Science.gov

Sample records for optic sensor systems

  1. High pressure fiber optic sensor system

    DOEpatents

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  2. Optical seismic sensor systems and methods

    SciTech Connect

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  3. Power system applications of fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Jackson, S. P.; Kirkham, H.; Yeh, C.

    1986-01-01

    This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described.

  4. Power system applications of fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Johnston, A. R.; Jackson, S. P.; Kirkham, H.; Yeh, C.

    1986-06-01

    This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described.

  5. Bioinspired optical sensors for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  6. Power system applications of fiber optic sensors

    SciTech Connect

    Johnston, A.R.; Jackson, S.P.; Kirkham, H.; Yeh, C.

    1986-06-01

    Three topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power Transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described.

  7. Heterodyne interrogation system for TDM interferometric fiber optic sensors array

    NASA Astrophysics Data System (ADS)

    Fang, Gaosheng; Xu, Tuanwei; Li, Fang

    2015-04-01

    We proposed an interrogation system for time sequenced fiber optic sensors array based on the heterodyne detection and orthogonal demodulation techniques, where the sensors array is a kind of interferometric fiber optic sensors. The techniques are theoretically analyzed and experimentally demonstrated with recovering the sinusoid wave and triangle wave applied to the sensors. The system has a phase resolution about 1×10-4 rad/√Hz, the amplitude consistency and linearity of the demodulated results are 95.275% and 98.379%, respectively with single frequency event applied to the sensors.

  8. Proceedings: 3rd EPRI Optical Sensor Systems Workshop

    SciTech Connect

    2002-02-01

    These are the proceedings of the third Optical Sensor System Workshop, part of an ongoing effort by EPRI to support development of optical sensor technology, to identify benefits for utility users, and to position EPRI members as more ''informed buyers'' and users.

  9. Optical multi-species gas monitoring sensor and system

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Korman, Valentin (Inventor)

    2012-01-01

    The system includes at least one light source generating light energy having a corresponding wavelength. The system's sensor is based on an optical interferometer that receives light energy from each light source. The interferometer includes a free-space optical path disposed in an environment of interest. The system's sensor includes an optical device disposed in the optical path that causes light energy of a first selected wavelength to continue traversing the optical path whereas light energy of at least one second selected wavelength is directed away from the optical path. The interferometer generates an interference between the light energy of the first selected wavelength so-traversing the optical path with the light energy at the corresponding wavelength incident on the optical interferometer. A first optical detector detects the interference. At least one second detector detects the light energy at the at least one second selected wavelength directed away from the optical path.

  10. Fiber-optic push-pull sensor systems

    NASA Technical Reports Server (NTRS)

    Gardner, David L.; Brown, David A.; Garrett, Steven L.

    1991-01-01

    Fiber-optic push-pull sensors are those which exploit the intrinsically differential nature of an interferometer with concommitant benefits in common-mode rejection of undesired effects. Several fiber-optic accelerometer and hydrophone designs are described. Additionally, the recent development at the Naval Postgraduate School of a passive low-cost interferometric signal demodulator permits the development of economical fiber-optic sensor systems.

  11. Glucose sensor with a Sagnac interference optical system.

    PubMed

    Kumagai, Tatsuya; Tottori, Yusaku; Miyata, Ryusuke; Kajioka, Hiroshi

    2014-02-01

    The angle of optical rotation was measured by detecting the phase difference between clockwise and counterclockwise circular polarized light that propagated in a sensing loop. This polarimeter, or glucose sensor, consisted of a Sagnac interference optical system with a polarization-maintaining optical fiber, so it was not affected by the control limitations of the polarization rotation angle or the optical power fluctuation that occurs with scattered light, reflection, or polarization rotation in an optical system. The angle of rotation was measured from the phase difference of the glucose sensor when the concentration of glucose was changed. We confirmed that the resolution of optical rotation was 5×10(-4)  deg, and the resolution of the glucose concentration was 1  mg/dl accordingly. The measured specific rotation of glucose was mostly equal to a physical property value. One applications of this glucose sensor is in measuring the blood sugar levels of diabetic patients.

  12. Optical chemical sensors for environmental control and system management

    NASA Astrophysics Data System (ADS)

    Tabacco, M. B.; Digiuseppe, T. G.

    Several fiber optic based chemical sensors have been developed for use in plant growth systems and enclosed life support systems. Optical chemical sensors offer several distinct advantages in terms of sensitivity, calibration stability, immunity to biofouling and electrical interference, and ease of multiplexing sensors for multipoint/multiparameter analysis. Also, the ability to locate fiber optic sensors in close proximity to plant roots or leaves should improve the measurement reliability by obviating the need for handling and transport which can compromise sample integrity. Polestar Technologies and GEO-CENTERS have developed and tested many types of optical chemical sensors which utilize novel glass and polymeric materials as the sensor substrate. Analytes are detected using immobilized colorimetric indication systems or molecular recognition elements. Typically transduction is via wavelength specific absorption changes with multiwavelength detection for drift compensation. Sensors have been developed for solution pH, NH_3, ethylene, CO_2, and dissolved metal ions. In addition, unique PC-compatible optoelectronic interfaces, as well as distributed measurement systems, so that integrated detection systems are now available. In this paper recent efforts to develop sensors for critical nutrient ions are presented.

  13. Capillarity-based preparation system for optical colorimetric sensor arrays

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-gang; Yi, Xin; Bu, Xiang-nan; Hou, Chang-jun; Huo, Dan-qun; Yang, Mei; Fa, Huan-bao; Lei, Jin-can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  14. Capillarity-based preparation system for optical colorimetric sensor arrays.

    PubMed

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  15. Simple fiber optic sensor for applications in security systems

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Karol, M.; Markowski, P.; Napierala, M. S.

    2014-10-01

    In this paper we demonstrate measurement results of the modalmetric fiber optic sensor used for the monitoring of the fiber optic link integrity to protect it against unauthorized access to classified information. The presented construction is based on the detection of changes of the modes distribution in a multimode fiber. Any mechanical stress on the multimode fiber causes changes of polarization and distribution of propagating modes, hence it changes the distribution of modes at the end of the multimode fiber. Observation of these changes using a narrow core single-mode fiber allows to use the structure as an optical fiber sensor. We used several kilometers long optical links to conduct field tests of laboratory sensor. On this basis the prototype module of modalmetric fiber optic sensor wasbuilt. The modification of optoelectronic part, the variation of sensor length and the change of the method of light reflection at the end of the fiber enable the use of the modalmetric fiber optic sensor in many applications. The sensor finds wide range of applications in security systems. It can be applied to protect the museum's collection, transmission lines and to protect objects of critical infrastructure.

  16. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  17. A Perspective on Optical Biosensors and Integrated Sensor Systems

    PubMed Central

    Ligler, Frances S.

    2009-01-01

    Optical biosensors have begun to move from the laboratory to the point of use. This trend will be accelerated by new concepts for molecular recognition, integration of microfluidics and optics, simplified fabrication technologies, improved approaches to biosensor system integration, and dramatically increased awareness of the applicability of sensor technology to improve public health and environmental monitoring. Examples of innovations are identified that will lead to smaller, faster, cheaper optical biosensor systems with capacity to provide effective and actionable information. PMID:19140774

  18. Optical system designs based on bi-directional sensor devices

    NASA Astrophysics Data System (ADS)

    Grossmann, Constanze; Gawronski, Ute; Perske, Franziska; Notni, Gunther; Tünnermann, Andreas

    2012-10-01

    Small and compact optical system designs are needed in nearly all application scenarios of optical projection and imaging systems, e.g. automotive, metrology, medical or multimedia. Most active optical systems are based on separated imaging (e.g. camera unit) and image generating units (e.g. projection unit). This fact limits the geometrical miniaturization of the system. We present compact optical system designs using the new technology of bi-directional sensor devices. These devices combine light emitting and light detecting elements on one single chip. The application of such innovative opto-electronic devices - so-called bi-directional OLED microdisplays (BiMiDs) - offer a huge potential for miniaturization with a simultaneous increase of performance due to a new integration step. For these new bi-directional sensor devices new optical design concepts for simultaneous and sequential emission and detection are necessary. Because the simultaneous emission and detection can disturb the functionality of the optical system. New concepts has to be applied. A first concept is an exemplary 3-D metrology system applying fringe projection. A second concept is a pico-projection system with an integrated camera function. For both concepts the system configurations and the optical design are discussed. Due to the application of the bi-directional sensor device ultra-compact systems are presented.

  19. Fiber optic oxygen sensor leak detection system for space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goswami, Kish; Mendoza, Edgar A.; Kempen, Lothar U.

    2007-09-01

    This paper describes the successful test of a multi-point fiber optic oxygen sensor system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta IV common booster core (CBC) rocket engine at NASA's Stennis Flight Center. The system consisted of microsensors (optrodes) using an oxygen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel opto-electronic sensor readout unit that monitored the oxygen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The sensor packaging for oxygen consisted of two optrodes - one doped with an indicator sensitive to oxygen, and the other doped with an indicator sensitive to temperature. The multichannel oxygen sensor system is fully reversible. It has demonstrated a dynamic response to oxygen gas in the range of 0% to 100% with 0.1% resolution and a response time of <=10 seconds. The sensor package was attached to a custom fiber optic ribbon cable, which was then connected to a fiber optic trunk communications cable (standard telecommunications-grade fiber) that connected to the optoelectronics module. Each board in the expandable module included light sources, photo-detectors, and associated electronics required for detecting oxygen and temperature. The paper illustrates the sensor design and performance data under field deployment conditions.

  20. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, Stanley E.

    1998-01-01

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  1. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  2. Multidimensional System Analysis of Electro-Optic Sensors with Sampled Deterministic Output.

    DTIC Science & Technology

    1987-12-18

    System descriptions of scanning and staring electro - optic sensors with sampled output are developed as follows. Functions representing image...to complete the system descriptions. The results should be useful for designing electro - optic sensor systems and correcting data for instrumental...effects and other experimental conditions. Keywords include: Electro - optic system analysis, Scanning sensors, Staring sensors, Spatial sampling, and Temporal sampling.

  3. Nonlinear and non-Hermitian optical systems applied to the development of filters and optical sensors

    NASA Astrophysics Data System (ADS)

    Amaro de Faria Júnior, A. C.

    2015-09-01

    In this work we present a method of investigation of nonlinear optical beams generated from non-Hermitian optical systems1 . This method can be applied in the development of optical filters and optical sensors to process, analyze and choose the passband of the propagation modes of an optical pulse from an non-Hermitian optical system. Non-Hermitian optical systems can be used to develop optical fiber sensors that suppress certain propagation modes of optical pulses that eventually behave as quantum noise. Such systems are described by the Nonlinear Schrödinger-like Equation with Parity-Time (PT) Symmetric Optical Potentials. There are optical fiber sensors that due to high laser intensity and frequency can produce quantum noise, such as Raman and Brillouin scattering. However, the optical fiber, for example, can be designed so that its geometry suppress certain propagation modes of the beam. We apply some results of non- Hermitian optical systems with PT symmetry to simulate optical lattice by a appropriate potential function, which among other applications, can naturally suppress certain propagation modes of an optical beam propagating through a waveguide. In other words, the optical system is modeled by a potential function in the Nonlinear Schrödinger-like Equation that one relates with the geometric aspects of the wave guides and with the optical beam interacting with the waveguide material. The paper is organized as follows: sections 1 and 2 present a brief description about nonlinear optical systems and non-Hermitian optical systems with PT symmetry. Section 3 presents a description of the dynamics of nonlinear optical pulses propagating through optical networks described by a optical potential non-Hermitian. Sections 4 and 5 present a general description of this non-Hermitian optical systems and how to get them from a more general model. Section 6 presents some conclusions and comment and the final section presents the references. Begin the abstract two

  4. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  5. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  6. 78 FR 17187 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... to grant to Fiber Optic Sensor Systems Technology Corporation, a revocable, nonassignable, exclusive... its intent to grant to Fiber Optic Sensor Systems Technology Corporation a revocable,...

  7. Optical Sensors for Use in Propulsion Control Systems

    NASA Technical Reports Server (NTRS)

    Fritsch, Klaus

    1997-01-01

    This final technical report describes the results of a cooperative effort which was originally established between John Carroll University and the Instrumentation and Control Technology Division at NASA Lewis Research Center on November, 1982, and then continued with the Engine Sensor Technology Branch at NASA Lewis until March, 1995. All work at John Carroll University was directed by the principal investigator of this grant, Klaus Fritsch, Ph.D. For the first two years of this grant this effort was supervised at NASA by Mr. Robert J. Baumbick and for the remainder of the grant by Dr. Glenn M. Beheim. All research was carried out in close cooperation with Dr. Beheim. Electrically passive optical sensors for measurands such as pressure, temperature, position, and rotational speed are required for aircraft engine control in fly-by-light digital aircraft control systems. Fiberoptic data links and optical multiplexing techniques should be used for combining and processing the outputs from several sensors, sharing as many optical end electronic parts as possible. The overall objective of this grant was to explore techniques for designing and constructing such electrically passive optical sensors for measuring physical parameters in jet aircraft engines and for use in aircraft control systems. We have concentrated our efforts on pressure, temperature, and position sensors employing techniques which are relatively immune to transmissivity variations of the fiber links and to variations in intensity of the light source. Infrared light-emitting diodes are employed because of their longevity and immunity to vibration. We have also studied a number of multiplexing techniques. On the following pages I will give thumbnail sketches of the projects carried out under this grant and provide references to publications and John Carroll M.S. theses which resulted directly from this work and which describe these projects in greater detail.

  8. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    NASA Technical Reports Server (NTRS)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  9. Micro-optics technology and sensor systems applications

    NASA Technical Reports Server (NTRS)

    Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.

    1993-01-01

    The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.

  10. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  11. Review of High-Speed Fiber Optic Grating Sensors Systems

    SciTech Connect

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  12. Highly sensitive optical sensor system for blood leakage detection

    NASA Astrophysics Data System (ADS)

    Ueda, Masahiro; Ishikawa, Kazuhiko; Jie, Chen; Sanae, Mizuno; Touma, Yasunori

    A highly sensitive method for the detection of blood leakage has been developed, and a practical sensor system for blood concentration measurement has been constructed. The present method is based on the attenuation of laser light by blood cells. The effects of the fluctuations of the incident laser light power are eliminated by normalizing the attenuated light intensity by the incident light intensity. A part of the incident laser light is reflected by a beam splitter mounted at the entrance of the test cell, of which the power is measured to provide base data for normalization. The optical path is extended to enhance sensitivity by using a pair of side mirrors. This multi-reflection method is very effective to increase sensitivity; the maximum sensitivity obtained for blood concentration is about 4 X 10 -6 by volume, which is significantly higher than that of the conventional sensors.

  13. Optical-system design for next-generation pushbroom sensors

    NASA Technical Reports Server (NTRS)

    Mika, A. M.; Richard, H. L.

    1984-01-01

    Next-generation pushbroom sensors for earth observation require high-performance optics that provide high spatial resolution over wide fields of view. Specifically, blur diameters on the order of 10 to 15 microns are needed over 5 to 15 deg fields. In addition to this fundamental level of optical performance, other characteristics, such as spatial coregistration of spectral bands, flat focal plane, telecentricity, and workable pupil location are significant instrument design considerations. The detector-assembly design, optical line-of-sight pointing method and sensor packaging all hinge on these secondary attributes. Moreover, the need for broad spectral coverage, ranging from 0.4 to 12.5 microns, places an additional constraint on optical design. This paper presents alternative design forms that are candidates for wide-field pushbroom sensors, and discusses the instrument-design tradeoffs that are linked to the selection of these alternate optical approaches.

  14. Development of an instrumentation system for measurement of degradation of lubricating oil using optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Laskar, S.; Bordoloi, S.

    2016-01-01

    This paper presents an instrumentation system to measure the degradation in lubricating oil using a bare, tapered and bent multi-mode optical fiber (BTBMOF) sensor probe and a temperature probe. The sensor system consists of (i) a bare, tapered and bent multi-mode optical fiber (BTBMOF) as optical sensor along with a laser source and a LDR (Light Dependent Resistor) as detector (ii) a temperature sensor (iii) a ATmega microcontroller based data acquisition system and (iv) a trained ANN for processing and calibration. The BTBMOF sensor and the temperature sensor are used to provide the measure of refractive index (RI) and the temperature of a lubricating oil sample. A microcontroller based instrumentation system with trained ANN algorithm has been developed to determine the degradation of the lubricating oil sample by sampling the readings of the optical fiber sensor, and the temperature sensor.

  15. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOEpatents

    Murphy, Kent A.; Gunther, Michael F.; Vengsarkar, Ashish M.; Claus, Richard O.

    1994-01-01

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

  16. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOEpatents

    Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O.

    1994-04-05

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer. 14 figures.

  17. Brush wear and dust accumulation fiber-optic sensor system for synchronous compensators online monitoring

    NASA Astrophysics Data System (ADS)

    Floridia, Claudio; Alves, Livia R.; Bassan, Fábio R.; Juriollo, Antonio A.; Borin, Flávio; Souza, Afonso Rafael Cunha

    2013-04-01

    An electro-optical sensor system for monitoring synchronous compensators in the electrical distribution network is presented. The fiber-optic sensor system is based on two main technologies: optical bend loss sensors for monitoring the brush wear and, free-space optics to determine the dust accumulation from brush wear. Both techniques are characterized to monitor the parameters by means of simple optical power readings. In order to avoid optical power fluctuations in the fiber optics link from interrogation system to the synchronous compensators, bend-loss insensitive fibers are used. The low-cost interrogation system consists on one laser, optical splitters and 80 photodetectors to independently monitor each one of the synchronous compensators's brushes. This setup ensures an ease installation and avoid cascaded fault that a serial configuration could originates, thus increasing reliability of the sensor system.

  18. Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Glomb, W. L., Jr.

    1989-01-01

    Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.

  19. Integrated optics for fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Minford, W. J.; Depaula, R. P.

    1991-01-01

    Recent progress achieved in the field of fiber-optic sensor applications is discussed with emphasis placed on LiNbO3-based integrated optics (IO). Particular consideration is given to advanced electromagnetic-field sensors, an integrated laser vibrometer system, and a fiber-optic gyroscope system. It is shown that the multifunction IO chips have enabled high perforamance fiber-optic sensors (e.g., fiber-optic gyros), provided advanced and unique signal processing capabilities and advanced architectures, and have a potential of making fiber-optic sensors at low cost.

  20. Development of fiber optic sensor for fluid flow of astronauts’ life-support system

    NASA Astrophysics Data System (ADS)

    Shachneva, E. A.; Murashkina, T. I.

    2016-08-01

    This paper proposes a fiber optic sensor consumption (volume, speed) of liquids in life-support systems of astronauts, as well as offers a simple method and apparatus for reproducing the parameters of fluid flow needed in research, yustiovke and adjusting the optical sensor system.

  1. Structural health monitoring system of soccer arena based on optical sensors

    NASA Astrophysics Data System (ADS)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  2. Force and optical position sensors: limitations of sensors and sensing systems in robotic applications

    SciTech Connect

    Isik, C.; Chenette, E.R.

    1982-01-01

    Sensory feedback as an element of intelligent control, and force sensing and visual sensing within a hierarchical sensor-controller system are discussed. A six-component force sensor designed and developed in CIMAR laboratories is the main issue of this paper. Its single beam mechanical structure is described and signal processing and conditioning circuitry is explained. Basic limitations of force measurement using strain gages are studied and related design criteria suggested. The second part of the paper deals with different optical distance measurement techniques, and concentrates on the conceptual designs of two innovative methods which utilize triangulation, laser interferometry, and pulse width modulated light beams. Some basic limitation analysis and a tentative work plan are also included in this part of the paper.

  3. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  4. A hybrid fiber-optic sensor system for condition monitoring of large scale wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-01

    A hybrid fiber-optic sensor system which combines fiber Bragg grating (FBG) sensors and a Michelson interferometer is suggested for condition monitoring uses of large scale wind turbine blades. The system uses single broadband light source to address both sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light for the Michelson interferometer demodulation. For the feasibility test, different profiles of test strain, temperature and vibration have been applied to test structures, and successfully reconstructed with the proposed sensor system.

  5. Remote management for multipoint sensing systems using hetero-core spliced optical fiber sensors.

    PubMed

    Goh, Lee See; Anoda, Yuji; Kazuhiro, Watanabe; Shinomiya, Norihiko

    2013-12-27

    This paper describes the design and experimental verification of a multipoint sensing system with hetero-core spliced optical fiber sensors and its remote management using an internet-standard protocol. The study proposes two different types of design and conducts experiments to verify those systems' feasibility. In order to manage the sensing systems remotely, the management method uses a standard operation and maintenance protocol for internet: the Simple Network Management Protocol is proposed. The purpose of this study is to construct a multipoint sensing system remote management tool by which the system can also determine the status and the identity of fiber optic sensors. The constructed sensing systems are verified and the results have demonstrated that the first proposed system can distinguish the responses from different hetero-core spliced optical fiber sensors remotely. The second proposed system shows that data communications are performed successfully while identifying the status of hetero-core spliced optical fiber sensors remotely.

  6. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  7. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  8. A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James

    2012-01-01

    A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.

  9. Wearable Optical Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Lobnik, Aleksandra

    Wearable sensors can be used to provide valuable information about the wearer's health and/or monitor the wearer's surroundings, identify safety concerns and detect threats, during the wearer's daily routine within his or her natural environment. The "sensor on a textile", an integrated sensor capable of analyzing data, would enable early many forms of detection. Moreover, a sensor connected with a smart delivery system could simultaneously provide comfort and monitoring (for safety and/or health), non-invasive measurements, no laboratory sampling, continuous monitoring during the daily activity of the person, and possible multi-parameter analysis and monitoring. However, in order for the technology to be accessible, it must remain innocuous and impose a minimal intrusion on the daily activities of the wearer. Therefore, such wearable technologies should be soft, flexible, and washable in order to meet the expectations of normal clothing. Optical chemical sensors (OCSs) could be used as wearable technology since they can be embedded into textile structures by using conventional dyeing, printing processes and coatings, while fiber-optic chemical sensors (FOCSs) as well as nanofiber sensors (NFSs) can be incorporated by weaving, knitting or laminating. The interest in small, robust and sensitive sensors that can be embedded into textile structures is increasing and the research activity on this topic is an important issue.

  10. Wireless fiber optic sensor system for strain and pressure measurements on a rotor blade

    NASA Astrophysics Data System (ADS)

    Liu, Yuxiang; Lacher, Alexander; Wang, Gang; Purekar, Ashish; Yu, Miao

    2007-09-01

    Experimental measurements of the strain and pressure of rotor blades are important for understanding the aerodynamics and dynamics of a rotorcraft. This understanding can help in solving on-blade problems as well as in designing and optimizing the blade profiles for improved aerodynamics and noise attenuation in the next generation rotorcraft. The overall goal of our research is to develop a miniature wireless optical sensor system for helicopter on-blade pressure and strain measurements. In this paper, leveraging past and current experiences with fiber optic sensor development, a proof-of- concept of fiber optic pressure/strain sensor system with wireless data acquisition and transfer capability is demonstrated. The recently developed high-speed, real-time fiber optic sensor demodulation techniques based on low coherence interferometry and phase-shifting interferometry is used. This scheme enables a Spatial Division Multiplexing configuration that consists of multiple Fabry-Perot strain and pressure sensors. Calibration of the strain and pressure sensors is carried out by using commercially available sensors as references. Spin chamber testing of the sensor system for simultaneous on-blade pressure and strain field measurements is also performed. It is expected that such a sensor system will result in enhanced robustness and performance for on-blade pressure and strain field measurements.

  11. Fiber optical sensor system for shape and haptics for flexible instruments in minimally invasive surgery: overview and status quo

    NASA Astrophysics Data System (ADS)

    Ledermann, Christoph; Pauer, Hendrikje; Woern, Heinz

    2014-05-01

    In minimally invasive surgery, exible mechatronic instruments promise to improve the overall performance of surgical interventions. However, those instruments require highly developed sensors in order to provide haptic feedback to the surgeon or to enable (semi-)autonomous tasks. Precisely, haptic sensors and a shape sensor are required. In this paper, we present our ber optical sensor system of Fiber Bragg Gratings, which consists of a shape sensor, a kinesthetic sensor and a tactile sensor. The status quo of each of the three sensors is described, as well as the concept to integrate them into one ber optical sensor system.

  12. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  13. Luminescence-based optical sensor systems for monitoring water parameters

    NASA Astrophysics Data System (ADS)

    Lobnik, Aleksandra; Turel, Matejka; Korent, Špela Mojca

    2007-06-01

    Lanthanide-sensitized luminescence is very attractive because the intramolecular energy transfers between the absorbing ligand and the luminescent ion results in strong narrow-band fluorescence with a large Stokes' shift and long decay times. We will report about several sensor systems based either on sol-gel materials or lanthanide chelates for monitoring and controlling water parameters, such as heavy metals, amines, phosphates.

  14. Micro-optical components and systems in polymers for optical networks and sensors

    NASA Astrophysics Data System (ADS)

    Teubner, Ulrich

    2004-09-01

    Miniaturization of precision optical components offers the opportunity for highly integrated high performance but lowcost devices for a wide field of applications. An increasing amount of examples could be found in the optical communication market and in sensor technology. Basing on several examples, we discuss actual developments in both fields.

  15. Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; De Rosa, Rosario; Di Fiore, Luciano; Garufi, Fabio; La Rana, Adele; Milano, Leopoldo

    2006-11-01

    In this paper, we report on the progress in the development of an optical read-out (ORO) system for the inertial sensor of the LISA gravitational wave antenna. The device is based on optical levers and position sensors and is intended to be integrated in the present baseline design for the LISA inertial sensor, which is based on capacitive readout of the test mass position. In particular, we report some improved measurement of the sensitivity of this device, performed with a bench-top rigid set-up and tests on a real scale prototype.

  16. Distributed fiber optic intrusion sensor system for monitoring long perimeters

    NASA Astrophysics Data System (ADS)

    Juarez, Juan C.; Taylor, Henry F.

    2005-05-01

    The use of an optical fiber as a distributed sensor for detecting and locating intruders over long perimeters (>10 km) is described. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from seismic disturbances in the vicinity are sensed by a phase-sensitive optical time-domain reflectometer (Φ-OTDR). Light pulses from a cw laser operating in a single longitudinal mode and with low (MHz/min range) frequency drift are injected into one end of the single mode fiber, and the backscattered light is monitored with a photodetector. In laboratory tests with 12 km of fiber on reels, the effects of localized phase perturbations induced by a piezoelectric fiber stretcher on Φ-OTDR traces were characterized. In field tests in which the sensing element is a single mode fiber in a 3-mm diameter cable buried in a 20-46 cm deep, 10 cm wide trench in clay soil, detection of intruders on foot up to 4.6 m from the cable line was achieved. In desert terrain field tests in which the sensing fiber is in a 4.5-mm diameter cable buried in a 30 cm deep, 75 cm wide trench filled with loose sand, high sensitivity and consistent detection of intruders on foot and of vehicles traveling down a road near the cable line was realized over a cable length of 8.5 km and a total fiber path of 19 km. Based on these results, this technology may be regarded as a candidate for providing low-cost perimeter security for nuclear power plants, electrical power distribution centers, storage facilities for fuel and volatile chemicals, communication hubs, airports, government offices, military bases, embassies, and national borders.

  17. Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Lopatin, Craig

    2001-01-01

    A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.

  18. Optical-fiber sensors challenge the competition

    NASA Astrophysics Data System (ADS)

    Giallorenzi, T. G.; Bucaro, J. A.; Dandridge, A.; Cole, J. H.

    1986-09-01

    Optical-fiber sensors which are based on intensity modulation of light are examined. The optical-fiber sensors consists of a glass core, a cladding, a light emitting diode or laser, and a photodetector, and are applicable to measuring instruments, medical probes, control systems, and military surveillance and navigation systems. The designs and capabilities of microbend sensors and interferometric fiber sensors are described. The development of fiber temperature sensors and fiber-optic acceleration sensors is considered. Procedures for measuring flow and liquid level with fiber sensors are discussed. The utilization of fiber-optic sensors in hydrophones, gyroscopes, and magnetometers is being studied.

  19. Spectrum-modulating fiber-optic sensors for aircraft control systems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus

    1987-01-01

    A family of fiber-optic sensors for aircraft engine control systems is described. Each of these sensors uses a spectrum-modulation method to obtain an output which is largely independent of the fiber link transmissivity. A position encoder is described which uses a code plate to digitally modulate the sensor output spectrum. Also described are pressure and temperature sensors, each of which uses a Fabry-Perot cavity to modulate the sensor output spectrum as a continuous function of the measurand. A technique is described whereby a collection of these sensors may be effectively combined to perform a number of the measurements which are required by an aircraft-engine control system.

  20. Continuous monitoring of large civil structures using a digital fiber optic motion sensor system

    NASA Astrophysics Data System (ADS)

    Hodge, Malcolm H.; Kausel, Theodore C., Jr.

    1998-03-01

    There is no single attribute which can always predict structural deterioration. Accordingly, we have developed a scheme for monitoring a wide range of incipient deterioration parameters, all based on a single motion sensor concept. In this presentation, we describe how an intrinsically low power- consumption fiber optic harness can be permanently deployed to poll an array of optical sensors. The function and design of these simple, durable, and naturally digital sensors is described, along with the manner in which they have been configured to collect information for changes in the most important structural aspects. The SIMS system is designed to interrogate each sensor up to five-thousand times per second for the life of the structure, and to report sensor data back to a remote computer base for current and long-term analysis, and is directed primarily towards bridges. By suitably modifying the actuation of this very precise motion sensor, SIMS is able to track bridge deck deflection and vibration, expansion joint travel, concrete and rebar corrosion, pothole development, pier scour and tilt. Other sensors will track bolt clamp load, cable tension, and metal fatigue. All of these data are received within microseconds, which means that appropriate computer algorithm manipulations can be carried out to correlate one sensor with other sensors in real time. This internal verification feature automatically enhances confidence in the system's predictive ability and alerts the user to any anomalous behavior.

  1. Scour monitoring system of subsea pipeline using distributed Brillouin optical sensors based on active thermometry

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Feng; Li, Le; Ba, Qin; Ou, Jin-Ping

    2012-10-01

    A scour monitoring system of subsea pipeline is proposed using distributed Brillouin optical sensors based on active thermometry. The system consists in a thermal cable running parallel to the pipeline, which acquires frequency shift of optical sensors during heating and cooling, directly indicating temperature change. The free spans can be detected through the different behaviors of heat transfer between in-water and in-sediment scenarios. Three features were extracted from temperature time histories including magnitude, spatial continuity and temporal stability. Several experimental tests were conducted using the proposed system. The results substantiate the monitoring technique.

  2. Shaft Position Optical Sensor

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor); Hakum, Claef F. (Inventor); Johnson, Clarence S. (Inventor)

    2001-01-01

    The present invention is an optical sensor that senses the movement of a shaft. Detection of radial movement is made when a portion of light incident on the shaft sensor-target is blocked. For detection of axial movement, a disk with flat surface is mounted and used to block a portion of light. The variation in the amount of light allowed to pass through is a measure of the position of the shaft. As proposed by this invention, significant improvement is made with respect to sensitivity and linearity of the system when the light is permanently partially blocked. To accomplish this goal this invention adds a boss to the system. To eliminate possible drift of system performance due to LED degradation or temperature variation, a feedback feature is added to the system.

  3. Control systems using modal domain optical fiber sensors for smart structure applications

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  4. Deployment optimization of electro-optical sensor systems for naval missions

    NASA Astrophysics Data System (ADS)

    van Valkenburg-Haarst, Tanja Y. C.; van Norden, Wilbert L.; van der Meiden, Hilderick A.; ten Holter, Koen P. A.

    2010-10-01

    In today's naval missions, such as anti-piracy or counter-drugs operations, Electro-Optical (EO) sensors play an increasingly important role. In particular, these sensors are essential for classification and identification of targets. These tasks are traditionally performed by human operators, but because the complexity of today's missions, in combination with reduced manning, automating the information processing of EO sensors is increasingly necessary. This paper discusses the contribution of EO sensor systems to the picture compilation process, and how the deployment of EO sensors can be optimized for current naval missions. In particular, we discuss automation techniques for detection, classification and identification using EO sensors. Based on our findings, we give recommendations for future research.

  5. Distributed optical fiber temperature sensor applied in underground coal gasification system

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng; Hu, Chuanlong; Zhang, Zaixuan; Gong, Huaping; Jin, Yongxing; Shen, Changyu

    2010-12-01

    Distributed optical fiber temperature sensor (DTS) for underground coal gasification (UCG) system using is studied in this paper. By measuring temperature of reacting mine gasification process can be controlled. Calibration of DTS and experiment result are introduced. The results show that, DTS can play an important role in UCG systems.

  6. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  7. Virtual touch 3D interactive system for autostereoscopic display with embedded optical sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Wang, Guo-Zhen; Ma, Ming-Ching; Tung, Shang-Yu; Huang, Shu-Yi; Tseng, Hung-Wei; Kuo, Chung-Hong; Li, Chun-Huai

    2011-06-01

    The traidational 3D interactive sysetm which uses CCD camera to capture image is difficult to operate on near range for mobile applications.Therefore, 3D interactive display with embedded optical sensor was proposed. Based on optical sensor based system, we proposed four different methods to support differenct functions. T mark algorithm can obtain 5- axis information (x, y, z,θ, and φ)of LED no matter where LED was vertical or inclined to panel and whatever it rotated. Sequential mark algorithm and color filter based algorithm can support mulit-user. Finally, bare finger touch system with sequential illuminator can achieve to interact with auto-stereoscopic images by bare finger. Furthermore, the proposed methods were verified on a 4-inch panel with embedded optical sensors.

  8. Real time optical figure sensor

    NASA Technical Reports Server (NTRS)

    Robertson, H. J.

    1973-01-01

    Mirrors produced for various optical systems require precise surface finishing. Sensor, developed for measuring mirror surface, is compensated for interferences from temperature and air disturbances and is capable of measuring mirrors with diameters of up to 2 meters.

  9. Fiber optic coupled optical sensor

    DOEpatents

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  10. Development of Landslide Early Warning System Using Macro-bending Loss Based Optical Fibre Sensor

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Heriyanto, Muhammad; Dedy Setiyadi, Ika; Koesuma, Sorja

    2015-06-01

    This paper presents the design of a simple and cheap landslide early warning system which mainly consists of a displacement fibre sensor, mechanical displacement converter, and Short Messaging Service (SMS) gateway equipped with a siren. Displacement fibre optic sensors were made by wrapping a polymer optical fibre (POF) around a holey elastic cylinder connected to a mechanical displacement converter that converts a real land displacement in centimetres order of magnitude into millimetres order that fibre optic sensor can detect. From the experimental results we suggest an optical fibre sensor that has ability to monitor land displacement in the range of 40 cm, sensitivity of (5.9 ± 0.2) dB/cm and linearity 99.5% as well as the way of improving sensor performance to meet the real need. A whole system has been tested making use of a slider attached to the mechanical displacement converter. Once a nonzero continuous displacement for 5 seconds or a downward land displacement of 10.0 cm occurs, the system will activate the siren and spread an alert via SMS automatically.

  11. Miniaturized multi channel infrared optical gas sensor system

    NASA Astrophysics Data System (ADS)

    Wöllenstein, Jürgen; Eberhardt, Andre; Rademacher, Sven; Schmitt, Katrin

    2011-06-01

    Infrared spectroscopy uses the characteristic absorption of the molecules in the mid infrared and allows the determination of the gases and their concentration. Especially by the absorption at longer wavelengths between 8 μm and 12 μm, the so called "fingerprint" region, the molecules can be measured with highest selectivity. We present an infrared optical filter photometer for the analytical determination of trace gases in the air. The challenge in developing the filter photometer was the construction of a multi-channel system using a novel filter wheel concept - which acts as a chopper too- in order to measure simultaneously four gases: carbon monoxide, carbon dioxide, methane and ammonia. The system consists of a broadband infrared emitter, a long path cell with 1.7m optical path length, a filter wheel and analogue and digital signal processing. Multi channel filter photometers normally need one filter and one detector per target gas. There are small detection units with one, two or more detectors with integrated filters available on the market. One filter is normally used as reference at a wavelength without any cross-sensitivities to possible interfering gases (e.g. at 3.95 μm is an "atmospheric window" - a small spectral band without absorbing gases in the atmosphere). The advantage of a filter-wheel set-up is that a single IR-detector can be used, which reduces the signal drift enormously. Pyroelectric and thermopile detectors are often integrated in these kinds of spectrometers. For both detector types a modulation of the light is required and can be done - without an additional chopper - with the filter wheel.

  12. Micro-electro-mechanical system (MEMS)-based fiber optic sensor and sensor network for improving weapon stabilization and fire control

    NASA Astrophysics Data System (ADS)

    Zhang, Sean Z.; Xu, Guoda; Qiu, Wei; Lin, Freddie S.; Testa, Robert C.; Mattice, Michael S.

