etc) compared to those of a MB3 microbarometer, and discuss about the advantages of this new sensor.

  16. New optical microbarometer

    NASA Astrophysics Data System (ADS)

    Olivier, N.; Olivier, S.; Hue, A.; LE Mallet, S.

    2016-12-01

    Usually, transducers implemented in infrasound sensor (microbarometer) are mainly composed of two associated elements. The first one converts the external pressure variation into a physical linear displacement. The second one converts this motion into an electrical signal. According to this configuration, MB3, MB2000 and MB2005 microbarometers are using an aneroid capsule for the first one, and an electromagnetic transducer (Magnet-coil or LVDT) for the second one.CEA DAM (designer of MB series) and PROLANN / SEISMO WAVE (manufacturer and seller of MB3) have associated their expertise to design a new optical microbarometer:We aim at thinking that changing the electromagnetic transducer by an interferometer is an interesting solution in order to increase the dynamic and the resolution of the sensor. Currently, we are exploring this way in order to propose a future optical microbarometer which will enlarge the panel of infrasound sensors.First, we will present the new transducer principles, taking into account the aneroid capsule and the interferometer using integrated optics technology. More specifically, we will explain the operation of this optical technology, and discuss on its advantages and drawbacks.Secondly, we will present the optical microbarometer in which the interferometer is positioned inside the aneroid capsule under vacuum. The adjustment of the interferometer position is a challenge we solved. The optical measurement is naturally protected from environmental disturbances. Four prototypes were manufactured in order to compare their performances, and also an optical digitizer specifically designed to record the four channels interferometer.Finally, we will present the results we obtained with this sensor (sensitivity, self-noise, effect of environmental disturbance, etc) compared to those of a MB3 microbarometer, and discuss about the advantages of this new sensor.

  17. Optically nonlinear Bragg diffracting nanosecond optical switches

    NASA Astrophysics Data System (ADS)

    Pan, Guisheng

    We prepared low refractive index crystalline colloidal arrays (CCA) from highly charged fluorinated monodisperse spherical particles synthesized by emulsion polymerization of 1H,1H-heptafluorobutyl methacrylate. We have also covalently attached dyes to the fluorinated particles to prepare absorbing CCA. We photopolymerized these dyed CCA within a polyacrylamide matrix to form a polymerized crystalline colloidal array (PCCA). These semi-solid PCCA can withstand vibrations, ionic impurity addition and thermal shocks while maintaining the CCA ordering. The medium within the PCCA can easily be exchanged to exactly refractive index match the CCA. Thus, we were able to prepare a material where the real part of the refractive index was matched, while preserving a periodic modulation of the imaginary part of the refractive index. Under low light intensities the CCA is refractive index matched to the medium and does not diffract. However, high incident intensity illumination within the dye absorption band heats the particles within nsec to decrease their refractive index. This results in a mesoscopically periodic refractive index modulation with the periodicity of the CCA lattice. The array 'pops up' to diffract light within 2.5 nsec. These intelligent CCA hydrogels may have applications in optical limiting, optical computing and nsec fast optical switching devices, etc. We have also measured the polarization dependence of the Bragg diffraction efficiency of a CCA and compared the experimental results to that predicted by theory. The diffraction efficiency is maximized for σ polarization light at Bragg angle (θB) of 90o and minimized to zero for π polarized light at θB=45o. Our experimental diffraction and transmission results quantitatively agree with the predictions of Dynamical Diffraction Theory.

  18. Nonlinear optics in optical-fiber nanowires and their applications

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Wu, Zhen-xing; Lu, Yan-qing

    2017-09-01

    We review recent research on nonlinear optical interactions in optical-fiber nanowires (OFNs) with sub-micron transverse dimensions. Such OFNs, which are fabricated from standard optical fibers, offer numerous beneficial optical and mechanical properties, including strong evanescent fields, high flexibility and configurability, a small mass, and low-loss interconnection to other optical fibers and fiberized components. In particular, the strong confinement of light enables a large enhancement of nonlinear interactions and group-velocity dispersion engineering. The combination of these properties makes OFNs ideal for many nonlinear optical applications, including harmonic generation, Brillouin scattering, four-wave mixing, supercontinuum generation, and optomechanics. With the incorporation of new materials, OFNs should be ideally suited for a host of nonlinear optical interactions and devices and offer great potential in miniature fiber devices for optical telecommunications and optical sensor applications.

  19. Optical closure of parameterized bio-optical relationships

    NASA Astrophysics Data System (ADS)

    He, Shuangyan; Fischer, Jürgen; Schaale, Michael; He, Ming-xia

    2014-03-01

    An optical closure study on bio-optical relationships was carried out using radiative transfer model matrix operator method developed by Freie Universität Berlin. As a case study, the optical closure of bio-optical relationships empirically parameterized with in situ data for the East China Sea was examined. Remote-sensing reflectance ( R rs) was computed from the inherent optical properties predicted by these biooptical relationships and compared with published in situ data. It was found that the simulated R rs was overestimated for turbid water. To achieve optical closure, bio-optical relationships for absorption and scattering coefficients for suspended particulate matter were adjusted. Furthermore, the results show that the Fournier and Forand phase functions obtained from the adjusted relationships perform better than the Petzold phase function. Therefore, before bio-optical relationships are used for a local sea area, the optical closure should be examined.

  20. Fibre-optic nonlinear optical microscopy and endoscopy.

    PubMed

    Fu, L; Gu, M

    2007-06-01

    Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.