    2000-08-01

    A MicroElectroMechanical Systems (MEMS)-based fiber optic sensor and sensor network for improving weapon stabilization and fire control have been developed. Fabrication involves overwriting two fiber Bragg gratings (FBGs) onto a polarization-preserving optical fiber core. A MEMS diaphragm is fabricated and integrated with the overlaid FBGs to enhance the performance and reliability of the sensor. A simulation model for the MEMS fiber optic sensor and sensor network has been derived, and simulation results concerning load, angle, strain, and temperature have been obtained. The fabricated MEMS diaphragm and the overlaid FBGs have been packaged together on the basis of simulation results and mounted on a specially designed cantilever system. The combined multifunctional MEMS fiber optic sensor and sensor network is cost-effective, fast, rugged enough to operate in harsh environmental conditions, compact, and highly sensitive.

  13. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  14. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  15. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  16. Advanced spectral fiber optic sensor systems and their application in energy facility monitoring

    NASA Astrophysics Data System (ADS)

    Willsch, Reinhardt; Ecke, Wolfgang; Bosselmann, Thomas; Willsch, Michael; Lindner, Eric; Bartelt, Hartmut

    2011-06-01

    Various spectral-encoded fiber optic sensor concepts and advanced system solutions for application in energy facility monitoring have been investigated. The technological maturity, high performance and reliability of multiplexed fiber Bragg grating (FBG) sensor arrays and networks for the measurement of temperature, dynamic strain, air flow, and magnetic field distributions in electric power generators increasing their efficiency will be demonstrated by selected examples of field testing under harsh environmental conditions. For high-temperature combustion monitoring in gas turbines, beside silica FBGs with enhanced temperature stability also sapphire FBGs and Fabry-Perot sensors have been tested and evaluated as well as fiber-based black-body thermal radiation sensors. Finally, the potential of FBG sensors for application in cryo-energetic facilities such as super-conductive high-power motors and experimental nuclear fusion reactors will be discussed.

  17. Integrated optical toxin sensor

    NASA Astrophysics Data System (ADS)

    Kelly, Dan; Song, Xuedong; Frayer, Daniel K.; Mendes, Sergio B.; Peyghambarian, Nasser; Swanson, Basil I.; Grace, Karen M.

    1999-12-01

    We have developed a method for simple and highly sensitive detection of multivalent proteins using an optical waveguide sensor. The optical biosensor is based on optically tagged glycolipid receptors imbedded within a fluid phospholipid bilayer membrane formed on the surface of a planar optical waveguide. The binding of multivalent toxin initiates a fluorescence resonance energy transfer resulting in a distinctive spectral signature that is monitored by measuring emitted luminescence above the waveguide surface. The sensor methodology is highly sensitive and specific, and requires no additional reagents or washing steps. Demonstration of the utility of protein-receptor recognition using planar optical waveguides is shown here by the detection of cholera toxin.

  18. Fiber Optic Engineering Sensor System. Preliminary Program Management Plan. Phase 3 Revision.

    DTIC Science & Technology

    1987-07-01

    1163 ŗ FIBER OPTIC ENGINEERING SENSOR SYSTEM PRELIMINARY 1 PROGIRM MNAGEMENT PLAIN PHASE 3 REVISION(U) NKF ENGINEERING INC RESTON YR JUL 6? MKF-U13...3 3.1 DESIGN PHASE ......................................................................... 3 3.1.1 Electro

  19. Fiber optic sensing systems using high frequency resonant sensing heads with intensity sensors

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Maitland, Duncan J., IV

    1989-01-01

    Optical fibers have an inherent capability of transmitting high bandwidth analog and digital signals. To apply this property of fiber optics to remote sensing, special sensing heads as well as signal processing electronics have to be developed. In systems employing intensity modulating sensors, there is also a need for a referencing technique to compensate for changes in the transmission of the connecting fibers and light source intensity. Fiber optic sensing systems incorporated in sensing heads of a special configuration are discussed. Different modes of operation as well as resonant conditions are explained. Theoretical and experimental analyses are also given.

  20. Fiber optic sensing systems using high frequency resonant sensing heads with intensity sensors

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Maitland, Duncan J., IV

    1988-01-01

    Optical fibers have an inherent capability of transmitting high bandwidth analog and digital signals. To apply this property of fiber optics to remote sensing, special sensing heads as well as signal processing electronics have to be developed. In systems employing intensity modulating sensors, there is also a need for a referencing technique to compensate for changes in the transmission of the connecting fibers and light source intensity. Fiber optic sensing systems incorporated in sensing heads of a special configuration are discussed. Different modes of operation as well as resonant conditions are explained. Theoretical and experimental analyses are also given.

  1. Review of high-speed fiber optic grating sensor systems

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Benterou, Jerry; May, Chadd; Mihailov, Stephen J.; Lu, Ping

    2010-04-01

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates, and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime.

  2. Overview of Fiber-Optical Sensors

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.; Moore, Emery L.

    1987-01-01

    Design, development, and sensitivity of sensors using fiber optics reviewed. State-of-the-art and probable future developments of sensors using fiber optics described in report including references to work in field. Serves to update previously published surveys. Systems incorporating fiber-optic sensors used in medical diagnosis, navigation, robotics, sonar, power industry, and industrial controls.

  3. A distributed fiber optic sensor system for dike monitoring using Brillouin optical frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Nöther, Nils; Wosniok, Aleksander; Krebber, Katerina; Thiele, Elke

    2008-03-01

    We report on the development of a complete system for spatially resolved detection of critical soil displacement in river embankments. The system uses Brillouin frequency domain analysis (BOFDA) for distributed measurement of strain in silica optical fibers. Our development consists of the measurement unit, an adequate coating for the optical fibers and a technique to integrate the coated optical fibers into geotextiles as they are commonly used in dike construction. We present several laboratory and field tests that prove the capability of the system to detect areas of soil displacement as small as 2 meters. These are the first tests of truly distributed strain measurements on optical fibers embedded into geosynthetics.

  4. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    SciTech Connect

    Wang, Anbo; Pickrell, Gary

    2012-03-31

    This report summarizes technical progress on the program Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  5. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  6. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  7. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1992-10-06

    An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

  8. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, Bruce R.; Prather, William S.

    1992-01-01

    An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

  9. Integration of an autonomous optical sensor system in the machining area of milling centers

    NASA Astrophysics Data System (ADS)

    Preißler, Marc; Schellhorn, Mathias; Hoffmann, Rolf; Notni, Gunther

    2015-05-01

    The integration of quality control in manufacturing process contains this paper and discusses the possibilities for integrated quality control in CNC milling machines without clamping off a workpiece. For these concepts non-contact measurements with image processing sensors have significant benefits for data acquisition in rapidity and a high grade of flexibility. New effective measurement strategies can be developed in effect of the quality controlling in the machining area. These includes classical geometric measurement applications from optical 2D but also options for 3D measurement tasks like determining roughness or other typical image processing applications. This paper presents the challenges for the implementation of an optical sensor system in the machining area of milling centers. Primarily a suitable location in the machining area must be found and an associated strategy has to be developed. The integrated optical image sensor system should be protect against impurity and does not derogate in his functionality. For the full integration as a quality control loop, the results must feed into the machine control. Thus a further interface between measurement program and a machine control is necessary. Another major field of research exists in the optical components. Especially the illumination, image sensor and lens are selected and adaptable for the measurement tasks after the considerations of the above-mentioned basic requirements. The presented research provides a suitable solution to make the CNC manufacture more efficient. Quality controls of the work piece can be executed within the CNC process and potential post processing can be performed simultaneously.

  10. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    PubMed Central

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-01-01

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements. PMID:24854060

  11. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Quick, William H. (Inventor); August, Rudolf R. (Inventor); James, Kenneth A. (Inventor); Strahan, Jr., Virgil H. (Inventor); Nichols, Donald K. (Inventor)

    1980-01-01

    An inexpensive, lightweight fiber optic micro-sensor that is suitable for applications which may require remote temperature sensing. The disclosed temperature sensor includes a phosphor material that, after receiving incident light stimulation, is adapted to emit phosphorescent radiation output signals, the amplitude decay rate and wavelength of which are functions of the sensed temperature.

  12. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure

    PubMed Central

    Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng

    2016-01-01

    A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process. PMID:27483267

  13. Diffraction-based optical sensor detection system for capture-restricted environments

    NASA Astrophysics Data System (ADS)

    Khandekar, Rahul M.; Nikulin, Vladimir V.

    2008-04-01

    The use of digital cameras and camcorders in prohibited areas presents a growing problem. Piracy in the movie theaters results in huge revenue loss to the motion picture industry every year, but still image and video capture may present even a bigger threat if performed in high-security locations. While several attempts are being made to address this issue, an effective solution is yet to be found. We propose to approach this problem using a very commonly observed optical phenomenon. Cameras and camcorders use CCD and CMOS sensors, which include a number of photosensitive elements/pixels arranged in a certain fashion. Those are photosites in CCD sensors and semiconductor elements in CMOS sensors. They are known to reflect a small fraction of incident light, but could also act as a diffraction grating, resulting in the optical response that could be utilized to identify the presence of such a sensor. A laser-based detection system is proposed that accounts for the elements in the optical train of the camera, as well as the eye-safety of the people who could be exposed to optical beam radiation. This paper presents preliminary experimental data, as well as the proof-of-concept simulation results.

  14. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  15. Development and Testing of a Post-Installable Deepwater Monitoring System Using Fiber-Optic Sensors

    NASA Technical Reports Server (NTRS)

    Seaman, Calvin H.; Brower, David V.; Le, Suy Q.; Tang, Henry H.

    2015-01-01

    This paper addresses the design and development of a fiber-optic monitoring system that can be deployed on existing deepwater risers and flowlines; and provides a summary of test article fabrication and the subsequent laboratory testing performed at the National Aeronautics and Space Administration-Johnson Space Center (NASA-JSC). A major challenge of a post-installed instrumentation system is to ensure adequate coupling between the instruments and the riser or flowline of interest. This work investigates the sensor coupling for pipelines that are suspended in a water column (from topside platform to seabed) using a fiber-optic sensor clamp and subsea bonding adhesive. The study involved the design, fabrication, and test of several prototype clamps that contained fiber-optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the casting of polyurethane clamp test articles to accommodate 4-inch and 8-inch diameter pipes. The prototype clamps were installed with a subsea adhesive in a "wet" environment and then tested in the NASA Structures Test Laboratory (STL). The tension, compression, and bending test data showed that the prototype sensor clamps achieved good structural coupling, and could provide high quality strain measurement for active monitoring.

  16. Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures

    NASA Astrophysics Data System (ADS)

    Bravo Acha, M.; DeMiguel-Soto, V.; Ortigosa, A.; Lopez-Amo, M.

    2014-05-01

    A novel interrogation system for multiple fiber optic sensor technologies and based on a fully-switchable multiwavelength fiber laser (MWFL) is proposed and experimentally demonstrated. The MWFL can generate any wavelength combination with a minimum emission line distance up to 50 GHz fitting the ITU grid specifications. On the other hand, as proof of concept sensor network, two different networks were multiplexed by using a remote powered by light fiber optic switch. They are based on two different sensor technologies. One of them based on PCF intensity sensors and multiplexed by using an 8 port WDM and the other one based on wavelength temperature/strain FBG sensors.

  17. Optical Communications and Sensor Demonstration

    NASA Technical Reports Server (NTRS)

    Martinez, Andres; Petro, Andrew

    2015-01-01

    The Optical Communications and Sensor Demonstration (OCSD) project addresses two cross-cutting capabilities of value to many future small spacecraft missions: high-speed optical transmission of data and small spacecraft proximity operations. Optical data rates demonstrated by OCSD are expected to be 200 megabits persecond (Mbs) or higher, a factor of 100 increase over current high-end CubeSat communications systems. The proximity sensors developed for this mission enable relative position measurement between two small satellites - a capability not previously demonstrated.

  18. Optical displacement sensor

    DOEpatents

    Carr, Dustin W.

    2008-04-08

    An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

  19. Concept of electro-optical sensor module for sniper detection system

    NASA Astrophysics Data System (ADS)

    Trzaskawka, Piotr; Dulski, Rafal; Kastek, Mariusz

    2010-10-01

    The paper presents an initial concept of the electro-optical sensor unit for sniper detection purposes. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. Being a part of a larger system it should contribute to greater overall system efficiency and lower false alarm rate thanks to data and sensor fusion techniques. Additionally, it is expected to provide some pre-shot detection capabilities. Generally acoustic (or radar) systems used for shot detection offer only "after-the-shot" information and they cannot prevent enemy attack, which in case of a skilled sniper opponent usually means trouble. The passive imaging sensors presented in this paper, together with active systems detecting pointed optics, are capable of detecting specific shooter signatures or at least the presence of suspected objects in the vicinity. The proposed sensor unit use thermal camera as a primary sniper and shot detection tool. The basic camera parameters such as focal plane array size and type, focal length and aperture were chosen on the basis of assumed tactical characteristics of the system (mainly detection range) and current technology level. In order to provide costeffective solution the commercially available daylight camera modules and infrared focal plane arrays were tested, including fast cooled infrared array modules capable of 1000 fps image acquisition rate. The daylight camera operates as a support, providing corresponding visual image, easier to comprehend for a human operator. The initial assumptions concerning sensor operation were verified during laboratory and field test and some example shot recording sequences are presented.

  20. Optical-fibre sensor system for monitoring the performance of the gas propellant centrifuge separator of a spacecraft

    NASA Astrophysics Data System (ADS)

    Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor

    2004-08-01

    An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.

  1. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    SciTech Connect

    Paulsson, Bjorn N.P.; Thornburg, Jon A; He, Ruiqing

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The current state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown

  2. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  3. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Astrophysics Data System (ADS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-11-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  4. Analysis of the design in landslide monitoring system based on fiber optic sensor network

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Wu, Guoqing; Liu, Feng

    2008-12-01

    This paper holds landslide monitoring system based on fiber optic sensors network. When structural distortion is occurred in landslide area, it will affect the change of fiber bragg grating space, and brings on the offset of the fiber bragg wavelength.The information of the destroyed point is obtained with the demodulated system.It applies annular distribution to mountain body, and establishs homologous fiber optic sensor network which collect all the information to the home site. This technique can provide the managers, policy-makers and experts the real time change of the parameters of the disaster, and the feedback can be given to monitoring station through the monitoring network. Therefore, it will be an important technical support for real time dynamic monitoring.

  5. Miniaturized optical wavelength sensors

    NASA Astrophysics Data System (ADS)

    Kung, Helen Ling-Ning

    Recently semiconductor processing technology has been applied to the miniaturization of optical wavelength sensors. Compact sensors enable new applications such as integrated diode-laser wavelength monitors and frequency lockers, portable chemical and biological detection, and portable and adaptive hyperspectral imaging arrays. Small sensing systems have trade-offs between resolution, operating range, throughput, multiplexing and complexity. We have developed a new wavelength sensing architecture that balances these parameters for applications involving hyperspectral imaging spectrometer arrays. In this thesis we discuss and demonstrate two new wavelength-sensing architectures whose single-pixel designs can easily be extended into spectrometer arrays. The first class of devices is based on sampling a standing wave. These devices are based on measuring the wavelength-dependent period of optical standing waves formed by the interference of forward and reflected waves at a mirror. We fabricated two different devices based on this principle. The first device is a wavelength monitor, which measures the wavelength and power of a monochromatic source. The second device is a spectrometer that can also act as a selective spectral coherence sensor. The spectrometer contains a large displacement piston-motion MEMS mirror and a thin GaAs photodiode flip-chip bonded to a quartz substrate. The performance of this spectrometer is similar to that of a Michelson in resolution, operating range, throughput and multiplexing but with the added advantages of fewer components and one-dimensional architecture. The second class of devices is based on the Talbot self-imaging effect. The Talbot effect occurs when a periodic object is illuminated with a spatially coherent wave. Periodically spaced self-images are formed behind the object. The spacing of the self-images is proportional to wavelength of the incident light. We discuss and demonstrate how this effect can be used for spectroscopy

  6. High-speed SPGD wavefront controller for an adaptive optics system without wavefront sensor

    NASA Astrophysics Data System (ADS)

    Wang, Caixia; Li, Xinyang; Li, Mei; Ye, Jongwei; Chen, Bo

    2010-10-01

    A non-conventional adaptive optics system based on direct system performance metric optimization is illustrated. The system does not require wave-front sensor which is difficult to work under the poor condition such as beam cleanup for the anomalous light beam. The system comprises a high speed wavefront controller based on Stochastic Parallel Gradient Descent (SPGD) Algorithm, a deformable mirror, a tip/tilt mirror and a far-field system performance metric sensor. The architecture of the wave-front controller is based on a combination of Field Programmable Gate Array (FPGA) and floating-point Digital Signal Processor (DSP). The Zernike coefficient information is applied to improve the iteration speed. The experimental results show that the beam cleanup system based on SPGD keep a high iteration speed. The controller can compensate the wavefront aberration and tilt excursion effectively.

  7. Sensor-less aberration correction in optical imaging systems using blind optimization

    NASA Astrophysics Data System (ADS)

    Avanaki, Mohammad R. N.; Mazraeh Khoshki, R.; Hojjatoleslami, S. A.; Podoleanu, A. Gh.

    2012-02-01

    The imperfection of optical devices in an optical imaging system deteriorates wavefront which results in aberration. This reduces the optical signal to noise ratio of the imaging system and the quality of the produced images. Adaptive optics composed of wavefront sensor (WFS) and deformable mirror (DM) is a straightforward solution for this problem. The need for a WFS in an AO system, raises the cost of the overall system, and there are also instances when they cannot be used, such as in microscopy. Moreover stray reflections from lens surfaces affect the performance of the WFS. In this paper, we describe a blind optimization technique with an in-expensive electronics without using the WFS to correct the aberration in order to achieve better quality images. The correction system includes an electromagnetic DM from Imagine, Mirao52d, with 52 actuators which are controlled by particle swarm optimization (PSO) algorithm. The results of the application of simulated annealing (SA), and genetic algorithm (GA) techniques that we have implemented in the sensor-less AO are used for comparison.

  8. A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring

    PubMed Central

    Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir; Nazeran, Homer; Siska, Petr

    2017-01-01

    In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG). The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS). The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person’s chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field. PMID:28075341

  9. A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring.

    PubMed

    Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir; Nazeran, Homer; Siska, Petr

    2017-01-08

    In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG). The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS). The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person's chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field.

  10. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    PubMed

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-29

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems.

  11. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop

    PubMed Central

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  12. Smart Sensors Based on Integrated Optics and Microelectromechanical Systems

    DTIC Science & Technology

    2007-11-02

    systems (MEMS), and digital signal processing (DSP). The synergistic integration of these three technologies provides the advantages of high...the digital battlefield. MEMS technology enables the fabrication of three dimensional , miniature (micron-sized features), and environmentally...MEMS Flexure Beam ………………………………………. 6 2.3 A Novel Digital Demodulation Algorithm ……………………………………………….. 11 2.3.1 Dynamic Range of

  13. Strain gauge ambiguity sensor for segmented mirror active optical system

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.; Howe, T. L. (Inventor)

    1974-01-01

    A system is described to measure alignment between interfacing edges of mirror segments positioned to form a segmented mirror surface. It serves as a gauge having a bending beam with four piezoresistive elements coupled across the interfaces of the edges of adjacent mirror segments. The bending beam has a first position corresponding to alignment of the edges of adjacent mirror segments, and it is bendable from the first position in a direction and to a degree dependent upon the relative misalignment between the edges of adjacent mirror segments to correspondingly vary the resistance of the strain guage. A source of power and an amplifier are connected in circuit with the strain gauge whereby the output of the amplifier varies according to the misalignment of the edges of adjacent mirror segments.

  14. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  15. Fiber optic sensors for smart taxiways

    NASA Astrophysics Data System (ADS)

    Janzen, Douglas D.; Fuerstenau, Norbert; Goetze, Wolfgang

    1995-09-01

    Fiber-optic sensors could offer advantages in the field of airport ground traffic monitoring: immunity to electromagnetic interference, installation without costly and time consuming airfield closures, and low loss, low noise optical connection between sensors and signal processing equipment. This paper describes fiber-optic sensors developed for airport taxiway monitoring and the first steps toward their installation in an experimental surface movement guidance and control system at the Braunschweig airport. Initial results obtained with fiber- optic light barriers and vibration sensors are reported. The feasibility of employing interferometric strain gauges for this application will be discussed based on sensor characteristics obtained through measurements of strain in an aircraft structure in flight.

  16. Fiber optic sensor system for detecting movement or position of a rotating wheel bearing

    DOEpatents

    Veeser, Lynn R.; Rodriguez, Patrick J.; Forman, Peter R.; Monahan, Russell E.; Adler, Jonathan M.

    1997-01-01

    An improved fiber optic sensor system and integrated sensor bearing assembly for detecting movement or position of a rotating wheel bearing having a multi-pole tone ring which produces an alternating magnetic field indicative of movement and position of the rotating member. A magneto-optical material, such as a bismuth garnet iron (B.I.G.) crystal, having discrete magnetic domains is positioned in the vicinity of the tone ring so that the domains align themselves to the magnetic field generated by the tone ring. A single fiber optic cable, preferably single mode fiber, carries light generated by a source of light to the B.I.G. crystal. The light passes through the B.I.G. crystal and is refracted at domain boundaries in the crystal. The intensity of the refracted light is indicative of the amount of alignment of the domains and therefore the strength of the magnetic field. The refracted light is carried by the fiber optic cable to an optic receiver where the intensity is measured and an electrical signal is generated and sent to a controller indicating the frequency of the changes in light intensity and therefore the rotational speed of the rotating wheel bearing.

  17. Optical wheel-rotation sensor

    SciTech Connect

    Veeser, L.; Rodriguez, P.; Forman, P.; Deeter, M.

    1994-05-01

    We describe a fiber-optic rotation sensor based on diffraction of light in a magneto-optic crystal (BIG). Exploitation of this effect permits the construction of a sensor requiring no polarization elements or lenses.

  18. Optical Pointing Sensor

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.; Metz, Brandon C.

    2010-01-01

    The optical pointing sensor provides a means of directly measuring the relative positions of JPL s Formation Control Testbed (FCT) vehicles without communication. This innovation is a steerable infrared (IR) rangefinder that gives measurements in terms of range and bearing to a passive retroreflector.

  19. Optical rate sensor algorithms

    NASA Technical Reports Server (NTRS)

    Uhde-Lacovara, Jo A.

    1989-01-01

    Optical sensors, in particular Charge Coupled Device (CCD) arrays, will be used on Space Station to track stars in order to provide inertial attitude reference. Algorithms are presented to derive attitude rate from the optical sensors. The first algorithm is a recursive differentiator. A variance reduction factor (VRF) of 0.0228 was achieved with a rise time of 10 samples. A VRF of 0.2522 gives a rise time of 4 samples. The second algorithm is based on the direct manipulation of the pixel intensity outputs of the sensor. In 1-dimensional simulations, the derived rate was with 0.07 percent of the actual rate in the presence of additive Gaussian noise with a signal to noise ratio of 60 dB.

  20. Monitoring Composite Material Pressure Vessels with a Fiber-Optic/Microelectronic Sensor System

    NASA Technical Reports Server (NTRS)

    Klimcak, C.; Jaduszliwer, B.

    1995-01-01

    We discuss the concept of an integrated, fiber-optic/microelectronic distributed sensor system that can monitor composite material pressure vessels for Air Force space systems to provide assessments of the overall health and integrity of the vessel throughout its entire operating history from birth to end of life. The fiber optic component would include either a semiconductor light emitting diode or diode laser and a multiplexed fiber optic sensing network incorporating Bragg grating sensors capable of detecting internal temperature and strain. The microelectronic components include a power source, a pulsed laser driver, time domain data acquisition hardware, a microprocessor, a data storage device, and a communication interface. The sensing system would be incorporated within the composite during its manufacture. The microelectronic data acquisition and logging system would record the environmental conditions to which the vessel has been subjected to during its storage and transit, e.g., the history of thermal excursions, pressure loading data, the occurrence of mechanical impacts, the presence of changing internal strain due to aging, delamination, material decomposition, etc. Data would be maintained din non-volatile memory for subsequent readout through a microcomputer interface.

  1. An analysis of the optimal size of image sensors in free space optic systems

    NASA Astrophysics Data System (ADS)

    Li, Lixing; Huang, Yongmei; An, Tao

    2014-09-01

    There are several advantages offered by free space optic systems compared with conventional radio frequency systems. As a consequence of shorter wavelengths, the high directivity of the transmitted beam makes acquisition and pointing difficult, thus an imaging system is set up for acquisition and pointing. Optical wave front distortions induced by atmospheric turbulence result in a spreading of the beam leads to image jitter take place in the focal plane, where the image sensor is. The behavior of the image jitter can be described in a statistical manner. Consequently, the size, which is a very important parameter to an image sensor, can be determined by the statistical quantity of image jitter, which customarily is the root mean square (RMS) image displacement. The quantity of the RMS image displacement is as a function of several measurable parameters. In this paper, variations of the estimated RMS image displacement were calculate and discussed in detail. The calculation showed good agreement with the experimental results conducted with a propagation path length of 96 km. The optimal sizes of image sensors that are used for some specific circumstances were analyzed and proposed based on the RMS image displacement.

  2. Integrated optical sensor

    DOEpatents

    Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.

    1994-01-01

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  3. Integrated optical sensor

    DOEpatents

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  4. Architecture For Fiber-Optic Sensors And Actuators In Aircraft Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Glomb, Walter L.

    1990-02-01

    This paper describes a design for fiber-optic sensing and control in advanced aircraft Electronic Engine Control (EEC). The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pairs of optical fibers to common electro-optical interfaces. The architecture contains interfaces to seven sensor groups. Nine distinct fiber-optic sensor types were found to provide the sensing functions. Analysis revealed no strong discriminator (except reliability of laser diodes and remote electronics) on which to base a selection of preferred common interface type. A hardware test program is recommended to assess the relative maturity of the technologies and to determine real performance in the engine environment.

  5. Architecture for fiber-optic sensors and actuators in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Glomb, W. L., Jr.

    1990-01-01

    This paper describes a design for fiber-optic sensing and control in advanced aircraft Electronic Engine Control (EEC). The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pairs of optical fibers to common electro-optical interfaces. The architecture contains interfaces to seven sensor groups. Nine distinct fiber-optic sensor types were found to provide the sensing functions. Analysis revealed no strong discriminator (except reliability of laser diodes and remote electronics) on which to base a selection of preferred common interface type. A hardware test program is recommended to assess the relative maturity of the technologies and to determine real performance in the engine environment.

  6. An irradiation system for photodynamic therapy with a fiber-optic sensor for measuring tissue oxygen

    NASA Astrophysics Data System (ADS)

    Quintanar, L.; Fabila, D.; Stolik, S.; de la Rosa, J. M.

    2013-11-01

    Photodynamic Therapy is a well known treatment based on the interaction of light of specific wavelength with a photosensitizing drug. In the presence of oxygen molecules, the illumination of the photosensitizer can activate the production of reactive oxygen species, which leads to the death of target cells within the treated tissue. In order to obtain the best therapy response, the tissue oxygen concentration should be measured to adjust the therapy parameters before and during the treatment. In this work, an irradiation system for 5-Aminolevulinic Acid Photodynamic Therapy is presented. It allows the application of visible light radiation of 630 nm using as a light source a high-brightness light emitting diode with an optical-power automatic control considering a light depth-distribution model. A module to measure the tissue oxygen saturation has been implemented into the system. It is based on two light emitting diodes of 660 nm and 940 nm as light sources, a photodiode as a detector and a new handheld fiber optic reflectance pulse oximetry sensor for estimating the blood oxygen saturation within the tissue. The pulse oximetry sensor was modeled through multilayered Monte Carlo simulations to study the behavior of the sensor with changes in skin thickness and melanin content.

  7. Adaptive optical zoom sensor.

    SciTech Connect

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  8. Barium boron aluminum silicate glass system for solid state optical gas sensors

    NASA Astrophysics Data System (ADS)

    Da Silva, M. J.; Karczewski, J.; Jasinski, P.; Chrzan, A.; Kalinowski, P.; Szymczewska, D.; Jasinski, G.

    2016-11-01

    Recent increasing demand for new eco-friendly materials and for low cost fabrication process for use in optical sensors field, raise concern about alternative materials for this application. We have designed two glass-ceramics compositions from the quaternary ROAl2O3- SiO2-B2O3(R=Ba) alkali-earth aluminum silicate system, labeled B72 and B69, with high refractive index (>1.6), large values of Abbe number (94.0 and 53.0, respectively), and free of lead and arsenic. We present an analysis and discussion of experimental optical properties, thermal and thermo-chemical stability along with important properties such as transition temperature (Tg), onset of crystallization (Tx) as well transport properties as ionic conductivity behavior in the quaternary glass-ceramic system containing boron for use as optical sensors. Complex Impedance Spectra (Bode Plot) and Potentiodynamic Polarization curves (Tafel plots) measurements were carried out in the temperature range of 600 to 850°C. The most probable conductivity mechanism is a thermally activated process of mobile ions overcoming a potential barrier (EA), according to the Arrhenius regime. Here we report that charge transfer is caused by the flux of electrons, in the region of elevated temperatures (>700°C), and is affected by immiscibility of crystals, nucleation and growth type, that causes phase separation. We found conductivity (σ) values from 10-9 to 10-5 S/cm at temperatures between 700 and 850°C. Our results highlight a need for research on ion mobility in the glassy network above the transition range, and the effect cause by metastable immiscibility in the alkaline-earth glasses are exposed. The two glass compositions B72 and B69 can be tailored by proper use as glassy optical sensor.

  9. Triboluminescent Fiber-Optic Sensors Measure Stresses

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.

    1994-01-01

    Triboluminescence exploited in fiber-optic sensor system for measuring changes in pressures, strains, vibrations, and acoustic emissions, in structural members. Sensors embedded in members for in situ monitoring of condition of structure. System passive in sense no source of radiation required to interrogate optical fiber. Technique has potential for wide range of applications in which detection and measurement of structural stress required.

  10. Three-gas detection system with IR optical sensor based on NDIR technology

    NASA Astrophysics Data System (ADS)

    Tan, Qiulin; Tang, Licheng; Yang, Mingliang; Xue, Chenyang; Zhang, Wendong; Liu, Jun; Xiong, Jijun

    2015-11-01

    In this paper, a three-gas detection system with a environmental parameter compensation method is proposed based on Non-dispersive infra-red (NDIR) technique, which can be applied to detect multi-gas (methane, carbon dioxide and carbon monoxide). In this system, an IR source and four single-channel pyroelectric sensors are integrated in the miniature optical gas chamber successfully. Inner wall of the chamber coated with Au film is designed as paraboloids. The infrared light is reflected twice before reaching to detectors, thus increasing optical path. Besides, a compensation method is presented to overcome the influence in variation of environment (ambient temperature, humidity and pressure), thus leading to improve the accuracy in gas detection. Experimental results demonstrated that detection ranges are 0-50,000 ppm for CH4, 0-44,500 ppm for CO, 0-48,000 ppm for CO2 and the accuracy is ±0.05%.

  11. Optical fiber networks for remote fiber optic sensors.

    PubMed

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered.

  12. Optical Fiber Networks for Remote Fiber Optic Sensors

    PubMed Central

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011

  13. Optical fiber synaptic sensor

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J. H.; Kazantsev, V. B.

    2011-06-01

    Understanding neuron connections is a great challenge, which is needed to solve many important problems in neurobiology and neuroengineering for recreation of brain functions and efficient biorobotics. In particular, a design of an optical synapse capable to communicate with neuron spike sequences would be crucial to improve the functionality of neuromimmetic networks. In this work we propose an optical synaptic sensor based on an erbium-doped fiber laser driven by a FitzHung-Nagumo electronic neuron, to connect with another electronic neuron. Two possible optical synaptic configurations are analyzed for optoelectronic coupling between neurons: laser cavity loss modulation and pump laser modulation. The control parameters of the proposed optical synapse provide additional degrees of flexibility to the neuron connection traditionally controlled only by coupling strengths in artificial networks.

  14. Small arms mini-fire control system: fiber-optic barrel deflection sensor

    SciTech Connect

    Rajic, Slobodan; Datskos, Panos G

    2012-01-01

    Traditionally the methods to increase firearms accuracy, particularly at distance, have concentrated on barrel isolation (free floating) and substantial barrel wall thickening to gain rigidity. This barrel stiffening technique did not completely eliminate barrel movement but the problem was significantly reduced to allow a noticeable accuracy enhancement. This process, although highly successful, came at a very high weight penalty. Obviously the goal would be to lighten the barrel (firearm), yet achieve even greater accuracy. Thus, if lightweight barrels could ultimately be compensated for both their static and dynamic mechanical perturbations, the result would be very accurate, yet significantly lighter weight, weapons. We discuss our development of a barrel reference sensor system that is designed to accomplish this ambitious goal. Our optical fiber-based sensor monitors the barrel muzzle position and autonomously compensates for any induced perturbations. The reticle is electronically adjusted in position to compensate for the induced barrel deviation in real time.

  15. Small arms mini-fire control system: fiber-optic barrel deflection sensor

    NASA Astrophysics Data System (ADS)

    Rajic, S.; Datskos, P.; Lawrence, W.; Marlar, T.; Quinton, B.

    2012-06-01

    Traditionally the methods to increase firearms accuracy, particularly at distance, have concentrated on barrel isolation (free floating) and substantial barrel wall thickening to gain rigidity. This barrel stiffening technique did not completely eliminate barrel movement but the problem was significantly reduced to allow a noticeable accuracy enhancement. This process, although highly successful, came at a very high weight penalty. Obviously the goal would be to lighten the barrel (firearm), yet achieve even greater accuracy. Thus, if lightweight barrels could ultimately be compensated for both their static and dynamic mechanical perturbations, the result would be very accurate, yet significantly lighter weight, weapons. We discuss our development of a barrel reference sensor system that is designed to accomplish this ambitious goal. Our optical fiber-based sensor monitors the barrel muzzle position and autonomously compensates for any induced perturbations. The reticle is electronically adjusted in position to compensate for the induced barrel deviation in real time.

  16. Applications of Optical Sensors to the Detection of Light Scattered from Gelling Systems

    NASA Astrophysics Data System (ADS)

    Bulone, Donatella; Manno, Mauro; San Biagio, Pier Luigi; Martorana, Vincenzo

    Visible light, scattered within an angle of few degrees, (Small Angle Light Scattering, SALS) yields information on the spatial correlations and dynamical properties on the scale of the micrometers. In this way a quick and non-invasive characterization of a variety of samples is feasible. Lately the SALS instruments have been built around multielement optical sensors (CCD, CMOS), allowing the simultaneous measurement of the complete structure factor even during fast kinetics. An assessment of some sensor matrices of different technology will be presented. The omolecular assemblies produced by polysaccharides or proteins can be functional or dysfunctional, their properties being either desirable or detrimental. Anyhow, their morphology often depends, in a very delicate way, on the presence of cosolutes, on the thermal history, on the biopolymer concentration etc. We present some applications of low angle dynamic and static light scattering to the study of gelling systems (agarose, pectin, insulin).

  17. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  18. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    PubMed Central

    Kampmann, Peter; Kirchner, Frank

    2014-01-01

    With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach. PMID:24743158

  19. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)

    2004-01-01

    A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.

  20. Fiber Optic Sensor for Acoustic Detection of Partial Discharges in Oil-Paper Insulated Electrical Systems

    PubMed Central

    Posada-Roman, Julio; Garcia-Souto, Jose A.; Rubio-Serrano, Jesus

    2012-01-01

    A fiber optic interferometric sensor with an intrinsic transducer along a length of the fiber is presented for ultrasound measurements of the acoustic emission from partial discharges inside oil-filled power apparatus. The sensor is designed for high sensitivity measurements in a harsh electromagnetic field environment, with wide temperature changes and immersion in oil. It allows enough sensitivity for the application, for which the acoustic pressure is in the range of units of Pa at a frequency of 150 kHz. In addition, the accessibility to the sensing region is guaranteed by immune fiber-optic cables and the optical phase sensor output. The sensor design is a compact and rugged coil of fiber. In addition to a complete calibration, the in-situ results show that two types of partial discharges are measured through their acoustic emissions with the sensor immersed in oil. PMID:22666058

  1. Algorithm for a novel fiber-optic weigh-in-motion sensor system

    SciTech Connect

    Tobin, K.W. Jr.; Muhs, J.D.

    1991-08-01

    Over the past decade, the demand from both government and private industry for small, lightweight, vehicle weigh-in-motion (WIM) systems has grown substantially. During the 1980s several techniques for weighing vehicles in motion were developed that include piezoelectric cables, capacitive mats, and hydraulic and bending-plate load cells. These different systems have advantages and disadvantages that trade off between accuracy, physical size and system complexity. The smaller portable systems demonstrate medium to poor accuracy and repeatability while the larger more accurate systems are nonportable. A small, lightweight, and portable WIM system based on a fiber-optic pressure transducer has been developed by Oak Ridge National Laboratory (ORNL) to meet the demands of government and industry. The algorithm for extracting vehicle weight from the time-dependent sensor response is developed and presented in this report, along with data collected by the system for several classes of vehicles. These results show that the ORNL fiber-optic WIM system is a viable alternative to other commercial systems that are presently available. 5 refs., 5 figs.

  2. High speed optical wireless data transmission system for particle sensors in high energy physics

    NASA Astrophysics Data System (ADS)

    Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.

    2015-08-01

    High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.

  3. Distributed sensor for water and pH measurements using fiber optics and swellable polymeric systems

    NASA Astrophysics Data System (ADS)

    Michie, W. C.; Culshaw, B.; McKenzie, I.; Konstantakis, M.; Graham, N. B.; Moran, C.; Santos, F.; Bergqvist, E.; Carlstrom, B.

    1995-01-01

    We report on the design, construction and test of a generic form of sensor for making distributed measurements of a range of chemical parameters. The technique combines optical time-domain reflectometry with chemically sensitive water-swellable polymers (hydrogels). Initial experiments have concentrated on demonstrating a distributed water detector; however, gels have been developed that enable this sensor to be

  4. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing.

    PubMed

    Pang, Cheng; Bae, Hyungdae; Gupta, Ashwani; Bryden, Kenneth; Yu, Miao

    2013-09-23

    We present a micro-electro-mechanical systems (MEMS) based Fabry-Perot (FP) sensor along with an optical system-on-a-chip (SOC) interrogator for simultaneous pressure and temperature sensing. The sensor employs a simple structure with an air-backed silicon membrane cross-axially bonded to a 45° polished optical fiber. This structure renders two cascaded FP cavities, enabling simultaneous pressure and temperature sensing in close proximity along the optical axis. The optical SOC consists of a broadband source, a MEMS FP tunable filter, a photodetector, and the supporting circuitry, serving as a miniature spectrometer for retrieving the two FP cavity lengths. Within the measured pressure and temperature ranges, experimental results demonstrate that the sensor exhibits a good linear response to external pressure and temperature changes.

  5. Optical Sensor Technology Development and Deployment

    SciTech Connect

    B. G. Parker

    2005-01-24

    The objectives of this ESP (Enhanced Surveillance) project are to evaluate sensor performance for future aging studies of materials, components and weapon systems. The goal of this project is to provide analysis capability to experimentally identify and characterize the aging mechanisms and kinetics of Core Stack Assembly (CSA) materials. The work on fiber optic light sources, hermetic sealing of fiber optics, fiber optic hydrogen sensors, and detection systems will be discussed.

  6. Toward Optical Sensors: Review and Applications

    NASA Astrophysics Data System (ADS)

    Sabri, Naseer; Aljunid, S. A.; Salim, M. S.; Ahmad, R. B.; Kamaruddin, R.

    2013-04-01

    Recent advances in fiber optics (FOs) and the numerous advantages of light over electronic systems have boosted the utility and demand for optical sensors in various military, industry and social fields. Environmental and atmospheric monitoring, earth and space sciences, industrial chemical processing and biotechnology, law enforcement, digital imaging, scanning, and printing are exemplars of them. The ubiquity of photonic technologies could drive down prices which reduced the cost of optical fibers and lasers. Fiber optic sensors (FOSs) offer a wide spectrum of advantages over traditional sensing systems, such as small size and longer lifetime. Immunity to electromagnetic interference, amenability to multiplexing, and high sensitivity make FOs the sensor technology of choice in several fields, including the healthcare and aerospace sectors. FOSs show reliable and rigid sensing tasks over conventional electrical and electronic sensors. This paper presents an executive review of optical fiber sensors and the most beneficial applications.

  7. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    SciTech Connect

    Pickrell, Gary; Scott, Brian

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  8. Optical fiber gas sensor development and application

    NASA Astrophysics Data System (ADS)

    Jin, W.; Ho, H. L.

    2008-12-01

    This paper reports recent development and application of optical fiber gas sensors using absorption spectroscopy, including open-path gas sensors using fiber coupled micro-optic cells and photonic bandgap (PBG) fibers. A fiber-optic sensor system capable of detecting dissolved fault gases in oil-insulated equipment in power industry is presented. The gases include methane (CH4), acetylene (C2H2) and ethylene (C2H4). In addition, the development of gas sensor using PBG fiber will be reported.

  9. Ultra-sensitive optical oxygen sensors for characterisation of nearly anoxic systems

    PubMed Central

    Lehner, Philipp; Staudinger, Christoph; Borisov, Sergey M.; Klimant, Ingo

    2014-01-01

    Oxygen quantification in trace amounts is essential in many fields of science and technology. Optical oxygen sensors proved invaluable tools for oxygen measurements in a broad concentration range but until now neither optical nor electrochemical oxygen sensors were able to quantify oxygen in the sub-nanomolar concentration range. Herein we present new optical oxygen sensing materials with unmatched sensitivity. They rely on the combination of ultra-long decaying (several hundred milliseconds lifetime) phosphorescent boron- and aluminium-chelates and highly oxygen-permeable and chemically stable perfluorinated polymers. The sensitivity of the new sensors is improved up to 20-fold compared to state-of-the-art analogues. The limits of detection are as low as 5 parts per billion, volume in gas phase under atmospheric pressure or 7 picomolar in solution. The sensors enable completely new applications for monitoring of oxygen in previously inaccessible concentration ranges. PMID:25042041

  10. Microfiber Optical Sensors: A Review

    PubMed Central

    Lou, Jingyi; Wang, Yipei; Tong, Limin

    2014-01-01

    With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors. PMID:24670720

  11. Optical humidity sensor

    DOEpatents

    Tarvin, Jeffrey A.

    1987-01-01

    An optical dielectric humidity sensor which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors.

  12. Optical humidity sensor

    DOEpatents

    Tarvin, J.A.

    1987-02-10

    An optical dielectric humidity sensor is disclosed which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors. 2 figs.

  13. An Optical Actuation System and Curvature Sensor for a MR-compatible Active Needle

    PubMed Central

    Ryu, Seok Chang; Quek, Zhan Fan; Renaud, Pierre; Black, Richard J.; Daniel, Bruce L.; Cutkosky, Mark R.

    2015-01-01

    A side optical actuation method is presented for a slender MR-compatible active needle. The needle includes an active region with a shape memory alloy (SMA) wire actuator, where the wire generates a contraction force when optically heated by a laser delivered though optical fibers, producing needle tip bending. A prototype, with multiple side heating spots, demonstrates twice as fast an initial response compared to fiber tip heating when 0.8 W of optical power is applied. A single-ended optical sensor with a gold reflector is also presented to measure the curvature as a function of optical transmission loss. Preliminary tests with the sensor prototype demonstrate approximately linear response and a repeatable signal, independent of the bending history. PMID:26509099

  14. Shack-Hartmann sensor based optical quality testing of whole slide imaging systems for digital pathology

    NASA Astrophysics Data System (ADS)

    Shakeri, S. M.; Hulsken, Bas; van Vliet, Lucas J.; Stallinga, Sjoerd

    2015-03-01

    Whole Slide Imaging (WSI) systems are used in the emerging field of digital pathology for capturing high-resolution images of tissue slides at high throughput. We present a technique to measure the optical aberrations of WSI systems using a Shack-Hartmann wavefront sensor as a function of field position. The resulting full-field aberration maps for the lowest order astigmatism and coma are analyzed using nodal aberration theory. According to this theory two coefficients describe the astigmatism and coma inherent to the optical design and another six coefficients are needed to describe the cumulative effects of all possible misalignments on astigmatism and coma. The nodal aberration theory appears to fit well to the experimental data. We have measured and analyzed the full-field aberration maps for two different objective lens-tube lens assemblies and found that only the optical design related astigmatism coefficient differed substantially between the two cases, but in agreement with expectations. We have also studied full-field aberration maps for intentional decenter and tilt and found that these affect the misalignment coefficient for constant coma (decenter) and the misalignment coefficient for linear astigmatism (tilt), while keeping all other nodal aberration theory coefficients constant.

  15. Fiber optical sensors for aircraft applications

    NASA Astrophysics Data System (ADS)

    Pechstedt, Ralf D.

    2014-09-01

    In this paper selected fiber optical point sensors that are of potential interest for deployment in aircraft are discussed. The operating principles together with recent measurement results are described. Examples include a high-temperature combined pressure and temperature sensor for engine health, hydraulics and landing gear monitoring, an ultra-high sensitive pressure sensor for oil, pneumatic and fluid aero systems applications and a combined acceleration and temperature sensor for condition monitoring of rotating components.

  16. Optical fiber sensors for life support applications

    NASA Astrophysics Data System (ADS)

    Lieberman, R. A.; Schmidlin, E. M.; Ferrell, D. J.; Syracuse, S. J.

    1992-07-01

    Preliminary experimental results on systems designed to demonstrate sensor operation in regenerative food production and crew air supply applications are presented. The systems use conventional fibers and sources in conjunction with custom wavelength division multiplexers in their optical signal processing sections and nonstandard porous optical fibers in the optical sensing elements. It is considered to be possible to create practical sensors for life-support system applications, and particularly, in regenerative food production environments, based on based on reversible sensors for oxygen, carbon monoxide, and humidity.

  17. Optical fiber sensors for life support applications

    NASA Technical Reports Server (NTRS)

    Lieberman, R. A.; Schmidlin, E. M.; Ferrell, D. J.; Syracuse, S. J.

    1992-01-01

    Preliminary experimental results on systems designed to demonstrate sensor operation in regenerative food production and crew air supply applications are presented. The systems use conventional fibers and sources in conjunction with custom wavelength division multiplexers in their optical signal processing sections and nonstandard porous optical fibers in the optical sensing elements. It is considered to be possible to create practical sensors for life-support system applications, and particularly, in regenerative food production environments, based on based on reversible sensors for oxygen, carbon monoxide, and humidity.

  18. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.

    2002-01-01

    Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.

  19. Monitoring system for the displacement of the moveable end of a bridge using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Park, Ki-Tae

    2008-12-01

    The displacement of the moveable end bearing of a bridge is a very critical item that must be measured when evaluating the behavior of a bridge that might be affected by a falling deck or temperature variations, and the movement of the bearing shoe must be periodic monitored by maintenance personnel. But this type of monitoring method is inefficient since the maintenance personnel must perform the inspection in close proximity to the bridge substructure, which takes time and effort. So, for efficient maintenance, inspectors must be able to monitor the bearing shoe without proximity to substructure, which will necessitate the development of a reliable, movable end bearing monitoring system that is convenient for maintenance or monitoring personnel. However, with the existing system, the cabling is very complex and the noise affected by electromagnetic waves might occur. For this reason, this study was intended to develop the sensor system to monitor the displacement of the movable end bearing, using optical fiber sensor, which is durable and is not affected by electromagnetic waves. To that end, an optical fiber measuring device for monitoring the displacement of movable end bearing was developed, and a displacement-measuring algorithm, that uses measured data, was accordingly proposed. The monitoring system that was developed in the study is able to comprehensively collect the displacement data of the movable end bearing without the need to approach the substructure of the bridge by the maintenance personnel. Moreover, thanks to the high reliability of the data, it is expected to significantly enhance the work efficiency as well.

  20. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires highly accurate CO2 sensing technology with performance beyond that presently in use on the International Space Station extravehicular mobility unit (EMU). Further, that accuracy needs to be provided over the full operating pressure range of the suit (3 to 25 psia). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) sensor based on infrared absorption spectroscopy is being developed for this purpose by Vista Photonics, Inc. Version 1.0 prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The prototypes were upgraded with more sophisticated communications and faster response times to version 2.0 and delivered to JSC in July 2012. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with an field-programmable gate array microcontroller architecture. Based on the results of the iterative instrument development, further prototype development and testing of instruments were performed leveraging the lessons learned where feasible. The present development extends and upgrades the earlier hardware for the advanced PLSS 2.5 prototypes for testing at JSC. The prototypes provide significantly enhanced accuracy for water vapor measurement and eliminate wavelength drift affecting the earlier versions. Various improvements to the electronics and gas sampling are currently being advanced including the companion development of engineering development units that will ultimately be capable of radiation tolerance. The combination of low power electronics with the performance of a long wavelength

  1. Emerging technology in fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Dyott, Richard B.

    1991-03-01

    Some recent innovations in interferoinetric fiber optic sensors include special fibers new components and sensor systems. Many of the concepts have precedents in microwaves. 1. GENERAL PRINCIPLES The application of optical fibers to sensors is diffuse compared with their application to optical communications which is essentially focused on the single problem of how to get information from A to B. A fiber sensor is viable when it can do something not possible with better than more cheaply than any existing method. The probability of the emergence of a new sensor depends on the length of time that a need for the sensor and the possibility of meeting that need have co-existed regardless of whether the need or the possibility has appeared first. 2. TYPES OF SENSOR Fiber sensors can be divided into: a) Multimode fiber sensors which depend on amplitude effects b) Single mode (single path) fiber sensors which depend on phase effects. Since multimode fiber has existed for many decades the emergence of a new multimode sensor depends mostly on the discovery of a new need for such a sensor. On the other hand single mode/single path (i. e. polarization maintaining) fiber is relatively new and so is still being applied to existing needs. This is particularly so of recent innovations in fibers and components. SPIE Vol. 1396 Applications of Optical Engineering Proceedings of OE/Midwest ''90 / 709

  2. Development of a novel proton dosimetry system using an array of fiber-optic Cerenkov radiation sensors.

    PubMed

    Son, Jaeman; Kim, Meyoung; Shin, Dongho; Hwang, Uijung; Lee, Sebyeong; Lim, Youngkyung; Park, Jeonghoon; Park, Sung yong; Cho, Kwanho; Kim, Daeyong; Jang, Kyoung Won; Yoon, Myonggeun

    2015-12-01

    This study describes the development and evaluation of a new dosimetric system for proton therapy using an array of fiber-optic Cerenkov radiation sensors (AFCRS). The AFCRS was superior to a conventional, multi-layer ion chamber (MLIC) system in real-time data acquisition and cost effectiveness.

  3. "Reactive" optical sensor for Hg(2+) and its application in environmental aqueous media and biological systems.

    PubMed

    Chen, Zhi; Chen, Jiayun; Pan, Dong; Li, Hongwei; Yao, Yunhui; Lyu, Zu; Yang, Liting; Ma, Li-Jun

    2017-03-01

    A new rhodamine B-based "reactive" optical sensor (1) for Hg(2+) was synthesized. Sensor 1 shows a unique colorimetric and fluorescent "turn-on" selectivity to Hg(2+) over 14 other metal ions with a hypersensitivity (detection limits are 27.6 nM (5.5 ppb) and 6.9 nM (1.4 ppb), respectively) in neutral buffer solution. To test its applicability in the environment, sensor 1 was applied to quantify and visualize low levels of Hg(2+) in tap water and river water samples. The results indicate sensor 1 is a highly sensitive fluorescent sensor for Hg(2+) with a detection limit of 1.7 ppb in tap water and river water. Moreover, sensor 1 is a convenient visualizing sensor for low levels of Hg(2+) (0.1 ppm) in water environment (from colorless to light pink). In addition, sensor 1 shows good potential as a fluorescent visualizing sensor for Hg(2+) in fetal bovine serum and living 293T cells. The results indicate that sensor 1 shows good potential as a highly sensitive sensor for the detection of Hg(2+) in environmental and biological samples. Graphical Abstract A new rhodamine B-based "reactive" optical sensor (1) for Hg(2+) was synthesized. 1 shows a unique colorimetric and fluorescent "turn-on" selectivity to Hg(2+) over 14 other metal ions with a hypersensitivity in water environment. And it is a convenient visualizing probe for low levels of Hg(2+) in environment aqueous media, fetal bovine serum and living 293T cells.

  4. Interferometric Fiber Optic Sensors

    PubMed Central

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair. PMID:22736961

  5. Interferometric fiber optic sensors.

    PubMed

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  6. Silicon fiber optic sensors

    DOEpatents

    Pocha, Michael D.; Swierkowski, Steve P.; Wood, Billy E.

    2007-10-02

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  7. What must be the accuracy and target of optical sensor systems for patient monitoring?

    NASA Astrophysics Data System (ADS)

    Frank, Klaus H.; Kessler, Manfred D.

    2002-06-01

    Although the treatment in the intensive care unit has improved in recent years enabling greater surgical engagements and improving patients survival rate, no adequate monitoring is available in imminent severe pathological cases. Otherwise such kind of monitoring is necessary for early or prophylactic treatment in order to avoid or reduce the severity of the disease and protect the patient from sepsis or multiple organ failure. In these cases the common monitoring is limited, because clinical physiological and laboratory parameters indicate either the situation of macro-circulation or late disturbances of microcirculation, which arise previously on sub-cellular level. Optical sensor systems enable to reveal early variations in local capillary flow. The correlation between clinical parameters and changes in condition of oxygenation as a function of capillary flow disturbances is meaningful for the further treatment. The target should be to develop a predictive parameter, which is useful for detection and follow-up of changes in circulation.

  8. Monolithic fiber optic sensor assembly

    SciTech Connect

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  9. Improved Optical Fiber Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  10. Error Measurements in an Acousto-Optic Tunable Filter Fiber Bragg Grating Sensor System

    DTIC Science & Technology

    1994-05-01

    Acousto - Optic Tunable Filter--Fiber Bragg Grating (AOTF-FBG) system. This analysis was targeted to investigate the measurement error in the AOTF-FBG system...Fiber bragg grating, Wavelength division multiplexing, Acousto - optic tunable filter.

  11. Fluorescent optical position sensor

    DOEpatents

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  12. Precision Fiber Optic Sensor Market Forecast

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeff D.; Glasco, Jon; Dixon, Frank W.

    1986-01-01

    The worldwide market for precision fiber optic sensors is forecasted, 1984-1994. The forecast is based upon o Analysis of fiber optic sensor and related component current technology, and a forecast of technology advancement o Review and projection of demand for precision sensing, and the penetration which fiber optics will make into this market The analysis and projections are based mainly on interviews conducted worldwide with research teams, government agencies, systems contractors, medical and industrial laboratories, component suppliers and others. The worldwide market for precision (interferometric) fiber optic sensing systems is forecasted to exceed $0.8 billion by 1994. The forecast is segmented by geographical region (Europe, Japan and North America) and by function; o Gyroscope o Sonar o Gradiometer/Magnetometer o Other - Chemical Composition - Atmospheric Acoustic - Temperature - Position - Pressure Requirements for components are reviewed. These include special fiber, emitters and detectors, modulators, couplers, switches, integrated optical circuits and integrated optoelectronics. The advancement in component performance is forecasted. The major driving forces creating fiber optic sensor markets are reviewed. These include fiber optic sensor technical and economic advantages, increasingly stringent operational requirements, and technology evolution. The leading fiber optic sensor and related component development programs are reviewed. Component sources are listed. Funding sources for sensor and component development are outlined, and trends forecasted.

  13. Development of optical fiber Bragg grating force-reflection sensor system of medical application for safe minimally invasive robotic surgery

    NASA Astrophysics Data System (ADS)

    Song, Hoseok; Kim, Kiyoung; Lee, Jungju

    2011-07-01

    Force feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, the very long and stiff bars of surgical instruments greatly diminish force feedback for the surgeon. In the case of minimally invasive robotic surgery (MIRS), force feedback is totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peak force magnitude by at least a factor of two. Therefore, it is very important to provide force information in MIRS. Recently, many sensors are being developed for MIS and MIRS, but some obstacles to their application in actual medical surgery must be surmounted. The most critical problems are size limit and sterilizability. Optical fiber sensors are among the most suitable sensors for the surgical environment. The optical fiber Bragg grating (FBG) sensor, in particular, offers an important additional advantage over other optical fiber sensors in that it is not influenced by the intensity of the light source. In this paper, we present the initial results of a study on the application of a FBG sensor to measure reflected forces in MIRS environments and suggest the possibility of successful application to MIRS systems.

  14. Fiber optic Cerenkov radiation sensor system to estimate burn-up of spent fuel: characteristic evaluation of the system using Co-60 source

    NASA Astrophysics Data System (ADS)

    Shin, S. H.; Jang, K. W.; Jeon, D.; Hong, S.; Kim, S. G.; Sim, H. I.; Yoo, W. J.; Park, B. G.; Lee, B.

    2013-09-01

    Cerenkov radiation occurs when charged particles are moving faster than the speed of light in a transparent dielectric medium. In optical fibers, the Cerenkov light also can be generated due to their dielectric components. Accordingly, the radiation-induced light signals can be obtained using optical fibers without any scintillating material. In this study, to measure the intensities of Cerenkov radiation induced by gamma-rays, we have fabricated the fiber-optic Cerenkov radiation sensor system using silica optical fibers, plastic optical fibers, multi-anode photomultiplier tubes, and a scanning system. To characterize the Cerenkov radiation generated in optical fibers, the spectra of Cerenkov radiation generated in the silica and plastic optical fibers were measured. Also, the intensities of Cerenkov radiation induced by gamma-rays generated from a cylindrical Co-60 source with or without lead shielding were measured using the fiberoptic Cerenkov radiation sensor system.

  15. Improved artificial bee colony algorithm for wavefront sensor-less system in free space optical communication

    NASA Astrophysics Data System (ADS)

    Niu, Chaojun; Han, Xiang'e.

    2015-10-01

    Adaptive optics (AO) technology is an effective way to alleviate the effect of turbulence on free space optical communication (FSO). A new adaptive compensation method can be used without a wave-front sensor. Artificial bee colony algorithm (ABC) is a population-based heuristic evolutionary algorithm inspired by the intelligent foraging behaviour of the honeybee swarm with the advantage of simple, good convergence rate, robust and less parameter setting. In this paper, we simulate the application of the improved ABC to correct the distorted wavefront and proved its effectiveness. Then we simulate the application of ABC algorithm, differential evolution (DE) algorithm and stochastic parallel gradient descent (SPGD) algorithm to the FSO system and analyze the wavefront correction capabilities by comparison of the coupling efficiency, the error rate and the intensity fluctuation in different turbulence before and after the correction. The results show that the ABC algorithm has much faster correction speed than DE algorithm and better correct ability for strong turbulence than SPGD algorithm. Intensity fluctuation can be effectively reduced in strong turbulence, but not so effective in week turbulence.

  16. 77 FR 73456 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... for the measurement or control of temperature, pressure, strain, vibration, acceleration, and any..., distribute or store electrical energy; the field of use microphones for the measurement of sound pressure... Fiber Optic Temperature Sensors, Navy Case No. 98,030.//U.S. Patent Application No....

  17. Fiber optic multimode displacement sensor

    NASA Astrophysics Data System (ADS)

    Fisher, Karl A.; Jarzynski, Jacek

    1996-04-01

    An underwater Optical Motion Sensor (OMS) based on a design first presented by W. B. Spillman, Schlieren multimode fiber-optic hydrophone, Applied Physics Letters 37(2), 15 July 1980, p. 145-146 is described. The displacement sensor uses the same acoustooptical intensity modulation mechanism as Spillman, however the sensing mechanism is isolated from the ambient fluid environment by a small cylindrical aluminum enclosure (1″ OD×3/4″). The enclosure contains an inertial mass and the fiber collimators. The inertial mass is suspended in the center of the enclosure by three small wires rigidly mounted to the walls. The mass and wires act as a cantilever beam system with a mechanical resonance near 100 Hz. The transduction mechanism consists of two opposed optical gratings aligned and positioned between the fiber collimators. One grating is mounted on the inertial mass while the other is mounted on the lower end cap of the enclosure. Relative motion between the gratings causes a modulation of the light transmitted through the gratings. The modulated beam is focused onto a photodetector and converted to electric current. The frequency response is flat from 200 Hz-9 kHz with a minimum detectable displacement of 0.002 A and the dynamic range is 136 dB. The small size and light weight give the sensor an effective density of 1.08 g/cm3 making it almost neutrally buoyant in water. This in conjunction with the performance characteristics make this sensor suitable for use in acoustical sensing applications.

  18. Optical rotation sensors

    NASA Astrophysics Data System (ADS)

    Rotge, J. R.; Simmons, B. J.; Kroncke, G. T.; Stech, D. J.

    1986-05-01

    Research efforts were concentrated on passive ring laser rotation sensor technology. Initial efforts were performed on supportive projects, e.g., laser stabilization, followed by a 0.62 sq m passive resonant ring laser gyro (PRRLG), leading to the development of a 60 sq m system mounted on the pneumatically supported isolation test platform (Iso-Pad) at FJSRL. Numerous sub-system tasks and a feasibility 0.62 sq m PRRLG were completed, supporting projections of very high resolution performance by a large 60 sq m PRRLG. The expected performance of the large PRRLG, on the order of 10 to the minus 10th power ERU (earth rate units), would provide an accurate error model applicable to Air Force operational ring laser gyros, a new source of geophysical data, e.g., earth wobble and variations in earth rotation, a proven design concept applicable to Air Force sensor needs as reference to MX instruments tests, and relativity experiments. This report documents the many accomplishments leading to, and the status of the large PRRLG at the date of the PRRLG stop order, November 1985.

  19. Fiber Optic Sensor Components and Systems for Smart Materials and Structures

    NASA Technical Reports Server (NTRS)

    Lyons, R.

    1999-01-01

    The general objective of the funded research effort has been the development of discrete and distributed fiber sensors and fiber optic centered opto-electronic networks for the intelligent monitoring of phenomena in various aerospace structures related to NASA Marshall specific applications. In particular, we have proposed and have been developing technologies that we believe to be readily transferrable and which involve new fabrication techniques. The associated sensors developed can be incorporated into the matrix or on the surfaces of structures for the purpose of sensing stress, strain, temperature-both low and high, pressure field variations, phase changes, and the presence of various chemical constituents.

  20. Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    SciTech Connect

    Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-01

    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in

  1. Low noise optical position sensor

    DOEpatents

    Spear, J.D.

    1999-03-09

    A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments. 14 figs.

  2. Low noise optical position sensor

    DOEpatents

    Spear, Jonathan David

    1999-01-01

    A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments.

  3. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    PubMed

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood.

  4. Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2011-01-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker

  5. Advances in optical fiber sensors for vehicle detection

    NASA Astrophysics Data System (ADS)

    Meller, Scott A.; de Vries, Marten J.; Arya, Vivek; Claus, Richard O.; Zabaronick, Noel

    1998-01-01

    THe primary objective for this project is the design of optical fiber-based sensor instrumentation for specific ITS applications. Specifically, this paper discusses research on optical fiber sensors that can be used for traffic monitoring and vehicle classification. This paper also discusses developments on the application of optical fiber sensor that can be used for monitoring visibility. This research is directly beneficial to the implementation of driver advisory and safety systems, traffic control system, and other ITS applications. This paper summarizes research performed on optical fiber sensors used for measuring traffic flow on highways and discusses progress on optical fiber sensors used for monitoring visibility.

  6. Fiber-Optic Differential Displacement Sensor

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping

    1996-01-01

    Dual fiber-optic sensor measures small relative displacements of two proximate objects along common surface. Dual sensor comprises two fiber-optic sensors in differential configuration increasing sensitivity to displacement while decreasing sensitivity to thermal expansion and contraction.

  7. A Fiber Bragg Grating Sensor Interrogation System Based on a Linearly Wavelength-Swept Thermo-Optic Laser Chip

    PubMed Central

    Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok

    2014-01-01

    A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803

  8. Feasibility of fiber optic displacement sensor scanning system for imaging of dental cavity

    NASA Astrophysics Data System (ADS)

    Rahman, Husna Abdul; Che Ani, Adi Izhar; Harun, Sulaiman Wadi; Yasin, Moh.; Apsari, Retna; Ahmad, Harith

    2012-07-01

    The purpose of this study is to investigate the potential of intensity modulated fiber optic displacement sensor scanning system for the imaging of dental cavity. Here, we discuss our preliminary results in the imaging of cavities on various teeth surfaces, as well as measurement of the diameter of the cavities which are represented by drilled holes on the teeth surfaces. Based on the analysis of displacement measurement, the sensitivities and linear range for the molar, canine, hybrid composite resin, and acrylic surfaces are obtained at 0.09667 mV/mm and 0.45 mm 0.775 mV/mm and 0.4 mm 0.5109 mV/mm and 0.5 mm and 0.25 mV/mm and 0.5 mm, respectively, with a good linearity of more than 99%. The results also show a clear distinction between the cavity and surrounding tooth region. The stability, simplicity of design, and low cost of fabrication make it suitable for restorative dentistry.

  9. Optical networks for wideband sensor array

    NASA Astrophysics Data System (ADS)

    Sheng, Lin Horng

    2011-12-01

    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  10. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    PubMed Central

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  11. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    PubMed

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  12. Robust optical sensors for safety critical automotive applications

    NASA Astrophysics Data System (ADS)

    De Locht, Cliff; De Knibber, Sven; Maddalena, Sam

    2008-02-01

    Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.

  13. Integrated multi-channel nano-engineered optical hydrogen and temperature sensor detection systems for launch vehicles

    NASA Astrophysics Data System (ADS)

    Alam, M. Z.; Moreno, J.; Aitchison, J. S.; Mojahedi, M.; Kazemi, A. A.

    2008-08-01

    Launch vehicles and other satellite users need launch services that are highly reliable, less complex, easier to test, and cost effective. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. Therefore, there is a critical need for miniaturized sensors and instruments suitable for use in space applications. This paper describes a novel multi-channel integrated nano-engineered optical sensor to detect hydrogen and monitor the temperature. The integrated optic sensor is made of multi-channel waveguide elements that measure hydrogen concentration in real Time. Our sensor is based on the use of a high index waveguide with a Ni/Pd overlay to detect hydrogen. When hydrogen is absorbed into the Ni/Pd alloy there is a change in the absorption of the material and the optical signal in the waveguide is increased. Our design uses a thin alloy (few nanometers thick) overlay which facilitates the absorption of the hydrogen and will result in a response time of approximately few seconds. Like other Pd/Pd-Ni based sensors the device response varies with temperature and hence the effects of temperature variations must be taken into account. One solution to this problem is simultaneous measurement of temperature in addition to hydrogen concentration at the same vicinity. Our approach here is to propose a temperature sensor that can easily be integrated on the same platform as the hydrogen sensor reported earlier by our group. One suitable choice of material system is silicon on insulator (SOI). Here, we propose a micro ring resonators

  14. A new MRI-compatible optical fiber tactile sensor for use in minimally invasive robotic surgery systems

    NASA Astrophysics Data System (ADS)

    Ahmadi, Roozbeh; Dargahi, Javad; Packirisamy, Muthukumaran; Cecere, Renzo

    2010-09-01

    In conventional open surgery, using finger palpation, surgeons can distinguish between different types of tissues. However, in the current commercially available minimally invasive robotic surgery (MIRS) systems, direct tactile feedback is negligible. In the present paper, based on a novel concept, a new bend-type optical fiber tactile sensor is proposed, designed, simulated, fabricated, and tested. In both dynamic and static loading conditions, the proposed tactile sensor measures forces interacting between tissues and surgical tools whether they are distributed contact forces or concentrated contact forces, or even if these forces are in combination. As a result, the sensor can identify the size and the position of blood vessels or of abnormal tissues, one of which could be a tumorous lump within normal tissues. In addition, the static force measurement provided by the sensor allows surgeons to maintain contact stability in any static interactions between surgical tools and tissues while at the same time avoiding tissue damage because of excessive contact force. In the meantime, because the sensor is based uniquely on optical fibers, it is insensitive to electromagnetic fields. As a result, it is compatible with Magnetic Resonance Imaging (MRI) devices, which are currently in widespread use in surgical operating rooms.

  15. Fiber optic gas sensor

    NASA Technical Reports Server (NTRS)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  16. Optical Manufacturing and Testing Requirements Identified by the NASA Science Instruments, Observatories and Sensor Systems Technology Assessment

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.

  17. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System.

    PubMed

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-11-30

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa ) . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  18. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    PubMed Central

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  19. SnO2-MOF-Fabry-Perot humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Lopez-Aldaba, A.; Lopez-Torres, D.; Ascorbe, J.; Rota-Rodrigo, S.; Elosua, C.; Lopez-Amo, M.; Arregui, F. J.; Corres, J. M.; Auguste, J.-L.; Jamier, R.; Roy, P.

    2016-05-01

    In this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Perot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.

  20. Evaluation of Underwater Adhesives and Friction Coatings for In Situ Attachment of Fiber Optic Sensor System for Subsea Applications

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Le, Suy Q.; Orndoff, Evelyne S.; Smith, Frederick D.; Tapia, Alma S.; Brower, David V.

    2012-01-01

    Integrity and performance monitoring of subsea pipelines and structures provides critical information for managing offshore oil and gas production operation and preventing environmentally damaging and costly catastrophic failure. Currently pipeline monitoring devices require ground assembly and installation prior to the underwater deployment of the pipeline. A monitoring device that could be installed in situ on the operating underwater structures could enhance the productivity and improve the safety of current offshore operation. Through a Space Act Agreement (SAA) between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) and Astro Technology, Inc. (ATI), JSC provides technical expertise and testing facilities to support the development of fiber optic sensor technologies by ATI. This paper details the first collaboration effort between NASA JSC and ATI in evaluating underwater applicable adhesives and friction coatings for attaching fiber optic sensor system to subsea pipeline. A market survey was conducted to examine different commercial ]off ]the ]shelf (COTS) underwater adhesive systems and to select adhesive candidates for testing and evaluation. Four COTS epoxy based underwater adhesives were selected and evaluated. The adhesives were applied and cured in simulated seawater conditions and then evaluated for application characteristics and adhesive strength. The adhesive that demonstrated the best underwater application characteristics and highest adhesive strength were identified for further evaluation in developing an attachment system that could be deployed in the harsh subsea environment. Various friction coatings were also tested in this study to measure their shear strengths for a mechanical clamping design concept for attaching fiber optic sensor system. A COTS carbide alloy coating was found to increase the shear strength of metal to metal clamping interface by up to 46 percent. This study provides valuable data for

  1. Fiber optic sensor and method for making

    DOEpatents

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  2. Fiber-Optic Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Maram, Jonathan M.

    1987-01-01

    Proposed sensor measures temperatures over wide range, from cryogenic liquids to burning gases. Made in part of optical fibers, sensor lighter in weight than thermocouple and immune to electromagnetic interference. Device does not respond to temperatures elsewhere than at sensing tip. Thermal expansion and contraction of distance between fiber end and mirror alters interference between light reflected from those two surfaces, thereby giving interferometric indication of temperatures.

  3. Development of a measuring system of contact force during braille reading using an optical 6-axis force sensor.

    PubMed

    Watanabe, T; Oouchi, S; Yamaguchi, T; Shimojo, M; Shimada, S

    2006-01-01

    A system with an optical 6-axis force sensor was developed to measure contact force during braille reading. In using this system, we encountered two problems. One is a variability of output values depending on the contact point. This was solved by using two transformation techniques. The other is that subjects read braille in a different manner from the usual. We compared two manners of braille reading, one-handed vs two-handed, and found a small reduction in reading speed. Using this system, we collected data from four braille readers and quantitatively showed more minute contact force trajectories than those in earlier studies.

  4. Fibre optic sensors for heat transfer studies

    NASA Astrophysics Data System (ADS)

    Sinha, Pranay G.

    This thesis describes the design and development of a prototype sensor, based on a miniature optical fiber Fabry-Perot interferometer, for heat transfer studies on model turbomachinery components in transient flow wind tunnels. These sensors overcome a number of difficulties which are often encountered in using conventional electrical thin-film resistance gauges such as in the measurement of rapidly varying heat transfer rates, spatial resolution, electromagnetic interference, calibration and signal processing. The special features of the optical sensor are: (1) short length (less than 5 mm), and therefore embeddable in thin structures of model components; (2) direct measurement of heat flux rates; (3) calorimetric operation with temperature resolution of less than 25 mK over a measurement bandwidth of 100 kHz; (4) capability of measuring heat flux less than 5 kWm(exp -2) with measurement range in excess of 10 MWm(exp -2); (5) temporal response time of less than 10 microseconds; (6) minimal thermal disturbances because models are often made of ceramic materials with thermal properties similar to those of the optical fiber from which sensors are made;(7) possibility of using in models with dissimilar thermal properties to the optical fiber, for example, metals; (8) spatial resolution of less than 5 microns; (9) remote operation; (10) an ability to be multiplexed; and (11) immunity to electromagnetic interference. A detailed discussion of the design considerations for the sensor, system development, evaluation of the sensor performance both in the laboratory and wind tunnel environments is presented in this thesis. The performance of the sensor compared favorably with electrical gauges namely, platinum thin-film resistance thermometers. A 4-sensor multiplexed system has been successfully operated, and is reported in the thesis. A brief discussion is also included to indicate that the same sensor design may be considered for applications in other engineering areas.

  5. Fibre Optic Sensors for Heat Transfer Studies.

    NASA Astrophysics Data System (ADS)

    Sinha, Pranay G.

    Available from UMI in association with The British Library. This thesis describes the design and development of a prototype sensor, based on a miniature optical fibre Fabry-Perot interferometer, for heat transfer studies on model turbomachinery components in transient flow wind tunnels. These sensors overcome a number of difficulties which are often encountered in using conventional electrical thin-film resistance gauges such as in the measurement of rapidly varying heat transfer rates, spatial resolution, electromagnetic interference, calibration and signal processing. The special features of the optical sensor are: (i) short length (<5 mm), and therefore embeddable in thin structures of model components; (ii) direct measurement of heat flux rates; (iii) calorimetric operation with temperature resolution of <25 mK over a measurement bandwidth of 100 kHz: (iv) capability of measuring heat flux <5 kWm^ {-2} with measurement range in excess of 10 MWm^{-2}; (v) temporal response time of <10 mus; (vi) minimal thermal disturbances because models are often made of ceramic materials with thermal properties similar to those of the optical fibre from which sensors are made; (vii) possibility of using in models with dissimilar thermal properties to the optical fibre, for example, metals; (viii) spatial resolution of <5 mu m; (ix) remote operation; (x) an ability to be multiplexed; and (xi) immunity to electromagnetic interference. A detailed discussion of the design considerations for the sensor, system development, evaluation of the sensor performance both in the laboratory and wind tunnel environments is presented in this thesis. The performance of the sensor compared favourably with electrical gauges namely, platinum thin-film resistance thermometers. A 4-sensor multiplexed system has been sucessfully operated, and is reported in the thesis. A brief discussion is also included to indicate that the same sensor design may be considered for applications in other engineering

  6. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    NASA Technical Reports Server (NTRS)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  7. Optical satellite data volcano monitoring: a multi-sensor rapid response system

    USGS Publications Warehouse

    Duda, Kenneth A.; Ramsey, Michael; Wessels, Rick L.; Dehn, Jonathan

    2009-01-01

    of the ASTER Urgent Request Protocol (URP) for natural disaster monitoring and scientific analysis, has expanded the project to other volcanoes around the world and is in progress through 2011. The focus on ASTER data is due to the suitability of the sensor for natural disaster monitoring and the availability of data. The instrument has several unique facets that make it especially attractive for volcanic observations (Ramsey and Dehn, 2004). Specifically, ASTER routinely collects data at night, it has the ability to generate digital elevation models using stereo imaging, it can collect data in various gain states to minimize data saturation, it has a cross-track pointing capability for faster targeting, and it collects data up to ±85° latitude for better global coverage. As with any optical imaging-based remote sensing, the viewing conditions can negatively impact the data quality. This impact varies across the optical and thermal infrared wavelengths as well as being a function of the specific atmospheric window within a given wavelength region. Water vapor and cloud formation can obscure surface data in the visible and near infrared (VNIR)/shortwave infrared (SWIR) region due mainly to non-selective scattering of the incident photons. In the longer wavelengths of the thermal infrared (TIR), scattering is less of an issue, but heavy cloud cover can still obscure the ground due to atmospheric absorption. Thin clouds can be optically-transparent in the VNIR and TIR regions, but can cause errors in the extracted surface reflectance or derived surface temperatures. In regions prone to heavy cloud cover, optical remote sensing can be improved through increased temporal resolution. As more images are acquired in a given time period the chances of a clear image improve dramatically. The Advanced Very High Resolution Radiometer (AVHRR) routine monitoring, which commonly collects 4-6 images per day of any north Pacific volcano, takes advantage of this fact. The rapid

  8. Optical sensors based on plastic fibers.

    PubMed

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  9. Human psychophysiological activity monitoring methods using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  10. Optical network of silicon micromachined sensors

    NASA Astrophysics Data System (ADS)

    Wilson, Mark L.; Burns, David W.; Zook, J. David

    1996-03-01

    The Honeywell Technology Center, in collaboration with the University of Wisconsin and the Mobil Corporation, and under funding from this ARPA sponsored program, are developing a new type of `hybrid' micromachined silicon/fiber optic sensor that utilizes the best attributes of each technology. Fiber optics provide a noise free method to read out the sensor without electrical power required at the measurement point. Micromachined silicon sensor techniques provide a method to design many different types of sensors such as temperature, pressure, acceleration, or magnetic field strength and report the sensor data using FDM methods. Our polysilicon resonant microbeam structures have a built in Fabry-Perot interferometer that offers significant advantages over other configurations described in the literature. Because the interferometer is an integral part of the structure, the placement of the fiber becomes non- critical, and packaging issues become considerably simpler. The interferometer spacing are determined by the thin-film fabrication processes and therefore can be extremely well controlled. The main advantage, however, is the integral vacuum cavity that ensures high Q values. Testing results have demonstrated relaxed alignment tolerances in packaging these devices, with an excellent Signal to Noise Ratio. Networks of 16 or more sensors are currently being developed. STORM (Strain Transduction by Optomechanical Resonant Microbeams) sensors can also provide functionality and self calibration information which can be used to improve the overall system reliability. Details of the sensor and network design, as well as test results, are presented.

  11. All-digital demodulation system of interferometric fiber optic sensors using an improved PGC algorithm based on fundamental frequency mixing

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-ling; Wang, Kai-han; Zhang, Shuai; Wang, Yan

    2015-05-01

    We present an all-digital demodulation system of interferometric fiber optic sensor based on an improved arctangent-differential-self-multiplying (arctan-DSM) algorithm. The total harmonic distortion (THD) and the light intensity disturbance (LID) are also suppressed, the same as those in the traditional arctan-DSM algorithm. Moreover, the lowest sampling frequency is also reduced by introducing anti-aliasing filter, so the occupation of the system memory is reduced. The simulations show that the improved algorithm can correctly demodulate cosine signal and chirp signal with lower sampling frequency.

  12. Fiber-optic shock position sensor

    SciTech Connect

    Weiss, J.D.

    1993-03-01

    This report describes work performed for the development of a fiber-optic shock position sensor used to measure the location of a shock front in the neighborhood of a nuclear explosion. Such a measurement would provide a hydrodynamic determination of nuclear yield. The original proposal was prompted by the Defense Nuclear Agency's interest in replacing as many electrical sensors as possible with their optical counterparts for the verification of a treaty limiting the yield of a nuclear device used in underground testing. Immunity to electromagnetic pulse is the reason for the agency's interest; unlike electrical sensors and their associated cabling, fiber-optic systems do not transmit to the outside world noise pulses from the device containing secret information.

  13. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  14. Measurement of radial expansion and tumbling motion of a high-speed rotor using an optical sensor system

    NASA Astrophysics Data System (ADS)

    Günther, P.; Dreier, F.; Pfister, T.; Czarske, J.; Haupt, T.; Hufenbach, W.

    2011-01-01

    In order to investigate the load capacity and the strength properties of high-speed rotors, dynamic deformation and vibration measurements are of importance, in particular at lightweight composite devices which cannot be simulated reliably. This is a challenging task in metrology since non-contact inspection techniques are required which offer micron uncertainties and high temporal resolution simultaneously, also under vacuum conditions. In order to meet these requirements, a non-incremental laser Doppler distance sensor system was developed using fiber and diffractive optics. In this paper we present for the first time high-speed deformation measurements of a cylindrical steel rotor using this novel sensor system. The radial rotor expansion of only some microns was determined despite the presence of an unsteady tumbling motion of the rotor, which was measured simultaneously. Future prospects are discussed including the possibility to measure non-metallic devices such as fiber-reinforced composites.

  15. Development of dual-probe atomic force microscopy system using optical beam deflection sensors with obliquely incident laser beams.

    PubMed

    Tsunemi, Eika; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2011-03-01

    We developed a dual-probe (DP) atomic force microscopy (AFM) system that has two independently controlled probes. The deflection of each cantilever is measured by the optical beam deflection (OBD) method. In order to keep a large space over the two probes for an objective lens with a large numerical aperture, we employed the OBD sensors with obliquely incident laser beams. In this paper, we describe the details of our developed DP-AFM system, including analysis of the sensitivity of the OBD sensor for detection of the cantilever deflection. We also describe a method to eliminate the crosstalk caused by the vertical translation of the cantilever. In addition, we demonstrate simultaneous topographic imaging of a test sample by the two probes and surface potential measurement on an α-sexithiophene (α-6T) thin film by one probe while electrical charges were injected by the other probe.

  16. Development of dual-probe atomic force microscopy system using optical beam deflection sensors with obliquely incident laser beams

    NASA Astrophysics Data System (ADS)

    Tsunemi, Eika; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2011-03-01

    We developed a dual-probe (DP) atomic force microscopy (AFM) system that has two independently controlled probes. The deflection of each cantilever is measured by the optical beam deflection (OBD) method. In order to keep a large space over the two probes for an objective lens with a large numerical aperture, we employed the OBD sensors with obliquely incident laser beams. In this paper, we describe the details of our developed DP-AFM system, including analysis of the sensitivity of the OBD sensor for detection of the cantilever deflection. We also describe a method to eliminate the crosstalk caused by the vertical translation of the cantilever. In addition, we demonstrate simultaneous topographic imaging of a test sample by the two probes and surface potential measurement on an α-sexithiophene (α-6T) thin film by one probe while electrical charges were injected by the other probe.

  17. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors

    PubMed Central

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-01-01

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously. PMID:26703599

  18. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors.

    PubMed

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-12-12

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  19. Fiber optic (flight quality) sensors for advanced aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1994-01-01

    Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

  20. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Wolford, David S.

    2000-01-01

    A new optical temperature sensor suitable for high temperatures (greater than 1700 K) and harsh environments is introduced. The key component of the sensor is the rare earth material contained at the end of a sensor that is in contact with the sample being measured. The measured narrow wavelength band emission from the rare earth is used to deduce the sample temperature. A simplified relation between the temperature and measured radiation was verified experimentally. The upper temperature limit of the sensor is determined by material limits to be approximately 2000 C. The lower limit, determined by the minimum detectable radiation, is found to be approximately 700 K. At high temperatures 1 K resolution is predicted. Also, millisecond response times are calculated.

  1. Optical fiber sensors for spacecraft applications

    NASA Astrophysics Data System (ADS)

    Friebele, E. J.; Askins, C. G.; Bosse, A. B.; Kersey, A. D.; Patrick, H. J.; Pogue, W. R.; Putnam, M. A.; Simon, W. R.; Tasker, F. A.; Vincent, W. S.; Vohra, S. T.

    1999-12-01

    Optical fiber sensors offer a number of advantages for spacecraft applications. A principal application is strain sensing for structural health monitoring, shape determination, and spacecraft qualification testing. This paper will review the results of recent work at the Naval Research Laboratory where optical fiber strain sensors have been used on spacecraft structures and ground test hardware. The sensors have been both surface mounted to the structure and embedded in fiber-reinforced polymer composites. The issue of potential strength reduction of high-performance composites due to embedded optical fiber sensors and leads has been studied, low-cost fabrication of tubular struts with embedded sensors has been demonstrated, and a novel technique for fiber ingress-egress from composite parts has been developed. Applications of fiber sensors discussed in this paper include distributed dynamic strain monitoring of a honeycomb composite plate and a lightweight reflector during acoustic qualification tests, ultrahigh-sensitivity static strain and temperature measurements for precision structures, and on-line system identification of a lightweight laboratory truss.

  2. Fiber optic moisture sensor

    DOEpatents

    Kirkham, R.R.

    1984-08-03

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  3. Logical and pseudo-logical optical fibre networks based on two-state (binary) optical fibre sensors for industrial monitoring and control systems

    NASA Astrophysics Data System (ADS)

    Szczot, Feliks

    2005-09-01

    The possibilities of development of logical and pseudo-logical optical fibre networks for monitoring and control of equipment and industrial sites are presented. Such networks composed of simple binary attenuation and optical fibre communication lines may also be used as fast and reliable systems developing a final command signal - logical and/or pseudo-logical, depending or the architecture of network and the type of located sensors. They realise the process similar to standard electronic logical sets but use the optical signal directly on the monitored or controlled device. The analysis of serial and parallel networks was carried out in the "dark" mode detection. The examples of networks in power industry were presented where technical and economical merits of logical and pseudo-logical monitoring and controlling networks are clearly visible.

  4. Optical viscosity sensor

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Ling; Peyroux, Juliette; Perez, Alex; Tsui, Chi-Leung; Wang, Wei-Chih

    2009-03-01

    Viscosity measurement by bend loss of fiber is presented. The sensing principle makes use of the damping characteristic of a vibrating optical fiber probe with fix-free end configuration. By measuring the displacement of the fiber probe, the viscosity can be determined by matching the probe's displacement with the displacement built in the database obtained by either experimental method or Finite element calculation. Experimental results are presented by measuring the sucrose and glycerol solutions of different concentrations with a viscosity varying from 1 to 15 cP. Stokes' flow assumption is utilized to attenuate the mass density effect and simplify the viscosity measurement.

  5. Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging.

    PubMed

    Lamela, Horacio; Gallego, Daniel; Gutierrez, Rebeca; Oraevsky, Alexander

    2011-03-01

    We present a non-metallic interferometric silica optical fiber ultrasonic wideband sensor for optoacoustic imaging applications. The ultrasonic sensitivity of this sensor has been characterized over the frequency range from 1 to 10 MHz. A comparative analysis has been carried out between this sensor and an array of piezoelectric transducers using optoacoustic signals generated from an optical absorbent embedded in a tissue mimicking phantom. Also, a two dimensional reconstructed image of the phantom using the fiber interferometric sensor is presented and compared to the image obtained using the Laser Optoacoustic Imaging System, LOIS-64B. The feasibility of our fiber optic based sensor for wideband ultrasonic detection is demonstrated.

  6. Optical micromachined pressure sensor for aerospace applications

    NASA Astrophysics Data System (ADS)

    Angelidis, Diogenes; Parsons, Philip

    1992-08-01

    An optical pressure sensor has been designed using silicon micromachining technology. A resonant silicon beam is mounted above a diaphragm and its resonant frequency changes with applied pressure. The sensor is temperature compensated by way of a second pressure-insensitive resonator. Both resonators are optically addressed via the same optical fiber. The sensor is designed to give an overall accuracy of 0.5 percent full-scale pressure, which is currently between 130 kPa or 3 MPa. Optical technology allows the optical pressure sensor to operate in a harsh aerospace environment where electronic pressure sensors cannot survive.

  7. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Li, Xinyang

    2011-04-01

    Optimizing the system performance metric directly is an important method for correcting wavefront aberrations in an adaptive optics (AO) system where wavefront sensing methods are unavailable or ineffective. An appropriate "Deformable Mirror" control algorithm is the key to successful wavefront correction. Based on several stochastic parallel optimization control algorithms, an adaptive optics system with a 61-element Deformable Mirror (DM) is simulated. Genetic Algorithm (GA), Stochastic Parallel Gradient Descent (SPGD), Simulated Annealing (SA) and Algorithm Of Pattern Extraction (Alopex) are compared in convergence speed and correction capability. The results show that all these algorithms have the ability to correct for atmospheric turbulence. Compared with least squares fitting, they almost obtain the best correction achievable for the 61-element DM. SA is the fastest and GA is the slowest in these algorithms. The number of perturbation by GA is almost 20 times larger than that of SA, 15 times larger than SPGD and 9 times larger than Alopex.

  8. Immunoassay procedures for fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Ligler, Frances S.

    1988-04-01

    There is an increasing need for the development of an ultrasensitive immunoassay for use with fiber optic sensors. These detection systems can be used for such applications as disease diagnosis, detection of chemical and biological warfare agents or drugs of abuse, pollution control, therapeutic monitoring, and explosive detection. This specific program is designed to produce generic chemistries for use with existing fiber optic-based sensors to detect pathogens of particular threat to Army personnel as determined by USAMRIID. The detection system under development involves the attachment of antibodies to an optical fiber at high density. In addition, the immobilization must be achieved in a way which retains the antibody's ability to bind antigen. The functionality of the antibody will be tested through the binding of a labelled antigen. In the future, this assay could incorporate the antibodies developed by the Army for pathogens of particularly military concern.

  9. Fiber optical ranging sensor for proximity fuse

    NASA Astrophysics Data System (ADS)

    Du, Fang; Chi, Zeying; You, Mingjun; Chen, Wenjian

    1996-09-01

    A fiber optical ranging sensor used in laser proximity fuze is described in this paper. In the fuze, pulse laser diode (LD) is used as light source and trigger signal is generated by comparing the reflected light pulses with the reference pulses by a correlator after they were converted into electric signals by PIN photodiodes. Multi-mode fibers and integrated optical devices are used in the system so that the structure can be more compact. Optical fiber delay line is used to offer precise delay time for reference channel.

  10. Enzyme-based online monitoring and measurement of antioxidant activity using an optical oxygen sensor coupled to an HPLC system.

    PubMed

    Quaranta, Michela; Nugroho Prasetyo, Endry; Koren, Klaus; Nyanhongo, Gibson S; Murkovic, Michael; Klimant, Ingo; Guebitz, Georg M

    2013-03-01

    It is estimated that up to 50% of the adult population take antioxidant products on a daily basis to promote their health status. Strangely, despite the well-recognized importance of antioxidants, currently there is no international standard index for labeling owing to the lack of standardized methods for antioxidant measurement in complex products. Here, an online high-performance liquid chromatography (HPLC)-based method to detect and measure the total antioxidant capacity of antioxidant samples is presented. In this approach, complex samples containing antioxidants are separated by the HPLC system, which is further coupled to an antioxidant measuring system consisting of an optical oxygen sensor, laccase, and tetramethoxy azobismethylene quinone (TMAMQ). The antioxidants, separated via HPLC, reduce TMAMQ to syringaldazine, which is then reoxidized by laccase while simultaneously consuming O(2). The amount of consumed oxygen is directly proportional to the concentration of antioxidants and is measured by the optical oxygen sensor. The sensor is fabricated by coating a glass capillary with an oxygen-sensitive thin layer made of platinum(II) meso-tetra(4-fluorophenyl)tetrabenzoporphyrin and polystyrene, which makes real-time analysis possible (t(90) = 1.1 s in solution). Four selected antioxidants (3 mM), namely, catechin, ferulic acid, naringenin (used as a control), and Trolox, representing flavonol, hydrocinnamic acid, flavanone, and vitamin E, respectively, were injected into the online antioxidant monitoring system, separated, and then mixed with the TMAMQ/laccase solution, which resulted in oxygen consumption. This study shows that, with the use of such a system, the antioxidant activity of individual antioxidant molecules in a sample and their contribution to the total antioxidant activity of the sample can be correctly assigned.

  11. Fiber Optic Magnetic Sensor Research.

    DTIC Science & Technology

    1983-02-28

    interferometer It is shown that single-mode fibres mane to the response of the sensor to variations in the tern- offer the possibility of high-speed, high...qualitative study of the response of a fibre of millidegrees Kelvin. was etimated by mean, of a thermo- interferometer to impulse heating has recently been...8217 The interferometer was composed en- tirely of single-mode optical fibre (liT. 5 pm core diameter) dT/dt C 1(I2R - HT) (I) with an optical path

  12. Flight Tests on a Fiber Optic Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Sawatari, Takeo; Lin, Yuping; Elam, Kristie A.

    1998-01-01

    For aircraft engine control, one key parameter to detect on an airplane is the exhaust gas temperature (EGT). Presently, thermocouples are used to perform this measurement. These electrical sensors perform adequately; however, fully utilizing the benefits of optical sensors requires replacing electrical architectures with optical architectures. Part of this requires replacing electrical sensors with optical sensors, such as the EGT sensor chosen for these tests. The objective of the development and testing of this prototype sensor system was to determine the feasibility of operating an optical sensor in a hostile aircraft environment. The fiber optic sensor system was developed to measure temperatures from 20C to 600C in an aircraft environment and was utilized to monitor the EGT of an OV-10D aircraft engine. The sensor has successfully flown over 50 hours and proven to be immune to surface deterioration of the optical element (located inside the sensor head) and able to withstand and operate in normal and sustained severe flight conditions where forces on the airplane exceeded 4 g's. Potential commercial uses for this sensor include monitoring temperature for aeropropulsion system control, military vehicle and naval engine control, conventional and nuclear power plant monitoring and industrial plan monitoring where EMI issues are critical.

  13. Self-Repairing Polymer Optical Fiber Strain Sensor

    NASA Astrophysics Data System (ADS)

    Song, Young Jun

    This research develops a self-repairing polymer optical fiber strain sensor for structural health monitoring applications where the sensor network must survive under extreme conditions. Inspired by recent research in self-healing material systems, this dissertation demonstrates a self-repairing strain sensor waveguide, created by self-writing in a photopolymerizable resin system. In an initial configuration, the waveguide sensor was fabricated between two multi-mode (MM) optical fibers via ultraviolet (UV) lightwaves in the UV curable resin and operated as a strain sensor by interrogation of the infrared (IR) power transmission through the waveguide. After failure of the sensor occurred due to loading, the waveguide re-bridged the gap between the two optical fibers through the UV resin. The response of the waveguide sensors was sensitive to the applied strain and repeatable during multiple loading cycles with low observed hysteresis, however was not always monotonic. The strain response of the original sensor and the self-repaired sensor showed similar behaviors. Packaging the sensor in a polymer capillary improved the performance of the sensor by removing previous "no-response" zones. The resulting sensor output was monotonic throughout the measurement range. The hysteresis in the sensor behavior between multiple loading cycles was also significantly reduced. However, a jump in sensor output voltage was observed after the sensor self-repair process, which presents challenges for calibration of the sensor. The sensor configuration was modified to a Fabry-Perot interferometer to improve the sensor response. The measurable strain range was extended through multiple sensor self-repairs, and strain measurements were demonstrated up to 150% applied tensile strain. A hybrid sensor was fabricated by splicing a short segment of MM optical fiber to the input single-mode (SM) optical fiber. The hybrid sensor provided the high quality of waveguide fabrication previously

  14. Fiber-Optic pH Sensor

    NASA Astrophysics Data System (ADS)

    Ganesh, A. Balaji; Radhakrishnan, T. K.

    The new enhancement in the determination of pH using optical fiber system is described here. This work uses the membrane made of cellulose acetate membrane for reagent immobilization and congo red (pKa 3.7) and neutral red (pKa 7.2) as pH indicators. An effective covalent chemical binding procedure is used to immobilize the indicatorsE The response time, reversibility, linear range, reproducibility, and long-term stability of fiber optic sensor with congo red as well as neutral red have been determined. The linear range measured for the sensor based on the congo red and neutral red is 4.2-6.3 and 4.1-9.0, respectively. The response time of sensor membrane is measured by varying the substance pH values between 11.0 and 2.0.

  15. Evaluations of fiber optic sensors for interior applications

    SciTech Connect

    Sandoval, M.W.; Malone, T.P.

    1996-02-01

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  16. Fiber-Optic Ammonia Sensors

    NASA Technical Reports Server (NTRS)

    Carter, Michael T.

    2003-01-01

    Reversible, colorimetric fiber-optic sensors are undergoing development for use in measuring concentrations of ammonia in air at levels relevant to human health [0 to 50 parts per million (ppm)]. A sensor of this type includes an optical fiber that has been modified by replacing a portion of its cladding with a polymer coat that contains a dye that reacts reversibly with ammonia and changes color when it does so. The change in color is measured as a change in the amount of light transmitted from one end of the fiber to the other. Responses are reversible and proportional to the concentration of ammonia over the range from 9 to 175 ppm and in some cases the range of reversibility extends up to 270 ppm. The characteristic time for the response of a sensor to rise from 10 to 90 percent of full scale is about 25 seconds. These sensors are fully operational in pure carbon dioxide and are not adversely affected by humidity. This work was done by Michael T. Carter

  17. Renewable Reagent Fiber Optic Based Ammonia Sensor

    NASA Astrophysics Data System (ADS)

    Berman, Richard J.; Burgess, Lloyd W.

    1990-02-01

    Many fiber optic based chemical sensors have been described which rely on a reagent chemistry fixed at the fiber endface to provide analyte specificity. In such systems, problems involving probe-to-probe reproducibility, reagent photolability and reagent leaching are frequently encountered. As a result, calibration and standardization of these sensors becomes difficult or impossible and thus inhibits their application for long term in situ chemical monitoring. Many of these problems can be addressed and several additional advantages gained by continuously renewing the reagent chemistry. To illustrate this concept, a fiber optic ammonia sensor is described in which the reagent is delivered under direct control to a sensing volume of approximately 400 nanoliters located at the probe tip. Using an acid-base indicator (bromothymol blue) as the reagent, the sample ammonia concentrations are related to modulations in light intensity with a lower limit of detection of 10 ppb. The sensor performance was studied with respect to reagent pH, concentration and reagent delivery rate. Compared with previous fiber optic ammonia sensors, the ability to reproducibly renew the reagent has resulted in improvements with respect to response and return times, probe-to-probe reproducibility, probe lifetime and flexibility of use.

  18. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications

    PubMed Central

    Cennamo, Nunzio; Chiavaioli, Francesco; Trono, Cosimo; Tombelli, Sara; Giannetti, Ambra; Baldini, Francesco; Zeni, Luigi

    2016-01-01

    An optical sensor platform based on surface plasmon resonance (SPR) in a plastic optical fiber (POF) integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer. The surface robustness of the POF-SPR platform has been tested for the first time thanks to the flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. The final goal of this work is to achieve a complete, small-size, simple to use and low cost optical sensor system. The whole system with the flow cell and the optical sensor are extensively described, together with the experimental results obtained with an immunoglobulin G (IgG)/anti-IgG assay. PMID:26861328

  19. Threshold temperature optical fibre sensors

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K. A.; Musial, J. E.

    2016-12-01

    This paper presents a new approach to manufacture a threshold temperature sensor based on a biconical optical fibre taper. The presented sensor employs the influence of variable state of concentration of some isotropic materials like wax or paraffin. Application of the above- mentioned materials is an attempt to prove that there is a possibility to obtain a low-cost, repeatable and smart sensor working as an in-line element. Optical fibre taper was obtained from a standard single mode fibre (SMF28®) by using a low pressure gas burner technique. The diameter of the manufactured tapers was 6.0 ± 0.5 μm with the length of elongation equal to 30.50 ± 0.16 mm. The applied technology allowed to produce tapers with the losses of 0.183 ± 0.015 dB. Application of materials with different temperature transition points made it possible to obtain the threshold work at the temperatures connected directly with their conversion temperature. External materials at the temperatures above their melting points do not influence the propagation losses. For each of them two types of the protection area and position of the optical fibre taper were applied.

  20. Optical Angular Motion Sensor

    DTIC Science & Technology

    1977-05-31

    equations , i.e. curve fitting. Thermal testing was performed on the brassboard unit to demonstrate performance over a 40-100 de- grees Fahrenheit...5.1 System Equations The system equations presented here are an outgrowth of the analysis des- cribed in the OA1S Phase I report. Modifications are made...characteristics, a key require- ment in 0*43 applications. Using a similar approach, but under a separate sub- section, equations relating the effects of

  1. A laser-optical sensor system for blade vibration detection of high-speed compressors

    NASA Astrophysics Data System (ADS)

    Neumann, Mathias; Dreier, Florian; Günther, Philipp; Wilke, Ulrich; Fischer, Andreas; Büttner, Lars; Holzinger, Felix; Schiffer, Heinz-Peter; Czarske, Jürgen

    2015-12-01

    Improved efficiency as well as increased lifetime of turbines and compressors are important goals in turbomachinery development. A significant enhancement to accomplish these aims can be seen in online monitoring of the operating parameters of the machines. During the operation of compressors it is of high interest to predict critical events like flutter or stall which can be achieved by observing blade deformations and vibrations. We have developed a laser Doppler distance sensor (LDDS), which is capable of simultaneously measuring the radial blade expansions, the circumferential blade deflections as well as the circumferential velocities of the rotor blade tips. As a result, an increase of blade vibrations is measured before stall at characteristic frequencies. While the detected vibration frequencies and the vibration increase are in agreement with the measurement results of a commercial capacitive blade tip timing system, the measured values of the vibration amplitudes differ by a factor of three. This difference can be mainly attributed to the different measurement locations and to the different measurement approaches. Since the LDDS is applicable to metal as well as ceramic, carbon-fiber and glass-fiber reinforced composite blades, a universally applicable sensor system for stall prediction and status monitoring is presented.

  2. Triangular-shaped bulk optic glass Faraday current sensor

    NASA Astrophysics Data System (ADS)

    Chu, Beatrice C.; Ning, Yanong N.; Jackson, David A.

    1993-03-01

    A new triangular topology for a bulk optic Faraday current sensor is presented with a demonstrated resolution of 20 mA/(root)Hz over a measurement range from 1 to 3000 A. The sensitivity of the system was 2.35 X 10-5 rad/A. This sensor is relatively easy to fabricate and overcome problems encountered using current sensors based upon bulk optic 'square' configurations and all fiber systems.

  3. Fiber optic acoustic emission sensors for harsh environment health monitoring

    NASA Astrophysics Data System (ADS)

    Borinski, Jason W.; Duke, John C., Jr.; Horne, Michael R.

    2001-07-01

    Optical fiber sensors are rapidly emerging as viable alternatives to piezoelectric devices as effective means of detecting and quantifying acoustic emission (AE). Compared to traditional piezoelectric-based sensors, optical fiber sensors offer much smaller size, reduced weight, ability to operate at temperatures up to 2000 degree(s)C, immunity to electromagnetic interference, resistance to corrosive environments, inherent safety within flammable environments, and the ability to multiplex multiple sensors on a single fiber. The authors have investigated low-profile fiber optic-based AE sensors for non-destructive evaluation (NDE) systems. In particular, broadband and resonant type optical fiber sensors were developed for monitoring acoustic emission for NDE of pressurized composite vessels and commercial airframe structures. The authors developed an in-plane, broadband sensor design based on optical strain gage technology. In addition, an out-of-plane, resonant sensor was developed using micromachining techniques. The sensors have been evaluated for performance using swept frequency and impulse excitation techniques and compared to conventional piezoelectric transducers. Further, application experiments were conducted using these sensors on both aluminum lap-joints and composite fracture coupons, with collocated piezoelectric transducers. The results indicate that optical fiber AE sensors can be used as transducers sensitive to acoustic events and the indication of imminent failure of a structure, making these sensors useful in many applications where conventional piezoelectric transducers are not well suited.

  4. Electro-optical voltage sensor head

    DOEpatents

    Woods, G.K.

    1998-03-24

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 6 figs.

  5. Electro-optical voltage sensor head

    DOEpatents

    Woods, Gregory K.

    1998-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  6. Specialized wavefront sensors for adaptive optics

    NASA Astrophysics Data System (ADS)

    Neal, Daniel R.; Mansell, J. D.; Gruetzner, James K.; Morgan, R.; Warren, Mial E.

    1995-08-01

    The performance of an adaptive optical system is strongly dependent upon correctly measuring the wavefront of the arriving light. The most common wavefront measurement techniques used to date are the shearing interferometer and the Shack-Hartmann sensor. Shack-Hartmann sensors rely on the use of lenslet arrays to sample the aperture appropriately. These have traditionally been constructed using MLM or step and repeat technology, and more recently with binary optics technology. Diffractive optics fabrication methodology can be used to remove some of the limitations of the previous technologies and can allow for low-cost production of sophisticated elements. We have investigated several different specialized wavefront sensor configurations using both Shack-Hartmann and shearing interferometer principles. We have taken advantage of the arbitrary nature of these elements to match pupil shapes of detector and telescope aperture and to introduce magnification between the lenslet array and the detector. We have fabricated elements that facilitate matching the sampling to the current atmospheric conditions. The sensors were designed using a far-field diffraction model and a photolithography layout program. They were fabricated using photolithography and RIE etching. Several different designs are presented with some experimental results from a small-scale adaptive optics brass-board.

  7. Fibre optic sensor with disturbance localization in one optical fibre

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Ciurapinski, W.

    2007-05-01

    Ordinary perimeter security systems consist of many individual sensors with detection range 200-300 meters. These limitations are connected with physical phenomena that are used in microwave and infrared barriers as well as in ground and fence cable sensors. On the contrary, fiber optic perimeter sensors can be applied in the range of many kilometers and zone length 200-300 meters is degradation of their possibilities. This paper presents investigation results of a new generation of the fiber optic perimeter sensor in a two Sagnac and Sagna'c interferometers configuration. This system can detect a potential intruder and determine its position along a protected zone. We propose a method that makes use of the inherent properties of both interferometers. After demodulation of signals from both interferometers, obtained amplitude characteristic of the Sagnac interferometer depends on position of a disturbance along the both interferometer. So, quotient of both demodulated characteristics is proportional to the position of the disturbance. Arrangement of a laboratory model of the sensor and its signal processing scheme is presented. During research of a laboratory model, it was possible to detect the position of the disturbance with resolution of about 50m along a 10-km long sensor.

  8. Accuracy of PARTwear Inertial Sensor and Optojump Optical Measurement System for Measuring Ground Contact Time During Running.

    PubMed

    Ammann, Rahel; Taube, Wolfgang; Wyss, Thomas

    2016-07-01

    Ammann, R, Taube, W, and Wyss, T. Accuracy of PARTwear inertial sensor and Optojump optical measurement system for measuring ground contact time during running. J Strength Cond Res 30(7): 2057-2063, 2016-The aim of this study was to validate the detection of ground contact time (GCT) during running in 2 differently working systems: a small inertial measurement sensor, PARTwear (PW), worn on the shoe laces, and the optical measurement system, Optojump (OJ), placed on the track. Twelve well-trained subjects performed 12 runs each on an indoor track at speeds ranging from 3.0 to 9.0 m·s. GCT of one step per run (total 144) was simultaneously obtained by the PW, the OJ, and a high-speed video camera (HSC), whereby the latter served as reference system. The sampling rate was 1,000 Hz for all methods. Compared with the HSC, the PW and the OJ systems underestimated GCT by -1.3 ± 6.1% and -16.5 ± 6.7% (p-values ≤ 0.05), respectively. The intraclass correlation coefficients between PW and HSC and between OJ and HSC were 0.984 and 0.853 (p-values < 0.001), respectively. Despite the constant systematic underestimation of GCT, analyses indicated that PW successfully recorded GCT over a wide range of speeds. However, results showed only moderate validity for the OJ system, with increasing errors when speed decreased. In conclusion, the PW proved to be a highly useful and valid application, and its use can be recommended not only for laboratory settings but also for field applications. In contrast, data on GCT obtained by OJ during running must be treated with caution, specifically when running speed changes or when comparisons are made with GCT data collected by other measurement systems.

  9. Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000 (trademark)

    DTIC Science & Technology

    2012-09-30

    be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES  Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection.  Assemble the system

  10. Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000(TM)

    DTIC Science & Technology

    2011-09-30

    be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES  Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection.  Assemble the system

  11. Great prospects for fiber optics sensors

    NASA Technical Reports Server (NTRS)

    Hansen, T. E.

    1983-01-01

    Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.

  12. Optical FIBer Intrusion LOCation Sensor System (FIBLOC) for Surface and Subsurface Perimeter Protection. Phase 2

    DTIC Science & Technology

    1994-01-01

    barrier sensors. C.3.7 Pressure Sensitive Sensors. An example of a simple pressure sensitive sensor is the familiar air-filled rubber hose stretched across...the location at which an intruder cromsed the perim- A rmdica trama to the semor cable 8, such as one eter of a protectd aes. A light source 2

  13. Fibre optic sensor on robot end effector for flexible assembly

    SciTech Connect

    Yung, K.L.; Lau, W.S.; Choi, C.K.; Shan, Y.Y.

    1995-12-31

    A fibre optic sensor system was constructed for use on robot end effectors for flexible assembly. The sensor detected the deviations between robot end effector and the workpiece. The signal was fed back to robot controller to shift the end effector until the centre of end effector and the centre of workpiece were aligned at the correct orientation. Then workpiece can be grasped symmetrically. Sensor fusion concept was used to guard against sensor system failure. Fuzzy linguistic variable and control rule concept were introduced in the sensor integration. The experimental setup for the sensor integrated system was shown. The accuracy was also discussed.

  14. Fiber-optic liquid level sensor

    DOEpatents

    Weiss, Jonathan D.

    1991-01-01

    A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

  15. Blood detection in the spinal column of whole cooked chicken using an optical fibre based sensor system

    NASA Astrophysics Data System (ADS)

    Sheridan, C.; O'Farrell, M.; Lyons, W. B.; Lewis, E.; Flanagan, C.; Jackman, N.

    2005-01-01

    An optical fibre based sensor has been developed to aid the quality assurance of food cooked in industrial ovens by monitoring the product in situ as it cooks. The sensor measures the product colour as it cooks by examining the reflected visible light from the surface as well as the core of the product. This paper examines the use of the sensor for the detection of blood in the spinal area of cooked whole chickens. The results presented here show that the sensor can be successfully used for this purpose.

  16. Fiber optic sensors with internal referencing

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Maitland, Duncan J., IV

    1988-01-01

    The main problem with amplitude modulating type sensors is that any variation in the intensity of the optical signal which occurs throughout the sensing system is interpreted by the photodetector as resulting from the sensor itself and is reflected as an error in the sensed parameter. To account for these errors, a referencing technique with the signal and reference channels separated in the time domain over the same fiber link can be used. Selected sensing and signal processing techniques involving temporally separated signal and referencing channels are described. A transition from the time into the frequency domain is also discussed. Experimental data are presented.

  17. Experimental qualification by extensive evaluation of fibre optic strain sensors

    NASA Astrophysics Data System (ADS)

    Schilder, Constanze; Kusche, Nadine; Schukar, Vivien G.; Münzenberger, Sven; Habel, Wolfgang R.

    2013-09-01

    Fibre optic strain sensors used in practical applications have to provide reliable measurements. Therefore, the applied sensor and the sensor systems must be validated experimentally. This can be achieved with facilities which use physically independent measurement systems in order to avoid the influences caused by the application of a reference sensor. This paper describes the testing methods of the specially developed validation facility KALFOS for the qualification and evaluation of surface-applied strain sensors. For reliable sensor results, the performance of fibre optic strain patches with and without FBG under combined thermal and mechanical loading was investigated. Additionally, the strain gauge factor of the fibre optic strain patches with FBG was determined experimentally and compared to the specified strain gauge factor. These results will be the basis for the development of guidelines and standards concerning the application of the sensors.

  18. Low-Cost Linear Optical Sensors.

    ERIC Educational Resources Information Center

    Kinsey, Kenneth F.; Meisel, David D.

    1994-01-01

    Discusses the properties and application of three light-to-voltage optical sensors. The sensors have been used for sensing diffraction patterns, the inverse-square law, and as a fringe counter with an interferometer. (MVL)

  19. Fiber-optic voltage sensor

    NASA Astrophysics Data System (ADS)

    Wood, C. B.

    1990-07-01

    A fiber-optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, and a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

  20. Design of optics for compact star sensors

    NASA Astrophysics Data System (ADS)

    Xu, Minyi; Shi, Rongbao; Shen, Weimin

    2016-10-01

    In order to adapt to small size and low cost space platform such as mini-satellites, this paper studies the design of optics for compact star sensor. At first, the relationship between limiting magnitude and optical system specifications which includes field of view and entrance pupil diameter is analyzed, based on its Pyramid identification algorithm and signal-to-noise ratio requirement. The specifications corresponding to different limiting magnitude can be obtained after the detector is selected, and both of the complexity of optical lens and the size of baffle can be estimated. Then the range of the limiting magnitude can be determined for the miniaturization of the optical system. Taking STAR1000 CMOS detector as an example, the compact design of the optical system can be realized when the limiting magnitude is in the interval of 4.9Mv 5.5Mv. At last, the lens and baffle of a CMOS compact star sensor is optimally designed, of which length and weight is respectively 124 millimeters and 300 grams.

  1. Optical Beam-Shear Sensors

    NASA Technical Reports Server (NTRS)

    Martin, Stefan; Szwaykowski, Piotr

    2007-01-01

    A technique for measuring optical beam shear is based on collecting light from the four quadrants of the beam and comparing the optical power collected from each quadrant with that from the other three quadrants. As used here, "shear" signifies lateral displacement of a beam of light from a nominal optical axis. A sensor for implementing this technique consists of a modified focusing lens and a quad-cell photodetector, both centered on the nominal optical axis. The modification of the lens consists in cutting the lens into four sectors (corresponding to the four quadrants) by sawing along two orthogonal diameters, then reassembling the lens following either of two approaches described next. In one approach, the lens is reassembled by gluing the sectors back together. In the simplest variant of this approach, the kerf of the saw matches the spacing of the photodetector cells, so that the focus of each sector crosses the axis of symmetry to fall on the opposite photodetector cell (see figure). In another variant of this approach, the lens sectors are spaced apart to make their individual foci to fall on separate photodetector cells, without crossing the optical axis. In the case of a sufficiently wide beam, the modified lens could be replaced with four independent lenses placed in a square array, each focusing onto an independent photodetector

  2. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  3. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  4. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, Richard F.; Casalnuovo, Stephen A.

    1993-01-01

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  5. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  6. Fiber-optically sensorized composite wing

    NASA Astrophysics Data System (ADS)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  7. Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000 (trademark)

    DTIC Science & Technology

    2010-01-01

    be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES • Meet the challenging... ocean acidification . As the sensor being developed will be highly sensitive, and highly stable, yet affordable enough to be deployed in great numbers...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual

  8. Passive long range acousto-optic sensor

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2006-08-01

    Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).

  9. Applications of advanced optical fiber sensors at UESTC

    NASA Astrophysics Data System (ADS)

    Rao, Yun-Jiang

    2012-02-01

    Based on many years research, a number of novel fiber-optic sensors and systems are developed by the Fiber Optics Group at University of Electronic Science & Technology of China (UESTC). This paper presents a review of the applications of these sensors and systems developed in recent years, including: (1) Micro fiber-optic Fabry-Perot interferometric sensors for high temperature strain measurement applications; (2) Fiber Bragg grating (FBG) sensors for safety monitoring applications in transportations industry; (3) Long-distance Brillouin optical time-domain analyzer (BOTDA) for high performance temperature/strain measurement; (4) Fiber-optic fences based on FBG and phasesensitive optical time-domain reflectometer (Φ-OTDR) for intrusion monitoring applications.

  10. System of the optic-electronic sensors for control position of the radio telescope elements

    NASA Astrophysics Data System (ADS)

    Konyakhin, Igor; Stepashkin, Ivan; Petrochenko, Andrey

    2016-04-01

    A promising area of modern astronomy is the study of the field of millimeter waves. The use of this band is due to a large extent the spectrum characteristics of the propagation of waves in the atmosphere, short wavelength. Currently, Russia jointly with Uzbekistan is implementing a project to build a radio astronomy observatory on the Suffa plateau (Uzbekistan). The main instrument of the observatory is fully steerable radio telescope RT-70 type. Main mirror telescope is a fragment of an axisymmetric parabolic with a focal length of 21 m, consisting of 1200 reflecting panels; main mirror diameter - 70 m; diameter of counter reflector - 3 m. A feature of the radio telescope as a means of research in the millimeter wavelength range are high for the quality requirements parabolic surface of the primary mirror (standard deviation of points on the surface of the theoretical parabolic is not more than 0.05 mm), to the stability of the mutual arrangement of the primary mirror and the counter reflector (not more than 0, 07 mm) for precision guidance in the corners of the mirror system azimuth and elevation (margin of error 1.5-2"). Weight of structure, temperature changes and air shock result in significant deformation elements radio telescope construction (progressive linear displacements of points of the surface of the main mirror), reaching in the marginal zone of 30 mm; counter reflector shift of up to 60 mm; Unlike the angular position of the axis of the beam pattern of the radio telescope of the measured angle transducers can reach 10 ". Therefore, to ensure the required quality of the reflective elements RT-70 systems, as well as the implementation of precision-guided munitions needs complex measuring deformation elements telescope design. This article deals with the construction of opto-electronic system of remote optoelectronic displacement sensor control elements mirror telescope system.

  11. Optical fiber sensors and signal processing for intelligent structure monitoring

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert; Claus, R. O.; Lindner, D. K.; Thomas, Daniel; Cox, Dave

    1988-01-01

    The analytic and experimental performance of optical fiber sensors for the control of vibration of large aerospace and other structures are investigated. In particular, model domain optical fiber sensor systems, are being studied due to their apparent potential as distributed, low mass sensors of vibration over appropriate ranges of both low frequency and low amplitude displacements. Progress during the past three months is outlined. Progress since September is divided into work in the areas of experimental hardware development, analytical analysis, control design and sensor development. During the next six months, tests of a prototype closed-loop control system for a beam are planned which will demonstrate the solution of several optical fiber instrumentation device problems, the performance of the control system theory which incorporates the model of the modal domain sensor, and the potential for distributed control which this sensor approach offers.

  12. Optical Sensors Based on Plastic Fibers

    PubMed Central

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  13. Development of an Optical Read-Out System for the LISA/NGO Gravitational Reference Sensor: A Status Report

    NASA Astrophysics Data System (ADS)

    Di Fiore, L.; De Rosa, R.; Garufi, F.; Grado, A.; Milano, L.; Spagnuolo, V.; Russano, G.

    2013-01-01

    The LISA group in Napoli is working on the development of an Optical Read-Out (ORO) system, based on optical levers and position sensitive detectors, for the LISA gravitational reference sensor. ORO is not meant as an alternative, but as an addition, to capacitive readout, that is the reference solution for LISA/NGO and will be tested on flight by LISA-Pathfinder. The main goal is the introduction of some redundancy with consequent mission risk mitigation. Furthermore, the ORO system is more sensitive than the capacitive one and its usage would allow a significant relaxation of the specifications on cross-couplings in the drag free control loops. The reliability of the proposed ORO device and the fulfilment of the sensitivity requirements have been already demonstrated in bench-top measurements and tests with the four mass torsion pendulum developed in Trento as a ground testing facility for LISA-Pathfinder and LISA hardware. In this paper we report on the present status of this activity presenting the last results and perspectives on some relevant aspects. 1) System design, measured sensitivity and noise characterization. 2) Possible layouts for integration in LISA/NGO and bench-top tests on real scale prototypes. 3) Search for space compatible components and preliminary tests. We will also discuss next steps in view of a possible application in LISA/NGO.

  14. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1999-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  15. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1999-04-06

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 23 figs.

  16. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1995-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  17. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1995-05-30

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 29 figs.

  18. Sensitivity of optical mass sensor enhanced by optomechanical coupling

    SciTech Connect

    He, Yong

    2015-03-23

    Optical mass sensors based on cavity optomechanics employ radiation pressure force to drive mechanical resonator whose mechanical susceptibility can be described by nonlinear optical transmission spectrum. In this paper, we present an optical mass sensor based on a two-cavity optomechanical system where the mechanical damping rate can be decreased by adjusting a pump power so that the mass sensitivity which depends on the mechanical quality factor has been enhanced greatly. Compared with that of an optical mass sensor based on single-cavity optomechanics, the mass sensitivity of the optical mass sensor is improved by three orders of magnitude. This is an approach to enhance the mass sensitivity by means of optomechanical coupling, which is suitable for all mass sensor based on cavity optomechanics. Finally, we illustrate the accurate measurement for the mass of a few chromosomes, which can be achieved based on the current experimental conditions.

  19. Sensitivity of optical mass sensor enhanced by optomechanical coupling

    NASA Astrophysics Data System (ADS)

    He, Yong

    2015-03-01

    Optical mass sensors based on cavity optomechanics employ radiation pressure force to drive mechanical resonator whose mechanical susceptibility can be described by nonlinear optical transmission spectrum. In this paper, we present an optical mass sensor based on a two-cavity optomechanical system where the mechanical damping rate can be decreased by adjusting a pump power so that the mass sensitivity which depends on the mechanical quality factor has been enhanced greatly. Compared with that of an optical mass sensor based on single-cavity optomechanics, the mass sensitivity of the optical mass sensor is improved by three orders of magnitude. This is an approach to enhance the mass sensitivity by means of optomechanical coupling, which is suitable for all mass sensor based on cavity optomechanics. Finally, we illustrate the accurate measurement for the mass of a few chromosomes, which can be achieved based on the current experimental conditions.

  20. Plasmon-enhanced optical sensors: a review.

    PubMed

    Li, Ming; Cushing, Scott K; Wu, Nianqiang

    2015-01-21

    Surface plasmon resonance (SPR) has found extensive applications in chemi-sensors and biosensors. Plasmons play different roles in different types of optical sensors. SPR transduces a signal in a colorimetric sensor through shifts in the spectral position and intensity in response to external stimuli. SPR can also concentrate the incident electromagnetic field in a nanostructure, modulating fluorescence emission and enabling plasmon-enhanced fluorescence to be used for ultrasensitive detection. Furthermore, plasmons have been extensively used for amplifying a Raman signal in a surface-enhanced Raman scattering sensor. This paper presents a review of recent research progress in plasmon-enhanced optical sensing, giving emphasis on the physical basis of plasmon-enhanced sensors and how these principles guide the design of sensors. In particular, this paper discusses the design strategies for nanomaterials and nanostructures to plasmonically enhance optical sensing signals, also highlighting the applications of plasmon-enhanced optical sensors in healthcare, homeland security, food safety and environmental monitoring.

  1. Optoacoustic fiber optic interferometric sensors for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gallego, Daniel; Lamela, Horacio

    2011-06-01

    A non-metallic interferometric optical fiber ultrasonic wideband sensor is presented for optoacoustic imaging applications. The ultrasonic sensitivity of intrinsic fiber optic interferometric sensors depends strongly of the material which is composed of. We compare experimentally the acoustic sensitivity of two fiber optic sensors based on singlemode silica optical fiber and multimode graded-index perfluorinated polymer optical fiber, respectively. Both sensors are designed for detection of optoacoustic wave sources with frequencies in the range from 100 kHz to 5 MHz. These results are also compared with a PVDF ultra wideband sensor. We evaluated detection of real world optoacoustic signals, generated from an optically absorbing object embedded in a tissue mimicking phantom, between our silica optical fiber sensor and an array of piezoelectric transducers. Reconstructed two dimensional acoustic images of the phantom are presented and compared with images obtained with the Laser Optoacoustic Imaging System, LOIS-64B, demonstrating the feasibility of our fiber optic sensor as a wideband ultrasonic sensor.

  2. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOEpatents

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  3. Revolution of Sensors in Micro-Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    2012-08-01

    Microsensors realized by micro-electromechanical systems (MEMS) technology play a key role as the input devices of systems. In this report, the following sensors are reviewed: piezoresistive and capacitive pressure sensors, surface acoustic wave (SAW) wireless pressure sensors, tactile sensor networks for robots, accelerometers, angular velocity sensors (gyroscopes), range image sensors using optical scanners, infrared imagers, chemical sensing systems as Fourier transform infrared (FTIR) spectroscopy and gas chromatography, flow sensors for fluids, and medical sensors such as ultrafine optical-fiber blood pressure sensors and implantable pressure sensors.

  4. Assessment of fiber optic pressure sensors

    SciTech Connect

    Hashemian, H.M.; Black, C.L.; Farmer, J.P.

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements.

  5. Optical associative memories for sensor fusion

    NASA Astrophysics Data System (ADS)

    Ralston, Lynda M.; Yoepp, John H.; Bardos, Andrew M.

    1992-08-01

    Modern military mission scenarios require very efficient access to multiple, large databases. Static `reference' databases and highly volatile databases which contain intelligence from sensors and other sources must be processed, cross referenced, and correlated. An architecture has been developed for a content addressable (associative) optical memory system. The system exploits the parallel access capabilities of optical disk memories to provide keyword correlation of free form text or structured databases within one revolution of the disk. The system consists of an optical disk drive augmented with an optical correlator and related electronics and software. The search string (keyword) is loaded into a spatial light modulator and optical matched filtering provides massively parallel readout to locate the desired data patterns on the disk. A digital degree-of-match (DOM) word is generated for each sector on the disk. Post processing based in digital electronics and software performs fuzzy computations to combine the DOMs for the current and previous keywords enabling the system to efficiently perform multi-step, content-based searches of the disk. Data stored in the best matching sectors is retrieved during the next revolution of the disk using the drive's standard read mechanism. The sustained processing rate of the optical correlator is 71 gigabits per second.

  6. A fiber-optic current sensor for aerospace applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1990-01-01

    A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.

  7. A fiber-optic current sensor for aerospace applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1990-01-01

    A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low- and high-voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically EMI (electromagnetic interference) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a fiber-optic temperature sensor embedded in the sensing head. The authors report on the technology contained in the sensor and also relate the results of precision tests conducted at various temperatures within the wide operating range. The results of early EMI tests are shown.

  8. A fiber-optic current sensor for aerospace applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1990-01-01

    A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology used in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.

  9. Biomimetic optical sensor for aerospace applications

    NASA Astrophysics Data System (ADS)

    Frost, Susan A.; Gorospe, George E.; Wright, Cameron H. G.; Barrett, Steven F.

    2015-05-01

    We report on a fiber optic sensor based on the physiological aspects of the eye and vision-related neural layers of the common housefly (Musca domestica) that has been developed and built for aerospace applications. The intent of the research is to reproduce select features from the fly's vision system that are desirable in image processing, including high functionality in low-light and low-contrast environments, sensitivity to motion, compact size, lightweight, and low power and computation requirements. The fly uses a combination of overlapping photoreceptor responses that are well approximated by Gaussian distributions and neural superposition to detect image features, such as object motion, to a much higher degree than just the photoreceptor density would imply. The Gaussian overlap in the biomimetic sensor comes from the front-end optical design, and the neural superposition is accomplished by subsequently combining the signals using analog electronics. The fly eye sensor is being developed to perform real-time tracking of a target on a flexible aircraft wing experiencing bending and torsion loads during flight. We report on results of laboratory experiments using the fly eye sensor to sense a target moving across its field of view.

  10. A novel fiber optic concrete sensor based on EFPI

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Dai, Jingyun; Sun, Baochen; Du, Yanliang

    2007-07-01

    In this paper, a novel fiber optic concrete sensor based on extrinsic fiber Fabry-Perot interferometer (EFPI) is designed and analyzed. Two fiber ends are inserted into a glass capillary and encapsulated into a cement cylinder to act as the sensor head. In this way, the cement cylinder itself is the sensor head instead of the traditional steel tube, which makes it very convenient to embed the sensor head into the concrete, because the cement consists with the concrete well. Based on the theory of white light interferometry and the theory of elasticity, the wavelength modulation method and the strain transfer are analyzed theoretically. The demodulation system is also introduced in this paper. The experiment being made by our research group is aimed at testing the consistency, stability, reliability and the sensitivity of the fiber optic sensor. The sensor head of the cement cylinder is embedded into a model ferroconcrete beam together with traditional strain gauges. The experiment is carried out using the PEM-500A hydraulic pulsation fatigue test machine after 2 million stress circles. The readout of the fibre optic sensor and the strain gauges is recorded and made a contrast. It can be found from the result that the fibre optic sensors have good stability and reliability, the accuracy for the fibre optic sensor is better than 0.5 micro-strain, which shows that the sensor can meet the demand of the long-term monitoring of large-size concrete structure.

  11. Design of Fiber Optic Sensors for Measuring Hydrodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Quiett, Carramah; Griffin, DeVon (Technical Monitor)

    2001-01-01

    The science of optical hydrodynamics involves relating the optical properties to the fluid dynamic properties of a hydrodynamic system. Fiber-optic sensors are being designed for measuring the hydrodynamic parameters of various systems. As a flowing fluid makes an encounter with a flat surface, it forms a boundary layer near this surface. The region between the boundary layer and the flat plate contains information about parameters such as viscosity, compressibility, pressure, density, and velocity. An analytical model has been developed for examining the hydrodynamic parameters near the surface of a fiber-optic sensor. An analysis of the conservation of momentum, the continuity equation and the Navier-Stokes equation for compressible flow were used to develop expressions for the velocity and the density as a function of the distance along the flow and above the surface. When examining the flow near the surface, these expressions are used to estimate the sensitivity required to perform direct optical measurements and to derive the shear force for indirect optical measurements. The derivation of this result permits the incorporation of better design parameters for other fiber-based sensors. Future work includes analyzing the optical parametric designs of fiber-optic sensors, modeling sensors to utilize the parameters for hydrodynamics and applying different mixtures of hydrodynamic flow. Finally, the fabrication of fiber-optic sensors for hydrodynamic flow applications of the type described in this presentation could enhance aerospace, submarine, and medical technology.

  12. Fiber optic interferometric sensors for aerospace applications

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1994-01-01

    This paper addresses two fiber optic sensor development programs in the Photonics Laboratory, NASA Ames Research Center, one in progress and the other being initiated. The ongoing program involves development of advanced acoustic sensors for wind tunnel applications. The new undertaking involves development of a novel sensor technique for studies of aerodynamic transition from laminar to turbulent flow.

  13. Recent Progress in Optical Chemical Sensors

    PubMed Central

    Qazi, Hummad Habib; Mohammad, Abu Bakar bin; Akram, Muhammad

    2012-01-01

    Optical chemical sensors have promoted escalating interest in the determination of various pollutants in the environment, which are creating toxicity and may cause serious health problems. This review paper focuses particularly on the recent progress and developments in this field; the working principles and basic classes of optical chemical sensors have been briefly described. PMID:23443392

  14. Recent progress in optical chemical sensors.

    PubMed

    Qazi, Hummad Habib; bin Mohammad, Abu Bakar; Akram, Muhammad

    2012-11-29

    Optical chemical sensors have promoted escalating interest in the determination of various pollutants in the environment, which are creating toxicity and may cause serious health problems. This review paper focuses particularly on the recent progress and developments in this field; the working principles and basic classes of optical chemical sensors have been briefly described.

  15. Optical Fiber Grating Hydrogen Sensors: A Review

    PubMed Central

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-01-01

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed. PMID:28287499

  16. Optical Fiber Grating Hydrogen Sensors: A Review.

    PubMed

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-03-12

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  17. Digitally encoded all-optical sensor multiplexing

    NASA Astrophysics Data System (ADS)

    Pervez, Anjum

    1992-01-01

    A digital, all-optical temperature sensor design concept based on optical sampling and digital encoding is presented. The proposed sensor generates 2M binary digital codewords of length M bits. The codewords are generated serially and, therefore, only a single output fiber line is required. A multiplexing scheme, which minimizes the power requirement per sensor array and facilitates a cost-effective digit regeneration for remote monitoring over long distance, is presented. The sensor arrays are used as building blocks to configure large scale sensor networks based on LAN topologies.

  18. Fiber optic sensors for corrosion detection

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1993-01-01

    The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.

  19. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  20. Improved thermal-vacuum compatible flat plate radiometric source for system-level testing of remote optical sensors

    NASA Astrophysics Data System (ADS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-09-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance. Keywords: Calibration, radiometry, remote sensing, source.

  1. Fibre-optic sensors in health care

    NASA Astrophysics Data System (ADS)

    Grazia Mignani, Anna; Baldini, Francesco

    1997-05-01

    Biomedical fibre-optic sensors are attractive for the measurement of physical, chemical and biochemical parameters and for spectral measurements directly performed on the patient. An overview of fibre-optic sensors for in vivo monitoring is given, with particular attention paid to the advantages that these sensors are able to offer in different application fields such as cardiovascular and intensive care, angiology, gastroenterology, ophthalmology, oncology, neurology, dermatology and dentistry.

  2. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor

    PubMed Central

    Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong

    2016-01-01

    In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well. PMID:27649199

  3. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor.

    PubMed

    Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong

    2016-09-16

    In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well.

  4. Dependence of the compensation error on the error of a sensor and corrector in an adaptive optics phase-conjugating system

    SciTech Connect

    Kiyko, V V; Kislov, V I; Ofitserov, E N

    2015-08-31

    In the framework of a statistical model of an adaptive optics system (AOS) of phase conjugation, three algorithms based on an integrated mathematical approach are considered, each of them intended for minimisation of one of the following characteristics: the sensor error (in the case of an ideal corrector), the corrector error (in the case of ideal measurements) and the compensation error (with regard to discreteness and measurement noises and to incompleteness of a system of response functions of the corrector actuators). Functional and statistical relationships between the algorithms are studied and a relation is derived to ensure calculation of the mean-square compensation error as a function of the errors of the sensor and corrector with an accuracy better than 10%. Because in adjusting the AOS parameters, it is reasonable to proceed from the equality of the sensor and corrector errors, in the case the Hartmann sensor is used as a wavefront sensor, the required number of actuators in the absence of the noise component in the sensor error turns out 1.5 – 2.5 times less than the number of counts, and that difference grows with increasing measurement noise. (adaptive optics)

  5. SU-E-T-111: Development of Proton Dosimetry System Using Fiber-Optic Cerenkov Radiation Sensor Array

    SciTech Connect

    Son, J; Kim, M; Shin, D; Lim, Y; Lee, S; Kim, J; Kim, J; Hwang, U; Yoon, M

    2014-06-01

    Purpose: We had developed and evaluated a new dosimetric system for proton therapy using array of fiber-optic Cerenkov radiation sensor (FOCRS) which can measure a percent depth dose (PDD) instantly. In this study, the Bragg peaks and spread out Bragg peak (SOBP) of the proton beams measured by FOCRS array were compared with those measured by an ion chamber. Methods and Method: We fabricated an optical fiber array of FOCRS in a handmade phantom which is composed of poly-methyl methacrylate (PMMA). There are 75 holes of 1mm diameter inside the phantom which is designed to be exposed in direction of beam when it is emerged in water phantom. The proton beam irradiation was carried out using IBA cyclotron PROTEUS 235 at national cancer center in Korea and a commercial data acquisition system was used to digitize the analog signal. Results: The measured Bragg peak and SOBP for the proton ranges of 7∼ 20 cm were well matched with the result from ion chamber. The comparison results show that the depth of proton beam ranges and the width of SOBP measured by array of FOCRS are comparable with the measurement from multi-layer ion chamber (MLIC) although there are some uncertainty in the measurement of FOCRS array for some specific beam ranges. Conclusion: The newly developed FOCRS array based dosimetric system for proton therapy can efficiently reduce the time and effort needed for proton beam range measurement compared to the conventional method and has the potential to be used for the proton pencil beam application.

  6. Optoacoustic imaging using fiber-optic interferometric sensors.

    PubMed

    Lamela, Horacio; Gallego, Daniel; Oraevsky, Alexander

    2009-12-01

    An interferometric sensor based on nonmetallic silica optical fiber is presented as an ultrasonic wideband transducer for optoacoustic imaging applications. We have characterized the sensitivity of the optical fiber sensor by detecting optoacoustic signals from an optically absorbing object embedded in a tissue-mimicking phantom and have compared the signals recorded with those detected from the same phantom using an array of piezoelectric transducers. The optical fiber sensor was also scanned along the phantom surface in order to reconstruct two-dimensional optoacoustic images of the phantom. These images have been compared with images obtained using the Laser Optoacoustic Imaging System, LOIS-64B, demonstrating the feasibility of our fiber-optic sensor as a wideband ultrasonic transducer.

  7. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  8. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  9. Smoke and mirrors: a fiber optic smoke sensor

    NASA Astrophysics Data System (ADS)

    Whitesel, Henry K.; Overby, John K.; Ransford, Michael J.; Tatem, Patricia A.

    1994-11-01

    Smoke detectors in general, are usually threshold devices that frequently experience false alarms. Optical smoke detectors usually depend on the measurement of optical power absorption and scattering across an air gap and are usually threshold devices. Fiber optic sensor technology offers potential improvements for existing smoke detector technology. We have developed a new smoke sensor design based on wavelength selective absorption and scattering that generates a continuous measurement of smoke density. This technique provides first order compensation for water and dirt coatings on the optical surfaces and for optical power and ambient light changes. The sensor has a 2 inch sensing region and utilizes multimode technology with an 850 nanometer LED source. Experimental models of the fiber optic smoke sensors were tested successfully in our laboratory and on the ex-USS SHADWELL. Operational performance advantages of the fiber optic smoke sensor are expected in the areas of monitoring visibility, reducing false alarms, improving reliability, and continuous measurement of smoke density; this will improve fire detection capability and will assist in developing fire fighting strategy. Application of the sensors are planned for the shipboard environment to provide sensor input to new damage control management systems.

  10. Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System

    NASA Astrophysics Data System (ADS)

    Mai, Wei-Jie; Wang, Yi-Lin; Zhang, Yun-Yun; Cui, Lu-Na; Yu, Li

    2017-02-01

    Not Available Supported by the Ministry of Science and Technology of China under Grant No 2016YFA0301300, the National Natural Science Foundation of China under Grant Nos 11374041 and 11574035, and the State Key Laboratory of Information Photonics and Optical Communications.

  11. Applications of Fiber Optical Sensors in Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Dehghani, Maryam

    2011-12-01

    Fiber optic sensor systems have been in the oilfield for a number of years now, however, they have had many shortcomings, including high price points, which have prevented widespread adoption. We can integrate fiber optic sensors into oil and gas companies products and processes and take advantage both technically and economically of the ever more rapid advances in technology. We can design all sorts of fiber optic sensors that cover various sections of petroleum industry operations. Most of researches have been in this part of technology since that is where most of the applications are. However, the other types of sensors have also developed as well. Most of fiber optical sensors have just one or perhaps a few detectors, but some high resolution imaging systems with large detector element arrays have also developed. Some fiber optical sensors are frequently incorporated as components in larger products. They are also used independently in process control and other types of applications in petroleum industry. This paper describes various aspects of fiber optic sensors and their applications, and addresses their role in petroleum industry.

  12. Optical fiber sensor for allergen detection

    NASA Astrophysics Data System (ADS)

    Bendoula, R.; Wacogne, B.; Giust, R.; Cherioux, F.; Sandoz, P.; Gharbi, T.

    2005-08-01

    The sensor is dedicated to the detection of allergens. We use a biochemical reaction in the vicinity of the core of an optical fiber which modifies the propagation conditions of the optical wave by evanescent coupling. The detection involves a intrinsic optical fiber Fabry-Perot interferometer.

  13. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  14. Crosstalk analysis, its effects and reduction techniques among photovoltaic devices used as transparent optical sensors for a wearable line-of-sight detection system

    NASA Astrophysics Data System (ADS)

    Cortes Torres, Carlos C.; Sampei, Kota; Ogawa, Miho; Ozawa, Masataka; Miki, Norihisa

    2015-06-01

    Our group has developed a wearable eye-tracking system that comprises transparent optical sensors on eyeglasses to detect the reflection from the eye and thus, the position of the eye, where photovoltaic cells are used as the sensors. In this paper, crosstalk, or electric interference, among the photovoltaic cells is discussed. The crosstalk makes the neighboring sensors dependent on each other, which leads to large errors in eye-tracking. We experimentally investigated the source of crosstalk by testing different designs of photovoltaic cells and their interconnection. It was revealed that sharing of the electrolyte by the photovoltaic devices was dominant. In addition, overlapping circuits were found to contribute to the crosstalk. We revised the design of the sensors and successfully reduced the crosstalk and improved the accuracy.

  15. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  16. Passive optical sensor for lightning detection on overhead power lines

    NASA Astrophysics Data System (ADS)

    Rosolem, J. B.; Barbosa, C. F.; Florídia, C.; Bezerra, E. L.

    2009-10-01

    In this work we present the results of a passive optical sensor for monitoring lightning strikes on overhead power lines, which can also be used for several other applications. The optic sensor is very simple and cheap and basically consists in the use of an antenna connected directly to a semiconductor laser. No batteries and solar panels are necessary to implement this sensing system in power lines towers. It was tested in laboratory and showed a good performance.

  17. Requirements On Fibre Optic Sensors For Wellhead Monitoring Subsea

    NASA Astrophysics Data System (ADS)

    Berg, Arne; Ellingsen, Reinold; Hordvik, Audun; Thingbo, Dag

    1986-01-01

    This paper presents the requirements on fibre optic sensors for subsea wellhead monitoring. A possible advantage of fibre optics is increased reliability of the monitoring system. However, to achieve this a substantial amount of development and testing has to be performed. A very important factor in the selection of sensor principles for further development is their possibility for success. New technologies have to solve problems and not increase the probability for failures.

  18. Optical Fiber Sensors for the Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Falciai, R.; Trono, C.

    Two examples of optical fiber sensors for the protection of the cultural heritage were given. The varnished optical fiber could be used also as temperature sensor. In fact, thanks to the good temperature sensitivity and reversibility of gum mastic, it could be considered as a transducer for the implementation of a temperature sensor to be permanently inlayed in the painting. By embedding the optical fiber in the painting together with the picture varnish for example on a comer, continuous temperature monitoring could be possible, in order to prevent risk conditions that can arise when illuminating the painting with the use of lamps, as happens during television shots.

  19. Fiber optic NIR evanescent wave absorption sensor systems for in-situ monitoring of hydrocarbon compounds in waste and ground water

    NASA Astrophysics Data System (ADS)

    Buerck, Jochen; Denter, P.; Mensch, M.; Kraemer, K.; Scholz, Michael

    1999-02-01

    In situ measurements with the prototype of a portable fiber- optic sensor system for the monitoring of nonpolar hydrocarbons (HC) in ground water or industrial waste water are presented. This sensor system can be used for quantitative in situ analysis of pollutants such as aromatic solvents, fuels, mineral oils or chlorinated HCs in a broad concentration range from around 200 (mu) g(DOT) L-1 up to a few 100 mg(DOT) L-1. The sensing principle is based on solid phase extraction of analyte molecules into a hydrophobic silicone cladding of a quartz glass optical fiber and the direct absorptiometric measurement of the extracted species in the polymer through the evanescent wave. The sensor can be connected via all-silica fibers with a length of up to 100 m to a filter photometer developed at the IFIA, thus allowing even remote analysis in monitoring wells. This instrument provides a sum concentration signal of the extracted organic compounds by measuring the integral absorption at the C-H overtone bands in the near-infrared spectral range. In situ measurements with the sensor system were performed in a ground water circulation well at the VEGAS research facility (Universitat Stuttgart). Here, the sensor proved to trace the HC sum concentration of xylene isomers in process water pumped from the well to a stripper column. In further experiments the sensor was combined with an oil sampling device and was tested with simulated waste waters of a commercial vehicle plant contaminated with different types of mineral oil. In this case the sensor system was able to detect the presence of mineral oil films floating on water or oil-in-water emulsions with concentrations greater than 20 ppm (v/v) within a few minutes.

  20. Sensitivity enhancement of fiber optic FBG sensor for acoustic emission

    NASA Astrophysics Data System (ADS)

    Seo, Dae-Cheol; Yoon, Dong-Jin; Kwon, Il-Bum; Lee, Seung-Suk

    2009-03-01

    A fiber optic Bragg grating based acoustic emission sensor system is developed to provide on-line monitoring of cracks or leaks in reactor vessel head penetration of nuclear power plants. Various type of fiber Bragg grating sensor including the variable length of sensing part was fabricated and prototype sensor system was tested by using PZT pulser and pencil lead break sources. In this study, we developed a cantilever type fiber sensor to enhance the sensitivity and to resonant frequency control. Two types of sensor attachment were used. First, the fiber Bragg grating sensor was fully bonded to the surface using bonding agent. Second one is that one part of fiber was partially bonded to surface and the other part of fiber will be remained freely. The resonant frequency of the fiber Bragg grating sensor will depend on the length of sensing part. Various kinds of resonant type fiber Bragg grating acoustic emission sensors were developed. Also several efforts were done to enhance the sensitivity of FBG AE sensor, which include FBG spectrum optimization and electrical and optical noise reduction. Finally, based on the self-developed acquisition system, a series of tests demonstrate the ability of the developed fiber sensor system to detect a pencil lead break event and continuous leak signal.

  1. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Souce for System-Level Testing of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2015-01-01

    This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.

  2. Intelligent detection and identification in fiber-optical perimeter intrusion monitoring system based on the FBG sensor network

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Qian, Ya; Zhang, Wei; Li, Hanyu; Xie, Xin

    2015-12-01

    A real-time intelligent fiber-optic perimeter intrusion detection system (PIDS) based on the fiber Bragg grating (FBG) sensor network is presented in this paper. To distinguish the effects of different intrusion events, a novel real-time behavior impact classification method is proposed based on the essential statistical characteristics of signal's profile in the time domain. The features are extracted by the principal component analysis (PCA), which are then used to identify the event with a K-nearest neighbor classifier. Simulation and field tests are both carried out to validate its effectiveness. The average identification rate (IR) for five sample signals in the simulation test is as high as 96.67%, and the recognition rate for eight typical signals in the field test can also be achieved up to 96.52%, which includes both the fence-mounted and the ground-buried sensing signals. Besides, critically high detection rate (DR) and low false alarm rate (FAR) can be simultaneously obtained based on the autocorrelation characteristics analysis and a hierarchical detection and identification flow.

  3. Phase unwrapping algorithms for use in a true real-time optical body sensor system for use during radiotherapy.

    PubMed

    Parkhurst, James; Price, Gareth; Sharrock, Phil; Moore, Christopher

    2011-12-10

    An evaluation of the suitability of eight existing phase unwrapping algorithms to be used in a real-time optical body surface sensor based on Fourier fringe profilometry is presented. The algorithms are assessed on both the robustness of the results they give and their speed of execution. The algorithms are evaluated using four sets of real human body surface data, each containing five-hundred frames, obtained from patients undergoing radiotherapy, where fringe discontinuity is significant. We also present modifications to an existing algorithm, noncontinuous quality-guided path algorithm (NCQUAL), in order to decrease its execution time by a factor of 4 to make it suitable for use in a real-time system. The results obtained from the modified algorithm are compared with those of the existing algorithms. Three suitable algorithms were identified: two-stage noncontinuous quality-guided path algorithm (TSNCQUAL)-the modified algorithm presented here-for online processing and Flynn's minimum discontinuity algorithm (FLYNN) and preconditioned conjugate gradient method (PCG) algorithms for enhanced accuracy in off-line processing.

  4. Structural diagnostics using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Surace, Giuseppe; Chiaradia, Agostino

    1997-11-01

    After establishing the basis for assessing the structural implications of introducing a widespread sensor architecture in laminated composite materials in order to precisely identify and locate damage, the paper addresses the problem of structural diagnostics with a discussion of the development of several optical sensors. The research project will first investigate a passive optical fiber impact sensor to be implemented in the matrix of a composite material used in aeronautic and automotive applications. The senor's operating principle is based on the changes in propagation conditions occurring in a fiber subjected to transverse compression: under these circumstances, structural microdistortions produce local energy losses and hence a reduction in the optical power which propagates in the fiber and can be measured at its opposite end. As optical power losses also take place as a result of micro-bending of the optical fiber's longitudinal axis, a preliminary feasibility study will measure power attenuation versus fiber curve radius as the first step in the development of an optical fiber delamination sensor which locates separations between the layers of a composite material, i.e. debonding of sandwich panel core faces. Finally, an active impact sensor will be developed which uses optical fiber's sensitivity to pressure changes to detect the pressure gradient caused by an approaching vehicle or obstacle. The automotive industry will be able to make strategic use of these sensors, for example by installing them on vehicle sides to active the side airbag in the event of impact or collision.

  5. Optical Sensors Using Stimulated Brillouin Scattering

    NASA Technical Reports Server (NTRS)

    Christensen, Caleb A (Inventor); Zavriyev, Anton (Inventor)

    2017-01-01

    A method for enhancing a sensitivity of an optical sensor having an optical cavity counter-propagates beams of pump light within the optical cavity to produce scattered light based on Stimulated Brillouin Scattering (SBS). The properties of the pump light are selected to generate fast-light conditions for the scattered light, such that the scattered light includes counter-propagating beams of fast light. The method prevents the pump light from resonating within the optical cavity, while allowing the scattered light to resonate within the optical cavity. At least portions of the scattered light are interfered outside of the optical cavity to produce a beat note for a measurement of the optical sensor. The disclosed method is particularly applicable to optical gyroscopes.

  6. Optical sensors in water monitoring

    NASA Astrophysics Data System (ADS)

    Gauglitz, Guenter

    2007-07-01

    An upcoming problem in Europe is the protection of water resources and control of water quality. Coastal areas, rivers, ground water, wetlands, and especially drinking water require permanent monitoring to avoid pollution by small organic molecules or especially endocrine disrupting compounds. Biosensors have demonstrated the proof-of-principle of immunochemistry for these applications. It turns out that especially optical methods based on fluorescence detection can be successfully used for the development of fast, sensitive, cost-effective, and easy-to-use analytical systems meeting the requirements given by European Community Directives and national legislation. Results obtained with the RIANA and AWACSS systems are discussed here.

  7. Novel optical sensors for detection of toxins, viruses and bacteria

    NASA Astrophysics Data System (ADS)

    Emmerson, Gregory D.; Sparrow, Ian J. G.; Bhatta, Devaki; SohnaSohna, Jean E.

    2008-10-01

    A novel optical sensor system for rapid, sensitive and robust biological detection is presented. Sensor elements based on integrated optical circuits confine all optical signals into a planar format, resulting in a small, low-cost and mechanically stable refractive index sensor, without any external bulk optics. Consequently, the sensor elements are able to operate in real-world environments, resilient to vibration and temperature changes, whilst maintaining refractive index resolution of 10-6. Oxide surfaces on the sensor are ideal for protein attachment and have a long lifetime in buffer solutions (>100hrs). Real-time, label-free detection of biological agents has been demonstrated using antibodies attached to the sensor surface. The sensor design results in a large penetration depth of the sensing light, up to 1μm into the sample liquid, conferring the ability to detect various classes of biological targets, spanning toxins, viruses and bacteria. Each sensing element utilizes parallel multiple wavelength data to provide additional information at the point of measurement, resulting in on-chip temperature and strain referencing, focused towards increased accuracy and reduction of false alarms. The large size range of biological detection, coupled with the long lifetime of the sensors makes the system ideally suited to applications ranging from medical diagnostics to confirmatory detectors for homeland security

  8. Development Of Porous Glass Fiber Optic Sensors

    NASA Astrophysics Data System (ADS)

    Macedo, P. B.; Barkatt, Aa.; Feng, X.; Finger, S. M.; Hojaji, H.; Laberge, N.; Mohr, R.; Penafiel, M.; Saad, E.

    A method for producing rugged, continuous porous glass fiber optic sensors was developed. pH and temperature sensors based on this technology have been successfully produced. The sensor portion of the fiber is made porous by selective leaching of a specially formulated borosilicate glass fiber. This results in a strong, monolithic structure where the sensor portion of the fiber remains integrally attached to the rest of the fiber (which acts as a light pipe), essentially eliminating losses at the sensor-light pipe interface. Pore size in the sensor can be controllably varied by modifying heat treatment conditions, making these sensors suitable for chemical concentration measurements in liquids and gases. Appropriate dyes were chemically bonded by silanization to the large interior surface area of the porous sensors to produce the pH and temperature sensors. Cresol red and phenol red were used for pH and pinacyanol chloride was used for temperature sensing. The sensitivity of these devices can be controlled by varying the concentration of the chemically bonded dye and the length of the porous region. Optical absorbance measurements were made in the visible range. The tip of the sensors was coated with a thin, porous layer of gold to reflect the incident light, resulting in a double pass across the porous sensor. Experimental measurements were made over a pH range of 3 to 8 and a temperature range of 28-70 C. These porous glass fiber optic sensors were found to be rugged and reliable due to their monolithic structure and large interior surface area for attachment of active species. A broad range of sensors based on this technology could be developed by using different active species, such as enzymes and other biochemicals, which could be bonded to the interior surface of the porous glass sensor.

  9. [INVITED] Developments in optical fibre sensors for industrial applications

    NASA Astrophysics Data System (ADS)

    Alwis, L.; Sun, T.; Grattan, K. T. V.

    2016-04-01

    It can be seen that optical fibre sensing technology has huge potential to address industrial applications. They offer various advantages over the conventional electrical systems and are increasingly becoming cost effective. Different types of fibre structure and configurations can be utilised to tailor specific applications. The paper aims to highlight the developments in optical fibre sensors for industrial applications.

  10. Development and Testing of a Friction-Based Post-Installable Sensor for Subsea Fiber-Optic Monitoring System

    NASA Technical Reports Server (NTRS)

    Bentley, Nicole L.; Brower, David V.; Le, Suy Q.; Seaman, Calvin H.; Tang, Henry H.

    2017-01-01

    This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain

  11. Development and Testing of a Friction-Based Post-Installable Sensor for Subsea Fiber-Optic Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Bentley, Nicole; Brower, David; Le, Suy Q.; Seaman, Calvin; Tang, Henry

    2017-01-01

    This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain

  12. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2003-07-22

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  13. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2004-05-18

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  14. A portable optical human sweat sensor

    NASA Astrophysics Data System (ADS)

    Al-omari, Mahmoud; Liu, Gengchen; Mueller, Anja; Mock, Adam; Ghosh, Ruby N.; Smith, Kyle; Kaya, Tolga

    2014-11-01

    We describe the use of HNQ (2-hydroxy-1,4-naphthoquinone or Lawsone) as a potential sweat sensor material to detect the hydration levels of human beings. We have conducted optical measurements using both artificial and human sweat to validate our approach. We have determined that the dominant compound that affects HNQ absorbance in artificial sweat is sodium. The presence of lactate decreases the reactivity of HNQ while urea promotes more interactions of sodium and potassium ions with HNQ. The interactions between the hydroxyl group of HNQ and the artificial sweat components (salts, lactic acid, and urea) were investigated comprehensively. We have also proposed and developed a portable diode laser absorption sensor system that converts the absorbance at a particular wavelength range (at 455 ± 5 nm, where HNQ has an absorbance peak) into light intensity measurements via a photocell. The absorbance intensity values obtained from our portable sensor system agrees within 10.4% with measurements from a laboratory based ultraviolet-visible spectrometer. Findings of this research will provide significant information for researchers who are focusing on real-time, in-situ hydration level detection.

  15. Dependence of the compensation error on the error of a sensor and corrector in an adaptive optics phase-conjugating system

    NASA Astrophysics Data System (ADS)

    Kiyko, V. V.; Kislov, V. I.; Ofitserov, E. N.

    2015-08-01

    In the framework of a statistical model of an adaptive optics system (AOS) of phase conjugation, three algorithms based on an integrated mathematical approach are considered, each of them intended for minimisation of one of the following characteristics: the sensor error (in the case of an ideal corrector), the corrector error (in the case of ideal measurements) and the compensation error (with regard to discreteness and measurement noises and to incompleteness of a system of response functions of the corrector actuators). Functional and statistical relationships between the algorithms are studied and a relation is derived to ensure calculation of the mean-square compensation error as a function of the errors of the sensor and corrector with an accuracy better than 10%. Because in adjusting the AOS parameters, it is reasonable to proceed from the equality of the sensor and corrector errors, in the case the Hartmann sensor is used as a wavefront sensor, the required number of actuators in the absence of the noise component in the sensor error turns out 1.5 - 2.5 times less than the number of counts, and that difference grows with increasing measurement noise.

  16. Optical sensors for water quality

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Recent advancements in commercially available in situ sensors, data platforms, and new techniques for data analysis provide an opportunity to monitor water quality in rivers, lakes, and estuaries on the time scales in which changes occur. For example, measurements that capture the variability in freshwater systems over time help to assess how shifts in seasonal runoff, changes in precipitation intensity, and increased frequencies of disturbances (such as fire and insect outbreaks) affect the storage, production, and transport of carbon and nitrogen in watersheds. Transmitting these data in real-time also provides information that can be used for early trend detection, help identify monitoring gaps, and provide sciencebased decision support across a range of issues related to water quality, freshwater ecosystems, and human health.

  17. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production

    PubMed Central

    Fan, Rong; Ebrahimi, Mehrdad; Quitmann, Hendrich; Aden, Matthias; Czermak, Peter

    2016-01-01

    Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L−1. The specific cell growth rate (µ) during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L−1). The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µmax was measured under different filtration conditions (transmembrane pressure 0.3–1.2 bar, crossflow velocity 0.5–1.5 m·s−1), showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems. PMID:27007380

  18. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production.

    PubMed

    Fan, Rong; Ebrahimi, Mehrdad; Quitmann, Hendrich; Aden, Matthias; Czermak, Peter

    2016-03-21

    Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L(-1). The specific cell growth rate (µ) during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L(-1)). The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µ(max) was measured under different filtration conditions (transmembrane pressure 0.3-1.2 bar, crossflow velocity 0.5-1.5 m·s(-1)), showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems.

  19. Smart fabrics: integrating fiber optic sensors and information networks.

    PubMed

    El-Sherif, Mahmoud

    2004-01-01

    "Smart Fabrics" are defined as fabrics capable of monitoring their own "health", and sensing environmental conditions. They consist of special type of sensors, signal processing, and communication network embedded into textile substrate. Available conventional sensors and networking systems are not fully technologically mature for such applications. New classes of miniature sensors, signal processing and networking systems are urgently needed for such application. Also, the methodology for integration into textile structures has to be developed. In this paper, the development of smart fabrics with embedded fiber optic systems is presented for applications in health monitoring and diagnostics. Successful development of such smart fabrics with embedded sensors and networks is mainly dependent on the development of the proper miniature sensors technology, and on the integration of these sensors into textile structures. The developed smart fabrics will be discussed and samples of the results will be presented.

  20. Optical fiber sensor development for turbine applications

    NASA Astrophysics Data System (ADS)

    Dunphy, James R.; Meltz, Gerald

    1989-07-01

    A twin-core optical fiber sensor is being developed for application to turbine engine diagnostics. It promises advantages of small, nonintrusive dimensions, inherent immunity to EMI, high temperature durability, and the capability to perform static strain and temperature measurements simultaneously. This paper summarizes the sensor concept, nonrotating risk reduction experiments, and rotating demonstration tests. During these experiments, the optical fiber sensors were attached to modified F100 turbine disks and operated in extreme conditions with temperatures higher than 1200 F, strains approaching 3000 microstrain, and spin rates greater than 7000 rpm.

  1. Free space optical sensor network for fixed infrastructure sensing

    NASA Astrophysics Data System (ADS)

    Agrawal, Navik; Milner, Stuart D.; Davis, Christopher C.

    2009-08-01

    Free space optical (FSO) links for indoor sensor networks can provide data rates that can range from bits/s to hundreds of Mb/s. In addition, they offer physical security, and in contrast with omnidirectional RF networks, they avoid interference with other electronic systems. These features are advantageous for communication over short distances in fixed infrastructure sensor networks. In this paper the system architecture for a fixed infrastructure FSO sensor network is presented. The system includes a network of small, low power (mW), sensor systems, or "motes," that transmit data optically to a central "cluster head," which controls the network traffic of all the motes and can aggregate the sensor information. The cluster head is designed with multiple vertical cavity surface emitting lasers oriented in different directions and controlled to diverge at 12º in order to provide signal coverage over a wide field of view. Both the cluster head and motes form a local area network. Our system design focuses on low-power wireless motes that can maintain successful communication over distances up to a few meters without having to use stringent optical alignment techniques, and our network design focuses on controlling mote sleep cycles for energy efficiency. This paper presents the design as well as the experimental link and optical communications performance of a prototype FSO-based sensor network.

  2. Multi-resolution optical 3D sensor

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Heinze, Matthias; Schmidt, Ingo; Breitbarth, Martin; Notni, Gunther

    2007-06-01

    A new multi resolution self calibrating optical 3D measurement system using fringe projection technique named "kolibri FLEX multi" will be presented. It can be utilised to acquire the all around shape of small to medium objects, simultaneously. The basic measurement principle is the phasogrammetric approach /1,2,3/ in combination with the method of virtual landmarks for the merging of the 3D single views. The system consists in minimum of two fringe projection sensors. The sensors are mounted on a rotation stage illuminating the object from different directions. The measurement fields of the sensors can be chosen different, here as an example 40mm and 180mm in diameter. In the measurement the object can be scanned at the same time with these two resolutions. Using the method of virtual landmarks both point clouds are calculated within the same world coordinate system resulting in a common 3D-point cloud. The final point cloud includes the overview of the object with low point density (wide field) and a region with high point density (focussed view) at the same time. The advantage of the new method is the possibility to measure with different resolutions at the same object region without any mechanical changes in the system or data post processing. Typical parameters of the system are: the measurement time is 2min for 12 images and the measurement accuracy is below 3μm up to 10 μm. The flexibility makes the measurement system useful for a wide range of applications such as quality control, rapid prototyping, design and CAD/CAM which will be shown in the paper.

  3. Plasmon-Enhanced Optical Sensors: A Review

    PubMed Central

    Li, Ming; Cushing, Scott K

    2014-01-01

    Surface plasmon resonance (SPR) has found extensive applications in chemi-sensors and biosensors. Plasmons play different roles in different types of optical sensors. SPR transduces a signal in a colorimetric sensor through shifts in the spectral position and intensity in response to external stimuli. SPR can also concentrate the incident electromagnetic field in a nanostructure, modulating fluorescence emission and enabling plasmon-enhanced fluorescence to be used for ultrasensitive detection. Furthermore, plasmons have been extensively used for amplifying a Raman signal in a surface-enhanced Raman scattering sensor. This paper presents a review of recent research progress in plasmon-enhanced optical sensing, giving an emphasis on the physical basis of plasmon-enhanced sensors and how these principles guide the design of sensors. In particular, this paper discusses the design strategies for nanomaterials and nanostructures to plasmonically enhance optical sensing signals, also highlighting the applications of plasmon-enhanced optical sensors in health care, homeland security, food safety and environmental monitoring. PMID:25365823

  4. Monolithic integrated-optic TDLAS sensors

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Scherer, David R.; Wainner, Richard T.; Allen, Mark G.; Shankar, Raji; Loncar, Marko

    2012-06-01

    We are developing prototype chip-scale low-power integrated-optic gas-phase chemical sensors based on infrared Tunable Diode Laser Absorption Spectroscopy (TDLAS). TDLAS is able to sense many gas phase chemicals with high sensitivity and selectivity. Using semiconductor fabrication and assembly techniques, the low-cost integrated optic TDLAS technology will permit mass production of sensors that have wide ranging industrial, medical, environmental, and consumer applications. Novel gas sensing elements using low-loss resonant photonic crystal cavities or waveguides will permit monolithic integration of a laser source, sampling elements, and detector on a semiconductor materials system substrate. Practical challenges to fabricating these devices include: a) selecting and designing the high-Q micro-resonator sensing element appropriate for the selected analyte; and b) device thermal management, especially stabilizing laser temperature with the precision needed for sensitive spectroscopic detection. In this paper, we analyze the expected sensitivity of micro-resonator-based structures for chemical sensing, and demonstrate a novel approach for exploiting laser waste heat to stabilize the laser temperature.

  5. Electro-optic voltage sensor head

    DOEpatents

    Crawford, Thomas M.; Davidson, James R.; Woods, Gregory K.

    1999-01-01

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

  6. Electro-optic voltage sensor head

    DOEpatents

    Crawford, T.M.; Davidson, J.R.; Woods, G.K.

    1999-08-17

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.

  7. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  8. Real time corner detection for miniaturized electro-optical sensors onboard small unmanned aerial systems.

    PubMed

    Forlenza, Lidia; Carton, Patrick; Accardo, Domenico; Fasano, Giancarmine; Moccia, Antonio

    2012-01-01

    This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d'Etudes et de Recherches Aérospatiales (ONERA) which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed.

  9. Real Time Corner Detection for Miniaturized Electro-Optical Sensors Onboard Small Unmanned Aerial Systems

    PubMed Central

    Forlenza, Lidia; Carton, Patrick; Accardo, Domenico; Fasano, Giancarmine; Moccia, Antonio

    2012-01-01

    This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d’Etudes et de Recherches Aérospatiales (ONERA) which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed. PMID:22368499

  10. Microbend fiber-optic chemical sensor

    DOEpatents

    Weiss, Jonathan D.

    2002-01-01

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  11. Inertial navigation sensor integrated obstacle detection system

    NASA Technical Reports Server (NTRS)

    Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)

    1992-01-01

    A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.

  12. Optical sensors for process monitoring in biotechnology

    NASA Astrophysics Data System (ADS)

    Ploetz, F.; Schelp, Carsten; Anders, K.; Eberhardt, F.; Scheper, Thomas-Helmut; Bueckmann, F.

    1991-09-01

    The development and application of various optical sensors will be presented. Among these are optical sensors (optrodes) with immobilized enzymes, coenzymes, and labeled antibodies. The NADH formation of coenzyme dependent enzymes was used for detection of lactate, pyrovate mannitol, ethanol, and formate. An enzyme optrode based on a pH-optrode as a transducer for the monitoring of urea and penicillin in fermentation media was developed. For preparing an oxygen optrode, oxygen-sensitive fluorophores were entrapped in a gaspermeable silicone matrix that is attached to the distal end of a bifurcated fiber optic waveguide bundle. By labeling of immuncomponent with fluorophores or enzymes, which transpose fluorophores or chromophores, immunreactions were observed by an optical sensors.

  13. Hypervelocity impact testing of spacecraft optical sensors

    SciTech Connect

    1995-07-01

    Hypervelocity tests of spacecraft optical sensors were conducted to determine if the optical signature from an impact inside the optical sensor sunshade resembled signals that have been observed on-orbit. Impact tests were conducted in darkness and with the ejected debris illuminated. The tests were conducted at the Johnson Space Center Hypervelocity Impact Test Facility. The projectile masses and velocities that may be obtained at the facility are most representative of the hypervelocity particles thought to be responsible for a group of anomalous optical sensors responses that have been observed on-orbit. The projectiles are a few micrograms, slightly more massive than the microgram particles thought to be responsible for the signal source. The test velocities were typically 7.3 km/s, which are somewhat slower than typical space particles.

  14. Optical Fibre Pressure Sensors in Medical Applications

    PubMed Central

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-01-01

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228

  15. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  16. Pattern detection through the use of long-gauge length spatially weighted fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Spillman, William B., Jr.; Huston, Dryver R.

    1996-11-01

    Multiplexed and distributed sensor systems are generally employed when the number of sensing points makes the use of an individually addressed sensor array prohibitive based upon some system cost function. Fiber optic sensing techniques offer great potential for the creation of multiplexed, quasi-distributed and distributed sensor systems. In addition, fiber optic sensors can be spatially weighted and configured for maximum sensitivity to particular patterns of extended parameter fields. This allows such sensors to perform a patten recognition preprocessing function, reducing system cost and processing overhead. In this paper, the appropriate use of multiplexed sensor systems, distributed sensor systems and long gauge length sensor systems with pattern matching capability are discussed as a function of system size and purpose. Design options for long gauge length sensors in terms of preprocessing functionality also are discussed. Finally, a specific example of the use of a spatially weighted sensor for vehicle identification is covered.

  17. Effects of the source, surface, and sensor couplings and colorimetric of laser speckle pattern on the performance of optical imaging system

    NASA Astrophysics Data System (ADS)

    Darwiesh, M.; El-Sherif, Ashraf F.; El-Ghandour, Hatem; Aly, Hussein A.; Mokhtar, A. M.

    2011-03-01

    Optical imaging systems are widely used in different applications include tracking for portable scanners; input pointing devices for laptop computers, cell phones, and cameras, fingerprint-identification scanners, optical navigation for target tracking, and in optical computer mouse. We presented an experimental work to measure and analyze the laser speckle pattern (LSP) produced from different optical sources (i.e. various color LEDs, 3 mW diode laser, and 10mW He-Ne laser) with different produced operating surfaces (Gabor hologram diffusers), and how they affects the performance of the optical imaging systems; speckle size and signal-to-noise ratio (signal is represented by the patches of the speckles that contain or carry information, and noise is represented by the whole remaining part of the selected image). The theoretical and experimental studies of the colorimetry (color correction is done in the color images captured by the optical imaging system to produce realistic color images which contains most of the information in the image by selecting suitable gray scale which contains most of the informative data in the image, this is done by calculating the accurate Red-Green-Blue (RGB) color components making use of the measured spectrum for light sources, and color matching functions of International Telecommunication Organization (ITU-R709) for CRT phosphorus, Tirinton-SONY Model ) for the used optical sources are investigated and introduced to present the relations between the signal-to-noise ratios with different diffusers for each light source. The source surface coupling has been discussed and concludes that the performance of the optical imaging system for certain source varies from worst to best based on the operating surface. The sensor /surface coupling has been studied and discussed for the case of He-Ne laser and concludes the speckle size is ranged from 4.59 to 4.62 μm, which are slightly different or approximately the same for all produced

  18. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  19. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  20. Magneto-optic current sensor

    DOEpatents

    Lanagan, Michael T.; Valsko-Vlasov, Vitalii K.; Fisher, Brandon L.; Welp, Ulrich

    2003-10-07

    An optical current transducer configured to sense current in the conductor is disclosed. The optical current transducer includes a light source and a polarizer that generates linearly polarized light received from a the light source. The light is communicated to a magneto-optic garnet that includes, among other elements, bismuth, iron and oxygen and is coupled to the conductor. The magneto-optic garnet is configured to rotate the polarization of the linearly polarized light received from the polarizer. The optical current transducer also includes an analyzer in optical communication with the magneto-optic garnet. The analyzer detects the rotation of the linearly polarized light caused by the magneto-optic garnet.

  1. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  2. Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater.

    PubMed

    Buerck, J; Roth, S; Kraemer, K; Scholz, M; Klaas, N

    2001-05-07

    Interaction of analyte molecules with the evanescent wave of light guided in optical fibers is among the most promising novel sensing schemes that can be applied for environmental monitoring and on-line process analysis. By combining this measuring principle with the solid-phase extraction of analyte molecules into the polymer cladding of a fiber, it is possible to perform direct absorption measurements in the cladding, if the fiber is adapted to a conventional spectrometer/photometer. A big advantage of this arrangement is that the measurement is scarcely disturbed by matrix effects (background absorption of water in IR measurements, stray light due to turbidity in the sample). By using near-infrared (NIR) evanescent field absorption (EFA) measurements in quartz glass fibers coated with a hydrophobic silicone membrane it is possible to design and construct sensors for monitoring apolar hydrocarbons (HCs) in aqueous matrices.The paper presents a fiber-optic sensor system for the determination of aromatic HCs in groundwater or industrial wastewater. Generally, this instrument is suitable for quantitative in situ monitoring of pollutants such as aromatic solvents, fuels, mineral oils or chlorinated HCs with relatively low water saturation solubility (typically between 0.01 and 10 g l(-1)). The sensor probe is connected via all-silica fibers to a filter photometer developed at the IFIA, thus, allowing even remote analysis in a monitoring well. This portable instrument provides a total concentration signal of the organic compounds extracted into the fiber cladding by measuring the integral absorption at the 1st C--H overtone bands in the NIR spectral range. In situ measurements with the sensor system were performed in a groundwater circulation well at the VEGAS research facility of the University of Stuttgart (Germany). The NIR-EFA sensor system was tested within the frame of an experiment that was carried through in a tank containing sandy gravel with a groundwater

  3. Polymer Optical Fiber Sensor and the Prediction of Sensor Response Utilizing Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Haroglu, Derya

    The global market researches showed that there is a growing trend in the field of polymer optical fiber (POF) and POF sensors. Telecommunications, medicine, defense, aerospace, and automotive are the application areas of fiber optic sensors, where the automotive industry is the most promising application area for innovations in the field of POF sensors. The POF sensors in automobiles are particularly for detection of seat occupancy, and intelligent pedestrian protection systems. This dissertation investigates graded index perfluorinated polymer optical fiber as an intensity modulated intrinsic sensor for application in automotive seat occupancy sensing. Since a fiber optic sensor has a high bandwidth, is small in size, is lightweight, and is immune to electromagnetic interference (EMI) it offers higher performance than that of its electrical based counterparts such as strain gauge, elastomeric bladder, and resistive sensor systems. This makes the fiber optic sensor a potential suitable material for seat occupancy sensing. A textile-based fiber optic sensor was designed to be located in the area beneath the typical seated human's thighs. The pressure interval under which the proposed POF sensor design could perform well was found to be between 0.18 and 0.21 N/cm2, where perfluorinated (PF) graded index (GI) POF (62.5/750 mum) was used as the POF material. In addition, the effect of the automotive seat covering including face material (fabric) and foam backing to the sensor's performance was analyzed. The face fabric structure and the thickness of foam backing were not found to be significant factors to change the sensor results. A research study, survey, was conducted of which purpose was to better understand market demands in terms of sensor performance characteristics for automotive seat weight sensors, as a part of the Quality Function Deployment (QFD) House of Quality analysis. The companies joined the survey agreed on the first 5 most important sensor

  4. Optical protein sensor for detecting cancer markers in saliva.

    PubMed

    Tan, Winny; Sabet, Leyla; Li, Yang; Yu, Tianwei; Klokkevold, Perry R; Wong, David T; Ho, Chih-Ming

    2008-10-15

    A surface immobilized optical protein sensor has been utilized to detect Interleukin-8 (IL-8) protein, an oral cancer marker, and can reach limit of detection (LOD) at 1.1 pM in buffer without using enzymatic amplification. Only after applying enzymatic amplification to increase the signal level by a few orders of magnitude, ELISA can reach the LOD of 1 pM level. We then develop the confocal optics based sensor for further reducing the optical noise and can extend the LOD of the surface immobilized optical protein sensor two orders in magnitude. These improvements have allowed us to detect IL-8 protein at 4.0 fM in buffer. In addition, these sensitive LODs were achieved without the use of enzymatic signal amplification, such that the simplified protocol can further facilitate the development of point-of-care devices. The ultra sensitive optical protein sensor presented in this paper has a wide number of applications in disease diagnoses. Measurements for detecting biomarkers in clinical sample are much more challenging than the measurements in buffer, due to high background noise contributed by large collections of non-target molecules. We used clinical saliva samples to validate the functionality of the optical protein sensor. Clinical detection of disease-specific biomarkers in saliva offers a non-invasive, alternative approach to using blood or urine. Currently, the main challenge of using saliva as a diagnostic fluid is its inherently low concentration of biomarkers. We compare the measurements of 40 saliva samples; half from oral cancer patients and half from a control group. The data measured by the optical protein sensor is compared with the traditional Enzyme-Linked Immunosorbant Assay (ELISA) values to validate the accuracy of our system. These positive results enable us to proceed to using confocal optical protein sensor to detect other biomarkers, which have much lower concentrations.

  5. Novel ultrahigh resolution optical fibre temperature sensor

    NASA Astrophysics Data System (ADS)

    Poeggel, Sven; Duraibabu, Dineshbabu; Dooly, Gerard; Lewis, Elfed; Leen, Gabriel

    2016-05-01

    In this paper a novel patent pending high resolution optical fibre temperature sensor, based on an optical fibre pressure and temperature sensor (OFTPS), which is surrounded by an oil filled chamber, is presented. The OFPTS is based on a Fabry Perot interferometer (FPI) which has an embedded fibre Bragg grating (FBG). The high ratio between the volume of the oil filled outer cavity and the FPIs air filled cavity, results in a highly sensitive temperature sensor. The FBG element of the device can be used for wide range temperature measurements, and combining this capability with the high resolution capability of the FPI/oil cavity results in a wide range and high resolution temperature sensing device. The outer diameter of the sensor is less than 1mm in diameter and can be designed to be even smaller. The sensors temperature response was measured in a range of ΔT = 7K and resulted in a shift in the optical spectrum of ΔλF = 61.42nm. Therefore the Q-point of the reflected optical FPI spectrum is shifting with a sensitivity of sot = 8.77 nm/K . The sensitivity can easily be further increased by changing the oil/air volumetric ratio and therefore adapt the sensor to a wide variety of applications.

  6. 1700 deg C optical temperature sensor

    NASA Technical Reports Server (NTRS)

    Mossey, P. W.; Shaffernocker, W. M.; Mulukutla, A. R.

    1986-01-01

    A new gas temperature sensor was developed that shows promise of sufficient ruggedness to be useful as a gas turbine temperature sensor. The sensor is in the form of a single-crystal aluminum oxide ceramic, ground to a cone shape and given an emissive coating. A lens and an optical fiber conduct the thermally emitted light to a remote and near-infrared photodetector assembly. Being optically coupled and passive, the sensor is highly immune to all types of electrical interference. Candidate sensors were analyzed for optical sensor performance, heat transfer characteristics, stress from gas loading. This led to the selection of the conical shape as the most promising for the gas turbine environment. One uncoated and two coated sensing elements were prepared for testing. Testing was conducted to an indicated 1750 C in a propane-air flame. Comparison with the referee optical pyrometer shows an accuracy of + or - 25 C at 1700 C for this initial development. One hundred cycles from room temperature to 1700 C left the sapphire cone intact, but some loss of the platinum, 6% rhodium coating was observed. Several areas for improving the overall performance and durability are identified.

  7. Soldier systems sensor fusion

    NASA Astrophysics Data System (ADS)

    Brubaker, Kathryne M.

    1998-08-01

    This paper addresses sensor fusion and its applications in emerging Soldier Systems integration and the unique challenges associated with the human platform. Technology that,provides the highest operational payoff in a lightweight warrior system must not only have enhanced capabilities, but have low power components resulting in order of magnitude reductions coupled with significant cost reductions. These reductions in power and cost will be achieved through partnership with industry and leveraging of commercial state of the art advancements in microelectronics and power sources. As new generation of full solution fire control systems (to include temperature, wind and range sensors) and target acquisition systems will accompany a new generation of individual combat weapons and upgrade existing weapon systems. Advanced lightweight thermal, IR, laser and video senors will be used for surveillance, target acquisition, imaging and combat identification applications. Multifunctional sensors will provide embedded training features in combat configurations allowing the soldier to 'train as he fights' without the traditional cost and weight penalties associated with separate systems. Personal status monitors (detecting pulse, respiration rate, muscle fatigue, core temperature, etc.) will provide commanders and highest echelons instantaneous medical data. Seamless integration of GPS and dead reckoning (compass and pedometer) and/or inertial sensors will aid navigation and increase position accuracy. Improved sensors and processing capability will provide earlier detection of battlefield hazards such as mines, enemy lasers and NBC (nuclear, biological, chemical) agents. Via the digitized network the situational awareness database will automatically be updated with weapon, medical, position and battlefield hazard data. Soldier Systems Sensor Fusion will ultimately establish each individual soldier as an individual sensor on the battlefield.

  8. A mobile wireless sensor network platform for use with optical fibre sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Bochao; Yang, Shuo; Sun, Tong; Grattan, Kenneth T. V.

    2013-05-01

    This paper presents a novel design of a system for using smart mobile robots to deploy a Wireless Sensor Network (WSN) for different optical fibre sensors, allowing for potential applications where there is a remote and harsh monitoring environment and allowing for the advantages of the optical fibre technology for the sensor itself to be used. The platform which was designed is comprised of a smart mobile robot, an optical fibre sensor module and a WSN module integrated with a localization component based on Received Signal Strength Indicator (RSSI), which has important advantages for mobile sensing and tracking, flexible deployment and mesh networking. The design principle and implementation-related issues for the platform have been discussed in this study. To investigate the performance of the mobile WSN platform, an experiment simulating measurement in a real environment has been performed. With the positive experimental data obtained, the functionalities of the platform are successfully demonstrated, which enables the real-time monitoring and transmission of sensor data and in addition estimated positional information. The exploitation of this kind of mobile WSN platform with fibre optic sensors is expected to make an impact on many applications, including those where advanced optical fibre sensing is particularly advantageous, yet where conventional WSNs cannot meet the requirements of the total sensing system.

  9. Polyimide-coated embedded optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Nath, Dilip K.; Nelson, Gary W.; Griffin, Stephen E.; Harrington, C. T.; He, Yi-Fei; Reinhart, Lawrence J.; Paine, D. C.; Morse, Theodore F.

    1991-10-01

    The present paper describes the behavior of embedded optical sensor fibers in a high- temperature PEEK (polyether ether ketone) carbon fiber composite. Sheets of this material, 200 micrometers thick, were layered in alternating directions for the carbon fibers. Typically, 16 sheets were used to form 3' X 6' or 3' X 8' panels by placing the optical fibers in the middle of the `prepreg' sheets, which were then heated to the processing temperature, and subjected to a pressure of 300 psi during the cool-down phase. Since the ordinary polymeric coatings of optical fibers cannot survive the 380 degree(s)C to 400 degree(s)C processing temperature of PEEK impregnated fiber composites, all of the optical sensor fibers tested were polyimide coated. The optical, mechanical, and thermal properties are reported and it is concluded that polyimide coated fibers can withstand PEEK processing conditions.

  10. INSENS sensor system

    SciTech Connect

    Myers, D.W.; Baker, J.; Benzel, D.M.; Fuess, D.A.

    1993-09-29

    This paper describes an unattended ground sensor system that has been developed for the immigration and Naturalization Service (INS). The system, known as INSENS, was developed at the Lawrence Livermore National Laboratory for use by the United States Border Patrol. This system assists in the detection of illegal entry of aliens and contraband (illegal drugs, etc.) into the United States along its land borders. Key to the system is its flexible modular design which allows future software and hardware enhancements to the system without altering the fundamental architecture of the system. Elements of the system include a sensor system capable of processing signals from multiple directional probes, a repeater system, and a handheld monitor system. Seismic, passive infrared (PIR), and magnetic probes are currently supported. The design of the INSENS system elements and their performance are described.

  11. Fiber optic, Faraday rotation current sensor

    SciTech Connect

    Veeser, L.R.; Day, G.W.

    1986-01-01

    At the Second Megagauss Conference in 1979, there were reports of experiments that used the Faraday magneto-optic effect in a glass rod to measure large electric current pulses or magnetic fields. Since then we have seen the development of single-mode optical fibers that can carry polarized light in a closed loop around a current load. A fiber optic Faraday rotation sensor will integrate the flux, instead of sampling it at a discrete point, to get a measurement independent of the current distribution. Early Faraday rotation experiments using optical fibers to measure currents dealt with problems such as fiber birefringence and difficulties in launching light into the tiny fiber cores. We have built on those experiments, working to reduce the effects of shocks and obtaining higher bandwidths, absolute calibration, and computerized recording and data analysis, to develop the Faraday rotation sensors into a routine current diagnostic. For large current pulses we find reduced sensitivity to electromagnetic interference and other backgrounds than for Rogowski loops; often the fiber optic sensors are useful where conductive probes cannot be used at all. In this paper we describe the fiber optic sensors and some practical matters involved in fielding them.

  12. [The recent development of fiber-optic chemical sensor].

    PubMed

    Wang, Jian; Wei, Jian-ping; Yang, Bo; Gao, Zhi-yang; Zhang, Li-wei; Yang, Xue-feng

    2014-08-01

    The present article provides a brief review of recent research on fiber-optic chemical sensor technology and the future development trends. Especially, fiber-optic pH chemical sensor, fiber-optic ion chemicl sensor, and fiber-optic gas chemical sensor are introduced respectively. Sensing film preparation methods such as chemical bonding method and sol-gel method were briefly reviewed. The emergence of new type fiber-microstructured optical fiber opened up a new development direction for fiber-optic chemical sensor. Because of its large inner surface area, flexible design of structure, having internal sensing places in fibers, it has rapidly become an important development direction and research focus of the fiber-optic chemical sensors. The fiber-optic chemical sensor derived from microstructured optical fiber is also discussed in detail. Finally, we look to the future of the fiber-optic chemical sensor.

  13. High-sensitivity fiber optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  14. Unbalanced Michelson's interferometer as a fiber optic distributed sensor of external signals

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Szustakowski, Mieczyslaw; Zyczkowski, Marek

    2001-08-01

    The subject of this work is a novel fiber optic distributed sensor system. The system uses a technique called multiplexed reflectometric interferometry to measure dynamic strain in a network of single mode optical fiber sensors. The sensor is constructed on unbalanced fiber optic Michelson's interferometer is activated by series of double pulse. The time interval between those pulses depends on the length of the section of sensor. Acousto-optical modulator acts as an optical frequency shifter. A change in a frequency of electrical pulses exciting the modulator result in a frequency shift in each generated wave packet.

  15. Double-Tubing Encapsulated Fiber Optic Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Xu, Juncheng; Pickrell, Gary; Huang, Zhengyu; Qi, Bing; Zhang, Po; Duan, Yuhong; Wang, Anbo

    2003-09-01

    Increasing the efficiency of oil production operations requires improved sensors to supply critical information such as mixed-phase fluid flow, pressure and temperature measurements within the down-hole oil environment. In order to provide robust and reliable fiber optic temperature sensors capable of operating in the harsh down-hole oil environment, where temperatures might exceed 250 °C and pressures might reach 20,000 psi (140 Mpa), a novel type of fiber optic temperature sensor has been developed. This temperature sensor functions as an EFPI (extrinsic Fabry-Perot interferometric) sensor. One unique contribution of this work is that the glass tubing used is a borosilicate glass with a relatively high coefficient of thermal expansion (CTE) and long gauge length, allowing a much higher sensitivity to be achieved, without hysteresis. The sensor structure utilizes a dual tubing design (tubing within a tubing) to allow pressure isolation. An LED light beam is used as the signal interrogation source to remotely interrogate the sensor which may be located tens of thousands of meters away, connected by an optical fiber. A white-light interferometer measurement system is utilized to process the returned interference signal and to precisely determine the length of the Fabry-Perot interferometric cavity. Another unique feature of this work is that the sensor has been packaged with a specially developed hermetic protection process to prevent water penetration and to improve the mechanical integrity of the sensor. This protection process has allowed the successful hydraulic deployment of fiber optic sensors through 3 mm ID stainless steel tubing into a functioning oil well. Data on the resolution, repeatability and pressure sensitivity are presented.

  16. A fiber optic temperature sensor for aerospace applications

    NASA Astrophysics Data System (ADS)

    Jensen, Stephen C.; Tilstra, Shelle D.; Barnabo, Geoffrey A.; Thomas, David C.; Phillips, Richard W.

    1991-02-01

    A fiber-optic temperature sensor has been developed for aerospace applications on the basis of the time rate of decay (TRD) principle, with a view to an operational temperature range of -60 to 350 C. This TRD system has completed qualification testing and will then undergo flight tests. Attention is presently given to the design and performance of four low temperature sensors that are subelements of the larger sensor system; in order to convert analog signals into over/under temperature indications, simple comparators are implemented in software.

  17. Fiber optic plantar pressure/shear sensor

    NASA Astrophysics Data System (ADS)

    Soetanto, William; Nguyen, Ngoc T.; Wang, Wei-Chih

    2011-04-01

    A full-scale foot pressure/shear sensor that has been developed to help diagnose the cause of ulcer formation in diabetic patients is presented. The design involves a tactile sensor array using intersecting optical fibers embedded in soft elastomer. The basic configuration incorporates a mesh that is comprised of two sets of parallel optical fiber plane; the planes are configured so the parallel rows of fiber of the top and bottom planes are perpendicular to each other. Threedimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution and the shifting of the layers relative to each other. In this paper we will present the latest development on the fiber optic plantar pressure/shear sensor which can measure normal force up from 19.09 kPa to 1000 kPa.

  18. Fiber optic electric field sensor technology

    NASA Technical Reports Server (NTRS)

    Jarzynski, J.; De Paula, R. P.

    1987-01-01

    The properties of piezoactive plastics are reviewed as well as the fiber-optic electric field sensors studied so far. A particular configuration consisting of a concentric piezoactive jacket on the glass fiber is discussed in detail and the frequency response of this sensor is projected over a wide range of frequencies. The present design has the practical advantages of leading to a compact lightweight sensor; longer fiber lengths may be used to increase sensitivity. It is predicted that, at low frequencies, a fiber-optic antenna using a 1-km length of fiber would be capable of detecting a minimum electric field of 43 microV/m assuming a minimum phase sensitivity of 10 to the -6th radians for the optical Mach-Zehnder interferometer.

  19. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1998-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  20. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1998-06-30

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  1. Electronic Nose System Sensors

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Jet Propulsion Laboratory has designed and built an electronic nose system -- ENose -- to take on the duty of staying alert for smells that could indicate hazardous conditions in a closed spacecraft environment. Its sensors (shown here) are tailored so they conduct electricity differently when an air stream carries a particular chemical across them. JPL has designed and built a 3-pound flight version. The active parts are 32 sensors, each with a different mix of polymers saturated with carbon. When certain chemicals latch onto a sensor, they change how the sensor conducts electricity. This signal tells how much of a compound is in the air. The electronic nose flown aboard STS-95 in 1998 was capable of successfully detecting 10 toxic compounds.

  2. Improved Optical-Fiber Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    In optical-fiber temperature sensors of proposed type, phosphorescence and/or fluorescence in temperature-dependent coating layers coupled to photodetectors. Phosphorescent and/or fluorescent behavior(s) of coating material(s) depend on temperature; coating material or mixture of materials selected so one can deduce temperature from known temperature dependence of phosphorescence and/or fluorescence spectrum, and/or characteristic decay of fluorescence. Basic optical configuration same as that of optical-fiber chemical detectors described in "Making Optical-Fiber Chemical Detectors More Sensitive" (LAR-14525).

  3. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field

  4. General review of optical current sensors

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Ning, Yanong N.; Palmer, Andrew W.; Grattan, Kenneth T. V.

    1994-08-01

    In recent years, a considerable research effort has been expended on the field of optical current measurement in order to replace the conventional curient transformer (CT) used in power distribution 1 Although current measurement schemes based upon the use of an optical fibre as the sensing element were proposed as early as 1976, and a number of new methods which employ optical fibre, or bulk glass, or even electro-optic hybrid sensing elements have been explored and aviable commercial product has not yet emerged, despite the considerable level of research that has been devoted to the concept. An opticai current sensor consists of an optical current sensing element which measures the integral of the magnetic field along a closed (or nearly closed) optical loop around the current to be measured, an optical fibre link which connects the sensing element to an opto-eletronic control/processing unit, used to launch a light beam into the optical fibre and detect/demodulate the modulated optical signal collected from the fibre. According to the sensing mechanism employed and the sensing materials used, the optical current measurement devices may be categorized into three main groups: (i) optical current sensors (OCS) employing optical fibre as their sensing elements, (ii) the OCS type using bulk glass to sense the current, and (iii) the OCS type using electro-optic hybrid devices. In general, the principle ofthe operation ofthe first two types of sensors is based upon the so-called "Faraday magneto-optic effect", in which the polarization azimuth, 1F' a linearly polarized light beam propagating inside an optical material is rotated under the influence of a magnetic field, H, generated by the electrical current to be measured and is given by (Formula available in paper) (1) where V is the Verdet constant ofthe fibre core and 1 is the interaction length. Ifthe medium is subject to the magnetic field within a long solenoid this then becomes (Formula available in paper) (2

  5. Lensless Magneto-optic speed sensor

    DOEpatents

    Veeser, Lynn R.; Forman, Peter R.; Rodriguez, Patrick J.

    1998-01-01

    Lensless magneto-optic speed sensor. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 .mu.m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation.

  6. Lensless magneto-optic speed sensor

    DOEpatents

    Veeser, L.R.; Forman, P.R.; Rodriguez, P.J.

    1998-02-17

    Lensless magneto-optic speed sensor is disclosed. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 {micro}m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation. 5 figs.

  7. Thermal strain analysis of optic fiber sensors.

    PubMed

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-31

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  8. Fiber optic liquid refractive index sensor

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2015-08-01

    In this present work we report fabrication of fiber optic liquid refractive index (RI) measurement sensor based on Michelson Interferometer method. This sensor was assembled by using graded index multimode (MM) fiber with core diameter 50 µm and the cladding of fiber was removed by simple chemical method. To perform this experiment a 2×2 3dB coupler is used. The fiber ends are then immersed in solvent and solution to provide reference and refractive index measurements, respectively. This method was successfully used to measure refractive index of Sodium Chloride (NaCl)-Water solution at different concentrations. The fringe contrast sensitivity of device is 92.90 dB/RIU measured in the RI range from 1.34 to 1.42 which is better than Mach-Zehnder Interferometer sensor [1] and Fabry perot based sensor [2]. The fabrication of sensor is simple, low cost and highly sensitive.

  9. Porous Silicon Structures as Optical Gas Sensors

    PubMed Central

    Levitsky, Igor A.

    2015-01-01

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed. PMID:26287199

  10. A Spherical Electro Optic High Voltage Sensor

    DTIC Science & Technology

    1989-06-01

    electro - optic (EO) crystal is introduced for photonic measurement of pulsed high-voltage fields. A spherical shape is used in order to reduce electric field gradients in the vicinity of the sensor. The sensor is pure dielectric and is interrogated remotely using a laser. The sensor does not require the connection of any conducting components, which results in the highest electrical isolation. The spherical nature of the crystal coupled with the incident laser beam, and crossed polarizers (intensity modulation scheme). automatically produces interference figures. The

  11. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1996-08-20

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  12. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1996-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  13. Analysis, design, fabrication and testing of an optical tip clearance sensor. [turbocompressor blade tips

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Marple, D. T. F.; Kingsley, J. D.

    1981-01-01

    Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed.

  14. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  15. EDITORIAL: Optical Fibre Sensors 18 (OFS-18)

    NASA Astrophysics Data System (ADS)

    Jones, Julian D. C.; Tatam, Ralph P.

    2007-10-01

    The International Conference on Optical Fibre Sensors (OFS-18) was held in October 2006 in Cancún, Mexico, under the general chairmanship of Dr Alexis Mendez (MCH Engineering LLC, USA) and Dr Fernando Mendoza (Centro de Investigaciones en Optica, Mexico). 'OFS', as it has become known, is firmly established as the leading international conference for the optical fibre sensor community. Since its inception, in London in 1983, and under the leadership of an international steering committee independent of any learned society or professional institution, it has been held approximately every eighteen months. The venue nominally rotates from Europe, to the Americas, and thence to Asia and the Pacific. OFS-18 demonstrated the continuing vigour of the community, with some 250 papers presented, plus two workshops, with attendance as international as ever. In recent years, it has become a tradition to publish a post-conference special issue in the journal Measurement Science and Technology, and these special issues offer a representative sample of the current status of the field. In the nearly 25 years since OFS began, many of the early ideas and laboratory-based proof-of-principle experiments have led to highly developed instrumentation systems, and to successful commercial products. Perhaps the most mature of all of these technologies is the optical fibre gyroscope, with the fibre hydrophone a close second—originally developed for defence applications for which it is now established, but with increasing relevance to the oil and gas industry; electromagnetic sensors based on the Faraday and electro-optic effects are of growing significance in the power generation and distribution industry; whilst in-fibre grating-based sensors occupy an expanding niche in structural monitoring, especially in civil engineering. It is therefore appropriate that the first day of OFS was devoted to workshops on structural health monitoring, and to commemorate the 30th anniversary of the

  16. Coded Access Optical Sensor (CAOS) Imager

    NASA Astrophysics Data System (ADS)

    Riza, N. A.; Amin, M. J.; La Torre, J. P.

    2015-04-01

    High spatial resolution, low inter-pixel crosstalk, high signal-to-noise ratio (SNR), adequate application dependent speed, economical and energy efficient design are common goals sought after for optical image sensors. In optical microscopy, overcoming the diffraction limit in spatial resolution has been achieved using materials chemistry, optimal wavelengths, precision optics and nanomotion-mechanics for pixel-by-pixel scanning. Imagers based on pixelated imaging devices such as CCD/CMOS sensors avoid pixel-by-pixel scanning as all sensor pixels operate in parallel, but these imagers are fundamentally limited by inter-pixel crosstalk, in particular with interspersed bright and dim light zones. In this paper, we propose an agile pixel imager sensor design platform called Coded Access Optical Sensor (CAOS) that can greatly alleviate the mentioned fundamental limitations, empowering smart optical imaging for particular environments. Specifically, this novel CAOS imager engages an application dependent electronically programmable agile pixel platform using hybrid space-time-frequency coded multiple-access of the sampled optical irradiance map. We demonstrate the foundational working principles of the first experimental electronically programmable CAOS imager using hybrid time-frequency multiple access sampling of a known high contrast laser beam irradiance test map, with the CAOS instrument based on a Texas Instruments (TI) Digital Micromirror Device (DMD). This CAOS instrument provides imaging data that exhibits 77 dB electrical SNR and the measured laser beam image irradiance specifications closely match (i.e., within 0.75% error) the laser manufacturer provided beam image irradiance radius numbers. The proposed CAOS imager can be deployed in many scientific and non-scientific applications where pixel agility via electronic programmability can pull out desired features in an irradiance map subject to the CAOS imaging operation.

  17. Data Optical Networking Architecture Using Wavelength-Division Multiplexing Method for Optical Sensors

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.

    2008-01-01

    Recently there has been a growth in the number of fiber optical sensors used for health monitoring in the hostile environment of commercial aircraft. Health monitoring to detect the onset of failure in structural systems from such causes as corrosion, stress corrosion cracking, and fatigue is a critical factor in safety as well in aircraft maintenance costs. This report presents an assessment of an analysis model of optical data networking architectures used for monitoring data signals among these optical sensors. Our model is focused on the design concept of the wavelength-division multiplexing (WDM) method since most of the optical sensors deployed in the aircraft for health monitoring typically operate in a wide spectrum of optical wavelengths from 710 to 1550 nm.

  18. A new paradigm for video cameras: optical sensors

    NASA Astrophysics Data System (ADS)

    Grottle, Kevin; Nathan, Anoo; Smith, Catherine

    2007-04-01

    This paper presents a new paradigm for the utilization of video surveillance cameras as optical sensors to augment and significantly improve the reliability and responsiveness of chemical monitoring systems. Incorporated into a hierarchical tiered sensing architecture, cameras serve as 'Tier 1' or 'trigger' sensors monitoring for visible indications after a release of warfare or industrial toxic chemical agents. No single sensor today yet detects the full range of these agents, but the result of exposure is harmful and yields visible 'duress' behaviors. Duress behaviors range from simple to complex types of observable signatures. By incorporating optical sensors in a tiered sensing architecture, the resulting alarm signals based on these behavioral signatures increases the range of detectable toxic chemical agent releases and allows timely confirmation of an agent release. Given the rapid onset of duress type symptoms, an optical sensor can detect the presence of a release almost immediately. This provides cues for a monitoring system to send air samples to a higher-tiered chemical sensor, quickly launch protective mitigation steps, and notify an operator to inspect the area using the camera's video signal well before the chemical agent can disperse widely throughout a building.

  19. Integrated semiconductor optical sensors for cellular and neural imaging.

    PubMed

    Levi, Ofer; Lee, Thomas T; Lee, Meredith M; Smith, Stephen J; Harris, James S

    2007-04-01

    We review integrated optical sensors for functional brain imaging, localized index-of-refraction sensing as part of a lab-on-a-chip, and in vivo continuous monitoring of tumor and cancer stem cells. We present semiconductor-based sensors and imaging systems for these applications. Measured intrinsic optical signals and tissue optics simulations indicate the need for high dynamic range and low dark-current neural sensors. Simulated and measured reflectance spectra from our guided resonance filter demonstrate the capability for index-of-refraction sensing on cellular scales, compatible with integrated biosensors. Finally, we characterized a thermally evaporated emission filter that can be used to improve sensitivity for in vivo fluorescence sensing.

  20. Flow sensor using optical fiber strain gauges

    NASA Astrophysics Data System (ADS)

    Schmitt, Nicolas F.; Morgan, R.; Scully, Patricia J.; Lewis, Elfed; Chandy, Rekha

    1995-09-01

    A novel technique for the measurement of air flow velocity using an optical fiber sensor is reported. The sensor measures the deformation of a rubber cantilever beam when subjected to the stresses induced by drag forces in the presence of the airflow. Tests performed in a wind tunnel have indicated a sensitivity of 2 (mu) /(m/s). A qualitative model based on fiber mode propagation has been developed which allows the sensor to be characterized in terms of optical losses. A single 1 mm diameter polymer fiber is mounted on the rectangular section rubber cantilever (section 14 mm by 6 mm) and six grooves are etched into the fiber which extend into the core of the fiber. As the beam deviates the surface deforms (stretches or contracts) and the fiber is subjected to strain. As the strain is increased the grooves become wider and the amount of light transmitted through the fiber is reduced due to increased losses. The sensor described has all the advantages of optical fiber sensors including electrical noise immunity and intrinsic safety for use in hazardous environments. However, its simple construction, robustness, versatility for a number of different fluid applications, as well as relatively low cost make it attractive for use in a wide variety of measurement applications e.g. wind velocity measurement where airborne moisture or chemicals are present.

  1. Fiber optics spectrochemical emission sensors

    DOEpatents

    Griffin, Jeffrey W.; Olsen, Khris B.

    1992-01-01

    A method of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species uses a probe insertable into the well or tank via a cable and having electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited the fluid in alignment with the light guide axis and optical emissions are received from the excited chemical species along such axis.

  2. Fiber optics spectrochemical emission sensors

    DOEpatents

    Griffin, J.W.; Olsen, K.B.

    1992-02-04

    A method is described of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species. The method uses a probe insertable into the well or tank via a cable and having an electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has an optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited in the fluid in alignment with the light guide axis. Optical emissions are received from the excited chemical species along such axis. 18 figs.

  3. Fiber-Optic Lateral-Displacement Sensor

    NASA Technical Reports Server (NTRS)

    Roschak, Edmund J.

    1987-01-01

    Proposed fiber-optic sensor monitors axial position of shaft or bearing in turbomachine. Device senses position of non-magnetic as well as magnetic material and calibrates before assembly in machine. More compact. Concept extends to measure rotational speed of shaft.

  4. Integrated Optical Asymmetric Coupler Pressure Sensor

    NASA Astrophysics Data System (ADS)

    Kiyat, Isa; Kocabas, Coskun; Aydinli, Atilla

    2004-05-01

    Analysis of a novel pressure sensor based on a silicon-on-insulator (SOI) asymmetric vertical coupler is presented. The integrated optical component is a coupler composed of a single mode (SM) low index waveguide and a thin silicon slab. High sensitivities of about 0.14 rad.kPa-1 should be achieved.

  5. Chemical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2002-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  6. Implantable medical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2001-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  7. Optical and Electronic NOx Sensors for Applications in Mechatronics

    PubMed Central

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315

  8. Hydrazine/nitrogen dioxide fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Andrawis, Alfred A.; Santiago, Josephine; Young, Rebecca C.; Baum, J. Clayton

    2004-06-01

    This paper outlines the development of a dual hydrazine/nitrogen dioxide (HZ/NO2) prototype fiber optic sensor utilizing an acid-base indicator that undergoes color changes depending on which gas is present. Bromothymol blue bromocresol green mixture (1/1) in hydrogel (1/1), produces a blue-green indicator for HZ and/or NO2. The sensor was tested several times over a period of eight weeks and the response was cconsistent and proved the feasibility of dual HZ/NO2 leak detection. Prototype sensor construction, the hardware, and the software of the electronic interrogator circuitry are briefly explained. The paper presents a summary of sensor response when exposed to 52 ppm and 18 ppm hydrazine and 400 ppm and 200 ppm nitrogen dioxide.

  9. Lightning Current Measurement with Fiber-Optic Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2014-01-01

    A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.

  10. Monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  11. Optical inverse-square displacement sensor

    DOEpatents

    Howe, Robert D.; Kychakoff, George

    1989-01-01

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##

  12. Optical inverse-square displacement sensor

    DOEpatents

    Howe, R.D.; Kychakoff, G.

    1989-09-12

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R + [Delta]R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as given in an equation. 10 figs.

  13. Optical fiber sensors for harsh environments

    DOEpatents

    Xu, Juncheng; Wang, Anbo

    2007-02-06

    A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

  14. Miniature fiber optic sensor based on fluorescence energy transfer

    NASA Astrophysics Data System (ADS)

    Meadows, David L.; Schultz, Jerome S.

    1992-04-01

    Optical fiber biosensors based on fluorescence assays have several distinct advantages when measuring biological analytes such as metabolites, cofactors, toxins, etc. Not only are optical signals immune to electronic interferences, but the polychromatic nature of most fluorochemical assays provides more potentially useful data about the system being studied. One of the most common difficulties normally encountered with optical biosensors is the inability to routinely recalibrate the optical and electronic components of the system throughout the life of the sensor. With this in mind, we present an optical fiber assay system for glucose based on a homogeneous singlet/singlet energy transfer assay along with the electronic instrumentation built to support the sensor system. In the sensor probe, glucose concentrations are indirectly measured from the level of fluorescence quenching caused by the homogeneous competition assay between TRITC labeled concanavalin A (receptor) and FITC labeled Dextran (ligand). The FITC signal is used to indicate glucose concentrations and the TRITC signal is used for internal calibration. Data is also presented on a protein derivatization procedure that was used to prevent aggregation of the receptor protein in solution. Also, a molecular model is described for the singlet/singlet energy transfer interactions that can occur in a model system composed of a monovalent ligand (FITC labeled papain) and a monovalent receptor (TRITC labeled concanavalin A).

  15. Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.

  16. Fiber-optic displacement sensors on the Hunters Trophy UGT impulse gauge experiments

    SciTech Connect

    Green, R.E.L.; Poutiatine, A.I.

    1995-03-01

    As part of a program to develop gauges for measurement of various mechanical properties in hostile environments, the authors fielded purely optical displacement sensors at the ends of long fiber-optic cables as supplements to the regular displacement sensors of four impulse gauges fielded as part of a materials study on the Hunters Trophy underground effects test at the Nevada Test Site. These fiber-optic sensor systems and their performance on the Hunters Trophy test are described in this report.

  17. Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed

    NASA Technical Reports Server (NTRS)

    Lekki, John D.

    2002-01-01

    Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.

  18. Fluorescent optical liquid level sensor

    DOEpatents

    Weiss, Jonathan D.

    2001-01-01

    A liquid level sensor comprising a transparent waveguide containing fluorescent material that is excited by light of a first wavelength and emits at a second, longer wavelength. The upper end of the waveguide is connected to a light source at the first wavelength through a beveled portion of the waveguide such that the input light is totally internally reflected within the waveguide above an air/liquid interface in a tank but is transmitted into the liquid below this interface. Light is emitted from the fluorescent material only in those portions of the waveguide that are above the air/liquid interface, to be collected at the upper end of the waveguide by a detector that is sensitive only to the second wavelength. As the interface moves down in the tank, the signal strength from the detector will increase.

  19. Optical Sensor for Measuring American Lobster Vitality

    NASA Astrophysics Data System (ADS)

    Tomassetti, Brian R. A.; Vetelino, John F.

    2011-06-01

    The vitality of the American Lobster (Homarus americanus) is correlated to the total hemolymph protein (THP) in lobster hemolymph (blood). The standard technique for determining lobster vitality is to draw blood from a lobster and measure THP with a refractometer. This technique is invasive and endangers the lobster's health since blood must be drawn from the lobster. In the present work an optical sensor is developed to measure a lobster's vitality in vivo. It is comprised of a broadband light source, a monochromator, a fiber optic reflection probe, a spectrometer and a computer. This sensor measures protein concentrations by exciting a lobster with 280 nm and 334 nm wavelength light sources and measuring the corresponding absorbance peaks for THP and the fluorescence peak for hemocyanin (Hc), the majority protein in hemolymph. In this work several lobsters are tested. For each lobster, absorbance and fluorescence peaks are measured using the sensor and compared to protein concentrations measured using a refractometer. It is found that the shell thickness and muscle density, which correspond directly to protein concentration and the molting stage of the lobster have a significant effect on the absorbance and fluorescence measurements. It is also found that within specific molting stages, such as pre-molt and post-molt, protein concentration measured with a refractometer correlates linearly to absorbance and fluorescence measurements with the optical sensor.

  20. Optical sensor for measuring American Lobster vitality

    SciTech Connect

    Tomassetti, Brian R. A.; Vetelino, John F.

    2011-06-10

    The vitality of the American Lobster (Homarus americanus) is correlated to the total hemolymph protein (THP) in lobster hemolymph (blood). The standard technique for determining lobster vitality is to draw blood from a lobster and measure THP with a refractometer. This technique is invasive and endangers the lobster's health since blood must be drawn from the lobster. In the present work an optical sensor is developed to measure a lobster's vitality in vivo. It is comprised of a broadband light source, a monochromator, a fiber optic reflection probe, a spectrometer and a computer. This sensor measures protein concentrations by exciting a lobster with 280 nm and 334 nm wavelength light sources and measuring the corresponding absorbance peaks for THP and the fluorescence peak for hemocyanin (Hc), the majority protein in hemolymph. In this work several lobsters are tested. For each lobster, absorbance and fluorescence peaks are measured using the sensor and compared to protein concentrations measured using a refractometer. It is found that the shell thickness and muscle density, which correspond directly to protein concentration and the molting stage of the lobster have a significant effect on the absorbance and fluorescence measurements. It is also found that within specific molting stages, such as pre-molt and post-molt, protein concentration measured with a refractometer correlates linearly to absorbance and fluorescence measurements with the optical sensor.

  1. Fiber optic temperature sensors for medical applications

    NASA Astrophysics Data System (ADS)

    Schaafsma, David T.; Palmer, Gail; Bechtel, James H.

    2003-07-01

    Recent developments in fiber-optic sensor technology have demonstrated the utility of fiber-optic sensors for both medical and industrial applications. Fiber sensors based on fluorescent decay of rare earth doped materials allow rapid and accurate temperature measurement in challenging environments. Here we review the principles of operation of these sensors with a rare earth doped probe material and demonstrate why this material is an excellent choice for these types of sensors. The decay time technique allows accurate temperature determination from two measurements of the fluorescence intensity at a well-defined time interval. With this method, all instrumental and extraneous environmental effect will cancel, thus providing an accurate temperature measurement. Stability data will be presented for the fiber-optic probes. For medical applications, new breakthroughs in RF ablation technology and electro-surgical procedures are being introduced as alternative, less invasive treatment for removal of small tumors and for removal of plaque within arteries as a preventive treatment that avoids open heart surgery. The availability of small diameter temperature probes (230 microns or 450 microns in diameter) offers a whole new scope to temperature measurement. Accurate and reliable temperature monitoring during any laser treatment procedure or RF ablation at the surgical site is critical. Precise, NIST traceable reliable results are needed to prevent overheating or underheating during treatment. In addition, how interventional catheters are used in hyperthermia studies and the advantages to having flexible cables and multiple sensors are discussed. Preliminary data is given from an animal study where temperature was monitored in a pig during an RF study.

  2. An all-fiber partial discharge monitoring system based on both intrinsic fiber optic interferometry sensor and fluorescent fiber

    NASA Astrophysics Data System (ADS)

    Yin, Zelin; Zhang, Ruirui; Tong, Jie; Chen, Xi

    2013-12-01

    Partial discharges (PDs) are an electrical phenomenon that occurs within a transformer whenever the voltage stress is sufficient to produce ionization in voids or inclusions within a solid dielectric, at conductor/dielectric interfaces, or in bubbles within liquid dielectrics such as oil; high-frequency transient current discharges will then appear repeatedly and will progressively deteriorate the insulation, ultimately leading to breakdown. Fiber sensor has great potential on the partial discharge detection in high-voltage equipment for its immunity to electromagnetic interference and it can take direct measurement in the high voltage equipment. The energy released in PDs produces a number of effects, resulting in flash, chemical and structural changes and electromagnetic emissions and so on. Acoustic PD detection is based on the mechanical pressure wave emitted from the discharge and fluorescent fiber PD detection is based on the emitted light produced by ionization, excitation and recombination processes during the discharge. Both of the two methods have the shortage of weak anti-interference capacity in the physical environment, like thunder or other sound source. In order to avoid the false report, an all-fiber combined PD detection system of the two methods is developed in this paper. In the system the fluorescent fiber PD sensor is considered as a reference signal, three F-P based PD detection sensors are used to both monitor the PD intensity and calculate the exact position of the discharge source. Considering the wave band of the F-P cavity and the fluorescent probe are quite different, the reflection spectrum of the F-P cavity is in the infrared region, however the fluorescent probe is about 600nm to 700nm, thus the F-P sensor and fluorescent fiber probe can be connected in one fiber and the reflection light can be detected by two different detectors without mutual interference. The all-fiber partial discharge monitoring system not only can detect the PDs

  3. Modulated-splitting-ratio fiber-optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Anthan, Donald J.; Rys, John R.; Fritsch, Klaus; Ruppe, Walter A.

    1988-01-01

    A fiber-optic temperature sensor is described, which uses a small silicon beamsplitter whose splitting ratio varies as a function of temperature. A four-beam technique is used to measure the sensor's temperature-indicating splitting ratio. This referencing method provides a measurement that is largely independent of the transmission properties of the sensor's optical fiber link. A significant advantage of this sensor, relative to other fiber-optic sensors, is its high stability, which permits the fiber-optic components to be readily substituted, thereby simplifying the sensor's installation and maintenance.

  4. Adhesive bond failure monitoring with triboluminescent optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Shohag, Md Abu S.; Hammel, Emily C.; Olawale, David O.; Okoli, Okenwa O.

    2016-04-01

    One of the most severe damage modes in modern wind turbines is the failure of the adhesive joints in the trailing edge of the large composite blades. The geometrical shape of the blade and current manufacturing techniques make the trailing edge of the wind turbine blade more sensitive to damage. Failure to timely detect this damage type may result in catastrophic failures, expensive system downtime, and high repair costs. A novel sensing system called the In-situ Triboluminescent Optical Fiber (ITOF) sensor has been proposed for monitoring the initiation and propagation of disbonds in composite adhesive joints. The ITOF sensor combines the triboluminescent property of ZnS:Mn with the many desirable features of optical fiber to provide in-situ and distributed damage sensing in large composite structures like the wind blades. Unlike other sensor systems, the ITOF sensor does not require a power source at the sensing location or for transmitting damage-induced signals to the hub of the wind turbine. Composite parts will be fabricated and the ITOF integrated within the bondline to provide in-situ and real time damage sensing. Samples of the fabricated composite parts with integrated ITOF will be subjected to tensile and flexural loads, and the response from the integrated sensors will be monitored and analyzed to characterize the performance of the ITOF sensor as a debonding damage monitoring system. In addition, C-scan and optical microscopy will be employed to gain greater insights into the damage propagation behavior and the signals received from the ITOF sensors.

  5. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  6. Silicon retina for optical tracking systems

    NASA Technical Reports Server (NTRS)

    Strohbehn, K.; Jenkins, R. E.; Sun, X.; Andreou, A. G.

    1993-01-01

    There are a host of position sensors, such as quadcells and CCD's, which are candidates for detecting optical position errors and providing error signals for a mirror positioning loop. We are developing a novel, very high bandwidth, biologically inspired position sensor for optical position tracking systems. We present recent test results and design issues for the use of biologically inspired silicon retinas for spaceborne optical position tracking systems.

  7. Coordinating standards and applications for optical water quality sensor networks

    USGS Publications Warehouse

    Bergamaschi, B.; Pellerin, B.

    2011-01-01

    Joint USGS-CUAHSI Workshop: In Situ Optical Water Quality Sensor Networks; Shepherdstown, West Virginia, 8-10 June 2011; Advanced in situ optical water quality sensors and new techniques for data analysis hold enormous promise for advancing scientific understanding of aquatic systems through measurements of important biogeochemical parameters at the time scales over which they vary. High-frequency and real-time water quality data also provide the opportunity for early warning of water quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U.S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), convened a 3-day workshop to explore ways to coordinate development of standards and applications for optical sensors, as well as handling, storage, and analysis of the continuous data they produce.

  8. Insect-Inspired Optical-Flow Navigation Sensors

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Morookian, John M.; Chahl, Javan; Soccol, Dean; Hines, Butler; Zornetzer, Steven

    2005-01-01

    Integrated circuits that exploit optical flow to sense motions of computer mice on or near surfaces ( optical mouse chips ) are used as navigation sensors in a class of small flying robots now undergoing development for potential use in such applications as exploration, search, and surveillance. The basic principles of these robots were described briefly in Insect-Inspired Flight Control for Small Flying Robots (NPO-30545), NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 61. To recapitulate from the cited prior article: The concept of optical flow can be defined, loosely, as the use of texture in images as a source of motion cues. The flight-control and navigation systems of these robots are inspired largely by the designs and functions of the vision systems and brains of insects, which have been demonstrated to utilize optical flow (as detected by their eyes and brains) resulting from their own motions in the environment. Optical flow has been shown to be very effective as a means of avoiding obstacles and controlling speeds and altitudes in robotic navigation. Prior systems used in experiments on navigating by means of optical flow have involved the use of panoramic optics, high-resolution image sensors, and programmable imagedata- processing computers.

  9. Integrated Optic Chemical-Biological Sensors

    DTIC Science & Technology

    1999-02-26

    biomedical, and food safety applications that has the potential to fulfill many of the technical and performance demands. The sensor system is...within + 1 arc degree. Integrated interferometric based sensors have been developed to the prototype level for environmental, biomedical and food safety applications...system designed for food safety applications (exclusive of a flow cell) is shown in Figure 5. Dimensions of this package are approximately 2.5 x 3.0 x

  10. Reversible optical waveguide vapor sensor

    NASA Astrophysics Data System (ADS)

    Giuliani, J. F.; Wohltjen, H.

    1985-04-01

    A device for detecting small amounts of a chemical such as ammonia, and other ammonia-like molecules such as hydrazine or pyridine, in air and in other gases is disclosed. A capillary tube serves as a multiple total reflective medium for an optical beam from a light-emitting diode. The outer surface of the capillary tube is coated with a dye which, when exposed to the chemical, changes color so that the multiply reflected light is modified. The resultant change in the output light intensity from the capillary tube is photodetected and recorded to sense the presence of the chemical. When the chemical is removed, the dye returns to its original color so that the device can be reused.

  11. Fundamental concepts of integrated and fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    1995-01-01

    This chapter discusses fiber optic and integrated optic sensor concepts. Unfortunately, there is no standard method to categorize these sensor concepts. Here, fiber optic and integrated optic sensor concepts will be categorized by the primary modulation technique. These modulation techniques have been classified as: intensity, phase, wavelength, polarization, and time/frequency modulation. All modulate the output light with respect to changes in the physical or chemical property to be measured. Each primary modulation technique is then divided into fiber optic and integrated optic sections which are treated independently. For each sensor concept, possible sensor applications are discussed. The sensors and references discussed are not exhaustive, but sufficient to give the reader an overview of sensor concepts developed to date. Sensor multiplexing techniques such as wavelength division, time division, and frequency division will not be discussed as they are beyond the scope of this report.

  12. The 1994 Fiber Optic Sensors for Aerospace Technology (FOSAT) Workshop

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert (Compiler); Adamovsky, Grigory (Compiler); Tuma, Meg (Compiler); Beheim, Glenn (Compiler); Sotomayor, Jorge (Compiler)

    1995-01-01

    The NASA Lewis Research Center conducted a workshop on fiber optic technology on October 18-20, 1994. The workshop objective was to discuss the future direction of fiber optics and optical sensor research, especially in the aerospace arena. The workshop was separated into four sections: (1) a Systems Section which dealt specifically with top level overall architectures for the aircraft and engine; (2) a Subsystems Section considered the parts and pieces that made up the subsystems of the overall systems; (3) a Sensor/Actuators section considered the status of research on passive optical sensors and optical powered actuators; and (4) Components Section which addressed the interconnects for the optical systems (e.g., optical connectors, optical fibers, etc.). This report contains the minutes of the discussion on the workshop, both in each section and in the plenary sessions. The slides used by a limited number of presenters are also included as presented. No attempt was made to homogenize this report. The view of most of the attendees was: (1) the government must do a better job of disseminating technical information in a more timely fashion; (2) enough work has been done on the components, and system level architecture definition must dictate what work should be done on components; (3) a Photonics Steering Committee should be formed to coordinate the efforts of government and industry in the photonics area, to make sure that programs complimented each other and that technology transferred from one program was used in other programs to the best advantage of the government and industry.

  13. Gamma radiation resistant Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph

    2002-08-01

    The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

  14. Enzyme-based fiber optic sensors

    SciTech Connect

    Kulp, T.J.; Camins, I.; Angel, S.M.

    1987-12-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of approx.0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is approx.5 to 12 min. 7 figs.

  15. Optical fibre gas detections systems

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian

    2016-05-01

    This tutorial review covers the principles of and prospects for fibre optic sensor technology in gas detection. Many of the potential benefits common to fibre sensor technology also apply in the context of gas sensing - notably long distance - many km - access to multiple remote measurement points; invariably intrinsic safety; access to numerous important gas species and often uniquely high levels of selectivity and/or sensitivity. Furthermore, the range of fibre sensor network architectures - single point, multiple point and distributed - enable unprecedented flexibility in system implementation. Additionally, competitive technologies and regulatory issues contribute to final application potential.

  16. Computer Modeling for Optical Waveguide Sensors.

    DTIC Science & Technology

    1987-12-15

    COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and cleritify by DIock numnerl FIEL GRUP SB-GOUP Optical waveguide sensors Computer...reflection. The resultant probe beam transmission may be plotted as a function of changes in the refractive index of the surrounding fluid medium. BASIC...all angles of incidence about the critical angle ecr. It should be noted that N in equation (3) is a function of e, since = sin - l sin 8 , see

  17. A fiber-optic powered wireless sensor module made on elastomeric substrate for wearable sensors.

    PubMed

    Lien, V; Lin, H; Chuang, J; Sailor, M; Lo, Y

    2004-01-01

    We demonstrate an integrated sensor module that combines a photonic nano-porous sensor and a bias-free optical powered RF transducer. The sensor signal is encoded in the RF frequency ready for transmission. The entire sensor module does not include battery and is constructed with the flexible and biocompatible elastomeric polymer, PDMS. This technology holds promise for wearable sensors.

  18. Rapid miniature fiber optic pressure sensors for blast wave measurements

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2013-02-01

    Traumatic brain injury (TBI) is a serious potential threat to soldiers who are exposed to explosions. Since the pathophysiology of TBI associated with a blast wave is not clearly defined, it is crucial to have a sensing system to accurately quantify the blast wave dynamics. This paper presents an ultra-fast fiber optic pressure sensor based on Fabry-Perot (FP) interferometric principle that is capable of measuring the rapid pressure changes in a blast event. The blast event in the experiment was generated by a starter pistol blank firing at close range, which produced a more realistic wave profile compared to using compressed air driven shock tubes. To the authors' knowledge, it is also the first study to utilize fiber optic pressure sensors to measure the ballistics shock wave of a pistol firing. The results illustrated that the fiber optic pressure sensor has a rise time of 200 ns which demonstrated that the sensor has ability to capture the dynamic pressure transient during a blast event. Moreover, the resonant frequency of the sensor was determined to be 4.11 MHz, which agrees well with the specific designed value.

  19. Electro-optic voltage sensor with beam splitting

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.; Davidson, James R.; Crawford, Thomas M.

    2002-01-01

    The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  20. Electro-optic voltage sensor with Multiple Beam Splitting

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.; Crawford, Thomas M.; Davidson, James R.

    2000-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  1. Programmable logic controller optical fibre sensor interface module

    NASA Astrophysics Data System (ADS)

    Allwood, Gary; Wild, Graham; Hinckley, Steven

    2011-12-01

    Most automated industrial processes use Distributed Control Systems (DCSs) or Programmable Logic Controllers (PLCs) for automated control. PLCs tend to be more common as they have much of the functionality of DCSs, although they are generally cheaper to install and maintain. PLCs in conjunction with a human machine interface form the basis of Supervisory Control And Data Acquisition (SCADA) systems, combined with communication infrastructure and Remote Terminal Units (RTUs). RTU's basically convert different sensor measurands in to digital data that is sent back to the PLC or supervisory system. Optical fibre sensors are becoming more common in industrial processes because of their many advantageous properties. Being small, lightweight, highly sensitive, and immune to electromagnetic interference, means they are an ideal solution for a variety of diverse sensing applications. Here, we have developed a PLC Optical Fibre Sensor Interface Module (OFSIM), in which an optical fibre is connected directly to the OFSIM located next to the PLC. The embedded fibre Bragg grating sensors, are highly sensitive and can detect a number of different measurands such as temperature, pressure and strain without the need for a power supply.

  2. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    PubMed Central

    Buchhold, Niels; Baumgartner, Christian

    2017-01-01

    This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD). The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels), the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates) and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force). This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability. PMID:28134824

  3. A New, Adaptable, Optical High-Resolution 3-Axis Sensor.

    PubMed

    Buchhold, Niels; Baumgartner, Christian

    2017-01-27

    This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD). The downstream microcontroller's software identifies the geometric shape's center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels), the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates) and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user's range of motion (stroke and force). This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  4. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, J.D.

    1995-05-30

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  5. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber's transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature.

  6. Characterization of disposable optical sensors for heavy metal determination.

    PubMed

    Vuković, Jadranka; Avidad, María Ariza; Capitán-Vallvey, Luis Fermín

    2012-05-30

    This paper presents the development, characterization and quality control of analytical methods based on the use of disposable optical sensors for determination of heavy metals. Chromogenic reagents such as 1-(2-pyridylazo)-2-naphthol, (2-pyridylazo)resorcinol, Zincon, Ferrozine, and Chromazurol S were used to develop optical sensors of heavy metal ions found as contaminants in pharmaceutical substances and products, such as Zn(II), Cu(II), Ni(II), Fe(II), and Fe(III). The chromogenic reagents were immobilized in polymeric membranes by spin-coating from cocktails containing all reagents needed. The methods were prevalidated using a comprehensive quality control strategy based on a system of mathematical/statistical testing and diagnosis of each prevalidation step. This system involved characterization of analytical groups; checking of two limiting groups; testing of data homogeneity; recognition of outliers; and determination of analytical functions, limiting values, precision and accuracy. The prevalidation strategy demonstrated the reliability of the proposed method and pointed out some limitations. Combining the optical sensors with multicomponent linear regression allowed simultaneous determination of multiple metals in synthetic mixtures with different compositions. Good agreement between experimental and theoretical amounts of heavy metals in the mixtures was obtained for the majority of sensors and metals. Even better agreement was obtained between the experimental and theoretical total amounts of metals in the mixtures. The proposed analytical methods were successfully applied to the determination of zinc in pharmaceutical preparations of insulin and the determination of metal mixtures in a commercial nasal spray of isotonic seawater. The reliable and sensitive individual optical sensors developed in this study may be useful for designing a multimembrane optical tongue that with appropriate further optimization can be used for screening heavy metals in

  7. Micro-optical Distributed Sensors for Aero Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Arnold, S.; Otugen, V.; Seasholtz, Richard G. (Technical Monitor)

    2003-01-01

    The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.

  8. Improved optical pulse heterodyne demodulation scheme for fiber-optic interferometric sensors

    NASA Astrophysics Data System (ADS)

    Lai, Haiqiang; Wang, Jianfei; Tu, Xiaobo; Meng, Zhou

    2015-10-01

    An improved optical pulse heterodyne demodulation scheme for fiber-optic interferometric sensors is demonstrated. This scheme uses two series-connected Acoustic-optic modulators (AOMs) as intensity modulator and frequency shifter respectively. Compared to the traditional optical heterodyne demodulation structure, this scheme eliminates the polarization-induced signal fading and the noise floor is lowered for using the Michelson-configuration delay structure and Faraday rotation mirrors (FRMs) in the optic architecture of system. At the same time, the architecture of this scheme is not complicated and can be used to complex a large sensor array. Experimental results show that the phase noise floor of this demodulation scheme is flat and reaches -99dB/sqrt(Hz) at frequencies above 300 Hz.

  9. Comparison of wavefront sensor models for simulation of adaptive optics.

    PubMed

    Wu, Zhiwen; Enmark, Anita; Owner-Petersen, Mette; Andersen, Torben

    2009-10-26

    The new generation of extremely large telescopes will have adaptive optics. Due to the complexity and cost of such systems, it is important to simulate their performance before construction. Most systems planned will have Shack-Hartmann wavefront sensors. Different mathematical models are available for simulation of such wavefront sensors. The choice of wavefront sensor model strongly influences computation time and simulation accuracy. We have studied the influence of three wavefront sensor models on performance calculations for a generic, adaptive optics (AO) system designed for K-band operation of a 42 m telescope. The performance of this AO system has been investigated both for reduced wavelengths and for reduced r(0) in the K band. The telescope AO system was designed for K-band operation, that is both the subaperture size and the actuator pitch were matched to a fixed value of r(0) in the K-band. We find that under certain conditions, such as investigating limiting guide star magnitude for large Strehl-ratios, a full model based on Fraunhofer propagation to the subimages is significantly more accurate. It does however require long computation times. The shortcomings of simpler models based on either direct use of average wavefront tilt over the subapertures for actuator control, or use of the average tilt to move a precalculated point spread function in the subimages are most pronounced for studies of system limitations to operating parameter variations. In the long run, efficient parallelization techniques may be developed to overcome the problem.

  10. Optical Demonstration of a Medical Imaging System with an EMCCD-Sensor Array for Use in a High Resolution Dynamic X-ray Imager.

    PubMed

    Qu, Bin; Huang, Ying; Wang, Weiyuan; Sharma, Prateek; Kuhls-Gilcrist, Andrew T; Cartwright, Alexander N; Titus, Albert H; Bednarek, Daniel R; Rudin, Stephen

    2010-10-30

    Use of an extensible array of Electron Multiplying CCDs (EMCCDs) in medical x-ray imager applications was demonstrated for the first time. The large variable electronic-gain (up to 2000) and small pixel size of EMCCDs provide effective suppression of readout noise compared to signal, as well as high resolution, enabling the development of an x-ray detector with far superior performance compared to conventional x-ray image intensifiers and flat panel detectors. We are developing arrays of EMCCDs to overcome their limited field of view (FOV). In this work we report on an array of two EMCCD sensors running simultaneously at a high frame rate and optically focused on a mammogram film showing calcified ducts. The work was conducted on an optical table with a pulsed LED bar used to provide a uniform diffuse light onto the film to simulate x-ray projection images. The system can be selected to run at up to 17.5 frames per second or even higher frame rate with binning. Integration time for the sensors can be adjusted from 1 ms to 1000 ms. Twelve-bit correlated double sampling AD converters were used to digitize the images, which were acquired by a National Instruments dual-channel Camera Link PC board in real time. A user-friendly interface was programmed using LabVIEW to save and display 2K × 1K pixel matrix digital images. The demonstration tiles a 2 × 1 array to acquire increased-FOV stationary images taken at different gains and fluoroscopic-like videos recorded by scanning the mammogram simultaneously with both sensors. The results show high resolution and high dynamic range images stitched together with minimal adjustments needed. The EMCCD array design allows for expansion to an M×N array for arbitrarily larger FOV, yet with high resolution and large dynamic range maintained.

  11. Corrosion induced strain monitoring through fibre optic sensors

    NASA Astrophysics Data System (ADS)

    Grattan, S. K. T.; Basheer, P. A. M.; Taylor, S. E.; Zhao, W.; Sun, T.; Grattan, K. T. V.

    2007-10-01

    The use of strain sensors is commonplace within civil engineering. Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges. In this paper the use of fibre optic strain sensors and electrical resistance gauges to monitor the production of corrosion by-products has been investigated and reported.

  12. Metal-embedded optical fiber pressure sensor

    NASA Astrophysics Data System (ADS)

    Kidwell, J. J.; Berthold, John W.

    1991-02-01

    The paper reports the results of work to demonstrate the feasibility of embedding a metal-buffered optical fiber inside a thin metal diaphragm to create a pressure-sensitive transducer. A method was developed to embed butt-coupled optical fibers inside brass diaphragms. Butt-coupled fibers with two different end spacings were successfully embedded in the diaphragms. The pressure response of the diaphragms was calibrated by measuring the changes in light transmission through the butt coupling as a function of pressure. In addition to embedded fiber pressure sensors, this method may be useful for other applications. The calibration results indicate the method could be used to make connections between signal processors and optical fibers embedded in composites.

  13. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    SciTech Connect

    Pickrell, Gary; Scott, Brian; Wang, Anbo; Yu, Zhihao

    2013-12-31

    facility in Terre Haute, Indiana. Due to business conditions at industrial partner and several logistical problems, this field test was not successful. An alternative high-temperature sensing system using sapphire wafer-based extrinsic Fabry-Perot interferometry was then developed as a significant improvement over the BPDI solution. From June 2006 to June 2008, three consecutive field tests were performed with the new sapphire wafer sensors at the TECO coal gasifier in Tampa, Florida. One of the sensors survived in the industrial coal gasifier for 7 months, over which time the existing thermocouples were replaced twice. The outcome of these TECO field tests suggests that the sapphire wafer sensor has very good potential to be commercialized. However packaging and sensor protection issues need additional development. During Phase III, several major improvements in the design and fabrication process of the sensor have been achieved through experiments and theoretical analysis. Studies on the property of the key components in the sensor head, including the sapphire fiber and sapphire wafer, were also conducted, for a better understanding of the sensor behavior. A final design based on all knowledge and experience has been developed, free of any issues encountered during the entire research. Sensors with this design performed well as expected in lab long-term tests, and were deployed in the sensing probe of the final coal-gasifier field test. Sensor packaging and protection was improved through materials engineering through testing of packaging designs in two blank probe packaging tests at Eastman Chemical in Kingsport, TN. Performance analysis of the blank probe packaging resulted in improve package designs culminating in a 3rd generation probe packaging utilized for the full field test of the sapphire optical sensor and materials designed sensor packaging.

  14. Fiber optic sensor reliability issues in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Zhihong; Bassam, Asadollah; Jia, Hongqiang; Tennant, Adam; Ansari, Farhad

    2005-05-01

    Reliability is an important aspect of any sensor, and especially in terms of long term monitoring of structures. Some issues pertaining to the reliability of optical fiber sensors in civil structures are discussed in this article. The strength and fatigue properties of optical fibers influence their performance, and life span. Lessons learnt from the reliability of optical fibers in the telecommunication industry are useful for assessment of reliability in optical fiber sensors. However, optical fiber sensors go through additional manufacturing steps, handling processes, and in general operate under environmental conditions and stress levels different from the telecommunication lines. In general, optical fiber sensors in structures are subjected to fatigue loading under high stresses. Other reliability concerns pertain to the effects of the packaging, installation issues at the construction site. These issues along with some of the results acquired from fatigue tests on fiber optic Bragg gratings and long gauge interferometric sensors are discussed in this article.

  15. Protein Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Ksendzov, Alexander

    2006-01-01

    Prototype transducers based on integrated optical ring resonators have been demonstrated to be useful for detecting the protein avidin in extremely dilute solutions. In an experiment, one of the transducers proved to be capable of indicating the presence of avidin at a concentration of as little as 300 pM in a buffer solution a detection sensitivity comparable to that achievable by previously reported protein-detection techniques. These transducers are serving as models for the further development of integrated-optics sensors for detecting small quantities of other proteins and protein-like substances. The basic principle of these transducers was described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. The differences between the present transducers and the ones described in the cited prior article lie in details of implementation of the basic principle. As before, the resonator in a transducer of the present type is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, consists of a layer comprising sublayers having indices of refraction lower than that of the waveguide core. The outermost sublayer absorbs the chemical of interest (in this case, avidin). The index of refraction of the outermost sublayer changes with the concentration of absorbed avidin. The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer sublayer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in the index of refraction of the outermost sublayer causes a measurable change in the spectrum of the resonator output.

  16. 3D Multi-Spectrum Sensor System with Face Recognition

    PubMed Central

    Kim, Joongrock; Yu, Sunjin; Kim, Ig-Jae; Lee, Sangyoun

    2013-01-01

    This paper presents a novel three-dimensional (3D) multi-spectrum sensor system, which combines a 3D depth sensor and multiple optical sensors for different wavelengths. Various image sensors, such as visible, infrared (IR) and 3D sensors, have been introduced into the commercial market. Since each sensor has its own advantages under various environmental conditions, the performance of an application depends highly on selecting the correct sensor or combination of sensors. In this paper, a sensor system, which we will refer to as a 3D multi-spectrum sensor system, which comprises three types of sensors, visible, thermal-IR and time-of-flight (ToF), is proposed. Since the proposed system integrates information from each sensor into one calibrated framework, the optimal sensor combination for an application can be easily selected, taking into account all combinations of sensors information. To demonstrate the effectiveness of the proposed system, a face recognition system with light and pose variation is designed. With the proposed sensor system, the optimal sensor combination, which provides new effectively fused features for a face recognition system, is obtained. PMID:24072025

  17. Multi-axial fiber-optic electric field sensor

    NASA Astrophysics Data System (ADS)

    Perry, D.; Gibson, R.; Schreeve, B.; Schultz, S.; Selfridge, D.

    2010-03-01

    High powered microwave weapons use electric fields to overload electronics. We developed a non-intrusive sensor using a technology based on slab coupled optical sensing (SCOS). Each sensor detects the electric field component normal to the surface of the slab. By mounting two of these sensors orthogonally to each other, a more complete image of the electrical field can be obtained. One of the major hurdles of creating a multi-axial SCOS is keeping the size of the sensor small. The size is limited by (1) the size of the sensing material and (2) the ability to package the sensor to maintain its structural integrity and orientation. Good sensitivity is attained with SCOS with a length less than 3 mm and the D-fiber platform has a small core which allows for much less bending loss than standard single mode fiber. We have developed a mounting system that is heat resistant and structurally robust to protect the sensor that is extremely small when compared to traditional electric field sensors.

  18. Sensor system for web inspection

    DOEpatents

    Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.

    2002-01-01

    A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

  19. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    NASA Astrophysics Data System (ADS)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  20. Ion mobility sensor system

    DOEpatents

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  1. Fiber optic and laser sensors X; Proceedings of the Meeting, Boston, MA, Sept. 8-11, 1992

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Editor); Depaula, Ramon P. (Editor)

    1993-01-01

    Topics addressed include acoustic and pressure sensors; fiber optic gyros; electric and magnetic field sensors; bend, strain, and temperature sensors; industrial applications of sensors; and processing techniques. Particular attention is given to fiber optic interferometric acoustic sensors for wind tunnel applications, polished coupler and resonator fabrication, second-harmonic detection for rotation sensing in fiber optic gyros, simplified control theory in closed-loop fiber optic gyroscopes, and a Fabry-Perot sensor with digital signal processing for the measurement of magnetostriction. Also discussed are a Bragg fiber laser sensor, commercialization of fiber optic strain gauge systems, thermal ignition in hazardous environments due to stray light from optical fibers, a system for absolute measurements by interferometric sensors, and high-performance interferometric demodulation techniques.

  2. Future electro-optical sensors and processing in urban operations

    NASA Astrophysics Data System (ADS)

    Grönwall, Christina; Schwering, Piet B.; Rantakokko, Jouni; Benoist, Koen W.; Kemp, Rob A. W.; Steinvall, Ove; Letalick, Dietmar; Björkert, Stefan

    2013-10-01

    In the electro-optical sensors and processing in urban operations (ESUO) study we pave the way for the European Defence Agency (EDA) group of Electro-Optics experts (IAP03) for a common understanding of the optimal distribution of processing functions between the different platforms. Combinations of local, distributed and centralized processing are proposed. In this way one can match processing functionality to the required power, and available communication systems data rates, to obtain the desired reaction times. In the study, three priority scenarios were defined. For these scenarios, present-day and future sensors and signal processing technologies were studied. The priority scenarios were camp protection, patrol and house search. A method for analyzing information quality in single and multi-sensor systems has been applied. A method for estimating reaction times for transmission of data through the chain of command has been proposed and used. These methods are documented and can be used to modify scenarios, or be applied to other scenarios. Present day data processing is organized mainly locally. Very limited exchange of information with other platforms is present; this is performed mainly at a high information level. Main issues that arose from the analysis of present-day systems and methodology are the slow reaction time due to the limited field of view of present-day sensors and the lack of robust automated processing. Efficient handover schemes between wide and narrow field of view sensors may however reduce the delay times. The main effort in the study was in forecasting the signal processing of EO-sensors in the next ten to twenty years. Distributed processing is proposed between hand-held and vehicle based sensors. This can be accompanied by cloud processing on board several vehicles. Additionally, to perform sensor fusion on sensor data originating from different platforms, and making full use of UAV imagery, a combination of distributed and

  3. Development and evaluation of optical fiber NH3 sensors for application in air quality monitoring

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Wieck, Lucas; Tao, Shiquan

    2013-02-01

    Ammonia is a major air pollutant emitted from agricultural practices. Sources of ammonia include manure from animal feeding operations and fertilizer from cropping systems. Sensor technologies with capability of continuous real time monitoring of ammonia concentration in air are needed to qualify ammonia emissions from agricultural activities and further evaluate human and animal health effects, study ammonia environmental chemistry, and provide baseline data for air quality standard. We have developed fiber optic ammonia sensors using different sensing reagents and different polymers for immobilizing sensing reagents. The reversible fiber optic sensors have detection limits down to low ppbv levels. The response time of these sensors ranges from seconds to tens minutes depending on transducer design. In this paper, we report our results in the development and evaluation of fiber optic sensor technologies for air quality monitoring. The effect of change of temperature, humidity and carbon dioxide concentration on fiber optic ammonia sensors has been investigated. Carbon dioxide in air was found not interfere the fiber optic sensors for monitoring NH3. However, the change of humidity can cause interferences to some fiber optic NH3 sensors depending on the sensor's transducer design. The sensitivity of fiber optic NH3 sensors was found depends on temperature. Methods and techniques for eliminating these interferences have been proposed.

  4. Guided Wave and Damage Detection in Composite Laminates Using Different Fiber Optic Sensors

    PubMed Central

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH0) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent. PMID:22412347

  5. Guided wave and damage detection in composite laminates using different fiber optic sensors.

    PubMed

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  6. Chemical Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  7. Microcontrollers and optical sensors for education in optics and photonics

    NASA Astrophysics Data System (ADS)

    Dressler, Paul; Wielage, Heinz; Haiss, Ulrich; Vauderwange, Oliver; Wozniak, P.; Curticapean, Dan

    2014-09-01

    The digital revolution is going full steam ahead, with a constantly growing number of new devices providing a steady increase in complexity and power. Most of the success is based on one important invention: the microprocessor/microcontroller. In this paper the authors present how to integrate microcontrollers and optical sensors in the curricula of media engineering by combining subjects of media technology, optics, information technology and media design. Hereby the aim is not to teach these topics separate from each other, but to bring them together in interdisciplinary lectures, projects and applications. Microcontrollers can be applied in various ways to teach content from the fields of optics and photonics. They can be used to control LEDs, displays, light detectors and infrared sensors, which makes it possible to build measuring instruments like e.g. a lux meter, a light barrier or an optical distance meter. The learning goals are to stimulate the student's interest in the multiplicity of subjects related to this course and to support a deeper understanding of the close connections between them. The teaching method that the authors describe in their paper turned out to be very successful, as the participants are motivated to bring in their own ideas for projects, they spend more time than requested and as many students return to the courses as tutors. It is an example for effectual knowledge transfer and exchange of ideas among students.

  8. Development of fiber optic sensors for advanced aircraft testing and control

    NASA Astrophysics Data System (ADS)

    Meller, Scott A.; Jones, Mark E.; Wavering, Thomas A.; Kozikowski, Carrie L.; Murphy, Kent A.

    1999-02-01

    Optical fiber sensors, because of the small size, low weight, extremely high information carrying capability, immunity to electromagnetic interference, and large operational temperature range, provide numerous advantages over conventional electrically based sensors. This paper presents preliminary results from optical fiber sensor design for monitoring acceleration on aircraft. Flight testing of the final accelerometer design will be conducted on the F-18 Systems Research Aircraft at NASA Dryden Flight Research Center in Edwards, CA.

  9. Microstructured optical fiber interferometric breathing sensor

    NASA Astrophysics Data System (ADS)

    Favero, Fernando C.; Villatoro, Joel; Pruneri, Valerio

    2012-03-01

    In this paper a simple photonic crystal fiber (PCF) interferometric breathing sensor is introduced. The interferometer consists of a section of PCF fusion spliced at the distal end of a standard telecommunications optical fiber. Two collapsed regions in the PCF caused by the splicing process allow the excitation and recombination of a core and a cladding PCF mode. As a result, the reflection spectrum of the device exhibits a sinusoidal interference pattern that instantly shifts when water molecules, present in exhaled air, are adsorbed on or desorbed from the PCF surface. The device can be used to monitor a person's breathing whatever the respiration rate. The device here proposed could be particularly important in applications where electronic sensors fail or are not recommended. It may also be useful in the evaluation of a person's health and even in the diagnosis and study of the progression of serious illnesses such as sleep apnea syndrome.

  10. A reliable low-cost wireless and wearable gait monitoring system based on a plastic optical fibre sensor

    NASA Astrophysics Data System (ADS)

    Bilro, L.; Oliveira, J. G.; Pinto, J. L.; Nogueira, R. N.

    2011-04-01

    A wearable and wireless system designed to evaluate quantitatively the human gait is presented. It allows knee sagittal motion monitoring over long distances and periods with a portable and low-cost package. It is based on the measurement of transmittance changes when a side-polished plastic optical fibre is bent. Four voluntary healthy subjects, on five different days, were tested in order to assess inter-day and inter-subject reliability. Results have shown that this technique is reliable, allows a one-time calibration and is suitable in the diagnosis and rehabilitation of knee injuries or for monitoring the performance of competitive athletes. Environmental testing was accomplished in order to study the influence of different temperatures and humidity conditions.

  11. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert

    1991-01-01

    The current Fiber Optic Control System Integration (FOCSI) program is reviewed and the potential role of IOCs in FOCSI applications is described. The program is intended for building, environmentally testing, and demonstrating operation in piggyback flight tests (no active control with optical sensors) of a representative sensor system for propulsion and flight control. The optical sensor systems are to be designed to fit alongside the bill-of-materials sensors for comparison. The sensors are to be connected to electrooptic architecture cards which will contain the optical sources and detectors to recover and process the modulated optical signals. The FOCSI program is to collect data on the behavior of passive optical sensor systems in a flight environment and provide valuable information on installation amd maintenance problems for this technology, as well as component survivability (light sources, connectors, optical fibers, etc.).

  12. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata,Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor's accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  13. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  14. A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend

    PubMed Central

    Moraleda, Alberto Tapetado; García, Carmen Vázquez; Zaballa, Joseba Zubia; Arrue, Jon

    2013-01-01

    The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92·10−3 (°C)−1. The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations. PMID:24077323

  15. Optical fiber sensors for materials and structures characterization

    NASA Technical Reports Server (NTRS)

    Lindner, D. K.; Claus, R. O.

    1991-01-01

    The final technical report on Optical Fiber Sensors for Materials and Structures Characterization, covering the period August 1990 through August 1991 is presented. Research programs in the following technical areas are described; sapphire optical fiber sensors; vibration analysis using two-mode elliptical core fibers and sensors; extrinsic Fabry-Perot interferometer development; and coatings for fluorescent-based sensor. Research progress in each of these areas was substantial, as evidenced by the technical publications which are included as appendices.

  16. Optical gateway for intelligent buildings: a new open-up window to the optical fibre sensors market?

    NASA Astrophysics Data System (ADS)

    Fernandez-Valdivielso, Carlos; Matias, Ignacio R.; Arregui, Francisco J.; Bariain, Candido; Lopez-Amo, Manuel

    2004-06-01

    This paper presents the first optical fiber sensor gateway for integrating these special measurement devices in Home Automation Systems, concretely in those buildings that use the KNX European Intelligent Buildings Standard.

  17. Waveguide ring resonator as integrated optics for rotation sensor

    NASA Astrophysics Data System (ADS)

    Tang, Quan'an; Zheng, Ludi; Ma, Xinyu; Zhang, Yanshen

    1996-09-01

    To obtain a micro optic rotation sensor (MORS), a passive ring resonator (PRR) based on channel waveguide was designed and investigated. The waveguide structure of the resonator includes a ring waveguide as well as two directional couplers. The theoretical resolution and transfer functions of the MORS are discussed, and the PRR parameters are determined. According to the sensitivity requirement, the PRR frequency detecting system is discussed, and different detecting schemes are compared.

  18. Waveguide-based optical chemical sensor

    SciTech Connect

    Grace, Karen M.; Swanson, Basil I.; Honkanen, Seppo

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  19. Advanced Sensors Boost Optical Communication, Imaging

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Brooklyn, New York-based Amplification Technologies Inc. (ATI), employed Phase I and II SBIR funding from NASA s Jet Propulsion Laboratory to forward the company's solid-state photomultiplier technology. Under the SBIR, ATI developed a small, energy-efficient, extremely high-gain sensor capable of detecting light down to single photons in the near infrared wavelength range. The company has commercialized this technology in the form of its NIRDAPD photomultiplier, ideal for use in free space optical communications, lidar and ladar, night vision goggles, and other light sensing applications.

  20. Nanorod Material Developed for Use as an Optical Sensor Platform

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2005-01-01

    Optical sensors are becoming increasingly important in the development of new nonintrusive or embedded sensors. The use of light and material optical properties helps us measure unknown parameters such as temperature, pressure, flow, or chemical species. The focus of this work is to develop new nanostructure platforms upon which optical sensors can be constructed. These nanorods are synthesized oxides that form a base structure to which luminescent sensing dyes or dopants can be attached or embedded. The nanorod structure allows for a much greater open area than closed or polymer-based sensors do, enabling a much faster contact of the measured species with the luminescent sensor and, thus, a potentially faster measurement.

  1. Multifunctional data acquisition and analysis and optical sensors: a Bonneville Power Administration (BPA) update

    NASA Astrophysics Data System (ADS)

    Erickson, Dennis C.; Donnelly, Matt K.

    1995-04-01

    The authors present a design concept describing a multifunctional data acquisition and analysis architecture for advanced power system monitoring. The system is tailored to take advantage of the salient features of low energy sensors, particularly optical types. The discussion of the system concept and optical sensors is based on research at BPA and PNL and on progress made at existing BPA installations and other sites in the western power system.

  2. DFB laser based electrical dynamic interrogation for optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Carvalho, J. P.; Frazão, O.; Baptista, J. M.; Santos, J. L.; Barbero, A. P.

    2012-04-01

    An electrical dynamic interrogation technique previously reported by the authors for long-period grating sensors is now progressed by relying its operation exclusively on the modulation of a DFB Laser. The analysis of the detected first and second harmonic generated by the electrical modulation of the DFB Laser allows generating an optical signal proportional to the LPG spectral shift and resilient to optical power fluctuations along the system. This concept permits attenuating the effect of the 1/f noise of the photodetection, amplification and processing electronics on the sensing head resolution. This technique is employed in a multiplexing sensing scheme that measures refractive index variations.

  3. Modified Michelson fiber-optic interferometer: A remote low-coherence distributed strain sensor array

    NASA Astrophysics Data System (ADS)

    Yuan, Libo

    2003-01-01

    A simple modified Michelson fiber-optic low-coherence interferometric quasi-distributed sensing system permitting absolute length measurement in remote reflective sensor array is proposed. The sensor reflective signals characteristics have been analyzed and the relationship between light signal intensities and sensors number was given for multiplexing potential evaluation. The proposed sensing scheme will be useful for the remote measurement of strain. An important application could be deformation sensing in smart structures. Experimentally, a three sensors array has been demonstrated.

  4. Fibre Optic Sensors for Selected Wastewater Characteristics

    PubMed Central

    Chong, Su Sin; Abdul Aziz, A. R.; Harun, Sulaiman W.

    2013-01-01

    Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising. PMID:23881131

  5. Acousto-optic imaging with a smart-pixels sensor

    NASA Astrophysics Data System (ADS)

    Barjean, K.; Contreras, K.; Laudereau, J.-B.; Tinet, E.; Ettori, D.; Ramaz, F.; Tualle, J.-M.

    2015-03-01

    Acousto-optic imaging (AOI) is an emerging technique in the field of biomedical optics which combines the optical contrast allowed by diffuse optical tomography with the resolution of ultrasound (US) imaging. In this work we report the implementation, for that purpose, of a CMOS smart-pixels sensor dedicated to the real-time analysis of speckle patterns. We implemented a highly sensitive lock-in detection in each pixel in order to extract the tagged photons after an appropriate in-pixel post-processing. With this system we can acquire images in scattering samples with a spatial resolution in the 2mm range, with an integration time compatible with the dynamic of living biological tissue.

  6. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    2003-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  7. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)

    2005-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  8. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    1999-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  9. System for absolute measurements by interferometric sensors

    NASA Astrophysics Data System (ADS)

    Norton, Douglas A.

    1993-03-01

    The most common problem of interferometric sensors is their inability to measure absolute path imbalance. Presented in this paper is a signal processing system that gives absolute, unambiguous reading of optical path difference for almost any style of interferometric sensor. Key components are a wide band (incoherent) optical source, a polychromator, and FFT electronics. Advantages include no moving parts in the signal processor, no active components at the sensor location, and the use of standard single mode fiber for sensor illumination and signal transmission. Actual absolute path imbalance of the interferometer is determined without using fringe counting or other inferential techniques. The polychromator extracts the interference information that occurs at each discrete wavelength within the spectral band of the optical source. The signal processing consists of analog and digital filtering, Fast Fourier analysis, and a peak detection and interpolation algorithm. This system was originally designed for use in a remote pressure sensing application that employed a totally passive fiber optic interferometer. A performance qualification was made using a Fabry-Perot interferometer and a commercially available laser interferometer to measure the reference displacement.

  10. Water wave frequency detection by optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyi; Bao, Xiaoyi; Rennie, Colin D.; Nistor, Ioan; Cornett, Andrew

    2008-12-01

    An optical fiber sensor has been developed and applied to measure frequency of water waves based on wave induced polarization change of the light. The fiber sensor can accurately detect water wave frequency for regular and irregular waves. The optimum sag of sensing fiber to the sensor output's linearity has been studied. The agreement of the fiber sensor and wave gauge in frequency and time domain suggests that the fiber sensor has great potential for passive acoustic sensing and wave monitoring.

  11. A fibre-optic oxygen sensor for monitoring human breathing.

    PubMed

    Chen, Rongsheng; Formenti, Federico; Obeid, Andy; Hahn, Clive E W; Farmery, Andrew D

    2013-09-01

    The development and construction of a tapered-tip fibre-optic fluorescence based oxygen sensor is described. The sensor is suitable for fast and real-time monitoring of human breathing. The sensitivity and response time of the oxygen sensor were evaluated in vitro with a gas pressure chamber system, where oxygen partial pressure was rapidly changed between 5 and 15 kPa, and then in vivo in five healthy adult participants who synchronized their breathing to a metronome set at 10, 20, 30, 40, 50, and 60 breaths min(-1). A Datex Ultima medical gas analyser was used to monitor breathing rate as a comparator. The sensor's response time in vitro was less than 150 ms, which allows accurate continuous measurement of inspired and expired oxygen pressure. Measurements of breathing rate by means of our oxygen sensor and of the Datex Ultima were in strong agreement. The results demonstrate that the device can reliably resolve breathing rates up to 60 breaths min(-1), and that it is a suitable cost-effective alternative for monitoring breathing rates and end-tidal oxygen partial pressure in the clinical setting. The rapid response time of the sensor may allow its use for monitoring rapid breathing rates as occur in children and the newborn.

  12. Development of a fiber optic compressor blade sensor

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1995-01-01

    A complete working prototype of the fiber optic blade tip sensor was first tested in the laboratory, followed by a thorough evaluation at NASA W8 Single Compressor Stage Facility in Lewis Research Center. Subsequently, a complete system with three parallel channels was fabricated and delivered to Dr. Kurkov. The final system was tested in the Subsonic Wind Tunnel Facility, in parallel with The General Electric Company's light probe system. The results at all operating speeds were comparable. This report provides a brief description of the system and presents a summary of the experimental results.

  13. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  14. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  15. Optical Fiber Relative-Humidity Sensor with Polyvinyl Alcohol Film

    NASA Astrophysics Data System (ADS)

    Gastón, Ainhoa; Pérez, Fátima; Sevilla, Joaquín

    2004-07-01

    We describe a fiber-optic relative-humidity (RH) sensor comprising a moisture-sensitive overlay on a single-mode side-polished fiber. The hygroscopic polymeric material deposited was polyvinyl alcohol (PVA), which proved to have good adherence and stability. The film reached a fast equilibrium with atmospheric moisture (in less than 1 min), inducing changes in the output optical power of ~10 dB for the 70%-90% RH range. To yield a low-cost device, single-mode standard communication fibers were used; therefore all the components of the sensor can be commercial, mass-produced telecommunication devices. The experimental results obtained are consistent with the expected behavior of the system; the output power decreases because of losses in the polished region of the fiber as the refractive index of its external medium approaches the fiber core value. Because the external medium is PVA film, its refractive index changes in response to its water content.

  16. Automatic Laser Glare Suppression in Electro-Optical Sensors

    PubMed Central

    Ritt, Gunnar; Eberle, Bernd

    2015-01-01

    Progress in laser technology has led to very compact but nevertheless powerful laser sources. In the visible and near infrared spectral region, lasers of any wavelength can be purchased. Continuous wave laser sources pose an especially serious threat to the human eye and electro-optical sensors due to their high proliferation and easy availability. The manifold of available wavelengths cannot be covered by conventional safety measures like absorption or interference filters. We present a protection concept for electro-optical sensors to suppress dazzling in the visible spectral region. The key element of the concept is the use of a digital micromirror device (DMD) in combination with wavelength multiplexing. This approach allows selective spectral filtering in defined regions of interest in the scene. The system offers the possibility of automatic attenuation of dazzling laser radiation. PMID:25569754

  17. Recent progress in distributed fiber optic sensors.

    PubMed

    Bao, Xiaoyi; Chen, Liang

    2012-01-01

    Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

  18. Recent Progress in Distributed Fiber Optic Sensors

    PubMed Central

    Bao, Xiaoyi; Chen, Liang

    2012-01-01

    Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices. PMID:23012508

  19. Sol-gel based optical chemical sensors

    NASA Astrophysics Data System (ADS)

    Lobnik, Aleksandra; Korent Urek, Špela; Turel, Matejka; Frančič, Nina

    2011-05-01

    The growing activity in the field of optical chemical sensors has resulted in numerous sensing schemes, new indicator dyes, various polymeric matrix, size and shapes and highly diversified methods of immobilization. The sensor characteristics are dependent upon the choice of indicator, polymer, immobilization technique, and also size. Sol-gel technology provides a low-temperature method for obtaining porous silicate glass matrices. It enables to obtain material in the form of films, powders, monoliths, fibres or nanoparticles. Organic reagents and molecular receptors can be easily immobilized in the matrices. Moreover, one of the unique features of the sol-gel process is that the properties of the final network structure, such as hydrophobicity, thickness, porosity, flexibility, reactivity and stability can be easily tailored by controlling the process conditions, the type and the size of the precursors and catalysis. Here we will report about several sensor designed over the years based on sol-gel materials for monitoring and controlling different parameters, such as heavy metals, amines, phosphates, organophosphates.

  20. A fibre optic oxygen sensor for monitoring of human breathing

    NASA Astrophysics Data System (ADS)

    Chen, Rongsheng; Farmery, Andrew D.; Chen, Rui; Hahn, Clive E. W.

    2011-11-01

    A reliable and cost effective fibre optic oxygen sensor for monitoring of human breathing has been developed using a normal 200μm silica core/silica cladding optical fibre and a polymer sensing matrix. The fibre optic oxygen sensor is based on the fluorescence quenching of a fluorophore by oxygen. The sensing matrix, containing immobilized Pt(II) complexes, was coated at the end of the silica core/silica cladding optical fibre. The sensitivity and time response of the sensor were evaluated using the method of luminescence lifetime measurement. The polymer substrate influence on the time response of the sensor was improved by using a fibre taper design, and the response time of the optimized sensor was less than 200ms. This silica fibre based optic oxygen sensor is suitable for monitoring of patient breathing in intensive care unit in terms of safety and low cost.